WorldWideScience

Sample records for human dorsal root

  1. DORSAL ROOT REGENERATION INTO TRANSPLANTS OF DORSAL OR VENTRAL HALF OF EMBRYONIC SPINAL CORD

    OpenAIRE

    Ohta, Tohru; Itoh, Yasunobu; Tessler, Alan; Mizoi, Kazuo

    2009-01-01

    Adult cut dorsal root axons regenerate into the transplants of embryonic spinal cord (ESC) and form functional synapses within the transplants. It is unknown whether the growth is specific to transplants of dorsal half of ESC, a normal target of most dorsal root axons, or whether it is due to properties shared by transplants of ventral half of ESC. We used calcitonin gene-related peptide (CGRP) immunohistochemistry to label to the subpopulations of regenerated adult dorsal root axons, quantit...

  2. Endogenous neurotrophin-3 promotes neuronal sprouting from dorsal root ganglia.

    Science.gov (United States)

    Wang, Xu-Yang; Gu, Pei-Yuan; Chen, Shi-Wen; Gao, Wen-Wei; Tian, Heng-Li; Lu, Xiang-He; Zheng, Wei-Ming; Zhuge, Qi-Chuan; Hu, Wei-Xing

    2015-11-01

    In the present study, we investigated the role of endogenous neurotrophin-3 in nerve terminal sprouting 2 months after spinal cord dorsal root rhizotomy. The left L1-5 and L7-S2 dorsal root ganglia in adult cats were exposed and removed, preserving the L6 dorsal root ganglia. Neurotrophin-3 was mainly expressed in large neurons in the dorsal root ganglia and in some neurons in spinal lamina II. Two months after rhizotomy, the number of neurotrophin-3-positive neurons in the spared dorsal root ganglia and the density of neurite sprouts emerging from these ganglia were increased. Intraperitoneal injection of an antibody against neurotrophin-3 decreased the density of neurite sprouts. These findings suggest that endogenous neurotrophin-3 is involved in spinal cord plasticity and regeneration, and that it promotes axonal sprouting from the dorsal root ganglia after spinal cord dorsal root rhizotomy.

  3. Calcium activity of upper thoracic dorsal root ganglion neurons in zucker diabetic Fatty rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise; Nyborg, Niels C B; Fjalland, Bjarne

    2013-01-01

    The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated bilatera......The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated...... in calcium activity of the DRG neurons were found, potentially indicating altered neuronal responses during myocardial ischemia....

  4. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  5. RNA-Seq Analysis of Human Trigeminal and Dorsal Root Ganglia with a Focus on Chemoreceptors.

    Directory of Open Access Journals (Sweden)

    Caroline Flegel

    Full Text Available The chemosensory capacity of the somatosensory system relies on the appropriate expression of chemoreceptors, which detect chemical stimuli and transduce sensory information into cellular signals. Knowledge of the complete repertoire of the chemoreceptors expressed in human sensory ganglia is lacking. This study employed the next-generation sequencing technique (RNA-Seq to conduct the first expression analysis of human trigeminal ganglia (TG and dorsal root ganglia (DRG. We analyzed the data with a focus on G-protein coupled receptors (GPCRs and ion channels, which are (potentially involved in chemosensation by somatosensory neurons in the human TG and DRG. For years, transient receptor potential (TRP channels have been considered the main group of receptors for chemosensation in the trigeminal system. Interestingly, we could show that sensory ganglia also express a panel of different olfactory receptors (ORs with putative chemosensory function. To characterize OR expression in more detail, we performed microarray, semi-quantitative RT-PCR experiments, and immunohistochemical staining. Additionally, we analyzed the expression data to identify further known or putative classes of chemoreceptors in the human TG and DRG. Our results give an overview of the major classes of chemoreceptors expressed in the human TG and DRG and provide the basis for a broader understanding of the reception of chemical cues.

  6. Clinical results of a brindley procedure: sacral anterior root stimulation in combination with a rhizotomy of the dorsal roots

    NARCIS (Netherlands)

    Martens, F.M.J.; Heesakkers, J.P.F.A.

    2011-01-01

    The Brindley procedure consists of a stimulator for sacral anterior-root stimulation and a rhizotomy of the dorsal sacral roots to abolish neurogenic detrusor overactivity. Stimulation of the sacral anterior roots enables micturition, defecation, and erections. This overview discusses the technique,

  7. Anatomic investigation of the lumbosacral nerve roots and dorsal root ganglia by MRI

    International Nuclear Information System (INIS)

    Hasegawa, Toru; Fuse, Kenzo; Mikawa, Yoshihiro; Watanabe, Ryo

    1995-01-01

    The morphology of the lumbosacral nerve roots and dorsal root ganglia (DRG) was examined by using magnetic resonance imaging (MRI) in 11 healthy male volunteers aged 20-40 years. One hundred and twenty-three nerve roots (15 at the L1 level, 22 each at the L2-L5 levels, and 20 at the S1 level) were examined in terms of the position and angle of the bifurcation of the nerve roots, length of the nerve root, and the position and width of DRG. The nerve roots at the lower levels showed more cephalad position and smaller angle of bifurcation on MRI. The distance from the bifurcation of nerve roots to the cephalad edge of DRG was significantly longer in the upper root levels and was significantly shorter in the L5 roots than the S1 roots. The positions of DRG at the S1 level tended to become cephalad. DRG that was positioned toward more caudal direction was larger and more elliptic. MRI provided useful information concerning morphology and anatomical position of nerve roots and DRG, thereby allowing accurate diagnosis and the determination of surgical indications. (N.K.)

  8. Dorsal root potential produced by a TTX-insensitive micro-circuitry in the turtle spinal cord

    DEFF Research Database (Denmark)

    Russo, R E; Delgado-Lezama, R; Hounsgaard, J

    2000-01-01

    1, The mechanisms underlying the dorsal root potential (DRP) were studied in transverse slices of turtle spinal cord. DRPs were evoked by stimulating one filament in a dorsal root and were recorded from another such filament. 2. The DRP evoked at supramaximal stimulus intensity was reduced....... 5. Our results show that part of the DRP is generated by a TTX-resistant, probably non-spiking micro-circuit with separate components mediated by GABA and glutamate....

  9. Expression of interleukin-1 beta in rat dorsal root ganglia

    NARCIS (Netherlands)

    Copray, JCVM; Mantingh, [No Value; Brouwer, N; Biber, K; Kust, BM; Liem, RSB; Huitinga, [No Value; Tilders, FJH; Van Dam, AM; Boddeke, HWGM

    2001-01-01

    The expression of interleukin-lp was examined in dorsal root ganglion (DRG) neurons from adult rats using non-radioactive in Situ hybridization and immunocytochemistry. At all spinal levels, approximately 70% of the DRG neurons appeared to express IL-1 beta mRNA: about 80% of these DRG neurons

  10. Plasticity of Select Primary Afferent Projections to the Dorsal Horn after a Lumbosacral Ventral Root Avulsion Injury and Root Replantation in Rats

    Directory of Open Access Journals (Sweden)

    Allison J. Bigbee

    2017-07-01

    Full Text Available Injuries to the conus medullaris and cauda equina portions of the spinal cord result in neurological impairments, including paralysis, autonomic dysfunction, and pain. In experimental studies, earlier investigations have shown that a lumbosacral ventral root avulsion (VRA injury results in allodynia, which may be ameliorated by surgical replantation of the avulsed ventral roots. Here, we investigated the long-term effects of an L6 + S1 VRA injury on the plasticity of three populations of afferent projections to the dorsal horn in rats. At 8 weeks after a unilateral L6 + S1 VRA injury, quantitative morphological studies of the adjacent L5 dorsal horn showed reduced immunoreactivity (IR for the vesicular glutamate transporter, VGLUT1 and isolectin B4 (IB4 binding, whereas IR for calcitonin gene-related peptide (CGRP was unchanged. The IR for VGLUT1 and CGRP as well as IB4 binding was at control levels in the L5 dorsal horn at 8 weeks following an acute surgical replantation of the avulsed L6 + S1 ventral roots. Quantitative morphological studies of the L5 dorsal root ganglia (DRGs showed unchanged neuronal numbers for both the VRA and replanted series compared to shams. The portions of L5 DRG neurons expressing IR for VGLUT1 and CGRP, and IB4 binding were also the same between the VRA, replanted, and sham-operated groups. We conclude that the L5 dorsal horn shows selective plasticity for VGLUT1 and IB4 primary afferent projections after an L6 + S1 VRA injury and surgical repair.

  11. Differential effects of methylmercury on the synthesis of protein species in dorsal root ganglia of the rat

    International Nuclear Information System (INIS)

    Kasama, Hidetaka; Itoh, Kazuo; Omata, Saburo; Sugano, Hiroshi

    1989-01-01

    Dorsal root ganglia from control and methylmercury(MeHg)-treated rats were incubated in vitro with 35 S-methionine and the proteins synthesized were analyzed by two-dimensional electrophoresis. The double labelling method, in which proteins of control dorsal root ganglia labelled in vitro with 3 H-leucine were added to each of the two samples as an internal standard, was used to minimize unavoidable errors arising from the resolving procedure itself. The results obtained showed that the effect of MeHg on the synthesis of proteins in dorsal root ganglia was not uniform for individual protein species in the latent period of MeHg intoxication. Among 200 protein species investigated, 157 showed inhibition of synthesis close to that of the total proteins in the tissue (68% of the control). Among the remaining protein species, 20 showed real stimulation of synthesis, whereas 7 were moderately inhibited and 16 were inhibited more strongly than the total proteins in the tissue. These results suggest that the effect of MeHg on the synthetic rates for protein species in dorsal root ganglia differs with the species, and that unusual elevation or reduction of the synthesis of some protein species caused by MeHg may lead to impairment of normal nerve functions. (orig.)

  12. Modified dorsal root entry zone lesioning for intractable pain relief in patients with root avulsion injury.

    Science.gov (United States)

    Takai, Keisuke; Taniguchi, Makoto

    2017-08-01

    OBJECTIVE Dorsal root entry zone (DREZ) lesioning has been the most effective surgical treatment for the relief of intractable pain due to root avulsion injury, but residual pain and a decrease in pain relief in the follow-up period have been reported in 23%-70% of patients. Based on pain topography in the most recent studies on neuropathic pain, the authors modified the conventional DREZ lesioning procedure to improve clinical outcomes. The presumed rationale for this procedure is to eliminate the spontaneous discharges of neurons in the superficial spinal dorsal horn as well as wide dynamic range neurons in the deep spinal dorsal horn. METHODS Ten patients with avulsion-related pain underwent surgery between 2011 and 2015. The surgical procedure was described and postoperative pain relief was assessed as follows: excellent (residual pain never exceeded 3 on the visual analog scale [VAS] without medication), good (residual pain never exceeded 5 on the VAS with medication), and poor (residual pain was greater than 5 with medication). Specific perioperative complications were assessed. RESULTS The aim of this surgical procedure was to destroy the deeper layers of the posterior horn of spinal gray matter, which was in contrast to the procedures of Nashold and Sindou, which were to destroy the superficial layers. All patients achieved excellent (n = 7, pain relief without medication) or good (n = 3, pain relief with medication) pain relief postoperatively, and the recurrence of pain was not reported in any patients (median 29 months after surgery, range 12-64 months). Nine patients (90%) achieved complete pain relief (a score of 0 or 1 on the VAS) with or without medication. No surgical site complications such as infection or CSF leakage were noted. No motor deficit was observed in any patient. A sensory deficit was observed in 2 patients and disappeared within 1 month in 1 patient. New pain at the adjacent level of DREZ lesioning was observed in 3 patients and

  13. Synaptic plasticity and sensory-motor improvement following fibrin sealant dorsal root reimplantation and mononuclear cell therapy

    Science.gov (United States)

    Benitez, Suzana U.; Barbizan, Roberta; Spejo, Aline B.; Ferreira, Rui S.; Barraviera, Benedito; Góes, Alfredo M.; de Oliveira, Alexandre L. R.

    2014-01-01

    Root lesions may affect both dorsal and ventral roots. However, due to the possibility of generating further inflammation and neuropathic pain, surgical procedures do not prioritize the repair of the afferent component. The loss of such sensorial input directly disturbs the spinal circuits thus affecting the functionality of the injuried limb. The present study evaluated the motor and sensory improvement following dorsal root reimplantation with fibrin sealant (FS) plus bone marrow mononuclear cells (MC) after dorsal rhizotomy. MC were used to enhance the repair process. We also analyzed changes in the glial response and synaptic circuits within the spinal cord. Female Lewis rats (6–8 weeks old) were divided in three groups: rhizotomy (RZ group), rhizotomy repaired with FS (RZ+FS group) and rhizotomy repaired with FS and MC (RZ+FS+MC group). The behavioral tests electronic von-Frey and Walking track test were carried out. For immunohistochemistry we used markers to detect different synapse profiles as well as glial reaction. The behavioral results showed a significant decrease in sensory and motor function after lesion. The reimplantation decreased glial reaction and improved synaptic plasticity of afferent inputs. Cell therapy further enhanced the rewiring process. In addition, both reimplanted groups presented twice as much motor control compared to the non-treated group. In conclusion, the reimplantation with FS and MC is efficient and may be considered an approach to improve sensory-motor recovery following dorsal rhizotomy. PMID:25249946

  14. Homeobox gene expression in adult dorsal root ganglia: Is regeneration a recapitulation of development?

    NARCIS (Netherlands)

    Vogelaar, C.F.

    2003-01-01

    Neurons of the peripheral nervous system are able to regenerate their peripheral axons after injury, leading to complete recovery of sensory and motor function. The sciatic nerve crush model is frequently used to study peripheral nerve regeneration. Sensory neurons in the dorsal root ganglia (DRGs)

  15. Morphological evaluation of lumbar dorsal root ganglion on three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shen Jun; Chen Jianyu; Zhou Cuiping; Liang Biling; Xu Xiaomao

    2007-01-01

    Objective: To investigate the morphological features of normal lumbar dorsal root ganglia using a three-dimensional (3D) coronal MR imaging. Methods: One hundred and fifteen volunteers were included. Ages ranged from 15 to 75 years, with a mean of 40 years. Coronal 3D fast field echo (FFE) with water selective excitation (Proset) MR examination of 1150 dorsal root ganglia were underwent at nerve root levels from L1 to L5. The source coronal images were further reconstructed into a series of rotational alignment coronal images with an interval angel of 12 degree using maximum intensity projection (MIP) technique. All DRGs of bilateral spinal nerve from L1 to L5 were morphologically analyzed on the original and MIP images including qualitative evaluation of the location, signal intensity, architecture and quantitative dimensional measurement. Results: There were 225, 225, 219, 210 and 160 foraminal ganglia from L1 to L5 level, respectively. The incidence of intraspinal ganglia from L3 to L5 gradually increased with a maximum at L5 level of 29.1% (X 2 =188.371, P<0.01). One thousand one hundred and thirteen (96.8%) DRGs were intermediate intensity on MIP images. The width and length of L1 DRGs were from 2. 00 to 5.50 mm (3.38±0.77) mm, 2.00 to 7.00 mm (4.35±0.89) mm, respectively. The width and length of L5 DRGs were from 3.50 to 9.00 mm (6.40±0.91) mm, 6.00 to 19.00 mm [(11.58± 2.25) mm], respectively. There was statistically significant difference in the dimension of DRGs from L5 to L1 (F=41.527-205.998, P<0.01). In 1150 DRGs, three types of architecture of DRGs including 822 singular, 317 bi- and 11 tri-ganglion DRGs could be found with a high prevalence of the bi-ganglia in L4 and L3 DRGs and a higher incidence of the singular ganglia in the L5 and L2 and L1 DRGs. Conclusions: The normal anatomy and variant of the lumbar dorsal root ganglia could be clearly demonstrated by 3D FFE MR imaging with Proset. As the level of the nerve root traveled down caudally

  16. Inflammatory mediators potentiate high affinity GABA(A) currents in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Lee, Kwan Yeop; Gold, Michael S

    2012-06-19

    Following acute tissue injury action potentials may be initiated in afferent processes terminating in the dorsal horn of the spinal cord that are propagated back out to the periphery, a process referred to as a dorsal root reflex (DRR). The DRR is dependent on the activation of GABA(A) receptors. The prevailing hypothesis is that DRR is due to a depolarizing shift in the chloride equilibrium potential (E(Cl)) following an injury-induced activation of the Na(+)-K(+)-Cl(-)-cotransporter. Because inflammatory mediators (IM), such as prostaglandin E(2) are also released in the spinal cord following tissue injury, as well as evidence that E(Cl) is already depolarized in primary afferents, an alternative hypothesis is that an IM-induced increase in GABA(A) receptor mediated current (I(GABA)) could underlie the injury-induced increase in DRR. To test this hypothesis, we explored the impact of IM (prostaglandin E(2) (1 μM), bradykinin (10 μM), and histamine (1 μM)) on I(GABA) in dissociated rat dorsal root ganglion (DRG) neurons with standard whole cell patch clamp techniques. IM potentiated I(GABA) in a subpopulation of medium to large diameter capsaicin insensitive DRG neurons. This effect was dependent on the concentration of GABA, manifest only at low concentrations (emergence of injury-induced DRR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. MRI of enlarged dorsal ganglia, lumbar nerve roots, and cranial nerves in polyradiculoneuropathies

    International Nuclear Information System (INIS)

    Castillo, M.; Mukherji, S.K.

    1996-01-01

    This paper describes the MRI findings in four patients with a clinical diagnosis of hypertrophic polyradiculoneuropathies. In two examination of the lumbar spine showed enlarged nerve roots and dorsal ganglia, and similar findings were present in the cervical spine in a third. The cisternal portions of the cranial nerves were enlarged in another patient. MRI allows identification of enlarged nerves in hypertrophic polyradiculopathies. (orig.)

  18. Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury

    DEFF Research Database (Denmark)

    Zhang, Ming Dong; Tortoriello, Giuseppe; Hsueh, Brian

    2014-01-01

    , and nerve injury-induced regulation of NECAB1/NECAB2 in mouse dorsal root ganglia (DRGs) and spinal cord. In DRGs, NECAB1/2 are expressed in around 70% of mainly small- and medium-sized neurons. Many colocalize with calcitonin gene-related peptide and isolectin B4, and thus represent nociceptors. NECAB1....../2 neurons are much more abundant in DRGs than the Ca2+-binding proteins (parvalbumin, calbindin, calretinin, and secretagogin) studied to date. In the spinal cord, the NECAB1/2 distribution is mainly complementary. NECAB1 labels interneurons and a plexus of processes in superficial layers of the dorsal horn....... In the dorsal horn, most NECAB1/2 neurons are glutamatergic. Both NECAB1/2 are transported into dorsal roots and peripheral nerves. Peripheral nerve injury reduces NECAB2, but not NECAB1, expression in DRG neurons. Our study identifies NECAB1/2 as abundant Ca2+-binding proteins in pain-related DRG neurons...

  19. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.

    Science.gov (United States)

    Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi

    2018-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.

  20. Suramin affects capsaicin responses and capsaicin-noxious heat interactions in rat dorsal root ganglia neurones

    Czech Academy of Sciences Publication Activity Database

    Vlachová, Viktorie; Lyfenko, Alla; Vyklický st., Ladislav; Orkand, R. K.

    2002-01-01

    Roč. 51, č. 2 (2002), s. 193-198 ISSN 0862-8408 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Institutional research plan: CEZ:AV0Z5011922 Keywords : dorsal root ganglia neurones * vanilloid receptor * capsaicin-noxious heat Subject RIV: ED - Physiology Impact factor: 0.984, year: 2002

  1. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    Science.gov (United States)

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  2. Avaliação da hiperalgesia e alterações histológicas do gânglio da raiz dorsal induzidas pelo núcleo pulposo Evaluation of hyperalgesia and histological changes of dorsal root ganglion induced by nucleus pulposus

    Directory of Open Access Journals (Sweden)

    André Luiz de Souza Grava

    2010-01-01

    estruturas do gânglio da raiz dorsal e apresentaram aumento da intensidade nos períodos mais longos de observação.OBJECTIVE: To evaluate hyperalgesia and histological changes of dorsal root ganglia induced by nucleus pulposus (NP contact. METHODS: Twenty Wistar rats were used, divided into two experimental groups. In one of the groups, a fragment of the autologous NP was removed from the sacroccocigeal region and deposited on the L5 dorsal root ganglia. In the control group, the NP was removed from the sacrococcygeal region, L5 dorsal root ganglia were exposed and covered by a piece of adipous fat tissue. Hyperalgesia was evaluated by the von Frey electronic test and Hargreaves test, and histological changes of the dorsal root ganglia by HE staining and immunohistochemistry using iNOS. The evaluation of hyperalgesia and histological changes of the dorsal root ganglia were performed on the third postoperative day and after 1, 3, 5, and 7 weeks. RESULTS: NP induced higher intensity mechanical and thermal hyperalgesia. Dorsal root ganglia in contact with nucleus pulposus presented histological changes and the intensity of these changes were proportional to the length of time in contact. The expression of iNOS was higher in the glial cells in contact with the nucleus pulposus. CONCLUSION: The contact of nucleus pulposus with dorsal root ganglia induced histological changes and mechanical and thermal hyperalgesia. These changes were more intense after longer period of evaluation.

  3. Transient Sensory Recovery in Stroke Patients After Pulsed Radiofrequency Electrical Stimulation on Dorsal Root Ganglia: A Case Series.

    Science.gov (United States)

    Apiliogullari, Seza; Gezer, Ilknur A; Levendoglu, Funda

    2017-01-01

    The integrity of the somatosensory system is important for motor recovery and neuroplasticity after strokes. Peripheral stimulation or central stimulation in patients with central nervous system lesions can be an effective modality in improving function and in facilitating neuroplasticity. We present 2 hemiplegic cases with sensory motor deficit and the result of the pulsed radiofrequency (PRF) electrical stimulation to the dorsal root ganglia. After PRF electrical stimulation, significant improvement was achieved in the examination of patients with superficial and deep sensation. However, during the follow-up visits were observed that the effect of PRF electrical stimulation disappeared. We believe that these preliminary results could be used in the development of future prospective cohort studies and randomized controlled trials that focus on the effect of PRF electrical stimulation on dorsal root ganglia to treat sensory deficits in poststroke patients.

  4. Assessing the effectiveness of ‘pulse radiofrequency treatment of dorsal root ganglion’ in patients with chronic lumbar radicular pain: study protocol for a randomized control trial

    Directory of Open Access Journals (Sweden)

    Shanthanna Harsha

    2012-04-01

    Full Text Available Abstract Background Chronic lumbar radicular pain can be described as neuropathic pain along the distribution of a particular nerve root. The dorsal root ganglion has been implicated in its pathogenesis by giving rise to abnormal impulse generation as a result of irritation, direct compression and sensitization. Chronic lumbar radicular pain is commonly treated with medications, physiotherapy and epidural steroid injections. Epidural steroid injections are associated with several common and rarer side effects such as spinal cord infarction and death. It is essential and advantageous to look for alternate interventions which could be effective with fewer side effects. Pulse radio frequency is a relatively new technique and is less destructive then conventional radiofrequency. Safety and effectiveness of pulse radio frequency in neuropathic pain has been demonstrated in animal and humans studies. Although its effects on dorsal root ganglion have been studied in animals there is only one randomized control trial in literature demonstrating its effectiveness in cervical radicular pain and none in lumbar radicular pain. Our primary objective is to study the feasibility of a larger trial in terms of recruitment and methodology. Secondary objectives are to compare the treatment effects and side effects. Methods/designs This is a single-center, parallel, placebo-controlled, triple-blinded (patients, care-givers, and outcome assessors, randomized control trial. Participants will have a history of chronic lumbar radicular pain for at least 4 months in duration. Once randomized, all patients will have an intervention involving fluoroscopy guided needle placement to appropriate dorsal root ganglion. After test stimulation in both groups; the study group will have a pulse radio frequency treatment at 42°C for 120 s to the dorsal root ganglion, with the control group having only low intensity test stimulation for the same duration. Primary outcome is to

  5. The effect of collagenase on nerve conduction velocity of dorsal root ganglion in rats

    International Nuclear Information System (INIS)

    Zhuang Wenquan; Li Heping; Yang Jianyong; Chen Wei; Huang Yonghui; Guo Wenbo

    2006-01-01

    Objective: To study the functional effects of collagenase on dorsal root ganglion (DRG) in rats by evoked potential conduction velocity measurement. Methods: A total of 57 male healthy Sprague-Dawley rats were randomized into 7 groups: normal group, acute collagenase group, subacute collagenase group, chronic collagenase group, acute pseudo-operation group, subacute pseudo-operation group, chronic pseudo-operation group. 1200 units of collagenase was reconstituted in 4 ml isotonic saline prior for the experimental application. The left fifth lumbar DRG was exposed in each rat and followed by 1 ml collagenase solution (300 units) dropping on the exposed DRG in collagenase groups; and similarly 1 ml isotonic saline was applied to each of the exposed DRG in pseudo-operation groups. the effects of collagenase on nerve conduction velocity (NCV) were analyzed 1 hour, 1 week or 1 month after the procedure. The statistical analysis was carried out by software SPSS11.0. Results: The differences of NCV measured by evoked potential method between all groups including the normal group, collagenase groups, and pseudo-operation groups were not significant (P>0.05). Conclusion: The Neuroelectricity physiologic function of dorsal root ganglion and nerve would not be damaged by collagenase used in therapeutic concentration. (authors)

  6. The Molecular Fingerprint of Dorsal Root and Trigeminal Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Douglas M. Lopes

    2017-09-01

    Full Text Available The dorsal root ganglia (DRG and trigeminal ganglia (TG are clusters of cell bodies of highly specialized sensory neurons which are responsible for relaying information about our environment to the central nervous system. Despite previous efforts to characterize sensory neurons at the molecular level, it is still unknown whether those present in DRG and TG have distinct expression profiles and therefore a unique molecular fingerprint. To address this question, we isolated lumbar DRG and TG neurons using fluorescence-activated cell sorting from Advillin-GFP transgenic mice and performed RNA sequencing. Our transcriptome analyses showed that, despite being overwhelmingly similar, a number of genes are differentially expressed in DRG and TG neurons. Importantly, we identified 24 genes which were uniquely expressed in either ganglia, including an arginine vasopressin receptor and several homeobox genes, giving each population a distinct molecular fingerprint. We compared our findings with published studies to reveal that many genes previously reported to be present in neurons are in fact likely to originate from other cell types in the ganglia. Additionally, our neuron-specific results aligned well with a dataset examining whole human TG and DRG. We propose that the data can both improve our understanding of primary afferent biology and help contribute to the development of drug treatments and gene therapies which seek targets with unique or restricted expression patterns.

  7. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification.

    Science.gov (United States)

    Kramer, Ina; Sigrist, Markus; de Nooij, Joriene C; Taniuchi, Ichiro; Jessell, Thomas M; Arber, Silvia

    2006-02-02

    Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification.

  8. No further loss of dorsal root ganglion cells after axotomy in p75 neurotrophin receptor knockout mice

    DEFF Research Database (Denmark)

    Sørensen, B.; Lamm, Trine Tandrup; Koltzenburg, M.

    2003-01-01

    The role of the p75 neurotrophin receptor for neuronal survival after nerve crush was studied in L5 dorsal root ganglia (DRG) of knockout mice and controls with assumption-free stereological methods. Numbers of neuronal A- and B-cells were obtained using the optical fractionator and optical...

  9. Orexin A and Orexin Receptor 1 axonal traffic in dorsal roots at the CNS/PNS interface

    Directory of Open Access Journals (Sweden)

    Damien eColas

    2014-02-01

    Full Text Available Hypothalamic orexin/hypocretin neurons send long axonal projections through the dorsal spinal cord in lamina I-II of the dorsal horn at the interface with the peripheral nervous system (PNS. We show that in the dorsal horn OXA fibers colocalize with substance P (SP positive afferents of dorsal root ganglia (DRG neurons known to mediate sensory processing. Further, OR1 is expressed in p75NTR and SP positive DRG neurons, suggesting a potential signaling pathway between orexin and DRG neurons. Interestingly, DRG sensory neurons have a distinctive bifurcating axon where one branch innervates the periphery and the other one the spinal cord (pseudo-unipolar neurons, allowing for potential functional coupling of distinct targets. We observe that OR1 is transported selectively from DRG toward the spinal cord, while OXA is accumulated retrogradely toward the DRG. We hence report a rare situation of asymmetrical neuropeptide receptor distribution between axons projected by a single neuron. This molecular and cellular data are consistent with the role of OXA/OR1 in sensory processing, including DRG neuronal modulation, and support the potential existence of an OX/HCRT circuit between CNS and PNS.

  10. Axotomy increases NADPH-diaphorase activity in the dorsal root ganglia and lumbar spinal cord of the turtle Trachemys dorbigni

    OpenAIRE

    Partata,W.A.; Krepsky,A.M.R.; Marques,M.; Achaval,M.

    1999-01-01

    Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spina...

  11. S3 Dorsal Root Ganglion/Nerve Root Stimulation for Refractory Postsurgical Perineal Pain: Technical Aspects of Anchorless Sacral Transforaminal Lead Placement

    Directory of Open Access Journals (Sweden)

    X. Zuidema

    2016-01-01

    Full Text Available Chronic perineal pain limits patients in physical and sexual activities, leading to social and psychological distress. In most cases, this pain develops after surgery in the urogenital area or as a consequence of trauma. Neuromodulation is one of the options in chronic postsurgical perineal pain treatment. We present a case of refractory perineal pain after right sided surgical resection of a Bartholin’s cyst which was treated with third sacral nerve root/dorsal root ganglion stimulation using the transforaminal approach. We describe a new anchorless lead placement technique using a unique curved lead delivery sheath. We postulate that this new posterior foraminal technique of lead placement is simple, safe, and reversible and may lower the occurrence of lead related complications.

  12. The human dorsal action control system develops in the absence of vision.

    Science.gov (United States)

    Fiehler, Katja; Burke, Michael; Bien, Siegfried; Röder, Brigitte; Rösler, Frank

    2009-01-01

    The primate dorsal pathway has been proposed to compute vision for action. Although recent findings suggest that dorsal pathway structures contribute to somatosensory action control as well, it is yet not clear whether or not the development of dorsal pathway functions depends on early visual experience. Using functional magnetic resonance imaging, we investigated the pattern of cortical activation in congenitally blind and matched blindfolded sighted adults while performing kinesthetically guided hand movements. Congenitally blind adults activated similar dorsal pathway structures as sighted controls. Group-specific activations were found in the extrastriate cortex and the auditory cortex for congenitally blind humans and in the precuneus and the presupplementary motor area for sighted humans. Dorsal pathway activity was in addition observed for working memory maintenance of kinesthetic movement information in both groups. Thus, the results suggest that dorsal pathway functions develop in the absence of vision. This favors the idea of a general mechanism of movement control that operates regardless of the sensory input modality. Group differences in cortical activation patterns imply different movement control strategies as a function of visual experience.

  13. Human dorsal striatum encodes prediction errors during observational learning of instrumental actions.

    Science.gov (United States)

    Cooper, Jeffrey C; Dunne, Simon; Furey, Teresa; O'Doherty, John P

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of others. In this study, we investigated the extent to which human dorsal striatum is involved in observational as well as experiential instrumental reward learning. Human participants were scanned with fMRI while they observed a confederate over a live video performing an instrumental conditioning task to obtain liquid juice rewards. Participants also performed a similar instrumental task for their own rewards. Using a computational model-based analysis, we found reward prediction errors in the dorsal striatum not only during the experiential learning condition but also during observational learning. These results suggest a key role for the dorsal striatum in learning instrumental associations, even when those associations are acquired purely by observing others.

  14. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Science.gov (United States)

    Gunasekaran, Manojkumar; Chatterjee, Prodyot K.; Shih, Andrew; Imperato, Gavin H.; Addorisio, Meghan; Kumar, Gopal; Lee, Annette; Graf, John F.; Meyer, Dan; Marino, Michael; Puleo, Christopher; Ashe, Jeffrey; Cox, Maureen A.; Mak, Tak W.; Bouton, Chad; Sherry, Barbara; Diamond, Betty; Andersson, Ulf; Coleman, Thomas R.; Metz, Christine N.; Tracey, Kevin J.; Chavan, Sangeeta S.

    2018-01-01

    The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses. PMID:29755449

  15. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Manojkumar Gunasekaran

    2018-04-01

    Full Text Available The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR, dorsal root ganglion (DRG sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM into wild-type (WT mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.

  16. Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Blum, E. [Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240 (Israel); Procacci, P.; Conte, V.; Sartori, P. [Dipartimento di Scienze Biomediche per la Salute, University of Milan, via Mangiagalli 14, I-20133 Milano (Italy); Hanani, M., E-mail: hananim@cc.huji.ac.il [Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240 (Israel)

    2017-01-01

    Lipopolysaccharide (LPS) has been used extensively to study neuroinflammation, but usually its effects were examined acutely (24 h<). We have shown previously that a single intraperitoneal LPS injection activated satellite glial cells (SGCs) in mouse dorsal root ganglia (DRG) and altered several functional parameters in these cells for at least one week. Here we asked whether the LPS effects would persist for 1 month. We injected mice with a single LPS dose and tested pain behavior, assessed SGCs activation in DRG using glial fibrillary acidic protein (GFAP) immunostaining, and injected a fluorescent dye intracellularly to study intercellular coupling. Electron microscopy was used to quantitate changes in gap junctions. We found that at 30 days post-LPS the threshold to mechanical stimulation was lower than in controls. GFAP expression, as well as the magnitude of dye coupling among SGCs were greater than in controls. Electron microscopy analysis supported these results, showing a greater number of gap junctions and an abnormal growth of SGC processes. These changes were significant, but less prominent than at 7 days post-LPS. We conclude that a single LPS injection exerts long-term behavioral and cellular changes. The results are consistent with the idea that SGC activation contributes to hyperalgesia. - Highlights: • A single lipopolysaccharides injection activated glia in mouse dorsal root ganglia for 30 days. • This was accompanied by increased communications by gap junctions among glia and by hyperalgesia. • Glial activation and coupling may contribute to chronic pain.

  17. Lentiviral gene transfer into the dorsal root ganglion of adult rats

    Directory of Open Access Journals (Sweden)

    Park Frank

    2011-08-01

    Full Text Available Abstract Background Lentivector-mediated gene delivery into the dorsal root ganglion (DRG is a promising method for exploring pain pathophysiology and for genetic treatment of chronic neuropathic pain. In this study, a series of modified lentivector particles with different cellular promoters, envelope glycoproteins, and viral accessory proteins were generated to evaluate the requirements for efficient transduction into neuronal cells in vitro and adult rat DRG in vivo. Results In vitro, lentivectors expressing enhanced green fluorescent protein (EGFP under control of the human elongation factor 1α (EF1α promoter and pseudotyped with the conventional vesicular stomatitis virus G protein (VSV-G envelope exhibited the best performance in the transfer of EGFP into an immortalized DRG sensory neuron cell line at low multiplicities of infection (MOIs, and into primary cultured DRG neurons at higher MOIs. In vivo, injection of either first or second-generation EF1α-EGFP lentivectors directly into adult rat DRGs led to transduction rates of 19 ± 9% and 20 ± 8% EGFP-positive DRG neurons, respectively, detected at 4 weeks post injection. Transduced cells included a full range of neuronal phenotypes, including myelinated neurons as well as both non-peptidergic and peptidergic nociceptive unmyelinated neurons. Conclusion VSV-G pseudotyped lentivectors containing the human elongation factor 1α (EF1α-EGFP expression cassette demonstrated relatively efficient transduction to sensory neurons following direct injection into the DRG. These results clearly show the potential of lentivectors as a viable system for delivering target genes into DRGs to explore basic mechanisms of neuropathic pain, with the potential for future clinical use in treating chronic pain.

  18. Lumbar dorsal ramus syndrome.

    Science.gov (United States)

    Bogduk, N

    1980-11-15

    Low back pain, referred pain in the lower limbs, and spasm of the back, gluteal, and hamstring muscles are clinical features which can be induced in normal volunteers by stimulating structures which are innervated by the lumbar dorsal rami. Conversely, they can be relieved in certain patients by selective interruption of conduction along dorsal rami. These facts permit the definition of a lumbar dorsal ramus syndrome, which can be distinguished from the intervertebral disc syndrome and other forms of low back pain. The distinguishing feature is that, in lumbar dorsal ramus syndrome, all the clinical features are exclusively mediated by dorsal rami and do not arise from nerve-root compression. The pathophysiology, pathology, and treatment of this syndrome are described. Recognition of this syndrome, and its treatment with relatively minor procedures, can obviate the need for major surgery which might otherwise be undertaken.

  19. A compact dual promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons

    NARCIS (Netherlands)

    Fagoe, N D; Eggers, R; Verhaagen, J; Mason, M R J

    Adeno-associated viral (AAV) vectors based on serotype 5 are an efficient means to target dorsal root ganglia (DRG) to study gene function in the primary sensory neurons of the peripheral nervous system. In this study, we have developed a compact AAV dual promoter vector composed of the

  20. Development of mouse dorsal root ganglia: an autoradiographic and quantitative study

    International Nuclear Information System (INIS)

    Lawson, S.N.; Biscoe, T.J.

    1979-01-01

    Pulse labelling with tritiated thymidine was used to determine the cell birthdays of dorsal root ganglion (DRG) neurons in foetal mice. The peak number of cell birthdays occurred at 11.5 days foetal age in cervical DRGs, and at 12.5 days in lumbar DRGs. The satellite cells were becoming heavily labelled by day 13.5 in lumbar and some hours earlier in cervical regions. A very sharp peak of satellite cell labelling was seen at 13 days in the lumbar region. Evidence for the existence of more than one neuronal cell type is presented. The earliest cells to stop dividing were part of a widely spread distribution which included all the large neurons. The birthdays of the population of small neurons began later and continued for at least 48 h after division of the large cells had ceased. (author)

  1. Axotomy increases NADPH-diaphorase activity in the dorsal root ganglia and lumbar spinal cord of the turtle Trachemys dorbigni

    Directory of Open Access Journals (Sweden)

    Partata W.A.

    1999-01-01

    Full Text Available Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.

  2. Axotomy increases NADPH-diaphorase activity in the dorsal root ganglia and lumbar spinal cord of the turtle Trachemys dorbigni.

    Science.gov (United States)

    Partata, W A; Krepsky, A M; Marques, M; Achaval, M

    1999-04-01

    Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.

  3. Selective plasticity of primary afferent innervation to the dorsal horn and autonomic nuclei following lumbosacral ventral root avulsion and reimplantation in long term studies.

    Science.gov (United States)

    Wu, Lisa; Wu, Jun; Chang, Huiyi H; Havton, Leif A

    2012-02-01

    Previous studies involving injuries to the nerves of the cauda equina and the conus medullaris have shown that lumbosacral ventral root avulsion in rat models results in denervation and dysfunction of the lower urinary tract, retrograde and progressive cell death of the axotomized motor and parasympathetic neurons, as well as the emergence of neuropathic pain. Root reimplantation has also been shown to ameliorate several of these responses, but experiments thus far have been limited to studying the effects of lesion and reimplantation local to the lumbosacral region. Here, we have expanded the region of investigation after lumbosacral ventral root avulsion and reimplantation to include the thoracolumbar sympathetic region of the spinal cord. Using a retrograde tracer injected into the major pelvic ganglion, we were able to define the levels of the spinal cord that contain sympathetic preganglionic neurons innervating the lower urinary tract. We have conducted studies on the effects of the lumbosacral ventral root avulsion and reimplantation models on the afferent innervation of the dorsal horn and autonomic nuclei at both thoracolumbar and lumbosacral levels through immunohistochemistry for the markers calcitonin gene-related peptide (CGRP) and vesicular glutamate transporter 1 (VGLUT1). Surprisingly, our experiments reveal a selective and significant decrease of CGRP-positive innervation in the dorsal horn at thoracolumbar levels that is partially restored with root reimplantation. However, no similar changes were detected at the lumbosacral levels despite the injury and repair targeting efferent neurons, and being performed at the lumbosacral levels. Despite the changes evident in the thoracolumbar dorsal horn, we find no changes in afferent innervation of the autonomic nuclei at either sympathetic or parasympathetic segmental levels by CGRP or VGLUT1. We conclude that even remote, efferent root injuries and repair procedures can have an effect on remote and non

  4. EXPRESSION OF CALCIUM-BINDING PROTEINS IN THE NEUROTROPHIN-3-DEPENDENT SUBPOPULATION OF RAT EMBRYONIC DORSAL-ROOT GANGLION-CELLS IN CULTURE

    NARCIS (Netherlands)

    COPRAY, JCVM; MANTINGHOTTER, IJ; BROUWER, N

    1994-01-01

    In this study we have examined the calcium-binding protein expression in rat embryonic (E16) dorsal root ganglia (DRG) neurons in vitro in the presence of neurotrophin-3 (NT-3). A comparison was made with the expression of calcium-binding proteins in DRG subpopulations that depended in vitro on

  5. The effects of capsaicin and acidity on currents generated by noxious heat in cultured neonatal rat dorsal root ganglion neurones

    Czech Academy of Sciences Publication Activity Database

    Vlachová, Viktorie; Lyfenko, Alla; Orkand, R. K.; Vyklický st., Ladislav

    2001-01-01

    Roč. 533, č. 3 (2001), s. 717-728 ISSN 0022-3751 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Institutional research plan: CEZ:AV0Z5011922 Keywords : capsaicin * dorsal root ganglion neurones * neonatal rat Subject RIV: FH - Neurology Impact factor: 4.476, year: 2001

  6. Dorsal Root Ganglion Stimulation for Complex Regional Pain Syndrome (CRPS) Recurrence after Amputation for CRPS, and Failure of Conventional Spinal Cord Stimulation.

    Science.gov (United States)

    Goebel, Andreas; Lewis, Sarah; Phillip, Rhodri; Sharma, Manohar

    2018-01-01

    Limb amputation is sometimes being performed in long-standing complex regional pain syndrome (CRPS), although little evidence is available guiding management decisions, including how CRPS recurrence should be managed. This report details the management of a young soldier with CRPS recurrence 2 years after midtibial amputation for CRPS. Conventional spinal cord stimulation did not achieve paraesthetic coverage, or pain relief in the stump, whereas L4 dorsal root ganglion stimulation achieved both coverage and initially modest pain relief, and over time, substantial pain relief. Current evidence does not support the use of amputation to improve either pain or function in CRPS. Before a decision is made, in exceptional cases, about referral for amputation, dorsal root ganglion stimulation should be considered as a potentially effective treatment, even where conventional spinal cord stimulator treatment has failed to achieve reliable paraesthetic cover. Furthermore, this treatment may provide pain relief in those patients with CRPS recurrence in the stump after amputation. © 2017 World Institute of Pain.

  7. New Treatments for Spinal Nerve Root Avulsion Injury

    Directory of Open Access Journals (Sweden)

    Thomas Carlstedt

    2016-08-01

    Full Text Available Further progress in the treatment of the longitudinal spinal cord injury has been made. In an inverted translational study, it has been demonstrated that return of sensory function can be achieved by bypassing the avulsed dorsal root ganglion neurons. Dendritic growth from spinal cord sensory neurons could replace dorsal root ganglion axons and re-establish a reflex arch. Another research avenue has led to the development of adjuvant therapy for regeneration following dorsal root to spinal cord implantation in root avulsion injury. A small, lipophilic molecule that can be given orally acts on the retinoic acid receptor system as an agonist. Upregulation of dorsal root ganglion regenerative ability and organization of glia reaction to injury were demonstrated in treated animals. The dual effect of this substance may open new avenues for the treatment of root avulsion and spinal cord injuries.

  8. A SAGE-based screen for genes expressed in sub-populations of neurons in the mouse dorsal root ganglion

    Directory of Open Access Journals (Sweden)

    Garces Alain

    2007-11-01

    Full Text Available Abstract Background The different sensory modalities temperature, pain, touch and muscle proprioception are carried by somatosensory neurons of the dorsal root ganglia. Study of this system is hampered by the lack of molecular markers for many of these neuronal sub-types. In order to detect genes expressed in sub-populations of somatosensory neurons, gene profiling was carried out on wild-type and TrkA mutant neonatal dorsal root ganglia (DRG using SAGE (serial analysis of gene expression methodology. Thermo-nociceptors constitute up to 80 % of the neurons in the DRG. In TrkA mutant DRGs, the nociceptor sub-class of sensory neurons is lost due to absence of nerve growth factor survival signaling through its receptor TrkA. Thus, comparison of wild-type and TrkA mutants allows the identification of transcripts preferentially expressed in the nociceptor or mechano-proprioceptor subclasses, respectively. Results Our comparison revealed 240 genes differentially expressed between the two tissues (P Conclusion We have identified and characterized the detailed expression patterns of three genes in the developing DRG, placing them in the context of the known major neuronal sub-types defined by molecular markers. Further analysis of differentially expressed genes in this tissue promises to extend our knowledge of the molecular diversity of different cell types and forms the basis for understanding their particular functional specificities.

  9. A Multicenter, Prospective Trial to Assess the Safety and Performance of the Spinal Modulation Dorsal Root Ganglion Neurostimulator System in the Treatment of Chronic Pain

    NARCIS (Netherlands)

    A.L. Liem (Liong); M. Russo (Marc); F.J.P.M. Huygen (Frank); J.P. Van Buyten (Jean-Pierre); I. Smets (Ilse); P. Verrills (Paul); M. Cousins (Michael); C. Brooker (Charles); R. Levy (Richard); T. Deer (Timothy); J. Kramer (Jeffery)

    2013-01-01

    textabstractObjectives: This multicenter prospective trial was conducted to evaluate the clinical performance of a new neurostimulation system designed to treat chronic pain through the electrical neuromodulation of the dorsal root ganglia (DRG) neurophysiologically associated with painful regions

  10. In Vitro Analysis of the Role of Schwann Cells on Axonal Degeneration and Regeneration Using Sensory Neurons from Dorsal Root Ganglia.

    Science.gov (United States)

    López-Leal, Rodrigo; Diaz, Paula; Court, Felipe A

    2018-01-01

    Sensory neurons from dorsal root ganglion efficiently regenerate after peripheral nerve injuries. These neurons are widely used as a model system to study degenerative mechanisms of the soma and axons, as well as regenerative axonal growth in the peripheral nervous system. This chapter describes techniques associated to the study of axonal degeneration and regeneration using explant cultures of dorsal root ganglion sensory neurons in vitro in the presence or absence of Schwann cells. Schwann cells are extremely important due to their involvement in tissue clearance during axonal degeneration as well as their known pro-regenerative effect during regeneration in the peripheral nervous system. We describe methods to induce and study axonal degeneration triggered by axotomy (mechanical separation of the axon from its soma) and treatment with vinblastine (which blocks axonal transport), which constitute clinically relevant mechanical and toxic models of axonal degeneration. In addition, we describe three different methods to evaluate axonal regeneration using quantitative methods. These protocols constitute a valuable tool to analyze in vitro mechanisms associated to axonal degeneration and regeneration of sensory neurons and the role of Schwann cells in these processes.

  11. Postoperative visual loss following dorsal root entry zone rhizotomy: A dreaded complication after a benign procedure

    Directory of Open Access Journals (Sweden)

    R K Mishra

    2016-01-01

    Full Text Available Postoperative visual loss (POVL is a rare but grave postoperative complication. It has been mainly reported in patients undergoing cardiac and spinal surgeries. Dorsal root entry zone (DREZ is pain relieving procedure performed in patients with refractory neuropathic pain with minimal complication rate. We present a case of unilateral POVL following DREZ rhizotomy in prone position in a patient having brachial plexus neuropathy. Exact etiology of vision loss was though not clear; hypotension, use of vasopressors and hemodilution may have led to vision loss in this patient. This case report highlights the associated risk factors for development of this hazardous complication.

  12. Uso terapêutico da radiofrequência pulsátil no gânglio dorsal da raiz de L2 na lombalgia discogênica Uso terapéutico de la radiofrecuencia pulsátil en el ganglio dorsal de la raíz de L2 en la lumbalgia discogénica Pulsed radiofrequency on L2 dorsal root ganglion as a therapeutic method for lumbar discogenic pain

    Directory of Open Access Journals (Sweden)

    Fabrício Dias Assis

    2009-06-01

    Full Text Available OBJETIVO: Avaliar a eficácia da radiofrequência pulsátil sobre o gânglio da raiz dorsal de L2 no tratamento dos pacientes com lombalgia discogênica. MÉTODOS: Realizou-se análise retrospectiva de 50 pacientes portadores de lombalgia crônica discogênica atendidos no período de janeiro de 2004 a julho de 2007. O processo diagnóstico foi constituído por exame físico, ressonância magnética e bloqueio diagnóstico do gânglio da raiz dorsal de L2. Todos os pacientes foram submetidos à radiofrequência pulsátil no gânglio da raiz dorsal de L2 e acompanhados por, no mínimo, 12 meses. A intensidade de dor foi medida pela escala visual analógica (EVA de dor. RESULTADOS: A análise estatística mostrou melhora significativa da intensidade de dor (pOBJETIVO: evaluar la eficacia de la radiofrecuencia pulsátil sobre el ganglio de la raíz dorsal de L2 en el tratamiento de los pacientes con lumbalgia discogénica. MÉTODOS: fue realizado un análisis retrospectivo de 50 pacientes portadores de lumbalgia crónica discogénica, atendidos en el periodo de Enero de 2004 a Julio de 2007. El proceso diagnóstico constó de un examen físico, resonancia magnética y bloqueo diagnóstico del ganglio de la raíz dorsal de L2. Todos los pacientes fueron sometidos a la radiofrecuencia pulsátil en el ganglio de la raíz dorsal de L2 y seguidos por 12 meses, como mínimo. La intensidad del dolor fue medida por la escala visual analógica del dolor. RESULTADOS: el análisis estadístico mostró mejoría significativa de la intensidad del dolor (pOBJECTIVE: to evaluate the effectiveness of pulsate radio-frequency on L2 dorsal root ganglion for chronic discogenic low back pain. Of L2 in the treatment of the patient with discogenic low back pain. METHODS: Between January 2004 and July 2007, 50 patients with diagnosis of low back discogenic pain were retrospectively assessed based on physical examination, magnetic resonance imaging findings and selective L

  13. Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10

    DEFF Research Database (Denmark)

    Sonnenberg-Riethmacher, Eva; Miehe, Michaela; Stolt, Claus C.

    2001-01-01

    neurogenesis seemed initially normal. A degeneration of motoneurons and sensory neurons occurred later in development. The mechanism that leads to the dramatic effects on the neural crest derived cell lineages in the dorsal root ganglia (DRG), however, has not been examined up to now. Here, we provide...... a detailed analysis of proliferation and apoptosis in the DRG during the time of their generation and lineage segregation (between E 9.5 and E 11.5). We show that both increased apoptosis as well as decreased proliferation of neural crest cells contribute to the observed hypomorphism....

  14. [Effect of bee venom injection on TrkA and TRPV1 expression in the dorsal root ganglion of rats with collagen-induced arthritis].

    Science.gov (United States)

    Xian, Pei-Feng; Chen, Ying; Yang, Lu; Liu, Guo-Tao; Peng, Peng; Wang, Sheng-Xu

    2016-06-01

    To investigate the therapeutic effect of acupoint injection of bee venom on collagen-induced arthritis (CIA) in rats and explore the mechanism of bee venom therapy in the treatment of rheumatoid arthritis. Fifteen male Wistar rats were randomly divided into bee venom treatment group (BV group), CIA model group, and control group. In the former two groups, CIA was induced by injections of collagen II+IFA (0.2 mL) via the tail vein, and in the control group, normal saline was injected instead. The rats in BV group received daily injection of 0.1 mL (3 mg/mL) bee venom for 7 consecutive days. All the rats were assessed for paw thickness and arthritis index from days 14 to 21, and the pain threshold was determined on day 21. The expressions of TRPV1 and TrkA in the dorsal root ganglion at the level of L4-6 were detected using immunohistochemistry and Western blotting, respectively. The rats in CIA model group started to show paw swelling on day 10, and by day 14, all the rats in this group showed typical signs of CIA. In BV group, the rats receiving been venom therapy for 7 days showed a significantly smaller paw thickness and a low arthritis index than those in the model group. The pain threshold was the highest in the control group and the lowest in the model group. TRPV1-positive cells and TrkA expression in the dorsal root ganglion was significantly reduced in BV group as compared with that in the model group. s Injection of bee venom can decrease expression of TRPV1 and TrkA in the dorsal root ganglion to produce anti-inflammatory and analgesic effects, suggesting the potential value of bee venom in the treatment of rheumatoid arthritis.

  15. Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age

    Science.gov (United States)

    Galbavy, William; Kaczocha, Martin; Puopolo, Michelino; Liu, Lixin; Rebecchi, Mario J.

    2015-01-01

    Prior studies of aging and neuropathic injury have focused on senescent animals compared to young adults, while changes in middle age, particularly in the dorsal root ganglia (DRG), have remained largely unexplored. 14 neuroimmune mRNA markers, previously associated with peripheral nerve injury, were measured in multiplex assays of lumbar spinal cord (LSC), and DRG from young and middle-aged (3, 17 month) naïve rats, or from rats subjected to chronic constriction injury (CCI) of the sciatic nerve (after 7 days), or from aged-matched sham controls. Results showed that CD2, CD3e, CD68, CD45, TNF-α, IL6, CCL2, ATF3 and TGFβ1 mRNA levels were substantially elevated in LSC from naïve middle-aged animals compared to young adults. Similarly, LSC samples from older sham animals showed increased levels of T-cell and microglial/macrophage markers. CCI induced further increases in CCL2, and IL6, and elevated ATF3 mRNA levels in LSC of young and middle-aged adults. Immunofluorescence images of dorsal horn microglia from middle-aged naïve or sham rats were typically hypertrophic with mostly thickened, de-ramified processes, similar to microglia following CCI. Unlike the spinal cord, marker expression profiles in naïve DRG were unchanged across age (except increased ATF3); whereas, levels of GFAP protein, localized to satellite glia, were highly elevated in middle age, but independent of nerve injury. Most neuroimmune markers were elevated in DRG following CCI in young adults, yet middle-aged animals showed little response to injury. No age-related changes in nociception (heat, cold, mechanical) were observed in naïve adults, or at days 3 or 7 post-CCI. The patterns of marker expression and microglial morphologies in healthy middle age are consistent with development of a para-inflammatory state involving microglial activation and T-cell marker elevation in the dorsal horn, and neuronal stress and satellite cell activation in the DRG. These changes, however, did not

  16. PKA-induced internalization of slack KNa channels produces dorsal root ganglion neuron hyperexcitability.

    Science.gov (United States)

    Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin

    2010-10-20

    Inflammatory mediators through the activation of the protein kinase A (PKA) pathway sensitize primary afferent nociceptors to mechanical, thermal, and osmotic stimuli. However, it is unclear which ion conductances are responsible for PKA-induced nociceptor hyperexcitability. We have previously shown the abundant expression of Slack sodium-activated potassium (K(Na)) channels in nociceptive dorsal root ganglion (DRG) neurons. Here we show using cultured DRG neurons, that of the total potassium current, I(K), the K(Na) current is predominantly inhibited by PKA. We demonstrate that PKA modulation of K(Na) channels does not happen at the level of channel gating but arises from the internal trafficking of Slack channels from DRG membranes. Furthermore, we found that knocking down the Slack subunit by RNA interference causes a loss of firing accommodation analogous to that observed during PKA activation. Our data suggest that the change in nociceptive firing occurring during inflammation is the result of PKA-induced Slack channel trafficking.

  17. Clinical significance of the position of dorsal root ganglia in degenerative lumbar diseases. Correlation between anatomic study and imaging study with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Masahiro; Kikuchi, Tomiichi [Fukushima Medical Coll., Matsuoka (Japan)

    1995-06-01

    In order to estimate the ralationship between the position of dorsal root ganglia (DRG) and radicular symptoms, anatomical study was done on 81 cadavers, and a clinical study with MRI was done on 20 cases of lumbar disc herniation and 20 of lumbar spondylosis with L{sub 5} radiculopathy. The position of DRG is not related to the occurrence of radicular symptoms in disc herniation, while in lumbar spondylosis proximally placed DRG are related to both of unilateral and bilateral occurrence of redicular symptoms. Unilateral occurrence of radicular symptoms is influenced by surrounding tissues of the nerve root, rather than the position of DRG. (author).

  18. Clinical significance of the position of dorsal root ganglia in degenerative lumbar diseases. Correlation between anatomic study and imaging study with MRI

    International Nuclear Information System (INIS)

    Seki, Masahiro; Kikuchi, Tomiichi

    1995-01-01

    In order to estimate the ralationship between the position of dorsal root ganglia (DRG) and radicular symptoms, anatomical study was done on 81 cadavers, and a clinical study with MRI was done on 20 cases of lumbar disc herniation and 20 of lumbar spondylosis with L 5 radiculopathy. The position of DRG is not related to the occurrence of radicular symptoms in disc herniation, while in lumbar spondylosis proximally placed DRG are related to both of unilateral and bilateral occurrence of redicular symptoms. Unilateral occurrence of radicular symptoms is influenced by surrounding tissues of the nerve root, rather than the position of DRG. (author)

  19. Whole transcriptome expression of trigeminal ganglia compared to dorsal root ganglia in Rattus Norvegicus

    DEFF Research Database (Denmark)

    Kogelman, Lisette Johanna Antonia; Christensen, Rikke Elgaard; Pedersen, Sara Hougaard

    2017-01-01

    The trigeminal ganglia (TG) subserving the head and the dorsal root ganglia (DRG) subserving the rest of the body are homologous handling sensory neurons. Differences exist, as a number of signaling substances cause headache but no pain in the rest of the body. To date, very few genes involved...... in this difference have been identified. We aim to reveal basal gene expression levels in TG and DRG and detect genes that are differentially expressed (DE) between TG and DRG. RNA-Sequencing from six naïve rats describes the whole transcriptome expression profiles of TG and DRG. Differential expression analysis...... was followed by pathway analysis to identify DE processes between TG and DRG. In total, 64 genes had higher and 55 genes had lower expressed levels in TG than DRG. Higher expressed genes, including S1pr5 and Gjc2, have been related to phospholipase activity. The lower expressed genes, including several Hox...

  20. A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia

    Directory of Open Access Journals (Sweden)

    Vargas-Alarcon Gilberto

    2012-02-01

    Full Text Available Abstract Background A consistent line of investigation suggests that autonomic nervous system dysfunction may explain the multi-system features of fibromyalgia (FM; and that FM is a sympathetically maintained neuropathic pain syndrome. Dorsal root ganglia (DRG are key sympathetic-nociceptive short-circuit sites. Sodium channels located in DRG (particularly Nav1.7 act as molecular gatekeepers for pain detection. Nav1.7 is encoded in gene SCN9A of chromosome 2q24.3 and is predominantly expressed in the DRG pain-sensing neurons and sympathetic ganglia neurons. Several SCN9A sodium channelopathies have been recognized as the cause of rare painful dysautonomic syndromes such as paroxysmal extreme pain disorder and primary erythromelalgia. The aim of this study was to search for an association between fibromyalgia and several SCN9A sodium channels gene polymorphisms. Methods We studied 73 Mexican women suffering from FM and 48 age-matched women who considered themselves healthy. All participants filled out the Fibromyalgia Impact Questionnaire (FIQ. Genomic DNA from whole blood containing EDTA was extracted by standard techniques. The following SCN9A single-nucleotide polymorphisms (SNP were determined by 5' exonuclease TaqMan assays: rs4371369; rs4387806; rs4453709; rs4597545; rs6746030; rs6754031; rs7607967; rs12620053; rs12994338; and rs13017637. Results The frequency of the rs6754031 polymorphism was significantly different in both groups (P = 0.036 mostly due to an absence of the GG genotype in controls. Interestingly; patients with this rs6754031 GG genotype had higher FIQ scores (median = 80; percentile 25/75 = 69/88 than patients with the GT genotype (median = 63; percentile 25/75 = 58/73; P = 0.002 and the TT genotype (median = 71; percentile 25/75 = 64/77; P = 0.001. Conclusion In this ethnic group; a disabling form of FM is associated to a particular SCN9A sodium channel gene variant. These preliminary results raise the possibility that

  1. Changes in galanin immunoreactivity in rat lumbosacral spinal cord and dorsal root ganglia after spinal cord injury.

    Science.gov (United States)

    Zvarova, K; Murray, E; Vizzard, M A

    2004-08-02

    Alterations in the expression of the neuropeptide galanin were examined in micturition reflex pathways 6 weeks after complete spinal cord transection (T8). In control animals, galanin expression was present in specific regions of the gray matter in the rostral lumbar and caudal lumbosacral spinal cord, including: (1) the dorsal commissure; (2) the superficial dorsal horn; (3) the regions of the intermediolateral cell column (L1-L2) and the sacral parasympathetic nucleus (L6-S1); and (4) the lateral collateral pathway in lumbosacral spinal segments. Densitometry analysis demonstrated significant increases (P < or = 0.001) in galanin immunoreactivity (IR) in these regions of the S1 spinal cord after spinal cord injury (SCI). Changes in galanin-IR were not observed at the L4-L6 segments except for an increase in galanin-IR in the dorsal commissure in the L4 segment. In contrast, decreases in galanin-IR were observed in the L1 segment. The number of galanin-IR cells increased (P < or = 0.001) in the L1 and S1 dorsal root ganglia (DRG) after SCI. In all DRG examined (L1, L2, L6, and S1), the percentage of bladder afferent cells expressing galanin-IR significantly increased (4-19-fold) after chronic SCI. In contrast, galanin expression in nerve fibers in the urinary bladder detrusor and urothelium was decreased or eliminated after SCI. Expression of the neurotrophic factors nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) was altered in the spinal cord after SCI. A significant increase in BDNF expression was present in spinal cord segments after SCI. In contrast, NGF expression was only increased in the spinal segments adjacent and rostral to the transection site (T7-T8), whereas spinal segments (T13-L1; L6-S1), distal to the transection site exhibited decreased NGF expression. Changes in galanin expression in micturition pathways after SCI may be mediated by changing neurotrophic factor expression, particularly BDNF. These changes may contribute to

  2. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    Science.gov (United States)

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically

  3. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...

  4. [Effects of small needle knife on the substance P in the dorsal root ganglion and spinal cord of rats].

    Science.gov (United States)

    Wang, Jin-Rong; Wang, Yong-Zhi; Dong, Fu-Hui; Zhong, Hong-Gang; Wang, De-Long; Wang, Xuan

    2010-09-01

    To study the mechanism of synthesis of substance P (SP) in the dorsal root ganglion (DRG) and the release of it in the dorsal horn of the spinal cord of rats after compression of skeletal muscle, and to observe the influence of small needle knife. Sustained pressure of 70 kPa was applied to rats, muscular tissues for 2 hours. The rats were divided into three groups: normal, control and experiment group respectively. In all rats except the six normal ones, the lower legs were compressed once one day. The left leg was considered as the control group, the right left was experiment group, which were divided into the 1st day, the 2nd day and the 3rd day within the two groups. Experiment group was treated with small needle knife after the muscular tissue was compressed. After completing the stimulation, the DRG related to the muscle and part of spinal cord were removed for the qualification of SP-like immunoreactivity using immunohistochemistry. The dark brown stains on the DRG and on the REXed laminae I and II in the dorsal horn of the spinal cord were counted by Image-Pro Plus software. SP-like immunoreactivity in the side treated by the small needle knife was enhanced comparing with the counterpart in DRG in normal group (P DRG in the experiment group were significantly reduced compared with the control group (P DRG, and shows no effects on the release of SP from the spinal cord in short-term (3 days).

  5. Usefulness of Cross-Linked Human Acellular Dermal Matrix as an Implant for Dorsal Augmentation in Rhinoplasty.

    Science.gov (United States)

    Yang, Chae Eun; Kim, Soo Jung; Kim, Ji Hee; Lee, Ju Hee; Roh, Tai Suk; Lee, Won Jai

    2018-02-01

    Asian noses are relatively small and flat compared to Caucasians; therefore, rhinoplasty procedures often focus on dorsal augmentation and tip projection rather than reduction in the nasal framework. Various autologous and alloplastic implant materials have been used for dorsal augmentation. Recently, human acellular dermal matrices have been introduced as an implant material for dorsal augmentation, camouflaging autologous implants without an additional donor site. Here, we introduce a cross-linked human acellular dermal matrix as an implant material in augmentation rhinoplasty and share the clinical experiences. Eighteen patients who underwent augmentation rhinoplasty using acellular dermal matrix from April 2014 to November 2015 were reviewed retrospectively. Clinical outcomes and complications were assessed at the outpatient clinic during the follow-up period ranging from 8 to 38 months. Contour changes were assessed through comparison of preoperative and postoperative photographs by two independent plastic surgeons. Patient satisfaction was assessed at the outpatient clinic by six questions regarding aesthetic and functional aspects. Postoperative photographs demonstrated the height of the nasal dorsum did not decrease over time except two patients whose ADM was grafted into a subperiosteal pocket. Others who underwent supraperiosteal implantation showed acceptable maintenance of dorsal height. No major complication was reported. Overall, patient satisfaction scored 81.02 out of 100. Cross-linked human ADM has advantages of both autogenous and alloplastic materials. The surgical results remain stable without complications. Therefore, it is a suitable alternative implant material for dorsal augmentation in rhinoplasty. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  6. Cervical Spinal Cord and Dorsal Nerve Root Stimulation for Neuropathic Upper Limb Pain.

    Science.gov (United States)

    Levine, Adrian B; Parrent, Andrew G; MacDougall, Keith W

    2017-01-01

    Spinal cord stimulation (SCS) is a well-established treatment for chronic neuropathic pain in the lower limbs. Upper limb pain comprises a significant proportion of neuropathic pain patients, but is often difficult to target specifically and consistently with paresthesias. We hypothesized that the use of dorsal nerve root stimulation (DNRS), as an option along with SCS, would help us better relieve pain in these patients. All 35 patients trialed with spinal stimulation for upper limb pain between July 1, 2011, and October 31, 2013, were included. We performed permanent implantation in 23/35 patients based on a visual analogue scale pain score decrease of ≥50% during trial stimulation. Both the SCS and DNRS groups had significant improvements in average visual analogue scale pain scores at 12 months compared with baseline, and the majority of patients in both groups obtained ≥50% pain relief. The majority of patients in both groups were able to reduce their opioid use, and on average had improvements in Short Form-36 quality of life scores. Complication rates did not differ significantly between the two groups. Treatment with SCS or DNRS provides meaningful long-term relief of chronic neuropathic pain in the upper limbs.

  7. Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Ralston, H.J.; Ralston, D.D.

    1979-01-01

    The projection of dorsal root fibres to the motor nucleus of the macaque monkey spinal cord has been examined utilizing light and electron microscopic autoradiography. Light microscopy demonstrates a very sparse labelling of primary afferent fibres in the ventral horn. Silver grains overlying radioactive sources are frequently clustered into small groups, often adjacent to dendritic profiles. Under the electron microscope, myelinated axons and a few large synaptic profiles containing rounded synaptic vesicles were overlain by numerous silver grains. These labelled profiles made synaptic contact with dendrites 1 - 3 micrometers in diameter. The labelled profiles did not contact cell bodies or large proximal dendrites of ventral horn neutrons. Frequently, small synaptic profiles containing flattened vesicles were presynaptic to the large labelled terminals and it is suggested that these axoaxonal synapses may mediate presynaptic inhibition of the primary afferent fibres. The relationship of the present findings to previously published physiological and anatomical studies is discussed. (author)

  8. Voltage-gated Na+ currents in human dorsal root ganglion neurons

    Science.gov (United States)

    Zhang, Xiulin; Priest, Birgit T; Belfer, Inna; Gold, Michael S

    2017-01-01

    Available evidence indicates voltage-gated Na+ channels (VGSCs) in peripheral sensory neurons are essential for the pain and hypersensitivity associated with tissue injury. However, our understanding of the biophysical and pharmacological properties of the channels in sensory neurons is largely based on the study of heterologous systems or rodent tissue, despite evidence that both expression systems and species differences influence these properties. Therefore, we sought to determine the extent to which the biophysical and pharmacological properties of VGSCs were comparable in rat and human sensory neurons. Whole cell patch clamp techniques were used to study Na+ currents in acutely dissociated neurons from human and rat. Our results indicate that while the two major current types, generally referred to as tetrodotoxin (TTX)-sensitive and TTX-resistant were qualitatively similar in neurons from rats and humans, there were several differences that have important implications for drug development as well as our understanding of pain mechanisms. DOI: http://dx.doi.org/10.7554/eLife.23235.001 PMID:28508747

  9. The effects of anticonvulsants on 4-aminopyridine-induced bursting: in vitro studies on rat peripheral nerve and dorsal roots.

    Science.gov (United States)

    Lees, G.

    1996-01-01

    1. Aminopyridines have been used as beneficial symptomatic treatments in a variety of neurological conditions including multiple sclerosis but have been associated with considerable toxicity in the form of abdominal pain, paraesthesias and (rarely) convulsions. 2. Extracellular and intracellular recording was used to characterize action potentials in rat sciatic nerves and dorsal roots and the effects of 4-aminopyridine (4-AP). 3. In sciatic nerve trunks, 1 mM 4-AP produced pronounced after potentials at room temperature secondary to regenerative firing in affected axons (5-10 spikes per stimulus). At physiological temperatures, after potentials (2-3 spikes) were greatly attenuated in peripheral axons. 4. 4-AP evoked more pronounced and prolonged after discharges in isolated dorsal roots at 37 degrees C (3-5.5 mV and 80-100 ms succeeded by a smaller inhibitory/depolarizing voltage shift) which were used to assess the effects of anticonvulsants. 5. Phenytoin, carbamazepine and lamotrigine dose-dependently reduced the area of 4-AP-induced after potentials at 100 and 320 microM but the amplitude of compound action potentials (evoked at 0.5 Hz) was depressed in parallel. 6. The tonic block of sensory action potentials by all three drugs (at 320 microM) was enhanced by high frequency stimulation (5-500 Hz). 7. The lack of selectivity of these frequency-dependent Na+ channel blockers for burst firing compared to low-frequency spikes, is discussed in contrast to their effects on 4-AP-induced seizures and paroxysmal activity in CNS tissue (which is associated with large and sustained depolarizing plateau potentials). 8. In conclusion, these in vitro results confirm the marked sensitivity of sensory axons to 4-AP (the presumptive basis for paraesthesias). Burst firing was not preferentially impaired at relatively high concentrations suggesting that anticonvulsants will not overcome the toxic peripheral actions of 4-AP in neurological patients. PMID:8821551

  10. Growth of rat dorsal root ganglion neurons on a novel self-assembling scaffold containing IKVAV sequence

    Energy Technology Data Exchange (ETDEWEB)

    Zou Zhenwei; Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China); Wu Yongchao, E-mail: wuyongchao@hotmail.com [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China); Song Yulin; Wu Bin [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China)

    2009-08-31

    The potential benefits of self-assembly in synthesizing materials for the treatment of both peripheral and central nervous system disorders are tremendous. In this study, we synthesized peptide-amphiphile (PA) molecules containing IKVAV sequence and induced self-assembly of the PA solutions in vitro to form nanofiber gels. Then, we tested the characterization of gels by transmission electron microscopy and demonstrated the biocompatibility of this gel towards rat dorsal root ganglion neurons. The nanofiber gel was formed by self-assembly of IKVAV PA molecules, which was triggered by metal ions. The fibers were 7-8 nm in diameter and with lengths of hundreds of nanometers. Gels were shown to be non-toxic to neurons and able to promote neurons adhesion and neurite sprouting. The results indicated that the self-assembling scaffold containing IKVAV sequence had excellent biocompatibility with adult sensory neurons and could be useful in nerve tissue engineering.

  11. Slack KNa Channels Influence Dorsal Horn Synapses and Nociceptive Behavior.

    Science.gov (United States)

    Evely, Katherine M; Pryce, Kerri D; Bausch, Anne E; Lukowski, Robert; Ruth, Peter; Haj-Dahmane, Samir; Bhattacharjee, Arin

    2017-01-01

    The sodium-activated potassium channel Slack (Kcnt1, Slo2.2) is highly expressed in dorsal root ganglion neurons where it regulates neuronal firing. Several studies have implicated the Slack channel in pain processing, but the precise mechanism or the levels within the sensory pathway where channels are involved remain unclear. Here, we furthered the behavioral characterization of Slack channel knockout mice and for the first time examined the role of Slack channels in the superficial, pain-processing lamina of the dorsal horn. We performed whole-cell recordings from spinal cord slices to examine the intrinsic and synaptic properties of putative inhibitory and excitatory lamina II interneurons. Slack channel deletion altered intrinsic properties and synaptic drive to favor an overall enhanced excitatory tone. We measured the amplitudes and paired pulse ratio of paired excitatory post-synaptic currents at primary afferent synapses evoked by electrical stimulation of the dorsal root entry zone. We found a substantial decrease in the paired pulse ratio at synapses in Slack deleted neurons compared to wildtype, indicating increased presynaptic release from primary afferents. Corroborating these data, plantar test showed Slack knockout mice have an enhanced nociceptive responsiveness to localized thermal stimuli compared to wildtype mice. Our findings suggest that Slack channels regulate synaptic transmission within the spinal cord dorsal horn and by doing so establishes the threshold for thermal nociception.

  12. eIF4E Phosphorylation Influences Bdnf mRNA Translation in Mouse Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jamie K. Moy

    2018-02-01

    Full Text Available Plasticity in dorsal root ganglion (DRG neurons that promotes pain requires activity-dependent mRNA translation. Protein synthesis inhibitors block the ability of many pain-promoting molecules to enhance excitability in DRG neurons and attenuate behavioral signs of pain plasticity. In line with this, we have recently shown that phosphorylation of the 5′ cap-binding protein, eIF4E, plays a pivotal role in plasticity of DRG nociceptors in models of hyperalgesic priming. However, mRNA targets of eIF4E phosphorylation have not been elucidated in the DRG. Brain-derived neurotrophic factor (BDNF signaling from nociceptors in the DRG to spinal dorsal horn neurons is an important mediator of hyperalgesic priming. Regulatory mechanisms that promote pain plasticity via controlling BDNF expression that is involved in promoting pain plasticity have not been identified. We show that phosphorylation of eIF4E is paramount for Bdnf mRNA translation in the DRG. Bdnf mRNA translation is reduced in mice lacking eIF4E phosphorylation (eIF4ES209A and pro-nociceptive factors fail to increase BDNF protein levels in the DRGs of these mice despite robust upregulation of Bdnf-201 mRNA levels. Importantly, bypassing the DRG by giving intrathecal injection of BDNF in eIF4ES209A mice creates a strong hyperalgesic priming response that is normally absent or reduced in these mice. We conclude that eIF4E phosphorylation-mediated translational control of BDNF expression is a key mechanism for nociceptor plasticity leading to hyperalgesic priming.

  13. Primary afferent terminal sprouting after a cervical dorsal rootlet section in the macaque monkey.

    Science.gov (United States)

    Darian-Smith, Corinna

    2004-03-01

    We examined the role of primary afferent neurons in the somatosensory cortical "reactivation" that occurs after a localized cervical dorsal root lesion (Darian-Smith and Brown [2000] Nat. Neurosci. 3:476-481). After section of the dorsal rootlets that enervate the macaque's thumb and index finger (segments C6-C8), the cortical representation of these digits was initially silenced but then re-emerged for these same digits over 2-4 postlesion months. Cortical reactivation was accompanied by the emergence of physiologically detectable input from these same digits within dorsal rootlets bordering the lesion site. We investigated whether central axonal sprouting of primary afferents spared by the rhizotomy could mediate this cortical reactivation. The cortical representation of the hand was mapped electrophysiologically 15-25 weeks after the dorsal rootlet section to define this reactivation. Cholera toxin subunit B conjugated to horseradish peroxidase was then injected into the thumb and index finger pads bilaterally to label the central terminals of any neurons that innervated these digits. Primary afferent terminal proliferation was assessed in the spinal dorsal horn and cuneate nucleus at 7 days and 15-25 postlesion weeks. Labeled terminal bouton distributions were reconstructed and the "lesion" and control sides compared within each monkey. Distributions were significantly larger on the side of the lesion in the dorsal horn and cuneate nucleus at 15-25 weeks after the dorsal rootlet section, than those mapped only 7 days postlesion. Our results provide direct evidence for localized sprouting of spared (uninjured) primary afferent terminals in the dorsal horn and cuneate nucleus after a restricted dorsal root injury. Copyright 2004 Wiley-Liss, Inc.

  14. Effect of low level laser therapy on chronic compression of the dorsal root ganglion.

    Directory of Open Access Journals (Sweden)

    Yi-Jen Chen

    Full Text Available Dorsal root ganglia (DRG are vulnerable to physical injury of the intervertebral foramen, and chronic compression of the DRG (CCD an result in nerve root damage with persistent morbidity. The purpose of this study was to evaluate the effects of low level laser therapy (LLLT on the DRG in a CCD model and to determine the mechanisms underlying these effects. CCD rats had L-shaped stainless-steel rods inserted into the fourth and fifth lumbar intervertebral foramen, and the rats were then subjected to 0 or 8 J/cm2 LLLT for 8 consecutive days following CCD surgery. Pain and heat stimuli were applied to test for hyperalgesia following CCD. The levels of TNF-α, IL-1β and growth-associated protein-43 (GAP-43 messenger RNA (mRNA expression were measured via real-time PCR, and protein expression levels were analyzed through immunohistochemical analyses. Our data indicate that LLLT significantly decreased the tolerable sensitivity to pain and heat stimuli in the CCD groups. The expression levels of the pro-inflammatory cytokines TNF-α and IL-1β were increased following CCD, and we found that these increases could be reduced by the application of LLLT. Furthermore, the expression of GAP-43 was enhanced by LLLT. In conclusion, LLLT was able to enhance neural regeneration in rats following CCD and improve rat ambulatory behavior. The therapeutic effects of LLLT on the DRG during CCD may be exerted through suppression of the inflammatory response and induction of neuronal repair genes. These results suggest potential clinical applications for LLLT in the treatment of compression-induced neuronal disorders.

  15. [Selective cervical dorsal root cutting off part of the vertebral lateral mass fixation combined with exercise therapy for treating spastic cerebral paralysis of the upper limbs caused by cerebral palsy].

    Science.gov (United States)

    Zhang, Peng; Hu, Wei; Cao, Xu; Xu, Shi-gang; Li, De-kui; Xu, Lin

    2009-10-01

    To explore the feasibility and the result for the surgical treatment of spastic cerebral paralysis of the upper limbs in patients who underwent the selective cervical dorsal root cutting off part of the vertebral lateral mass fixation combined with exercise therapy. From March 2004 to April 2008, 27 patients included 19 boys and 8 girls, aging 13-21 years with an average of 15 years underwent selective cervical dorsal root cutting off part of the vertebral lateral mass fixation with exercise therapy. The AXIS 8 holes titanium plate was inserted into the lateral mass of spinous process through guidance of the nerve stimulator, choosed fasciculus of low-threshold nerve dorsal root and cut off its 1.5 cm. After two weeks, training exercise therapy was done in patients. Training will include lying position, turning body, sitting position, crawling, kneeling and standing position, walking and so on. Spastic Bobath inhibiting abnormal pattern was done in the whole process of training. The muscular tension, motor function (GMFM), functional independence (WeeFIM) were observed after treatment. All patients were followed up from 4 to 16 months with an average of 6 months. Muscular tension score were respectively 3.30 +/- 0.47 and 1.25 +/- 0.44 before and after treatment;GMFM score were respectively 107.82 +/- 55.17 and 131.28 +/- 46.45; WeeFIM score were respectively 57.61 +/- 25.51 and 87.91 +/- 22.39. There was significant improvement before and after treatment (P cerebral paralysis of the upper limbs is safe and effective method, which can decrease muscular tension and improve motor function, which deserves more wide use.

  16. Neural-Dural Transition at the Thoracic and Lumbar Spinal Nerve Roots: A Histological Study of Human Late-Stage Fetuses

    Directory of Open Access Journals (Sweden)

    Kwang Ho Cho

    2016-01-01

    Full Text Available Epidural blocks have been used extensively in infants. However, little histological information is available on the immature neural-dural transition. The neural-dural transition was histologically investigated in 12 late-stage (28–30 weeks fetuses. The dural sheath of the spinal cord was observed to always continue along the nerve roots with varying thicknesses between specimens and segments, while the dorsal root ganglion sheath was usually very thin or unclear. Immature neural-dural transitions were associated with effective anesthesia. The posterior radicular artery was near the dorsal root ganglion and/or embedded in the nerve root, whereas the anterior radicular artery was separated from the nearest nerve root. The anterior radicular artery was not associated with the dural sheath but with thin mesenchymal tissue. The numbers of radicular arteries tended to become smaller in larger specimens. Likewise, larger specimens of the upper thoracic and lower lumbar segments did not show the artery. Therefore, elimination of the radicular arteries to form a single artery of Adamkiewicz was occurring in late-stage fetuses. The epidural space was filled with veins, and the loose tissue space extended ventrolaterally to the subpleural tissue between the ribs. Consequently, epidural blocks in infants require special attention although immature neural-dural transitions seemed to increase the effect.

  17. Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Sandeep Gupta

    2018-02-01

    Full Text Available Summary: Cellular replacement therapies for neurological conditions use human embryonic stem cell (hESC- or induced pluripotent stem cell (hiPSC-derived neurons to replace damaged or diseased populations of neurons. For the spinal cord, significant progress has been made generating the in-vitro-derived motor neurons required to restore coordinated movement. However, there is as yet no protocol to generate in-vitro-derived sensory interneurons (INs, which permit perception of the environment. Here, we report on the development of a directed differentiation protocol to derive sensory INs for both hESCs and hiPSCs. Two developmentally relevant factors, retinoic acid in combination with bone morphogenetic protein 4, can be used to generate three classes of sensory INs: the proprioceptive dI1s, the dI2s, and mechanosensory dI3s. Critical to this protocol is the competence state of the neural progenitors, which changes over time. This protocol will facilitate developing cellular replacement therapies to reestablish sensory connections in injured patients. : In this article, Gupta and colleagues describe a robust protocol to derive spinal dorsal sensory interneurons from human pluripotent stem cells using the sequential addition of RA and BMP4. They find that neural progenitors must be in the correct competence state to respond to RA/BMP4 as dorsalizing signals. This competence state changes over time and determines the efficiency of the protocol. Keywords: spinal cord, neurons, sensory interneurons, proprioception, mechanosensation, human embryonic stem cells, induced pluripotent stem cells, directed differentiation, primate spinal cord, mouse spinal cord

  18. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  19. Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Javier Sábado

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs. Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1 gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1G93A mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  20. Intrathecal ligaments and nerve root tension: possible sources of lumbar pain during spaceflight.

    Science.gov (United States)

    Kershner, David; Binhammer, Robert

    2004-04-01

    Lumbar intrathecal ligaments have recently been demonstrated to randomly bind dorsal nerve roots to the dura within the lumbar vertebral column. Lengthening of the vertebral column and associated lumbar back pain experienced by astronauts is common in microgravity. This study was designed to investigate the relationship of lumbar intrathecal ligaments in spinal lengthening as a possible mechanism for back pain. A two-part study was designed using 36 vertebral columns from embalmed cadavers. There were 12 vertebral columns studied in mid-sagittal section to demonstrate the possible movement of the spinal cord during lengthening of the vertebral column. The remainder were assessed for the amount of tension placed on a dorsal nerve root by the lumbar intrathecal ligament during lengthening of the vertebral column. The spinal cord moves in a cephalic direction approximately 2.8 mm with 4 cm lengthening of the vertebral column. During lengthening, a loss of thoracic and lordotic curvature was noted with an increase in disk height. Tension was significantly increased on the dorsal nerve roots being tethered by the lumbar intrathecal ligaments in comparison to non-tethered nerve roots during lengthening of the vertebral column. A significant amount of tension is placed on dorsal nerve roots tethered by intrathecal ligaments within the lumbar spine during spinal lengthening. These ligaments randomly bind dorsal nerve roots in the lumbar spine and may be involved in the back pain experienced by astronauts in microgravity.

  1. The effects of canine bone marrow stromal cells on neuritogenesis from dorsal root ganglion neurons in vitro.

    Science.gov (United States)

    Kamishina, Hiroaki; Cheeseman, Jennifer A; Clemmons, Roger M

    2009-10-01

    The present in vitro study was designed to evaluate whether canine bone marrow stromal cells (BMSCs) promote neurite outgrowth from dorsal root ganglion (DRG) neurons. Bone marrow aspirates were collected from iliac crests of three young adult dogs. DRG neurons were cultured on BMSCs, fibroblasts, or laminin substrates. DRG neurons were also cultured in BMSC- or fibroblast-conditioned media. DRG neurons grown on BMSCs extended longer neurites and developed a much more elaborate conformation of branching neurites compared to those on fibroblasts or laminin. Quantitative analysis revealed that these effects were associated with the emergence of increased numbers of primary and branching neurites. The effect appears to be dependent upon cell-cell interactions rather than by elaboration of diffusible molecules. With more extensive investigations into the basic biology of canine BMSCs, their ability for promoting neurite outgrowth may be translated into a novel therapeutic strategy for dogs with a variety of neurological disorders.

  2. Chronic monitoring of lower urinary tract activity via a sacral dorsal root ganglia interface

    Science.gov (United States)

    Khurram, Abeer; Ross, Shani E.; Sperry, Zachariah J.; Ouyang, Aileen; Stephan, Christopher; Jiman, Ahmad A.; Bruns, Tim M.

    2017-06-01

    Objective. Our goal is to develop an interface that integrates chronic monitoring of lower urinary tract (LUT) activity with stimulation of peripheral pathways. Approach. Penetrating microelectrodes were implanted in sacral dorsal root ganglia (DRG) of adult male felines. Peripheral electrodes were placed on or in the pudendal nerve, bladder neck and near the external urethral sphincter. Supra-pubic bladder catheters were implanted for saline infusion and pressure monitoring. Electrode and catheter leads were enclosed in an external housing on the back. Neural signals from microelectrodes and bladder pressure of sedated or awake-behaving felines were recorded under various test conditions in weekly sessions. Electrodes were also stimulated to drive activity. Main results. LUT single- and multi-unit activity was recorded for 4-11 weeks in four felines. As many as 18 unique bladder pressure single-units were identified in each experiment. Some channels consistently recorded bladder afferent activity for up to 41 d, and we tracked individual single-units for up to 23 d continuously. Distension-evoked and stimulation-driven (DRG and pudendal) bladder emptying was observed, during which LUT sensory activity was recorded. Significance. This chronic implant animal model allows for behavioral studies of LUT neurophysiology and will allow for continued development of a closed-loop neuroprosthesis for bladder control.

  3. Effects of 4-aminopyridine on organelle movement in cultured mouse dorsal root ganglion neurites.

    Science.gov (United States)

    Hiruma, Hiromi; Kawakami, Tadashi

    2010-03-01

    Aminopyridines, widely used as a K(+) channel blocker, are membrane-permeable weak bases and have the ability to form vacuoles in the cytoplasm. The vacuoles originate from acidic organelles such as lysosomes. Here, we investigated the effects of 4-aminopyridine (4-AP) on organelle movement in neurites of cultured mouse dorsal root ganglion (DRG) neurons by using video-enhanced microscopy. Some experiments were carried out using fluorescent dyes for lysosomes and mitochondria and confocal microscopy. Treatment of DRG neurons with 4 mM 4-AP caused Brownian movement of some lysosomes within 5 min. The Brownian movement gradually became rapid and vacuoles were formed around individual lysosomes 10-20 min after the start of treatment. Axonal transport of organelles was inhibited by 4-AP. Lysosomes showing Brownian movement were not transported in longitudinal direction of the neurite and the transport of mitochondria was interrupted by vacuoles. The 4-AP-induced Brownian movement of lysosomes with vacuole formation and inhibition of axonal transport were prevented by the simultaneous treatment with vacuolar H(+) ATPase inhibitor bafilomycin A1 or in Cl(-)-free SO(4)(2-) medium. These results indicate that changes in organelle movement by 4-AP are related to vacuole formation and the vacuolar H(+) ATPase and Cl(-) are required for the effects of 4-AP.

  4. Uncovering a context-specific connectional fingerprint of human dorsal premotor cortex

    DEFF Research Database (Denmark)

    Moisa, Marius; Siebner, Hartwig R; Pohmann, Rolf

    2012-01-01

    Primate electrophysiological and lesion studies indicate a prominent role of the left dorsal premotor cortex (PMd) in action selection based on learned sensorimotor associations. Here we applied transcranial magnetic stimulation (TMS) to human left PMd at low or high intensity while right...... to directly assess how stimulation of left PMd modulates task-related brain activity depending on the mode of movement selection. Relative to passive viewing, both tasks activated a frontoparietal motor network. Compared with low-intensity TMS, high-intensity TMS of left PMd was associated with an increase...

  5. Comprehensive Method for Culturing Embryonic Dorsal Root Ganglion Neurons for Seahorse Extracellular Flux XF24 Analysis.

    Science.gov (United States)

    Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia

    2012-01-01

    Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform.

  6. Comprehensive method for culturing embryonic dorsal root ganglion neurons for Seahorse Extracellular Flux XF24 Analysis

    Directory of Open Access Journals (Sweden)

    Miranda L. Lange

    2012-12-01

    Full Text Available Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15 rat DRG neurons suitable for analysis with the Seahorse XF24 platform.

  7. Tlx3 Function in the Dorsal Root Ganglion is Pivotal to Itch and Pain Sensations

    Directory of Open Access Journals (Sweden)

    Chengcheng Huang

    2017-06-01

    Full Text Available Itch, a sensation eliciting a desire to scratch, is distinct from but not completely independent of pain. Inspiring achievements have been made in the characterization of itch-related receptors and neurotransmitters, but the molecular mechanisms controlling the development of pruriceptors remain poorly understood. Here, our RNAseq and in situ hybridization data show that the transcription factor Tlx3 is required for the expression of a majority of itch-related molecules in the dorsal root ganglion (DRG. As a result, Tlx3F/F;Nav1.8-cre mice exhibit significantly attenuated acute and dry skin-induced chronic itch. Furthermore, our study indicates that TRPV1 plays a pivotal role in the chronic itch evoked by dry skin and allergic contact dermatitis (ACD. The mutants also display impaired response to cold and inflammatory pain and elevated response to capsaicin, whereas the responses to acute mechanical, thermal stimuli and neuropathic pain remain normal. In Tlx3F/F;Nav1.8-cre mice, TRPV1 is derepressed and expands predominantly into IB4+ non-peptidergic (NP neurons. Collectively, our data reveal a molecular mechanism in regulating the development of pruriceptors and controlling itch and pain sensations.

  8. Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglions

    Directory of Open Access Journals (Sweden)

    Lin Yong

    2009-11-01

    Full Text Available Abstract Background Dorsal root ganglion (DRG neurons are primary sensory neurons that conduct neuronal impulses related to pain, touch and temperature senses. Plasma membrane (PM of DRG cells plays important roles in their functions. PM proteins are main performers of the functions. However, mainly due to the very low amount of DRG that leads to the difficulties in PM sample collection, few proteomic analyses on the PM have been reported and it is a subject that demands further investigation. Results By using aqueous polymer two-phase partition in combination with high salt and high pH washing, PMs were efficiently enriched, demonstrated by western blot analysis. A total of 954 non-redundant proteins were identified from the plasma membrane-enriched preparation with CapLC-MS/MS analysis subsequent to protein separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE or shotgun digestion. 205 (21.5% of the identified proteins were unambiguously assigned as PM proteins, including a large number of signal proteins, receptors, ion channel and transporters. Conclusion The aqueous polymer two-phase partition is a simple, rapid and relatively inexpensive method. It is well suitable for the purification of PMs from small amount of tissues. Therefore, it is reasonable for the DRG PM to be enriched by using aqueous two-phase partition as a preferred method. Proteomic analysis showed that DRG PM was rich in proteins involved in the fundamental biological processes including material exchange, energy transformation and information transmission, etc. These data would help to our further understanding of the fundamental DRG functions.

  9. Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1.

    Science.gov (United States)

    Light, Alan R; Hughen, Ronald W; Zhang, Jie; Rainier, Jon; Liu, Zhuqing; Lee, Jeewoo

    2008-09-01

    The adequate stimuli and molecular receptors for muscle metaboreceptors and nociceptors are still under investigation. We used calcium imaging of cultured primary sensory dorsal root ganglion (DRG) neurons from C57Bl/6 mice to determine candidates for metabolites that could be the adequate stimuli and receptors that could detect these stimuli. Retrograde DiI labeling determined that some of these neurons innervated skeletal muscle. We found that combinations of protons, ATP, and lactate were much more effective than individually applied compounds for activating rapid calcium increases in muscle-innervating dorsal root ganglion neurons. Antagonists for P2X, ASIC, and TRPV1 receptors suggested that these three receptors act together to detect protons, ATP, and lactate when presented together in physiologically relevant concentrations. Two populations of muscle-innervating DRG neurons were found. One responded to low metabolite levels (likely nonnoxious) and used ASIC3, P2X5, and TRPV1 as molecular receptors to detect these metabolites. The other responded to high levels of metabolites (likely noxious) and used ASIC3, P2X4, and TRPV1 as their molecular receptors. We conclude that a combination of ASIC, P2X5 and/or P2X4, and TRPV1 are the molecular receptors used to detect metabolites by muscle-innervating sensory neurons. We further conclude that the adequate stimuli for muscle metaboreceptors and nociceptors are combinations of protons, ATP, and lactate.

  10. Human primordial germ cells migrate along nerve fibers and Schwann cells from the dorsal hind gut mesentery to the gonadal ridge

    DEFF Research Database (Denmark)

    Møllgård, Kjeld; Jespersen, Åse; Lutterodt, Melissa Catherine

    2010-01-01

    The aim of this study was to investigate the spatiotemporal development of autonomic nerve fibers and primordial germ cells (PGCs) along their migratory route from the dorsal mesentery to the gonadal ridges in human embryos using immunohistochemical markers and electron microscopy. Autonomic nerve...... arrive at the gonadal ridge between 29 and 33 days pc. In conclusion, our data suggest that PGCs in human embryos preferentially migrate along autonomic nerve fibers from the dorsal mesentery to the developing gonad where they are delivered via a fine nerve plexus....

  11. Thermal effects of dorsal head immersion in cold water on nonshivering humans.

    Science.gov (United States)

    Giesbrecht, Gordon G; Lockhart, Tamara L; Bristow, Gerald K; Steinman, Allan M

    2005-11-01

    Personal floatation devices maintain either a semirecumbent flotation posture with the head and upper chest out of the water or a horizontal flotation posture with the dorsal head and whole body immersed. The contribution of dorsal head and upper chest immersion to core cooling in cold water was isolated when the confounding effect of shivering heat production was inhibited with meperidine (Demerol, 2.5 mg/kg). Six male volunteers were immersed four times for up to 60 min, or until esophageal temperature = 34 degrees C. An insulated hoodless dry suit or two different personal floatation devices were used to create four conditions: 1) body insulated, head out; 2) body insulated, dorsal head immersed; 3) body exposed, head (and upper chest) out; and 4) body exposed, dorsal head (and upper chest) immersed. When the body was insulated, dorsal head immersion did not affect core cooling rate (1.1 degrees C/h) compared with head-out conditions (0.7 degrees C/h). When the body was exposed, however, the rate of core cooling increased by 40% from 3.6 degrees C/h with the head out to 5.0 degrees C/h with the dorsal head and upper chest immersed (P immersed (approximately 10%). The exaggerated core cooling during dorsal head immersion (40% increase) may result from the extra heat loss affecting a smaller thermal core due to intense thermal stimulation of the body and head and resultant peripheral vasoconstriction. Dorsal head and upper chest immersion in cold water increases the rate of core cooling and decreases potential survival time.

  12. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    Science.gov (United States)

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Conjoined lumbosacral nerve roots

    International Nuclear Information System (INIS)

    Kyoshima, Kazumitsu; Nishiura, Iwao; Koyama, Tsunemaro

    1986-01-01

    Several kinds of the lumbosacral nerve root anomalies have already been recognized, and the conjoined nerve roots is the most common among them. It does not make symptoms by itself, but if there is a causation of neural entrapment, for example, disc herniation, lateral recessus stenosis, spondylolisthesis, etc., so called ''biradicular syndrome'' should occur. Anomalies of the lumbosacral nerve roots, if not properly recognized, may lead to injury of these nerves during operation of the lumbar spine. Recently, the chance of finding these anomalous roots has been increased more and more with the use of metrizamide myelography and metrizamide CT, because of the improvement of the opacification of nerve roots. We describe the findings of the anomalous roots as revealed by these two methods. They demonstrate two nerve roots running parallel and the asymmetrical wide root sleeve. Under such circumstances, it is important to distinguish the anomalous roots from the normal ventral and dorsal roots. (author)

  14. Tentonin 3/TMEM150c Confers Distinct Mechanosensitive Currents in Dorsal-Root Ganglion Neurons with Proprioceptive Function.

    Science.gov (United States)

    Hong, Gyu-Sang; Lee, Byeongjun; Wee, Jungwon; Chun, Hyeyeon; Kim, Hyungsup; Jung, Jooyoung; Cha, Joo Young; Riew, Tae-Ryong; Kim, Gyu Hyun; Kim, In-Beom; Oh, Uhtaek

    2016-07-06

    Touch sensation or proprioception requires the transduction of mechanical stimuli into electrical signals by mechanoreceptors in the periphery. These mechanoreceptors are equipped with various transducer channels. Although Piezo1 and 2 are mechanically activated (MA) channels with rapid inactivation, MA molecules with other inactivation kinetics have not been identified. Here we report that heterologously expressed Tentonin3 (TTN3)/TMEM150C is activated by mechanical stimuli with distinctly slow inactivation kinetics. Genetic ablation of Ttn3/Tmem150c markedly reduced slowly adapting neurons in dorsal-root ganglion neurons. The MA TTN3 currents were inhibited by known blockers of mechanosensitive ion channels. Moreover, TTN3 was localized in muscle spindle afferents. Ttn3-deficient mice exhibited the loss of coordinated movements and abnormal gait. Thus, TTN3 appears to be a component of a mechanosensitive channel with a slow inactivation rate and contributes to motor coordination. Identification of this gene advances our understanding of the various types of mechanosensations, including proprioception. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Lack of body positional effects on paresthesias when stimulating the dorsal root ganglion (DRG) in the treatment of chronic pain.

    Science.gov (United States)

    Kramer, Jeffery; Liem, Liong; Russo, Marc; Smet, Iris; Van Buyten, Jean-Pierre; Huygen, Frank

    2015-01-01

    One prominent side effect from neurostimulation techniques, and in particular spinal cord stimulation (SCS), is the change in intensity of stimulation when moving from an upright (vertical) to a recumbent or supine (horizontal) position and vice versa. It is well understood that the effects of gravity combined with highly conductive cerebrospinal fluid provide the mechanism by which changes in body position can alter the intensity of stimulation-induced paresthesias. While these effects are well established for leads that are placed within the more medial aspects of the spinal canal, little is known about these potential effects in leads placed in the lateral epidural space and in particular within the neural foramina near the dorsal root ganglion (DRG). We prospectively validated a newly developed paresthesia intensity rating scale and compared perceived paresthesia intensities when subjects assumed upright vs. supine bodily positions during neuromodulation of the DRG. On average, the correlation coefficient between stimulation intensity (pulse amplitude) and perceived paresthesia intensity was 0.83, demonstrating a strong linear relationship. No significant differences in paresthesia intensities were reported within subjects when moving from an upright (4.5 ± 0.14) to supine position 4.5 (± 0.12) (p > 0.05). This effect persisted through 12 months following implant. Neuromodulation of the DRG produces paresthesias that remain consistent across body positions, suggesting that this paradigm may be less susceptible to positional effects than dorsal column stimulation. © 2014 International Neuromodulation Society.

  16. Sex differences in pain-related behavior and expression of calcium/calmodulin-dependent protein kinase II in dorsal root ganglia of rats with diabetes type 1 and type 2.

    Science.gov (United States)

    Ferhatovic, Lejla; Banozic, Adriana; Kostic, Sandra; Sapunar, Damir; Puljak, Livia

    2013-06-01

    Sex differences in pain-related behavior and expression of calcium/calmodulin dependent protein kinase II (CaMKII) in dorsal root ganglia were studied in rat models of Diabetes mellitus type 1 (DM1) and type 2 (DM2). DM1 was induced with 55mg/kg streptozotocin, and DM2 with a combination of high-fat diet and 35mg/kg of streptozotocin. Pain-related behavior was analyzed using thermal and mechanical stimuli. The expression of CaMKII was analyzed with immunofluorescence. Sexual dimorphism in glycemia, and expression of CaMKII was observed in the rat model of DM1, but not in DM2 animals. Increased expression of total CaMKII (tCaMKII) in small-diameter dorsal root ganglia neurons, which are associated with nociception, was found only in male DM1 rats. None of the animals showed increased expression of the phosphorylated alpha CaMKII isoform in small-diameter neurons. The expression of gamma and delta isoforms of CaMKII remained unchanged in all analyzed animal groups. Different patterns of glycemia and tCaMKII expression in male and female model of DM1 were not associated with sexual dimorphism in pain-related behavior. The present findings do not suggest sex-related differences in diabetic painful peripheral neuropathy in male and female diabetic rats. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Dorsal Root Ganglion (DRG) Stimulation in the Treatment of Phantom Limb Pain (PLP).

    Science.gov (United States)

    Eldabe, Sam; Burger, Katja; Moser, Heinrich; Klase, Daniel; Schu, Stefan; Wahlstedt, Anders; Vanderick, Bernard; Francois, Eric; Kramer, Jeffery; Subbaroyan, Jeyakumar

    2015-10-01

    Phantom limb pain (PLP) is a neuropathic condition in which pain is perceived as arising from an amputated limb. PLP is distinct from, although associated with, pain in the residual limb and nonpainful phantom sensations of the missing limb. Its treatment is extremely challenging; pharmaceutical options, while commonly employed, may be insufficient or intolerable. Neuromodulatory interventions such as spinal cord stimulation have generated mixed results and may be limited by poor somatotopic specificity. It was theorized that dorsal root ganglion (DRG) neuromodulation may be more effective. Patients trialed a DRG neurostimulation system for their PLP and were subsequently implanted if results were positive. Retrospective chart review was completed, including pain ratings on a 100-mm visual analogue scale (VAS) and patient-reported outcomes. Across eight patients, the average baseline pain rating was 85.5 mm. At follow-up (mean of 14.4 months), pain was rated at 43.5 mm. Subjective ratings of quality of life and functional capacity improved. Some patients reduced or eliminated pain medications. Patients reported precise concordance of the paresthesia with painful regions, including in their phantom limbs; in one case, stimulation eliminated PLP as well as nonpainful phantom sensations. Three patients experienced a diminution of pain relief, despite good initial outcomes. DRG neuromodulation may be an effective tool in treating this pain etiology. Clinical outcomes in this report support recent converging evidence suggesting that the DRG may be the site of PLP generation and/or maintenance. Further research is warranted to elucidate mechanisms and optimal treatment pathways. © 2015 International Neuromodulation Society.

  18. Dorsal root ganglia hypertrophy as in vivo correlate of oxaliplatin-induced polyneuropathy.

    Directory of Open Access Journals (Sweden)

    Leonidas Apostolidis

    Full Text Available To investigate in vivo morphological and functional correlates of oxaliplatin-induced peripheral neuropathy (OXA-PNP by magnetic resonance neurography (MRN.Twenty patients (7 female, 13 male, 58.9±10.0 years with mild to moderate OXA-PNP and 20 matched controls (8 female, 12 male, 55.7±15.6 years were prospectively enrolled. All patients underwent a detailed neurophysiological examination prior to neuroimaging. A standardized imaging protocol at 3.0 Tesla included the lumbosacral plexus and both sciatic nerves and their branches using T2-weighted fat-saturated sequences and diffusion tensor imaging. Quantitative assessment included volumetry of the dorsal root ganglia (DRG, sciatic nerve normalized T2 (nT2 signal and caliber, and fractional anisotropy (FA, mean diffusivity (MD, axial (AD and radial diffusivity (RD. Additional qualitative evaluation of sciatic, peroneal, and tibial nerves evaluated the presence, degree, and distribution of nerve lesions.DRG hypertrophy in OXA-PNP patients (207.3±47.7mm3 vs. 153.0±47.1mm3 in controls, p = 0.001 was found as significant morphological correlate of the sensory neuronopathy. In contrast, peripheral nerves only exhibited minor morphological alterations qualitatively. Quantitatively, sciatic nerve caliber (27.3±6.7mm2 vs. 27.4±7.4mm2, p = 0.80 and nT2 signal were not significantly changed in patients (1.32±0.22 vs. 1.22±0.26, p = 0.16. AD, RD, and MD showed a non-significant decrease in patients, while FA was unchanged.OXA-PNP manifests with morphological and functional correlates that can be detected in vivo by MRN. We report hypertrophy of the DRG that stands in contrast to experimental and postmortem studies. DRG volume should be further investigated as a biomarker in other sensory peripheral neuropathies and ganglionopathies.

  19. Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    Science.gov (United States)

    Stotz, Stephanie C.; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E.

    2008-01-01

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin. PMID:18461159

  20. Dorsal rhizotomy for children with spastic diplegia of cerebral palsy origin: usefulness of intraoperative monitoring.

    Science.gov (United States)

    Georgoulis, George; Brînzeu, Andrei; Sindou, Marc

    2018-04-13

    OBJECTIVE The utility of intraoperative neuromonitoring (ION), namely the study of muscle responses to radicular stimulation, remains controversial. The authors performed a prospective study combining ventral root (VR) stimulation for mapping anatomical levels and dorsal root (DR) stimulation as physiological testing of metameric excitability. The purpose was to evaluate to what extent the intraoperative data led to modifications in the initial decisions for surgical sectioning established by the pediatric multidisciplinary team (i.e., preoperative chart), and thus estimate its practical usefulness. METHODS Thirteen children with spastic diplegia underwent the following surgical protocol. First, a bilateral intradural approach was made to the L2-S2 VRs and DRs at the exit from or entry to their respective dural sheaths, through multilevel interlaminar enlarged openings. Second, stimulation-just above the threshold-of the VR at 2 Hz to establish topography of radicular myotome distribution, and then of the DR at 50 Hz as an excitability test of root circuitry, with independent identification of muscle responses by the physiotherapist and by electromyographic recordings. The study aimed to compare the final amounts of root sectioning-per radicular level, established after intraoperative neuromonitoring guidance-with those determined by the multidisciplinary team in the presurgical chart. RESULTS The use of ION resulted in differences in the final percentage of root sectioning for all root levels. The root levels corresponding to the upper lumbar segments were modestly excitable under DR stimulation, whereas progressively lower root levels displayed higher excitability. The difference between root levels was highly significant, as evaluated by electromyography (p = 0.00004) as well as by the physiotherapist (p = 0.00001). Modifications were decided in 11 of the 13 patients (84%), and the mean absolute difference in the percentage of sectioning quantity per radicular

  1. The role of the transcription factor Rbpj in the development of dorsal root ganglia

    Directory of Open Access Journals (Sweden)

    Chen Jia-Yin

    2011-04-01

    Full Text Available Abstract Background The dorsal root ganglion (DRG is composed of well-characterized populations of sensory neurons and glia derived from a common pool of neural crest stem cells (NCCs, and is a good system to study the mechanisms of neurogenesis and gliogenesis. Notch signaling is known to play important roles in DRG development, but the full scope of Notch functions in mammalian DRG development remains poorly understood. Results In the present study, we used Wnt1-Cre to conditionally inactivate the transcription factor Rbpj, a critical integrator of activation signals from all Notch receptors, in NCCs and their derived cells. Deletion of Rbpj caused the up-regulation of NeuroD1 and precocious neurogenesis in DRG early development but led to an eventual deficit of sensory neurons at later stages, due to reduced cell proliferation and abnormal cell death. In addition, gliogenesis was delayed initially, but a near-complete loss of glia was observed finally in Rbpj-deficient DRG. Furthermore, we found P75 and Sox10, which are normally expressed exclusively in neuronal and glial progenitors of the DRG after the NCCs have completed their migration, were co-expressed in many cells of the DRG of Rbpj conditional knock-out mice. Conclusions Our data indicate that Rbpj-mediated canonical Notch signaling inhibits DRG neuronal differentiation, possibly by regulating NeuroD1 expression, and is required for DRG gliogenesis in vivo.

  2. Agenesis of the dorsal pancreas

    Science.gov (United States)

    Schnedl, Wolfgang J; Piswanger-Soelkner, Claudia; Wallner, Sandra J; Krause, Robert; Lipp, Rainer W

    2009-01-01

    During the last 100 years in medical literature, there are only 54 reports, including the report of Pasaoglu et al (World J Gastroenterol 2008; 14: 2915-2916), with clinical descriptions of agenesis of the dorsal pancreas in humans. Agenesis of the dorsal pancreas, a rare congenital pancreatic malformation, is associated with some other medical conditions such as hyperglycemia, abdominal pain, pancreatitis and a few other diseases. In approximately 50% of reported patients with this congenital malformation, hyperglycemia was demonstrated. Evaluation of hyperglycemia and diabetes mellitus in all patients with agenesis of the dorsal pancreas including description of fasting blood glucose, oral glucose tolerance test, glycated hemoglobin and medical treatment would be a future goal. Since autosomal dominant transmission has been suggested in single families, more family studies including imaging technologies with demonstration of the pancreatic duct system are needed for evaluation of this disease. With this letter to the editor, we aim to increase available information for the better understanding of this rare disease. PMID:19140241

  3. External root resorption: Different etiologies explained from the composition of the human root-close periodontal membrane

    Directory of Open Access Journals (Sweden)

    Inger Kjaer

    2013-01-01

    Full Text Available Introduction: This paper summarizes different conditions, which have a well-known influence on the resorption of tooth roots. It also highlights factors important for individual susceptibility to root resorption. Furthermore, the paper focuses on idiopathic root resorption where the provoking factor is not known. The Hypothesis: The several different disturbances causing root resorption can be either orthodontically provoked or acquired by trauma, virus or congenital diseases. It is presumed that all these conditions lead to inflammatory processes in the three main tissue layers, comprising the peri-root sheet. Evaluation of the Hypothesis: This paper explains how different etiologies behind root resorption and how different phenotypic traits in root resorption can be understood from immunohistochemical studies of the human periodontal membrane close to the root and thus, gain a new understanding of the phenomenon of root resorption.

  4. Staining human lymphocytes and onion root cell nuclei with madder root.

    Science.gov (United States)

    Cücer, N; Guler, N; Demirtas, H; Imamoğlu, N

    2005-01-01

    We performed staining experiments on cells using natural dyes and different mordants using techniques that are used for wool and silk dyeing. The natural dye sources were madder root, daisy, corn cockle and yellow weed. Ferrous sulfate, copper sulfate, potassium tartrate, urea, potassium aluminum sulfate and potassium dichromate were used as mordants. Distilled water, distilled water plus ethanol, heptane, and distilled water plus methanol were used as solvents. All dye-mordant-solvent combinations were studied at pH 2.4, 3.2 and 4.2. The generic staining procedure was to boil 5-10 onion roots or stimulated human lymphocyte (SHL) preparations in a dye bath on a hot plate. Cells were examined at every half hour. For multicolor staining, madder-dyed lymphocytes were decolorized, then stained with Giemsa. The AgNOR technique was performed following the decolorization of Giemsa stained lymphocytes. Good results were obtained for both onion root cells and lymphocytes that were boiled for 3 h in a dye bath that included 4 g madder root, 4 g ferrous sulfate as mordant in 50 ml of 1:1 (v/v) methanol:distilled water. The pH was adjusted to 4.2 with 6 ml acetic acid. We conclude that madder root has potential as an alternative dye for staining biological materials.

  5. Effects of 4-phenyl butyric acid on high glucose-induced alterations in dorsal root ganglion neurons.

    Science.gov (United States)

    Sharma, Dilip; Singh, Jitendra Narain; Sharma, Shyam S

    2016-12-02

    Mechanisms and pathways involving in diabetic neuropathy are still not fully understood but can be unified by the process of overproduction of reactive oxygen species (ROS) such as superoxide, endoplasmic reticulum (ER) stress, downstream intracellular signaling pathways and their modulation. Susceptibility of dorsal root ganglion (DRG) to internal/external hyperglycemic environment stress contributes to the pathogenesis and progression of diabetic neuropathy. ER stress leads to abnormal ion channel function, gene expression, transcriptional regulation, metabolism and protein folding. 4-phenyl butyric acid (4-PBA) is a potent and selective chemical chaperone; which may inhibit ER stress. It may be hypothesized that 4-PBA could attenuate via channels in DRG in diabetic neuropathy. Effects of 4-PBA were determined by applying different parameters of oxidative stress, cell viability, apoptosis assays and channel expression in cultured DRG neurons. Hyperglycemia-induced apoptosis in the DRG neuron was inhibited by 4-PBA. Cell viability of DRG neurons was not altered by 4-PBA. Oxidative stress was significantly blocked by the 4-PBA. Sodium channel expression was not altered by the 4-PBA. Our data provide evidence that the hyperglycemia-induced alteration may be reduced by the 4-PBA without altering the sodium channel expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Mechanisms of Dorsal Root Ganglion Stimulation in Pain Suppression: A Computational Modeling Analysis.

    Science.gov (United States)

    Kent, Alexander R; Min, Xiaoyi; Hogan, Quinn H; Kramer, Jeffery M

    2018-04-01

    The mechanisms of dorsal root ganglion (DRG) stimulation for chronic pain remain unclear. The objective of this work was to explore the neurophysiological effects of DRG stimulation using computational modeling. Electrical fields produced during DRG stimulation were calculated with finite element models, and were coupled to a validated biophysical model of a C-type primary sensory neuron. Intrinsic neuronal activity was introduced as a 4 Hz afferent signal or somatic ectopic firing. The transmembrane potential was measured along the neuron to determine the effect of stimulation on intrinsic activity across stimulation parameters, cell location/orientation, and membrane properties. The model was validated by showing close correspondence in action potential (AP) characteristics and firing patterns when compared to experimental measurements. Subsequently, the model output demonstrated that T-junction filtering was amplified with DRG stimulation, thereby blocking afferent signaling, with cathodic stimulation at amplitudes of 2.8-5.5 × stimulation threshold and frequencies above 2 Hz. This amplified filtering was dependent on the presence of calcium and calcium-dependent small-conductance potassium channels, which produced a hyperpolarization offset in the soma, stem, and T-junction with repeated somatic APs during stimulation. Additionally, DRG stimulation suppressed somatic ectopic activity by hyperpolarizing the soma with cathodic or anodic stimulation at amplitudes of 3-11 × threshold and frequencies above 2 Hz. These effects were dependent on the stem axon being relatively close to and oriented toward a stimulating contact. These results align with the working hypotheses on the mechanisms of DRG stimulation, and indicate the importance of stimulation amplitude, polarity, and cell location/orientation on neuronal responses. © 2018 International Neuromodulation Society.

  7. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Science.gov (United States)

    Stotz, Stephanie C; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E

    2008-05-07

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  8. Asymmetric development of dorsal and ventral attention networks in the human brain

    Directory of Open Access Journals (Sweden)

    Kristafor Farrant

    2015-04-01

    Full Text Available Two neural systems for goal-directed and stimulus-driven attention have been described in the adult human brain; the dorsal attention network (DAN centered in the frontal eye fields (FEF and intraparietal sulcus (IPS, and the ventral attention network (VAN anchored in the temporoparietal junction (TPJ and ventral frontal cortex (VFC. Little is known regarding the processes governing typical development of these attention networks in the brain. Here we use resting state functional MRI data collected from thirty 7 to 12 year-old children and thirty 18 to 31 year-old adults to examine two key regions of interest from the dorsal and ventral attention networks. We found that for the DAN nodes (IPS and FEF, children showed greater functional connectivity with regions within the network compared with adults, whereas adults showed greater functional connectivity between the FEF and extra-network regions including the posterior cingulate cortex. For the VAN nodes (TPJ and VFC, adults showed greater functional connectivity with regions within the network compared with children. Children showed greater functional connectivity between VFC and nodes of the salience network. This asymmetric pattern of development of attention networks may be a neural signature of the shift from over-representation of bottom-up attention mechanisms to greater top-down attentional capacities with development.

  9. Effects of dorsal versus ventral shear loads on the rotational stability of the thoracic spine: a biomechanical porcine and human cadaveric study

    NARCIS (Netherlands)

    Kouwenhoven, J.W.M.; Smit, T.H.; van der Veen, A.J.; Kingma, I.; van Dieen, J.H.; Castelein, R.M.

    2007-01-01

    STUDY DESIGN. A biomechanical in vitro study on porcine and human spinal segments. OBJECTIVE. To investigate axial rotational stability of the thoracic spine under dorsal and ventral shear loads. SUMMARY OF BACKGROUND DATA. Idiopathic scoliosis is a condition restricted exclusively to humans. An

  10. Inhibition of acid-sensing ion channels by levo-tetrahydropalmatine in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Liu, Ting-Ting; Qu, Zu-Wei; Qiu, Chun-Yu; Qiu, Fang; Ren, Cuixia; Gan, Xiong; Peng, Fang; Hu, Wang-Ping

    2015-02-01

    Levo-tetrahydropalmatine (l-THP), a main bioactive Chinese herbal constituent from the genera Stephania and Corydalis, has been in use in clinical practice for years in China as a traditional analgesic agent. However, the mechanism underlying the analgesic action of l-THP is poorly understood. This study shows that l-THP can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs), which are believed to mediate pain caused by extracellular acidification. l-THP dose dependently decreased the amplitude of proton-gated currents mediated by ASICs in rat dorsal root ganglion (DRG) neurons. l-THP shifted the proton concentration-response curve downward, with a decrease of 40.93% ± 8.45% in the maximum current response to protons, with no significant change in the pH0.5 value. Moreover, l-THP can alter the membrane excitability of rat DRG neurons to acid stimuli. It significantly decreased the number of action potentials and the amplitude of the depolarization induced by an extracellular pH drop. Finally, peripherally administered l-THP inhibited the nociceptive response to intraplantar injection of acetic acid in rats. These results indicate that l-THP can inhibit the functional activity of ASICs in dissociated primary sensory neurons and relieve acidosis-evoked pain in vivo, which for the first time provides a novel peripheral mechanism underlying the analgesic action of l-THP. © 2014 Wiley Periodicals, Inc.

  11. Characterization of Na+ and Ca2+ channels in zebrafish dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Yu-Jin Won

    Full Text Available BACKGROUND: Dorsal root ganglia (DRG somata from rodents have provided an excellent model system to study ion channel properties and modulation using electrophysiological investigation. As in other vertebrates, zebrafish (Danio rerio DRG are organized segmentally and possess peripheral axons that bifurcate into each body segment. However, the electrical properties of zebrafish DRG sensory neurons, as compared with their mammalian counterparts, are relatively unexplored because a preparation suitable for electrophysiological studies has not been available. METHODOLOGY/PRINCIPAL FINDINGS: We show enzymatically dissociated DRG neurons from juvenile zebrafish expressing Isl2b-promoter driven EGFP were easily identified with fluorescence microscopy and amenable to conventional whole-cell patch-clamp studies. Two kinetically distinct TTX-sensitive Na(+ currents (rapidly- and slowly-inactivating were discovered. Rapidly-inactivating I(Na were preferentially expressed in relatively large neurons, while slowly-inactivating I(Na was more prevalent in smaller DRG neurons. RT-PCR analysis suggests zscn1aa/ab, zscn8aa/ab, zscn4ab and zscn5Laa are possible candidates for these I(Na components. Voltage-gated Ca(2+ currents (I(Ca were primarily (87% comprised of a high-voltage activated component arising from ω-conotoxin GVIA-sensitive Ca(V2.2 (N-type Ca(2+ channels. A few DRG neurons (8% displayed a miniscule low-voltage-activated component. I(Ca in zebrafish DRG neurons were modulated by neurotransmitters via either voltage-dependent or -independent G-protein signaling pathway with large cell-to-cell response variability. CONCLUSIONS/SIGNIFICANCE: Our present results indicate that, as in higher vertebrates, zebrafish DRG neurons are heterogeneous being composed of functionally distinct subpopulations that may correlate with different sensory modalities. These findings provide the first comparison of zebrafish and rodent DRG neuron electrical properties and

  12. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    2008-05-01

    Full Text Available Transient receptor potential (TRP ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1, and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate, consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  13. Purinergic transmission and transglial signaling between neuron somata in the dorsal root ganglion.

    Science.gov (United States)

    Rozanski, Gabriela M; Li, Qi; Kim, Hyunhee; Stanley, Elise F

    2013-02-01

    Most dorsal root ganglion neuronal somata (NS) are isolated from their neighbours by a satellite glial cell (SGC) sheath. However, some NS are associated in pairs, separated solely by the membrane septum of a common SGC to form a neuron-glial cell-neuron (NGlN) trimer. We reported that stimulation of one NS evokes a delayed, noisy and long-duration inward current in both itself and its passive partner that was blocked by suramin, a general purinergic antagonist. Here we test the hypothesis that NGlN transmission involves purinergic activation of the SGC. Stimulation of the NS triggered a sustained current noise in the SGC. Block of transmission through the NGlN by reactive blue 2 or thapsigargin, a Ca(2+) store-depletion agent, implicated a Ca(2+) store discharge-linked P2Y receptor. P2Y2 was identified by simulation of the NGlN-like transmission by puffing UTP onto the SGC and by immunocytochemical localization to the SGC membrane septum. Block of the UTP effect by BAPTA, an intracellular Ca(2+) scavenger, supported the involvement of SGC Ca(2+) stores in the signaling pathway. We infer that transmission through the NGlN trimer involves secretion of ATP from the NS and triggering of SGC Ca(2+) store discharge via P2Y2 receptors. Presumably, cytoplasmic Ca(2+) elevation leads to the release of an as-yet unidentified second transmitter from the glial cell to complete transmission. Thus, the two NS of the NGlN trimer communicate via a 'sandwich synapse' transglial pathway, a novel signaling mechanism that may contribute to information transfer in other regions of the nervous system. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. Upregulation of adrenomedullin in the spinal cord and dorsal root ganglia in the early phase of CFA-induced inflammation in rats.

    Science.gov (United States)

    Hong, Yanguo; Liu, Yushan; Chabot, Jean-Guy; Fournier, Alain; Quirion, Rémi

    2009-11-01

    Adrenomedullin (AM), a member of calcitonin gene-related peptide (CGRP) family, has been demonstrated to be a pronociceptive mediator [28]. This study was undertaken to investigate the role of AM in a model of complete Freund's adjuvant (CFA)-induced inflammatory pain. Injection of CFA, but not of saline, in the unilateral hindpaw produced an increase in the expression of AM-like immunoreactivity (AM-IR) in laminae I-II of the spinal cord as well as in small- and medium-sized dorsal root ganglion (DRG) neurons at 48 h. The content of AM in DRG on the side ipsilateral to CFA injection started to increase at 4 h and remained at high levels at 24 and 48 h. The selective antagonist of AM receptors, AM(22-52), administered intrathecally (i.t.) 24 h after CFA injection inhibited inflammation-associated hyperalgesia in a dose-dependent manner (2, 5 and 10 nmol). Impressively, this anti-hyperalgesic effect lasted for at least 24 h. I.t. administration of AM(22-52) (10 nmol) also reversed CFA-induced increase in AM-IR in the spinal dorsal horn and DRG. Furthermore, blockade of AM receptors abolished CFA-induced changes in the expression and content of CGRP-like immunoreactivity in these regions. Taken together, our results suggest that the upregulation of AM in DRG neurons contributes to the development of inflammatory pain, and this effect is mediated, at least in part, by enhancing the expression and release of CGRP. Blocking AM receptor downstream signaling effects using antagonists has the potential of relieving pain following the induction of inflammation.

  15. Neuron-glial communication mediated by TNF-α and glial activation in dorsal root ganglia in visceral inflammatory hypersensitivity.

    Science.gov (United States)

    Song, Dan-dan; Li, Yong; Tang, Dong; Huang, Li-ya; Yuan, Yao-zong

    2014-05-01

    Communication between neurons and glia in the dorsal root ganglia (DRG) and the central nervous system is critical for nociception. Both glial activation and proinflammatory cytokine induction underlie this communication. We investigated whether satellite glial cell (SGC) and tumor necrosis factor-α (TNF-α) activation in DRG participates in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat model of visceral hyperalgesia. In TNBS-treated rats, TNF-α expression increased in DRG and was colocalized to SGCs enveloping a given neuron. These SGCs were activated as visualized under electron microscopy: they had more elongated processes projecting into the connective tissue space and more gap junctions. When nerves attached to DRG (L6-S1) were stimulated with a series of electrical stimulations, TNF-α were released from DRG in TNBS-treated animals compared with controls. Using a current clamp, we noted that exogenous TNF-α (2.5 ng/ml) increased DRG neuron activity, and visceral pain behavioral responses were reversed by intrathecal administration of anti-TNF-α (10 μg·kg(-1)·day(-1)). Based on our findings, TNF-α and SGC activation in neuron-glial communication are critical in inflammatory visceral hyperalgesia.

  16. Tang-Luo-Ning Improves Mitochondrial Antioxidase Activity in Dorsal Root Ganglia of Diabetic Rats: A Proteomics Study

    Directory of Open Access Journals (Sweden)

    Taojing Zhang

    2017-01-01

    Full Text Available Tang-luo-ning (TLN is a traditional Chinese herbal recipe for treating diabetic peripheral neuropathy (DPN. In this study, we investigated mitochondrial protein profiles in a diabetic rat model and explored the potential protective effect of TLN. Diabetic rats were established by injection of streptozocin (STZ and divided into model, alpha lipoic acid (ALA, and TLN groups. Mitochondrial proteins were isolated from dorsal root ganglia and proteomic analysis was used to quantify the differentially expressed proteins. Tang-luo-ning mitigated STZ-induced diabetic symptoms and blood glucose level, including response time to cold or hot stimulation and nerve conductive velocity. As compared to the normal, there were 388 differentially expressed proteins in the TLN group, 445 in ALA group, and 451 in model group. As compared to the model group, there were 275 differential proteins in TLN group and 251 in ALA group. As compared to model group, mitochondrial complex III was significantly decreased, while glutathione peroxidase and peroxidase were increased in TLN group. When compared with ALA group, the mitochondrial complex III was increased, and mitochondrial complex IV was decreased in TLN group. Together, TLN should have a strong antioxidative activity, which appears to be modulated through regulation of respiratory complexes and antioxidases.

  17. FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum.

    Science.gov (United States)

    Satoh, Akira; Makanae, Aki; Nishimoto, Yurie; Mitogawa, Kazumasa

    2016-09-01

    Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    Science.gov (United States)

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  19. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Schlaak, Boris H; Münchau, Alexander

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1......(HAND) through specifically designed minicoils to selectively probe ipsilateral PMd-to-M1(HAND) connectivity in humans. A suprathreshold test stimulus (TS) was applied to M1(HAND) producing a motor evoked potential (MEP) of about 0.5 mV in the relaxed right first dorsal interosseus muscle (FDI......) facilitation did not change as a function of CS intensity. Even at higher intensities, the CS alone failed to elicit a MEP or a cortical silent period in the pre-activated FDI, excluding a direct spread of excitation from PMd to M1(HAND). No MEP facilitation was present while CS was applied rostrally over...

  20. Differential transcriptional profiling of damaged and intact adjacent dorsal root ganglia neurons in neuropathic pain.

    Directory of Open Access Journals (Sweden)

    A K Reinhold

    Full Text Available Neuropathic pain, caused by a lesion in the somatosensory system, is a severely impairing mostly chronic disease. While its underlying molecular mechanisms are not thoroughly understood, neuroimmune interactions as well as changes in the pain pathway such as sensitization of nociceptors have been implicated. It has been shown that not only are different cell types involved in generation and maintenance of neuropathic pain, like neurons, immune and glial cells, but, also, intact adjacent neurons are relevant to the process. Here, we describe an experimental approach to discriminate damaged from intact adjacent neurons in the same dorsal root ganglion (DRG using differential fluorescent neuronal labelling and fluorescence-activated cell sorting (FACS. Two fluorescent tracers, Fluoroemerald (FE and 1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI, were used, whose properties allow us to distinguish between damaged and intact neurons. Subsequent sorting permitted transcriptional analysis of both groups. Results and qPCR validation show a strong regulation in damaged neurons versus contralateral controls as well as a moderate regulation in adjacent neurons. Data for damaged neurons reveal an mRNA expression pattern consistent with established upregulated genes like galanin, which supports our approach. Moreover, novel genes were found strongly regulated such as corticotropin-releasing hormone (CRH, providing novel targets for further research. Differential fluorescent neuronal labelling and sorting allows for a clear distinction between primarily damaged neuropathic neurons and "bystanders," thereby facilitating a more detailed understanding of their respective roles in neuropathic processes in the DRG.

  1. Expression profile of vesicular nucleotide transporter (VNUT, SLC17A9) in subpopulations of rat dorsal root ganglion neurons.

    Science.gov (United States)

    Nishida, Kentaro; Nomura, Yuka; Kawamori, Kanako; Moriyama, Yoshinori; Nagasawa, Kazuki

    2014-09-05

    ATP plays an important role in the signal transduction between sensory neurons and satellite cells in dorsal root ganglia (DRGs). In primary cultured DRG neurons, ATP is known to be stored in lysosomes via a vesicular nucleotide transporter (VNUT), and to be released into the intercellular space through exocytosis. DRGs consist of large-, medium- and small-sized neurons, which play different roles in sensory transmission, but there is no information on the expression profiles of VNUT in DRG subpopulations. Here, we obtained detailed expression profiles of VNUT in isolated rat DRG tissues. On immunohistochemical analysis, VNUT was found in DRG neurons, and was predominantly expressed by the small- and medium-sized DRG ones, as judged upon visual inspection, and this was compatible with the finding that the number of VNUT-positive DRG neurons in IB4-positive cells was greater than that in NF200-positive ones. These results suggest that VNUT play a role in ATP accumulation in DRG neurons, especially in small- and medium-sized ones, and might be involved in ATP-mediated nociceptive signaling in DRGs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Advanced type 1 diabetes is associated with ASIC alterations in mouse lower thoracic dorsal root ganglia neurons.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Dumitrescu, Diana Ionela; Marin, Adela; Banciu, Daniel Dumitru; Iancu, Adina Daniela; Selescu, Tudor; Radu, Mihai

    2014-01-01

    Acid-sensing ion channels (ASICs) from dorsal root ganglia (DRG) neurons are proton sensors during ischemia and inflammation. Little is known about their role in type 1 diabetes (T1D). Our study was focused on ASICs alterations determined by advanced T1D status. Primary neuronal cultures were obtained from lower (T9-T12) thoracic DRG neurons from Balb/c and TCR-HA(+/-)/Ins-HA(+/-) diabetic male mice (16 weeks of age). Patch-clamp recordings indicate a change in the number of small DRG neurons presenting different ASIC-type currents. Multiple molecular sites of ASICs are distinctly affected in T1D, probably due to particular steric constraints for glycans accessibility to the active site: (i) ASIC1 current inactivates faster, while ASIC2 is slower; (ii) PcTx1 partly reverts diabetes effects against ASIC1- and ASIC2-inactivations; (iii) APETx2 maintains unaltered potency against ASIC3 current amplitude, but slows ASIC3 inactivation. Immunofluorescence indicates opposite regulation of different ASIC transcripts while qRT-PCR shows that ASIC mRNA ranking (ASIC2 > ASIC1 > ASIC3) remains unaltered. In conclusion, our study has identified biochemical and biophysical ASIC changes in lower thoracic DRG neurons due to advanced T1D. As hypoalgesia is present in advanced T1D, ASICs alterations might be the cause or the consequence of diabetic insensate neuropathy.

  3. Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain

    Directory of Open Access Journals (Sweden)

    Su Lin

    2011-11-01

    Full Text Available Abstract Background Chronic neuropathic pain is an intractable pain with few effective treatments. Moderate cold stimulation can relieve pain, and this may be a novel train of thought for exploring new methods of analgesia. Transient receptor potential melastatin 8 (TRPM8 ion channel has been proposed to be an important molecular sensor for cold. Here we investigate the role of TRPM8 in the mechanism of chronic neuropathic pain using a rat model of chronic constriction injury (CCI to the sciatic nerve. Results Mechanical allodynia, cold and thermal hyperalgesia of CCI rats began on the 4th day following surgery and maintained at the peak during the period from the 10th to 14th day after operation. The level of TRPM8 protein in L5 dorsal root ganglion (DRG ipsilateral to nerve injury was significantly increased on the 4th day after CCI, and reached the peak on the 10th day, and remained elevated on the 14th day following CCI. This time course of the alteration of TRPM8 expression was consistent with that of CCI-induced hyperalgesic response of the operated hind paw. Besides, activation of cold receptor TRPM8 of CCI rats by intrathecal application of menthol resulted in the inhibition of mechanical allodynia and thermal hyperalgesia and the enhancement of cold hyperalgesia. In contrast, downregulation of TRPM8 protein in ipsilateral L5 DRG of CCI rats by intrathecal TRPM8 antisense oligonucleotide attenuated cold hyperalgesia, but it had no effect on CCI-induced mechanical allodynia and thermal hyperalgesia. Conclusions TRPM8 may play different roles in mechanical allodynia, cold and thermal hyperalgesia that develop after nerve injury, and it is a very promising research direction for the development of new therapies for chronic neuroapthic pain.

  4. Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats.

    Science.gov (United States)

    Hsieh, Ming-Chun; Ho, Yu-Cheng; Lai, Cheng-Yuan; Wang, Hsueh-Hsiao; Lee, An-Sheng; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-11-01

    Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is

  5. Percutaneous radiofrequency lesions adjacent to the dorsal root ganglion alleviate spasticity and pain in children with cerebral palsy: pilot study in 17 patients

    Directory of Open Access Journals (Sweden)

    van Rhijn Lodewijk W

    2010-06-01

    Full Text Available Abstract Background Cerebral palsy (CP may cause severe spasticity, requiring neurosurgical procedures. The most common neurosurgical procedures are continuous infusion of intrathecal baclofen and selective dorsal rhizotomy. Both are invasive and complex procedures. We hypothesized that a percutaneous radiofrequency lesion of the dorsal root ganglion (RF-DRG could be a simple and safe alternative treatment. We undertook a pilot study to test this hypothesis. Methods We performed an RF-DRG procedure in 17 consecutive CP patients with severe hip flexor/adductor spasms accompanied by pain or care-giving difficulties. Six children were systematically evaluated at baseline, and 1 month and 6 months after treatment by means of the Modified Ashworth Scale (MAS, Gross Motor Function Measure (GMFM and a self-made caregiver's questionnaire. Eleven subsequent children were evaluated using a Visual Analogue Scale (VAS for spasticity, pain and ease of care. Results A total of 19 RF-DRG treatments were performed in 17 patients. We found a small improvement in muscle tone measured by MAS, but no effect on the GMFM scale. Despite this, the caregivers of these six treated children unanimously stated that the quality of life of their children had indeed improved after the RF-DRG. In the subsequent 11 children we found improvements in all VAS scores, in a range comparable to the conventional treatment options. Conclusion RF-DRG is a promising new treatment option for severe spasticity in CP patients, and its definitive effectiveness remains to be defined in a randomised controlled trial.

  6. Neurons and satellite glial cells in adult rat lumbar dorsal root ganglia express connexin 36.

    Science.gov (United States)

    Pérez Armendariz, E Martha; Norcini, Monica; Hernández-Tellez, Beatriz; Castell-Rodríguez, Andrés; Coronel-Cruz, Cristina; Alquicira, Raquel Guerrero; Sideris, Alexandra; Recio-Pinto, Esperanza

    2018-04-01

    Previous studies have shown that following peripheral nerve injury there was a downregulation of the gap junction protein connexin 36 (Cx36) in the spinal cord; however, it is not known whether Cx36 protein is expressed in the dorsal root ganglia (DRGs), nor if its levels are altered following peripheral nerve injuries. Here we address these aspects in the adult rat lumbar DRG. Cx36 mRNA was detected using qRT-PCR, and Cx36 protein was identified in DRG sections using immunohistochemistry (IHC) and immunofluorescence (IF). Double staining revealed that Cx36 co-localizes with both anti-β-III tubulin, a neuronal marker, and anti-glutamine synthetase, a satellite glial cell (SGC) marker. In neurons, Cx36 staining was mostly uniform in somata and fibers of all sizes and its intensity increased at the cell membranes. This labeling pattern was in contrast with Cx36 IF dots mainly found at junctional membranes in islet beta cells used as a control tissue. Co-staining with anti-Cx43 and anti-Cx36 showed that whereas mostly uniform staining of Cx36 was found throughout neurons and SGCs, Cx43 IF puncta were localized to SGCs. Cx36 mRNA was expressed in normal lumbar DRG, and it was significantly down-regulated in L4 DRG of rats that underwent sciatic nerve injury resulting in persistent hypersensitivity. Collectively, these findings demonstrated that neurons and SGCs express Cx36 protein in normal DRG, and suggested that perturbation of Cx36 levels may contribute to chronic neuropathic pain resulting from a peripheral nerve injury. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Increased response to glutamate in small diameter dorsal root ganglion neurons after sciatic nerve injury.

    Directory of Open Access Journals (Sweden)

    Kerui Gong

    Full Text Available Glutamate in the peripheral nervous system is involved in neuropathic pain, yet we know little how nerve injury alters responses to this neurotransmitter in primary sensory neurons. We recorded neuronal responses from the ex-vivo preparations of the dorsal root ganglia (DRG one week following a chronic constriction injury (CCI of the sciatic nerve in adult rats. We found that small diameter DRG neurons (30 µm were unaffected. Puff application of either glutamate, or the selective ionotropic glutamate receptor agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA and kainic acid (KA, or the group I metabotropic receptor (mGluR agonist (S-3,5-dihydroxyphenylglycine (DHPG, induced larger inward currents in CCI DRGs compared to those from uninjured rats. N-methyl-D-aspartate (NMDA-induced currents were unchanged. In addition to larger inward currents following CCI, a greater number of neurons responded to glutamate, AMPA, NMDA, and DHPG, but not to KA. Western blot analysis of the DRGs revealed that CCI resulted in a 35% increase in GluA1 and a 60% decrease in GluA2, the AMPA receptor subunits, compared to uninjured controls. mGluR1 receptor expression increased by 60% in the membrane fraction, whereas mGluR5 receptor subunit expression remained unchanged after CCI. These results show that following nerve injury, small diameter DRG neurons, many of which are nociceptive, have increased excitability and an increased response to glutamate that is associated with changes in receptor expression at the neuronal membrane. Our findings provide further evidence that glutamatergic transmission in the periphery plays a role in nociception.

  8. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study.

    Science.gov (United States)

    Sundt, Danielle; Gamper, Nikita; Jaffe, David B

    2015-12-01

    Unmyelinated C-fibers are a major type of sensory neurons conveying pain information. Action potential conduction is regulated by the bifurcation (T-junction) of sensory neuron axons within the dorsal root ganglia (DRG). Understanding how C-fiber signaling is influenced by the morphology of the T-junction and the local expression of ion channels is important for understanding pain signaling. In this study we used biophysical computer modeling to investigate the influence of axon morphology within the DRG and various membrane conductances on the reliability of spike propagation. As expected, calculated input impedance and the amplitude of propagating action potentials were both lowest at the T-junction. Propagation reliability for single spikes was highly sensitive to the diameter of the stem axon and the density of voltage-gated Na(+) channels. A model containing only fast voltage-gated Na(+) and delayed-rectifier K(+) channels conducted trains of spikes up to frequencies of 110 Hz. The addition of slowly activating KCNQ channels (i.e., KV7 or M-channels) to the model reduced the following frequency to 30 Hz. Hyperpolarization produced by addition of a much slower conductance, such as a Ca(2+)-dependent K(+) current, was needed to reduce the following frequency to 6 Hz. Attenuation of driving force due to ion accumulation or hyperpolarization produced by a Na(+)-K(+) pump had no effect on following frequency but could influence the reliability of spike propagation mutually with the voltage shift generated by a Ca(2+)-dependent K(+) current. These simulations suggest how specific ion channels within the DRG may contribute toward therapeutic treatments for chronic pain. Copyright © 2015 the American Physiological Society.

  9. First report of important causal relationship between the Adamkiewicz artery vasospasm and dorsal root ganglion cell degeneration in spinal subarachnoid hemorrhage: An experimental study using a rabbit model.

    Science.gov (United States)

    Turkmenoglu, Osman N; Kanat, Ayhan; Yolas, Coskun; Aydin, Mehmet Dumlu; Ezirmik, Naci; Gundogdu, Cemal

    2017-01-01

    The blood supply of the lower spinal cord is heavily dependent on the artery of Adamkiewicz. The goal of this study was to elucidate the effects of lumbar subarachnoid hemorrhage (SAH) on the lumbar 4 dorsal root ganglion (L4DRG) cells secondary to Adamkiewicz artery (AKA) vasospasm. This study was conducted on 20 rabbits, which were randomly divided into three groups: Spinal SAH ( n = 8), serum saline (SS) (SS; n = 6) and control ( n = 6) groups. Experimental spinal SAH was performed. After 20 days, volume values of AKA and neuron density of L4DRG were analyzed. The mean alive neuron density of the L4DRG was 15420 ± 1240/mm 3 and degenerated neuron density was 1045 ± 260/mm 3 in the control group. Whereas, the density of living and degenerated neurons density were 12930 ± 1060/mm 3 and 1365 ± 480/mm 3 in serum saline (SS), 9845 ± 1028/mm 3 and 4560 ± 1340/mm 3 in the SAH group. The mean volume of imaginary AKAs was estimated as 1,250 ± 0,310 mm 3 in the control group and 1,030 ± 0,240 mm 3 in the SF group and 0,910 ± 0,170 mm 3 in SAH group. Volume reduction of the AKAs and neuron density L4DRG were significantly different between the SAH and other two groups ( P < 0.05). Decreased volume of the lumen of the artery of Adamkiewicz was observed in animals with SAH compared with controls. Increased degeneration the L4 dorsal root ganglion in animals with SAH was also noted. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies.

  10. Pulpal status of human primary teeth with physiological root resorption.

    Science.gov (United States)

    Monteiro, Joana; Day, Peter; Duggal, Monty; Morgan, Claire; Rodd, Helen

    2009-01-01

    The overall aim of this study was to determine whether any changes occur in the pulpal structure of human primary teeth in association with physiological root resorption. The experimental material comprised 64 sound primary molars, obtained from children requiring routine dental extractions under general anaesthesia. Pulp sections were processed for indirect immunofluorescence using combinations of: (i) protein gene product 9.5 (a general neuronal marker); (ii) leucocyte common antigen CD45 (a general immune cell marker); and (iii) Ulex europaeus I lectin (a marker of vascular endothelium). Image analysis was then used to determine the percentage area of staining for each label within both the pulp horn and mid-coronal region. Following measurement of the greatest degree of root resorption in each sample, teeth were subdivided into three groups: those with physiological resorption involving less than one-third, one-third to two-thirds, and more than two-thirds of their root length. Wide variation was evident between different tooth samples with some resorbed teeth showing marked changes in pulpal histology. Decreased innervation density, increased immune cell accumulation, and increased vascularity were evident in some teeth with advanced root resorption. Analysis of pooled data, however, did not reveal any significant differences in mean percentage area of staining for any of these variables according to the three root resorption subgroups (P > 0.05, analysis of variance on transformed data). This investigation has revealed some changes in pulpal status of human primary teeth with physiological root resorption. These were not, however, as profound as one may have anticipated. It is therefore speculated that teeth could retain the potential for sensation, healing, and repair until advanced stages of root resorption.

  11. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans.

    Science.gov (United States)

    Josephson, Anna; Trifunovski, Alexandra; Widmer, Hans Ruedi; Widenfalk, Johan; Olson, Lars; Spenger, Christian

    2002-11-18

    Nogo (reticulon-4) is a myelin-associated protein that is expressed in three different splice variants, Nogo-A, Nogo-B, and Nogo-C. Nogo-A inhibits neurite regeneration in the central nervous system. Messenger RNA encoding Nogo is expressed in oligodendrocytes and central and peripheral neurons, but not in astrocytes or Schwann cells. Nogo is a transmembraneous protein; the extracellular domain is termed Nogo-66, and a Nogo-66-receptor (Nogo-R) has been identified. We performed in situ hybridization in human and mouse nervous tissues to map the cellular distribution of Nogo-R gene activity patterns in fetal and adult human spinal cord and sensory ganglia, adult human brain, and the nervous systems of developing and adult mice. In the human fetus Nogo-R was transcribed in the ventral horn of the spinal cord and in dorsal root ganglia. In adult human tissues Nogo-R gene activity was found in neocortex, hippocampus, amygdala, and a subset of large and medium-sized neurons of the dorsal root ganglia. Nogo-R mRNA was not expressed in the adult human spinal cord at detectable levels. In the fetal mouse, Nogo-R was diffusely expressed in brain, brainstem, trigeminal ganglion, spinal cord, and dorsal root ganglia at all stages. In the adult mouse strong Nogo-R mRNA expression was found in neurons in neocortex, hippocampus, amygdala, habenula, thalamic nuclei, brainstem, the granular cell layer of cerebellum, and the mitral cell layer of the olfactory bulb. Neurons in the adult mouse striatum, the medial septal nucleus, and spinal cord did not express Nogo-R mRNA at detectable levels. In summary, Nogo-66-R mRNA expression in humans and mice was observed in neurons of the developing nervous system Expression was downregulated in the adult spinal cord of both species, and specific expression patterns were seen in the adult brain. Copyright 2002 Wiley-Liss, Inc.

  12. Effects of (−-Gallocatechin-3-Gallate on Tetrodotoxin-Resistant Voltage-Gated Sodium Channels in Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jian-Min Jiang

    2013-05-01

    Full Text Available The (−-gallocatechin-3-gallate (GCG concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and functionally linked to nociception. In this study, the effects of GCG on tetrodotoxin-resistant Na+ currents were investigated in rat primary cultures of dorsal root ganglion neurons via the whole-cell patch-clamp technique. We found that 1 μM GCG reduced the amplitudes of peak current density of tetrodotoxin-resistant Na+ currents significantly. Furthermore, the inhibition was accompanied by a depolarizing shift of the activation voltage and a hyperpolarizing shift of steady-state inactivation voltage. The percentage block of GCG (1 μM on tetrodotoxin-resistant Na+ current was 45.1% ± 1.1% in 10 min. In addition, GCG did not produce frequency-dependent block of tetrodotoxin-resistant Na+ currents at stimulation frequencies of 1 Hz, 2 Hz and 5 Hz. On the basis of these findings, we propose that GCG may be a potential analgesic agent.

  13. Application of grey incidence analysis to connection between human errors and root cause

    International Nuclear Information System (INIS)

    Ren Yinxiang; Yu Ren; Zhou Gang; Chen Dengke

    2008-01-01

    By introducing grey incidence analysis, the relatively important impact of root cause upon human errors was researched in the paper. On the basis of WANO statistic data and grey incidence analysis, lack of alternate examine, bad basic operation, short of theoretical knowledge, relaxation of organization and management and deficiency of regulations are the important influence of root cause on human err ors. Finally, the question to reduce human errors was discussed. (authors)

  14. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    Science.gov (United States)

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  15. Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse.

    Science.gov (United States)

    Rozanski, Gabriela M; Nath, Arup R; Adams, Michael E; Stanley, Elise F

    2013-11-15

    A subpopulation of dorsal root ganglion (DRG) neurons are intimately attached in pairs and separated solely by thin satellite glial cell membrane septa. Stimulation of one neuron leads to transglial activation of its pair by a bi-, purinergic/glutamatergic synaptic pathway, a transmission mechanism that we term sandwich synapse (SS) transmission. Release of ATP from the stimulated neuron can be attributed to a classical mechanism involving Ca(2+) entry via voltage-gated calcium channels (CaV) but via an unknown channel type. Specific blockers and toxins ruled out CaV1, 2.1 and 2.2. Transmission was, however, blocked by a moderate depolarization (-50 mV) or low-concentration Ni(2+) (0.1 mM). Transmission persisted using a voltage pulse to -40 mV from a holding potential of -80 mV, confirming the involvement of a low voltage-activated channel type and limiting the candidate channel type to either CaV3.2 or a subpopulation of inactivation- and Ni(2+)-sensitive CaV2.3 channels. Resistance of the neuron calcium current and SS transmission to SNX482 argue against the latter. Hence, we conclude that inter-somatic transmission at the DRG SS is gated by CaV3.2 type calcium channels. The use of CaV3 family channels to gate transmission has important implications for the biological function of the DRG SS as information transfer would be predicted to occur not only in response to action potentials but also to sub-threshold membrane voltage oscillations. Thus, the SS synapse may serve as a homeostatic signalling mechanism between select neurons in the DRG and could play a role in abnormal sensation such as neuropathic pain.

  16. Transglial transmission at the dorsal root ganglion sandwich synapse: glial cell to postsynaptic neuron communication.

    Science.gov (United States)

    Rozanski, Gabriela M; Li, Qi; Stanley, Elise F

    2013-04-01

    The dorsal root ganglion (DRG) contains a subset of closely-apposed neuronal somata (NS) separated solely by a thin satellite glial cell (SGC) membrane septum to form an NS-glial cell-NS trimer. We recently reported that stimulation of one NS with an impulse train triggers a delayed, noisy and long-lasting response in its NS pair via a transglial signaling pathway that we term a 'sandwich synapse' (SS). Transmission could be unidirectional or bidirectional and facilitated in response to a second stimulus train. We have shown that in chick or rat SS the NS-to-SGC leg of the two-synapse pathway is purinergic via P2Y2 receptors but the second SGC-to-NS synapse mechanism remained unknown. A noisy evoked current in the target neuron, a reversal potential close to 0 mV, and insensitivity to calcium scavengers or G protein block favored an ionotropic postsynaptic receptor. Selective block by D-2-amino-5-phosphonopentanoate (AP5) implicated glutamatergic transmission via N-methyl-d-aspartate receptors. This agent also blocked NS responses evoked by puff of UTP, a P2Y2 agonist, directly onto the SGC cell, confirming its action at the second synapse of the SS transmission pathway. The N-methyl-d-aspartate receptor NR2B subunit was implicated by block of transmission with ifenprodil and by its immunocytochemical localization to the NS membrane, abutting the glial septum P2Y2 receptor. Isolated DRG cell clusters exhibited daisy-chain and branching NS-glial cell-NS contacts, suggestive of a network organization within the ganglion. The identification of the glial-to-neuron transmitter and receptor combination provides further support for transglial transmission and completes the DRG SS molecular transmission pathway. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  17. Creating a Strain Relief Loop during S1 Transforaminal Lead Placement for Dorsal Root Ganglion Stimulation for Foot Pain: A Technical Note.

    Science.gov (United States)

    van Velsen, Valery; van Helmond, Noud; Chapman, Kenneth B

    2018-04-01

    Chronic neuropathic pain is often refractory to conventional medical treatments and leads to significant disability and socio-economic burden. Dorsal root ganglion (DRG) stimulation has recently emerged as a treatment for persistent neuropathic pain, but creating a strain relief loop at the S1 level has thus far been a challenging technical component of DRG lead placement. We describe a refined technique for strain relief loop formation at the S1 level using a transforaminal approach that we employed in a 45-year-old patient with intractable foot pain. We successfully placed a strain relief loop in the sacral space in a predictable and easily reproducible manner using a transforaminal anchorless approach. The patient experienced a decrease in visual analog pain score (85%), and improvement in function during the trial period, and proceeded with permanent implantation. The described sacral transforaminal strain relief loop formation technique appears to be a more reliable and predictable technique of DRG lead placement in the sacrum than those previously documented. © 2017 World Institute of Pain.

  18. External apical root resorption diagnosis by using FII human dentine fraction and salivary IGg.

    Science.gov (United States)

    Da-Costa, Tânia Maris Pedrini Soares; Hidalgo, Mirian Marubayashi; Consolaro, Alberto; Lima, Carlos Eduardo de Oliveira; Tanaka, Evelise Ono; Itano, Eiko Nakagawa

    2018-06-01

    External apical root resorption as a consequence of orthodontic treatment is an inflammatory pathological process that results in permanent loss of tooth structure from the root apex. This study aimed to investigate the diagnostic potential of human dentine fractions and salivary IgG in external apical root resorption. Saliva samples were collected from 10 patients before (T0) and after 3 (T3), 6 (T6) and 12 (T12) months of orthodontic treatment. The total dentinal extract, obtained from human third molars, was fractioned by gel filtration chromatography in three fractions denominated FI, FII and FIII. The root resorption analysis of the upper central incisors was performed by digital image subtraction method. Reactivity of salivary IgG to antigenic fractions of dentine was determined by enzyme-linked immunosorbent assay (Elisa). Regardless of treatment, FI dentin fraction with high MM (root resorptions were detected. Our results suggest that FII human dentine fraction and salivary IgG have potential to be used in diagnosis and monitoring of external apical root resorption. The development of a practical and accessible biochemical test using saliva and FII dentine fraction may help in the prevention of severe root resorption. Copyright © 2018. Published by Elsevier Masson SAS.

  19. Electron probe study of human and red deer cementum and root dentin

    Energy Technology Data Exchange (ETDEWEB)

    Toetdal, B. (Department of Physics, University of Trondheim, The Norwegian Institute of Technology); Hals, E. (Department of Cariology and Endodontics, Faculty of Odontology, University of Bergen, Norway)

    1985-01-01

    A topographical description of the concentration profiles of Ca, P, Mg, Zn, F, S, and K in human and red deer cementum and root dentin is given. The concentrations reported should be regarded as semiquantitative values. A downward slope of the Ca, P, and Mg profiles toward the pulpal cavity seemed largely to correspond with the secondary dentin. Marked elevations of the Zn profiles, modest elevations of the F profiles, and in a few instances of the S profiles, toward root surface and pulpal cavity were registered. In a couple of scans a slight elevation of the K profile toward the root surface was observed. A high degree of concordance in human and red deer teeth was ascertained.

  20. The function of the long dorsal sacroiliac ligament : its implications for understanding low back pain

    NARCIS (Netherlands)

    Pool-Goudzwaard, A.L.; Vleeming, A; Hammudoghlu, D; Stoeckart, R.; Snijders, C.; Mens, Jan M A

    1996-01-01

    STUDY DESIGN: In embalmed human bodies the tension of the long dorsal sacroiliac ligament was measured during incremental loading of anatomical structures that are biomechanically relevant. OBJECTIVES: To assess the function of the long dorsal sacroiliac ligament. SUMMARY OF BACKGROUND DATA: In many

  1. Dorsal skinfold chamber models in mice

    Directory of Open Access Journals (Sweden)

    Schreiter, Jeannine

    2017-07-01

    Full Text Available Background/purpose: The use of dorsal skinfold chamber models has substantially improved the understanding of micro-vascularisation in pathophysiology over the last eight decades. It allows pathophysiological studies of vascularisation over a continuous period of time. The dorsal skinfold chamber is an attractive technique for monitoring the vascularisation of autologous or allogenic transplants, wound healing, tumorigenesis and compatibility of biomaterial implants. To further reduce the animals’ discomfort while carrying the dorsal skinfold chamber, we developed a smaller chamber (the Leipzig Dorsal Skinfold Chamber and summarized the commercial available chamber models. In addition we compared our model to the common chamber. Methods: The Leipzig Dorsal Skinfold Chamber was applied to female mice with a mean weight of 22 g. Angiogenesis within the dorsal skinfold chamber was evaluated after injection of fluorescein isothiocyanate dextran with an Axio Scope microscope. The mean vessel density within the dorsal skinfold chamber was assessed over a period of 21 days at five different time points. The gained data were compared to previous results using a bigger and heavier dorsal skinfold model in mice. A PubMed and a patent search were performed and all papers related to “dorsal skinfold chamber” from 1 of January 2006 to 31 of December 2015 were evaluated regarding the dorsal skinfold chamber models and their technical improvements. The main models are described and compared to our titanium Leipzig Dorsal Skinfold Chamber model.Results: The Leipzig Dorsal Skinfold Chamber fulfils all requirements of continuous models known from previous chamber models while reducing irritation to the mice. Five different chamber models have been identified showing substantial regional diversity. The newly elaborated titanium dorsal skinfold chamber may replace the pre-existing titanium chamber model used in Germany so far, as it is smaller and lighter

  2. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces

    Directory of Open Access Journals (Sweden)

    Thomas E. Rams

    2017-10-01

    Conclusions: Excellent intra- and inter-examiner reproducibility of autofluorescence intensity measurements was obtained with the DIAGNOdent laser fluorescence device on human tooth roots. Calculus-positive root surfaces exhibited significantly greater DIAGNOdent laser autofluorescence than calculus-free tooth roots, even with the laser probe tip directed parallel to root surfaces. These findings provide further in vitro validation of the potential utility of a DIAGNOdent laser fluorescence device for identifying dental calculus on human tooth root surfaces.

  3. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury.

    Directory of Open Access Journals (Sweden)

    Mannion James W

    2002-10-01

    Full Text Available Abstract Background Rat oligonucleotide microarrays were used to detect changes in gene expression in the dorsal root ganglion (DRG 3 days following sciatic nerve transection (axotomy. Two comparisons were made using two sets of triplicate microarrays, naïve versus naïve and naïve versus axotomy. Results Microarray variability was assessed using the naïve versus naïve comparison. These results support use of a P 1.5-fold expression change and P 1.5-fold and P in situ hybridization verified the expression of 24 transcripts. These data showed an 83% concordance rate with the arrays; most mismatches represent genes with low expression levels reflecting limits of array sensitivity. A significant correlation was found between actual mRNA differences and relative changes between microarrays (r2 = 0.8567. Temporal patterns of individual genes regulation varied. Conclusions We identify parameters for microarray analysis which reduce error while identifying many putatively regulated genes. Functional classification of these genes suggest reorganization of cell structural components, activation of genes expressed by immune and inflammatory cells and down-regulation of genes involved in neurotransmission.

  4. Histology study on the dorsal root ganglia of rats with 125I seed brachytherapy at intervertebral foramen

    International Nuclear Information System (INIS)

    Zhang Wenyi; Wang Huixing; Ding Yanqiu; Qu Ximei; Wang Liqin; Liu Zhongchao; Cui Songye; Jiao Ling

    2012-01-01

    Objective: To investigate the effect of the histological changes on rat dorsal root ganglia (DRG) after 125 I seed brachytherapy.Methods Twelve adult male Sprague-Dawley rats (150-180 g each) were randomly divided into 6 groups, 125 I seeds with different activities of 0 (Titanium shell), 14.8, 18.5, 22.2, 25.9 and 29.6 MBq were implanted to 6 groups of rats respectively and the behavioral changes of rats were observed. The rats were killed in different periods after implantation,the morphological changes in DRG and surrounding muscle tissue were observed with an Olympus BX51 optical microscope and then the irradiation doses were estimated. Results: After 125 I seed implantation, the movement function of rats was not affected and the weight of rats gained after 7 days. After the titanium shell implantation, very few mild swelling was induced in neuroganglion cells that still had clear nucleolus and normal cytoplasm. At 14 days after 18.5 MBq seed implantation, cell swelling was more serious and cell dehydrating, nuclear condensation and nuclear fragmentation appeared after 30 days. At 60 days after 29.6 MBq of seed implantation, nuclear dissolution and cytoplasmic shrinkage were induced in a large number of cells.In general, the severity of fibrosis was aggravated with the time post-irradiation and the dose in the muscles around the ganglion. Conclusions: After 125 I seed implantation,the injury degree of DRG tissue is dose-dependent, and the 125 I seed irradiation would have analgesic effect on releasing intractable pain. (authors)

  5. 7, 8, 3′-Trihydroxyflavone Promotes Neurite Outgrowth and Protects Against Bupivacaine-Induced Neurotoxicity in Mouse Dorsal Root Ganglion Neurons

    Science.gov (United States)

    Shi, Haohong; Luo, Xingjing

    2016-01-01

    Background 7, 8, 3′-trihydroxyflavone (THF) is a novel pro-neuronal small molecule that acts as a TrkB agonist. In this study, we examined the effect of THF on promoting neuronal growth and protecting anesthetics-induced neurotoxicity in dorsal root ganglion (DRG) neurons in vitro. Material/Methods Neonatal mouse DRG neurons were cultured in vitro and treated with various concentrations of THF. The effect of THF on neuronal growth was investigated by neurite outgrowth assay and Western blot. In addition, the protective effects of THF on bupivacaine-induced neurotoxicity were investigated by apoptosis TUNEL assay, neurite outgrowth assay, and Western blot, respectively. Results THF promoted neurite outgrowth of DRG neurons in dose-dependent manner, with an EC50 concentration of 67.4 nM. Western blot analysis showed THF activated TrkB signaling pathway by inducing TrkB phosphorylation. THF also rescued bupivacaine-induced neurotoxicity by reducing apoptosis and protecting neurite retraction in DRG neurons. Furthermore, the protection of THF in bupivacaine-injured neurotoxicity was directly associated with TrkB phosphorylation in a concentration-dependent manner in DRG neurons. Conclusions THF has pro-neuronal effect on DRG neurons by promoting neurite growth and protecting against bupivacaine-induced neurotoxicity, likely through TrkB activation. PMID:27371503

  6. High concentrations of morphine sensitize and activate mouse dorsal root ganglia via TRPV1 and TRPA1 receptors

    Directory of Open Access Journals (Sweden)

    Messlinger Karl

    2009-04-01

    Full Text Available Abstract Background Morphine and its derivatives are key drugs in pain control. Despite its well-known analgesic properties morphine at high concentrations may be proalgesic. Particularly, short-lasting painful sensations have been reported upon dermal application of morphine. To study a possible involvement of TRP receptors in the pro-nociceptive effects of morphine (0.3 – 10 mM, two models of nociception were employed using C57BL/6 mice and genetically related TRPV1 and TRPA1 knockout animals, which were crossed and generated double knockouts. Hindpaw skin flaps were used to investigate the release of calcitonin gene-related peptide indicative of nociceptive activation. Results Morphine induced release of calcitonin gene-related peptide and sensitized the release evoked by heat or the TRPA1 agonist acrolein. Morphine activated HEK293t cells transfected with TRPV1 or TRPA1. Activation of C57BL/6 mouse dorsal root ganglion neurons in culture was investigated with calcium imaging. Morphine induced a dose-dependent rise in intracellular calcium in neurons from wild-type animals. In neurons from TRPV1 and TRPA1 knockout animals activation by morphine was markedly reduced, in the TRPV1/A1 double knockout animals this morphine effect was abrogated. Naloxone induced an increase in calcium levels similar to morphine. The responses to both morphine and naloxone were sensitized by bradykinin. Conclusion Nociceptor activation and sensitization by morphine is conveyed by TRPV1 and TRPA1.

  7. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection

    Science.gov (United States)

    Chang, Ming-Fong; Hsieh, Jung-Hsien; Chiang, Hao; Kan, Hung-Wei; Huang, Cho-Min; Chellis, Luke; Lin, Bo-Shiou; Miaw, Shi-Chuen; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang

    2016-01-01

    Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. PMID:27748450

  8. Effects of Ligusticum porteri (Osha) Root Extract on Human Promyelocytic Leukemia Cells

    OpenAIRE

    Nguyen, Khanh; Sparks, Jean; Omoruyi, Felix

    2017-01-01

    Background: Ligusticum porteri roots have been traditionally used in folk medicine, but the scientific basis is unclear. Objective: To investigate the cytotoxicity, antioxidant, and immunomodulatory effects of L. porteri root extract on human promyelocytic leukemia (HL-60) cells and H2O2-induced oxidative damaged HL-60 cells. Materials and Methods: HL-60 cells were incubated with different concentrations of root extract, and cells were harvested for viability assays on day 3 and 7. Cytokine l...

  9. Motor deficits following dorsal corticospinal tract transection in rats: voluntary versus skilled locomotion readouts

    Directory of Open Access Journals (Sweden)

    Lara Bieler

    2018-02-01

    The functional relevance of the dorsal CST in locomotion of rats is not as prominent as compared to in humans and thus challenging the motor execution is mandatory to reliably investigate CST function. A detailed analysis of voluntary walking using the CatWalk XT is not adequate to detect deficits following dorsal CST lesion in rats.

  10. Crucial roles of NGF in dorsal horn plasticity in partially deafferentated cats.

    Science.gov (United States)

    Liu, Jia; Chen, Shan-Shan; Dan, Qi-Qin; Rong, Rong; Zhou, Xue; Zhang, Lian-Feng; Wang, Ting-Hua

    2011-04-01

    Though exogenous nerve growth factor (NGF) has been implicated in spinal cord plasticity, whether endogenous NGF plays a crucial role has not been established in vivo. This study investigated first the role of endogenous NGF in spinal dorsal horn (DH) plasticity following removal of L1-L5 and L7-S2 dorsal root ganglions (DRGs) in cats. Co-culture of chick embryo DRG with DH condition media, protein band fishing by cells as well as western blot showed that NGF could promote neurite growth in vitro. Immunohistochemistry and in situ hybridization technique revealed an increase in the NGF and NGF mRNA immunoreactive cells in the DH after partial deafferentation. Lastly, after blocking with NGF antibody, choleragen subunit B horseradish peroxidase (CB-HRP) tracing showed a reduction in the neuronal sprouting observed in the DH. Our results demonstrated that in the cat, endogenous NGF plays a crucial role in DH plasticity after partial deafferentation.

  11. Hairy-root organ cultures for the production of human acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Mor Tsafrir S

    2008-12-01

    Full Text Available Abstract Background Human cholinesterases can be used as a bioscavenger of organophosphate toxins used as pesticides and chemical warfare nerve agents. The practicality of this approach depends on the availability of the human enzymes, but because of inherent supply and regulatory constraints, a suitable production system is yet to be identified. Results As a promising alternative, we report the creation of "hairy root" organ cultures derived via Agrobacterium rhizogenes-mediated transformation from human acetylcholinesterase-expressing transgenic Nicotiana benthamiana plants. Acetylcholinesterase-expressing hairy root cultures had a slower growth rate, reached to the stationary phase faster and grew to lower maximal densities as compared to wild type control cultures. Acetylcholinesterase accumulated to levels of up to 3.3% of total soluble protein, ~3 fold higher than the expression level observed in the parental plant. The enzyme was purified to electrophoretic homogeneity. Enzymatic properties were nearly identical to those of the transgenic plant-derived enzyme as well as to those of mammalian cell culture derived enzyme. Pharmacokinetic properties of the hairy-root culture derived enzyme demonstrated a biphasic clearing profile. We demonstrate that master banking of plant material is possible by storage at 4°C for up to 5 months. Conclusion Our results support the feasibility of using plant organ cultures as a successful alternative to traditional transgenic plant and mammalian cell culture technologies.

  12. Ultra-weak photon emission as a non-invasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand.

    Science.gov (United States)

    Rastogi, Anshu; Pospísil, Pavel

    2010-08-01

    All living organisms emit spontaneous ultra-weak photon emission as a result of cellular metabolic processes. Exposure of living organisms to exogenous factors results in oxidative processes and enhancement in ultra-weak photon emission. Here, hydrogen peroxide (H(2)O(2)), as a strongly oxidizing molecule, was used to induce oxidative processes and enhance ultra-weak photon emission in human hand skin. The presented work intends to compare both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the dorsal and the palm side of the hand. A highly sensitive photomultiplier tube and a charge-coupled device camera were used to detect ultra-weak photon emission from human hand skin. Spontaneous ultra-weak photon emission from the epidermal cells on the dorsal side of the hand was 4 counts/s. Topical application of 500 mM H(2)O(2) to the dorsal side of the hand caused enhancement in ultra-weak photon emission to 40 counts/s. Interestingly, both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the palm side of the hand were observed to increase twice their values, i.e. 8 and 80 counts/s, respectively. Similarly, the two-dimensional image of ultra-weak photon emission observed after topical application of H(2)O(2) to human skin reveals that photon emission from the palm side exceeds the photon emission from the dorsal side of the hand. The results presented indicate that the ultra-weak photon emission originating from the epidermal cells on the dorsal and the palm side of the hand is related to the histological structure of the human hand skin. Ultra-weak photon emission is shown as a non-destructive technique for monitoring of oxidative processes in the epidermal cells of the human hand skin and as a diagnostic tool for skin diseases.

  13. A Comparative Study of Dorsal Buccal Mucosa Graft Substitution Urethroplasty by Dorsal Urethrotomy Approach versus Ventral Sagittal Urethrotomy Approach

    OpenAIRE

    Pahwa, Mrinal; Gupta, Sanjeev; Pahwa, Mayank; Jain, Brig D. K.; Gupta, Manu

    2013-01-01

    Objectives. To compare the outcome of dorsal buccal mucosal graft (BMG) substitution urethroplasty by dorsal urethrotomy approach with ventral urethrotomy approach in management of stricture urethra. Methods and Materials. A total of 40 patients who underwent dorsal BMG substitution urethroplasty were randomized into two groups. 20 patients underwent dorsal onlay BMG urethroplasty as described by Barbagli, and the other 20 patients underwent dorsal BMG urethroplasty by ventral urethrotomy as ...

  14. Human error as the root cause of severe accidents at nuclear reactors

    International Nuclear Information System (INIS)

    Kovács Zoltán; Rýdzi, Stanislav

    2017-01-01

    A root cause is a factor inducing an undesirable event. It is feasible for root causes to be eliminated through technological process improvements. Human error was the root cause of all severe accidents at nuclear power plants. The TMI accident was caused by a series of human errors. The Chernobyl disaster occurred after a badly performed test of the turbogenerator at a reactor with design deficiencies, and in addition, the operators ignored the safety principles and disabled the safety systems. At Fukushima the tsunami risk was underestimated and the project failed to consider the specific issues of the site. The paper describes the severe accidents and points out the human errors that caused them. Also, provisions that might have eliminated those severe accidents are suggested. The fact that each severe accident occurred on a different type of reactor is relevant – no severe accident ever occurred twice at the same reactor type. The lessons learnt from the severe accidents and the safety measures implemented on reactor units all over the world seem to be effective. (orig.)

  15. Effects of curcumin on TTX-R sodium currents of dorsal root ganglion neurons in type 2 diabetic rats with diabetic neuropathic pain.

    Science.gov (United States)

    Meng, Bo; Shen, Lu-Lu; Shi, Xiao-Ting; Gong, Yong-Sheng; Fan, Xiao-Fang; Li, Jun; Cao, Hong

    2015-09-25

    Type 2 diabetic mellitus (T2DM) has reached pandemic status and shows no signs of abatement. Diabetic neuropathic pain (DNP) is generally considered to be one of the most common complications of T2DM, which is also recognized as one of the most difficult types of pain to treat. As one kind of peripheral neuropathic pain, DNP manifests typical chronic neuralgia symptoms, including hyperalgesia, allodynia, autotomy, and so on. The injured dorsal root ganglion (DRG) is considered as the first stage of the sensory pathway impairment, whose neurons display increased frequency of action potential generation and increased spontaneous activities. These are mainly due to the changed properties of voltage-gated sodium channels (VGSCs) and the increased sodium currents, especially TTX-R sodium currents. Curcumin, one of the most important phytochemicals from turmeric, has been demonstrated to effectively prevent and/or ameliorate diabetic mellitus and its complications including DNP. The present study demonstrates that the TTX-R sodium currents of small-sized DRG neurons isolated from DNP rats are significantly increased. Such abnormality can be efficaciously ameliorated by curcumin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts.

    Science.gov (United States)

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; De Nunzio, Cosimo; Giannitsas, Kostas; Shokeir, Ahmed A

    2012-06-01

    To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2 cm, range 1.5-5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture 3.7, range 1.5-8) a ventral graft urethroplasty (VGU), and 63 (29.2%; mean stricture 3.4, range 1.5-10) a dorsal plus ventral graft urethroplasty (DVGU). The strictured urethra was opened by a ventral-sagittal urethrotomy and BM graft was inserted dorsally or ventrally or dorsal plus ventral to augment the urethral plate. The median follow-up was 37 months. The overall 5-year actuarial success rate was 91.4%. The 5-year actuarial success rates were 87.8%, 95.5% and 86.3% for the DGU, VGU and DVGU, respectively. There were no statistically significant differences among the three groups. Success rates decreased significantly only with a stricture length of >4 cm. In BM graft bulbar urethroplasties the ventral urethrotomy access is simple and versatile, allowing an intraoperative choice of dorsal, ventral or combined dorsal and ventral grafting, with comparable success rates.

  17. Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Huang Li-Yen

    2007-08-01

    Full Text Available Abstract Prostaglandin E2 (PGE2 is a well-known inflammatory mediator that enhances the excitability of DRG neurons. Homomeric P2X3 and heteromeric P2X2/3 receptors are abundantly expressed in dorsal root ganglia (DRG neurons and participate in the transmission of nociceptive signals. The interaction between PGE2 and P2X3 receptors has not been well delineated. We studied the actions of PGE2 on ATP-activated currents in dissociated DRG neurons under voltage-clamp conditions. PGE2 had no effects on P2X2/3 receptor-mediated responses, but significantly potentiated fast-inactivating ATP currents mediated by homomeric P2X3 receptors. PGE2 exerted its action by activating EP3 receptors. To study the mechanism underlying the action of PGE2, we found that the adenylyl cyclase activator, forskolin and the membrane-permeable cAMP analogue, 8-Br-cAMP increased ATP currents, mimicking the effect of PGE2. In addition, forskolin occluded the enhancement produced by PGE2. The protein kinase A (PKA inhibitors, H89 and PKA-I blocked the PGE2 effect. In contrast, the PKC inhibitor, bisindolymaleimide (Bis did not change the potentiating action of PGE2. We further showed that PGE2 enhanced α,β-meATP-induced allodynia and hyperalgesia and the enhancement was blocked by H89. These observations suggest that PGE2 binds to EP3 receptors, resulting in the activation of cAMP/PKA signaling pathway and leading to an enhancement of P2X3 homomeric receptor-mediated ATP responses in DRG neurons.

  18. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    Science.gov (United States)

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.

  19. A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord

    DEFF Research Database (Denmark)

    Hoeber, Jan; Konig, Niclas; Trolle, Carl

    2017-01-01

    Spinal root injuries result in newly formed glial scar formation, which prevents regeneration of sensory axons causing permanent sensory loss. Previous studies showed that delivery of trophic factors or implantation of human neural progenitor cells supports sensory axon regeneration and partly......MIM), supported sensory axon regeneration. However, when hscNSPC and MesoMIM were combined, sensory axon regeneration failed. Morphological and tracing analysis showed that sensory axons grow through the newly established glial scar along “bridges” formed by migrating stem cells. Coimplantation of Meso...... their level of differentiation. Our data show that (1) the ability of stem cells to migrate into the spinal cord and organize cellular “bridges” in the newly formed interface is crucial for successful sensory axon regeneration, (2) trophic factor mimetics delivered by mesoporous silica may be a convenient...

  20. Upregulation of EMMPRIN (OX47 in Rat Dorsal Root Ganglion Contributes to the Development of Mechanical Allodynia after Nerve Injury

    Directory of Open Access Journals (Sweden)

    Qun Wang

    2015-01-01

    Full Text Available Matrix metalloproteinases (MMPs are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases and play an important role in nociception and allodynia. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN plays a key regulatory role for MMP activities. However, the role of EMMPRIN in the development of neuropathic pain is not clear. Western blotting, real-time quantitative RT-PCR (qRT-PCR, and immunofluorescence were performed to determine the changes of messenger RNA and protein of EMMPRIN/OX47 and their cellular localization in the rat dorsal root ganglion (DRG after nerve injury. Paw withdrawal threshold test was examined to evaluate the pain behavior in spinal nerve ligation (SNL model. The lentivirus containing OX47 shRNA was injected into the DRG one day before SNL. The expression level of both mRNA and protein of OX47 was markedly upregulated in ipsilateral DRG after SNL. OX47 was mainly expressed in the extracellular matrix of DRG. Administration of shRNA targeted against OX47 in vivo remarkably attenuated mechanical allodynia induced by SNL. In conclusion, peripheral nerve injury induced upregulation of OX47 in the extracellular matrix of DRG. RNA interference against OX47 significantly suppressed the expression of OX47 mRNA and the development of mechanical allodynia. The altered expression of OX47 may contribute to the development of neuropathic pain after nerve injury.

  1. Radiotherapy Suppresses Bone Cancer Pain through Inhibiting Activation of cAMP Signaling in Rat Dorsal Root Ganglion and Spinal Cord

    Directory of Open Access Journals (Sweden)

    Guiqin Zhu

    2016-01-01

    Full Text Available Radiotherapy is one of the major clinical approaches for treatment of bone cancer pain. Activation of cAMP-PKA signaling pathway plays important roles in bone cancer pain. Here, we examined the effects of radiotherapy on bone cancer pain and accompanying abnormal activation of cAMP-PKA signaling. Female Sprague-Dawley rats were used and received tumor cell implantation (TCI in rat tibia (TCI cancer pain model. Some of the rats that previously received TCI treatment were treated with X-ray radiation (radiotherapy. Thermal hyperalgesia and mechanical allodynia were measured and used for evaluating level of pain caused by TCI treatment. PKA mRNA expression in dorsal root ganglion (DRG was detected by RT-PCR. Concentrations of cAMP, IL-1β, and TNF-α as well as PKA activity in DRG and the spinal cord were measured by ELISA. The results showed that radiotherapy significantly suppressed TCI-induced thermal hyperalgesia and mechanical allodynia. The level of PKA mRNA in DRG, cAMP concentration and PKA activity in DRG and in the spinal cord, and concentrations of IL-1β and TNF-α in the spinal cord were significantly reduced by radiotherapy. In addition, radiotherapy also reduced TCI-induced bone loss. These findings suggest that radiotherapy may suppress bone cancer pain through inhibition of activation of cAMP-PKA signaling pathway in DRG and the spinal cord.

  2. P2X₇ receptor of rat dorsal root ganglia is involved in the effect of moxibustion on visceral hyperalgesia.

    Science.gov (United States)

    Liu, Shuangmei; Shi, Qingming; Zhu, Qicheng; Zou, Ting; Li, Guilin; Huang, An; Wu, Bing; Peng, Lichao; Song, Miaomiao; Wu, Qin; Xie, Qiuyu; Lin, Weijian; Xie, Wei; Wen, Shiyao; Zhang, Zhedong; Lv, Qiulan; Zou, Lifang; Zhang, Xi; Ying, Mofeng; Li, Guodong; Liang, Shangdong

    2015-06-01

    Irritable bowel syndrome (IBS) and inflammatory bowel disease often display visceral hypersensitivity. Visceral nociceptors after inflammatory stimulation generate afferent nerve impulses through dorsal root ganglia (DRG) transmitting to the central nervous system. ATP and its activated-purinergic 2X7 (P2X7) receptor play an important role in the transmission of nociceptive signal. Purinergic signaling is involved in the sensory transmission of visceral pain. Moxibustion is a therapy applying ignited mugwort directly or indirectly at acupuncture points or other specific parts of the body to treat diseases. Heat-sensitive acupoints are the corresponding points extremely sensitive to moxa heat in disease conditions. In this study, we aimed to investigate the relationship between the analgesic effect of moxibustion on a heat-sensitive acupoint "Dachangshu" and the expression levels of P2X7 receptor in rat DRG after chronic inflammatory stimulation of colorectal distension. Heat-sensitive moxibustion at Dachangshu acupoint inhibited the nociceptive signal transmission by decreasing the upregulated expression levels of P2X7 mRNA and protein in DRG induced by visceral pain, and reversed the abnormal expression of glial fibrillary acidic protein (GFAP, a marker of satellite glial cells) in DRG. Consequently, abdominal withdrawal reflex (AWR) score in a visceral pain model was reduced, and the pain threshold was elevated. Therefore, heat-sensitive moxibustion at Dachangshu acupoint can produce a therapeutic effect on IBS via inhibiting the nociceptive transmission mediated by upregulated P2X7 receptor.

  3. The dorsal shell wall structure of Mesozoic ammonoids

    Directory of Open Access Journals (Sweden)

    Gregor Radtke

    2017-03-01

    Full Text Available The study of pristine preserved shells of Mesozoic Ammonoidea shows different types of construction and formation of the dorsal shell wall. We observe three major types: (i The vast majority of Ammonoidea, usually planispirally coiled, has a prismatic reduced dorsal shell wall which consists of an outer organic component (e.g., wrinkle layer, which is the first layer to be formed, and the subsequently formed dorsal inner prismatic layer. The dorsal mantle tissue suppresses the formation of the outer prismatic layer and nacreous layer. With the exception of the outer organic component, secretion of a shell wall is omitted at the aperture. A prismatic reduced dorsal shell wall is always secreted immediately after the hatching during early teleoconch formation. Due to its broad distribution in (planispiral Ammonoidea, the prismatic reduced dorsal shell wall is probably the general state. (ii Some planispirally coiled Ammonoidea have a nacreous reduced dorsal shell wall which consists of three mineralized layers: two prismatic layers (primary and secondary dorsal inner prismatic layer and an enclosed nacreous layer (secondary dorsal nacreous layer. The dorsal shell wall is omitted at the aperture and was secreted in the rear living chamber. Its layers are a continuation of an umbilical shell doubling (reinforcement by additional shell layers that extends towards the ventral crest of the preceding whorl. The nacreous reduced dorsal shell wall is formed in the process of ontogeny following a prismatic reduced dorsal shell wall. (iii Heteromorph and some planispirally coiled taxa secrete a complete dorsal shell wall which forms a continuation of the ventral and lateral shell layers. It is formed during ontogeny following a prismatic reduced dorsal shell wall or a priori. The construction is identical with the ventral and lateral shell wall, including a dorsal nacreous layer. The wide distribution of the ability to form dorsal nacre indicates that it is

  4. Radiographic Outcomes of Dorsal Distraction Distal Radius Plating for Fractures With Dorsal Marginal Impaction.

    Science.gov (United States)

    Huish, Eric G; Coury, John G; Ibrahim, Mohamed A; Trzeciak, Marc A

    2017-04-01

    The purpose of this study is to compare radiographic outcomes of patients treated with dorsal spanning plates with previously reported normal values of radiographic distal radius anatomy and compare the results with prior publications for both external fixation and internal fixation with volar locked plates. Patients with complex distal radius fractures including dorsal marginal impaction pattern necessitating dorsal distraction plating at the discretion of the senior authors (M.A.T. and M.A.I.) from May 30, 2013, to December 29, 2015, were identified and included in the study. Retrospective chart and radiograph review was performed on 19 patients, 11 male and 8 female, with mean age of 47.83 years (22-82). No patients were excluded from the study. All fractures united prior to plate removal. The average time the plate was in place was 80.5 days (49-129). Follow-up radiographs showed average radial inclination of 20.5° (13.2°-25.5°), radial height of 10.7 mm (7.5-14 mm), ulnar variance of -0.3 mm (-2.1 to 3.1 mm), and volar tilt of 7.9° (-3° to 15°). One patient had intra-articular step-off greater than 2 mm. Dorsal distraction plating of complex distal radius fractures yields good radiographic results with minimal complications. In cases of complex distal radius fractures including dorsal marginal impaction where volar plating is not considered adequate, a dorsal distraction plate should be considered as an alternative to external fixation due to reduced risk for infection and better control of volar tilt.

  5. Premolar root and canal variation in extant non-human hominoidea.

    Science.gov (United States)

    Moore, N Collin; Hublin, Jean-Jacques; Skinner, Matthew M

    2015-08-11

    The premolar sub-cervical region in four non-human extant ape genera are examined to: 1) define a classification scheme for the premolar root system in order to rigorously characterize, quantify and document variation in root and canal, form, number and configuration; 2) compare this variation within and between genera; and 3) test the hypotheses that sex and size (i.e., the "size/number continuum," Shields, ) of the premolar are determinants of root/canal form and/or number. Microtomography and 3D visualization software are utilized to examine a large sample of Hylobates, Pan, Gorilla, and Pongo (n = 951 teeth). Each premolar root system is examined to ascertain the expected level of variability for each taxon. Cervical surface area (mm 2 ) serves as a metric proxy for tooth size. A Chi-square test of independence is used to assess for variability differences between and within each taxon, and Mann-Whitney U tests are employed to assess the predicted relationship between tooth size and variation within each taxon. Our findings indicate that root and canal configurations, non-metric root traits and tooth size can distinguish between extant ape genera. Within the four ape taxa, premolar size variation is generally, but not always, correlated with canal/root number. Our results indicate that males and females within genera differ in tooth size but not in canal/root form and number. We report previously undocumented variation in the study taxa. Our results are discussed within the context of Miocene Apes as well as the developmental and systematic implications. Am J Phys Anthropol, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Hair Growth Promotant Activity of Petroleum Ether Root Extract of ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of Glycyrrhiza glabra root extract on hair growth in female Wistar rats. Methods: Female Wistar rats were used for the hair growth promotion studies. They were divided into three groups(n = 6) and their dorsal skin was completely denuded to completely remove hair. Paraffin oil (control), 2 ...

  7. Pulsed Radiofrequency of Dorsal Root Ganglia for the Treatment of Complex Regional Pain Syndrome in an Adolescent with Poliomyelitis Sequel: A Case Report.

    Science.gov (United States)

    Apiliogullari, Seza; Aydin, Bahattin Kerem; Onal, Ozkan; Kirac, Yunus; Celik, Jale Bengi

    2015-07-01

    Complex regional pain syndrome (CRPS) is a painful and disabling syndrome in which the patient presents with neuropathic pain, edema, or vasomotor or pseudomotor abnormalities that are often refractory to treatment. Polio paralysis is caused by the damage or destruction of motor neurons in the spine, which lead to corresponding muscle paralysis. This report is a case report on the application of a pulsed radiofrequency (PRF) current to dorsal root ganglia (DRG) for the treatment of CRPS type 1 in an adolescent patient. Single case report. Selcuk University Hospital. A 16-year-old girl who suffered from CRPS type 1 secondary to surgeries for the sequelae of poliomyelitis. PRF current application to the lumbar 4 and lumbar 5 DRG. Pain reduction. The patient had complete resolution of her symptoms, which was maintained at a 6-month follow-up. This case illustrates that PRF applied to lumbar 4 and lumbar 5 DRG may play a significant role in CRPS type 1 management after the surgical treatment of poliomyelitis sequelae in adolescent patients. Further randomized, controlled studies are needed to support this argument. Wiley Periodicals, Inc.

  8. Effects of sciatic nerve transection on glucose uptake in the presence and absence of lactate in the frog dorsal root ganglia and spinal cord

    Directory of Open Access Journals (Sweden)

    F Rigon

    Full Text Available Frogs have been used as an alternative model to study pain mechanisms because the simplicity of their nervous tissue and the phylogenetic aspect of this question. One of these models is the sciatic nerve transection (SNT, which mimics the clinical symptoms of “phantom limb”, a condition that arises in humans after amputation or transverse spinal lesions. In mammals, the SNT increases glucose metabolism in the central nervous system, and the lactate generated appears to serve as an energy source for nerve cells. An answerable question is whether there is elevated glucose uptake in the dorsal root ganglia (DRG after peripheral axotomy. As glucose is the major energy substrate for frog nervous tissue, and these animals accumulate lactic acid under some conditions, bullfrogs Lithobates catesbeianus were used to demonstrate the effect of SNT on DRG and spinal cord 1-[14C] 2-deoxy-D-glucose (14C-2-DG uptake in the presence and absence of lactate. We also investigated the effect of this condition on the formation of 14CO2 from 14C-glucose and 14C-L-lactate, and plasmatic glucose and lactate levels. The 3-O-[14C] methyl-D-glucose (14C-3-OMG uptake was used to demonstrate the steady-state tissue/medium glucose distribution ratio under these conditions. Three days after SNT, 14C-2-DG uptake increased, but 14C-3-OMG uptake remained steady. The increase in 14C-2-DG uptake was lower when lactate was added to the incubation medium. No change was found in glucose and lactate oxidation after SNT, but lactate and glucose levels in the blood were reduced. Thus, our results showed that SNT increased the glucose metabolism in the frog DRG and spinal cord. The effect of lactate on this uptake suggests that glucose is used in glycolytic pathways after SNT.

  9. Elevated expression of transient receptor potential vanilloid type 1 in dorsal root ganglia of rats with endometriosis

    Science.gov (United States)

    Lian, Yu-Ling; Cheng, Ming-Jun; Zhang, Xian-Xia; Wang, Li

    2017-01-01

    Pain is the most pronounced complaint of women with endometriosis, however the underlying mechanism is still poorly understood. In the present study, the authors evaluate the effect of transient receptor potential vanilloid type 1 (TRPV1) of dorsal root ganglia (DRG) on endometriosis-associated pain. A total of 36 SD rats were randomly divided into a sham group (n=9) and a Model group (n=27), accepted auto-transplanted pieces of fat or uterus to the pelvic cavity. At 4 weeks, the Model group was randomly subdivided into the following groups: ENDO group (no treatment, n=9), BCTC group (Model + BCTC, an antagonist of TRPV1, n=9), Vehicle group (Model + cyclodextrin, the vehicle of BCTC, n=9). Tail-flick test was performed prior to surgery, 1 h prior to and following treatment of BCTC or cyclodextrin. The expression of TRPV1, substance P (SP), calcitonin gene-related peptide (CGRP) in L1-L6 DRG was measured via immunohistochemistry, western blotting and RT-qPCR. The results indicated that the Model group exhibited a significant decrease in tail flick latency compared to pre-surgical baseline, and the expression of TRPV1, SP, CGRP protein and mRNA in L1-L6 DRG significantly increased compared to the sham group. BCTC significantly improved tail flick latency, and downregulated the expression of TRPV1, SP and CGRP protein and mRNA levels in L1-L6 DRG compared to ENDO group. However, there were no significant differences of those in Vehicle group compared with the ENDO group. Taken together, the current study provides evidence that TRPV1 expressed in DRG may serve an important role in endometriosis-associated pain. PMID:28627595

  10. Kv4 channels underlie the subthreshold-operating A-type K+-current in nociceptive dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Thanawath R Na Phuket

    2009-07-01

    Full Text Available The dorsal root ganglion (DRG contains heterogeneous populations of sensory neurons including primary nociceptive neurons and C-fibers implicated in pain signaling.  Recent studies have demonstrated DRG hyperexcitability associated with downregulation of A-type K+ channels; however, the molecular correlate of the corresponding A-type K+ current (IA has remained hypothetical.  Kv4 channels may underlie the IA in DRG neurons.  We combined electrophysiology, molecular biology (whole-tissue and single-cell RT-PCR and immunohistochemistry to investigate the molecular basis of the IA in acutely dissociated DRG neurons from 7-8 day-old rats.  Whole-cell recordings demonstrate a robust tetraethylammonium-resistant (20 mM and 4-aminopyridine-sensitive (5 mM IA.  Matching Kv4 channel properties, activation and inactivation of this IA occur in the subthreshold range of membrane potentials and the rate of recovery from inactivation is rapid and voltage-dependent.  Among Kv4 transcripts, the DRG expresses significant levels of Kv4.1 and Kv4.3 mRNAs.  Also, single small-medium diameter DRG neurons (~30 mm exhibit correlated frequent expression of mRNAs encoding Kv4.1 and Nav1.8, a known nociceptor marker.  In contrast, the expressions of Kv1.4 and Kv4.2 mRNAs at the whole-tissue and single-cell levels are relatively low and infrequent.  Kv4 protein expression in nociceptive DRG neurons was confirmed by immunohistochemistry, which demonstrates colocalization of Kv4.3 and Nav1.8, and negligible expression of Kv4.2.  Furthermore, specific dominant-negative suppression and overexpression strategies confirmed the contribution of Kv4 channels to IA in DRG neurons.  Contrasting the expression patterns of Kv4 channels in the central and peripheral nervous systems, we discuss possible functional roles of these channels in primary sensory neurons.

  11. Dorsal onlay (Barbagli technique) versus dorsal inlay (Asopa technique) buccal mucosal graft urethroplasty for anterior urethral stricture: a prospective randomized study.

    Science.gov (United States)

    Aldaqadossi, Hussein; El Gamal, Samir; El-Nadey, Mohamed; El Gamal, Osama; Radwan, Mohamed; Gaber, Mohamed

    2014-02-01

    To compare both the dorsal onlay technique of Barbagli and the dorsal inlay technique of Asopa for the management of long anterior urethral stricture. From January 2010 to May 2012, a total of 47 patients with long anterior urethral strictures were randomized into two groups. The first group included 25 patients who were managed by dorsal onlay buccal mucosal graft urethroplasty. The second group included 22 patients who were managed by dorsal inlay buccal mucosal graft urethroplasty. Different clinical parameters, postoperative complications and success rates were compared between both groups. The overall success rate in the dorsal onlay group was 88%, whereas in the dorsal inlay group the success rate was 86.4% during the follow-up period. The mean operative time was significantly longer in the dorsal onlay urethroplasty group (205 ± 19.63 min) than in the dorsal inlay urethroplasty group (128 ± 4.9 min, P-value <0.0001). The average blood loss was significantly higher in the dorsal onlay urethroplasty group (228 ± 5.32 mL) than in the dorsal inlay urethroplasty group (105 ± 12.05 mL, P-value <0.0001). The dorsal onlay technique of Barbagli and the dorsal inlay technique of Asopa buccal mucosal graft urethroplasty provide similar success rates. The Asopa technique is easy to carry out, provides shorter operative time and less blood loss, and it is associated with fewer complications for anterior urethral stricture repair. © 2013 The Japanese Urological Association.

  12. Lectin Ulex europaeus agglutinin I specifically labels a subset of primary afferent fibers which project selectively to the superficial dorsal horn of the spinal cord.

    Science.gov (United States)

    Mori, K

    1986-02-19

    To examine differential carbohydrate expression among different subsets of primary afferent fibers, several fluorescein-isothiocyanate conjugated lectins were used in a histochemical study of the dorsal root ganglion (DRG) and spinal cord of the rabbit. The lectin Ulex europaeus agglutinin I specifically labeled a subset of DRG cells and primary afferent fibers which projected to the superficial laminae of the dorsal horn. These results suggest that specific carbohydrates containing L-fucosyl residue is expressed selectively in small diameter primary afferent fibers which subserve nociception or thermoception.

  13. Prolegomena of Human Rights. Historical Roots and Globalization

    Directory of Open Access Journals (Sweden)

    Ana-Alina Dumitrache-Ionescu

    2015-05-01

    Full Text Available The paper Prolegomena of Human Rights. Historical Roots and Globalization analyses the complexity of the history of human rights which revolve around an incessant struggle for the awareness of the value of the human being. It is the history which defends the man, the human being, regarded individually or collectively, who was subjected in the course of time to some atrocities and abuses, confronting itself with exploitation, discrimination, oppression, slavery, torture and even extermination. Moreover, the historical evolution of human rights knows halting places in which the concepts of human rights are accompanied by ambiguity, by different meanings for different people and vary in accordance with the context. By way of resemblance, the problem of human rights in the context of globalization which transforms human rights into rights of the global citizen, rights which acquire new dimensions and significances imposed by the economic, politic and social changes specific of globalization is approached in this paper. The global vision of the new human rights involves both the opportunity to have a say when they are infringed for example, when they are subjected to torture or terror, and where human rights abuses are carried out by the people, for example, trafficking in human beings. (Ritzer, & Dean, 2015, p. 115

  14. Up-regulation of p55 TNF alpha-receptor in dorsal root ganglia neurons following lumbar facet joint injury in rats.

    Science.gov (United States)

    Sakuma, Yoshihiro; Ohtori, Seiji; Miyagi, Masayuki; Ishikawa, Tetsu; Inoue, Gen; Doya, Hideo; Koshi, Takana; Ito, Toshinori; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Moriya, Hideshige; Takahashi, Kazuhisa

    2007-08-01

    The rat L5/6 facet joint is multisegmentally innervated from the L1 to L6 dorsal root ganglia (DRG). Tumor necrosis factor (TNF) is a known mediator of inflammation. It has been reported that satellite cells are activated, produce TNF and surround DRG neurons innervating L5/6 facet joints after facet injury. In the current study, changes in TNF receptor (p55) expression in DRG neurons innervating the L5/6 facet joint following facet joint injury were investigated in rats using a retrograde neurotransport method followed by immunohistochemistry. Twenty rats were used for this study. Two crystals of Fluorogold (FG; neurotracer) were applied into the L5/6 facet joint. Seven days after surgery, the dorsal portion of the capsule was cut in the injured group (injured group n = 10). No injury was performed in the non-injured group (n = 10). Fourteen days after the first application of FG, bilateral DRGs from T13 to L6 levels were resected and sectioned. They were subsequently processed for p55 immunohistochemistry. The number of FG labeled neurons and number of FG labeled p55-immunoreactive (IR) neurons were counted. FG labeled DRG neurons innervating the L5/6 facet joint were distributed from ipsilateral L1 to L6 levels. Of FG labeled neurons, the ratio of DRG neurons immunoreactive for p55 in the injured group (50%) was significantly higher than that in the non-injured group (13%). The ratio of p55-IR neurons of FG labeled DRG neurons was significantly higher in total L1 and L2 DRGs than that in total L3, 4, 5 and 6 DRGs in the injured group (L1 and 2 DRG, 67%; L3, 4, 5 and 6 DRG, 37%, percentages of the total number of p55-IR neurons at L1 and L2 level or L3-6 level/the total number of FG-labeled neurons at L1 and L2 level or L3-6 level). These data suggest that up-regulation of p55 in DRG neurons may be involved in the sensory transmission from facet joint injury. Regulation of p55 in DRG neurons innervating the facet joint was different between upper DRG innervated

  15. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  16. The role of Gd-enhanced three-dimensional MRI fast low-angle shot (FLASH) in the evaluation of symptomatic lumbosacral nerve roots

    Energy Technology Data Exchange (ETDEWEB)

    Kikkawa, Ichiro; Sugimoto, Hideharu; Saita, Kazuo; Ookami, Hitoshi; Nakama, Sueo; Hoshino, Yuichi [Jichi Medical School, Minamikawachi, Tochigi (Japan)

    2001-07-01

    In the field of lumbar spine disorders, three-dimensional (3-D) magnetic resonance imaging (MRI) can clearly depict a lumbar nerve root from the distal region to the dorsal root ganglion. In this study, we used a gadoliniumdiethylenetriaminepentaacetic acid (Gd-DTPA) enhanced-three-dimensional (3-D) fast low-angle shot (FLASH) sequence when examining lumbosacral disorders. The subjects were 33 patients (14 men and 19 women) in whom lumbosacral neural compression had been diagnosed clinically. Twenty-one patients had lumbar disc herniation, 11 had lumbar spinal stenosis, and 1 had lumbar radiculopathy caused by rheumatoid arthritis. Five subjects with low back pain were also studied as a control group. In all patients and in all 5 of the controls, the dorsal root ganglion of every root was enhanced clearly. There was no root enhancement in the 5 controls. Enhancement of the symptomatic nerve roots, caused by compression, was found in 11 of the 33 patients. All 11 patients had rediculopathy, and muscle weakness was more frequent in patients with enhanced nerve roots than in those without enhancement. There was no enhancement of the cauda equina, even in the patients with cauda syndrome. The enhancement effect may reflect some pathological condition of the compressed nerve root and needs to be studied further. (author)

  17. The role of Gd-enhanced three-dimensional MRI fast low-angle shot (FLASH) in the evaluation of symptomatic lumbosacral nerve roots

    International Nuclear Information System (INIS)

    Kikkawa, Ichiro; Sugimoto, Hideharu; Saita, Kazuo; Ookami, Hitoshi; Nakama, Sueo; Hoshino, Yuichi

    2001-01-01

    In the field of lumbar spine disorders, three-dimensional (3-D) magnetic resonance imaging (MRI) can clearly depict a lumbar nerve root from the distal region to the dorsal root ganglion. In this study, we used a gadoliniumdiethylenetriaminepentaacetic acid (Gd-DTPA) enhanced-three-dimensional (3-D) fast low-angle shot (FLASH) sequence when examining lumbosacral disorders. The subjects were 33 patients (14 men and 19 women) in whom lumbosacral neural compression had been diagnosed clinically. Twenty-one patients had lumbar disc herniation, 11 had lumbar spinal stenosis, and 1 had lumbar radiculopathy caused by rheumatoid arthritis. Five subjects with low back pain were also studied as a control group. In all patients and in all 5 of the controls, the dorsal root ganglion of every root was enhanced clearly. There was no root enhancement in the 5 controls. Enhancement of the symptomatic nerve roots, caused by compression, was found in 11 of the 33 patients. All 11 patients had rediculopathy, and muscle weakness was more frequent in patients with enhanced nerve roots than in those without enhancement. There was no enhancement of the cauda equina, even in the patients with cauda syndrome. The enhancement effect may reflect some pathological condition of the compressed nerve root and needs to be studied further. (author)

  18. Antidepressant Imipramine Protects Bupivacaine-Induced Neurotoxicity in Dorsal Root Ganglion Neurons Through Coactivation of TrkA and TrkB.

    Science.gov (United States)

    Guo, Jianrong; Wang, Huan; Tao, Qiang; Sun, Shiyu; Liu, Li; Zhang, Jianping; Yang, Dawei

    2017-11-01

    In our work, we used an in vitro culture model to investigate whether antidepressant imipramine (Ip) may protect bupivacaine (Bv)-induced neurotoxicity in mouse dorsal root ganglion (DRG). Adult mouse DRG was treated with 5 mM Bv in vitro to induce neurotoxicity. DRG was then pre-treated with Ip, prior to Bv, to examine its effects on protecting Bv-induced DRG apoptosis and neurite degeneration. Ip-induced dynamic changes in Trk receptors, including TrkA/B/C and phosphor (p-)TrkA/B/C, were examined by qPCR and Western blot. TrkA and TrkB were inhibited by siRNAs to further investigate their functional role in Ip- and Bv-treated DRG. Ip protected Bv-induced apoptosis and neurite loss in DRG. Ip did not alter TrkA/B/C expressions, whereas significantly augmented protein productions of p-TrkA and p-TrkB, but not p-TrkC. SiRNA-mediated TrkA or TrkB downregulation inhibited Trk receptors, and reduced p-TrkA and p-TrkB in DRG. TrkA or TrkB downregulation alone had no effect on Ip-induced protection in Bv-injured DRG. However, co-inhibition of TrkA and TrkB significantly ameliorated the protective effect of Ip on Bv-induced apoptosis and neurite loss in DRG. Imipramine protected bupivacaine-induced neurotoxicity in DRG, likely via the co-activation of TrkA and TrkB signaling pathways. J. Cell. Biochem. 118: 3960-3967, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Standardized Profiling of The Membrane-Enriched Proteome of Mouse Dorsal Root Ganglia (DRG) Provides Novel Insights Into Chronic Pain.

    Science.gov (United States)

    Rouwette, Tom; Sondermann, Julia; Avenali, Luca; Gomez-Varela, David; Schmidt, Manuela

    2016-06-01

    Chronic pain is a complex disease with limited treatment options. Several profiling efforts have been employed with the aim to dissect its molecular underpinnings. However, generated results are often inconsistent and nonoverlapping, which is largely because of inherent technical constraints. Emerging data-independent acquisition (DIA)-mass spectrometry (MS) has the potential to provide unbiased, reproducible and quantitative proteome maps - a prerequisite for standardization among experiments. Here, we designed a DIA-based proteomics workflow to profile changes in the abundance of dorsal root ganglia (DRG) proteins in two mouse models of chronic pain, inflammatory and neuropathic. We generated a DRG-specific spectral library containing 3067 DRG proteins, which enables their standardized quantification by means of DIA-MS in any laboratory. Using this resource, we profiled 2526 DRG proteins in each biological replicate of both chronic pain models and respective controls with unprecedented reproducibility. We detected numerous differentially regulated proteins, the majority of which exhibited pain model-specificity. Our approach recapitulates known biology and discovers dozens of proteins that have not been characterized in the somatosensory system before. Functional validation experiments and analysis of mouse pain behaviors demonstrate that indeed meaningful protein alterations were discovered. These results illustrate how the application of DIA-MS can open new avenues to achieve the long-awaited standardization in the molecular dissection of pathologies of the somatosensory system. Therefore, our findings provide a valuable framework to qualitatively extend our understanding of chronic pain and somatosensation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: Implications for chemical-induced peripheral sensory neuropathies

    Directory of Open Access Journals (Sweden)

    Melemedjian Ohannes K

    2008-03-01

    Full Text Available Abstract Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that the endothelial cells that vascularize the dorsal root ganglion (DRG, which houses the primary afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a variety of low and high molecular weight agents. In the present report we used whole-mount preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell body-rich area of the L4 mouse DRG has a 7 fold higher density of CD31+ capillaries than cell fiber rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense vascularization, coupled with the high permeability of these capillaries, may synergistically contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy. Understanding the unique aspects of the vascularization of the DRG and closing the endothelial fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to attenuate these chemically induced peripheral neuropathies in these patients.

  1. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications

    Science.gov (United States)

    Rigosa, J.; Weber, D. J.; Prochazka, A.; Stein, R. B.; Micera, S.

    2011-08-01

    Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.

  2. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications.

    Science.gov (United States)

    Rigosa, J; Weber, D J; Prochazka, A; Stein, R B; Micera, S

    2011-08-01

    Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.

  3. Augmentation of glycolytic metabolism by meclizine is indispensable for protection of dorsal root ganglion neurons from hypoxia-induced mitochondrial compromise.

    Science.gov (United States)

    Zhuo, Ming; Gorgun, Murat F; Englander, Ella W

    2016-10-01

    To meet energy demands, dorsal root ganglion (DRG) neurons harbor high mitochondrial content, which renders them acutely vulnerable to disruptions of energy homeostasis. While neurons typically rely on mitochondrial energy production and have not been associated with metabolic plasticity, new studies reveal that meclizine, a drug, recently linked to modulations of energy metabolism, protects neurons from insults that disrupt energy homeostasis. We show that meclizine rapidly enhances glycolysis in DRG neurons and that glycolytic metabolism is indispensable for meclizine-exerted protection of DRG neurons from hypoxic stress. We report that supplementation of meclizine during hypoxic exposure prevents ATP depletion, preserves NADPH and glutathione stores, curbs reactive oxygen species (ROS) and attenuates mitochondrial clustering in DRG neurites. Using extracellular flux analyzer, we show that in cultured DRG neurons meclizine mitigates hypoxia-induced loss of mitochondrial respiratory capacity. Respiratory capacity is a measure of mitochondrial fitness and cell ability to meet fluctuating energy demands and therefore, a key determinant of cellular fate. While meclizine is an 'old' drug with long record of clinical use, its ability to modulate energy metabolism has been uncovered only recently. Our findings documenting neuroprotection by meclizine in a setting of hypoxic stress reveal previously unappreciated metabolic plasticity of DRG neurons as well as potential for pharmacological harnessing of the newly discovered metabolic plasticity for protection of peripheral nervous system under mitochondria compromising conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of serum immunoglobulins from patients with complex regional pain syndrome (CRPS) on depolarisation-induced calcium transients in isolated dorsal root ganglion (DRG) neurons.

    Science.gov (United States)

    Reilly, Joanne M; Dharmalingam, Backialakshmi; Marsh, Stephen J; Thompson, Victoria; Goebel, Andreas; Brown, David A

    2016-03-01

    Complex regional pain syndrome (CRPS) is thought to have an auto-immune component. One such target recently proposed from the effects of auto-immune IgGs on Ca(2+) transients in cardiac myocytes and cell lines is the α1-adrenoceptor. We have tested whether such IgGs exerted comparable effects on nociceptive sensory neurons isolated from rat dorsal root ganglia. Depolarisation-induced [Ca(2+)]i transients were generated by applying 30 mM KCl for 2 min and monitored by Fura-2 fluorescence imaging. No IgGs tested (including 3 from CRPS patients) had any significant effect on these [Ca(2+)]i transients. However, IgG from one CRPS patient consistently and significantly reduced the K(+)-induced response of cells that had been pre-incubated for 24h with a mixture of inflammatory mediators (1 μM histamine, 5-hydroxytryptamine, bradykinin and PGE2). Since this pre-incubation also appeared to induce a comparable inhibitory response to the α1-agonist phenylephrine, this is compatible with the α1-adrenoceptor as a target for CRPS auto-immunity. A mechanism whereby this might enhance pain is suggested. Copyright © 2015. Published by Elsevier Inc.

  5. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts

    OpenAIRE

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; Nunzio, Cosimo De; Giannitsas, Kostas; Shokeir, Ahmed A.

    2012-01-01

    Objectives To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Patients and methods Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2?cm, range 1.5?5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture...

  6. [Curcumin down-regulates CX3CR1 expression in spinal cord dorsal horn and DRG in neuropathic pain rats].

    Science.gov (United States)

    Zheng, Jinwei; Zheng, Changjian; Cao, Hong; Li, Jun; Lian, Qingquan

    2011-09-01

    To investigate the effects of curcumin on the behavior of chronic constrictive injury (CCI) rats and the CX3CR1 expression in spinal cord dorsal horn and dorsal root ganglia (DRG). Seventy-two male SD rats were randomly divided into 4 groups: 1) Sham operation group (Sham); 2) Chronic constrictive injury group (CCI); 3) Curcumin treated group (Cur), administrated with curcumin 100 mg x kg(-1) x d(-1) ip for 14 days after CCI; 4) Solvent contrast group (SC), administrated with an equal volume of solvent for 14 days after CCI. Paw thermal withdrawal (PTWL) and paw mechanical withdrawal threshold (PMWT) were measured on 2 pre-operative and 1, 3, 5, 7, 10, 14 post-operative days respectively. The lumbar segments L4-5 of the spinal cord and the L4, L5 DRG were removed at 3, 7, 14 days after surgery. The expression of CX3CR1 was determined by immunohistochemical staining. Compared with Sham group, PTWL and PMWT in CCI group were significantly lower on each post-operative day (PDRG. In Cur group, PTWL were higher than in CCI group on 7, 10, 14 post-operative day (Pdorsal root ganglia.

  7. Dorsal and ventral streams across sensory modalities

    Institute of Scientific and Technical Information of China (English)

    Anna Sedda; Federica Scarpina

    2012-01-01

    In this review,we describe the current models of dorsal and ventral streams in vision,audition and touch.Available theories take their first steps from the model of Milner and Goodale,which was developed to explain how human actions can be efficiently carried out using visual information.Since then,similar concepts have also been applied to other sensory modalities.We propose that advances in the knowledge of brain functioning can be achieved through models explaining action and perception patterns independently from sensory modalities.

  8. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy

    Directory of Open Access Journals (Sweden)

    Bountra Chas

    2007-05-01

    Full Text Available Abstract Background Transient receptor potential (TRP receptors expressed by primary sensory neurons mediate thermosensitivity, and may play a role in sensory pathophysiology. We previously reported that human dorsal root ganglion (DRG sensory neurons co-expressed TRPV1 and TRPV3, and that these were increased in injured human DRG. Related receptors TRPV4, activated by warmth and eicosanoids, and TRPM8, activated by cool and menthol, have been characterised in pre-clinical models. However, the role of TRPs in common clinical sensory neuropathies needs to be established. Methods We have studied TRPV1, TRPV3, TRPV4, and TRPM8 in nerves (n = 14 and skin from patients with nerve injury, avulsed dorsal root ganglia (DRG (n = 11, injured spinal nerve roots (n = 9, diabetic neuropathy skin (n = 8, non-diabetic neuropathic nerve biopsies (n = 6, their respective control tissues, and human post mortem spinal cord, using immunohistological methods. Results TRPV1 and TRPV3 were significantly increased in injured brachial plexus nerves, and TRPV1 in hypersensitive skin after nerve repair, whilst TRPV4 was unchanged. TRPM8 was detected in a few medium diameter DRG neurons, and was unchanged in DRG after avulsion injury, but was reduced in axons and myelin in injured nerves. In diabetic neuropathy skin, TRPV1 expressing sub- and intra-epidermal fibres were decreased, as was expression in surviving fibres. TRPV1 was also decreased in non-diabetic neuropathic nerves. Immunoreactivity for TRPV3 was detected in basal keratinocytes, with a significant decrease of TRPV3 in diabetic skin. TRPV1-immunoreactive nerves were present in injured dorsal spinal roots and dorsal horn of control spinal cord, but not in ventral roots, while TRPV3 and TRPV4 were detected in spinal cord motor neurons. Conclusion The accumulation of TRPV1 and TRPV3 in peripheral nerves after injury, in spared axons, matches our previously reported changes in avulsed DRG. Reduction of TRPV1 levels

  9. Inhibition of calcineurin inhibits the desensitization of capsaicin evoked currents in cultured dorsal root ganglion neurones from adult rats

    NARCIS (Netherlands)

    Docherty, RJ; Yeats, JC; Bevan, S; Boddeke, HWGM

    Capsaicin activates a non-specific cation conductance in mammalian sensory neurones. If capsaicin is applied continuously or repeatedly then there is a progressive decline in responsiveness. We have studied the mechanism of this desensitization using electrophysiological methods in cultured dorsal

  10. Surgical reconstruction of spinal cord circuit provides functional return in humans

    Directory of Open Access Journals (Sweden)

    Thomas Carlstedt

    2017-01-01

    Full Text Available This mini review describes the current surgical strategy for restoring function after traumatic spinal nerve root avulsion in brachial or lumbosacral plexus injury in man. As this lesion is a spinal cord or central nervous injury functional return depends on spinal cord nerve cell growth within the central nervous system. Basic science, clinical research and human application has demonstrated good and useful motor function after ventral root avulsion followed by spinal cord reimplantation. Recently, sensory return could be demonstrated following spinal cord surgery bypassing the injured primary sensory neuron. Experimental data showed that most of the recovery depended on new growth reinnervating peripheral receptors. Restored sensory function and the return of spinal reflex was demonstrated by electrophysiology and functional magnetic resonance imaging of human cortex. This spinal cord surgery is a unique treatment of central nervous system injury resulting in useful functional return. Further improvements will not depend on surgical improvements. Adjuvant therapy aiming at ameliorating the activity in retinoic acid elements in dorsal root ganglion neurons could be a new therapeutic avenue in restoring spinal cord circuits after nerve root avulsion injury.

  11. Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn

    Directory of Open Access Journals (Sweden)

    Black Joel A

    2012-11-01

    Full Text Available Abstract Background Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since loss-of-function mutations in SCN9A, the gene that encodes Nav1.7, are associated with a syndrome of congenital insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from peripheral terminals in the skin to central terminals in the spinal cord dorsal horn. Results Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in a subpopulation of Aδ-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within skin, intraepidermal nerve fibers (IENF, exhibit robust Nav1.7 immunolabeling. The central projections of DRG neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to presynaptic terminals. Conclusions The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of presynaptic axons. The findings presented here may be important for pharmaceutical development, where target engagement in the right compartment is essential.

  12. Direct effects of HIV-1 Tat on excitability and survival of primary dorsal root ganglion neurons: possible contribution to HIV-1-associated pain.

    Directory of Open Access Journals (Sweden)

    Xianxun Chi

    Full Text Available The vast majority of people living with human immunodeficiency virus type 1 (HIV-1 have pain syndrome, which has a significant impact on their quality of life. The underlying causes of HIV-1-associated pain are not likely attributable to direct viral infection of the nervous system due to the lack of evidence of neuronal infection by HIV-1. However, HIV-1 proteins are possibly involved as they have been implicated in neuronal damage and death. The current study assesses the direct effects of HIV-1 Tat, one of potent neurotoxic viral proteins released from HIV-1-infected cells, on the excitability and survival of rat primary dorsal root ganglion (DRG neurons. We demonstrated that HIV-1 Tat triggered rapid and sustained enhancement of the excitability of small-diameter rat primary DRG neurons, which was accompanied by marked reductions in the rheobase and resting membrane potential (RMP, and an increase in the resistance at threshold (R(Th. Such Tat-induced DRG hyperexcitability may be a consequence of the inhibition of cyclin-dependent kinase 5 (Cdk5 activity. Tat rapidly inhibited Cdk5 kinase activity and mRNA production, and roscovitine, a well-known Cdk5 inhibitor, induced a very similar pattern of DRG hyperexcitability. Indeed, pre-application of Tat prevented roscovitine from having additional effects on the RMP and action potentials (APs of DRGs. However, Tat-mediated actions on the rheobase and R(Th were accelerated by roscovitine. These results suggest that Tat-mediated changes in DRG excitability are partly facilitated by Cdk5 inhibition. In addition, Cdk5 is most abundant in DRG neurons and participates in the regulation of pain signaling. We also demonstrated that HIV-1 Tat markedly induced apoptosis of primary DRG neurons after exposure for longer than 48 h. Together, this work indicates that HIV-1 proteins are capable of producing pain signaling through direct actions on excitability and survival of sensory neurons.

  13. A Comparative Study of Dorsal Buccal Mucosa Graft Substitution Urethroplasty by Dorsal Urethrotomy Approach versus Ventral Sagittal Urethrotomy Approach

    Directory of Open Access Journals (Sweden)

    Mrinal Pahwa

    2013-01-01

    Full Text Available Objectives. To compare the outcome of dorsal buccal mucosal graft (BMG substitution urethroplasty by dorsal urethrotomy approach with ventral urethrotomy approach in management of stricture urethra. Methods and Materials. A total of 40 patients who underwent dorsal BMG substitution urethroplasty were randomized into two groups. 20 patients underwent dorsal onlay BMG urethroplasty as described by Barbagli, and the other 20 patients underwent dorsal BMG urethroplasty by ventral urethrotomy as described by Asopa. Operative time, success rate, satisfaction rate, and complications were compared between the two groups. Mean follow-up was 12 months (6–24 months. Results. Ventral urethrotomy group had considerably lesser operative time although the difference was not statistically significant. Patients in dorsal group had mean maximum flow rate of 19.6 mL/min and mean residual urine of 27 mL, whereas ventral group had a mean maximum flow rate of 18.8 and residual urine of 32 mL. Eighteen out of twenty patients voided well in each group, and postoperative imaging study in these patients showed a good lumen with no evidence of leak or extravasation. Conclusion. Though ventral sagittal urethrotomy preserves the blood supply of urethra and intraoperative time was less than dorsal urethrotomy technique, there was no statistically significant difference in final outcome using either technique.

  14. A Comparative Study of Dorsal Buccal Mucosa Graft Substitution Urethroplasty by Dorsal Urethrotomy Approach versus Ventral Sagittal Urethrotomy Approach.

    Science.gov (United States)

    Pahwa, Mrinal; Gupta, Sanjeev; Pahwa, Mayank; Jain, Brig D K; Gupta, Manu

    2013-01-01

    Objectives. To compare the outcome of dorsal buccal mucosal graft (BMG) substitution urethroplasty by dorsal urethrotomy approach with ventral urethrotomy approach in management of stricture urethra. Methods and Materials. A total of 40 patients who underwent dorsal BMG substitution urethroplasty were randomized into two groups. 20 patients underwent dorsal onlay BMG urethroplasty as described by Barbagli, and the other 20 patients underwent dorsal BMG urethroplasty by ventral urethrotomy as described by Asopa. Operative time, success rate, satisfaction rate, and complications were compared between the two groups. Mean follow-up was 12 months (6-24 months). Results. Ventral urethrotomy group had considerably lesser operative time although the difference was not statistically significant. Patients in dorsal group had mean maximum flow rate of 19.6 mL/min and mean residual urine of 27 mL, whereas ventral group had a mean maximum flow rate of 18.8 and residual urine of 32 mL. Eighteen out of twenty patients voided well in each group, and postoperative imaging study in these patients showed a good lumen with no evidence of leak or extravasation. Conclusion. Though ventral sagittal urethrotomy preserves the blood supply of urethra and intraoperative time was less than dorsal urethrotomy technique, there was no statistically significant difference in final outcome using either technique.

  15. Optimization of micropatterned poly(lactic-co-glycolic acid films for enhancing dorsal root ganglion cell orientation and extension

    Directory of Open Access Journals (Sweden)

    Ching-Wen Li

    2018-01-01

    Full Text Available Nerve conduits have been a viable alternative to the ‘gold standard’ autograft for treating small peripheral nerve gap injuries. However, they often produce inadequate functional recovery outcomes and are ineffective in large gap injuries. Ridge/groove surface micropatterning has been shown to promote neural cell orientation and guide growth. However, optimization of the ratio of ridge/groove parameters to promote orientation and extension for dorsal root ganglion (DRG cells on poly(lactic-co-glycolic acid (PLGA films has not been previously conducted. Photolithography and micro-molding were used to define various combinations of ridge/groove dimensions on PLGA films. The DRG cells obtained from chicken embryos were cultured on micropatterned PLGA films for cell orientation and migration evaluation. Biodegradation of the films occurred during the test period, however, this did not cause deformation or distortion of the micropatterns. Results from the DRG cell orientation test suggest that when the ridge/groove ratio equals 1 (ridge/groove width parameters are equal, i.e., 10 μm/10 μm (even, the degree of alignment depends on the size of the ridges and grooves, when the ratio is smaller than 1 (groove controlled the alignment increases as the ridge size decreases, and when the ratio is larger than 1 (ridge controlled, the alignment is reduced as the width of the grooves decreases. The migration rate and neurite extension of DRG neurons were greatest on 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films. Based on the data, the 10 μm/10 μm and 30 μm/30 μm micropatterned PLGA films are the optimized ridge/groove surface patterns for the construction of nerve repair devices.

  16. Oxaliplatin-Induced Peripheral Neuropathy via TRPA1 Stimulation in Mice Dorsal Root Ganglion Is Correlated with Aluminum Accumulation.

    Directory of Open Access Journals (Sweden)

    Jin-Hee Park

    Full Text Available Oxaliplatin is a platinum-based anticancer drug used to treat metastatic colorectal, breast, and lung cancers. While oxaliplatin kills cancer cells effectively, it exhibits several side effects of varying severity. Neuropathic pain is commonly experienced during treatment with oxaliplatin. Patients describe symptoms of paresthesias or dysesthesias that are triggered by cold (acute neuropathy, or as abnormal sensory or motor function (chronic neuropathy. In particular, we found that aluminum levels were relatively high in some cancer patients suffering from neuropathic pain based on clinical observations. Based on these findings, we hypothesized that aluminum accumulation in the dorsal root ganglion (DRG in the course of oxaliplatin treatment exacerbates neuropathic pain. In mice injected with oxaliplatin (three cycles of 3 mg/kg i.p. daily for 5 days, followed by 5 days of rest, we detected cold allodynia using the acetone test, but not heat hyperalgesia using a hot plate. However, co-treatment with aluminum chloride (AlCl3∙6H2O; 7 mg/kg i.p. for 14 days: equivalent 0.78 mg/kg of elemental Al and oxaliplatin (1 cycle of 3 mg/kg i.p. daily for 5 days, followed by 5 days of rest synergistically induced cold allodynia as well as increased TRPAl mRNA and protein expression. Inductively Coupled Plasma Mass Spectrometry (ICP-MS analysis showed a significant increase in aluminum concentrations in the DRG of mice treated with aluminum chloride and oxaliplatin compared to aluminum chloride alone. Similarly, in a mouse induced-tumor model, aluminum concentrations were increased in DRG tissue and tumor cells after oxaliplatin treatment. Taken together, these findings suggest that aluminum accumulation in the DRG may exacerbate neuropathic pain in oxaliplatin-treated mice.

  17. PROJECTIONS OF DORSAL AND MEDIAN RAPHE NUCLEI TO DORSAL AND VENTRAL STRIATUM

    Directory of Open Access Journals (Sweden)

    G. R. Hassanzadeh G. Behzadi

    2007-08-01

    Full Text Available The ascending serotonergic projections are derived mainly from mesencephalic raphe nuclei. Topographical projections from mesencephalic raphe nuclei to the striatum were examined in the rat by the retrograde transport technique of HRP (horseradish peroxidase. In 29 rats stereotaxically injection of HRP enzyme were performed in dorsal and ventral parts of striatum separately. The extent of the injection sites and distribution of retrogradely labeled neuronal cell bodies were drawed on representative sections using a projection microscope. Following ipsilateral injection of HRP into the dorsal striatum, numerous labeled neurons were seen in rostral portion of dorsal raphe (DR nucleus. In the same level the cluster of labeled neurons were hevier through caudal parts of DR. A few neurons were also located in lateral wing of DR. More caudally some labeled neurons were found in lateral, medial line of DR. In median raphe nucleus (MnR the labeled neurons were scattered only in median portion of this nucleus. The ipsilateral injection of HRP into the ventral region of striatum resulted on labeling of numerous neurons in rostral, caudal and lateral portions of DR. Through the caudal extension of DR on 4th ventricle level, a large number of labeled neurons were distributed along the ventrocaudal parts of DR. In MnR, labeled neurons were observed only in median part of this nucleus. These findings suggest the mesencephalic raphe nuclei projections to caudo-putamen are topographically organized. In addition dorsal and median raphe nuclei have a stronger projection to the ventral striatum.

  18. A biomechanical comparison of four fixed-angle dorsal plates in a finite element model of dorsally-unstable radius fracture.

    Science.gov (United States)

    Knežević, Josip; Kodvanj, Janoš; Čukelj, Fabijan; Pamuković, Frane; Pavić, Arsen

    2017-11-01

    To compare the finite element models of two different composite radius fracture patterns, reduced and stabilised with four different fixed-angle dorsal plates during axial, dorsal and volar loading conditions. Eight different plastic models representing four AO/ASIF type 23-A3 distal radius fractures and four AO/ASIF 23-C2 distal radius fractures were obtained and fixed each with 1 of 4 methods: a standard dorsal non-anatomical fixed angle T-plate (3.5mm Dorsal T-plate, Synthes), anatomical fixed-angle double plates (2.4mm LCP Dorsal Distal Radius, Synthes), anatomical fixed angle T-plate (2.4mm Acu-Loc Dorsal Plate, Acumed) or anatomical variable-angle dorsal T-plate (3.5mm, Dorsal Plate, Zrinski). Composite radius with plate and screws were scanned with a 3D optical scanner and later processed in Abaqus Software to generate the finite element model. All models were axially loaded at 3 points (centrally, volarly and dorsally) with 50 N forces to avoid the appearance of plastic deformations of the models. Total displacements at the end of the bone and the stresses in the bones and plates were determined and compared. Maximal von Mises stress in bone for 3-part fracture models was very similar to that in 2-part fracture models. The biggest difference between models and the largest displacements were seen during volar loading. The stresses in all models were the highest above the fracture gap. The best performance in all parameters tested was with the Zrinski plate and the most modest results were with the Synthes T-plate. There was no significant difference between 2-part (AO/ASIF type 23-A3) and 3-part (AO/ASIF 23-C2) fracture models. Maximal stresses in the plates appeared above the fracture gap; therefore, it is worth considering the development of plates without screw holes above the gap. © 2017 Elsevier Ltd. All rights reserved.

  19. Dync1h1 Mutation Causes Proprioceptive Sensory Neuron Loss and Impaired Retrograde Axonal Transport of Dorsal Root Ganglion Neurons.

    Science.gov (United States)

    Zhao, Jing; Wang, Yi; Xu, Huan; Fu, Yuan; Qian, Ting; Bo, Deng; Lu, Yan-Xin; Xiong, Yi; Wan, Jun; Zhang, Xiang; Dong, Qiang; Chen, Xiang-Jun

    2016-07-01

    Sprawling (Swl) is a radiation-induced mutation which has been identified to have a nine base pair deletion in dynein heavy chain 1 (DYNC1H1: encoded by a single gene Dync1h1). This study is to investigate the phenotype and the underlying mechanism of the Dync1h1 mutant. To display the phenotype of Swl mutant mice, we examined the embryos of homozygous (Swl/Swl) and heterozygous (Swl/+) mice and their postnatal dorsal root ganglion (DRG) of surviving Swl/+ mice. The Swl/+ mice could survive for a normal life span, while Swl/Swl could only survive till embryonic (E) 8.5 days. Excessive apoptosis of Swl/+ DRG neurons was revealed during E11.5-E15.5 days, and the peak rate was at E13.5 days. In vitro study of mutated DRG neurons showed impaired retrograde transport of dynein-driven nerve growth factor (NGF). Mitochondria, another dynein-driven cargo, demonstrated much slower retrograde transport velocity in Swl/+ neurons than in wild-type (WT) neurons. Nevertheless, the Swl, Loa, and Cra mutations did not affect homodimerization of DYNC1H1. The Swl/Swl mutation of Dync1h1 gene led to embryonic mal-development and lethality, whereas the Swl/+ DRG neurons demonstrated deficient retrograde transport in dynein-driven cargos and excessive apoptosis during mid- to late-developmental stages. The underlying mechanism of the mutation may not be due to impaired homodimerization of DYNC1H1. © 2016 John Wiley & Sons Ltd.

  20. The subacute damage of the dorsal root ganglion induced by collagenase in rats: a study on the ultrastructure of neurons

    International Nuclear Information System (INIS)

    Li Heping; Zhuang Wenquan; Yang Jianyong; Chen Wei

    2005-01-01

    Objective: To study the effects of collagenase on the ultrastructure of dorsal root ganglion (DRG) in rats. The safety of collagenase on nerve tissue was investigated. Additionally, the safety of percutaneous collagenase chemonucleolysis (PCCN) on nerve tissue was evaluated. Methods: In total 27 male, healthy SD rats were enrolled. All rats were randomized into 3 groups: normal group (9 rats), subacute damage of collagenase group (9 rats), subacute intervention-analogue group (9 rats). The left L5 DRG was exposed in each rat. One milliliter of the collagenase solution (300 units) was carefully applied to the exposed DRG in collagenase group, and one milliliter of the isotonic saline was applied to the exposed DRG in intervention-analogue group. The morphology of the DRG under electron microscope were analyzed 7-9 days after the procedures. Results: The types, number, and morphology of cells; the membrane of neutrons; the nerve fibers and blood vessels in DRG had not been changed in all groups observed under optic microscope. The difference of the ultrastructure of neutrons in DRG among the normal groups, intervention-analogue group and collagenase group was significant: 1) The eccentric nucleolus were revealed; 2) Swelling mitochondria and absence of mitochondria crests and vesicles. Cytoclasis and apoptosis of neutrons had not been observed under electron microscope. Conclusion: The collagenase used in PCCN dose have a certain damage to the neutreons in DRG. In the procedure of PCCN, the volume and dosage of collagenase should be carefully selected and the intervention should be precisely performed by experienced hands. (authors)

  1. An oral form of methylglyoxal-bis-guanylhydrazone reduces monocyte activation and traffic to the dorsal root ganglia in a primate model of HIV-peripheral neuropathy.

    Science.gov (United States)

    Lakritz, Jessica R; Yalamanchili, Samshita; Polydefkis, Michael J; Miller, Andrew D; McGrath, Michael S; Williams, Kenneth C; Burdo, Tricia H

    2017-08-01

    Peripheral neuropathy (PN) is a major comorbidity of HIV infection that is caused in part by chronic immune activation. HIV-PN is associated with infiltration of monocytes/macrophages to the dorsal root ganglia (DRG) causing neuronal loss and formation of Nageotte nodules. Here, we used an oral form of methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine biosynthesis inhibitor, to specifically reduce activation of myeloid cells. MGBG is selectively taken up by monocyte/macrophages in vitro and inhibits HIV p24 expression and DNA viral integration in macrophages. Here, MGBG was administered to nine SIV-infected, CD8-depleted rhesus macaques at 21 days post-infection (dpi). An additional nine SIV-infected, CD8-depleted rhesus macaques were used as untreated controls. Cell traffic to tissues was measured by in vivo BrdU pulse labeling. MGBG treatment significantly diminished DRG histopathology and reduced the number of CD68+ and CD163+ macrophages in DRG tissue. The number of recently trafficked BrdU+ cells in the DRG was significantly reduced with MGBG treatment. Despite diminished DRG pathology, intraepidermal nerve fiber density (IENFD) did not recover after treatment with MGBG. These data suggest that MGBG alleviated DRG pathology and inflammation.

  2. Supersensitive detection and discrimination of enantiomers by dorsal olfactory receptors: evidence for hierarchical odour coding.

    Science.gov (United States)

    Sato, Takaaki; Kobayakawa, Reiko; Kobayakawa, Ko; Emura, Makoto; Itohara, Shigeyoshi; Kizumi, Miwako; Hamana, Hiroshi; Tsuboi, Akio; Hirono, Junzo

    2015-09-11

    Enantiomeric pairs of mirror-image molecular structures are difficult to resolve by instrumental analyses. The human olfactory system, however, discriminates (-)-wine lactone from its (+)-form rapidly within seconds. To gain insight into receptor coding of enantiomers, we compared behavioural detection and discrimination thresholds of wild-type mice with those of ΔD mice in which all dorsal olfactory receptors are genetically ablated. Surprisingly, wild-type mice displayed an exquisite "supersensitivity" to enantiomeric pairs of wine lactones and carvones. They were capable of supersensitive discrimination of enantiomers, consistent with their high detection sensitivity. In contrast, ΔD mice showed selective major loss of sensitivity to the (+)-enantiomers. The resulting 10(8)-fold differential sensitivity of ΔD mice to (-)- vs. (+)-wine lactone matched that observed in humans. This suggests that humans lack highly sensitive orthologous dorsal receptors for the (+)-enantiomer, similarly to ΔD mice. Moreover, ΔD mice showed >10(10)-fold reductions in enantiomer discrimination sensitivity compared to wild-type mice. ΔD mice detected one or both of the (-)- and (+)-enantiomers over a wide concentration range, but were unable to discriminate them. This "enantiomer odour discrimination paradox" indicates that the most sensitive dorsal receptors play a critical role in hierarchical odour coding for enantiomer identification.

  3. Personal authentication through dorsal hand vein patterns

    Science.gov (United States)

    Hsu, Chih-Bin; Hao, Shu-Sheng; Lee, Jen-Chun

    2011-08-01

    Biometric identification is an emerging technology that can solve security problems in our networked society. A reliable and robust personal verification approach using dorsal hand vein patterns is proposed in this paper. The characteristic of the approach needs less computational and memory requirements and has a higher recognition accuracy. In our work, the near-infrared charge-coupled device (CCD) camera is adopted as an input device for capturing dorsal hand vein images, it has the advantages of the low-cost and noncontact imaging. In the proposed approach, two finger-peaks are automatically selected as the datum points to define the region of interest (ROI) in the dorsal hand vein images. The modified two-directional two-dimensional principal component analysis, which performs an alternate two-dimensional PCA (2DPCA) in the column direction of images in the 2DPCA subspace, is proposed to exploit the correlation of vein features inside the ROI between images. The major advantage of the proposed method is that it requires fewer coefficients for efficient dorsal hand vein image representation and recognition. The experimental results on our large dorsal hand vein database show that the presented schema achieves promising performance (false reject rate: 0.97% and false acceptance rate: 0.05%) and is feasible for dorsal hand vein recognition.

  4. Temporal mechanically-induced signaling events in bone and dorsal root ganglion neurons after in vivo bone loading.

    Directory of Open Access Journals (Sweden)

    Jason A Bleedorn

    Full Text Available Mechanical signals play an integral role in the regulation of bone mass and functional adaptation to bone loading. The osteocyte has long been considered the principle mechanosensory cell type in bone, although recent evidence suggests the sensory nervous system may play a role in mechanosensing. The specific signaling pathways responsible for functional adaptation of the skeleton through modeling and remodeling are not clearly defined. In vitro studies suggest involvement of intracellular signaling through mitogen-activated protein kinase (MAPK, phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt, and mammalian target of rapamycin (mTOR. However, anabolic signaling responses to bone loading using a whole animal in vivo model have not been studied in detail. Therefore, we examined mechanically-induced signaling events at five time points from 0 to 24 hours after loading using the rat in vivo ulna end-loading model. Western blot analysis of bone for MAPK's, PI3K/Akt, and mTOR signaling, and quantitative reverse transcription polymerase chain reaction (qRT-PCR to estimate gene expression of calcitonin gene-related protein alpha (CGRP-α, brain-derived neurotrophic factor (BDNF, nerve growth factor (NGF, c-jun, and c-fos in dorsal root ganglion (DRG of the brachial intumescence were performed. There was a significant increase in signaling through MAPK's including extracellular signal-related kinase (ERK and c-Jun N-terminal kinase (JNK in loaded limbs at 15 minutes after mechanical loading. Ulna loading did not significantly influence expression of the genes of interest in DRG neurons. Bone signaling and DRG gene expression from the loaded and contralateral limbs was correlated (SR>0.40, P<0.05. However, bone signaling did not correlate with expression of the genes of interest in DRG neurons. These results suggest that signaling through the MAPK pathway may be involved in load-induced bone formation in vivo. Further characterization of the

  5. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces.

    Science.gov (United States)

    Rams, Thomas E; Alwaqyan, Abdulaziz Y

    2017-10-01

    This study assessed the reproducibility of a red diode laser device, and its capability to detect dental calculus in vitro on human tooth root surfaces. On each of 50 extracted teeth, a calculus-positive and calculus-free root surface was evaluated by two independent examiners with a low-power indium gallium arsenide phosphide diode laser (DIAGNOdent) fitted with a periodontal probe-like sapphire tip and emitting visible red light at 655 nm wavelength. Laser autofluorescence intensity readings of examined root surfaces were scored on a 0-99 scale, with duplicate assessments performed using the laser probe tip directed both perpendicular and parallel to evaluated tooth root surfaces. Pearson correlation coefficients of untransformed measurements, and kappa analysis of data dichotomized with a >40 autofluorescence intensity threshold, were calculated to assess intra- and inter-examiner reproducibility of the laser device. Mean autofluorescence intensity scores of calculus-positive and calculus-free root surfaces were evaluated with the Student's t -test. Excellent intra- and inter-examiner reproducibility was found for DIAGNOdent laser autofluorescence intensity measurements, with Pearson correlation coefficients above 94%, and kappa values ranging between 0.96 and 1.0, for duplicate readings taken with both laser probe tip orientations. Significantly higher autofluorescence intensity values were measured when the laser probe tip was directed perpendicular, rather than parallel, to tooth root surfaces. However, calculus-positive roots, particularly with calculus in markedly-raised ledges, yielded significantly greater mean DIAGNOdent laser autofluorescence intensity scores than calculus-free surfaces, regardless of probe tip orientation. DIAGNOdent autofluorescence intensity values >40 exhibited a stronger association with calculus (36.6 odds ratio) then measurements of ≥5 (20.1 odds ratio) when the laser probe tip was advanced parallel to root surfaces. Excellent

  6. Neuroradiological evaluation of dorsal cyst malformations

    International Nuclear Information System (INIS)

    Utsunomiya, Hidetsuna; Hayashi, Takashi; Hashimoto, Takeo; Matsuishi, Toyojiro; Okudera, Toshio.

    1988-01-01

    We discussed six cases with dorsal cyst malformations listing their neuroradiological observations and proposed to differentiate between the holosphere and hemisphere as defined by Yokota (1984). The cases were divided into holospheric and hemispheric groups depending on the continuity of their frontal lobe midlines. Cases 1, 2 and 3 were placed in the holospheric group because of their unseparated frontal lobe sbeneath the partially formed anterior interhemispheric fissures. Cases 4, 5 and 6 were grouped in the hemisphere due to the completion of the interhemispheric fissures. There has been a tendency in recent years for most cases of cerebral malformations having an endogenous dorsal cyst with monoventricular configuration to be diagnosed as holoprosencephaly. However, we believe that only patients who have a dorsal cyst in the holospheric brain should be included, and the others in the hemispheric brain, which is capable of completing hemispheric cleavage, should not. Therefore, we emphasize the importance of correctly identifying the holospheric state in the dorsal cyst malformations for diagnosing holoprosencephaly. (author)

  7. Sunscreen Use on the Dorsal Hands at the Beach

    International Nuclear Information System (INIS)

    Warren, D. B.; Hobbs, J. B.; Jr, R. F. W.; Riahi, R. R.

    2013-01-01

    Since skin of the dorsal hands is a known site for the development of cutaneous squamous cell carcinoma, an epidemiologic investigation was needed to determine if beachgoers apply sunscreen to the dorsal aspect of their hands as frequently as they apply it to other skin sites. Aim. The aim of the current study was to compare the use of sunscreen on the dorsal hands to other areas of the body during subtropical late spring and summer sunlight exposure at the beach. Materials and Methods. A cross-sectional survey from a convenience sample of beachgoers was designed to evaluate responded understanding and protective measures concerning skin cancer on the dorsal hands in an environment with high natural UVR exposure. Results. A total of 214 surveys were completed and analyzed. Less than half of subjects (105, 49%) applied sunscreen to their dorsal hands. Women applied sunscreen to the dorsal hands more than men (55% women versus 40% men, ρ=0.04 ). Higher Fitzpatrick Skin Type respondents were less likely to protect their dorsal hands from ultraviolet radiation (ρ=0.001 ). Conclusions. More public education focused on dorsal hand protection from ultraviolet radiation damage is necessary to reduce the risk for squamous cell carcinomas of the hands.

  8. Modality-Based Organization of Ascending Somatosensory Axons in the Direct Dorsal Column Pathway

    Science.gov (United States)

    Niu, Jingwen; Ding, Long; Li, Jian J.; Kim, Hyukmin; Liu, Jiakun; Li, Haipeng; Moberly, Andrew; Badea, Tudor C.; Duncan, Ian D.; Son, Young-Jin; Scherer, Steven S.

    2013-01-01

    The long-standing doctrine regarding the functional organization of the direct dorsal column (DDC) pathway is the “somatotopic map” model, which suggests that somatosensory afferents are primarily organized by receptive field instead of modality. Using modality-specific genetic tracing, here we show that ascending mechanosensory and proprioceptive axons, two main types of the DDC afferents, are largely segregated into a medial–lateral pattern in the mouse dorsal column and medulla. In addition, we found that this modality-based organization is likely to be conserved in other mammalian species, including human. Furthermore, we identified key morphological differences between these two types of afferents, which explains how modality segregation is formed and why a rough “somatotopic map” was previously detected. Collectively, our results establish a new functional organization model for the mammalian direct dorsal column pathway and provide insight into how somatotopic and modality-based organization coexist in the central somatosensory pathway. PMID:24198362

  9. Nanoparticle-Encapsulated Curcumin Inhibits Diabetic Neuropathic Pain Involving the P2Y12 Receptor in the Dorsal Root Ganglia

    Directory of Open Access Journals (Sweden)

    Tianyu Jia

    2018-01-01

    Full Text Available Diabetic peripheral neuropathy results in diabetic neuropathic pain (DNP. Satellite glial cells (SGCs enwrap the neuronal soma in the dorsal root ganglia (DRG. The purinergic 2 (P2 Y12 receptor is expressed on SGCs in the DRG. SGC activation plays an important role in the pathogenesis of DNP. Curcumin has anti-inflammatory and antioxidant properties. Because curcumin has poor metabolic stability in vivo and low bioavailability, nanoparticle-encapsulated curcumin was used to improve its targeting and bioavailability. In the present study, our aim was to investigate the effects of nanoparticle-encapsulated curcumin on DNP mediated by the P2Y12 receptor on SGCs in the rat DRG. Diabetic peripheral neuropathy increased the expression levels of the P2Y12 receptor on SGCs in the DRG and enhanced mechanical and thermal hyperalgesia in rats with diabetes mellitus (DM. Up-regulation of the P2Y12 receptor in SGCs in the DRG increased the production of pro-inflammatory cytokines. Up-regulation of interleukin-1β (IL-1β and connexin43 (Cx43 resulted in mechanical and thermal hyperalgesia in rats with DM. The nanoparticle-encapsulated curcumin decreased up-regulated IL-1β and Cx43 expression and reduced levels of phosphorylated-Akt (p-Akt in the DRG of rats with DM. The up-regulation of P2Y12 on SGCs and the up-regulation of the IL-1β and Cx43 in the DRG indicated the activation of SGCs in the DRG. The nano-curcumin treatment inhibited the activation of SGCs accompanied by its anti-inflammatory effect to decrease the up-regulated CGRP expression in the DRG neurons. Therefore, the nanoparticle-encapsulated curcumin treatment decreased the up-regulation of the P2Y12 receptor on SGCs in the DRG and decreased mechanical and thermal hyperalgesia in rats with DM.

  10. Structural and molecular alterations of primary afferent fibres in the spinal dorsal horn in vincristine-induced neuropathy in rat.

    Science.gov (United States)

    Thibault, Karine; Rivals, Isabelle; M'Dahoma, Saïd; Dubacq, Sophie; Pezet, Sophie; Calvino, Bernard

    2013-11-01

    Vincristine is one of the most common anti-cancer drug therapies administered for the treatment of many types of cancer. Its dose-limiting side effect is the emergence of peripheral neuropathy, resulting in chronic neuropathic pain in many patients. This study sought to understand the mechanisms underlying the development of neuropathic pain by vincristine-induced neurotoxicity. We focused on signs of functional changes and revealed that deep layers of the spinal cord (III-IV) experience increased neuronal activity both in the absence of peripheral stimulation and, as a result of tactile mechanical stimulations. These laminae and superficial laminae I-II were also subject to structural changes as evidenced by an increase in immunoreactivity of Piccolo, a marker of active presynaptic elements. Further investigations performed, using DNA microarray technology, describe a large number of genes differentially expressed in dorsal root ganglions and in the spinal dorsal horn after vincristine treatment. Our study describes an important list of genes differentially regulated by vincristine treatment that will be useful for future studies and brings forward evidence for molecular and anatomical modifications of large diameter sensory neurons terminating in deep dorsal horn laminae, which could participate in the development of tactile allodynia.

  11. Different impressions of other agents obtained through social interaction uniquely modulate dorsal and ventral pathway activities in the social human brain.

    Science.gov (United States)

    Takahashi, Hideyuki; Terada, Kazunori; Morita, Tomoyo; Suzuki, Shinsuke; Haji, Tomoki; Kozima, Hideki; Yoshikawa, Masahiro; Matsumoto, Yoshio; Omori, Takashi; Asada, Minoru; Naito, Eiichi

    2014-09-01

    Internal (neuronal) representations in the brain are modified by our experiences, and this phenomenon is not unique to sensory and motor systems. Here, we show that different impressions obtained through social interaction with a variety of agents uniquely modulate activity of dorsal and ventral pathways of the brain network that mediates human social behavior. We scanned brain activity with functional magnetic resonance imaging (fMRI) in 16 healthy volunteers when they performed a simple matching-pennies game with a human, human-like android, mechanical robot, interactive robot, and a computer. Before playing this game in the scanner, participants experienced social interactions with each opponent separately and scored their initial impressions using two questionnaires. We found that the participants perceived opponents in two mental dimensions: one represented "mind-holderness" in which participants attributed anthropomorphic impressions to some of the opponents that had mental functions, while the other dimension represented "mind-readerness" in which participants characterized opponents as intelligent. Interestingly, this "mind-readerness" dimension correlated to participants frequently changing their game tactic to prevent opponents from envisioning their strategy, and this was corroborated by increased entropy during the game. We also found that the two factors separately modulated activity in distinct social brain regions. Specifically, mind-holderness modulated activity in the dorsal aspect of the temporoparietal junction (TPJ) and medial prefrontal and posterior paracingulate cortices, while mind-readerness modulated activity in the ventral aspect of TPJ and the temporal pole. These results clearly demonstrate that activity in social brain networks is modulated through pre-scanning experiences of social interaction with a variety of agents. Furthermore, our findings elucidated the existence of two distinct functional networks in the social human brain

  12. Root canal morphology of Chalcolithic and early bronze age human populations of El Mirador Cave (Sierra de Atapuerca, Spain).

    Science.gov (United States)

    Ceperuelo, Dolors; Lozano, Marina; Duran-Sindreu, Fernando; Mercadé, Montse

    2014-12-01

    This study provides a morphological characterization of the inner anatomy of the root canals of permanent first and second molars in Chalcolithic and early Bronze Age human fossils using cone-beam computed tomography. The general evolutionary trend in present-day human dentition is related to morphological simplification. As little is known about when this trend appeared in Homo sapiens populations, the aim of this work is to test the presence of modern radicular morphology 4,400 years ago. Fifty-four permanent first and second maxillary and mandibular molars of 17 individuals were included in the study. All maxillary first and second molars showed three separate roots. Almost all the lower molars analyzed (100% of first molars and 75% of second molars) had two separate roots. More differences in the canal system configuration were documented in the maxillary mesiobuccal roots than in the palatal or distobuccal roots. The most variable tooth in root and canal configuration is the maxillary second molar. It should be pointed out that 12.5% of the teeth analyzed showed a C-shaped root configuration. © 2014 Wiley Periodicals, Inc.

  13. Emergent properties during dorsal closure in Drosophila morphogenesis

    International Nuclear Information System (INIS)

    Peralta, X G; Toyama, Y; Edwards, G S; Kiehart, D P

    2008-01-01

    Dorsal closure is an essential stage of Drosophila development that is a model system for research in morphogenesis and biological physics. Dorsal closure involves an orchestrated interplay between gene expression and cell activities that produce shape changes, exert forces and mediate tissue dynamics. We investigate the dynamics of dorsal closure based on confocal microscopic measurements of cell shortening in living embryos. During the mid-stages of dorsal closure we find that there are fluctuations in the width of the leading edge cells but the time-averaged analysis of measurements indicate that there is essentially no net shortening of cells in the bulk of the leading edge, that contraction predominantly occurs at the canthi as part of the process for zipping together the two leading edges of epidermis and that the rate constant for zipping correlates with the rate of movement of the leading edges. We characterize emergent properties that regulate dorsal closure, i.e., a velocity governor and the coordination and synchronization of tissue dynamics

  14. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  15. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Tuennerhoff, Johannes

    2015-01-01

    interactively in this process. This fMRI study used concurrent transcranial magnetic stimulation (TMS) as a causal perturbation approach to investigate the interactions between dorsal and ventral attentional systems and sensory processing areas. In a sustained spatial attention paradigm, human participants......Adaptive behavior relies on combining bottom-up sensory inputs with top-down control signals to guide responses in line with current goals and task demands. Over the past decade, accumulating evidence has suggested that the dorsal and ventral frontoparietal attentional systems are recruited......-TMS relative to Sham-TMS increased activation in the parietal cortex regardless of sensory stimulation, confirming the neural effectiveness of TMS stimulation. Visual targets increased activations in the anterior insula, a component of the ventral attentional system responsible for salience detection...

  16. Bay11-7082 attenuates neuropathic pain via inhibition of nuclear factor-kappa B and nucleotide-binding domain-like receptor protein 3 inflammasome activation in dorsal root ganglions in a rat model of lumbar disc herniation

    Directory of Open Access Journals (Sweden)

    Zhang AL

    2017-02-01

    Full Text Available Ailiang Zhang, Kun Wang, Lianghua Ding, Xinnan Bao, Xuan Wang, Xubin Qiu, Jinbo Liu Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China Abstract: Lumbar disc herniation (LDH is an important cause of radiculopathy, but the underlying mechanisms are incompletely understood. Many studies suggested that local inflammation, rather than mechanical compression, results in radiculopathy induced by LDH. On the molecular and cellular level, nuclear factor-kappa B (NF-κB and nucleotide-binding domain-like receptor protein 3 (NLRP3 inflammasome have been implicated in the regulation of neuroinflammation formation and progression. In this study, the autologous nucleus pulposus (NP was implanted in the left L5 dorsal root ganglion (DRG to mimic LDH in rats. We investigated the expression of NF-κB and the components of NLRP3 inflammasome in the DRG neurons in rats. Western blotting and immunofluorescence for the related molecules, including NLRP3, apoptosis-associated speck-like protein containing caspase-1 activator domain (ASC, caspase-1, interleukin (IL-1β, IL-18, IκBα, p-IκBα, p65, p-p65, and calcitonin gene-related peptide (CGRP were examined. In the NP-treated group, the activations of NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 in DRG neurons in rats were elevated at 1 day after surgery, and the peak occurred at 7 days. Treatment with Bay11-7082, an inhibitor of the actions of IKK-β, was able to inhibit expression and activation of the molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 and relieve the pain in rats. Our study shows that NF-κB and NLRP3 inflammasome are involved in the maintenance of NP-induced pain, and that Bay11-7082 could alleviate mechanical allodynia and thermal hyperalgesia by inhibiting NF-κB and NLRP3 inflammasome activation. Keywords: pain, NLRP3, NF-κB, dorsal root ganglion, nucleus pulposus

  17. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats.

    Science.gov (United States)

    Chao, Yu-Chieh; Xie, Fang; Li, Xueyang; Guo, Ruijuan; Yang, Ning; Zhang, Chen; Shi, Rong; Guan, Yun; Yue, Yun; Wang, Yun

    2016-07-01

    Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury.

    Science.gov (United States)

    Wu, Zizhen; Li, Lin; Xie, Fuhua; Du, Junhui; Zuo, Yan; Frost, Jeffrey A; Carlton, Susan M; Walters, Edgar T; Yang, Qing

    2017-03-15

    A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.

  19. Long-term activation of group I metabotropic glutamate receptors increases functional TRPV1-expressing neurons in mouse dorsal root ganglia

    Directory of Open Access Journals (Sweden)

    Takayoshi eMasuoka

    2016-03-01

    Full Text Available Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1 in dorsal root ganglion (DRG neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC, a transient receptor potential ankyrin type 1 (TRPA1 agonist. Increase in the proportion was suppressed by phospholipase C, protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia.

  20. Upregulation of miR-375 level ameliorates morphine analgesic tolerance in mouse dorsal root ganglia by inhibiting the JAK2/STAT3 pathway

    Directory of Open Access Journals (Sweden)

    Li HQ

    2017-05-01

    Full Text Available Haiqin Li, Rong Tao, Jing Wang, Lingjie Xia Department of Clinical Pain, The People’s Hospital of Henan Province, Zhengzhou, People’s Republic of China Abstract: Several lines of evidence indicate that microRNAs (miRNAs modulate tolerance to the analgesic effects of morphine via regulation of pain-related genes, making dysregulation of miRNA levels a clinical target for controlling opioid tolerance. However, the precise mechanisms by which miRNAs regulate opioid tolerance are unclear. In the present study, we noted that the miR-375 level was downregulated but the expression of Janus kinase 2 (JAK2 was upregulated in mouse dorsal root ganglia (DRG following chronic morphine treatment. The miR-375 levels and JAK2 expression were correlated with the progression of morphine tolerance, and upregulation of miR-375 level could significantly hinder morphine tolerance. This was ameliorated by JAK2 knockdown. Prolonged morphine exposure induced the expression of brain-derived neurotrophic factor (BDNF in a time-dependent manner in the DRG. This was regulated by the miR-375 and JAK2–signal transducer and activator of transcription 3 (STAT3 pathway, and inhibition of this pathway decreased BDNF production, and thus, attenuated morphine tolerance. More importantly, we found that miR-375 could target JAK2 and increase BDNF expression in a JAK2/STAT3 pathway-dependent manner. Keywords: morphine tolerance, miR-375, JAK2, BDNF

  1. Low Frequency Electroacupuncture Alleviated Spinal Nerve Ligation Induced Mechanical Allodynia by Inhibiting TRPV1 Upregulation in Ipsilateral Undamaged Dorsal Root Ganglia in Rats

    Directory of Open Access Journals (Sweden)

    Yong-Liang Jiang

    2013-01-01

    Full Text Available Neuropathic pain is an intractable problem in clinical practice. Accumulating evidence shows that electroacupuncture (EA with low frequency can effectively relieve neuropathic pain. Transient receptor potential vanilloid type 1 (TRPV1 plays a key role in neuropathic pain. The study aimed to investigate whether neuropathic pain relieved by EA administration correlates with TRPV1 inhibition. Neuropathic pain was induced by right L5 spinal nerve ligation (SNL in rats. 2 Hz EA stimulation was administered. SNL induced mechanical allodynia in ipsilateral hind paw. SNL caused a significant reduction of TRPV1 expression in ipsilateral L5 dorsal root ganglia (DRG, but a significant up-regulation in ipsilateral L4 and L6 DRGs. Calcitonin gene-related peptide (CGRP change was consistent with that of TRPV1. EA alleviated mechanical allodynia, and inhibited TRPV1 and CGRP overexpressions in ipsilateral L4 and L6 DRGs. SNL did not decrease pain threshold of contralateral hind paw, and TRPV1 expression was not changed in contralateral L5 DRG. 0.001, 0.01 mg/kg TRPV1 agonist 6′-IRTX fully blocked EA analgesia in ipsilateral hind paw. 0.01 mg/kg 6′-IRTX also significantly decreased pain threshold of contralateral paw. These results indicated that inhibition of TRPV1 up-regulation in ipsilateral adjacent undamaged DRGs contributed to low frequency EA analgesia for mechanical allodynia induced by spinal nerve ligation.

  2. Effects of antagonists and heat on TRPM8 channel currents in dorsal root ganglion neuron activated by nociceptive cold stress and menthol.

    Science.gov (United States)

    Naziroğlu, Mustafa; Ozgül, Cemil

    2012-02-01

    Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperature and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of environmental cold stress such as cold allodynia in dorsal root ganglion (DRG) neuron; however, the underlying mechanisms of action are unclear. We tested the effects of physiological heat (37°C), anthralic acid (ACA and 0.025 mM), 2-aminoethyl diphenylborinate (2-APB and 0.05) on noxious cold (10°C) and menthol (0.1 mM)-induced TRPM8 cation channel currents in the DRG neurons of rats. DRG neurons were freshly isolated from rats. In whole-cell patch clamp experiments, TRPM8 currents were consistently induced by noxious cold or menthol. TRPM8 channels current densities of the neurons were higher in cold and menthol groups than in control. When the physiological heat is introduced by chamber TRPM8 channel currents were inhibited by the heat. Noxious cold-induced Ca(2+) gates were blocked by the ACA although menthol-induced TRPM8 currents were not blocked by ACA and 2-APB. In conclusion, the results suggested that activation of TRPM8 either by menthol or nociceptive cold can activate TRPM8 channels although we observed the protective role of heat, ACA and 2-APB through a TRPM8 channel in nociceptive cold-activated DRG neurons. Since cold allodynia is a common feature of neuropathic pain and diseases of sensory neuron, our findings are relevant to the etiology of neuropathology in DRG neurons.

  3. Human Nav1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons

    Science.gov (United States)

    Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D.

    2015-01-01

    Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Nav1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Nav1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Nav1.8 channels. We also show that native human DRG neurons recapitulate these properties of Nav1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Nav1.8, which contribute to the firing properties of human DRG neurons. PMID:25787950

  4. Human teeth with periapical pathosis after overinstrumentation and overfilling of the root canals: a scanning electron microscopic study.

    Science.gov (United States)

    Gutiérrez, J H; Brizuela, C; Villota, E

    1999-01-01

    The aim of this study was to determine whether overinstrumentation followed by immediate overfilling could be a potential risk in the treatment of infected root canals. Thirty-five human teeth with infected root canals were overinstrumented and overfilled approximately 45 min after their extraction. The experimental teeth were enlarged up to size 40 and the overinstrumentation and overfilling were checked with the aid of a magnifying glass. The specimens were fixed in glutaraldehyde plus sodium cacodylate solution and prepared for scanning electron microscope examination. Bacteria were detected on the flute of the files and mostly at the root apices around the main foramen, remaining firmly attached to resorptive lacunae despite the fact that the apices had undergone great changes, including fracture or zipping. A control group consisting of 10 human teeth root canals containing vital pulps were also overinstrumented and overfilled. No bacteria were detected on the flutes of the files, at the apices or on the extruded master cone overfilling these samples. The high percentage of bacteria adhering to the resorptive lacunae or in the flutes of files used in overinstrumented human teeth with infected root canals carry a potential risk for postoperative pain, clinical discomfort and flare-ups. The hazards observed in these circumstances do not support the one-visit treatment of teeth having acute or chronic periapical abscesses.

  5. Antiproliferative effect on human prostate cancer cells by a stinging nettle root (Urtica dioica) extract.

    Science.gov (United States)

    Konrad, L; Müller, H H; Lenz, C; Laubinger, H; Aumüller, G; Lichius, J J

    2000-02-01

    In the present study the activity of a 20% methanolic extract of stinging nettle roots (Urtica dioica L., Urticaceae) on the proliferative activity of human prostatic epithelial (LNCaP) and stromal (hPCPs) cells was evaluated using a colorimetric assay. A concentration-dependent and significant (p nettle roots observed both in an in vivo model and in an in vitro system clearly indicates a biologically relevant effect of compounds present in the extract.

  6. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration

    Science.gov (United States)

    Conovaloff, Aaron; Panitch, Alyssa

    2011-10-01

    Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains.

  7. Automatic phoneme category selectivity in the dorsal auditory stream.

    Science.gov (United States)

    Chevillet, Mark A; Jiang, Xiong; Rauschecker, Josef P; Riesenhuber, Maximilian

    2013-03-20

    Debates about motor theories of speech perception have recently been reignited by a burst of reports implicating premotor cortex (PMC) in speech perception. Often, however, these debates conflate perceptual and decision processes. Evidence that PMC activity correlates with task difficulty and subject performance suggests that PMC might be recruited, in certain cases, to facilitate category judgments about speech sounds (rather than speech perception, which involves decoding of sounds). However, it remains unclear whether PMC does, indeed, exhibit neural selectivity that is relevant for speech decisions. Further, it is unknown whether PMC activity in such cases reflects input via the dorsal or ventral auditory pathway, and whether PMC processing of speech is automatic or task-dependent. In a novel modified categorization paradigm, we presented human subjects with paired speech sounds from a phonetic continuum but diverted their attention from phoneme category using a challenging dichotic listening task. Using fMRI rapid adaptation to probe neural selectivity, we observed acoustic-phonetic selectivity in left anterior and left posterior auditory cortical regions. Conversely, we observed phoneme-category selectivity in left PMC that correlated with explicit phoneme-categorization performance measured after scanning, suggesting that PMC recruitment can account for performance on phoneme-categorization tasks. Structural equation modeling revealed connectivity from posterior, but not anterior, auditory cortex to PMC, suggesting a dorsal route for auditory input to PMC. Our results provide evidence for an account of speech processing in which the dorsal stream mediates automatic sensorimotor integration of speech and may be recruited to support speech decision tasks.

  8. Human Na(v)1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons.

    Science.gov (United States)

    Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2015-05-01

    Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Na(v)1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Na(v)1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Na(v)1.8 channels. We also show that native human DRG neurons recapitulate these properties of Na(v)1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Na(v)1.8, which contribute to the firing properties of human DRG neurons.

  9. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level. PMID:21389301

  10. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes.

    Science.gov (United States)

    Tytgat, Tom; Vanholme, Bartel; De Meutter, Jan; Claeys, Myriam; Couvreur, Marjolein; Vanhoutte, Isabelle; Gheysen, Greetje; Van Criekinge, Wim; Borgonie, Gaetan; Coomans, August; Gheysen, Godelieve

    2004-08-01

    By performing cDNA AFLP on pre- and early parasitic juveniles, we identified genes encoding a novel type of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in the cyst nematode Heterodera schachtii. The proteins consist of three domains, a signal peptide for secretion, a mono-ubiquitin domain, and a short C-terminal positively charged domain. A gfp-fusion of this protein is targeted to the nucleolus in tobacco BY-2 cells. We hypothesize that the C-terminal peptide might have a regulatory function during syncytium formation in plant roots.

  11. Effects of ischemic phrenic nerve root ganglion injury on respiratory disturbances in subarachnoid hemorrhage: an experimental study.

    Science.gov (United States)

    Ulvi, Hızır; Demir, Recep; Aygül, Recep; Kotan, Dilcan; Calik, Muhammet; Aydin, Mehmet Dumlu

    2013-12-30

    Phrenic nerves have important roles on the management of respiration rhythm. Diaphragm paralysis is possible in phrenic nerve roots ischemia in subarachnoid hemorrhage (SAH). We examined whether there is a relationship between phrenic nerve root ischemia and respiratory disturbances in SAH. This study was conducted on 5 healthy control and 14 rabbits with experimentally induced SAH by injecting autologous blood into their cisterna magna. Animals were followed up via monitors for detecting the heart and respiration rhythms for 20 days and then decapitaed by humanely. Normal and degenerated neuron densities of phrenic nerve root at the level of C4 dorsal root ganglia (C4DRG) were estimated by Stereological methods. Between the mean numerical density of degenerated neurons of C4DRG and respiratory rate/minute of groups were compared statistically. Phrenic nerve roots, artery and diaphragm muscles degeneration was detected in respiratory arrest developed animals. The mean neuronal density of C4DRG was 13272 ±1201/mm3 with a mean respiration rate of 23 ±4/min in the control group. The mean degenerated neuron density was 2.240 ±450/mm(3) and respiration rhythm was 31 ±6/min in survivors. But, the mean degenerated neuron density was 5850 ±650/mm(3) and mean respiration rhythm was 34 ±7/min in respiratory arrest developed animals (n = 7). A linear relationship was noticed between the degenerated neuron density of C4DRG and respiraton rate (r = -0.758; p Phrenic nerve root ischemia may be an important factor in respiration rhythms deteriorations in SAH which has not been mentioned in the literature.

  12. Resistance to compression of weakened roots subjected to different root reconstruction protocols

    Directory of Open Access Journals (Sweden)

    Lucas Villaça Zogheib

    2011-12-01

    Full Text Available OBJECTIVE: This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. MATERIAL AND METHODS: Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10, according to the root reconstruction protocol: Group I (control: non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45º in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (α=0.05. RESULTS: Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. CONCLUSION: The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol.

  13. Metabotropic glutamate receptor-5 and protein kinase C-epsilon increase in dorsal root ganglion neurons and spinal glial activation in an adolescent rat model of painful neck injury.

    Science.gov (United States)

    Weisshaar, Christine L; Dong, Ling; Bowman, Alex S; Perez, Federico M; Guarino, Benjamin B; Sweitzer, Sarah M; Winkelstein, Beth A

    2010-12-01

    There is growing evidence that neck pain is common in adolescence and is a risk factor for the development of chronic neck pain in adulthood. The cervical facet joint and its capsular ligament is a common source of pain in the neck in adults, but its role in adolescent pain remains unknown. The aim of this study was to define the biomechanics, behavioral sensitivity, and indicators of neuronal and glial activation in an adolescent model of mechanical facet joint injury. A bilateral C6-C7 facet joint distraction was imposed in an adolescent rat and biomechanical metrics were measured during injury. Following injury, forepaw mechanical hyperalgesia was measured, and protein kinase C-epsilon (PKCɛ) and metabotropic glutamate receptor-5 (mGluR5) expression in the dorsal root ganglion and markers of spinal glial activation were assessed. Joint distraction induced significant mechanical hyperalgesia during the 7 days post-injury (p capsule during injury were 32.8 ± 12.9%, which were consistent with the strains associated with comparable degrees of hypersensitivity in the adult rat. These results suggest that adolescents may have a lower tissue tolerance to induce pain and associated nociceptive response than do adults.

  14. CONSTRUCTION AND STUDY OF Althaea officinalis TRANSGENIC ROOTS CULTURE WITH HUMAN INTERFERON α2B GENE

    Directory of Open Access Journals (Sweden)

    N. A. Matvieieva

    2013-04-01

    Full Text Available The aim of our work was to obtain Althaea officinalis L. «hairy» root culture with human interferon α2b gene (ifn-α2b, to measure fructans content and antiviral activity of extracts from the transgenic roots. Transformation of leaf and root explants was carried out by means of Agrobacterium rhizogenes-mediated transformation. Antiviral activity was measured by the reduction in cytopathic effect of vesicular stomatitis virus (Indiana strain in bovine kidney cells line MDBK. Transformation frequency was 100% for leaf and root explants. RT-PCR confirmed ifn- α2b gene transcription. The clones of transgenic roots differed in mass increasing from 0, 036 ± 0,008 up to 0,371 ± 0,019 g in 30 days cultivation and in fructan synthesis from 67,2± 4,47 up to 154,6 ± 6,62 mg/g roots dry weight. Extracts from «hairy»roots culture were characterized by high antiviral activity against vesicular stomatitis virus — up to 26 000 IU/ g of roots fresh weight. In some cases the genetic transformation shown to lead increasing the growth rate and increasing the level of fructan synthesis in transgenic A. officinalis roots. Extracts from cultivated in vitro marshmallow transgenic roots were characterized by high level of antiviral activity against vesicular stomatitis virus. Thus, there were obtained transgenic A. officinalis roots, characterized by high growth rate, significant accumulation of fructans and high antiviral activity.

  15. Effects of Ligusticum porteri (Osha) Root Extract on Human Promyelocytic Leukemia Cells.

    Science.gov (United States)

    Nguyen, Khanh; Sparks, Jean; Omoruyi, Felix

    2017-01-01

    Ligusticum porteri roots have been traditionally used in folk medicine, but the scientific basis is unclear. To investigate the cytotoxicity, antioxidant, and immunomodulatory effects of L. porteri root extract on human promyelocytic leukemia (HL-60) cells and H 2 O 2 -induced oxidative damaged HL-60 cells. HL-60 cells were incubated with different concentrations of root extract, and cells were harvested for viability assays on day 3 and 7. Cytokine levels (interferon-gamma [IFN-γ], interleukin-2 [IL-2], and interleukin-10 [IL-10]) and antioxidant indexes (malondialdehyde [MDA], reduced glutathione [GSH], superoxide dismutase [SOD], and catalase [CAT]) in H 2 O 2 -induced-stressed HL-60 were measured after 2 days. The viability of HL-60 challenged with H 2 O 2 declined by 42% compared to unstressed cells. After 7 days of incubation with 200 or 400 μg/mL L. porteri , the viability of HL-60 cells was two-fold higher than the control. Stressed HL-60 cells treated with 100, 200, and 400 μg/mL L. porteri reduced the lipid peroxidation by 12%-13%. We noted an increase in GSH levels, SOD and CAT activities in stressed HL-60 supplemented with 400 μg/mL root extract. Treatment with 400 μg/mL L. porteri significantly ( P effect against the oxidation of reduced glutathione (GSH)Treatment with L. porteri root extract may be effective in preventing oxidative damage through increasing the activities of antioxidant enzymes (superoxide dismutase [SOD] and catalase [CAT]) in acute promyelocytic leukemia cells.

  16. Description of Meloidogyne minor n.sp. (Nematoda: Meloidogynidae), a root-knot nematode associated with yellow patch disease in golf courses

    NARCIS (Netherlands)

    Karssen, G.; Bolk, R.J.; Aelst, van A.C.; Beld, van den I.; Kox, L.F.F.; Korthals, G.W.; Molendijk, L.P.G.; Zijlstra, C.; Hoof, van R.A.; Cook, R.

    2004-01-01

    A relatively small root-knot nematode, Meloidogyne minor n. sp., is described and illustrated from tomato from the Netherlands. This new species is characterised by the following features: female with dorsally curved stylet, 14 Pm long, with transversely ovoid knobs slightly sloping backwards from

  17. Differential effects of temperature on acid-activated currents mediated by TRPV1 and ASIC channels in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Neelands, Torben R; Zhang, Xu-Feng; McDonald, Heath; Puttfarcken, Pamela

    2010-05-06

    Elevated temperature and decreased extracellular pH are hallmarks of inflammatory pain states. Dorsal root ganglia (DRG) neurons are integral in transferring painful stimuli from the periphery to central sites. This study investigated the effect of elevated temperatures on the response of DRG neurons to acute application of acidic solutions. At room temperature (22 degrees C), in response to pH 5.5, there were a variety of kinetic responses consistent with differential expression of TRPV1 and ASIC channels. Increasing the temperature resulted in a significant increase in the peak and total current mediated by TRPV1 in response to an acidic solution. In contrast, the amplitude of a fast activating, rapidly inactivating ASIC1-like current was not affected by increasing the temperature but did result in an increased rate of desensitization that reduced the total current level. This effect on the rate of desensitization was temperature-dependent and could be reversed by returning to 22 degrees C. Likewise, cells exhibiting slowly inactivating ASIC2-like responses also had temperature-dependent increase in the rate of desensitization. The ASIC2-like responses and the TRPV1 responses tended to decrease in amplitude with repetitive application of pH 5.5 even at 22 degrees C. The rate of desensitization of ASIC-like currents activated by less acidic solutions (pH 6.8) was also increased in a temperature-dependent manner. Finally, acidic pH reduced threshold to trigger action potentials, however, the pattern of action potential firing was shaped by the distribution of ASIC and TRPV1 channels. These results indicate that the ambient temperature at which acidosis occurs has a profound effect on the contribution of ASIC and TRPV1 channels, therefore, altering the neuronal excitability. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Dorsal finger texture recognition: Investigating fixed-length SURF

    DEFF Research Database (Denmark)

    Hartung, Daniel; Kückelhahn, Jesper

    2012-01-01

    We seek to create fixed-length features from dorsal finger skin images extracted by the SURF interest point detector to combine it in the privacy enhancing helper data scheme. The source of the biometric samples is the GUC45 database which features finger vein, fingerprint and dorsal finger skin...

  19. Meloidogyne luci n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitising different crops in Brazil, Chile and Iran

    NARCIS (Netherlands)

    Carneiro, R.M.D.G.; Correa, V.R.; Almeida, M.R.A.; Gomes, A.C.M.M.; Deimi, A.M.; Castagnone-Sereno, P.; Karssen, G.

    2014-01-01

    A new root-knot nematode parasitising vegetables, flowers and fruits in Brazil, Iran and Chile, is described as Meloidogyne luci n. sp. The female has an oval to squarish perineal pattern with a low to moderately high dorsal arc and without shoulders, similar to M. ethiopica. The female stylet is

  20. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse

    Directory of Open Access Journals (Sweden)

    Vandewauw Ine

    2013-02-01

    Full Text Available Abstract Background Somatosensory nerve fibres arising from cell bodies within the trigeminal ganglia (TG in the head and from a string of dorsal root ganglia (DRG located lateral to the spinal cord convey endogenous and environmental stimuli to the central nervous system. Although several members of the transient receptor potential (TRP superfamily of cation channels have been implicated in somatosensation, the expression levels of TRP channel genes in the individual sensory ganglia have never been systematically studied. Results Here, we used quantitative real-time PCR to analyse and compare mRNA expression of all TRP channels in TG and individual DRGs from 27 anatomically defined segments of the spinal cord of the mouse. At the mRNA level, 17 of the 28 TRP channel genes, TRPA1, TRPC1, TRPC3, TRPC4, TRPC5, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV4, TRPML1 and TRPP2, were detectable in every tested ganglion. Notably, four TRP channels, TRPC4, TRPM4, TRPM8 and TRPV1, showed statistically significant variation in mRNA levels between DRGs from different segments, suggesting ganglion-specific regulation of TRP channel gene expression. These ganglion-to-ganglion differences in TRP channel transcript levels may contribute to the variability in sensory responses in functional studies. Conclusions We developed, compared and refined techniques to quantitatively analyse the relative mRNA expression of all TRP channel genes at the single ganglion level. This study also provides for the first time a comparative mRNA distribution profile in TG and DRG along the entire vertebral column for the mammalian TRP channel family.

  1. Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from impediment of mtDNA synthesis and compromise of mitochondrial function.

    Science.gov (United States)

    Zhuo, Ming; Gorgun, Murat F; Englander, Ella W

    2018-06-01

    Peripheral Nervous System (PNS) neurotoxicity caused by cancer drugs hinders attainment of chemotherapy goals. Due to leakiness of the blood nerve barrier, circulating chemotherapeutic drugs reach PNS neurons and adversely affect their function. Chemotherapeutic drugs are designed to target dividing cancer cells and mechanisms underlying their toxicity in postmitotic neurons remain to be fully clarified. The objective of this work was to elucidate progression of events triggered by antimitotic drugs in postmitotic neurons. For proof of mechanism study, we chose cytarabine (ara-C), an antimetabolite used in treatment of hematological cancers. Ara-C is a cytosine analog that terminates DNA synthesis. To investigate how ara-C affects postmitotic neurons, which replicate mitochondrial but not genomic DNA, we adapted a model of Dorsal Root Ganglion (DRG) neurons. We showed that DNA polymerase γ, which is responsible for mtDNA synthesis, is inhibited by ara-C and that sublethal ara-C exposure of DRG neurons leads to reduction in mtDNA content, ROS generation, oxidative mtDNA damage formation, compromised mitochondrial respiration and diminution of NADPH and GSH stores, as well as, activation of the DNA damage response. Hence, it is plausible that in ara-C exposed DRG neurons, ROS amplified by the high mitochondrial content shifts from physiologic to pathologic levels signaling stress to the nucleus. Combined, the findings suggest that ara-C neurotoxicity in DRG neurons originates in mitochondria and that continuous mtDNA synthesis and reliance on oxidative phosphorylation for energy needs sensitize the highly metabolic neurons to injury by mtDNA synthesis terminating cancer drugs. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Cytotoxicity of newly developed pozzolan cement and other root-end filling materials on human periodontal ligament cell

    Directory of Open Access Journals (Sweden)

    Minju Song

    2014-02-01

    Full Text Available Objectives The purpose of this study was to evaluate in vitro cytotoxicity of the pozzolan cement and other root-end filling materials using human periodontal ligament cell. Materials and Methods Endocem (Maruchi, white ProRoot MTA (Dentsply, white Angelus MTA (Angelus, and Super EBA (Bosworth Co. were tested after set completely in an incubator at 37℃ for 7 days, Endocem was tested in two ways: 1 immediately after mixing (fresh specimens and 2 after setting completely like other experimental materials. The methods for assessment included light microscopic examination, cell counting and WST-1 assay on human periodontal ligament cell. Results In the results of microscopic examination and cell counting, Super EBA showed significantly lower viable cell than any other groups (p < 0.05. As the results of WST-1 assay, compared with untreated control group, there was no significant cell viability of the Endocem group. However, the fresh mixed Endocem group had significantly less cell viability. The cells exposed to ProRoot MTA and Angelus MTA showed the highest viability, whereas the cells exposed to Super EBA displayed the lowest viability (p < 0.05. Conclusions The cytotoxicity of the pozzolan cement (Endocem was comparable with ProRoot MTA and Angelus MTA. Considering the difficult manipulation and long setting time of ProRoot MTA and Angelus MTA, Endocem can be used as the alternative of retrofilling material.

  3. The Control of Human Immunosystem by Using Paeony Root Drug

    Directory of Open Access Journals (Sweden)

    Hideo Tsuboi

    2010-10-01

    Full Text Available Paeoniflorin (PF, isolated from paeony root, has been used as a herbal medicine for more than 1200 years in China, Korea and Japan for its anti-allergic, anti-inflamatory and immunoregulatory effects. In this study, we found that PF induces apoptosis in both murine T-lineage cells and human T-cell leukemia Jurkat cells. This apoptosis was mediated through the reduction of mitochondrial membrane potential, activation of caspase and fragmentation of DNA. Interestingly, PF induced generation of reactive oxygen species (ROS and a reducing agent, dithiothreitol (DTT, and a ROS scavenger, N-acetyl cysteine (NAC, successfully attenuated the PF-induced apoptosis. Additionally, PF induced the phosphorylation of three mitogen-activated protein (MAP family kinases, extracellular signal-regulated kinase, c-Jun amino-terminal kinase (JNK and p38 MAP kinase. Curcumin, an anti-oxidant and JNK inhibitor, inhibited PF-induced apoptosis, suggesting the possible involvement of curcumin-sensitive JNK or other redox-sensitive elements in PF-induced apoptosis. These results partially explain the action mechanism of PF-containing paeony root as a herbal medicine.

  4. Functional connectivity of the dorsal striatum in female musicians

    Directory of Open Access Journals (Sweden)

    Shoji eTanaka

    2016-04-01

    Full Text Available The dorsal striatum (caudate/putamen is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians.Resting state functional magnetic resonance imaging (fMRI data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to graph theoretical analysis and functional connectivity analysis. The graph theoretical analysis of the entire brain revealed that the degree, which represents the number of connections, of the bilateral putamen was significantly lower in musicians than in nonmusicians. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum and between the left caudate nucleus and cerebellum. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum, with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers. To the best of our knowledge, this is the first study suggesting that long-term musical training results in a less extensive or selective functional network of the dorsal striatum.

  5. Insulin-like growth factor-1 prevents dorsal root ganglion neuronal tyrosine kinase receptor expression alterations induced by dideoxycytidine in vitro.

    Science.gov (United States)

    Liu, Huaxiang; Lu, Jing; He, Yong; Yuan, Bin; Li, Yizhao; Li, Xingfu

    2014-03-01

    Dideoxycytidine (zalcitabine, ddC) produces neurotoxic effects. It is particularly important to understand the toxic effects of ddC on different subpopulations of dorsal root ganglion (DRG) neurons which express distinct tyrosine kinase receptor (Trk) and to find therapeutic factors for prevention and therapy for ddC-induced peripheral sensory neuropathy. Insulin-like growth factor-1 (IGF-1) has been shown to have neurotrophic effects on DRG sensory neurons. However, little is known about the effects of ddC on distinct Trk (TrkA, TrkB, and TrkC) expression in DRG neurons and the neuroprotective effects of IGF-1 on ddC-induced neurotoxicity. Here, we have tested the extent to which the expression of TrkA, TrkB, and TrkC receptors in primary cultured DRG neurons is affected by ddC in the presence or absence of IGF-1. In this experiment, we found that exposure of 5, 25, and 50 μmol/L ddC caused a dose-dependent decrease of the mRNA, protein, and the proportion of TrkA-, TrkB-, and TrkC-expressing neurons. IGF-1 (20 nmol/L) could partially reverse the decrease of TrkA and TrkB, but not TrkC, expression with ddC exposure. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (10 μmol/L) blocked the effects of IGF-1. These results suggested that the subpopulations of DRG neurons which express distinct TrkA, TrkB, and TrkC receptors were affected by ddC exposure. IGF-1 might relieve the ddC-induced toxicity of TrkA- and TrkB-, but not TrkC-expressing DRG neurons. These data offer new clues for a better understanding of the association of ddC with distinct Trk receptor expression and provide new evidence of the potential therapeutic role of IGF-1 on ddC-induced neurotoxicity.

  6. Oxygen delivery to the fish eye: root effect as crucial factor for elevated retinal PO2.

    Science.gov (United States)

    Waser, W; Heisler, N

    2005-11-01

    Although the retina has one of the highest metabolic rates among tissues, certain teleost fishes lack any vascular supply to this organ which, in combination with the overall thickness of the organ, results in extremely long diffusion distances. As the only way to compensate for these obstacles, oxygen partial pressure (PO2) in the eyes of such fish is elevated far above atmospheric values. Although not supported by any direct evidence, the enhancement of PO2 is considered to be related to the Root effect, the release upon acidification of Hb-bound O2 into physical dissolution, possibly supported by counter-current multiplication similar to the loop of Henle. The present study evaluates the magnitude of intraocular PO2 enhancement under tightly controlled physiological conditions, to directly confirm the involvement of the Root effect on intraocular PO2 in the retina of rainbow trout Oncorhynchus mykiss. Intraocular PO2 was determined with special polarographic microelectrodes inserted into the eye. PO2 profiles established in vivo by driving electrodes through the entire retina yielded average PO2 values between 10 mmHg (1.3 kPa) at the inner retinal surface and 382 mmHg (50.9 kPa) close to the outer retinal limit (Bruch's membrane). According to estimates on the basis of the diffusion distances determined from sections of the retina (approximately 436 microm at the site of PO2 measurement) and literature data on specific oxygen consumption, the in vivo determined values would be sufficient to cover the oxygen demand of the retina with some safety margin. For a clear and direct in-tissue-test as to the involvement of the Root effect, an isolated in vitro eye preparation was established in order to avoid the problem of indirect blood supply to the eye from the dorsal aorta only via the pseudobranch, a hemibranch thought to modulate blood composition before entry of the eye. Any humoral effects (e.g. catecholamines) were eliminated by perfusing isolated eyes

  7. The influence of cannabinoids on learning and memory processes of the dorsal striatum.

    Science.gov (United States)

    Goodman, Jarid; Packard, Mark G

    2015-11-01

    Extensive evidence indicates that the mammalian endocannabinoid system plays an integral role in learning and memory. Our understanding of how cannabinoids influence memory comes predominantly from studies examining cognitive and emotional memory systems mediated by the hippocampus and amygdala, respectively. However, recent evidence suggests that cannabinoids also affect habit or stimulus-response (S-R) memory mediated by the dorsal striatum. Studies implementing a variety of maze tasks in rats indicate that systemic or intra-dorsolateral striatum infusions of cannabinoid receptor agonists or antagonists impair habit memory. In mice, cannabinoid 1 (CB1) receptor knockdown can enhance or impair habit formation, whereas Δ(9)THC tolerance enhances habit formation. Studies in human cannabis users also suggest an enhancement of S-R/habit memory. A tentative conclusion based on the available data is that acute disruption of the endocannabinoid system with either agonists or antagonists impairs, whereas chronic cannabinoid exposure enhances, dorsal striatum-dependent S-R/habit memory. CB1 receptors are required for multiple forms of striatal synaptic plasticity implicated in memory, including short-term and long-term depression. Interactions with the hippocampus-dependent memory system may also have a role in some of the observed effects of cannabinoids on habit memory. The impairing effect often observed with acute cannabinoid administration argues for cannabinoid-based treatments for human psychopathologies associated with a dysfunctional habit memory system (e.g. post-traumatic stress disorder and drug addiction/relapse). In addition, the enhancing effect of repeated cannabinoid exposure on habit memory suggests a novel neurobehavioral mechanism for marijuana addiction involving the dorsal striatum-dependent memory system. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Dorsal root ganglion stimulation attenuates the BOLD signal response to noxious sensory input in specific brain regions: Insights into a possible mechanism for analgesia.

    Science.gov (United States)

    Pawela, Christopher P; Kramer, Jeffery M; Hogan, Quinn H

    2017-02-15

    Targeted dorsal root ganglion (DRG) electrical stimulation (i.e. ganglionic field stimulation - GFS) is an emerging therapeutic approach to alleviate chronic pain. Here we describe blood oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to noxious hind-limb stimulation in a rat model that replicates clinical GFS using an electrode implanted adjacent to the DRG. Acute noxious sensory stimulation in the absence of GFS caused robust BOLD fMRI response in brain regions previously associated with sensory and pain-related response, such as primary/secondary somatosensory cortex, retrosplenial granular cortex, thalamus, caudate putamen, nucleus accumbens, globus pallidus, and amygdala. These regions differentially demonstrated either positive or negative correlation to the acute noxious stimulation paradigm, in agreement with previous rat fMRI studies. Therapeutic-level GFS significantly attenuated the global BOLD response to noxious stimulation in these regions. This BOLD signal attenuation persisted for 20minutes after the GFS was discontinued. Control experiments in sham-operated animals showed that the attenuation was not due to the effect of repetitive noxious stimulation. Additional control experiments also revealed minimal BOLD fMRI response to GFS at therapeutic intensity when presented in a standard block-design paradigm. High intensity GFS produced a BOLD signal map similar to acute noxious stimulation when presented in a block-design. These findings are the first to identify the specific brain region responses to neuromodulation at the DRG level and suggest possible mechanisms for GFS-induced treatment of chronic pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Biological constraints limit the use of rapamycin-inducible FKBP12-Inp54p for depleting PIP2 in dorsal root ganglia neurons.

    Science.gov (United States)

    Coutinho-Budd, Jaeda C; Snider, Samuel B; Fitzpatrick, Brendan J; Rittiner, Joseph E; Zylka, Mark J

    2013-09-08

    Rapamycin-induced translocation systems can be used to manipulate biological processes with precise temporal control. These systems are based on rapamycin-induced dimerization of FK506 Binding Protein 12 (FKBP12) with the FKBP Rapamycin Binding (FRB) domain of mammalian target of rapamycin (mTOR). Here, we sought to adapt a rapamycin-inducible phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphatase (Inp54p) system to deplete PIP2 in nociceptive dorsal root ganglia (DRG) neurons. We genetically targeted membrane-tethered CFP-FRBPLF (a destabilized FRB mutant) to the ubiquitously expressed Rosa26 locus, generating a Rosa26-FRBPLF knockin mouse. In a second knockin mouse line, we targeted Venus-FKBP12-Inp54p to the Calcitonin gene-related peptide-alpha (CGRPα) locus. We hypothesized that after intercrossing these mice, rapamycin treatment would induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in CGRP+ DRG neurons. In control experiments with cell lines, rapamycin induced translocation of Venus-FKBP12-Inp54p to the plasma membrane, and subsequent depletion of PIP2, as measured with a PIP2 biosensor. However, rapamycin did not induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in FRBPLF-expressing DRG neurons (in vitro or in vivo). Moreover, rapamycin treatment did not alter PIP2-dependent thermosensation in vivo. Instead, rapamycin treatment stabilized FRBPLF in cultured DRG neurons, suggesting that rapamycin promoted dimerization of FRBPLF with endogenous FKBP12. Taken together, our data indicate that these knockin mice cannot be used to inducibly deplete PIP2 in DRG neurons. Moreover, our data suggest that high levels of endogenous FKBP12 could compete for binding to FRBPLF, hence limiting the use of rapamycin-inducible systems to cells with low levels of endogenous FKBP12.

  10. Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9

    Directory of Open Access Journals (Sweden)

    Berta Temugin

    2012-03-01

    Full Text Available Abstract Background Activation of spinal cord glial cells such as microglia and astrocytes has been shown to regulate chronic opioid-induced antinociceptive tolerance and hyperalgesia, due to spinal up-regulation of the proinflammatory cytokines such as interleukin-1 beta (IL-1β. Matrix metalloprotease-9 (MMP-9 has been implicated in IL-1β activation in neuropathic pain. However, it is unclear whether acute opioid treatment can activate glial cells in the peripheral nervous system. We examined acute morphine-induced activation of satellite glial cells (SGCs and up-regulation of IL-1β in dorsal root ganglia (DRGs, and further investigated the involvement of MMP-9 in these opioid-induced peripheral changes. Results Subcutaneous morphine injection (10 mg/kg induced robust peripheral glial responses, as evidenced by increased GFAP expression in DRGs but not in spinal cords. The acute morphine-induced GFAP expression is transient, peaking at 2 h and declining after 3 h. Acute morphine treatment also increased IL-1β immunoreactivity in SGCs and IL-1β activation in DRGs. MMP-9 and GFAP are expressed in DRG neurons and SGCs, respectively. Confocal analysis revealed a close proximity of MMP-9 and GFAP immunostaining. Importantly, morphine-induced DRG up-regulation of GFAP expression and IL-1β activation was abolished after Mmp9 deletion or naloxone pre-treatment. Finally, intrathecal injections of IL-1β-selective siRNA not only reduced DRG IL-1β expression but also prolonged acute morphine-induced analgesia. Conclusions Acute morphine induces opioid receptors- and MMP-9-dependent up-regulation of GFAP expression and IL-1β activation in SGCs of DRGs. MMP-9 could mask and shorten morphine analgesia via peripheral neuron-glial interactions. Targeting peripheral glial activation might prolong acute opioid analgesia.

  11. Anti-oxidative and anti-inflammatory effects of cinnamaldehyde on protecting high glucose-induced damage in cultured dorsal root ganglion neurons of rats.

    Science.gov (United States)

    Yang, Dan; Liang, Xiao-Chun; Shi, Yue; Sun, Qing; Liu, Di; Liu, Wei; Zhang, Hong

    2016-01-01

    To examine the mechanism underlying the beneficial role of cinnamaldehyde on oxidative damage and apoptosis in high glucose (HG)-induced dorsal root ganglion (DRG) neurons in vitro. HG-treated DRG neurons were developed as an in vitro model of diabetic neuropathy. The neurons were randomly divided into five groups: the control group, the HG group and the HG groups treated with 25, 50 and 100 nmol/L cinnamaldehyde, respectively. Cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and apoptosis rate was evaluated by the in situ TdT-mediated dUTP nick end labeling (TUNEL) assay. The intracellular level of reactive oxygen species (ROS) was measured with flow cytometry. Expression of nuclear factor-kappa B (NF-κB), inhibitor of κB (IκB), phosphorylated IκB (p-IκB), tumor necrosis factor (TNF)-α, interleukin-6 (IL-6) and caspase-3 were determined by western blotting and real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) were also measured by western blotting. Cinnamaldehyde reduced HG-induced loss of viability, apoptosis and intracellular generation of ROS in the DRG neurons via inhibiting NF-κB activity. The western blot assay results showed that the HG-induced elevated expressions of NF-κB, IκB and p-IκB were remarkably reduced by cinnamaldehyde treatment in a dose-dependent manner (P neurons, but also lowered the elevated IL-6, TNF-α, cyclo-oxygenase and inducible nitric oxide synthase levels, indicating a reduction in inflammatory damage. Cinnamaldehyde protected DRG neurons from the deleterious effects of HG through inactivation of NF-κB pathway but not through activation of Nrf2/HO-1. And thus cinnamaldehyde may have potential application as a treatment for DPN.

  12. Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons.

    Science.gov (United States)

    Fukuoka, Tetsuo; Kobayashi, Kimiko; Yamanaka, Hiroki; Obata, Koichi; Dai, Yi; Noguchi, Koichi

    2008-09-10

    We compared the distribution of the alpha-subunit mRNAs of voltage-gated sodium channels Nav1.1-1.3 and Nav1.6-1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naïve DRG, the expression of Nav1.1 and Nav1.6 was restricted to A-fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, -1.8, and -1.9 mRNAs were more abundant in C-fiber neurons compared with A-fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and -1.9 were preferentially expressed by TrkA neurons, other alpha-subunits were expressed independently of TrkA expression. Actually, all IB4(+) neurons expressed both Nav1.8 and -1.9, and relatively limited subpopulations of IB4(+) neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naïve DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up-regulated mainly in A-fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF) reversed this up-regulation, the Nav1.3 induction was independent of either TrkA or GFRalpha1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply. (c) 2008 Wiley-Liss, Inc.

  13. Differential expression of ATP7A, ATP7B and CTR1 in adult rat dorsal root ganglion tissue

    Directory of Open Access Journals (Sweden)

    Ip Virginia

    2010-09-01

    Full Text Available Abstract Background ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg or drug vehicle twice weekly for 8 weeks. Results In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated heavy neurofilament subunit (pNF-H. High levels of CTR1 mRNA were detected in all tissues from healthy control animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them. Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals. Conclusions In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or ATP7B. The neuron subtype-specific and largely non

  14. Identification of key genes and pathways associated with neuropathic pain in uninjured dorsal root ganglion by using bioinformatic analysis

    Directory of Open Access Journals (Sweden)

    Chen CJ

    2017-11-01

    Full Text Available Chao-Jin Chen,* De-Zhao Liu,* Wei-Feng Yao, Yu Gu, Fei Huang, Zi-Qing Hei, Xiang Li Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Purpose: Neuropathic pain is a complex chronic condition occurring post-nervous system damage. The transcriptional reprogramming of injured dorsal root ganglia (DRGs drives neuropathic pain. However, few comparative analyses using high-throughput platforms have investigated uninjured DRG in neuropathic pain, and potential interactions among differentially expressed genes (DEGs and pathways were not taken into consideration. The aim of this study was to identify changes in genes and pathways associated with neuropathic pain in uninjured L4 DRG after L5 spinal nerve ligation (SNL by using bioinformatic analysis.Materials and methods: The microarray profile GSE24982 was downloaded from the Gene Expression Omnibus database to identify DEGs between DRGs in SNL and sham rats. The prioritization for these DEGs was performed using the Toppgene database followed by gene ontology and pathway enrichment analyses. The relationships among DEGs from the protein interactive perspective were analyzed using protein–protein interaction (PPI network and module analysis. Real-time polymerase chain reaction (PCR and Western blotting were used to confirm the expression of DEGs in the rodent neuropathic pain model.Results: A total of 206 DEGs that might play a role in neuropathic pain were identified in L4 DRG, of which 75 were upregulated and 131 were downregulated. The upregulated DEGs were enriched in biological processes related to transcription regulation and molecular functions such as DNA binding, cell cycle, and the FoxO signaling pathway. Ctnnb1 protein had the highest connectivity degrees in the PPI network. The in vivo studies also validated that mRNA and protein levels of Ctnnb1 were

  15. Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming.

    Science.gov (United States)

    Maia, Anabela; Lauder, George V; Wilga, Cheryl D

    2017-11-01

    A key feature of fish functional design is the presence of multiple fins that allow thrust vectoring and redirection of fluid momentum to contribute to both steady swimming and maneuvering. A number of previous studies have analyzed the function of dorsal fins in teleost fishes in this context, but the hydrodynamic function of dorsal fins in freely swimming sharks has not been analyzed, despite the potential for differential functional roles between the anterior and posterior dorsal fins. Previous anatomical research has suggested a primarily stabilizing role for shark dorsal fins. We evaluated the generality of this hypothesis by using time-resolved particle image velocimetry to record water flow patterns in the wake of both the anterior and posterior dorsal fins in two species of freely swimming sharks: bamboo sharks ( Chiloscyllium plagiosum ) and spiny dogfish ( Squalus acanthias ). Cross-correlation analysis of consecutive images was used to calculate stroke-averaged mean longitudinal and lateral velocity components, and vorticity. In spiny dogfish, we observed a velocity deficit in the wake of the first dorsal fin and flow acceleration behind the second dorsal fin, indicating that the first dorsal fin experiences net drag while the second dorsal fin can aid in propulsion. In contrast, the wake of both dorsal fins in bamboo sharks displayed increased net flow velocity in the majority of trials, reflecting a thrust contribution to steady swimming. In bamboo sharks, fluid flow in the wake of the second dorsal fin had higher absolute average velocity than that for first dorsal fin, and this may result from a positive vortex interaction between the first and second dorsal fins. These data suggest that the first dorsal fin in spiny dogfish has primarily a stabilizing function, while the second dorsal fin has a propulsive function. In bamboo sharks, both dorsal fins can contribute thrust and should be considered as propulsive adjuncts to the body during steady

  16. Novelty, Stress, and Biological Roots in Human Market Behavior

    Directory of Open Access Journals (Sweden)

    Alexey Sarapultsev

    2014-02-01

    Full Text Available Although studies examining the biological roots of human behavior have been conducted since the seminal work Kahneman and Tversky, crises and panics have not disappeared. The frequent occurrence of various types of crises has led some economists to the conviction that financial markets occasionally praise irrational judgments and that market crashes cannot be avoided a priori (Sornette 2009; Smith 2004. From a biological point of view, human behaviors are essentially the same during crises accompanied by stock market crashes and during bubble growth when share prices exceed historic highs. During those periods, most market participants see something new for themselves, and this inevitably induces a stress response in them with accompanying changes in their endocrine profiles and motivations. The result is quantitative and qualitative changes in behavior (Zhukov 2007. An underestimation of the role of novelty as a stressor is the primary shortcoming of current approaches for market research. When developing a mathematical market model, it is necessary to account for the biologically determined diphasisms of human behavior in everyday low-stress conditions and in response to stressors. This is the only type of approach that will enable forecasts of market dynamics and investor behaviors under normal conditions as well as during bubbles and panics.

  17. The sea anemone Bunodosoma caissarum toxin BcIII modulates the sodium current kinetics of rat dorsal root ganglia neurons and is displaced in a voltage-dependent manner.

    Science.gov (United States)

    Salceda, Emilio; López, Omar; Zaharenko, André J; Garateix, Anoland; Soto, Enrique

    2010-03-01

    Sea anemone toxins bind to site 3 of the sodium channels, which is partially formed by the extracellular linker connecting S3 and S4 segments of domain IV, slowing down the inactivation process. In this work we have characterized the actions of BcIII, a sea anemone polypeptide toxin isolated from Bunodosoma caissarum, on neuronal sodium currents using the patch clamp technique. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study (n=65). The main effects of BcIII were a concentration-dependent increase in the sodium current inactivation time course (IC(50)=2.8 microM) as well as an increase in the current peak amplitude. BcIII did not modify the voltage at which 50% of the channels are activated or inactivated, nor the reversal potential of sodium current. BcIII shows a voltage-dependent action. A progressive acceleration of sodium current fast inactivation with longer conditioning pulses was observed, which was steeper as more depolarizing were the prepulses. The same was observed for other two anemone toxins (CgNa, from Condylactis gigantea and ATX-II, from Anemonia viridis). These results suggest that the binding affinity of sea anemone toxins may be reduced in a voltage-dependent manner, as has been described for alpha-scorpion toxins. (c) 2009 Elsevier Inc. All rights reserved.

  18. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    International Nuclear Information System (INIS)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-01-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25 x 25 x 25)μm 3 . The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively. (orig.)

  19. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    Science.gov (United States)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-06-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25×25×25)μm 3. The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively.

  20. Opposing dorsal/ventral stream dynamics during figure-ground segregation.

    Science.gov (United States)

    Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F

    2014-02-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.

  1. The human dorsal spinocerebellar tract: myelinated fiber spectrum and fiber density in controls, autosomal dominant spinocerebellar atrophy, Huntington's chorea, radiation myelopathy, and diseases with peripheral sensory nerve involvement

    Energy Technology Data Exchange (ETDEWEB)

    Ringelstein, E.B.; Schroeder, J.M.

    1982-01-01

    The human dorsal spinocerebellar tract (DSCT) was evaluated morphometrically in 14 control cases of different age and sex using semithin sections of epon-embedded cross sections from the C3, T5, and T10 segments of the spinal cord. A bimodal fiber spectrum was revealed with one peak at 2-3 microns, and a second, broader peak at about 6-8 microns. Fiber density at C3 was 11,188 fibers/mm2 and at T5, 11,156 fibers/mm2. Regression analysis relating fiber density to age disclosed a highly significant loss of myelinated fibers at T5 amounting to about 2.5% per decade. A severe reduction of fiber density and a distinct change in the fiber spectrum with predominant loss of large myelinated fibers were noted in a case of autosomal dominant spinocerebellar atrophy with late onset, and, to a lesser degree, in a case of Huntington's chorea. A subtotal loss of fibers with a persistent normal distribution of fiber sizes was observed rostral to a focus of severe radiation myelopathy, indicating Wallerian degeneration of large numbers of fibers, and a reduction of fiber diameters caudal to the lesion, suggesting retrograde fiber change. By contrast, no primary or transneural changes in the DSCT were detected in six cases of long-term alcoholism, carcinomatous sensory neuropathy, and neurofibromatosis in spite of the involvement of numerous nerve roots.

  2. Periostite metacarpiana dorsal: incidência e fatores pré-disponentes

    Directory of Open Access Journals (Sweden)

    Flávio Gomes de Oliveira

    2006-04-01

    Full Text Available Forty two 2-year-old thoroughbreds were examined clinically at intervals of 15 days during their training for the first race to determine the incidence and the predisposing factors of dorsal metacarpal disease. During the first year 25 horses were followed during 2 months and in the second year the follow up was done for 4 months in 17 . Horses' data like gender, average speed, speed exercise work and trainer were also collected. Dorsal metacarpal disease was diagnosed in 28% and 70,6% of the 2 year-old thoroughbreds in the first and second year of the study, respectively. Total incidence was 45%. The incidence and average speed was not affected by gender. The average speed achieved by affected and none affected horses remained between 16 and 18m/s. On 500 and 700m speed exercise, the average speed of affected horses was higher than of none affected ones (p<0,05. Ten out of 19 horses showed dorsal metacarpal disease signs at the distance of 700m. There was significant difference between trainers regarding the incidence of dorsal metacarpal disease and average speed of their horses. 2-year-olds under care of trainers whose horses had the highest incidence o dorsal metacarpal disease also were the fastest one's. Therefore, fast speed associated with longer distances (700m and trainer are factors that predispose young horses to dorsal metacarpal disease.

  3. Predicting Early Reading Skills from Pre-Reading Measures of Dorsal Stream Functioning

    Science.gov (United States)

    Kevan, Alison; Pammer, Kristen

    2009-01-01

    It is well documented that good reading skills may be dependent upon adequate dorsal stream processing. However, the degree to which dorsal stream deficits play a causal role in reading failure has not been established. This study used coherent motion and visual frequency doubling to examine whether dorsal stream sensitivity measured before the…

  4. Evaluation of bacterial leakage of four root- end filling materials: Gray Pro Root MTA, White Pro Root MTA, Root MTA and Portland Cement (type I

    Directory of Open Access Journals (Sweden)

    Zarabian M.

    2005-07-01

    Full Text Available Background and Aim: Today several materials have been used for root- end filling in endodontic surgery. Optimal properties of Pro Root MTA in in-vitro and in-vivo studies has been proven. On the other hand, based on some studies, Root MTA (Iranian Pro Root MTA and Portland cement are similar to Pro Root MTA in physical and biologic properties. The aim of this study was to evaluate bacterial leakage (amount and mean leakage time of four root- end filling materials. Materials and Methods: In this experimental in-vitro study, seventy six extracted single- rooted human teeth were randomly divided into six groups for root-end filling with gray Pro Root MTA, white Pro Root MTA, Root MTA (Iranian Pro Root MTA, Portland Cement (type I and positive and negative control groups. Root canals were instrumented using the step- back technique. Root- end filling materials were placed in 3mm ultra sonic retro preparations. Samples and microleakage model system were sterilized in autoclave. The apical 3-4 mm of the roots were immersed in phenol red with 3% lactose broth culture medium. The coronal access of each specimen was inoculated every 24h with a suspension of Streptococcus sanguis (ATCC 10556. Culture media were observed every 24h for colour change indicating bacterial contamination for 60 days. Statistical analysis was performed using log- rank test with P<0.05 as the limit of significance. Results: At the end of study 50%, 56.25%, 56.25% and 50% of specimens filled with Gray Pro Root MTA, White Pro Root MTA. Root MTA and Portland Cement (type I had evidence of leakage respectively. The mean leakage time was 37.19±6.29, 36.44±5.81, 37.69±5.97 and 34.81±6.67 days respectively. Statistical analysis of data showed no significant difference among the leakage (amount and mean leakage time of the four tested root- end filling materials (P=0.9958. Conclusion: Based on the results of this study, there were no significant differences in leakage among the four

  5. Lignans from the roots of Urtica dioica and their metabolites bind to human sex hormone binding globulin (SHBG).

    Science.gov (United States)

    Schöttner, M; Gansser, D; Spiteller, G

    1997-12-01

    Polar extracts of the stinging nettle (Urtica dioica L.) roots contain the ligans (+)-neoolivil, (-)-secoisolariciresinol, dehydrodiconiferyl alcohol, isolariciresinol, pinoresinol, and 3,4-divanillyltetrahydrofuran. These compounds were either isolated from Urtica roots, or obtained semisynthetically. Their affinity to human sex hormone binding globulin (SHBG) was tested in an in vitro assay. In addition, the main intestinal transformation products of plant lignans in humans, enterodiol and enterolactone, together with enterofuran were checked for their activity. All lignans except (-)-pinoresinol developed a binding affinity to SHBG in the in vitro assay. The affinity of (-)-3,4-divanillyltetrahydrofuran was outstandingly high. These findings are discussed with respect to potential beneficial effects of plant lignans on benign prostatic hyperplasia (BPH).

  6. Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts.

    Science.gov (United States)

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio

    2012-01-01

    A MeOH extract from the roots of Taraxacum platycarpum has shown significant effects on the proliferation of normal human skin fibroblasts. Chemical analysis of the extract resulted in the isolation of 26 compounds, including eight new triterpenes, one new sesquiterpene glycoside, and seventeen known compounds. The structure of each new compound was established using NMR spectroscopy. Some triterpenes had a significant effect on the proliferation of normal human skin fibroblasts.

  7. Diffusion-weighted magnetic resonance imaging of symptomatic nerve root of patients with lumbar disk herniation

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Yawara; Ohtori, Seiji; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Orita, Sumihisa; Kamoda, Hiroto; Arai, Gen; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Ochiai, Nobuyasu; Kishida, Shunji; Inoue, Gen; Takahashi, Kazuhisa [Chiba University, Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba (Japan); Masuda, Yoshitada; Ochi, Shigehiro; Kikawa, Takashi [Chiba University Hospital, Department of Radiology, Chiba (Japan); Toyone, Tomoaki [Teikyo University Chiba Medical Center, Department of Orthopaedic Surgery, Chiba (Japan); Takaso, Masashi [Kitasato University, Department of Orthopaedic Surgery, School of Medicine, Sagamihara City, Kanagawa (Japan); Aoki, Yasuchika [Chiba Rosai Hospital, Department of Orthopedic Surgery, Ichihara, Chiba (Japan)

    2011-09-15

    Diffusion-weighted imaging (DWI) can provide valuable structural information that may be useful for evaluating pathological changes of the lumbar nerve root. Diffusion-weighted magnetic resonance (MR) neurography has recently been introduced as an alternative way to visualize nerves, but to date, quantitative DWI and MR neurography have not been applied to evaluate the pathology of lumbar nerve roots. Our purpose was to visualize lumbar nerve roots and to analyze their morphology by MR neurography, and to measure the apparent diffusion coefficient (ADC) of lumbar nerve roots compressed by herniated disks using 1.5-T MR imaging. Ten consecutive patients (median age, 48.0 and range, 20-72 years) with monoradicular symptoms caused by a lumbar herniated disk and 14 healthy volunteers were studied. Regions of interests were placed on the lumbar roots at dorsal root ganglia (DRG) and distal spinal nerves on DWI to quantify mean ADC values. The spinal nerve roots were also visualized by MR neurography. In the patients, mean ADC values were significantly greater in the compressed DRG and distal spinal nerves than in intact nerves. MR neurography also showed abnormalities such as nerve swelling at and below the compression in the symptomatic nerve root. Increased ADC values were considered to be because of edema and Wallerian degeneration of compressed nerve roots. DWI is a potential tool for analysis of the pathophysiology of lumbar nerve roots compressed by herniated disks. (orig.)

  8. Diffusion-weighted magnetic resonance imaging of symptomatic nerve root of patients with lumbar disk herniation

    International Nuclear Information System (INIS)

    Eguchi, Yawara; Ohtori, Seiji; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Orita, Sumihisa; Kamoda, Hiroto; Arai, Gen; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Ochiai, Nobuyasu; Kishida, Shunji; Inoue, Gen; Takahashi, Kazuhisa; Masuda, Yoshitada; Ochi, Shigehiro; Kikawa, Takashi; Toyone, Tomoaki; Takaso, Masashi; Aoki, Yasuchika

    2011-01-01

    Diffusion-weighted imaging (DWI) can provide valuable structural information that may be useful for evaluating pathological changes of the lumbar nerve root. Diffusion-weighted magnetic resonance (MR) neurography has recently been introduced as an alternative way to visualize nerves, but to date, quantitative DWI and MR neurography have not been applied to evaluate the pathology of lumbar nerve roots. Our purpose was to visualize lumbar nerve roots and to analyze their morphology by MR neurography, and to measure the apparent diffusion coefficient (ADC) of lumbar nerve roots compressed by herniated disks using 1.5-T MR imaging. Ten consecutive patients (median age, 48.0 and range, 20-72 years) with monoradicular symptoms caused by a lumbar herniated disk and 14 healthy volunteers were studied. Regions of interests were placed on the lumbar roots at dorsal root ganglia (DRG) and distal spinal nerves on DWI to quantify mean ADC values. The spinal nerve roots were also visualized by MR neurography. In the patients, mean ADC values were significantly greater in the compressed DRG and distal spinal nerves than in intact nerves. MR neurography also showed abnormalities such as nerve swelling at and below the compression in the symptomatic nerve root. Increased ADC values were considered to be because of edema and Wallerian degeneration of compressed nerve roots. DWI is a potential tool for analysis of the pathophysiology of lumbar nerve roots compressed by herniated disks. (orig.)

  9. Role of PAF receptor in proinflammatory cytokine expression in the dorsal root ganglion and tactile allodynia in a rodent model of neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Shigeo Hasegawa

    Full Text Available BACKGROUND: Neuropathic pain is a highly debilitating chronic pain following damage to peripheral sensory neurons and is often resistant to all treatments currently available, including opioids. We have previously shown that peripheral nerve injury induces activation of cytosolic phospholipase A(2 (cPLA(2 in injured dorsal root ganglion (DRG neurons that contribute to tactile allodynia, a hallmark of neuropathic pain. However, lipid mediators downstream of cPLA(2 activation to produce tactile allodynia remain to be determined. PRINCIPAL FINDINGS: Here we provide evidence that platelet-activating factor (PAF is a potential candidate. Pharmacological blockade of PAF receptors (PAFRs reduced the development and expression of tactile allodynia following nerve injury. The expression of PAFR mRNA was increased in the DRG ipsilateral to nerve injury, which was seen mainly in macrophages. Furthermore, mice lacking PAFRs showed a reduction of nerve injury-induced tactile allodynia and, interestingly, a marked suppression of upregulation of tumor necrosis factor alpha (TNFalpha and interleukin-1beta (IL-1beta expression in the injured DRG, crucial proinflammatory cytokines involved in pain hypersensitivity. Conversely, a single injection of PAF near the DRG of naïve rats caused a decrease in the paw withdrawal threshold to mechanical stimulation in a dose-dependent manner and an increase in the expression of mRNAs for TNFalpha and IL-1beta, both of which were inhibited by pretreatment with a PAFR antagonist. CONCLUSIONS: Our results indicate that the PAF/PAFR system has an important role in production of TNFalpha and IL-1beta in the DRG and tactile allodynia following peripheral nerve injury and suggest that blocking PAFRs may be a viable therapeutic strategy for treating neuropathic pain.

  10. Age-related changes in the intrinsic functional connectivity of the human ventral vs. dorsal striatum from childhood to middle age

    Directory of Open Access Journals (Sweden)

    James N. Porter

    2015-02-01

    Full Text Available The striatum codes motivated behavior. Delineating age-related differences within striatal circuitry can provide insights into neural mechanisms underlying ontogenic behavioral changes and vulnerabilities to mental disorders. To this end, a dual ventral/dorsal model of striatal function was examined using resting state intrinsic functional connectivity (iFC imaging in 106 healthy individuals, ages 9–44. Broadly, the dorsal striatum (DS is connected to prefrontal and parietal cortices and contributes to cognitive processes; the ventral striatum (VS is connected to medial orbitofrontal and anterior cingulate cortices, and contributes to affective valuation and motivation. Findings revealed patterns of age-related changes that differed between VS and DS iFCs. We found an age-related increase in DS iFC with posterior cingulate cortex (pCC that stabilized after the mid-twenties, but a decrease in VS iFC with anterior insula (aIns and dorsal anterior cingulate cortex (dACC that persisted into mid-adulthood. These distinct developmental trajectories of VS vs. DS iFC might underlie adolescents’ unique behavioral patterns and vulnerabilities to psychopathology, and also speaks to changes in motivational networks that extend well past 25 years old.

  11. Morphologic characterization of meniscal root ligaments in the human knee with magnetic resonance microscopy at 11.7 and 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, Department of Radiology, San Diego, CA (United States); University of California, San Diego Medical Center, Department of Radiology, San Diego, CA (United States); Biswas, Reni; DiCamillo, Paul; Statum, Sheronda; Tafur, Monica; Bydder, Graeme M. [University of California, San Diego Medical Center, Department of Radiology, San Diego, CA (United States)

    2014-10-15

    To determine the feasibility of using MR microscopy to characterize the root ligaments of the human knee at both ultra-high-field (11.7 T) and high-field (3 T) strengths. Seven fresh cadaveric knees were used for this study. Six specimens were imaged at 11.7 T and one specimen at 3 T using isotropic or near-isotropic voxels. Histologic correlation was performed on the posteromedial root ligament of one specimen. Meniscal root ligament shape, signal intensity, and ultrastructure were characterized. High-resolution, high-contrast volumetric images were generated from both MR systems. Meniscal root ligaments were predominantly oval in shape. Increased signal intensity was most evident at the posteromedial and posterolateral root ligaments. On the specimen that underwent histologic preparation, increased signal intensity corresponded to regions of enthesis fibrocartilage. Collagen fascicles were continuous between the menisci and root ligaments. Predominantly horizontal meniscal radial tie fibers continued into the root ligaments as vertical endoligaments. MR microscopy can be used to characterize and delineate the distinct ultrastructure of the root ligaments on both ultra-high-field- and high-field-strength MR systems. (orig.)

  12. The Locus Coeruleus–Norepinephrine System Mediates Empathy for Pain through Selective Up-Regulation of P2X3 Receptor in Dorsal Root Ganglia in Rats

    Directory of Open Access Journals (Sweden)

    Yun-Fei Lü

    2017-09-01

    Full Text Available Empathy for pain (vicariously felt pain, an ability to feel, recognize, understand and share the painful emotions of others, has been gradually accepted to be a common identity in both humans and rodents, however, the underlying neural and molecular mechanisms are largely unknown. Recently, we have developed a rat model of empathy for pain in which pain can be transferred from a cagemate demonstrator (CD in pain to a naïve cagemate observer (CO after 30 min dyadic priming social interaction. The naïve CO rats display both mechanical pain hypersensitivity (hyperalgesia and enhanced spinal nociception. Chemical lesions of bilateral medial prefrontal cortex (mPFC abolish the empathic pain response completely, suggesting existence of a top-down facilitation system in production of empathy for pain. However, the social transfer of pain was not observed in non-cagemate observer (NCO after dyadic social interaction with a non-cagemate demonstrator (NCD in pain. Here we showed that dyadic social interaction with a painful CD resulted in elevation of circulating norepinephrine (NE and increased neuronal activity in the locus coeruleus (LC in the CO rats. Meanwhile, CO rats also had over-expression of P2X3, but not TRPV1, in the dorsal root ganglia (DRG. Chemical lesion of the LC-NE neurons by systemic DSP-4 and pharmacological inhibition of central synaptic release of NE by clonidine completely abolished increase in circulating NE and P2X3 receptor expression, as well as the sympathetically-maintained development of empathic mechanical hyperalgesia. However, in the NCO rats, neither the LC-NE neuronal activity nor the P2X3 receptor expression was altered after dyadic social interaction with a painful NCD although the circulating corticosterone and NE were elevated. Finally, in the periphery, both P2X3 receptor and α1 adrenergic receptor were found to be involved in the development of empathic mechanical hyperalgesia. Taken together with our previous

  13. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Liin, Sara I; Karlsson, Urban; Bentzen, Bo Hjorth

    2016-01-01

    the threshold current to evoke action potentials in dorsal root ganglion neurons. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid, and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes......, by shifting the conductance-versus-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μM). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. CONCLUSIONS: These findings suggest that circulating...... polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty...

  14. Effect of nerve injury on the number of dorsal root ganglion neurons and autotomy behavior in adult Bax-deficient mice

    Directory of Open Access Journals (Sweden)

    Lyu C

    2017-08-01

    Full Text Available Chuang Lyu,1,2 Gong-Wei Lyu,3 Aurora Martinez,4 Tie-Jun Sten Shi4 1State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China; 2Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; 3Department of Neurology, 1st Hospital of Harbin Medical University, Harbin, People’s Republic of China; 4Department of Biomedicine, University of Bergen, Bergen, Norway Background: The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice. Methods: A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery. Results: There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice. Conclusion: Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self

  15. Evaluation of Root Canal Morphology of Human Primary Mandibular ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... Keywords: Primary teeth, root canal, Vertucci classification. Evaluation of Root .... Radiology using CBCT; Veraviewepocs 3D R100/F40. (J Morita Mfg. Corp., .... maxillofacial structures by CBCT on a high resolution, and this ...

  16. Differentiation state determines neural effects on microvascular endothelial cells

    International Nuclear Information System (INIS)

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-01-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. ► Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. ► Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell production of nitric oxide. ► Neural progenitor cells and dorsal root

  17. Preclinical characterization of three transient receptor potential vanilloid receptor 1 antagonists for early use in human intradermal microdose analgesic studies.

    Science.gov (United States)

    Sjögren, E; Halldin, M M; Stålberg, O; Sundgren-Andersson, A K

    2018-05-01

    The transient receptor potential vanilloid receptor 1 (TRPV1) is a nonselective cation channel involved in the mediation of peripheral pain to the central nervous system. As such, the TRPV1 is an accessible molecular target that lends itself well to the understanding of nociceptive signalling. This study encompasses preclinical investigations of three molecules with the prospect to establish them as suitable analgesic model compounds in human intradermal pain relief studies. The inhibitory effectiveness was evaluated by means of in vitro assays, TRPV1 expressing Chinese hamster ovary cells (CHO-K1) and rat dorsal root ganglion cultures in fluorescent imaging plate reader and whole cell patch clamp systems, as well as in vivo by capsaicin-evoked pain-related behavioural response studies in rat. Secondary pharmacology, pharmacokinetics and preclinical safety were also assessed. In vitro, all three compounds were effective at inhibiting capsaicin-activated TRPV1. The concentration producing 50% inhibition (IC 50 ) determined was in the range of 3-32 nmol/L and 10-501 nmol/L using CHO-K1 and dorsal root ganglion cultures, respectively. In vivo, all compounds showed dose-dependent reduction in capsaicin-evoked pain-related behavioural responses in rat. None of the three compounds displayed any significant activity on any of the secondary targets tested. The compounds were also shown to be safe from a toxicological, drug metabolism and pharmacokinetic perspective, for usage in microgram doses in the human skin. The investigated model compounds displayed ideal compound characteristics as pharmacological and translational tools to address efficacy on the human native TRPV1 target in human skin in situ. This work details the pharmaceutical work-up of three TRPV1-active investigational compounds, to obtain regulatory approval, for subsequent use in humans. This fast and cost-effective preclinical development path may impact research beyond the pain management area, as

  18. In-vitro percutaneous absorption of losartan potassium in human skin and prediction of human skin permeability

    Directory of Open Access Journals (Sweden)

    Petkar K.C.

    2007-05-01

    Full Text Available This study describes the feasibility of transdermal controlled administration of Losartan potassium (LP across human cadaver skin. Study also defines the influence of capsaicin, sex and site of application on permeation characteristics and determined an appropriate animal model for human skin permeability. The permeation of LP of various formulations was studied using Keshary-Chein diffusion cell. Optimized controlled formulation (without capsaicin released 42.17% (±1.85 of LP in 12 hr whereas treatment formulation (with capsaicin 0.028 % w/v released 48.94% (±1.71 of LP with significant difference on null hypothesis. Influence of sex showed statistically significant difference for permeation of LP through male and female rats, as well as male and female mice across both the abdominal and dorsal sides of the skin (p<0.05. Similarly statistically significant differences were noted for permeation of LP across male and female mice abdomen-dorsal, but not for male rat abdomen-dorsal and female rat abdomen-dorsal. Furthermore, in-vitro permeation of LP across human skin was compared with the permeation across rat and mice skins. Male rat and male mice dorsal skin was found to have closer permeability characteristics to human than other skin membranes, but the Factor of Difference values were < 3 for all membranes which were used suggesting the membranes are good models for human skin permeability. In conclusion simple transdermal adhesive patches formulations incorporating high molecular weight of LP can deliver a dose in-vivo and proposed model skin membranes can be utilized for future pharmacokineic and toxicokinetic studies as well as metabolism studies of LP

  19. The attachment of V79 and human periodontal ligament fibroblasts on periodontally involved root surfaces following treatment with EDTA, citric acid, or tetracycline HCL: an SEM in vitro study.

    Science.gov (United States)

    Chandra, R Viswa; Jagetia, Ganesh Chandra; Bhat, K Mahalinga

    2006-02-15

    The present in vitro study has been designed to establish and compare the effects of citric acid, EDTA, and tetracycline HCl on human periodontally diseased roots on the structure, attachment, and orientation of V79 (primary Chinese hamster lung fibroblasts) cells and human periodontal ligament fibroblasts (HPDL). Commercially available V79 cells and HPDL derived from healthy human third molars were used in this study. These fibroblasts were left in solution for seven days in order to attain confluence. Forty single-rooted teeth were obtained from patients diagnosed with periodontitis. The crown part was removed under constant irrigation and the root was split vertically into two equal halves, thus, yielding 80 specimens. Following scaling and root planing, the specimens were washed with phosphate buffered saline (PBS) and kept in 50 microg/ml gentamycin sulphate solution for 24 hours. The root pieces were then treated as follows: citric acid at pH 1, 24% EDTA, or with a 10% solution of tetracycline HCl and were then placed in V79 fibroblast cultures and HPDL cultures. The specimens were harvested after four weeks and were fixed in 2.5% glutaraldehyde in PBS before preparation for scanning electron microscopy (SEM). The behavior of V79 cells was similar to that of human periodontal ligament cells on root conditioned surfaces. V79 and HPDL showed a healthy morphology on root surfaces treated with citric acid and EDTA and a relatively unhealthy appearance on root surfaces treated with tetracycline HCl and distilled water (control group). The results suggest the use of citric acid and EDTA as root conditioning agents favorably affects the migration, attachment, and morphology of fibroblasts on human root surfaces, which may play a significant role in periodontal healing and regeneration.

  20. Dorsal buccal mucosal graft urethroplasty for anterior urethral stricture by Asopa technique.

    Science.gov (United States)

    Pisapati, V L N Murthy; Paturi, Srimannarayana; Bethu, Suresh; Jada, Srikanth; Chilumu, Ramreddy; Devraj, Rahul; Reddy, Bhargava; Sriramoju, Vidyasagar

    2009-07-01

    Buccal mucosal graft (BMG) substitution urethroplasty has become popular in the management of intractable anterior urethral strictures with good results. Excellent long-term results have been reported by both dorsal and ventral onlay techniques. Asopa reported a successful technique for dorsal placement of BMG in long anterior urethral strictures through a ventral sagittal approach. To evaluate prospectively the results and advantages of dorsal BMG urethroplasty for recurrent anterior urethral strictures by a ventral sagittal urethrotomy approach (Asopa technique). From December 2002 to December 2007, a total of 58 men underwent dorsal BMG urethroplasty by a ventral sagittal urethrotomy approach for recurrent urethral strictures. Forty-five of these patients with a follow-up period of 12-60 mo were prospectively evaluated, and the results were analysed. The urethra was split twice at the site of the stricture both ventrally and dorsally without mobilising it from its bed, and the buccal mucosal graft was secured in the dorsal urethral defect. The urethra was then retubularised in one stage. The overall results were good (87%), with a mean follow-up period of 42 mo. Seven patients developed minor wound infection, and five patients developed fistulae. There were six recurrences (6:45, 13%) during the follow-up period of 12-60 mo. Two patients with a panurethral stricture and four with bulbar or penobulbar strictures developed recurrences and were managed by optical urethrotomy and self-dilatation. The medium-term results were as good as those reported with the dorsal urethrotomy approach. Long-term results from this and other series are awaited. More randomised trials and meta-analyses are needed to establish this technique as a procedure of choice in future. The ventral sagittal urethrotomy approach is easier to perform than the dorsal urethrotomy approach, has good results, and is especially useful in long anterior urethral strictures.

  1. Effect of gamma radiation and endodontic treatment on mechanical properties of human and bovine root dentin

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Veridiana Resende; Soares, Priscilla Barbosa Ferreira; Guimaraes, Carlla Martins; Schliebe, Lais Rani Sales Oliveira; Braga, Stella Sueli Lourenco; Soares, Carlos Jose, E-mail: carlosjsoares@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil)

    2016-11-15

    This study evaluated the effect of gamma radiation and endodontic treatment on the microhardness and flexural strength of human and bovine root dentin. Forty single rooted human teeth and forty bovine incisor teeth were collected, cleaned and stored in distilled water at 4 °C. The human and bovine teeth were divided into 4 groups (n=10) resulting from the combination of two study factors: first, regarding the endodontic treatment in 2 levels: with or without endodontic treatment; and second, radiotherapy in two levels: with or without radiotherapy by 60 Gy of Co-60 gamma radiation fractioned into 2 Gy daily doses five days per week. Each tooth was longitudinally sectioned in two parts; one-half was used for the three-point bending test and the other for the Knoop hardness test (KHN). Data were analyzed by 3-way ANOVA and Tukey HSD test (α=0.05). No significant difference was found for flexural strength values. The human dentin had significantly higher KHN than the bovine. The endodontic treatment and radiotherapy resulted in significantly lower KHN irrespective of tooth origin. The results indicated that the radiotherapy had deleterious effects on the microhardness of human and bovine dentin and this effect is increased by the interaction with endodontic therapy. The endodontic treatment adds additional negative effect on the mechanical properties of radiated tooth dentin; the restorative protocols should be designed taking into account this effect. (author)

  2. Effect of gamma radiation and endodontic treatment on mechanical properties of human and bovine root dentin

    International Nuclear Information System (INIS)

    Novais, Veridiana Resende; Soares, Priscilla Barbosa Ferreira; Guimaraes, Carlla Martins; Schliebe, Lais Rani Sales Oliveira; Braga, Stella Sueli Lourenco; Soares, Carlos Jose

    2016-01-01

    This study evaluated the effect of gamma radiation and endodontic treatment on the microhardness and flexural strength of human and bovine root dentin. Forty single rooted human teeth and forty bovine incisor teeth were collected, cleaned and stored in distilled water at 4 °C. The human and bovine teeth were divided into 4 groups (n=10) resulting from the combination of two study factors: first, regarding the endodontic treatment in 2 levels: with or without endodontic treatment; and second, radiotherapy in two levels: with or without radiotherapy by 60 Gy of Co-60 gamma radiation fractioned into 2 Gy daily doses five days per week. Each tooth was longitudinally sectioned in two parts; one-half was used for the three-point bending test and the other for the Knoop hardness test (KHN). Data were analyzed by 3-way ANOVA and Tukey HSD test (α=0.05). No significant difference was found for flexural strength values. The human dentin had significantly higher KHN than the bovine. The endodontic treatment and radiotherapy resulted in significantly lower KHN irrespective of tooth origin. The results indicated that the radiotherapy had deleterious effects on the microhardness of human and bovine dentin and this effect is increased by the interaction with endodontic therapy. The endodontic treatment adds additional negative effect on the mechanical properties of radiated tooth dentin; the restorative protocols should be designed taking into account this effect. (author)

  3. The issue of ventral versus dorsal approach in bulbar urethral ...

    African Journals Online (AJOL)

    E. Palminteri

    From surgical point of view, the Barbagli Dorsal Grafting by Dor- sal approach [8] gives a good support for the graft; Barbagli stated that his technique offers a wider augmentation than ventral or dorsal grafting using the ventral approach. The good spongiosum covering seems reduce the risk of fistula; in reality there is a ...

  4. bullwinkle and shark regulate dorsal-appendage morphogenesis in Drosophila oogenesis.

    Science.gov (United States)

    Tran, David H; Berg, Celeste A

    2003-12-01

    bullwinkle (bwk) regulates embryonic anteroposterior patterning and, through a novel germline-to-soma signal, morphogenesis of the eggshell dorsal appendages. We screened for dominant modifiers of the bullwinkle mooseantler eggshell phenotype and identified shark, which encodes an SH2-domain, ankyrin-repeat tyrosine kinase. At the onset of dorsal-appendage formation, shark is expressed in a punctate pattern in the squamous stretch cells overlying the nurse cells. Confocal microscopy with cell-type-specific markers demonstrates that the stretch cells act as a substrate for the migrating dorsal-appendage-forming cells and extend cellular projections towards them. Mosaic analyses reveal that shark is required in follicle cells for cell migration and chorion deposition. Proper shark RNA expression in the stretch cells requires bwk activity, while restoration of shark expression in the stretch cells suppresses the bwk dorsal-appendage phenotype. These results suggest that shark plays an important downstream role in the bwk-signaling pathway. Candidate testing implicates Src42A in a similar role, suggesting conservation with a vertebrate signaling pathway involving non-receptor tyrosine kinases.

  5. Attention modulates the dorsal striatum response to love stimuli.

    Science.gov (United States)

    Langeslag, Sandra J E; van der Veen, Frederik M; Röder, Christian H

    2014-02-01

    In previous functional magnetic resonance imaging (fMRI) studies concerning romantic love, several brain regions including the caudate and putamen have consistently been found to be more responsive to beloved-related than control stimuli. In those studies, infatuated individuals were typically instructed to passively view the stimuli or to think of the viewed person. In the current study, we examined how the instruction to attend to, or ignore the beloved modulates the response of these brain areas. Infatuated individuals performed an oddball task in which pictures of their beloved and friend served as targets and distractors. The dorsal striatum showed greater activation for the beloved than friend, but only when they were targets. The dorsal striatum actually tended to show less activation for the beloved than the friend when they were distractors. The longer the love and relationship duration, the smaller the response of the dorsal striatum to beloved-distractor stimuli was. We interpret our findings in terms of reinforcement learning. By virtue of using a cognitive task with a full factorial design, we show that the dorsal striatum is not activated by beloved-related information per se, but only by beloved-related information that is attended. Copyright © 2012 Wiley Periodicals, Inc.

  6. Electroacupuncture Reduces Carrageenan- and CFA-Induced Inflammatory Pain Accompanied by Changing the Expression of Nav1.7 and Nav1.8, rather than Nav1.9, in Mice Dorsal Root Ganglia.

    Science.gov (United States)

    Huang, Chun-Ping; Chen, Hsiang-Ni; Su, Hong-Lin; Hsieh, Ching-Liang; Chen, Wei-Hsin; Lai, Zhen-Rung; Lin, Yi-Wen

    2013-01-01

    Several voltage-gated sodium channels (Navs) from nociceptive nerve fibers have been identified as important effectors in pain signaling. The objective of this study is to investigate the electroacupuncture (EA) analgesia mechanism by changing the expression of Navs in mice dorsal root ganglia (DRG). We injected carrageenan and complete Freund's adjuvant (CFA) into the mice plantar surface of the hind paw to induce inflammation and examined the antinociception effect of EA at the Zusanli (ST36) acupoint at 2 Hz low frequency. Mechanical hyperalgesia was evaluated by using electronic von Frey filaments, and thermal hyperalgesia was assessed using Hargreaves' test. Furthermore, we observed the expression and quality of Navs in DRG neurons. Our results showed that EA reduced mechanical and thermal pain in inflammatory animal model. The expression of Nav1.7 and Nav1.8 was increased after 4 days of carrageenan- and CFA-elicited inflammatory pain and further attenuated by 2 Hz EA stimulation. The attenuation cannot be observed in Nav1.9 sodium channels. We demonstrated that EA at Zusanli (ST36) acupoint at 2 Hz low-frequency stimulation attenuated inflammatory pain accompanied by decreasing the expression of Nav1.7 and 1.8, rather than Nav1.9, sodium channels in peripheral DRG neurons.

  7. The dorsal thoracic fascia: anatomic significance with clinical applications in reconstructive microsurgery.

    Science.gov (United States)

    Kim, P S; Gottlieb, J R; Harris, G D; Nagle, D J; Lewis, V L

    1987-01-01

    The anatomic distribution and potential arterial flow patterns of the circumflex scapular artery were investigated by Microfil injection. These studies demonstrated that the circumflex scapular artery lies within the dorsal thoracic fascia, which plays a significant role in the circulation of the overlying skin and subcutaneous tissue. We conclude that scapular/parascapular flaps are fasciocutaneous flaps, the dorsal thoracic fascia can be transferred as a free flap without its overlying skin and subcutaneous tissue, and intercommunication exists between the myocutaneous perforators of the latissimus dorsi myocutaneous flap and the vascular plexus of the dorsal thoracic fascia. We present microvascular cases in which the vascular properties of the dorsal thoracic fascia facilitated wound closure with free fascia flaps or expanded cutaneous or myocutaneous flaps.

  8. Compound dorsal dislocation of lunate with trapezoid fracture

    Directory of Open Access Journals (Sweden)

    Bong-Sung Kim

    2016-12-01

    Full Text Available We report about a dorsal dislocation of the lunate accompanied by a trapezoid fracture in a 41-year old male patient after a motorcycle accident. The lunate dislocation with no dorsal or volar intercalated segment instability (DISI, VISI was diagnosed by x-ray whereas the trapezoid fracture was only diagnosable by computed tomography. A closed reduction and internal fixation of the lunate by two Kirschner wires was performed, the trapezoid fracture was conservatively treated. Surgery was followed by immobilization, intense physiotherapy and close follow-up. Even though complaints such as swelling and pain subsided during the course of rehabilitation, partial loss of strength and range of motion remained even after 16 months. In conclusion, a conservative treatment of trapezoid fractures seems to be sufficient in most cases. Closed reduction with Kwire fixation led to an overall satisfactory result in our case. For dorsal lunate dislocations in general, open reduction should be performed when close reduction is unsuccessful or DISI/VISI are observed in radiographs after attempted close reduction.

  9. Biocompatibility of Er:YSGG laser radiated root surfaces

    Science.gov (United States)

    Benthin, Hartmut; Ertl, Thomas P.; Schmidt, Dirk; Purucker, Peter; Bernimoulin, J.-P.; Mueller, Gerhard J.

    1996-01-01

    Pulsed Er:YAG and Er:YSGG lasers are well known to be effective instruments for the ablation of dental hard tissues. Developments in the last years made it possible to transmit the laser radiation at these wavelengths with flexible fibers. Therefore the application in the periodontal pocket may be possible. The aim of this study was to evaluate the in-vitro conditions to generate a bioacceptable root surface. Twenty extracted human teeth, stored in an antibiotic solution, were conventionally scaled, root planed and axially separated into two halves. Two main groups were determined. With the first group laser radiation was carried out without and in the second group with spray cooling. The laser beam was scanned about root surface areas. Laser parameters were varied in a selected range. The biocompatibility was measured with the attachment of human gingival fibroblasts and directly compared to conventionally treated areas of the root surfaces. The fibroblasts were qualified and counted in SEM investigations. On conventionally treated areas gingival fibroblasts show the typical uniform cover. In dependance on the root roughness after laser treatment the fibroblasts loose the typical parallel alignment to the root surface. With spray cooling a better in-vitro attachment could be obtained. Without spray cooling the higher increase in temperature conducted to less bioacceptance by the human gingival fibroblasts to the root surface. These results show the possibility of producing bioacceptable root surfaces with pulsed laser radiation in the range of very high water absorption near 3 micrometer.

  10. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream.

    Science.gov (United States)

    Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The

  11. Evaluation of Root Canal Morphology of Human Primary Mandibular ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... solution (Omnipaque; Novaplus, Cork, Ireland) to clarify the view of the root canals during CBCT imaging. Each and every root apex was covered with a soft modeling wax to prevent any microleakage of solution, and all teeth were placed in a silicone‑based impression material (Zetaplus, Zhermack, Rovigo, ...

  12. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus.

    Science.gov (United States)

    Zhang, Tie-Yuan; Keown, Christopher L; Wen, Xianglan; Li, Junhao; Vousden, Dulcie A; Anacker, Christoph; Bhattacharyya, Urvashi; Ryan, Richard; Diorio, Josie; O'Toole, Nicholas; Lerch, Jason P; Mukamel, Eran A; Meaney, Michael J

    2018-01-19

    Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.

  13. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    Science.gov (United States)

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  14. Reliability of plant root comet assay in comparison with human leukocyte comet assay for assessment environmental genotoxic agents.

    Science.gov (United States)

    Reis, Gabriela Barreto Dos; Andrade-Vieira, Larissa Fonseca; Moraes, Isabella de Campos; César, Pedro Henrique Souza; Marcussi, Silvana; Davide, Lisete Chamma

    2017-08-01

    Comet assay is an efficient test to detect genotoxic compounds based on observation of DNA damage. The aim of this work was to compare the results obtained from the comet assay in two different type of cells extracted from the root tips from Lactuca sativa L. and human blood. For this, Spent Pot Liner (SPL), and its components (aluminum and fluoride) were applied as toxic agents. SPL is a solid waste generated in industry from the aluminum mining and processing with known toxicity. Three concentrations of all tested solutions were applied and the damages observed were compared to negative and positive controls. It was observed an increase in the frequency of DNA damage for human leukocytes and plant cells, in all treatments. On human leukocytes, SPL induced the highest percentage of damage, with an average of 87.68%. For root tips cells of L. sativa the highest percentage of damage was detected for aluminum (93.89%). Considering the arbitrary units (AU), the average of nuclei with high levels of DNA fragmentation was significant for both cells type evaluated. The tested cells demonstrated equal effectiveness for detection of the genotoxicity induced by the SPL and its chemical components, aluminum and fluoride. Further, using a unique method, the comet assay, we proved that cells from root tips of Lactuca sativa represent a reliable model to detect DNA damage induced by genotoxic pollutants is in agreement of those observed in human leukocytes as model. So far, plant cells may be suggested as important system to assess the toxicological risk of environmental agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Complete dorsal pancreatic agenesis and unilateral renal agenesis.

    Science.gov (United States)

    Moreira, Adriana; Carvalho, André; Portugal, Inês; Jesus, José Miguel

    2018-02-01

    Dorsal pancreatic agenesis is a very rare congenital anomaly. Unilateral renal agenesis, on the other hand, is a relatively common congenital anomaly, although its etiology is not fully understood. Renal and pancreatic embryologic development appears to be nonrelated. We report a case of a 34-year-old man who was referred to our hospital for evaluation of cholestasis and microalbuminuria. Ultrasound and magnetic resonance imaging examinations showed empty right renal fossa and absence of the pancreatic neck, body, and tail. Our case report is the second case of a dorsal pancreatic agenesis and unilateral renal agenesis in a young male patient.

  16. Quantitative analysis of intraneuronal transport in human iPS neurons

    Directory of Open Access Journals (Sweden)

    Haruko Nakamura

    2015-08-01

    Full Text Available Induced pluripotent stem (iPS cells are promising tools to investigate disease mechanism and develop new drugs. Intraneuronal transport, which is fundamental for neuronal survival and function, is vulnerable to various pharmacological and chemical agents and is disrupted in some neurodegenerative disorders. We applied a quantification method for axonal transport by counting CM-DiI–labeled particles traveling along the neurite, which allowed us to monitor and quantitate, for the first time, intraneuronal transport in human neurons differentiated from iPS cells (iCell neurons. We evaluated the acute effects of several anti-neoplastic agents that have been previously shown to affect intraneuronal transport. Vincristine, paclitaxel and oxaliplatin decreased the number of moving particle along neurites. Cisplatin, however, produced no effect on intraneuronal transport, which is in contrast to our previous report indicating that it inhibits transport in chick dorsal root ganglion neurons. Our system may be a useful method for assessing intraneuronal transport and neurotoxicity in human iPS neurons.

  17. Detection of genes regulated by Lmx1b during limb dorsalization.

    Science.gov (United States)

    Feenstra, Jennifer M; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E; Eppey, Richard J; Oberg, Kerby C

    2012-05-01

    Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wild type mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes that were differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism that includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. © 2012 The Authors. Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  18. Spinal cord injury below-level neuropathic pain relief with dorsal root entry zone microcoagulation performed caudal to level of complete spinal cord transection.

    Science.gov (United States)

    Falci, Scott; Indeck, Charlotte; Barnkow, Dave

    2018-06-01

    OBJECTIVE Surgically created lesions of the spinal cord dorsal root entry zone (DREZ) to relieve central pain after spinal cord injury (SCI) have historically been performed at and cephalad to, but not below, the level of SCI. This study was initiated to investigate the validity of 3 proposed concepts regarding the DREZ in SCI central pain: 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through sympathetic nervous system (SNS) pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain-generators. METHODS Three unique patients with both intractable SCI below-level central pain and complete spinal cord transection at the level of SCI were identified. All 3 patients had previously undergone surgical intervention to their spinal cords-only cephalad to the level of spinal cord transection-with either DREZ microcoagulation or cyst shunting, in failed attempts to relieve their SCI below-level central pain. Subsequent to these surgeries, DREZ lesioning of the spinal cord solely caudal to the level of complete spinal cord transection was performed using electrical intramedullary guidance. The follow-up period ranged from 1 1/2 to 11 years. RESULTS All 3 patients in this study had complete or near-complete relief of all below-level neuropathic pain. The analyzed electrical data confirmed and enhanced a previously proposed somatotopic map of SCI below-level DREZ pain generators. CONCLUSIONS The results of this study support the following hypotheses. 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through SNS pathways. 3) Perceived SCI below-level central pain follows a unique

  19. The Physiology of Adventitious Roots1

    Science.gov (United States)

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  20. Non-destructive, preclinical evaluation of root canal anatomy of human teeth with flat-panel detector volume CT (FD-VCT)

    International Nuclear Information System (INIS)

    Heidrich, G.; Hassepass, F.; Dullin, C.; Grabbe, E.; Attin, T.; Hannig, C.

    2005-01-01

    Purpose: Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). Materials and methods: 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. Results: The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as dentricles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 μm. Only around 73% of the main root canals detected with FD-VCT and 87% of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. (orig.)

  1. Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate.

    Science.gov (United States)

    Woolley, Daniel G; Mantini, Dante; Coxon, James P; D'Hooge, Rudi; Swinnen, Stephan P; Wenderoth, Nicole

    2015-04-01

    Recent work has demonstrated that functional connectivity between remote brain regions can be modulated by task learning or the performance of an already well-learned task. Here, we investigated the extent to which initial learning and stable performance of a spatial navigation task modulates functional connectivity between subregions of hippocampus and striatum. Subjects actively navigated through a virtual water maze environment and used visual cues to learn the position of a fixed spatial location. Resting-state functional magnetic resonance imaging scans were collected before and after virtual water maze navigation in two scan sessions conducted 1 week apart, with a behavior-only training session in between. There was a large significant reduction in the time taken to intercept the target location during scan session 1 and a small significant reduction during the behavior-only training session. No further reduction was observed during scan session 2. This indicates that scan session 1 represented initial learning and scan session 2 represented stable performance. We observed an increase in functional connectivity between left posterior hippocampus and left dorsal caudate that was specific to scan session 1. Importantly, the magnitude of the increase in functional connectivity was correlated with offline gains in task performance. Our findings suggest cooperative interaction occurs between posterior hippocampus and dorsal caudate during awake rest following the initial phase of spatial navigation learning. Furthermore, we speculate that the increase in functional connectivity observed during awake rest after initial learning might reflect consolidation-related processing. © 2014 Wiley Periodicals, Inc.

  2. Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion.

    Science.gov (United States)

    He, Xiao-Fen; Wei, Jun-Jun; Shou, Sheng-Yun; Fang, Jian-Qiao; Jiang, Yong-Liang

    To investigate the analgesic effects of electroacupuncture (EA) at 2 and 100 Hz on type 2 diabetic neuropathic pain (DNP) and on the expressions of the P2X3 receptor and calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). Rat type 2 DNP was induced by a high calorie and high sugar diet fed for 7 weeks, plus a single intraperitoneal injection of streptozotocin (STZ) after 5 weeks. EA at 2 and 100 Hz was carried out once every day after 7 weeks for 7 consecutive days. Body weight, serum fasting insulin (FINS), fasting blood glucose (FBG), insulin sensitivity index (ISI), and paw withdrawal latency (PWL) were measured. The expressions of L4-L6 DRG P2X3 receptors and CGRP were assessed by immunofluorescence. Type 2 DNP was successfully induced as shown by the increased body weight, FINS, and FBG, as well as the reduced ISI and PWL. Expressions of P2X3 receptors and CGRP in L4-L6 DRGs increased. EA at both 2 and 100 Hz relieved type 2 DNP, but the analgesic effect of EA was stronger at 2 Hz. P2X3 receptor expression decreased in L4-L6 DRGs following EA at 2 Hz and in L5 and L6 DRGs following EA at 100 Hz. EA at both 2 and 100 Hz down-regulated CGRP overexpression in L4-L6 DRGs. These findings indicate that EA at 2 Hz is a good option for the management of type 2 DNP. The EA effect may be related to its down-regulation of the overexpressions of the DRG P2X3 receptors and CGRP in this condition.

  3. Semiconductor laser irradiation improves root canal sealing during routine root canal therapy

    Science.gov (United States)

    Hu, Xingxue; Wang, Dashan; Cui, Ting; Yao, Ruyong

    2017-01-01

    Objective To evaluate the effect of semiconductor laser irradiation on root canal sealing after routine root canal therapy (RCT). Methods Sixty freshly extracted single-rooted human teeth were randomly divided into six groups (n = 10). The anatomic crowns were sectioned at the cementoenamel junction and the remaining roots were prepared endodontically with conventional RCT methods. Groups A and B were irradiated with semiconductor laser at 1W for 20 seconds; Groups C and D were ultrasonically rinsed for 60 seconds as positive control groups; Groups E and F without treatment of root canal prior to RCT as negative control groups. Root canal sealing of Groups A, C and E were evaluated by measurements of apical microleakage. The teeth from Groups B, D and F were sectioned, and the micro-structures were examined with scanning electron microscopy (SEM). One way ANOVA and LSD-t test were used for statistical analysis (α = .05). Results The apical sealing of both the laser irradiated group and the ultrasonic irrigated group were significantly different from the control group (pirrigated group (p>0.5). SEM observation showed that most of the dentinal tubules in the laser irradiation group melted, narrowed or closed, while most of the dentinal tubules in the ultrasonic irrigation group were filled with tooth paste. Conclusion The application of semiconductor laser prior to root canal obturation increases the apical sealing of the roots treated. PMID:28957407

  4. Neurobiological roots of language in primate audition: common computational properties.

    Science.gov (United States)

    Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias; Small, Steven L; Rauschecker, Josef P

    2015-03-01

    Here, we present a new perspective on an old question: how does the neurobiology of human language relate to brain systems in nonhuman primates? We argue that higher-order language combinatorics, including sentence and discourse processing, can be situated in a unified, cross-species dorsal-ventral streams architecture for higher auditory processing, and that the functions of the dorsal and ventral streams in higher-order language processing can be grounded in their respective computational properties in primate audition. This view challenges an assumption, common in the cognitive sciences, that a nonhuman primate model forms an inherently inadequate basis for modeling higher-level language functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Dorsal Phalloplasty to Preserve Penis Length after Penile Prosthesis Implantation

    Directory of Open Access Journals (Sweden)

    Osama Shaeer

    2017-03-01

    Full Text Available Objectives: Following penile prosthesis implantation (PPI, patients may complain of a decrease in visible penis length. A dorsal phalloplasty defines the penopubic junction by tacking pubic skin to the pubis, revealing the base of the penis. This study aimed to evaluate the efficacy of a dorsal phalloplasty in increasing the visible penis length following PPI. Methods: An inflatable penile prosthesis was implanted in 13 patients with severe erectile dysfunction (ED at the Kamal Shaeer Hospital, Cairo, Egypt, from January 2013 to May 2014. During the surgery, nonabsorbable tacking sutures were used to pin the pubic skin to the pubis through the same penoscrotal incision. Intraoperative penis length was measured before and after the dorsal phalloplasty. Overall patient satisfaction was measured on a 5-point rating scale and patients were requested to subjectively compare their postoperative penis length with memories of their penis length before the onset of ED. Results: Intraoperatively, the dorsal phalloplasty increased the visible length of the erect penis by an average of 25.6%. The average length before and after tacking was 10.2 ± 2.9 cm and 13.7 ± 2.8 cm, respectively (P <0.002. Postoperatively, seven patients (53.8% reported a longer penis, five patients (38.5% reported no change in length and one patient (7.7% reported a slightly shorter penis. The mean overall patient satisfaction score was 4.9 ± 0.3. None of the patients developed postoperative complications. Conclusion: A dorsal phalloplasty during PPI is an effective method of increasing visible penis length, therefore minimising the impression of a shorter penis after implantation.

  6. Agenesis of the dorsal mesentery presenting in an adolescent

    Directory of Open Access Journals (Sweden)

    Anith Chacko

    2013-03-01

    Full Text Available Agenesis of the dorsal mesentery is a rare occurrence that usually presents in children. It is associated with proximal small bowel malrotation as well as high jejunal atresia with discontinuity of the small bowel. We present a case report of an adolescent presenting with clinical features of proximal small bowel obstruction (confirmed on imaging as well as acute pancreatitis. At laparotomy, he was found to have no dorsal mesentery, without small bowel atresia, and the duodenum was fixed to the posterior abdominal wall. The patient recovered well and remained symptom-free.

  7. Radioprotective effect of methanolic root extract of Loeseneriella arnottiana on radiation induced DNA damage in human lymphocytes in vitro

    International Nuclear Information System (INIS)

    Prajna, P.S.

    2012-01-01

    Intense exposure to ionization radiation by accidental, occupational or therapeutical purpose causes cellular damage mainly by formation of excessive reactive oxygen species (ROS) or by free radicals. Humans are intentionally exposed to ionising radiation for diagnostic or therapeutic purposes. The use of ionising radiation in cancer therapy may lead to transient and/or permanent injury to normal tissues within the treatment field. To increase the therapeutic index of radiation therapy, various modes of radioprotection have been developed that selectively reduce cytotoxic effects to normal tissues. Because radiation-induced cellular damage is attributed primarily to the harmful effects of free radicals, molecules with radical scavenging properties are particularly promising as radioprotectors. Loeseneriella arnottiana, a member of family Hippocrateaceae, is a climbing shrub used by traditional medicine practitioners. To study the antioxidant activity and radioprotective effect of methanolic root extract of Loeseneriella arnottiana against electron beam radiation induced DNA damage in human lymphocytes. Loeseneriella arnottiana roots were dried and extracted using methanol by solvent extraction method. Antioxidant activity was measured by DPPH method. DNA damage was assessed by comet assay parameters. The lymphocytes were incubated for one hour with two different concentrations 10 μg and 50 μg of root extract before exposure to 2 Gy electron beam radiation. 30 μg of methanolic root extract of Loeseneriella arnottiana exhibited 96% radical scavenging activity comparable to 15 μg of ascorbic acid. In reducing power assay it showed dose dependent increase in absorbance indicating that extract is capable of donating hydrogen atoms. Pretreatment of lymphocytes with 10 μg and 50 μg of root extract before irradiation resulted in reduction in the Comet length, Olive tail moment, percentage of DNA in tail when compared to the radiation control group. Results of this

  8. Root Anatomy and Root Canal Configuration of Human Permanent Mandibular Premolars: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jojo Kottoor

    2013-01-01

    Full Text Available Introduction. Mandibular premolars have been reported with complex anatomical aberrations, making them one of the most difficult teeth to manage endodontically. Methodology. An exhaustive search was undertaken to identify associated anatomic studies of mandibular premolars through MEDLINE/PubMed database using keywords, and a systematic review of the relevant articles was performed. Chi-square test with Yates correction was performed to assess the statistical significance of any anatomic variations between ethnicities and within populations of the same ethnicity. Documented case reports of variations in mandibular premolar anatomy were also identified and reviewed. Results. Thirty-six anatomic studies were analyzed which included 12,752 first premolars and nineteen studies assessing 6646 second premolars. A significant variation in the number of roots, root canals, and apical foramen was observed between Caucasian, Indian, Mongoloid, and Middle Eastern ethnicities.The most common anatomic variation was C-shaped canals in mandibular first premolars with highest incidence in Mongoloid populations (upto 24% while dens invaginatus was the most common developmental anomaly. Conclusions. A systematic review of mandibular premolars based on ethnicity and geographic clusters offered enhanced analysis of the prevalence of number of roots and canals, their canal configuration, and other related anatomy.

  9. Root canal configuration of human permanent mandibular first molars of an indo-dravidian population based in Southern India: An In vitro study

    Directory of Open Access Journals (Sweden)

    J V Karunakaran

    2017-01-01

    Full Text Available Aim: This study aims to analyze root canal configuration of human permanent mandibular first molars of an indo-Dravidian population based in southern India. Materials and Methods: A total of 1147 mandibular first permanent molars were collected, cleansed, and stored. The number of roots was recorded, access preparations made, pattern of orifices recorded after pulpal floor debridement, dye injected into the canals using apical negative pressure and subjected to a clearing technique. They were then analyzed using a stereo microscope and the canal configurations recorded (Vertucci. The number of roots, the pattern of orifices and canal configuration were recorded. Results: The pattern of orifices was triangular (87.9%, rectangular (8.5%, C-shaped (3.0%, and two orifice pattern (0.6%. About 95.6% of teeth had two roots, and 4.4% had three roots. The most common canal system configuration in mesial root was Vertucci type IV (52.3%, followed by type II (35%. Root canal configuration of the distal root revealed type I configuration in 62.7%, followed by types II (14.5% and IV (12.4%. The distolingual root had a type I configuration. Conclusion: Awareness of canal configuration, adequate clinical skills, use of specialized techniques of diagnosis, debridement and obturation will pave the way for successful treatment outcomes.

  10. Root Canal Configuration of Human Permanent Mandibular First Molars of an Indo-Dravidian Population Based in Southern India: An In vitro Study.

    Science.gov (United States)

    Karunakaran, J V; Samuel, Leo Sujith; Rishal, Yousef; Joseph, M Derick; Suresh, K Rahul; Varghese, Sam T

    2017-11-01

    This study aims to analyze root canal configuration of human permanent mandibular first molars of an indo-Dravidian population based in southern India. A total of 1147 mandibular first permanent molars were collected, cleansed, and stored. The number of roots was recorded, access preparations made, pattern of orifices recorded after pulpal floor debridement, dye injected into the canals using apical negative pressure and subjected to a clearing technique. They were then analyzed using a stereo microscope and the canal configurations recorded (Vertucci). The number of roots, the pattern of orifices and canal configuration were recorded. The pattern of orifices was triangular (87.9%), rectangular (8.5%), C-shaped (3.0%), and two orifice pattern (0.6%). About 95.6% of teeth had two roots, and 4.4% had three roots. The most common canal system configuration in mesial root was Vertucci type IV (52.3%), followed by type II (35%). Root canal configuration of the distal root revealed type I configuration in 62.7%, followed by types II (14.5%) and IV (12.4%). The distolingual root had a type I configuration. Awareness of canal configuration, adequate clinical skills, use of specialized techniques of diagnosis, debridement and obturation will pave the way for successful treatment outcomes.

  11. The presence of nuclear cactus in the early Drosophila embryo may extend the dynamic range of the dorsal gradient.

    Directory of Open Access Journals (Sweden)

    Michael D O'Connell

    2015-04-01

    Full Text Available In a developing embryo, the spatial distribution of a signaling molecule, or a morphogen gradient, has been hypothesized to carry positional information to pattern tissues. Recent measurements of morphogen distribution have allowed us to subject this hypothesis to rigorous physical testing. In the early Drosophila embryo, measurements of the morphogen Dorsal, which is a transcription factor responsible for initiating the earliest zygotic patterns along the dorsal-ventral axis, have revealed a gradient that is too narrow to pattern the entire axis. In this study, we use a mathematical model of Dorsal dynamics, fit to experimental data, to determine the ability of the Dorsal gradient to regulate gene expression across the entire dorsal-ventral axis. We found that two assumptions are required for the model to match experimental data in both Dorsal distribution and gene expression patterns. First, we assume that Cactus, an inhibitor that binds to Dorsal and prevents it from entering the nuclei, must itself be present in the nuclei. And second, we assume that fluorescence measurements of Dorsal reflect both free Dorsal and Cactus-bound Dorsal. Our model explains the dynamic behavior of the Dorsal gradient at lateral and dorsal positions of the embryo, the ability of Dorsal to regulate gene expression across the entire dorsal-ventral axis, and the robustness of gene expression to stochastic effects. Our results have a general implication for interpreting fluorescence-based measurements of signaling molecules.

  12. Role of the right dorsal anterior insula in the urge to tic in Tourette syndrome.

    Science.gov (United States)

    Tinaz, Sule; Malone, Patrick; Hallett, Mark; Horovitz, Silvina G

    2015-08-01

    The mid-posterior part of the insula is involved in processing bodily sensations and urges and is activated during tic generation in Tourette syndrome. The dorsal anterior part of the insula, however, integrates sensory and emotional information with cognitive valuation and is implicated in interoception. The right dorsal anterior insula also participates in urge suppression in healthy subjects. This study examined the role of the right dorsal anterior insula in the urge to tic in Tourette syndrome. Resting-state functional magnetic resonance imaging was performed in 13 adult Tourette patients and 13 matched controls. The role of the right dorsal anterior insula within the urge-tic network was investigated using graph theory-based neural network analysis. The functional connectivity of the right dorsal anterior insula was also correlated with urge and tic severity. Even though the patients did not exhibit any overt tics, the right dorsal anterior insula demonstrated higher connectivity, especially with the frontostriatal nodes of the urge-tic network in patients compared with controls. The functional connectivity between the right dorsal anterior insula and bilateral supplementary motor area also correlated positively with urge severity in patients. These results suggest that the right dorsal anterior insula is part of the urge-tic network and could influence the urge- and tic-related cortico-striato-thalamic regions even during rest in Tourette syndrome. It might be responsible for heightened awareness of bodily sensations generating premonitory urges in Tourette syndrome. © 2015 International Parkinson and Movement Disorder Society.

  13. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research.

    Science.gov (United States)

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-08-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell-derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.

  14. Basal Cell Carcinoma of the Dorsal Hand: An Update and Comprehensive Review of the Literature.

    Science.gov (United States)

    Loh, Tiffany Y; Rubin, Ashley G; Brian Jiang, Shang I

    2016-04-01

    Excessive ultraviolet radiation (UVR) exposure is the primary predisposing factor for basal cell carcinoma (BCC). However, surprisingly, BCCs occur very rarely on the dorsal hand, which is subject to intense sun exposure, and their infrequent presentation in this location suggests that other factors besides UVR may play a role in BCC pathogenesis. Because dorsal hand BCCs are uncommon, knowledge of their characteristics is limited, and more data are needed to describe their clinical presentation and treatment. To perform an updated review of the literature on the management of dorsal hand BCCs. The authors conducted a comprehensive literature review by searching the PubMed database with the key phrases "basal cell carcinoma dorsal hand," "basal cell carcinoma hand," and "basal cell carcinoma finger," and "basal cell carcinoma thumb." The authors identified 176 cases of dorsal hand BCCs in the literature, 120 of which had sufficient data for analysis. Only 4 cases were treated with Mohs micrographic surgery (MMS). The authors present 14 additional cases of dorsal hand BCCs treated with MMS. Basal cell carcinomas on the dorsal hand occur infrequently, and potential risk factors include being a male of white descent and personal history of skin cancer. Mohs micrographic surgery seems to be an effective treatment method.

  15. Basal Cell Carcinoma of the Dorsal Foot: An Update and Comprehensive Review of the Literature.

    Science.gov (United States)

    Loh, Tiffany Y; Rubin, Ashley G; Jiang, Shang I Brian

    2017-01-01

    Ultraviolet radiation is a well-known risk factor for basal cell carcinoma (BCC). Therefore, the high incidence of BCCs in sun-exposed areas such as the head and neck is unsurprising. However, unexpectedly, BCCs on the sun-protected dorsal foot have also been reported, and tumor occurrence here suggests that other factors besides ultraviolet radiation may play a role in BCC pathogenesis. Because only few dorsal foot BCCs have been reported, data on their clinical features and management are limited. To perform an updated review of the literature on clinical characteristics and treatment of dorsal foot BCCs. We conducted a comprehensive literature review by searching the PubMed database with the key phrases "basal cell carcinoma dorsal foot," "basal cell carcinoma foot," and "basal cell carcinoma toe." We identified 20 cases of dorsal foot BCCs in the literature, 17 of which had sufficient data for analysis. Only 1 case was treated with Mohs micrographic surgery. We present 8 additional cases of dorsal foot BCCs treated with Mohs micrographic surgery. Basal cell carcinomas on the dorsal foot are rare, and potential risk factors include Caucasian descent and personal history of skin cancer. Mohs micrographic surgery seems to be an effective treatment option.

  16. Lateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis.

    Science.gov (United States)

    Blumenfeld, Robert S; Nomura, Emi M; Gratton, Caterina; D'Esposito, Mark

    2013-10-01

    Anatomical connectivity differences between the dorsal and ventral lateral prefrontal cortex (PFC) of the non-human primate strongly suggests that these regions support different functions. However, after years of study, it remains unclear whether these regions are functionally distinct. In contrast, there has been a groundswell of recent studies providing evidence for a rostro-caudal functional organization, along the lateral as well as dorsomedial frontal cortex. Thus, it is not known whether dorsal and ventral regions of lateral PFC form distinct functional networks and how to reconcile any dorso-ventral organization with the medio-lateral and rostro-caudal axes. Here, we used resting-state connectivity data to identify parallel dorsolateral and ventrolateral streams of intrinsic connectivity with the dorsomedial frontal cortex. Moreover, we show that this connectivity follows a rostro-caudal gradient. Our results provide evidence for a novel framework for the intrinsic organization of the frontal cortex that incorporates connections between medio-lateral, dorso-ventral, and rostro-caudal axes.

  17. Effect of a muscle relaxant, chlorphenesin carbamate, on the spinal neurons of rats.

    Science.gov (United States)

    Kurachi, M; Aihara, H

    1984-09-01

    The effects of chlorphenesin carbamate (CPC) and mephenesin on spinal neurons were investigated in spinal rats. CPC (50 mg/kg i.v.) inhibited the mono-(MSR) and poly-synaptic reflex (PSR), the latter being more susceptible than the former to CPC depression. Mephenesin also inhibited MSR and PSR, though the effects were short in duration. CPC had no effect on the dorsal root potential evoked by the stimulation of the dorsal root, while mephenesin reduced the dorsal root-dorsal root reflex. The excitability of motoneuron was reduced by the administration of CPC or mephenesin. The excitability of primary afferent terminal was unchanged by CPC, while it was inhibited by mephenesin. Neither CPC nor mephenesin influenced the field potential evoked by the dorsal root stimulation. Both CPC and mephenesin had no effect on the synaptic recovery. These results suggest that both CPC and mephenesin inhibit the firing of motoneurons by stabilizing the neuronal membrane, while mephenesin additionally suppresses the dorsal root reflex and the excitability of the primary afferent terminal. These inhibitory actions of CPC on spinal activities may contribute, at least partly, to its muscle relaxing action.

  18. Running Reduces Uncontrollable Stress-Evoked Serotonin and Potentiates Stress-Evoked Dopamine Concentrations in the Rat Dorsal Striatum.

    Directory of Open Access Journals (Sweden)

    Peter J Clark

    Full Text Available Accumulating evidence from both the human and animal literature indicates that exercise reduces the negative consequences of stress. The neurobiological etiology for this stress protection, however, is not completely understood. Our lab reported that voluntary wheel running protects rats from expressing depression-like instrumental learning deficits on the shuttle box escape task after exposure to unpredictable and inescapable tail shocks (uncontrollable stress. Impaired escape behavior is a result of stress-sensitized serotonin (5-HT neuron activity in the dorsal raphe (DRN and subsequent excessive release of 5-HT into the dorsal striatum following exposure to a comparatively mild stressor. However, the possible mechanisms by which exercise prevents stress-induced escape deficits are not well characterized. The purpose of this experiment was to test the hypothesis that exercise blunts the stress-evoked release of 5-HT in the dorsal striatum. Changes to dopamine (DA levels were also examined, since striatal DA signaling is critical for instrumental learning and can be influenced by changes to 5-HT activity. Adult male F344 rats, housed with or without running wheels for 6 weeks, were either exposed to tail shock or remained undisturbed in laboratory cages. Twenty-four hours later, microdialysis was performed in the medial (DMS and lateral (DLS dorsal striatum to collect extracellular 5-HT and DA before, during, and following 2 mild foot shocks. We report wheel running prevents foot shock-induced elevation of extracellular 5-HT and potentiates DA concentrations in both the DMS and DLS approximately 24 h following exposure to uncontrollable stress. These data may provide a possible mechanism by which exercise prevents depression-like instrumental learning deficits following exposure to acute stress.

  19. Two different streams form the dorsal visual system: anatomy and functions.

    Science.gov (United States)

    Rizzolatti, Giacomo; Matelli, Massimo

    2003-11-01

    There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.

  20. The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis.

    Science.gov (United States)

    Butler, A B

    1994-01-01

    The evolution of the dorsal thalamus in various vertebrate lineages of jawed vertebrates has been an enigma, partly due to two prevalent misconceptions: the belief that the multitude of nuclei in the dorsal thalamus of mammals could be meaningfully compared neither with the relatively few nuclei in the dorsal thalamus of anamniotes nor with the intermediate number of dorsal thalamic nuclei of other amniotes and a definition of the dorsal thalamus that too narrowly focused on the features of the dorsal thalamus of mammals. The cladistic analysis carried out here allows us to recognize which features are plesiomorphic and which apomorphic for the dorsal thalamus of jawed vertebrates and to then reconstruct the major changes that have occurred in the dorsal thalamus over evolution. Embryological data examined in the context of Von Baerian theory (embryos of later-descendant species resemble the embryos of earlier-descendant species to the point of their divergence) supports a new 'Dual Elaboration Hypothesis' of dorsal thalamic evolution generated from this cladistic analysis. From the morphotype for an early stage in the embryological development of the dorsal thalamus of jawed vertebrates, the divergent, sequential stages of the development of the dorsal thalamus are derived for each major radiation and compared. The new hypothesis holds that the dorsal thalamus comprises two basic divisions--the collothalamus and the lemnothalamus--that receive their predominant input from the midbrain roof and (plesiomorphically) from lemniscal pathways, including the optic tract, respectively. Where present, the collothalamic, midbrain-sensory relay nuclei are homologous to each other in all vertebrate radiations as discrete nuclei. Within the lemnothalamus, the dorsal lateral geniculate nucleus of mammals and the dorsal lateral optic nucleus of non-synapsid amniotes (diapsid reptiles, birds and turtles) are homologous as discrete nuclei; most or all of the ventral nuclear group

  1. Assessing dorsal scute microchemistry for reconstruction of shortnose sturgeon life histories

    Science.gov (United States)

    Altenritter, Matthew E.; Kinnison, Michael T.; Zydlewski, Gayle B.; Secor, David H.; Zydlewski, Joseph D.

    2015-01-01

    The imperiled status of sturgeons worldwide places priority on the identification and protection of critical habitats. We assessed the micro-structural and micro-chemical scope for a novel calcified structure, dorsal scutes, to be used for reconstruction of past habitat use and group separation in shortnose sturgeon (Acipenser brevirostrum). Dorsal scutes contained a dual-layered structure composed of a thin multi-layered translucent zone lying dorsally above a thicker multi-layered zone. Banding in the thick multi-layered zone correlated strongly with pectoral fin spine annuli supporting the presence of chronological structuring that could contain a chemical record of past environmental exposure. Trace element profiles (Sr:Ca), collected using both wavelength dispersive electron microprobe analysis and laser ablation inductively coupled mass spectrometry, suggest scutes record elemental information useful for tracing transitions between freshwater and marine environments. Moreover, mirror-image like Sr:Ca profiles were observed across the dual-zone structuring of the scute that may indicate duplication of the microchemical profile in a single structure. Additional element:calcium ratios measured in natal regions of dorsal scutes (Ba:Ca, Mg:Ca) suggest the potential for further refinement of techniques for identification of river systems of natal origin. In combination, our results provide proof of concept that dorsal scutes possess the necessary properties to be used as structures for reconstructions of past habitat use in sturgeons. Importantly, scutes may be collected non-lethally and with less injury than current structures, like otoliths and fin spines, affording an opportunity for broader application of microchemical techniques.

  2. Selective Radiofrequency Stimulation of the Dorsal Root Ganglion (DRG) as a Method for Predicting Targets for Neuromodulation in Patients With Post Amputation Pain: A Case Series.

    Science.gov (United States)

    Hunter, Corey W; Yang, Ajax; Davis, Tim

    2017-10-01

    While spinal cord stimulation (SCS) has established itself as an accepted and validated treatment for neuropathic pain, there are a number of conditions where it has experienced less, long-term success: post amputee pain (PAP) being one of them. Dorsal root ganglion (DRG) stimulation has shown great promise, particularly in conditions where traditional SCS has fallen short. One major difference between DRG stimulation and traditional SCS is the ability to provide focal stimulation over targeted areas. While this may be a contributing factor to its superiority, it can also be a limitation insofar stimulating the wrong DRG(s) can lead to failure. This is particularly relevant in conditions like PAP where neuroplastic maladaptation occurs causing the pain to deviate from expected patterns, thus creating uncertainty and variability in predicting targets for stimulation. We propose selective radiofrequency (RF) stimulation of the DRG as a method for preoperatively predicting targets for neuromodulation in patients with PAP. We present four patients with PAP of the lower extremities. RF stimulation was used to selectively stimulate individual DRG's, creating areas of paresthesias to see which most closely correlated/overlapped with the painful area(s). RF stimulation to the DRG's that resulted in the desirable paresthesia coverage in the residual or the missing limb(s) was recorded as "positive." Trial DRG leads were placed based on the positive RF stimulation findings. In each patient, stimulating one or more DRG(s) produced paresthesias patterns that were contradictory to know dermatomal patterns. Upon completion of a one-week trial all four patients reported 60-90% pain relief, with coverage over the painful areas, and opted for permanent implant. Mapping the DRG via RF stimulation appears to provide improved accuracy for determining lead placement in the setting of PAP where pain patterns are known to deviate from conventional dermatomal mapping. © 2017

  3. WenTong HuoXue Cream Can Inhibit the Reduction of the Pain-Related Molecule PLC-β3 in the Dorsal Root Ganglion of a Rat Model of Diabetic Peripheral Neuropathy.

    Science.gov (United States)

    Feng, Chengcheng; Xu, Lijuan; Guo, Shiyun; Chen, Qian; Shen, Yuguo; Zang, Deng; Ma, Li

    2018-01-01

    WenTong HuoXue Cream (WTHX-Cream) has been shown to effectively alleviate clinical symptoms of diabetic peripheral neuropathy (DPN). This study investigated the gene and protein expression of the pain-related molecule PLC- β 3 in the dorsal root ganglion (DRG) of DPN rats. 88 specific pathogen-free male Wistar rats were randomly divided into placebo (10 rats) and DPN model (78 rats) groups, and the 78 model rats were used to establish the DPN model by intraperitoneal injection of streptozotocin and were then fed a high-fat diet for 8 weeks. These rats were randomly divided into the model group, the high-, medium-, and low-dose WTHX-Cream + metformin groups, the metformin group, the capsaicin cream group, and the capsaicin cream + metformin group. After 4 weeks of continuous drug administration, the blood glucose, body weight, behavioral indexes, and sciatic nerve conduction velocity were measured. The pathological structure of the DRG and the sciatic nerve were observed. PLC- β 3 mRNA and protein levels in the DRG of rats were measured. Compared with the model group, the high-dose WTHX-Cream group showed increased sciatic nerve conduction velocity, improved sciatic nerve morphological changes, and increased expression of PLC- β 3 mRNA and protein in the DRG. This study showed that WTHX-Cream improves hyperalgesia symptoms of DPN by inhibiting the reduction of PLC- β 3 mRNA and protein expression in the diabetic DRG of DPN rats.

  4. WenTong HuoXue Cream Can Inhibit the Reduction of the Pain-Related Molecule PLC-β3 in the Dorsal Root Ganglion of a Rat Model of Diabetic Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Chengcheng Feng

    2018-01-01

    Full Text Available WenTong HuoXue Cream (WTHX-Cream has been shown to effectively alleviate clinical symptoms of diabetic peripheral neuropathy (DPN. This study investigated the gene and protein expression of the pain-related molecule PLC-β3 in the dorsal root ganglion (DRG of DPN rats. 88 specific pathogen-free male Wistar rats were randomly divided into placebo (10 rats and DPN model (78 rats groups, and the 78 model rats were used to establish the DPN model by intraperitoneal injection of streptozotocin and were then fed a high-fat diet for 8 weeks. These rats were randomly divided into the model group, the high-, medium-, and low-dose WTHX-Cream + metformin groups, the metformin group, the capsaicin cream group, and the capsaicin cream + metformin group. After 4 weeks of continuous drug administration, the blood glucose, body weight, behavioral indexes, and sciatic nerve conduction velocity were measured. The pathological structure of the DRG and the sciatic nerve were observed. PLC-β3 mRNA and protein levels in the DRG of rats were measured. Compared with the model group, the high-dose WTHX-Cream group showed increased sciatic nerve conduction velocity, improved sciatic nerve morphological changes, and increased expression of PLC-β3 mRNA and protein in the DRG. This study showed that WTHX-Cream improves hyperalgesia symptoms of DPN by inhibiting the reduction of PLC-β3 mRNA and protein expression in the diabetic DRG of DPN rats.

  5. Electrophysiological Assessment of Serotonin and GABA Neuron Function in the Dorsal Raphe during the Third Trimester Equivalent Developmental Period in Mice.

    Science.gov (United States)

    Morton, Russell A; Yanagawa, Yuchio; Valenzuela, C Fernando

    2015-01-01

    Alterations in the development of the serotonin system can have prolonged effects, including depression and anxiety disorders later in life. Serotonin axonal projections from the dorsal raphe undergo extensive refinement during the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy). However, little is known about the functional properties of serotonin and GABA neurons in the dorsal raphe during this critical developmental period. We assessed the functional properties and synaptic connectivity of putative serotoninergic neurons and GABAergic neurons in the dorsal raphe during early [postnatal day (P) P5-P7] and late (P15-P17) stages of the third trimester equivalent period using electrophysiology. Our studies demonstrate that GABAergic neurons are hyperexcitable at P5-P7 relative to P15-P17. Furthermore, putative serotonin neurons exhibit an increase in both excitatory and GABAA receptor-mediated spontaneous postsynaptic currents during this developmental period. Our data suggest that GABAergic neurons and putative serotonin neurons undergo significant electrophysiological changes during neonatal development.

  6. Short-term plasticity in turtle dorsal horn neurons mediated by L-type Ca2+ channels

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1994-01-01

    Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup of the re......Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup...

  7. [Disseminated metastatic tumor at dorsal surface of medulla oblongata presenting intractable hiccups. A case report].

    Science.gov (United States)

    Arishima, Hidetaka; Kikuta, Ken-ichirou

    2011-04-01

    We report the case of disseminated metastatic tumor at dorsal surface of medulla oblongata presenting intractable hiccups. A 73-year-old man has a history of for metastatic lung tumor of the left tempral lobe. Although 3 surgeries and 4 radiotherapies were performed in the last 8 years, residual tumor grew slowly. He presented with intractable hiccups. His hiccups continued for 30 minutes, sometimes for 3 hours with obstruction of eating. Contrast-enhanced Magnetic resonance (MR) imaging demonstrated the dissemination of metastatic lung tumor at dorsal surface of medulla oblongata and ventral surface of midbrain. Some literatures reported the patients with intractable hiccups caused by dorsal medullary lesions. Therefore, we thought that the small disseminated tumor at dorsal surface of medulla oblongata caused the hiccups. Evaluation of dorsal medullay area by MR imaging is important to reveal the cause of intractable hiccups.

  8. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  9. Identifying organizational deficiencies through root-cause analysis

    International Nuclear Information System (INIS)

    Tuli, R.W.; Apostolakis, G.E.

    1996-01-01

    All nuclear power plants incorporate root-cause analysis as an instrument to help identify and isolate key factors judged to be of significance following an incident or accident. Identifying the principal deficiencies can become very difficult when the event involves not only human and machine interaction, but possibly the underlying safety and quality culture of the organization. The current state of root-cause analysis is to conclude the investigation after identifying human and/or hardware failures. In this work, root-cause analysis is taken one step further by examining plant work processes and organizational factors. This extension is considered significant to the success of the analysis, especially when management deficiency is believed to contribute to the incident. The results of root-cause analysis can be most effectively implemented if the organization, as a whole, wishes to improve the overall operation of the plant by preventing similar incidents from occurring again. The study adds to the existing root-cause analysis the ability to localize the causes of undesirable events and to focus on those problems hidden deeply within the work processes that are routinely followed in the operation and maintenance of the facility

  10. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Werner-Petroll, Nicole; Münchau, Alexander

    2012-01-01

    The dorsal premotor cortex (PMd) plays an import role in action control, sensorimotor integration and motor recovery. Animal studies and human data have demonstrated direct connections between ipsilateral PMd and primary motor cortex hand area (M1(HAND)). In this study we adopted a multimodal app...

  11. Elevated Expression of Fractalkine (CX3CL1 and Fractalkine Receptor (CX3CR1 in the Dorsal Root Ganglia and Spinal Cord in Experimental Autoimmune Encephalomyelitis: Implications in Multiple Sclerosis-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Wenjun Zhu

    2013-01-01

    Full Text Available Multiple sclerosis (MS is a central nervous system (CNS disease resulting from a targeted autoimmune-mediated attack on myelin proteins in the CNS. The release of Th1 inflammatory mediators in the CNS activates macrophages, antibodies, and microglia resulting in myelin damage and the induction of neuropathic pain (NPP. Molecular signaling through fractalkine (CX3CL1, a nociceptive chemokine, via its receptor (CX3CR1 is thought to be associated with MS-induced NPP. An experimental autoimmune encephalomyelitis (EAE model of MS was utilized to assess time dependent gene and protein expression changes of CX3CL1 and CX3CR1. Results revealed significant increases in mRNA and the protein expression of CX3CL1 and CX3CR1 in the dorsal root ganglia (DRG and spinal cord (SC 12 days after EAE induction compared to controls. This increased expression correlated with behavioural thermal sensory abnormalities consistent with NPP. Furthermore, this increased expression correlated with the peak neurological disability caused by EAE induction. This is the first study to identify CX3CL1 signaling through CX3CR1 via the DRG /SC anatomical connection that represents a critical pathway involved in NPP induction in an EAE model of MS.

  12. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Directory of Open Access Journals (Sweden)

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  13. CT-guided cervical nerve root injections: comparing the immediate post-injection anesthetic-related effects of the transforaminal injection with a new indirect technique

    International Nuclear Information System (INIS)

    Sutter, Reto; Pfirrmann, Christian W.A.; Peterson, Cynthia K.; Zanetti, Marco; Hodler, Juerg

    2011-01-01

    To describe an ''indirect'' cervical nerve root injection technique with a dorsal approach that should carry less inherent risk than the ''direct'' cervical transforaminal injection approach, and to compare the immediate post-injection results of the two procedures. The indirect and direct cervical nerve root injection procedures are described in detail. Fifty-three consecutive patients receiving the indirect nerve root injections during 2009-2010 were age- and gender-matched to 53 patients who underwent direct transforaminal nerve root injections performed in 2006. Pain level data were collected immediately before and 20-30 min after each procedure. The percentages of pain change in the two groups were compared using the unpaired Student's t test. Fifty-two men (mean age 49) and 54 women (mean age 55) were included. The mean percentage of pain reduction for patients receiving indirect nerve root injections was 38.4% and for those undergoing the direct nerve root injections approach it was 43.2%. This was not significantly different (P = 0.455). No immediate or late adverse effects were reported after either injection procedure. The indirect cervical nerve root injection procedure is a potentially safer alternative to direct cervical transforaminal nerve root injections. The short-term pain reduction is similar using the two injection methods. (orig.)

  14. Dorsal onlay vaginal graft urethroplasty for female urethral stricture

    Directory of Open Access Journals (Sweden)

    Manmeet Singh

    2013-01-01

    Full Text Available Introduction: Female urethral stricture is an underdiagnosed and overlooked cause of female bladder outlet obstruction. The possible etiologies may be infection, prior dilation, difficult catheterization with subsequent fibrosis, urethral surgery, trauma, or idiopathic. We present our technique and results of dorsal onlay full thickness vaginal graft urethroplasty for female urethral stricture. Materials and Methods: A retrospective review was performed on 16 female patients with mid-urethral stricture who underwent dorsal onlay vaginal graft urethroplasty from January 2007 to June 2011.Of these, 13 patients had previously undergone multiple Hegar dilatations, three had previous internal urethrotomies. The preoperative work up included detailed voiding history, local examination, uroflowmetry, calibration, and micturating cystourethrogram. Results: All patients had mid-urethral stricture. Mean age was 47.5 years. Mean Q max improved from 6.2 to 27.6 ml/s. Mean residual volume decreased from 160 to 20 ml. Mean duration of follow-up was 24.5 months (6 months to 3 years. Only one patient required self-calibration for 6 months after which her stricture stabilized. None of the patient was incontinent. Conclusion: Dorsal vaginal onlay graft urethroplasty could be considered as an effective way to treat female urethral stricture.

  15. Resveratrol production in hairy root culture of peanut, Arachis ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... hypogaea L.) hairy roots and also showed varying effects on the growth and resveratrol production in hairy root cultures. ... (7.6 g/l) and resveratrol production (1.5 mg/g) in hairy root of peanut. Our results demonstrate that the .... and proliferation of human retinal pigment epithelial cells via extracellular ...

  16. The morphometric analysis of the intervertebral foramen and the spinal nerve root in the cervical spine

    International Nuclear Information System (INIS)

    Yoshida, Yasuo

    2008-01-01

    deg at C5 and C6, showing a significantly obtuse angle at C5 and C6 compared with at C3. The measurement at the merging section of the dorsal spinal nerve root showed that the width was about 7.0 to 7.5 mm at C3 through C6 and about 6.5 mm at C7 which was significantly low, while the cephalocaudal length was about 12.5 mm at C3, about 11.5 mm at C4, about 12 to 13 mm at C5, about 11.5 mm at C6, about 10.5 mm at C7, and about 10 mm at C8: there was a difference between the right and the left at C5, whereas no difference was observed between the right and the left at C3, C4, C6, C7, and C8. The incidence angle from the inlet of intervertebral foramen of the dorsal spinal nerve root toward the superior part of the spine indistinct a gradual obtuse angle at C3 through C5, whereas the angle gradually become an acute angle at C6 or below. The incidence angle in the inferior part was obtuse at C4 and C5, and acute at C6 or below, showing that the distance obliquely running within the dura mater tended to be short in the dorsal nerve rootlets at C4 and C5. Based on the above results, it was considered that the anatomy of the intervertebral foramen of the cervical spine and the difference by level at the origin of dorsal root have an influence on the onset of cervical myelopathy and cervical spondylotic radiculopathy as well as the occurrence of various types of disease states. (author)

  17. The functional anatomy of speech perception: Dorsal and ventral processing pathways

    Science.gov (United States)

    Hickok, Gregory

    2003-04-01

    Drawing on recent developments in the cortical organization of vision, and on data from a variety of sources, Hickok and Poeppel (2000) have proposed a new model of the functional anatomy of speech perception. The model posits that early cortical stages of speech perception involve auditory fields in the superior temporal gyrus bilaterally (although asymmetrically). This cortical processing system then diverges into two broad processing streams, a ventral stream, involved in mapping sound onto meaning, and a dorsal stream, involved in mapping sound onto articulatory-based representations. The ventral stream projects ventrolaterally toward inferior posterior temporal cortex which serves as an interface between sound and meaning. The dorsal stream projects dorsoposteriorly toward the parietal lobe and ultimately to frontal regions. This network provides a mechanism for the development and maintenance of ``parity'' between auditory and motor representations of speech. Although the dorsal stream represents a tight connection between speech perception and speech production, it is not a critical component of the speech perception process under ecologically natural listening conditions. Some degree of bi-directionality in both the dorsal and ventral pathways is also proposed. A variety of recent empirical tests of this model have provided further support for the proposal.

  18. Upregulation of calcium channel alpha-2-delta-1 subunit in dorsal horn contributes to spinal cord injury-induced tactile allodynia.

    Science.gov (United States)

    Kusuyama, Kazuki; Tachibana, Toshiya; Yamanaka, Hiroki; Okubo, Masamichi; Yoshiya, Shinichi; Noguchi, Koichi

    2018-01-31

    Spinal cord injury (SCI) commonly results not only in motor paralysis but also in the emergence of neuropathic pain (NeuP), both of which can impair the quality of life for patients with SCI. In the clinical field, it is well known that pregabalin, which binds to the voltage-gated calcium channel alpha-2-delta-1 (α 2 δ-1) subunit has therapeutic effects on NeuP after SCI. A previous study has demonstrated that SCI increased α 2 δ-1 in the L4-L6 dorsal spinal cord of SCI rats by Western blot analysis and that the increase of α 2 δ-1 was correlated with tactile allodynia of the hind paw. However, the detailed feature of an increase in α 2 δ-1 protein in the spinal dorsal horn and the mechanism of pregabalin effect on SCI-induced NeuP have not been fully examined. This study aimed to examine the detailed distribution of α 2 δ-1 expression in the lumbar spinal cord after thoracic SCI in rats and the correlation of the therapeutic effect of pregabalin in SCI rats. Male Sprague-Dawley rats underwent thoracic (T10) spinal cord contusion injury using the IH impactor device. Spinal cord injury rats received pregabalin (30 mg/kg) once a day for 2 weeks over a 4-week period after SCI. The mechanical threshold in the rat hind paw was measured over 4 weeks. Alpha-2-delta-1 expression in the lumbar spinal cord and in the dorsal root ganglion (DRG) was analyzed using immunohistochemistry and in situ hybridization histochemistry. A significant reduction of the withdrawal threshold of mechanical stimuli to the hind paw was observed for 2 weeks and continued at least 4 weeks after SCI. In the control rats, expression of α 2 δ-1 immunoreactivity was detected mainly in laminae I and II in the lumbar dorsal horn. Thoracic SCI significantly increased α 2 δ-1 immunoreactivity in laminae I and II in the lumbar dorsal horn 4 weeks after SCI; however, thoracic SCI did not affect the expression of α 2 δ-1 mRNA in the L4 and L5 DRGs. Meanwhile, the signal intensity of α 2

  19. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests

    Science.gov (United States)

    Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.

    1994-01-01

    Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.

  20. Stimulation of human gingival fibroblasts viability and growth by roots treated with high intensity lasers, photodynamic therapy and citric acid.

    Science.gov (United States)

    Karam, Paula Stephania Brandão Hage; Ferreira, Rafael; Oliveira, Rodrigo Cardoso; Greghi, Sebastião Luiz Aguiar; de Rezende, Maria Lúcia Rubo; Sant'Ana, Adriana Campos Passanezi; Zangrando, Mariana Schutzer Ragghianti; Damante, Carla Andreotti

    2017-09-01

    The aim of this study was to compare the effect of root biomodification by lasers, citric acid and antimicrobial photodynamic therapy (aPDT) on viability and proliferation of human gingival fibroblasts (FGH). Groups were divided in control (CC - only cells), and root fragments treated by: scaling and root planing (positice control - SC), Er:YAG (ER-60mJ,10pps,10Hz,10s,2940nm), Nd:YAG (ND-0.5W,15Hz,10s,1640nm), antimicrobial photodynamic therapy (PDT-InGaAIP,30mW,45J/cm 2 ,30s,660nm,toluidine blue O), citric acid plus tetracycline (CA). Fibroblasts (6th passage, 2×10 3 ) were cultivated in a 24-h conditioned medium by the treated root fragments. Cell viability was measured by MTT test at 24, 48, 72 and 96h. In a second experiment, FGH cells (10 4 ) were cultivated on root fragments which received the same treatments. After 24, 48, 72h the number of cells was counted in SEM pictures. In addition, chemical elements were analyzed by energy dispersive spectroscopy (EDS). Data was analyzed by two-way ANOVA (first experiment), repeated measures ANOVA (second experiment) and ANOVA (EDS experiment) tests complemented by Tukey's test (pplaning stimulated fibroblast viability while Er:YAG and Nd:YAG treated root surfaces presented higher number of cells. Copyright © 2017. Published by Elsevier Ltd.

  1. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  2. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system.

    Science.gov (United States)

    Li, Xiangwei; Ma, Chi; Xie, Xiaohua; Sun, Hongchen; Liu, Xiaohua

    2016-04-15

    While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific

  3. Fabry's disease: biochemical and histochemical studies on hair roots for carrier detection.

    Science.gov (United States)

    Vermorken, A J; Weterings, P J; Spierenburg, G T; vanBennekom, C A; Wirtz, P; deBruyn, C H; Oei, T L

    1978-02-01

    A method of assay alpha-galactosidase and acid phosphatase activities in single hair roots is described. Enzyme histochemical studies show that the distribution of acid phosphatase in the human hair root matches that of alpha-galactosidase. Histochemically, the main activity is located in the upper part of the sheath near the orifice of the duct of the sebaceous gland. This is confirmed by enzyme assays on different parts of the hair root after dissection. The variation in the values found in individual hair roots is improved by relating alpha-galactosidase to acid phosphatase activities. Storage experiments indicate a remarkable stability of both alpha-galactosidase and acid phosphatase in human hair roots.

  4. Characterizing Human Stem Cell–derived Sensory Neurons at the Single-cell Level Reveals Their Ion Channel Expression and Utility in Pain Research

    Science.gov (United States)

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-01-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell–derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders. PMID:24832007

  5. Failure of root development of human permanent teeth following irradiation

    International Nuclear Information System (INIS)

    Takeda, Yasunori; Kuroda, Masafumi; Amari, Eiichi; Yanagisawa, Toru

    1987-01-01

    Complete absence of root formation of the upper incisors, canine and first premolar was reported in a 27-year-old female who had received radiation therapy for a retinal glioma of the right eye at age of 3 years 1 month. Ground and decalcified sections showed no remarkable changes in enamel and dentin of the crowns, but the pulp floor was closed by irregular dentin deposit despite the absence of root formation. The outer surface of the irregular dentin was covered by acellular cementum, and the periodontal membrane was undeveloped. A slight degree of fibrosis was seen in the pulp, but the coronal part of the dentin was lined by odontoblasts. The theory that tooth eruption is caused by the growth of the root is not substantiated by the observation in this case. (author)

  6. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    International Nuclear Information System (INIS)

    Wright, K.T.; Seabright, R.; Logan, A.; Lilly, A.J.; Khanim, F.; Bunce, C.M.; Johnson, W.E.B.

    2010-01-01

    Research highlights: → Extracellular Nm23H1 stimulates nerve growth. → Extracellular Nm23H1 provides pathfinding cues to growth cones. → The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. → The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  7. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Wright, K.T. [Keele University at the RJAH Orthopaedic Hospital, Oswestry, Shropshire (United Kingdom); Seabright, R.; Logan, A. [Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, Birmingham University, Birmingham (United Kingdom); Lilly, A.J.; Khanim, F.; Bunce, C.M. [Biosciences, Birmingham University, Birmingham (United Kingdom); Johnson, W.E.B., E-mail: w.e.johnson@aston.ac.uk [Life and Health Sciences, Aston University, Birmingham (United Kingdom)

    2010-07-16

    Research highlights: {yields} Extracellular Nm23H1 stimulates nerve growth. {yields} Extracellular Nm23H1 provides pathfinding cues to growth cones. {yields} The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. {yields} The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  8. A case of dorsal oblique fingertip amputation.

    Science.gov (United States)

    Takeda, Shinsuke; Tatebe, Masahiro; Morita, Akimasa; Yoneda, Hidemasa; Iwatsuki, Katsuyuki; Hirata, Hitoshi

    2017-01-01

    This study reports successful finger replantation in a patient with a dorsal oblique fingertip amputation. When repairing this unique type of injury, an evaluation of the remaining vessels is more useful for successful replantation than the anatomical zone classification. We propose that Kasai's classification is appropriate for guiding treatment.

  9. Dorsal stream involvement in recognition of objects with transient onset but not with ramped onset

    Directory of Open Access Journals (Sweden)

    Lourenco Tomas

    2011-08-01

    Full Text Available Abstract Background Although the ventral visual stream is understood to be responsible for object recognition, it has been proposed that the dorsal stream may contribute to object recognition by rapidly activating parietal attention mechanisms, prior to ventral stream object processing. Methods To investigate the relative contribution of the dorsal visual stream to object recognition a group of tertiary students were divided into good and poor motion coherence groups and assessed on tasks classically assumed to rely on ventral stream processing. Participants were required to identify simple line drawings in two tasks, one where objects were presented abruptly for 50 ms followed by a white-noise mask, the other where contrast was linearly ramped on and off over 325 ms and replaced with a mask. Results Although both groups only differed in motion coherence performance (a dorsal stream measure, the good motion coherence group showed superior contrast sensitivity for object recognition on the abrupt, but not the ramped presentation tasks. Conclusions We propose that abrupt presentation of objects activated attention mechanisms fed by the dorsal stream, whereas the ramped presentation had reduced transience and thus did not activate dorsal attention mechanisms as well. The results suggest that rapid dorsal stream activation may be required to assist with ventral stream object processing.

  10. Diagnosis of dorsal inter osseous pseudotumours by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Peh, W.C.G.; Wong, L.L.S.; Ip, W.Y.

    1999-01-01

    Two middle-aged-patients each presenting with a progressively enlarging mass in the first dorsal web space of their hands are reported. Magnetic resonance imaging (MRI) demonstrated the cause to be a hypertrophic first dorsal inter osseous muscle, with normal T1, T2 and post-gadopentetate dimeglumine signal characteristics. The ability of MRI to diagnose anatomical variants of hand muscles is important in the clinical management of patients with these pseudotumours. The usefulness of magnetic resonance imaging (MRI) in evaluation of soft tissue tumours of the musculoskeletal system is now widely accepted. Its ability to maximize contrast between tumour and adjacent normal tissue in a multiplanar manner makes it the imaging modality of choice in pre-operative staging of soft tissue masses. In the hand and wrist, where benign tumours predominate, MRI may provide a specific diagnosis. We describe two cases in which MRI demonstrated the cause of a hand pseudotumour to be due to hypertrophy of the first dorsal inter osseous muscle. Copyright (1999) Blackwell Science Pty Ltd

  11. Diagnosis of dorsal inter osseous pseudotumours by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Peh, W.C.G.; Wong, L.L.S. [The University of Hong Kong, Queen Mary Hospital, (Hong Kong). Hand Surgery Division, Department of Diagnotic Radiology; Ip, W.Y. [The University of Hong Kong, Queen Mary Hospital, (Hong Kong). Hand Surgery Division, Department of Orthopaedic Surgery

    1999-08-01

    Two middle-aged-patients each presenting with a progressively enlarging mass in the first dorsal web space of their hands are reported. Magnetic resonance imaging (MRI) demonstrated the cause to be a hypertrophic first dorsal inter osseous muscle, with normal T1, T2 and post-gadopentetate dimeglumine signal characteristics. The ability of MRI to diagnose anatomical variants of hand muscles is important in the clinical management of patients with these pseudotumours. The usefulness of magnetic resonance imaging (MRI) in evaluation of soft tissue tumours of the musculoskeletal system is now widely accepted. Its ability to maximize contrast between tumour and adjacent normal tissue in a multiplanar manner makes it the imaging modality of choice in pre-operative staging of soft tissue masses. In the hand and wrist, where benign tumours predominate, MRI may provide a specific diagnosis. We describe two cases in which MRI demonstrated the cause of a hand pseudotumour to be due to hypertrophy of the first dorsal inter osseous muscle. Copyright (1999) Blackwell Science Pty Ltd 20 refs., 3 figs.

  12. Pulsed Radiofrequency Applied to the Sciatic Nerve Improves Neuropathic Pain by Down-regulating The Expression of Calcitonin Gene-related Peptide in the Dorsal Root Ganglion

    Science.gov (United States)

    Ren, Hao; Jin, Hailong; Jia, Zipu; Ji, Nan; Luo, Fang

    2018-01-01

    Background: Clinical studies have shown that applying pulsed radiofrequency (PRF) to the neural stem could relieve neuropathic pain (NP), albeit through an unclear analgesic mechanism. And animal experiments have indicated that calcitonin gene-related peptide (CGRP) expressed in the dorsal root ganglion (DRG) is involved in generating and maintaining NP. In this case, it is uncertain whether PRF plays an analgesic role by affecting CGRP expression in DRG. Methods: Rats were randomly divided into four groups: Groups A, B, C, and D. In Groups C and D, the right sciatic nerve was ligated to establish the CCI model, while in Groups A and B, the sciatic nerve was isolated without ligation. After 14 days, the right sciatic nerve in Groups B and D re-exposed and was treated with PRF on the ligation site. Thermal withdrawal latency (TWL) and hindpaw withdrawal threshold (HWT) were measured before PRF treatment (Day 0) as well as after 2, 4, 8, and 14 days of treatment. At the same time points of the behavioral tests, the right L4-L6 DRG was sampled and analyzed for CGRP expression using RT-qPCR and an enzyme-linked immunosorbent assay (ELISA). Results: Fourteen days after sciatic nerve ligation, rats in Groups C and D had a shortened TWL (P 0.05). On the 8th and 14th days, the mRNA levels in Group D were restored to those of Groups A and B. Meanwhile, the CGRP content of Group D gradually dropped over time, from 76.4 pg/mg (Day 0) to 57.5 pg/mg (Day 14). Conclusions: In this study, we found that, after sciatic nerve ligation, rats exhibited apparent hyperalgesia and allodynia, and CGRP mRNA and CGRP contents in the L4-L6 DRG increased significantly. Through lowering CGRP expression in the DRG, PRF treatment might relieve the pain behaviors of NP. PMID:29333099

  13. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats.

    Science.gov (United States)

    Ghazizadeh, Vahid; Nazıroğlu, Mustafa

    2014-09-01

    Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress.

  14. Persistent dorsal ophthalmic artery arising from the internal carotid artery: Report of three cases

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Hwan; Lee, Ghi Jai; Shim, Jae Chan; Lee, Kyoung Eun; Kim, Ho Kyun; Suh, Jung Ho [Dept. of Radiology, Seoul Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Normally, the ophthalmic artery (OA) arises from the supraclinoid segment of the internal carotid artery (ICA) and enters the orbit via the optic canal. A persistent dorsal OA is a rare variation that originates from the cavernous segment of the ICA and enters the orbit via the superior orbital fissure. To the best of our knowledge, persistent dorsal OA has not been described in the Korean literature. In this paper, we report three cases of persistent dorsal OA with review of the literature on embryogenesis and other origins of the OA.

  15. Dorsal onlay graft bulbar urethroplasty using buccal mucosa

    African Journals Online (AJOL)

    G. Barbagli

    2015-12-02

    Dec 2, 2015 ... promote the transformation of the urethral mucosa plate into a tube, according to ... Allen stirrups and sequential inflatable compression sleeves. Figure 2 .... the ventral, dorsal or lateral surface of the urethra, we investigated if.

  16. Investigating category- and shape-selective neural processing in ventral and dorsal visual stream under interocular suppression.

    Science.gov (United States)

    Ludwig, Karin; Kathmann, Norbert; Sterzer, Philipp; Hesselmann, Guido

    2015-01-01

    Recent behavioral and neuroimaging studies using continuous flash suppression (CFS) have suggested that action-related processing in the dorsal visual stream might be independent of perceptual awareness, in line with the "vision-for-perception" versus "vision-for-action" distinction of the influential dual-stream theory. It remains controversial if evidence suggesting exclusive dorsal stream processing of tool stimuli under CFS can be explained by their elongated shape alone or by action-relevant category representations in dorsal visual cortex. To approach this question, we investigated category- and shape-selective functional magnetic resonance imaging-blood-oxygen level-dependent responses in both visual streams using images of faces and tools. Multivariate pattern analysis showed enhanced decoding of elongated relative to non-elongated tools, both in the ventral and dorsal visual stream. The second aim of our study was to investigate whether the depth of interocular suppression might differentially affect processing in dorsal and ventral areas. However, parametric modulation of suppression depth by varying the CFS mask contrast did not yield any evidence for differential modulation of category-selective activity. Together, our data provide evidence for shape-selective processing under CFS in both dorsal and ventral stream areas and, therefore, do not support the notion that dorsal "vision-for-action" processing is exclusively preserved under interocular suppression. © 2014 Wiley Periodicals, Inc.

  17. Comparison of the antibacterial effect of sodium hypochlorite and aloe vera solutions as root canal irrigants in human extracted teeth contaminated with enterococcus faecalis.

    Science.gov (United States)

    Sahebi, S; Khosravifar, N; Sedighshamsi, M; Motamedifar, M

    2014-03-01

    The main purpose of a root canal treatment is to eliminate the bacteria and their products from the pulp space. Sodium hypochlorite has excellent antibacterial properties, but also some negative features. The aim of the present study is to compare the antimicrobial effect of Aloe Vera solution with sodium hypochlorite on E.faecalis in the root canals of human extracted teeth. Sixty human extracted single rooted teeth were selected for this in vitro study. The teeth recruited in this study had no cracks, internal resorption, external resorption and calcification. Enterococcus faecalis was injected in the root canals of all teeth. The teeth were then divided into three groups randomly. Each group consisted of 20 teeth that were all rinsed with one of the following solutions: sodium hypochlorite 2.5%, Aloe vera and normal saline. Subsequent to rinsing, root canals of all teeth were sampled. The samples were cultured and growth of the bacteria was assessed after 48 hours. The number of colonies of the bacteria was then counted. The difference between the inhibitory effect of Aloe vera and normal saline on E.faecalis was not significant according to independent t-test (p= 0.966). The inhibitory effect of sodium hypochlorite on E.faecalis was much greater than that of Aloe vera and normal saline (pvera solution is not recommended as a root canal irrigator, but future studies are suggested to investigate the antibacterial effect of Aloe vera with longer duration of exposure and as an intra canal medicament.

  18. Root growth during molar eruption in extant great apes.

    Science.gov (United States)

    Kelley, Jay; Dean, Christopher; Ross, Sasha

    2009-01-01

    While there is gradually accumulating knowledge about molar crown formation and the timing of molar eruption in extant great apes, very little is known about root formation during the eruption process. We measured mandibular first and second molar root lengths in extant great ape osteological specimens that died while either the first or second molars were in the process of erupting. For most specimens, teeth were removed so that root lengths could be measured directly. When this was not possible, roots were measured radiographically. We were particularly interested in the variation in the lengths of first molar roots near the point of gingival emergence, so specimens were divided into early, middle and late phases of eruption based on the number of cusps that showed protein staining, with one or two cusps stained equated with immediate post-gingival emergence. For first molars at this stage, Gorilla has the longest roots, followed by Pongo and Pan. Variation in first molar mesial root lengths at this stage in Gorilla and Pan, which comprise the largest samples, is relatively low and represents no more than a few months of growth in both taxa. Knowledge of root length at first molar emergence permits an assessment of the contribution of root growth toward differences between great apes and humans in the age at first molar emergence. Root growth makes up a greater percentage of the time between birth and first molar emergence in humans than it does in any of the great apes. Copyright (c) 2009 S. Karger AG, Basel.

  19. A case of dorsal oblique fingertip amputation

    OpenAIRE

    Takeda, Shinsuke; Tatebe, Masahiro; Morita, Akimasa; Yoneda, Hidemasa; Iwatsuki, Katsuyuki; Hirata, Hitoshi

    2017-01-01

    Abstract This study reports successful finger replantation in a patient with a dorsal oblique fingertip amputation. When repairing this unique type of injury, an evaluation of the remaining vessels is more useful for successful replantation than the anatomical zone classification. We propose that Kasai?s classification is appropriate for guiding treatment.

  20. Bulbar urethroplasty using the dorsal approach: current techniques

    Directory of Open Access Journals (Sweden)

    Barbagli Guido

    2003-01-01

    Full Text Available INTRODUCTION: The use of flaps or grafts is mandatory in patients with longer and complex strictures. In 1995-96 we described a new dorsal onlay graft urethroplasty. Over time, our original technique was better defined and changed. Now this procedure (also named Barbagli technique has been greeted with a fair amount of enthusiasm in Europe and in the United States. SURGICAL TECHNIQUE: The patient is placed in normal lithotomy position, and a midline perineo-scrotal incision is made. The bulbar urethra is then free from the bulbo-cavernous muscles, and is dissected from the corpora cavernosa. The urethra is completely mobilized from the corpora cavernosa, it is rotated 180 degrees, and is incised along its dorsal surface. The graft (preputial skin or buccal mucosa or the flap is fixed and quilted to the tunica albuginea of the corporal bodies. The right mucosal margin of the opened urethra is sutured to the right side of the patch-graft. The urethra is rotated back into its original position. The left urethral margin is sutured to the left side of the patch graft and to the corporal bodies, and the grafted area is entirely covered by the urethral plate. The bulbo-cavernous muscles are approximated over the grafted area. A 16F silicone Foley catheter is left in place. COMMENTS: Dorsal onlay graft urethroplasty is a versatile procedure that may be combined with various substitute materials like preputial skin, buccal mucosa grafts or pedicled flaps.

  1. In vivo model for microbial invasion of tooth root dentinal tubules

    Directory of Open Access Journals (Sweden)

    Jane L. BRITTAN

    2016-04-01

    Full Text Available ABSTRACT Objective Bacterial penetration of dentinal tubules via exposed dentine can lead to root caries and promote infections of the pulp and root canal system. The aim of this work was to develop a new experimental model for studying bacterial invasion of dentinal tubules within the human oral cavity. Material and Methods Sections of human root dentine were mounted into lower oral appliances that were worn by four human subjects for 15 d. Roots were then fixed, sectioned, stained and examined microscopically for evidence of bacterial invasion. Levels of invasion were expressed as Tubule Invasion Factor (TIF. DNA was extracted from root samples, subjected to polymerase chain reaction amplification of 16S rRNA genes, and invading bacteria were identified by comparison of sequences with GenBank database. Results All root dentine samples with patent tubules showed evidence of bacterial cell invasion (TIF value range from 5.7 to 9.0 to depths of 200 mm or more. A spectrum of Gram-positive and Gram-negative cell morphotypes were visualized, and molecular typing identified species of Granulicatella, Streptococcus, Klebsiella, Enterobacter, Acinetobacter, and Pseudomonas as dentinal tubule residents. Conclusion A novel in vivo model is described, which provides for human root dentine to be efficiently infected by oral microorganisms. A range of bacteria were able to initially invade dentinal tubules within exposed dentine. The model will be useful for testing the effectiveness of antiseptics, irrigants, and potential tubule occluding agents in preventing bacterial invasion of dentine.

  2. Vertical Root Fracture initiation in curved roots after root canal preparation: A dentinal micro-crack analysis with LED transillumination.

    Science.gov (United States)

    Miguéns-Vila, Ramón; Martín-Biedma, Benjamín; Varela-Patiño, Purificación; Ruíz-Piñón, Manuel; Castelo-Baz, Pablo

    2017-10-01

    One of the causative factors of root defects is the increased friction produced by rotary instrumentation. A high canal curvature may increase stress, making the tooth more susceptible to dentinal cracks. The purpose of this study was to evaluate dentinal micro-crack formation with the ProTaper NEXT and ProTaper Universal systems using LED transillumination, and to analyze the micro-crack generated at the point of maximum canal curvature. 60 human mandibular premolars with curvatures between 30-49° and radii between 2-4 mm were used. The root canals were instrumented using the Protaper Universal® and Protaper NEXT® systems, with the aid of the Proglider® system. The obtained samples were sectioned transversely before subsequent analysis with LED transillumination at 2 mm and 8 mm from the apex and at the point of maximum canal curvature. Defects were scored: 0 for no defects; and 1 for micro-cracks. Root defects were not observed in the control group. The ProTaper NEXT system caused fewer defects (16.7%) than the ProTaper Universal system (40%) ( P Universal system caused significantly more micro-cracks at the point of maximum canal curvature than the ProTaper NEXT system ( P Universal system. A higher prevalence of defects was found at the point of maximum curvature in the ProTaper Universal group. Key words: Curved root, Micro-crack, point of maximum canal curvature, ProTaper NEXT, ProTaper Universal, Vertical root fracture.

  3. Neurochemical characterization of the tree shrew dorsal striatum

    Directory of Open Access Journals (Sweden)

    MATTHEW W RICE

    2011-08-01

    Full Text Available The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington's, Tourette's syndrome, obsessive-compulsive disorders and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei, which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase and acetylcholinesterase immunohistochemistry, and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum.

  4. Proximally evoked soleus H-reflex to S1 nerve root stimulation in sensory neuronopathies (ganglionopathies).

    Science.gov (United States)

    Zhu, Dong-Qing; Zhu, Yu; Qiao, Kai; Zheng, Chao-Jun; Bradley, Scott; Weber, Robert; Chen, Xiang-Jun

    2013-11-01

    Sensory neuronopathy (SNN) mimics distal sensory axonopathy. The conventional H-reflex elicited by tibial nerve stimulation (tibial H-reflex) is usually abnormal in both conditions. We evaluated the proximally evoked soleus H-reflex in response to S1 nerve root stimulation (S1 foramen H-reflex) in SNN. Eleven patients with SNN and 6 with distal sensory axonopathy were studied. Tibial and S1 foramen H-reflexes were performed bilaterally in each patient. Tibial and S1 foramen H-reflexes were absent bilaterally in all patients with SNN. In the patients with distal sensory axonopathy, tibial H-reflexes were absent in 4 and demonstrated prolonged latencies in 2, but S1 foramen H-reflexes were normal. Characteristic absence of the H-reflex after both proximal and distal stimulation reflects primary loss of dorsal root ganglion (DRG) neurons and the distinct non-length-dependent impairment of sensory nerve fibers in SNN. Copyright © 2013 Wiley Periodicals, Inc.

  5. Excitability of Aβ sensory neurons is altered in an animal model of peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Zhu Yong

    2012-01-01

    prolonged discharge following this stimulation, a decreased activation threshold and a greater response to depolarizing current injection into the soma, as well as a longer refractory interval and delayed response to paired pulse electrical stimulation of the dorsal roots. Conclusions The present study has demonstrated changes in functionally classified Aβ low threshold and high threshold DRG neurons in a nerve intact animal model of peripheral neuropathy that demonstrates nociceptive responses to normally innocuous cutaneous stimuli, much the same as is observed in humans with neuropathic pain. We demonstrate further that the peripheral receptive fields of these neurons are more excitable, as are the somata. However, the dorsal roots exhibit a decrease in excitability. Thus, if these neurons participate in neuropathic pain this differential change in excitability may have implications in the peripheral drive that induces central sensitization, at least in animal models of peripheral neuropathic pain, and Aβ sensory neurons may thus contribute to allodynia and spontaneous pain following peripheral nerve injury in humans.

  6. The gastrointestinal-brain axis in humans as an evolutionary advance of the root-leaf axis in plants: A hypothesis linking quantum effects of light on serotonin and auxin.

    Science.gov (United States)

    Tonello, Lucio; Gashi, Bekim; Scuotto, Alessandro; Cappello, Glenda; Cocchi, Massimo; Gabrielli, Fabio; Tuszynski, Jack A

    2018-01-01

    Living organisms tend to find viable strategies under ambient conditions that optimize their search for, and utilization of, life-sustaining resources. For plants, a leading role in this process is performed by auxin, a plant hormone that drives morphological development, dynamics, and movement to optimize the absorption of light (through branches and leaves) and chemical "food" (through roots). Similarly to auxin in plants, serotonin seems to play an important role in higher animals, especially humans. Here, it is proposed that morphological and functional similarities between (i) plant leaves and the animal/human brain and (ii) plant roots and the animal/human gastro-intestinal tract have general features in common. Plants interact with light and use it for biological energy, whereas, neurons in the central nervous system seem to interact with bio-photons and use them for proper brain function. Further, as auxin drives roots "arborescence" within the soil, similarly serotonin seems to facilitate enteric nervous system connectivity within the human gastro-intestinal tract. This auxin/serotonin parallel suggests the root-branches axis in plants may be an evolutionary precursor to the gastro-intestinal-brain axis in humans. Finally, we hypothesize that light might be an important factor, both in gastro-intestinal dynamics and brain function. Such a comparison may indicate a key role for the interaction of light and serotonin in neuronal physiology (possibly in both the central nervous system and the enteric nervous system), and according to recent work, mind and consciousness.

  7. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats.

    Science.gov (United States)

    Chang, Lu; Ye, Fang; Luo, Quehua; Tao, Yuanxiang; Shu, Haihua

    2018-01-01

    Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1-7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1-4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression of IL-1β, IL-6, and TNF-α in the

  8. A novel function for the IκB inhibitor Cactus in promoting Dorsal nuclear localization and activity in the Drosophila embryo.

    Science.gov (United States)

    Cardoso, Maira Arruda; Fontenele, Marcio; Lim, Bomyi; Bisch, Paulo Mascarello; Shvartsman, Stanislav Y; Araujo, Helena Marcolla

    2017-08-15

    The evolutionarily conserved Toll signaling pathway controls innate immunity across phyla and embryonic patterning in insects. In the Drosophila embryo, Toll is required to establish gene expression domains along the dorsal-ventral axis. Pathway activation induces degradation of the IκB inhibitor Cactus, resulting in a ventral-to-dorsal nuclear gradient of the NFκB effector Dorsal. Here, we investigate how cactus modulates Toll signals through its effects on the Dorsal gradient and on Dorsal target genes. Quantitative analysis using a series of loss- and gain-of-function conditions shows that the ventral and lateral aspects of the Dorsal gradient can behave differently with respect to Cactus fluctuations. In lateral and dorsal embryo domains, loss of Cactus allows more Dorsal to translocate to the nucleus. Unexpectedly, cactus loss-of-function alleles decrease Dorsal nuclear localization ventrally, where Toll signals are high. Overexpression analysis suggests that this ability of Cactus to enhance Toll stems from the mobilization of a free Cactus pool induced by the Calpain A protease. These results indicate that Cactus acts to bolster Dorsal activation, in addition to its role as a NFκB inhibitor, ensuring a correct response to Toll signals. © 2017. Published by The Company of Biologists Ltd.

  9. Semaphorin6A acts as a gate keeper between the central and the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Sadhu Rejina

    2007-12-01

    Full Text Available Abstract Background During spinal cord development, expression of chicken SEMAPHORIN6A (SEMA6A is almost exclusively found in the boundary caps at the ventral motor axon exit point and at the dorsal root entry site. The boundary cap cells are derived from a population of late migrating neural crest cells. They form a transient structure at the transition zone between the peripheral nervous system (PNS and the central nervous system (CNS. Ablation of the boundary cap resulted in emigration of motoneurons from the ventral spinal cord along the ventral roots. Based on its very restricted expression in boundary cap cells, we tested for a role of Sema6A as a gate keeper between the CNS and the PNS. Results Downregulation of Sema6A in boundary cap cells by in ovo RNA interference resulted in motoneurons streaming out of the spinal cord along the ventral roots, and in the failure of dorsal roots to form and segregate properly. PlexinAs interact with class 6 semaphorins and are expressed by both motoneurons and sensory neurons. Knockdown of PlexinA1 reproduced the phenotype seen after loss of Sema6A function both at the ventral motor exit point and at the dorsal root entry site of the lumbosacral spinal cord. Loss of either PlexinA4 or Sema6D function had an effect only at the dorsal root entry site but not at the ventral motor axon exit point. Conclusion Sema6A acts as a gate keeper between the PNS and the CNS both ventrally and dorsally. It is required for the clustering of boundary cap cells at the PNS/CNS interface and, thus, prevents motoneurons from streaming out of the ventral spinal cord. At the dorsal root entry site it organizes the segregation of dorsal roots.

  10. The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2011-09-01

    Full Text Available The implantation of biomaterials into the human body has become an indispensable part of almost all fields of modern medicine. Accordingly, there is an increasing need for appropriate approaches, which can be used to evaluate the suitability of different biomaterials for distinct clinical indications. The dorsal skinfold chamber is a sophisticated experimental model, which has been proven to be extremely valuable for the systematic in vivo analysis of the dynamic interaction of small biomaterial implants with the surrounding host tissue in rats, hamsters and mice. By means of intravital fluorescence microscopy, this chronic model allows for repeated analyses of various cellular, molecular and microvascular mechanisms, which are involved in the early inflammatory and angiogenic host tissue response to biomaterials during the initial 2-3 weeks after implantation. Therefore, the dorsal skinfold chamber has been broadly used during the last two decades to assess the in vivo performance of prosthetic vascular grafts, metallic implants, surgical meshes, bone substitutes, scaffolds for tissue engineering, as well as for locally or systemically applied drug delivery systems. These studies have contributed to identify basic material properties determining the biocompatibility of the implants and vascular ingrowth into their surface or internal structures. Thus, the dorsal skinfold chamber model does not only provide deep insights into the complex interactions of biomaterials with the surrounding soft tissues of the host but also represents an important tool for the future development of novel biomaterials aiming at an optimisation of their biofunctionality in clinical practice.

  11. Is maternal deprivation the root of all evil?

    Directory of Open Access Journals (Sweden)

    David R. Cross

    2009-11-01

    Full Text Available In this paper we seriously entertain the question, “Is maternal deprivation the root of all evil?” Our consideration of this question is broken down into three parts. In the fi rst part, we discuss the nature of evil, focusing in particular on the legal concept of depravity. In the second part, we discuss the nurture of evil, focusing in particular on the common developmental trajectory seen in those who are depraved. In the third part, we discuss the roots of evil, focusing in particular on the animal and human research regarding maternal deprivation. Our conclusion is that maternal deprivation may actually be the root of all evil, but only because depraved individuals have been deprived of normative maternal care, which is the cradle of our humanity.

  12. Anatomy and muscle activity of the dorsal fins in bamboo sharks and spiny dogfish during turning maneuvers.

    Science.gov (United States)

    Maia, Anabela; Wilga, Cheryl D

    2013-11-01

    Stability and procured instability characterize two opposing types of swimming, steady and maneuvering, respectively. Fins can be used to manipulate flow to adjust stability during swimming maneuvers either actively using muscle control or passively by structural control. The function of the dorsal fins during turning maneuvering in two shark species with different swimming modes is investigated here using musculoskeletal anatomy and muscle function. White-spotted bamboo sharks are a benthic species that inhabits complex reef habitats and thus have high requirements for maneuverability. Spiny dogfish occupy a variety of coastal and continental shelf habitats and spend relatively more time cruising in open water. These species differ in dorsal fin morphology and fin position along the body. Bamboo sharks have a larger second dorsal fin area and proportionally more muscle insertion into both dorsal fins. The basal and radial pterygiophores are plate-like structures in spiny dogfish and are nearly indistinguishable from one another. In contrast, bamboo sharks lack basal pterygiophores, while the radial pterygiophores form two rows of elongated rectangular elements that articulate with one another. The dorsal fin muscles are composed of a large muscle mass that extends over the ceratotrichia overlying the radials in spiny dogfish. However, in bamboo sharks, the muscle mass is divided into multiple distinct muscles that insert onto the ceratotrichia. During turning maneuvers, the dorsal fin muscles are active in both species with no differences in onset between fin sides. Spiny dogfish have longer burst durations on the outer fin side, which is consistent with opposing resistance to the medium. In bamboo sharks, bilateral activation of the dorsal in muscles could also be stiffening the fin throughout the turn. Thus, dogfish sharks passively stiffen the dorsal fin structurally and functionally, while bamboo sharks have more flexible dorsal fins, which result from a

  13. Prevention of root caries with dentin adhesives.

    Science.gov (United States)

    Grogono, A L; Mayo, J A

    1994-04-01

    This in vitro investigation determined the feasibility of using dentin adhesives to protect root surfaces against caries. The roots of 22 recently extracted human teeth were all painted with a protective lacquer leaving two unprotected small windows. On each specimen, one window (control) was left untreated and the other window (experimental) was treated using a dentin adhesive (Scotchbond Multi-Purpose). The roots were then immersed in an in vitro acetate/calcium/phosphate demineralization model at pH 4.3. After 70 days, the samples were removed and sectioned through the windows. The undecalcified ground sections were examined under transmitted and polarized light. Lesions characteristic of natural root caries were seen in the untreated control windows. No such lesions were apparent in the experimental windows. The results of this preliminary study suggest that dentin adhesives may provide protection against root caries.

  14. Posture And Dorsal Shape At A Sitted Workstation

    Science.gov (United States)

    Lepoutre, F. X.; Cloup, P.; Guerra, T. M.

    1986-07-01

    The ergonomic analysis of a control or a supervision workstation for a vehicle or a process, necessitates to take into account the biomecanical visuo-postural system. The measurements, which are necessary to do, must give informations about the spatial direction of the limbs, the dorsal shape, eventually the eyes direction, and the postural evolution during the working time. More, the smallness of the work station, the backrest and sometime a vibratory environment made use specific, strong and small devices wich do not disturb the operator. The measurement system which we propose is made of an optical device. This system is studied in relation with the french "Institute de Recherche pour les Transports" for an ergonomic analysis of a truck cabin. The optical device consists on placing on the body of the driver on particular places materializing specially members and trunck joint points, some drops which reflect the infra-red raies coming from a specific light. Several cameras whose relative positions depend on the experiment site, transmit video signals to the associated treatment systems which extract the coordinates (Xi, Yi) of each drop in the observation scope of any camera. By regrouping the informations obtained from every view, it is possible to obtain the spatial drop position and then to restore the individual's posture in three dimensions. Therefore, this device doesn't enable us, in consideration of the backrest, to analyse the dorsal posture, which is important with regard to dorsal pains frequency. For that reason, we complete the measurements by using a "curvometer". This device consists of a flexible stick fixed upon the individual back with elastic belts, whose distorsions (curvature in m-1) are measured, in the individual's sagittal plane, with 4 strain gauges pairs; located approximately at the level of vertebra D1, D6, D10 and L3. A fifth measurement, concerning the inclination (in degree) of the lower part of the stick, makes it is possible to

  15. Dorsal Branches of Abdominal Aorta in the Rabbit and the European Hare

    Directory of Open Access Journals (Sweden)

    Flešárová S.

    2016-06-01

    Full Text Available The aim of this study was to describe the anatomical arrangement of the branches arising from the dorsal surface of the aorta abdominalis in the rabbit and the hare. The study was carried out on ten adult rabbits and ten adult European hares using the corrosion technique. After the euthanasia, the vascular network was perfused with saline. After polymerization of the casting medium, the maceration was carried out in a KOH solution. We found different variations in; the number of arteries, level of their origin and arrangement. The aa. lumbales of the same level arose by means of a common trunk or their origin was independent. The aa. lumbales VI or aa. lumbales VI et VII originated also from the a. sacralis mediana. By aa. lumbales we found an important interspecies difference in; number, diameter, ramification and density of dorsal branches, which are designated for the dorsal muscles of the body stem. All listed parameters of branches were higher in the hare. This anatomical arrangement of dorsal branches is adapted to the higher movement activity of the hare. According to our results, it can be concluded that the anatomical arrangement of the branches of the aorta abdominalis shows a higher number of variations in the domesticated rabbit in comparison with the hare.

  16. Assessment of three root canal preparation techniques on root canal geometry using micro-computed tomography: In vitro study

    Directory of Open Access Journals (Sweden)

    Shaikha M Al-Ali

    2012-01-01

    Full Text Available Aim: To assess the effects of three root canal preparation techniques on canal volume and surface area using three-dimensionally reconstructed root canals in extracted human maxillary molars. Materials and Methods: Thirty extracted Human Maxillary Molars having three separate roots and similar root shape were randomly selected from a pool of extracted teeth for this study and stored in normal saline solution until used. A computed tomography scanner (Philips Brilliance CT 64-slice was used to analyze root canals in extracted maxillary molars. Specimens were scanned before and after canals were prepared using stainless steel K-Files, Ni-Ti rotary ProTaper and rotary SafeSiders instruments. Differences in dentin volume removed, the surface area, the proportion of unchanged area and canal transportation were calculated using specially developed software. Results: Instrumentation of canals increased volume and surface area. Statistical analysis found a statistically significant difference among the 3 groups in total change in volume (P = 0.001 and total change in surface area (P = 0.13. Significant differences were found when testing both groups with group III (SafeSiders. Significant differences in change of volume were noted when grouping was made with respect to canal type (in MB and DB (P < 0.05. Conclusion: The current study used computed tomography, an innovative and non destructive technique, to illustrate changes in canal geometry. Overall, there were few statistically significant differences between the three instrumentation techniques used. SafeSiders stainless steel 40/0.02 instruments exhibit a greater cutting efficiency on dentin than K-Files and ProTaper. CT is a new and valuable tool to study root canal geometry and changes after preparation in great details. Further studies with 3D-techniques are required to fully understand the biomechanical aspects of root canal preparation.

  17. Dorsal free graft urethroplasty for urethral stricture by ventral sagittal urethrotomy approach.

    Science.gov (United States)

    Asopa, H S; Garg, M; Singhal, G G; Singh, L; Asopa, J; Nischal, A

    2001-11-01

    To explore the feasibility of applying a dorsal free graft to treat urethral stricture by the ventral sagittal urethrotomy approach without mobilizing the urethra. Twelve patients with long or multiple strictures of the anterior urethra were treated by a dorsal free full-thickness preputial or buccal mucosa graft. The urethra was not separated from the corporal bodies and was opened in the midline over the stricture. The floor of the urethra was incised, and an elliptical raw area was created over the tunica on which a free full-thickness graft of preputial or buccal mucosa was secured. The urethra was retubularized in one stage. After a follow-up of 8 to 40 months, one recurrence developed and required dilation. The ventral sagittal urethrotomy approach for dorsal free graft urethroplasty is not only feasible and successful, but is easy to perform.

  18. Dorsal onlay lingual mucosal graft urethroplasty for urethral strictures in women.

    Science.gov (United States)

    Sharma, Girish K; Pandey, Ashwani; Bansal, Harbans; Swain, Sameer; Das, Suren K; Trivedi, Sameer; Dwivedi, Udai S; Singh, Pratap B

    2010-05-01

    To describe the technique and results of dorsal onlay lingual mucosal graft (LMG) urethroplasty for the definitive management of urethral strictures in women. In all, 15 women (mean age 42 years) with a history suggestive of urethral stricture who had undergone multiple urethral dilatations and/or urethrotomy were selected for dorsal onlay LMG urethroplasty after thorough evaluation, from October 2006 to March 2008. After a suprameatal inverted-U incision, the dorsal aspect of the urethra was dissected and urethrotomy was done at the 12 o'clock position across the strictured segment. Tailored LMG harvested from the ventrolateral aspect of the tongue was then sutured to the urethrotomy wound over an 18 F silicone catheter. The preoperative mean maximum urinary flow rate of 7.2 mL/s increased to 29.87 mL/s, 26.95 mL/s and 26.86 mL/s with a 'normal' flow rate curve at 3, 6 and 12 months follow-up, respectively. One patient at the 3-month follow-up had submeatal stenosis and required urethral dilatation thrice at monthly intervals. At the 1-year follow-up, none of the present patients had any neurosensory complications, urinary incontinence, or long-term functional/aesthetic complication at the donor site. LMG urethroplasty using the dorsal onlay technique should be offered for correction of persistent female urethral stricture as it provides a simple, safe and effective approach with durable results.

  19. Development and implementation of custom root-cause systems

    International Nuclear Information System (INIS)

    Paradies, M.; Unger, L.

    1990-01-01

    Almost anyone investigating an operating problem can expect their management and the US Nuclear Regulatory Commission (NRC) to ask them if they have really uncovered the root cause of the event. This paper outlines a proven method to develop a custom system to identify and analyze the root causes of events. The method has led to the successful implementation of root-cause analysis systems at the Savannah River Plant and at Philadelphia Electric's Peach Bottom and Limerick nuclear generating stations. The methods are currently being used by System Improvements to develop a root-cause system to be used by the NRC to identify human performance problems at utilities. This paper also outlines the common problems that may be encountered when implementing a root-cause program

  20. Shape representations in the primate dorsal visual stream

    Directory of Open Access Journals (Sweden)

    Tom eTheys

    2015-04-01

    Full Text Available The primate visual system extracts object shape information for object recognition in the ventral visual stream. Recent research has demonstrated that object shape is also processed in the dorsal visual stream, which is specialized for spatial vision and the planning of actions. A number of studies have investigated the coding of 2D shape in the anterior intraparietal area (AIP, one of the end-stage areas of the dorsal stream which has been implicated in the extraction of affordances for the purpose of grasping. These findings challenge the current understanding of area AIP as a critical stage in the dorsal stream for the extraction of object affordances. The representation of three-dimensional (3D shape has been studied in two interconnected areas known to be critical for object grasping: area AIP and area F5a in the ventral premotor cortex (PMv, to which AIP projects. In both areas neurons respond selectively to 3D shape defined by binocular disparity, but the latency of the neural selectivity is approximately 10 ms longer in F5a compared to AIP, consistent with its higher position in the hierarchy of cortical areas. Furthermore F5a neurons were more sensitive to small amplitudes of 3D curvature and could detect subtle differences in 3D structure more reliably than AIP neurons. In both areas, 3D-shape selective neurons were co-localized with neurons showing motor-related activity during object grasping in the dark, indicating a close convergence of visual and motor information on the same clusters of neurons.

  1. Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals.

    Science.gov (United States)

    Bonino, D; Ricciardi, E; Sani, L; Gentili, C; Vanello, N; Guazzelli, M; Vecchi, T; Pietrini, P

    2008-09-01

    In sighted individuals, both the visual and tactile version of the same spatial working memory task elicited neural responses in the dorsal "where" cortical pathway (Ricciardi et al., 2006). Whether the neural response during the tactile working memory task is due to visually-based spatial imagery or rather reflects a more abstract, supramodal organization of the dorsal cortical pathway remains to be determined. To understand the role of visual experience on the functional organization of the dorsal cortical stream, using functional magnetic resonance imaging (fMRI) here we examined brain response in four individuals with congenital or early blindness and no visual recollection, while they performed the same tactile spatial working memory task, a one-back recognition of 2D and 3D matrices. The blind subjects showed a significant activation in bilateral posterior parietal cortex, dorsolateral and inferior prefrontal areas, precuneus, lateral occipital cortex, and cerebellum. Thus, dorsal occipito-parietal areas are involved in mental imagery dealing with spatial components in subjects without prior visual experience and in response to a non-visual task. These data indicate that recruitment of the dorsal cortical pathway in response to the tactile spatial working memory task is not mediated by visually-based imagery and that visual experience is not a prerequisite for the development of a more abstract functional organization of the dorsal stream. These findings, along with previous data indicating a similar supramodal functional organization within the ventral cortical pathway and the motion processing brain regions, may contribute to explain how individuals who are born deprived of sight are able to interact effectively with the surrounding world.

  2. Right dorsal colon ultrasonography in normal adult ponies and miniature horses

    Science.gov (United States)

    Zak, Agnieszka; Baron, Monika; Cylna, Marta; Borowicz, Hieronim

    2017-01-01

    The aim of this study was to determine the normal location, wall thickness and motility of the right dorsal colon in adult ponies and miniature horses. The abdominal ultrasonography examination was performed in a study group consisting of 23 ponies and miniature horses and in a control group comprising ten Thoroughbred horses. The procedure was performed in unsedated standing animals. The location and the thickness of the right dorsal colonic wall was examined on the right side of the abdomen between the 10th and the 14th intercostal space. The contractility was recorded in the 12th intercostal space. A comparative analysis between the study group and control group was carried out using the Student’s t-test. Pearson’s linear correlation coefficient was used to calculate the correlation between the thickness of the colonic wall as well as the number of peristaltic movements and age, wither height and body mass of the animals. The right dorsal colon was identified in all the horses in the 12th intercostal space. In all the intercostal spaces the mean ± standard deviation (SD) wall thickness of the right dorsal colon was 0.27 ± 0.03 cm in the horses from the study group and 0.37 ± 0.03 cm in the control horses. The mean number of peristaltic contractions was 4.05 ± 1.07 per minute in the animals from the study group and 1.7 ± 0.46 contractions per minute in the control group. The values of the ultrasonographic wall thickness and peristaltic motility in small breed horses in the present study were different from the values obtained for large breed horses. The study also found that the right dorsal colon in small breed horses is physiologically located in the 12th intercostal space. This suggests that different reference values should be used in small horse breeds when performing an ultrasound examination. PMID:29065146

  3. Dorsal column sensory axons degenerate due to impaired microvascular perfusion after spinal cord injury in rats

    Science.gov (United States)

    Muradov, Johongir M.; Ewan, Eric E.; Hagg, Theo

    2013-01-01

    The mechanisms contributing to axon loss after spinal cord injury (SCI) are largely unknown but may involve microvascular loss as we have previously suggested. Here, we used a mild contusive injury (120 kdyn IH impactor) at T9 in rats focusing on ascending primary sensory dorsal column axons, anterogradely traced from the sciatic nerves. The injury caused a rapid and progressive loss of dorsal column microvasculature and oligodendrocytes at the injury site and penumbra and a ~70% loss of the sensory axons, by 24 hours. To model the microvascular loss, focal ischemia of the T9 dorsal columns was achieved via phototoxic activation of intravenously injected rose bengal. This caused an ~53% loss of sensory axons and an ~80% loss of dorsal column oligodendrocytes by 24 hours. Axon loss correlated with the extent and axial length of microvessel and oligodendrocyte loss along the dorsal column. To determine if oligodendrocyte loss contributes to axon loss, the glial toxin ethidium bromide (EB; 0.3 µg/µl) was microinjected into the T9 dorsal columns, and resulted in an ~88% loss of dorsal column oligodendrocytes and an ~56% loss of sensory axons after 72 hours. EB also caused an ~72% loss of microvessels. Lower concentrations of EB resulted in less axon, oligodendrocyte and microvessel loss, which were highly correlated (R2 = 0.81). These data suggest that focal spinal cord ischemia causes both oligodendrocyte and axon degeneration, which are perhaps linked. Importantly, they highlight the need of limiting the penumbral spread of ischemia and oligodendrocyte loss after SCI in order to protect axons. PMID:23978615

  4. Using human intestinal biopsies to study the pathogenesis of irritable bowel syndrome.

    Science.gov (United States)

    Nasser, Y; Boeckxstaens, G E; Wouters, M M; Schemann, M; Vanner, S

    2014-04-01

    Although animal models of the irritable bowel syndrome (IBS) have provided important insights, there are no models that fully express the features of this complex condition. One alternative approach is the use of human intestinal biopsies obtained during endoscopic procedures to examine peripheral mechanisms in this disorder. These studies have served to confirm the existence of peripheral pathways in humans with IBS and have provided many new mechanistic insights. Two general approaches have been employed; one approach has been to examine the biological activity of mediators within the mucosal tissue of IBS patients and the other has been to examine changes in the structural properties of key signaling pathways contained within the biopsies. Using these approaches, important changes have been discovered involving the enteric nervous system and the extrinsic sensory pathway (dorsal root ganglia neurons), the immune system, and epithelial signaling in IBS patients compared to healthy subjects. This review will systematically explore these mechanistic pathways, highlight the implications of these novel findings and discuss some of the important limitations of this approach. © 2014 John Wiley & Sons Ltd.

  5. Rare patterns of dorsal puncture in Pterostichus oblongopunctatus (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Axel Schwerk

    2018-04-01

    Full Text Available Background The carabid beetle species Pterostichus oblongopunctatus is common in different types of forests in Poland and Europe. With respect to this species, some unclarities exist concerning the morphological feature of punctures on the elytra. P. oblongopunctatus has dorsal pits in the third interval of the elytra, the available identification keys, however, provide inconsistent information concerning the puncture in other intervals. During long-term studies at different study sites in Poland, the first author rarely but regularly discovered individuals with unusual dorsal puncture patterns, i.e., pits in the fifth and even in the seventh interval of the elytra. Since such rare patterns might be connected with special habitat characteristics, and thus have a potential as an indicator, the aim of the study was to test if they are connected with specific subpopulations (interaction groups, if they are related to the sex or size of the beetles, and if they are related to specific habitat conditions. Material and Methods We counted the pits on the elytra, determined the sex, and measured the length of the right elytron of individuals of P. oblongopunctatus collected at numerous study sites located within the borders of the Regional Directory of National Forests in Piła (Western Poland over the period 2014–2016. Results Altogether, 1,058 individuals of P. oblongopunctatus were subjected to statistical analysis. Almost 19% of the individuals had a dorsal puncture in the fifth interval of the elytra and about 0.7% had a dorsal puncture in the seventh interval of the elytra. In 2014 and 2015, significantly more females exhibited such unusual patterns of dorsal puncture than males. Even if not statistically significant, in 2016 also relatively more females showed such a pattern. Neither males nor females of the analysed individuals with usual puncture patterns showed a significant difference in the length of the right elytron from those with

  6. The ventral stream offers more affordance and the dorsal stream more memory than believed

    NARCIS (Netherlands)

    Postma, Albert; van der Lubbe, Robert Henricus Johannes; Zuidhoek, Sander

    2002-01-01

    Opposed to Norman's proposal, processing of affordance is likely to occur not solely in the dorsal stream but also in the ventral stream. Moreover, the dorsal stream might do more than just serve an important role in motor actions. It supports egocentric location coding as well. As such, it would

  7. RESULTS OF DIAGNOSTICAL BLOCK OF LONG DORSAL SACROILIAC LIGAMENT UNDER SONOGRAPHIC CONTROL IN PATIENTS WITH LOW BACK PAIN

    Directory of Open Access Journals (Sweden)

    Yurkovskiy A. M.

    2018-02-01

    Full Text Available Purpose: to improve effectiveness of diagnostic block of long dorsal sacroiliac ligament performed under sonographic control in patients with low back pain caused by pathology of this ligament. Material and methods: the research included 35 patients (average age 46,2±12,5 years with symptoms of low back pain caused by pathology of long dorsal sacroiliac ligament. Diagnostical block of the given ligament was made under ultrasound control. Results: significant pain syndrome reduction was observed in all patients with ligamentopathy of long dorsal sacroiliac ligament. Conclusion: compared to "blind" technique, long dorsal sacroiliac ligament block performed under sonographic control is a more efficient method of verification and treatment for low back pain syndrome in case of long dorsal sacroiliac ligament injury.

  8. Accelerated forgetting of contextual details due to focal medio-dorsal thalamic lesion

    Directory of Open Access Journals (Sweden)

    Sicong eTu

    2014-09-01

    Full Text Available Effects of thalamic nuclei damage and related white matter tracts on memory performance are still debated. This is particularly evident for the medio-dorsal thalamus which has been less clear in predicting amnesia than anterior thalamus changes. The current study addresses this issue by assessing 7 thalamic stroke patients with consistent unilateral lesions focal to the left medio-dorsal nuclei for immediate and delayed memory performance on standard visual and verbal tests of anterograde memory, and over the long-term (> 24 hrs on an object-location associative memory task. Thalamic patients showed selective impairment to delayed recall, but intact recognition memory. Patients also showed accelerated forgetting of contextual information after a 24 hour delay, compared to controls. Importantly, the mammillothalamic tract was intact in all patients, which suggests a role for the medio-dorsal nuclei in recall and early consolidation memory processes.

  9. Errors Recruit both Cognitive and Emotional Monitoring Systems: Simultaneous Intracranial Recordings in the Dorsal Anterior Cingulate Gyrus and Amygdala Combined with fMRI

    Science.gov (United States)

    Pourtois, Gilles; Vocat, Roland; N'Diaye, Karim; Spinelli, Laurent; Seeck, Margitta; Vuilleumier, Patrik

    2010-01-01

    We studied error monitoring in a human patient with unique implantation of depth electrodes in both the left dorsal cingulate gyrus and medial temporal lobe prior to surgery. The patient performed a speeded go/nogo task and made a substantial number of commission errors (false alarms). As predicted, intracranial Local Field Potentials (iLFPs) in…

  10. Dorsal inlay buccal mucosal graft (Asopa) urethroplasty for anterior urethral stricture.

    Science.gov (United States)

    Marshall, Stephen D; Raup, Valary T; Brandes, Steven B

    2015-02-01

    Asopa described the inlay of a graft into Snodgrass's longitudinal urethral plate incision using a ventral sagittal urethrotomy approach in 2001. He claimed that this technique was easier to perform and led to less tissue ischemia due to no need for mobilization of the urethra. This approach has subsequently been popularized among reconstructive urologists as the dorsal inlay urethroplasty or Asopa technique. Depending on the location of the stricture, either a subcoronal circumferential incision is made for penile strictures, or a midline perineal incision is made for bulbar strictures. Other approaches for penile urethral strictures include the non-circumferential penile incisional approach and a penoscrotal approach. We generally prefer the circumferential degloving approach for penile urethral strictures. The penis is de-gloved and the urethra is split ventrally to exposure the stricture. It is then deepened to include the full thickness of the dorsal urethra. The dorsal surface is made raw and grafts are fixed on the urethral surface. Quilting sutures are placed to further anchor the graft. A Foley catheter is placed and the urethra is retubularized in two layers with special attention to the staggering of suture lines. The skin incision is then closed in layers. We have found that it is best to perform an Asopa urethroplasty when the urethral plate is ≥1 cm in width. The key to when to use the dorsal inlay technique all depends on the width of the urethral plate once the urethrotomy is performed, stricture etiology, and stricture location (penile vs. bulb).

  11. A statistical approach to root system classification.

    Directory of Open Access Journals (Sweden)

    Gernot eBodner

    2013-08-01

    Full Text Available Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for plant functional type identification in ecology can be applied to the classification of root systems. We demonstrate that combining principal component and cluster analysis yields a meaningful classification of rooting types based on morphological traits. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. Biplot inspection is used to determine key traits and to ensure stability in cluster based grouping. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Three rooting types emerged from measured data, distinguished by diameter/weight, density and spatial distribution respectively. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement

  12. Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina

    Directory of Open Access Journals (Sweden)

    Kristyn K. Voegele

    2017-11-01

    Full Text Available Many titanosaurian dinosaurs are known only from fragmentary remains, making comparisons between taxa difficult because they often lack overlapping skeletal elements. This problem is particularly pronounced for the exceptionally large-bodied members of this sauropod clade. Dreadnoughtus schrani is a well-preserved giant titanosaurian from the Upper Cretaceous (Campanian–Maastrichtian Cerro Fortaleza Formation of southern Patagonia, Argentina. Numerous skeletal elements are known for Dreadnoughtus, including seven nearly complete dorsal vertebrae and a partial dorsal neural arch that collectively represent most of the dorsal sequence. Here we build on our previous preliminary description of these skeletal elements by providing a detailed assessment of their serial positional assignments, as well as comparisons of the dorsal vertebrae of Dreadnoughtus with those of other exceptionally large-bodied titanosaurians. Although the dorsal elements of Dreadnoughtus probably belong to two individuals, they exhibit substantial morphological variation that suggests that there is minimal, if any, positional overlap among them. Dreadnoughtus therefore preserves the second-most complete dorsal vertebral series known for a giant titanosaurian that has been described in detail, behind only that of Futalognkosaurus. The dorsal sequence of Dreadnoughtus provides valuable insight into serial variation along the vertebral column of these enormous sauropods. Such variation includes the variable presence of divided spinodiapophyseal laminae and associated spinodiapophyseal fossae. Given that dorsal vertebrae are the only elements that overlap between known remains of most giant titanosaurian taxa, the dorsal series of Dreadnoughtus provides a means to directly compare the morphologies of these sauropods. The dorsal vertebrae of Dreadnoughtus and Futalognkosaurus have dorsoventrally narrow transverse processes, unlike the condition in Puertasaurus. Further

  13. Antimicrobial efficacy of chlorine dioxide against Candida albicans in stationary and starvation phases in human root canal: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Shirur Krishnaraj Somayaji

    2014-01-01

    Full Text Available Introduction: Candida albicans (C. albicans is the most commonly isolated fungal pathogen from dental root canal. C. albicans forms biofilm and develops resistance against root canal irrigants . This study determines the fungicidal efficacy of 13.8% chlorine dioxide in extracted human teeth at stationary and starvation phases of C. albicans. Materials and Methods: Teeth were decoronated and coronal portion of the roots were prepared into blocks, which were incubated at 37°C with C. albicans for five days. The samples were treated with chlorine dioxide for 12 and 20 minutes. Total of fifty blocks were taken in the study. Colony-forming units were counted in Sabourauds dextrose agar and scanning electron microscopic observation was done. Data were analyzed by one-way ANOVA and Bonferoni′s post hoc test. Results: Teeth at stationary phase (12 min showed mean colony count of 28,000 ± 1814 which is significantly (P < 0.001 less than control group. Teeth at starvation phase (12 min showed colony count of 65,600 ± 1912 which is also significantly (P < 0.001 less than control group. Teeth irrigated at stationary phase (20 min showed mean colony count of 23,400 ± 1776 (P < 0.001. Teeth irrigated at starvation phase (20 min showed mean colony count of 48,100 ± 1663 which is also significantly (P < 0.001 less than that of control group. Conclusion: Treatment of chlorine dioxide reduces the C. albicans count in root canals of extracted human teeth at stationary and starvation phases. Efficacy of chlorine dioxide against C. albicans is relatively higher in stationary phase than that of starvation phase.

  14. Demonstration of the dorsal pancreatic artery by CTA to facilitate superselective arterial infusion of stem cells into the pancreas

    International Nuclear Information System (INIS)

    Lin Yuning; Yang Xizhang; Chen Ziqian; Tan Jianming; Zhong Qun; Yang Li; Wu Zhixian

    2012-01-01

    Purpose: To investigate the diagnostic performance of 64-section CTA in the detection of dorsal pancreatic artery before interventional therapy for patients with diabetes. Materials and methods: The study was approved by the institutional ethics committee; written informed consent was obtained. Forty-two consecutive patients with diabetes received an experimental treatment of autologous bone marrow-derived stem cell transplantation by means of infusion into the dorsal pancreatic artery. All cases underwent abdominal CTA before angiography of pancreatic arteries in order to locate the origin and course of dorsal pancreatic artery. Angiography of coeliac artery, splenic artery, common hepatic artery and superior mesenteric artery were performed both in CTA and DSA. Superselective catheterization of dorsal pancreatic artery was carried out for the infusion of stem cell. Sensitivity, specificity and accuracy for the detection of dorsal pancreatic artery with CTA were calculated using DSA images as the reference standard. Results: Thirty-five and thirty-six dorsal pancreatic arteries were detected by CTA and DSA respectively. Dorsal pancreatic artery was not visualized in either CTA or DSA in 5 patients. The sensitivity, specificity and accuracy for CTA were 94.4%, 83.3% and 92.9%. Conclusion: 64-section CTA is accurate for the detection of dorsal pancreatic artery. It may be useful for the facilitation of superselective arterial infusion of stem cells to pancreas.

  15. Interrupted orthodontic force results in less root resorption than continuous force in human premolars as measured by microcomputed tomography.

    Science.gov (United States)

    Sawicka, Monika; Bedini, Rossella; Wierzbicki, Piotr M; Pameijer, Cornelis H

    2014-01-01

    Root resorption is an undesirable but very frequently occurring sequel of orthodontic treatment. The aim of this study was to compare root resorption caused by either continuous (CF) or interrupted (IF) orthodontic force. The study was performed on human subjects on 30 first upper and lower premolars scheduled for extraction for orthodontic reasons. During four weeks before extraction 12 teeth were subjected to either CF or IF. The force was generated by a segmental titanium-molybdenum alloy cantilever spring that was activated in buccal direction. Initially a force of 60 CentiNewton was used in both CF and IF groups, the force in the former, however, was reactivated every week for 4 weeks. There was no reactivation of force in the IF group after initial application. A morphometric analysis of root resorption was performed by microcomputed tomography and the extent of tooth movement was measured on stone casts. Furthermore, a Tartarate-Resistant Acidic Phosphatase activity (TRAP), the marker enzyme of osteoclasts and cementoclasts, was determined by histochemical method. The Mann-Whitney U test was used to compare the difference in measured parameters between treatment and control tooth groups. The number of resorption craters was significantly higher and their average volume almost twice as large in the CF compared to the IF group (p root structure as opposed to continuous force while the same tooth movement was achieved.

  16. Harmane inhibits serotonergic dorsal raphe neurons in the rat.

    Science.gov (United States)

    Touiki, Khalid; Rat, Pascal; Molimard, Robert; Chait, Abderrahman; de Beaurepaire, Renaud

    2005-11-01

    Harmane and norharmane (two beta-carbolines) are tobacco components or products. The effects of harmane and norharmane on serotonergic raphe neurons remain unknown. Harmane and norharmane are inhibitors of the monoamine oxidases A (MAO-A) and B (MAO-B), respectively. To study the effects of harmane, norharmane, befloxatone (MAOI-A), and selegiline (MAOI-B) on the firing of serotonergic neurons. To compare the effects of these compounds to those of nicotine (whose inhibitory action on serotonergic neurons has been previously described). The effects of cotinine, a metabolite of nicotine known to interact with serotonergic systems, are also tested. In vivo electrophysiological recordings of serotonergic dorsal raphe neurons in the anaesthetized rat. Nicotine, harmane, and befloxatone inhibited serotonergic dorsal raphe neurons. The other compounds had no effects. The inhibitory effect of harmane (rapid and long-lasting inhibition) differed from that of nicotine (short and rapidly reversed inhibition) and from that of befloxatone (slow, progressive, and long-lasting inhibition). The inhibitory effects of harmane and befloxatone were reversed by the 5-HT1A antagonist WAY 100 635. Pretreatment of animals with p-chlorophenylalanine abolished the inhibitory effect of befloxatone, but not that of harmane. Nicotine, harmane, and befloxatone inhibit the activity of raphe serotonergic neurons. Therefore, at least two tobacco compounds, nicotine and harmane, inhibit the activity of serotonergic neurons. The mechanism by which harmane inhibits serotonergic dorsal raphe neurons is likely unrelated to a MAO-A inhibitory effect.

  17. Alzheimer disease: functional abnormalities in the dorsal visual pathway.

    LENUS (Irish Health Repository)

    Bokde, Arun L W

    2012-02-01

    PURPOSE: To evaluate whether patients with Alzheimer disease (AD) have altered activation compared with age-matched healthy control (HC) subjects during a task that typically recruits the dorsal visual pathway. MATERIALS AND METHODS: The study was performed in accordance with the Declaration of Helsinki, with institutional ethics committee approval, and all subjects provided written informed consent. Two tasks were performed to investigate neural function: face matching and location matching. Twelve patients with mild AD and 14 age-matched HC subjects were included. Brain activation was measured by using functional magnetic resonance imaging. Group statistical analyses were based on a mixed-effects model corrected for multiple comparisons. RESULTS: Task performance was not statistically different between the two groups, and within groups there were no differences in task performance. In the HC group, the visual perception tasks selectively activated the visual pathways. Conversely in the AD group, there was no selective activation during performance of these same tasks. Along the dorsal visual pathway, the AD group recruited additional regions, primarily in the parietal and frontal lobes, for the location-matching task. There were no differences in activation between groups during the face-matching task. CONCLUSION: The increased activation in the AD group may represent a compensatory mechanism for decreased processing effectiveness in early visual areas of patients with AD. The findings support the idea that the dorsal visual pathway is more susceptible to putative AD-related neuropathologic changes than is the ventral visual pathway.

  18. Dorsal hand coverage with free serratus fascia flap

    DEFF Research Database (Denmark)

    Fotopoulos, Peter; Holmer, Per; Leicht, Pernille

    2003-01-01

    in the flap, leaving the long thoracic nerve intact on the serratus muscle. Coverage of the flap with split-thickness skin graft is done immediately. The free serratus fascia flap is an ideal flap for dorsal hand coverage when the extensor tendons are exposed, especially because of low donor-site morbidity....

  19. Characterization of herpes simplex virus type 2 latency-associated transcription in human sacral ganglia and in cell culture.

    Science.gov (United States)

    Croen, K D; Ostrove, J M; Dragovic, L; Straus, S E

    1991-01-01

    The ability of herpes simplex virus type 2 (HSV-2) to establish latency in and reactivate from sacral dorsal root sensory ganglia is the basis for recurrent genital herpes. The expression of HSV-2 genes in latently infected human sacral ganglia was investigated by in situ hybridization. Hybridizations with a probe from the long repeat region of HSV-2 revealed strong nuclear signals overlying neurons in sacral ganglia from five of nine individuals. The RNA detected overlaps with the transcript for infected cell protein O but in the opposite, or "anti-sense," orientation. These observations mimic those made previously with HSV-1 in human trigeminal ganglia and confirm the recent findings during latency in HSV-2-infected mice and guinea pigs. Northern hybridization of RNA from infected Vero cells showed that an HSV-2 latency-associated transcript was similar in size to the larger (1.85 kb) latency transcript of HSV-1. Thus, HSV-1 and HSV-2 latency in human sensory ganglia are similar, if not identical, in terms of their cellular localization and pattern of transcription.

  20. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera)

    OpenAIRE

    Kumar Ramesh R.; Reddy Anjaneya Prasanna L.; Subbaiah Chinna J.; Kumar Niranjana A.; Prasad Nagendra H.N.; Bhukya Balakishan

    2011-01-01

    Ashwagandha (Withania somnifera) is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes) and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant) and crude fiber content exhibited strong association among them and ...

  1. Decreased resting-state BOLD regional homogeneity and the intrinsic functional connectivity within dorsal striatum is associated with greater impulsivity in food-related decision-making and BMI change at 6-month follow up.

    Science.gov (United States)

    Gao, Xiao; Liang, Qianlin; Wu, Guorong; She, Ying; Sui, Nan; Chen, Hong

    2018-04-30

    Increasing animal models as well as brain imaging studies among human suggest an association between substance-related impulsivity in decision-making and decreased function of dorsal striatum. However, the resting-state intrinsic functional organization of dorsal striatum underlying food-choice impulsivity remains unknown. To address this issue, we used resting-state functional MRI (rs-fMRI) to measure brain activity among adult females. Subjects underwent the food rating task, during which they rated each food item according to their subjective perception of its taste (from Dislike it very much to Like it very much), its long term effect on health (from very unhealthy to very healthy) and decision strength to eat it (from Strong no to Strong yes). Behaviorally, impulsivity in food-choice was indexed by the decision strength of the palatable high-calorie food rather than of the low-caloric food. Results on rs-fMRI showed that greater impulsivity in food-related decision-making was inversely correlated with spontaneous regional homogeneity in the dorsal striatum (dorsal caudate), as well as the resting-state functional connectivity (rs-FC) between the dorsal caudate seed and the rostral putamen. Furthermore, the caudate-putamen rs-FC inversely predicted BMI change at six-month follow-up. These findings may suggest the insensitivity to reward signals in dorsal caudate in decision-making coupled with an imbalance between goal-directed behaviors (modulated by dorsal caudate) and habitual actions (modulated by putamen) underlying impulsivity and future weight gain. In sum, these findings extend our understanding on the neural basis of food-related impulsivity, and provide evidence for the dorsal striatum as one of the landmarks in over eating and weight change. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Neuroimaging investigations of dorsal stream processing and effects of stimulus synchrony in schizophrenia.

    Science.gov (United States)

    Sanfratello, Lori; Aine, Cheryl; Stephen, Julia

    2018-05-25

    Impairments in auditory and visual processing are common in schizophrenia (SP). In the unisensory realm visual deficits are primarily noted for the dorsal visual stream. In addition, insensitivity to timing offsets between stimuli are widely reported for SP. The aim of the present study was to test at the physiological level differences in dorsal/ventral stream visual processing and timing sensitivity between SP and healthy controls (HC) using MEG and a simple auditory/visual task utilizing a variety of multisensory conditions. The paradigm included all combinations of synchronous/asynchronous and central/peripheral stimuli, yielding 4 task conditions. Both HC and SP groups showed activation in parietal areas (dorsal visual stream) during all multisensory conditions, with parietal areas showing decreased activation for SP relative to HC, and a significantly delayed peak of activation for SP in intraparietal sulcus (IPS). We also observed a differential effect of stimulus synchrony on HC and SP parietal response. Furthermore, a (negative) correlation was found between SP positive symptoms and activity in IPS. Taken together, our results provide evidence of impairment of the dorsal visual stream in SP during a multisensory task, along with an altered response to timing offsets between presented multisensory stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Bilateral downregulation of Nav1.8 in dorsal root ganglia of rats with bone cancer pain induced by inoculation with Walker 256 breast tumor cells

    International Nuclear Information System (INIS)

    Miao, Xue-Rong; Gao, Xiao-Fei; Wu, Jing-Xiang; Lu, Zhi-Jie; Huang, Zhang-Xiang; Li, Xiao-Qing; He, Cheng; Yu, Wei-Feng

    2010-01-01

    Rapid and effective treatment of cancer-induced bone pain remains a clinical challenge and patients with bone metastasis are more likely to experience severe pain. The voltage-gated sodium channel Nav1.8 plays a critical role in many aspects of nociceptor function. Therefore, we characterized a rat model of cancer pain and investigated the potential role of Nav1.8. Adult female Wistar rats were used for the study. Cancer pain was induced by inoculation of Walker 256 breast carcinosarcoma cells into the tibia. After surgery, mechanical and thermal hyperalgesia and ambulation scores were evaluated to identify pain-related behavior. We used real-time RT-PCR to determine Nav1.8 mRNA expression in bilateral L4/L5 dorsal root ganglia (DRG) at 16-19 days after surgery. Western blotting and immunofluorescence were used to compare the expression and distribution of Nav1.8 in L4/L5 DRG between tumor-bearing and sham rats. Antisense oligodeoxynucleotides (ODNs) against Nav1.8 were administered intrathecally at 14-16 days after surgery to knock down Nav1.8 protein expression and changes in pain-related behavior were observed. Tumor-bearing rats exhibited mechanical hyperalgesia and ambulatory-evoked pain from day 7 after inoculation of Walker 256 cells. In the advanced stage of cancer pain (days 16-19 after surgery), normalized Nav1.8 mRNA levels assessed by real-time RT-PCR were significantly lower in ipsilateral L4/L5 DRG of tumor-bearing rats compared with the sham group. Western-blot showed that the total expression of Nav1.8 protein significantly decreased bilaterally in DRG of tumor-bearing rats. Furthermore, as revealed by immunofluorescence, only the expression of Nav1.8 protein in small neurons down regulated significantly in bilateral DRG of cancer pain rats. After administration of antisense ODNs against Nav1.8, Nav1.8 protein expression decreased significantly and tumor-bearing rats showed alleviated mechanical hyperalgesia and ambulatory-evoked pain. These

  4. A fiber-optic setup for quantification of root surface demineralization

    NARCIS (Netherlands)

    vanderVeen, MH; tenBosch, JJ

    A fiber-optic fluorescence observation (FOFO) technique has been developed for the quantification of demineralized root dentin, The method was tested on 40 specimens of in vitro demineralized parts of human root dentin, Fluorescein sodium salt was used as a penetrating dye, The fluorescein sodium

  5. Opposing dorsal/ventral stream dynamics during figure-ground segregation

    NARCIS (Netherlands)

    Wokke, M.E.; Scholte, H.S.; Lamme, V.A.F.

    2014-01-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist

  6. A study of dorsal vein pattern for biometric security

    African Journals Online (AJOL)

    Nafiisah

    ensure more reliable security, many biometric verification techniques have been developed .... 3.0 HA D DORSAL VEI PATTER AS A BIOMETRIC ... image for the back of the hand, and converted by a computer into a digital image that can be.

  7. Characterisation of rebound depolarisation in mice deep dorsal horn neurons in vitro.

    Science.gov (United States)

    Rivera-Arconada, Ivan; Lopez-Garcia, Jose A

    2015-09-01

    Spinal dorsal horn neurons constitute the first relay for pain processing and participate in the processing of other sensory, motor and autonomic information. At the cellular level, intrinsic excitability is a factor contributing to network function. In turn, excitability is set by the array of ionic conductance expressed by neurons. Here, we set out to characterise rebound depolarisation following hyperpolarisation, a feature frequently described in dorsal horn neurons but never addressed in depth. To this end, an in vitro preparation of the spinal cord from mice pups was used combined with whole-cell recordings in current and voltage clamp modes. Results show the expression of H- and/or T-type currents in a significant proportion of dorsal horn neurons. The expression of these currents determines the presence of rebound behaviour at the end of hyperpolarising pulses. T-type calcium currents were associated to high-amplitude rebounds usually involving high-frequency action potential firing. H-currents were associated to low-amplitude rebounds less prone to elicit firing or firing at lower frequencies. For a large proportion of neurons expressing both currents, the H-current constitutes a mechanism to ensure a faster response after hyperpolarisations, adjusting the latency of the rebound firing. We conclude that rebound depolarisation and firing are intrinsic factors to many dorsal horn neurons that may constitute a mechanism to integrate somatosensory information in the spinal cord, allowing for a rapid switch from inhibited-to-excited states.

  8. Subplate in the developing cortex of mouse and human

    DEFF Research Database (Denmark)

    Wang, Wei Zhi; Hoerder-Suabedissen, Anna; Oeschger, Franziska M

    2010-01-01

    Abstract The subplate is a largely transient zone containing precocious neurons involved in several key steps of cortical development. The majority of subplate neurons form a compact layer in mouse, but are dispersed throughout a much larger zone in the human. In rodent, subplate neurons are among...... several genes that are specifically expressed in the subplate layer of the rodent dorsal cortex. Here we examined the human subplate for some of these markers. In the human dorsal cortex, connective tissue growth factor-positive neurons can be seen in the ventricular zone at 15-22 postconceptional weeks...... growth factor- and nuclear receptor-related 1-positive cells are two distinct cell populations of the human subplate. Furthermore, our microarray analysis in rodent suggested that subplate neurons produce plasma proteins. Here we demonstrate that the human subplate also expresses alpha2zinc...

  9. Root rots

    Science.gov (United States)

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  10. Dietary fat level affecting histochemical radiosensitivity in dorsal aorta in rats

    International Nuclear Information System (INIS)

    Yousri, R.M.; Roushdy, H.M.; EL-Malkh, N.M.; Ashry, M.A.; Soliman, S.M.

    1988-01-01

    The present work has been conducted to investigate the effect of dietary fat status and/or cumulative whole body gamma radiation exposures up to 15 Gy the histochemical pattern of the dorsal aortas of male albino rats. Experimental animals were fed on either fat-rich or fat-free diet and the observations compared with those fed normal fat diet. The histochemical investigations has been confined to the concentration levels of mucopolysaccharide substance and total lipids. The dorsal aorta normal fat group showed higher content of PAS-positive material in the first two layers of the aorta wall in comparison with decreased amount of collagen fibers was shown in fat-rich group

  11. Human Performance Evaluation System

    International Nuclear Information System (INIS)

    Hardwick, R.J. Jr.

    1985-01-01

    Operating nuclear power plants requires high standards of performance, extensive training and responsive management. Despite our best efforts inappropriate human actions do occur, but they can be managed. An extensive review of License Event Reports (LERs) was conducted which indicated continual inadequacy in human performance and in evaluation of root causes. Of some 31,000 LERs, about 5,000 or 16% were directly attributable to inappropriate actions. A recent analysis of 87 Significant Event Reports (issued by INPO in 1983) identified inappropriate actions as being the most frequent root cause (44% of the total). A more recent analysis of SERs issued in 1983 and 1984 indicate that 52% of the root causes were attributed to human performance. The Human Performance Evaluation System (HPES) is a comprehensive, coordinated utility/industry system for evaluating and reporting human performance situtations. HPES is a result of the realization that current reporting system provide limited treatment of human performance and rarely provide adequate information about root causes of inappropriate actions by individuals. The HPES was implemented to identify and eliminate root causes of inappropriate actions

  12. Heterotaxy syndrome with associated agenesis of dorsal pancreas and polysplenia: A case report

    Directory of Open Access Journals (Sweden)

    Syed Althaf Ali1

    2015-01-01

    Full Text Available Heterotaxy syndrome is a rare embryological disorder comprising of polysplenia, partial agenesis of dorsal pancreas, malrotation of gut, cardiac and vascular anomalies resulting from failure of development of the usual left–right asymmetry of organs. We report a rare case of heterotaxy syndrome with polysplenia, partial agenesis of dorsal pancreas and malrotation of gut in a 28 year female presenting with subacute intestinal obstruction along with imaging illustrations, brief discussion and thorough review of literature.

  13. Human based roots of failures in nuclear events investigations

    Energy Technology Data Exchange (ETDEWEB)

    Ziedelis, Stanislovas; Noel, Marc; Strucic, Miodrag [Commission of the European Communities, Petten (Netherlands). European Clearinghouse on Operational Experience Feedback for Nuclear Power Plants

    2012-10-15

    This paper aims for improvement of quality of the event investigations in the nuclear industry through analysis of the existing practices, identifying and removing the existing Human and Organizational Factors (HOF) and management related barriers. It presents the essential results of several studies performed by the European Clearinghouse on Operational Experience. Outcomes of studies are based on survey of currently existing event investigation practices typical for nuclear industry of 12 European countries, as well as on insights from analysis of numerous event investigation reports. System of operational experience feedback from information based on event investigation results is not enough effective to prevent and even to decrease frequency of recurring events due to existing methodological, HOF-related and/or knowledge management related constraints. Besides that, several latent root causes of unsuccessful event investigation are related to weaknesses in safety culture of personnel and managers. These weaknesses include focus on costs or schedule, political manipulation, arrogance, ignorance, entitlement and/or autocracy. Upgrades in safety culture of organization's personnel and its senior management especially seem to be an effective way to improvement. Increasing of competencies, capabilities and level of independency of event investigation teams, elaboration of comprehensive software, ensuring of positive approach, adequate support and impartiality of management could also facilitate for improvement of quality of the event investigations. (orig.)

  14. Human based roots of failures in nuclear events investigations

    International Nuclear Information System (INIS)

    Ziedelis, Stanislovas; Noel, Marc; Strucic, Miodrag

    2012-01-01

    This paper aims for improvement of quality of the event investigations in the nuclear industry through analysis of the existing practices, identifying and removing the existing Human and Organizational Factors (HOF) and management related barriers. It presents the essential results of several studies performed by the European Clearinghouse on Operational Experience. Outcomes of studies are based on survey of currently existing event investigation practices typical for nuclear industry of 12 European countries, as well as on insights from analysis of numerous event investigation reports. System of operational experience feedback from information based on event investigation results is not enough effective to prevent and even to decrease frequency of recurring events due to existing methodological, HOF-related and/or knowledge management related constraints. Besides that, several latent root causes of unsuccessful event investigation are related to weaknesses in safety culture of personnel and managers. These weaknesses include focus on costs or schedule, political manipulation, arrogance, ignorance, entitlement and/or autocracy. Upgrades in safety culture of organization's personnel and its senior management especially seem to be an effective way to improvement. Increasing of competencies, capabilities and level of independency of event investigation teams, elaboration of comprehensive software, ensuring of positive approach, adequate support and impartiality of management could also facilitate for improvement of quality of the event investigations. (orig.)

  15. Ventral and Dorsal Striatum Networks in Obesity: Link to Food Craving and Weight Gain.

    Science.gov (United States)

    Contreras-Rodríguez, Oren; Martín-Pérez, Cristina; Vilar-López, Raquel; Verdejo-Garcia, Antonio

    2017-05-01

    The food addiction model proposes that obesity overlaps with addiction in terms of neurobiological alterations in the striatum and related clinical manifestations (i.e., craving and persistence of unhealthy habits). Therefore, we aimed to examine the functional connectivity of the striatum in excess-weight versus normal-weight subjects and to determine the extent of the association between striatum connectivity and individual differences in food craving and changes in body mass index (BMI). Forty-two excess-weight participants (BMI > 25) and 39 normal-weight participants enrolled in the study. Functional connectivity in the ventral and dorsal striatum was indicated by seed-based analyses on resting-state data. Food craving was indicated with subjective ratings of visual cues of high-calorie food. Changes in BMI between baseline and 12 weeks follow-up were assessed in 28 excess-weight participants. Measures of connectivity in the ventral striatum and dorsal striatum were compared between groups and correlated with craving and BMI change. Participants with excess weight displayed increased functional connectivity between the ventral striatum and the medial prefrontal and parietal cortices and between the dorsal striatum and the somatosensory cortex. Dorsal striatum connectivity correlated with food craving and predicted BMI gains. Obesity is linked to alterations in the functional connectivity of dorsal striatal networks relevant to food craving and weight gain. These neural alterations are associated with habit learning and thus compatible with the food addiction model of obesity. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Evaluation of the synuclein-y (SNCG) gene as a PPARy target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue

    Science.gov (United States)

    Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...

  17. Integration of root phenes revealed by intensive phenotyping of root system architecture, anatomy, and physiology in cereals

    Science.gov (United States)

    York, Larry

    2015-04-01

    Food insecurity is among the greatest challenges humanity will face in the 21st century. Agricultural production in much of the world is constrained by the natural infertility of soil which restrains crops from reaching their yield potential. In developed nations, fertilizer inputs pollute air and water and contribute to climate change and environmental degradation. In poor nations low soil fertility is a primary constraint to food security and economic development. Water is almost always limiting crop growth in any system. Increasing the acquisition efficiency of soil resources is one method by which crop yields could be increased without the use of more fertilizers or irrigation. Cereals are the most widely grown crops, both in terms of land area and in yield, so optimizing uptake efficiency of cereals is an important goal. Roots are the primary interface between plant and soil and are responsible for the uptake of soil resources. The deployment of roots in space and time comprises root system architecture (RSA). Cereal RSA is a complex phenotype that aggregates many elemental phenes (elemental units of phenotype). Integration of root phenes will be determined by interactions through their effects on soil foraging and plant metabolism. Many architectural, metabolic, and physiological root phenes have been identified in maize, including: nodal root number, nodal root growth angle, lateral root density, lateral root length, aerenchyma, cortical cell size and number, and nitrate uptake kinetics. The utility of these phenes needs confirmation in maize and in other cereals. The maize root system is composed of an embryonic root system and nodal roots that emerge in successive whorls as the plant develops, and is similar to other cereals. Current phenotyping platforms often ignore the inner whorls and instead focus on the most visible outer whorls after excavating a maize root crown from soil. Here, an intensive phenotyping platform evaluating phenes of all nodal root

  18. A Right’s Story: The Historical Roots of the Right to Work as a Human Right

    Directory of Open Access Journals (Sweden)

    Azadeh Al- Sadat Taheri

    2017-04-01

    Full Text Available The right to work has been recognized in many international instruments. According to this right, everybody deserves to enjoy decent and appropriate job opportunities.On the other hand this right includes states’ obligations to provide enough opportunities. This article seeks to explain historical roots of the right to work. The study shows that industrial revolution, workers’ movements, recession in some periods of time and deep changes after the Second World War were the most important factors in emerging the right, which later was accepted as a welfare right in the context of human rights.

  19. Genome-wide transcriptional profiling of skin and dorsal root ganglia after ultraviolet-B-induced inflammation.

    Directory of Open Access Journals (Sweden)

    John M Dawes

    Full Text Available Ultraviolet-B (UVB-induced inflammation produces a dose-dependent mechanical and thermal hyperalgesia in both humans and rats, most likely via inflammatory mediators acting at the site of injury. Previous work has shown that the gene expression of cytokines and chemokines is positively correlated between species and that these factors can contribute to UVB-induced pain. In order to investigate other potential pain mediators in this model we used RNA-seq to perform genome-wide transcriptional profiling in both human and rat skin at the peak of hyperalgesia. In addition we have also measured transcriptional changes in the L4 and L5 DRG of the rat model. Our data show that UVB irradiation produces a large number of transcriptional changes in the skin: 2186 and 3888 genes are significantly dysregulated in human and rat skin, respectively. The most highly up-regulated genes in human skin feature those encoding cytokines (IL6 and IL24, chemokines (CCL3, CCL20, CXCL1, CXCL2, CXCL3 and CXCL5, the prostanoid synthesising enzyme COX-2 and members of the keratin gene family. Overall there was a strong positive and significant correlation in gene expression between the human and rat (R = 0.8022. In contrast to the skin, only 39 genes were significantly dysregulated in the rat L4 and L5 DRGs, the majority of which had small fold change values. Amongst the most up-regulated genes in DRG were REG3B, CCL2 and VGF. Overall, our data shows that numerous genes were up-regulated in UVB irradiated skin at the peak of hyperalgesia in both human and rats. Many of the top up-regulated genes were cytokines and chemokines, highlighting again their potential as pain mediators. However many other genes were also up-regulated and might play a role in UVB-induced hyperalgesia. In addition, the strong gene expression correlation between species re-emphasises the value of the UVB model as translational tool to study inflammatory pain.

  20. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    Science.gov (United States)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  1. An amphioxus Msx gene expressed predominantly in the dorsal neural tube.

    Science.gov (United States)

    Sharman, A C; Shimeld, S M; Holland, P W

    1999-04-01

    Genomic and cDNA clones of an Msx class homeobox gene were isolated from amphioxus (Branchiostoma floridae). The gene, AmphiMsx, is expressed in the neural plate from late gastrulation; in later embryos it is expressed in dorsal cells of the neural tube, excluding anterior and posterior regions, in an irregular reiterated pattern. There is transient expression in dorsal cells within somites, reminiscent of migrating neural crest cells of vertebrates. In larvae, mRNA is detected in two patches of anterior ectoderm proposed to be placodes. Evolutionary analyses show there is little phylogenetic information in Msx protein sequences; however, it is likely that duplication of Msx genes occurred in the vertebrate lineage.

  2. Spiny Prey, Fortunate Prey. Dorsal Spines Are an Asset in Intraguild Interactions among Lady Beetles

    Directory of Open Access Journals (Sweden)

    Louis Hautier

    2017-11-01

    Full Text Available The Multicolored Asian Ladybird, Harmonia axyridis, is an extremely successful invasive species. Here we suggest that, in addition to many other traits, the dorsal spines of its larvae contribute to their success, as suggested by behavioral observations of agonistic interactions between H. axyridis and European coccinellids. In coccinellids, the role of dorsal spines in these interactions has been poorly studied and they could be a physical protection against intraguild predators. Dorsal spines of second instar H. axyridis larvae were removed with micro-scissors, which resulted in spineless larvae after molting (spineless group. These larvae were then exposed to starved Coccinella septempunctata larvae. Two control categories were also submitted to interactions: H. axyridis larvae with all their spines (control group and with their spines, but injured by pin stings (injured group. Spine removal at the second instar did not hamper H. axyridis development. The bite rate by C. septempunctata was significantly higher on the spineless H. axyridis and more dorsally located compared to the control and injured groups, while no bite rate difference was observed between the injured and the control group. Our results suggest that in addition to behavioral and chemical defenses, the dorsal spines play a significant protective role against bites. Therefore, spines in ladybirds could be considered as a morphological defense against intraguild predation. In H. axyridis, these defenses might contribute to its success in food resources already exploited by other guild members and thus further facilitate the invasion of new areas.

  3. Extensive Description and Comparison of Human Supra-Gingival Microbiome in Root Caries and Health

    Science.gov (United States)

    Chen, Lin; Qin, Bingcai; Du, Minquan; Zhong, Huanzi; Xu, Qingan; Li, Yuhong; Zhang, Ping; Fan, Mingwen

    2015-01-01

    Knowledge of the polymicrobial etiology of root caries is limited. To conduct a comprehensive research study on root caries, we utilized 454-pyrosequencing of 16S rRNA gene libraries and quantitative PCR to compare supra-gingival bacterial communities from healthy sites and carious sites of 21 patients with root caries (Patient-controls and Patient-cases) and the sites of 21 healthy individuals (Healthy-controls) from two nursing homes. Healthy-controls and Patient-cases showed no significant differences in terms of biomass, species richness, and species diversity. However, as for beta diversity based on either community membership metric (unweighted UniFrac) or community structure metric (weighted UniFrac), Healthy-controls and Patient-cases were clearly distinguished from each other, appearing more variable in the community membership and structure in root caries microbiome but relatively conserved in the health microbiome. The Patient-controls group was at an intermediate stage between Healthy-controls and Patient-cases, but was more inclined to the former. Demonstrated in both relative abundance and prevalence of species in health and root caries, Propionibacterium acidifaciens, Streptococcus mutans, Olsenella profusa, Prevotella multisaccharivorax, and Lactobacillus crispatus were found to be most associated with root caries, whereas Delftia acidovorans, Bacteroidetes[G-2] sp., Lachnospiraceae[G-3] sp., and Prevotella intermedia are most associated with health. Our study provides a basis for further elucidating the microbial etiology of root caries in the elderly. PMID:25658087

  4. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    Science.gov (United States)

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  5. Treatment of acute and subacute dorsal perilunate fracture dislocations

    Directory of Open Access Journals (Sweden)

    Levent Kucuk

    2014-04-01

    Outcomes: Results of the perilunate fracture dislocations treated in acute or subacute phase by open reduction and internal fixation via dorsal approach are satisfactory. There is a strong demand for prospective, randomized studies to compare the results of different treatment modalities. [Hand Microsurg 2014; 3(1.000: 1-7

  6. Role of motor-evoked potential monitoring in conjunction with temporary clipping of spinal nerve roots in posterior thoracic spine tumor surgery.

    Science.gov (United States)

    Eleraky, Mohammed A; Setzer, Matthias; Papanastassiou, Ioannis D; Baaj, Ali A; Tran, Nam D; Katsares, Kiesha M; Vrionis, Frank D

    2010-05-01

    The vascular supply of the thoracic spinal cord depends on the thoracolumbar segmental arteries. Because of the small size and ventral course of these arteries in relation to the dorsal root ganglion and ventral root, they cannot be reliably identified during surgery by anatomic or morphologic criteria. Sacrificing them will most likely result in paraplegia. The goal of this study was to evaluate a novel method of intraoperative testing of a nerve root's contribution to the blood supply of the thoracic spinal cord. This is a clinical retrospective study of 49 patients diagnosed with thoracic spine tumors. Temporary nerve root clipping combined with motor-evoked potential (MEP) and somatosensory-evoked potential (SSEP) monitoring was performed; additionally, postoperative clinical evaluation was done and reported in all cases. All cases were monitored by SSEP and MEPs. The nerve root to be sacrificed was temporarily clipped using standard aneurysm clips, and SSEP/MEP were assessed before and after clipping. Four nerve roots were sacrificed in four cases, three nerve roots in eight cases, and two nerve roots in 22 cases. Nerve roots were sacrificed bilaterally in 12 cases. Most patients (47/49) had no changes in MEP/SSEP and had no neurological deficit postoperatively. One case of a spinal sarcoma demonstrated changes in MEP after temporary clipping of the left T11 nerve root. The nerve was not sacrificed, and the patient was neurologically intact after surgery. In another case of a sarcoma, MEPs changed in the lower limbs after ligation of left T9 nerve root. It was felt that it was a global event because of anesthesia. Postoperatively, the patient had complete paraplegia but recovered almost completely after 6 months. Temporary nerve root clipping combined with MEP and SSEP monitoring may enhance the impact of neuromonitoring in the intraoperative management of patients with thoracic spine tumors and favorably influence neurological outcome. Copyright 2010 Elsevier

  7. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.

    Directory of Open Access Journals (Sweden)

    François Lapraz

    2009-11-01

    Full Text Available Formation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGFbeta Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood. In this paper, we provide evidence that the long-range organizing activity of Nodal is assured by a relay molecule synthesized in the ventral ectoderm, then translocated to the opposite side of the embryo. We identified this relay molecule as BMP2/4 based on the following arguments. First, blocking BMP2/4 function eliminated the long-range organizing activity of an activated Nodal receptor in an axis rescue assay. Second, we demonstrate that BMP2/4 and the corresponding type I receptor Alk3/6 functions are both essential for specification of the dorsal region of the embryo. Third, using anti-phospho-Smad1/5/8 immunostaining, we show that, despite its ventral transcription, the BMP2/4 ligand triggers receptor mediated signaling exclusively on the dorsal side of the embryo, one of the most extreme cases of BMP translocation described so far. We further report that the pattern of pSmad1/5/8 is graded along the dorsal-ventral axis and that two BMP2/4 target genes are expressed in nested patterns centered on the region with highest levels of pSmad1/5/8, strongly suggesting that BMP2/4 is acting as a morphogen. We also describe the very unusual ventral co-expression of chordin and bmp2/4 downstream of Nodal and demonstrate that Chordin is largely responsible for the spatial restriction of BMP2/4 signaling to the dorsal side. Thus, unlike in most organisms, in the sea urchin, a single ventral signaling centre is responsible for induction of ventral and dorsal cell fates. Finally

  8. Management of generalized spasticity of lower limbs by selective ...

    African Journals Online (AJOL)

    Wael Fouad

    2011-08-09

    Aug 9, 2011 ... All cases underwent MDT that consisted of a longitudinal incision of the ... The methods of surgical management are classified accord- ... nerves, dorsal roots, dorsal root entry zone or spinal cord.7,8 ... bedridden and totally dependent patient). ... paraplegia of cerebral origin include cerebral palsy, cerebro-.

  9. Failure of action potential propagation in sensory neurons: mechanisms and loss of afferent filtering in C-type units after painful nerve injury

    NARCIS (Netherlands)

    Gemes, Geza; Koopmeiners, Andrew; Rigaud, Marcel; Lirk, Philipp; Sapunar, Damir; Bangaru, Madhavi Latha; Vilceanu, Daniel; Garrison, Sheldon R.; Ljubkovic, Marko; Mueller, Samantha J.; Stucky, Cheryl L.; Hogan, Quinn H.

    2013-01-01

    The T-junction of sensory neurons in the dorsal root ganglion (DRG) is a potential impediment to action potential (AP) propagation towards the CNS. Using intracellular recordings from rat DRG neuronal somata during stimulation of the dorsal root, we determined that the maximal rate at which all of

  10. Central vs. peripheral neuraxial sympathetic control of porcine ventricular electrophysiology

    Science.gov (United States)

    Yamakawa, Kentaro; Howard-Quijano, Kimberly; Zhou, Wei; Rajendran, Pradeep; Yagishita, Daigo; Vaseghi, Marmar; Ajijola, Olujimi A.; Armour, J. Andrew; Shivkumar, Kalyanam; Ardell, Jeffrey L.

    2015-01-01

    Sympathoexcitation is associated with ventricular arrhythmogenesis. The aim of this study was to determine the role of thoracic dorsal root afferent neural inputs to the spinal cord in modulating ventricular sympathetic control of normal heart electrophysiology. We hypothesize that dorsal root afferent input tonically modulates basal and evoked efferent sympathetic control of the heart. A 56-electrode sock placed on the epicardial ventricle in anesthetized Yorkshire pigs (n = 17) recorded electrophysiological function, as well as activation recovery interval (ARI) and dispersion in ARI, at baseline conditions and during stellate ganglion electrical stimulation. Measures were compared between intact states and sequential unilateral T1–T4 dorsal root transection (DRTx), ipsilateral ventral root transection (VRTx), and contralateral dorsal and ventral root transections (DVRTx). Left or right DRTx decreased global basal ARI [Lt.DRTx: 369 ± 12 to 319 ± 13 ms (P < 0.01) and Rt.DRTx: 388 ± 19 to 356 ± 15 ms (P < 0.01)]. Subsequent unilateral VRTx followed by contralateral DRx+VRTx induced no further change. In intact states, left and right stellate ganglion stimulation shortened ARIs (6 ± 2% vs. 17 ± 3%), while increasing dispersion (+139% vs. +88%). There was no difference in magnitude of ARI or dispersion change with stellate stimulation following spinal root transections. Interruption of thoracic spinal afferent signaling results in enhanced basal cardiac sympathoexcitability without diminishing the sympathetic response to stellate ganglion stimulation. This suggests spinal dorsal root transection releases spinal cord-mediated tonic inhibitory control of efferent sympathetic tone, while maintaining intrathoracic cardiocentric neural networks. PMID:26661096

  11. Accuracy of Single Periapical Radiography in Diagnosis of Horizontal Root Fracture

    Directory of Open Access Journals (Sweden)

    Fazlolah Soleymani Najafabadi

    2012-02-01

    Full Text Available Background and Aims: Radiographic examination is a necessary step in diagnosis of horizontal root fracture. The purpose of this study was to determine the sensitivity and specificity of single radiograph for detection of horizontal root fracture. Materials and Methods: In this analytical-descriptive study, 30 human freshly extracted teeth were used. Using a hammer and clamp, the teeth were divided into two sections accidentally and then sections were attached together by cyanoacrylate glue. Two radiographs were taken; with and without a piece of human mandibular bone. Afterward, radiographs were analyzed by three expert dentists using a slide show device. Results: The diagnostic sensitivity and specificity of single radiograph for detection of horizontal root fracture without bone was 100%, but in radiographs of teeth with bone was 82.7% and 100%, respectively. Conclusion: Based on the results of this study, in most cases, the horizontal root fractures can be detected by a single periapical radiograph.

  12. The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro

    Science.gov (United States)

    Previously, we observed that wild yam (Dioscorea villosa) root extract (WYRE) was able to activate GATA3 in human breast cancer cells targeting epigenome. This study aimed to 'nd out if dioscin (DS), a bioactive compound of WYRE, can modulate GATA3 functions and cellular invasion in human breast can...

  13. Morphology of the dorsal and lateral calcaneocuboid ligaments.

    Science.gov (United States)

    Dorn-Lange, Nadja V; Nauck, Tanja; Lohrer, Heinz; Arentz, Sabine; Konerding, Moritz A

    2008-09-01

    The dorsolateral calcaneocuboid ligaments have different configurations. In the literature they are only described as either the dorsal or lateral calcaneocuboid ligament. However, recent reconstructive surgical techniques may benefit from a better understanding of the anatomy. The aims of this study were to classify the morphology and attachments of the dorso-lateral calcaneocuboid ligaments and to determine their dimensions. The dorso-lateral aspects of the calcaneocuboid joint of 30 cadaver feet were dissected to expose the associated ligaments. Further, we evaluated possible bony landmarks of the calcaneus that could imply which shape or course the ligament would have in a specific individual. Our findings showed a wide variety of configurations in shape, number, and attachment sites. A constant dorsal ligament and an additional narrower lateral ligament was detectable in half of the cases. The majority of the dorso-lateral calcaneocuboid ligament-complex had an upward course and fanning out from proximal to distal. No bony predictor for the ligaments' shape or course was found. The dorso-lateral ligament-complex of the calcaneocuboid joint revealed a wide variety of configurations. Better understanding of the anatomy of these ligaments may aid in the anatomic reconstruction of these ligaments.

  14. History and evolution of dorsal onlay urethroplasty for bulbar urethral stricture repair using skin or buccal mucosal grafts.

    Science.gov (United States)

    Barbagli, G; Lazzeri, M

    2007-01-01

    OBJECTIVES. To illustrate the history and the evolution over time of bulbar dorsal onlay urethroplasty, comparing outcomes when using buccal mucosa or skin grafts. MATERIALS AND METHODS. Ninety-four patients underwent bulbar urethral reconstruction using two dorsal onlay techniques, namely augmented anastomotic urethroplasty and dorsal onlay graft urethroplasty. Preoperative evaluation included clinical history, physical examination, urine culture, residual urine measurement, uroflowmetry and urethrography. Thirty-four patients underwent augmented anastomotic urethroplasty using penile skin (10 cases) or buccal mucosa (24 cases) grafts. Sixty patients underwent dorsal onlay graft urethroplasty using penile skin (38 cases) or buccal mucosa (22 cases) grafts. Forty-eight out of 94 patients received skin grafts and 46 buccal mucosal grafts. RESULTS. Sixty-four (68%) out of 94 cases were successful, whereas 30 (32%) failed. The 34 augmented anastomotic urethroplasties provided successful outcomes in 24 cases (70.6%), but poor outcomes in 10 (29.4%) cases. The 60 dorsal onlay graft urethroplasty proved to be successful in 42 cases (70%), failing in 18 (30%) cases. Twenty-eight (58.3%) out of 48 penile skin grafts were successful and 20 (41.7%) failed. Thirty-six (78.3%) out of 46 buccal mucosa grafts were successful and 10 (21.7%) failed. The 30 failed cases were then treated with internal urethrotomy in 14 cases (46.7%), perineal urethrostomy in 8 cases (26.7%), two-stage repair in 4 cases (13.3%), and one-stage repair in 4 cases (13.3%). CONCLUSIONS. The dorsal onlay technique used for bulbar urethral stricture repair has changed over time. In our experience, the buccal mucosa seems to be the best substitute graft material for bulbar urethroplasty using dorsal approach.

  15. Investigation of the cytotoxicity, antioxidative and immune-modulatory effects of Ligusticum porteri (Osha) root extract on human peripheral blood lymphocytes.

    Science.gov (United States)

    Nguyen, Khanh; Sparks, Jean; Omoruyi, Felix O

    2016-11-01

    Ligusticum porteri is a traditional Native American herb. The roots of L. porteri are traditionally used in the treatment of many diseases, however, its cytotoxicity, antioxidative and immune-modulatory effects need to be investigated. In this study, we evaluated the effects of the root extract at different doses on human peripheral blood lymphocytes (PBLs). The lymphocytes were incubated with different concentrations of the root extracts (0, 50, 100, 200, and 400 μg/mL) and harvested every 6 h for 2 d (Peffect of the herb against oxidative damage was determined by inducing oxidative stress with the administration of 50 μmol/L of hydrogen peroxide (H 2 O 2 ). Treatments with L. porteri at 200 and 400 μg/mL increased the viability of PBLs. The deleterious effect of H 2 O 2 was ameliorated by 400 μg/mL L. porteri treatment. Addition of 400 μg/mL L. porteri reduced lipid peroxidation in stressed PBLs by 94% (P0.05). The findings suggest that L. porteri might be a potential immune-modulating agent involving protective effects against oxidative damage.

  16. Complex population response of dorsal putamen neurons predicts the ability to learn.

    Science.gov (United States)

    Laquitaine, Steeve; Piron, Camille; Abellanas, David; Loewenstein, Yonatan; Boraud, Thomas

    2013-01-01

    Day-to-day variability in performance is a common experience. We investigated its neural correlate by studying learning behavior of monkeys in a two-alternative forced choice task, the two-armed bandit task. We found substantial session-to-session variability in the monkeys' learning behavior. Recording the activity of single dorsal putamen neurons we uncovered a dual function of this structure. It has been previously shown that a population of neurons in the DLP exhibits firing activity sensitive to the reward value of chosen actions. Here, we identify putative medium spiny neurons in the dorsal putamen that are cue-selective and whose activity builds up with learning. Remarkably we show that session-to-session changes in the size of this population and in the intensity with which this population encodes cue-selectivity is correlated with session-to-session changes in the ability to learn the task. Moreover, at the population level, dorsal putamen activity in the very beginning of the session is correlated with the performance at the end of the session, thus predicting whether the monkey will have a "good" or "bad" learning day. These results provide important insights on the neural basis of inter-temporal performance variability.

  17. Agenesis of the dorsal pancreas: systematic review of a clinical challenge

    Directory of Open Access Journals (Sweden)

    Javier A. Cienfuegos

    Full Text Available Background: Agenesis of the dorsal pancreas is a rare malformation. Since 1911 and until 2008, 53 cases have been reported. Several authors have recently described the association of this anomaly with neoplasia of the ventral pancreas, thus we performed a systematic review of the literature from 2008 to 2015. Methods: A systematic review of the Medline and ISI Web of Science Databases from 2008 until 2015 was carried out, and 30 articles which met the inclusion criteria were identified that included a total of 53 patients: 7 children and 46 adults. Conclusions: Although dorsal pancreatic agenesis is a rare malformation, given its association with non-alcoholic pancreatitis and neoplasia of the residual pancreas, physicians should maintain an expectant attitude.

  18. Propagation of a dorsal cortical fracture of the third metacarpal bone in two horses

    International Nuclear Information System (INIS)

    Spurlock, G.H.

    1988-01-01

    Seemingly, propagation of a dorsal cortical fracture in the third metacarpal bone developed after continued race performance in 2 horses. Historically, both horses had intermittent lameness that had responded to nonsteroidal anti-inflammatory drugs and brief rest periods. However, lameness in both horses had increased in severity. Radiography revealed a dorsal cortical fracture of the third metacarpal bone, with propagation of the fracture plane proximally. Fractures were incomplete and healed with stall rest in both horses

  19. Influence of needle position on lumbar segmental nerve root block selectivity.

    Science.gov (United States)

    Wolff, André P; Groen, Gerbrand J; Wilder-Smith, Oliver H

    2006-01-01

    In patients with chronic low back pain radiating to the leg, segmental nerve root blocks (SNRBs) are performed to predict surgical outcome and identify the putative symptomatic spinal nerve. Epidural spread may lead to false interpretation, affecting clinical decision making. Systematic fluoroscopic analysis of epidural local anesthetic spread and its relationship to needle tip location has not been published to date. Study aims include assessment of epidural local anesthetic spread and its relationship to needle position during fluoroscopy-assisted blocks. Patients scheduled for L4, L5, and S1 blocks were included in this prospective observational study. Under fluoroscopy and electrostimulation, they received 0.5 mL of a mixture containing lidocaine 5 mg and iohexol 75 mg. X-rays with needle tip and contrast were scored for no epidural spread (grade 0), local spread epidurally (grade 1), or to adjacent nerve roots (grade 2). Sixty-five patients were analyzed for epidural spread, 62 for needle position. Grade 1 epidural spread occurred in 47% of L4 and 28% of L5 blocks and grade 2 spread in 3 blocks (5%; L5 n = 1, S1 n = 2). For lumbar blocks, the needle was most frequently found in the lateral upper half of the intervertebral foramen. Epidural spread occurred more frequently with medial needle positions (P = .06). The findings suggest (P = .06) that the risk of grade 1 and 2 lumbar epidural spread, which results in decreased SNRB selectivity, is greater with medial needle positions in the intervertebral foramen. The variability in anatomic position of the dorsal root ganglion necessitates electrostimulation to guide SNRB in addition to fluoroscopy.

  20. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  1. Lentiviral-mediated expression of polysialic acid in spinal cord and conditioning lesion promote regeneration of sensory axons into spinal cord

    NARCIS (Netherlands)

    Zhang, Yi; Zhang, Xinyu; Wu, Dongsheng; Verhaagen, J.; Richardson, Peter M; Yeh, John; Bo, Xuenong

    2007-01-01

    In adult mammals, sensory axons that regenerate in the dorsal root are unable to grow across the dorsal root entry zone (DREZ) into the spinal cord. In this study we examined whether, by inducing expression of polysialic acid (PSA) (a large carbohydrate attached to molecules on the cell surface), in

  2. Exploring the preventable causes of unplanned readmissions using root cause analysis

    DEFF Research Database (Denmark)

    Fluitman, K. S.; van Galen, L. S.; Merten, H

    2016-01-01

    Importance: Unplanned readmissions within 30 days are a common phenomenon in everyday practice and lead to increasing costs. Although many studies aiming to analyze the probable causes leading to unplanned readmissions have been performed, an in depth-study analyzing the human (healthcare worker...... and unpreventable readmissions. Results: Most root causes for readmission were disease-related (46%), followed by human (healthcare worker)-(33%) and patient-(15%) related root causes. Half of the readmissions studied were considered to be potentially preventable. Preventable readmissions predominantly had human......-related (coordination) failures. Conclusion and relevance: Our study suggests that improving human-related (coordinating) factors contributing to a readmission can potentially decrease the number of preventable readmissions. (C) 2015 European Federation of Internal Medicine. Published by Elsevier B.V. All rights...

  3. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Science.gov (United States)

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  4. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  5. Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample.

    Science.gov (United States)

    Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg

    2015-08-30

    Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. The Efficacy of Dandelion Root Extract in Inducing Apoptosis in Drug-Resistant Human Melanoma Cells

    Directory of Open Access Journals (Sweden)

    S. J. Chatterjee

    2011-01-01

    Full Text Available Notoriously chemoresistant melanoma has become the most prevalent form of cancer for the 25–29 North American age demographic. Standard treatment after early detection involves surgical excision (recurrence is possible, and metastatic melanoma is refractory to immuno-, radio-, and most harmful chemotherapies. Various natural compounds have shown efficacy in killing different cancers, albeit not always specifically. In this study, we show that dandelion root extract (DRE specifically and effectively induces apoptosis in human melanoma cells without inducing toxicity in noncancerous cells. Characteristic apoptotic morphology of nuclear condensation and phosphatidylserine flipping to the outer leaflet of the plasma membrane of A375 human melanoma cells was observed within 48 hours. DRE-induced apoptosis activates caspase-8 in A375 cells early on, demonstrating employment of an extrinsic apoptotic pathway to kill A375 cells. Reactive Oxygen Species (ROS generated from DRE-treated isolated mitochondria indicates that natural compounds in DRE can also directly target mitochondria. Interestingly, the relatively resistant G361 human melanoma cell line responded to DRE when combined with the metabolism interfering antitype II diabetic drug metformin. Therefore, treatment with this common, yet potent extract of natural compounds has proven novel in specifically inducing apoptosis in chemoresistant melanoma, without toxicity to healthy cells.

  7. The action of chlorphenesin carbamate on the frog spinal cord.

    Science.gov (United States)

    Aihara, H; Kurachi, M; Nakane, S; Sasajima, M; Ohzeki, M

    1980-02-01

    Studies were carried out to elucidate the mechanism of action of chlorphenesin carbamate (CPC) and to compare the effect of the drug with that of mephenesin on the isolated bullfrog spinal cord. Ventral and dorsal root potentials were recorded by means of the sucrose-gap method. CPC caused marked hyperpolarizations and depressed spontaneous activities in both of the primary afferent terminals (PAT) and motoneurons (MN). These hyperpolarizations were observed even in high-Mg2+ and Ca2+-free Ringer's solution, suggesting that CPC has direct actions on PAT and MN. Various reflex potentials (dorsal and ventral root potentials elicited by stimulating dorsal and ventral root, respectively) tended to be depressed by CPC as well as by mephenesin. Excitatory amino acids (L-aspartic acid and L-glutamic acid) caused marked depolarizations in PAT and MN, and increased the firing rate in MN. CPC did not modify the depolarization but abolished the motoneuron firing induced by these amino acids. However, mephenesin reduced both the depolarization and the motoneuron firing. The dorsal and ventral root potentials evoked by tetanic stimulation (40 Hz) of the dorsal root were depressed by the drugs. These results indicate that CPC has an apparent depressing action on the spinal neuron, and this action may be ascribed to the slight hyperpolarization and/or the prolongation of refractory period.

  8. Burst-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1996-01-01

    1. In transverse slices of the spinal cord of the turtle, intracellular recordings were used to characterize and analyse the responses to injected current and activation of primary afferents in dorsal horn neurones. 2. A subpopulation of neurones, with cell bodies located centrally in the dorsal...

  9. Dorsal approaches to intradural extramedullary tumors of the craniovertebral junction

    Directory of Open Access Journals (Sweden)

    D Refai

    2010-01-01

    Full Text Available Tumors of the craniovertebral junction (CVJ pose significant challenges to cranial and spine surgeons. Familiarity with the complex anatomy and avoidance of injury to neurologic and vascular structures are essential to success. Multiple surgical approaches to address lesions at the CVJ have been promoted, including ventral and dorsal-based trajectories. However, optimal selection of the surgical vector to manage the pathology requires a firm understanding of the limitations and advantages of each approach. The selection of the best surgical trajectory must include several factors, such as obtaining the optimal exposure of the region of interest, avoiding injury to critical neurologic or vascular structures, identification of normal anatomical landmarks, the familiarity and comfort level of the surgeon to the approach, and the need for fixation. This review article focuses on dorsal approaches to the CVJ and the advantages and limitations in managing intradural extramedullary tumors.

  10. Rooting gene trees without outgroups: EP rooting.

    Science.gov (United States)

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  11. Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Liu Dongjuan

    2012-11-01

    Full Text Available Abstract Introduction Post-traumatic stress disorder (PTSD is an anxiety disorder that develops after exposure to a life-threatening traumatic experience. Meta-analyses of the brainstem showed that midsagittal area of the pons was significantly reduced in patients with PTSD, suggesting a potential apoptosis in dorsal raphe nucleus after single-prolonged stress (SPS. The aim of this study is to investigate whether SPS induces apoptosis in dorsal raphe nucleus in PTSD rats, which may be a possible mechanism of reduced volume of pons and density of gray matter. Methods In this study, rats were randomly divided into 1d, 7d and 14d groups after SPS along with the control group. The apoptosis rate was determined using annexin V-FITC/PI double-labeled flow cytometry (FCM. Levels of Cytochrome c (Cyt-C was examined by Western blotting. Expression of Cyt-C on mitochondria in the dorsal raphe nucleus neuron was determined by enzymohistochemistry under transmission electron microscopy (TEM. The change of thiamine monophosphatase (TMP levels was assessed by enzymohistochemistry under light microscope and TEM. Morphological changes of the ultrastructure of the dorsal raphe nucleus neuron were determined by TEM. Results Apoptotic morphological alterations were observed in dorsal raphe nucleus neuron for all SPS-stimulate groups of rats. The apoptosis rates were significantly increased in dorsal raphe nucleus neuron of SPS rats, along with increased release of cytochrome c from the mitochondria into the cytoplasm, increased expression of Cyt-C and TMP levels in the cytoplasm, which reached to the peak of increase 7 days of SPS. Conclusions The results indicate that SPS induced Cyt-C released from mitochondria into cytosol and apoptosis in dorsal raphe nucleus neuron of rats. Increased TMP in cytoplasm facilitated the clearance of apoptotic cells. We propose that this presents one of the mechanisms that lead to reduced volume of pons and gray matter associated

  12. RootJS: Node.js Bindings for ROOT 6

    Science.gov (United States)

    Beffart, Theo; Früh, Maximilian; Haas, Christoph; Rajgopal, Sachin; Schwabe, Jonas; Wolff, Christoph; Szuba, Marek

    2017-10-01

    We present rootJS, an interface making it possible to seamlessly integrate ROOT 6 into applications written for Node.js, the JavaScript runtime platform increasingly commonly used to create high-performance Web applications. ROOT features can be called both directly from Node.js code and by JIT-compiling C++ macros. All rootJS methods are invoked asynchronously and support callback functions, allowing non-blocking operation of Node.js applications using them. Last but not least, our bindings have been designed to platform-independent and should therefore work on all systems supporting both ROOT 6 and Node.js. Thanks to rootJS it is now possible to create ROOT-aware Web applications taking full advantage of the high performance and extensive capabilities of Node.js. Examples include platforms for the quality assurance of acquired, reconstructed or simulated data, book-keeping and e-log systems, and even Web browser-based data visualisation and analysis.

  13. Inflammatory reaction of the anterior dorsal tongue presumably to sodium lauryl sulfate within toothpastes: a triple case report.

    Science.gov (United States)

    Brown, Ronald S; Smith, Langston; Glascoe, Alison L

    2018-02-01

    Sodium lauryl sulfate (SLS), a popular surface active agent ingredient within toothpastes, is known for its foaming action. Surface active agents increase the effectiveness of toothpastes with respect to dental plaque removal. SLS is a known irritant and also has allergenic potential. The authors report 3 patients with oral pain secondary to inflammation of the dorsal anterior tongue. These patients were all using toothpastes with SLS as an ingredient. The dorsal tongue lesions and oral pain resolved upon switching to toothpastes without SLS as an ingredient. Clinicians should be aware of the potential of SLS within toothpastes to cause oral mucosal inflammatory reactions of the anterior dorsal tongue. To our knowledge, these are the first case reports of oral mucosal inflammatory reactions of the anterior dorsal tongue associated with SLS containing toothpastes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A revised root for the human Y chromosomal phylogenetic tree: the origin of patrilineal diversity in Africa.

    Science.gov (United States)

    Cruciani, Fulvio; Trombetta, Beniamino; Massaia, Andrea; Destro-Bisol, Giovanni; Sellitto, Daniele; Scozzari, Rosaria

    2011-06-10

    To shed light on the structure of the basal backbone of the human Y chromosome phylogeny, we sequenced about 200 kb of the male-specific region of the human Y chromosome (MSY) from each of seven Y chromosomes belonging to clades A1, A2, A3, and BT. We detected 146 biallelic variant sites through this analysis. We used these variants to construct a patrilineal tree, without taking into account any previously reported information regarding the phylogenetic relationships among the seven Y chromosomes here analyzed. There are several key changes at the basal nodes as compared with the most recent reference Y chromosome tree. A different position of the root was determined, with important implications for the origin of human Y chromosome diversity. An estimate of 142 KY was obtained for the coalescence time of the revised MSY tree, which is earlier than that obtained in previous studies and easier to reconcile with plausible scenarios of modern human origin. The number of deep branchings leading to African-specific clades has doubled, further strengthening the MSY-based evidence for a modern human origin in the African continent. An analysis of 2204 African DNA samples showed that the deepest clades of the revised MSY phylogeny are currently found in central and northwest Africa, opening new perspectives on early human presence in the continent. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. [Trombosis of the dorsal penis vein (of Mondor's phlebitis). Presentation of a new case].

    Science.gov (United States)

    Rodríguez Faba, O; Parra Muntaner, L; Gómez Cisneros, S C; Martín Benito, J L; Escaf Barmadah, S

    2006-01-01

    We present a new case of trombosis of the superficial dorsal penis vein called Penile Mondor's disease. The characteristics of the disease are reviewed and the most usual diagnostic and therapeutic methods. The case of a 41 year old man is reviewed who consulted for pain and induration on the proximal part of the penis. After phisical examination and Eco-doppler was made the diagnosis of Mondor's disease. He receibed treatment with non steroidal antiinflamatories and antibiotics. The dorsal vein thrombosis is a rare disease with pain an induration of the dorsal part of the penis. The ethiology can be traumatic, neoplasic, excesive sexual activity or abstinence. Is necesary the diferencial diagnosis with esclerosant linphangitis and the most important imaging is the Eco-doppler. The treatment is based in non steroidal antiinflamatories and antibiotics wit infection. The local aplication of heparine can be useful and the surgery with thrombectomy and resection is for persistent cases.

  16. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    Science.gov (United States)

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  17. Body weight management effect of burdock (Arctium lappa L.) root is associated with the activation of AMP-activated protein kinase in human HepG2 cells.

    Science.gov (United States)

    Kuo, Daih-Huang; Hung, Ming-Chi; Hung, Chao-Ming; Liu, Li-Min; Chen, Fu-An; Shieh, Po-Chuen; Ho, Chi-Tang; Way, Tzong-Der

    2012-10-01

    Burdock (Arcticum lappa L.) root is used in folk medicine and also as a vegetable in Asian countries. In the present study, burdock root treatment significantly reduced body weight in rats. To evaluate the bioactive compounds, we successively extracted the burdock root with ethanol (AL-1), and fractionated it with n-hexane (AL-2), ethyl acetate (AL-3), n-butanol (AL-4), and water (AL-5). Among these fractions, AL-2 contained components with the most effective hypolipidemic potential in human hepatoma HepG2 cells. AL-2 decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) by stimulating AMP-activated protein kinase (AMPK) through the LKB1 pathway. Three active compounds were identified from the AL-2, namely α-linolenic acid, methyl α-linolenate, and methyl oleate. These results suggest that burdock root is expected to be useful for body weight management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Dorsal and ventral changes of the occipital vertebrae

    International Nuclear Information System (INIS)

    Banki, Z.

    1981-01-01

    Based on his own observation and on the literature, the author discusses various types of calcification in the occipital-cervical region, beginning with those situated dorsally and followed by ventral forms. An attempt is made to classify these changes, depending on their morphology and situation, from an embryological point of view. The pro-atlantal and ante pro-atlanto origin of the occipital vertebrae is discussed. Differentiation depends on appearances. (orig.) [de

  19. Social conflict resolution regulated by two dorsal habenular subregions in zebrafish.

    Science.gov (United States)

    Chou, Ming-Yi; Amo, Ryunosuke; Kinoshita, Masae; Cherng, Bor-Wei; Shimazaki, Hideaki; Agetsuma, Masakazu; Shiraki, Toshiyuki; Aoki, Tazu; Takahoko, Mikako; Yamazaki, Masako; Higashijima, Shin-ichi; Okamoto, Hitoshi

    2016-04-01

    When animals encounter conflict they initiate and escalate aggression to establish and maintain a social hierarchy. The neural mechanisms by which animals resolve fighting behaviors to determine such social hierarchies remain unknown. We identified two subregions of the dorsal habenula (dHb) in zebrafish that antagonistically regulate the outcome of conflict. The losing experience reduced neural transmission in the lateral subregion of dHb (dHbL)-dorsal/intermediate interpeduncular nucleus (d/iIPN) circuit. Silencing of the dHbL or medial subregion of dHb (dHbM) caused a stronger predisposition to lose or win a fight, respectively. These results demonstrate that the dHbL and dHbM comprise a dual control system for conflict resolution of social aggression. Copyright © 2016, American Association for the Advancement of Science.

  20. Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain.

    Science.gov (United States)

    Wang, Xuhui; Pathak, Sudhir; Stefaneanu, Lucia; Yeh, Fang-Cheng; Li, Shiting; Fernandez-Miranda, Juan C

    2016-05-01

    The subcomponents of the human superior longitudinal fasciculus (SLF) are disputed. The objective of this study was to investigate the segments, connectivity and asymmetry of the SLF. We performed high angular diffusion spectrum imaging (DSI) analysis on ten healthy adults. We also conducted fiber tracking on a 30-subject DSI template (CMU-30) and 488-subject template from the Human Connectome Project (HCP-488). In addition, five normal brains obtained at autopsy were microdissected. Based on tractography and microdissection results, we show that the human SLF differs significantly from that of monkey. The fibers corresponding to SLF-I found in 6 out of 20 hemispheres proved to be part of the cingulum fiber system in all cases and confirmed on both DSI and HCP-488 template. The most common patterns of connectivity bilaterally were as follows: from angular gyrus to caudal middle frontal gyrus and dorsal precentral gyrus representing SLF-II (or dorsal SLF), and from supramarginal gyrus to ventral precentral gyrus and pars opercularis to form SLF-III (or ventral SLF). Some connectivity features were, however, clearly asymmetric. Thus, we identified a strong asymmetry of the dorsal SLF (SLF-II), where the connectivity between the supramarginal gyrus with the dorsal precentral gyrus and the caudal middle frontal gyrus was only present in the left hemisphere. Contrarily, the ventral SLF (SLF-III) showed fairly constant connectivity with pars triangularis only in the right hemisphere. The results provide a novel neuroanatomy of the SLF that may help to better understand its functional role in the human brain.

  1. Comparison of efficacy of continuous epidural block and pulsed radiofrequency to the dorsal root ganglion for management of pain persisting beyond the acute phase of herpes zoster.

    Directory of Open Access Journals (Sweden)

    Eung Don Kim

    Full Text Available There is little evidence regarding the effectiveness of intervention methods in the treatment of zoster-related pain (ZAP after the acute phase of zoster. Generally, if ZAP remains after more than 180 days from its onset, the likelihood of pain reduction is very low; this condition is considered as a "well established" post-herpetic neuralgia (PHN. Although the clinical efficacy of intrathecal steroid injection and spinal cord stimulation (SCS for ZAP management has been reported, these interventions are not widely used due to inherent disadvantages. Continuous epidural block is widely used in clinical practice, and the effectiveness of pulsed radiofrequency (PRF to the dorsal root ganglion (DRG in the treatment of ZAP already has been reported.The purpose of this study was to compare the clinical efficacy of continuous epidural block and DRG PRF beyond acute phase of zoster, bur before PHN was well established (from 30 days to180 days after zoster onset.Retrospective comparative study.A total of 42 medical records were analyzed. Patients were divided into two groups according to the type of procedure utilized: continuous epidural block (continuous epidural group and DRG PRF (PRF group. The clinical efficacy of the procedure was evaluated using a numeric rating scale (NRS and the medication dose before and 1 to 6 months after the procedure.There was a significant decrease in the NRS value with time in both groups. However, this decrease was more significant in the PRF group than in the continuous epidural group. The medication doses decreased significantly in the PRF group over time, but not in the continuous epidural group. The rate of clinically meaningful PHN (NRS≥3 was also lower in the PRF group than in the continuous epidural group.This study revealed that DRG PRF was more effective than a continuous epidural block in treating ZAP after the acute phase of zoster. A neuromodulation method such as DRG PRF may be a useful option for

  2. Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception.

    Science.gov (United States)

    Capilla, Almudena; Schoffelen, Jan-Mathijs; Paterson, Gavin; Thut, Gregor; Gross, Joachim

    2014-02-01

    Modulations of occipito-parietal α-band (8-14 Hz) power that are opposite in direction (α-enhancement vs. α-suppression) and origin of generation (ipsilateral vs. contralateral to the locus of attention) are a robust correlate of anticipatory visuospatial attention. Yet, the neural generators of these α-band modulations, their interdependence across homotopic areas, and their respective contribution to subsequent perception remain unclear. To shed light on these questions, we employed magnetoencephalography, while human volunteers performed a spatially cued detection task. Replicating previous findings, we found α-power enhancement ipsilateral to the attended hemifield and contralateral α-suppression over occipito-parietal sensors. Source localization (beamforming) analysis showed that α-enhancement and suppression were generated in 2 distinct brain regions, located in the dorsal and ventral visual streams, respectively. Moreover, α-enhancement and suppression showed different dynamics and contribution to perception. In contrast to the initial and transient dorsal α-enhancement, α-suppression in ventro-lateral occipital cortex was sustained and influenced subsequent target detection. This anticipatory biasing of ventro-lateral extrastriate α-activity probably reflects increased receptivity in the brain region specialized in processing upcoming target features. Our results add to current models on the role of α-oscillations in attention orienting by showing that α-enhancement and suppression can be dissociated in time, space, and perceptual relevance.

  3. Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory.

    Science.gov (United States)

    Buchsbaum, Bradley R; Olsen, Rosanna K; Koch, Paul; Berman, Karen Faith

    2005-11-23

    To hear a sequence of words and repeat them requires sensory-motor processing and something more-temporary storage. We investigated neural mechanisms of verbal memory by using fMRI and a task designed to tease apart perceptually based ("echoic") memory from phonological-articulatory memory. Sets of two- or three-word pairs were presented bimodally, followed by a cue indicating from which modality (auditory or visual) items were to be retrieved and rehearsed over a delay. Although delay-period activation in the planum temporale (PT) was insensible to the source modality and showed sustained delay-period activity, the superior temporal gyrus (STG) activated more vigorously when the retrieved items had arrived to the auditory modality and showed transient delay-period activity. Functional connectivity analysis revealed two topographically distinct fronto-temporal circuits, with STG co-activating more strongly with ventrolateral prefrontal cortex and PT co-activating more strongly with dorsolateral prefrontal cortex. These argue for separate contributions of ventral and dorsal auditory streams in verbal working memory.

  4. EDTA-S: A novel root conditioning agent

    Directory of Open Access Journals (Sweden)

    S Srirangarajan

    2012-01-01

    Full Text Available Background: To evaluate the efficacy of 15% ethylenediaminetetraacetic acid (EDTA-S (EDTA with soft soap preparation for the removal of smear layer at human root surfaces. Materials and Methods: Twenty teeth indicated for extraction due to periodontal disease were sectioned using high speed cylindrical bur under copious irrigation. The root surfaces were instrumented with Gracey 7-8 curette (Hu-Friedy, 12 times to induce an "experimental smear layer". Following root planning, the root surface was cut using diamond disc and separated from the crown. Samples were randomly distributed into five groups. One group was control, saline and test groups were EDTA 15% alone, by active and passive applications (groups 2 and 3, and EDTA 15%+soft soap, by active and passive applications (groups 4 and 5. Specimens were then subjected to scanning electron microscope study. Smear layer removal was evaluated according to Sampaio et al., index. Results: EDTA-S removed the smear layer better than plain EDTA and the control group, while active application of the root conditioning agent had significant difference than the passive application of the agent. Conclusion: EDTA-S has favorable benefits over EDTA alone, and active application is better in comparison with passive application of root conditioning agent. Clinical Relevance: Removal of smear layer has been considered as an important step in periodontal regenerative therapy. Scaling and root planning alone with saline irrigation does not remove the smear layer. EDTA is a commonly used root conditioning agent in periodontal therapy. The addition of a detergent to EDTA proved to remove smear layer more efficiently than EDTA alone.

  5. Comparison of dorsal and dorsomedial displacement in evaluation of first ray hypermobility in feet with and without hallux valgus.

    Science.gov (United States)

    Singh, Dishan; Biz, Carlo; Corradin, Marco; Favero, Laura

    2016-06-01

    Hypermobility of the first ray, a probable primary cause of hallux valgus, has traditionally been evaluated in the dorsal direction only although the first tarso-metatarsal joint allows movement in a dorso-medial direction. 600 feet, divided according to the presence or absence of hallux valgus, were evaluated for both dorsal and dorso-medial displacement using a Klaue device. In the control group, the mean first ray displacement was 7.2mm (4.2-11.3) in the dorsal direction (sagittal plane) and 8.3mm (4.0-12.6) in the 45° dorso-medial direction. In the hallux valgus group, the mean first ray mobility was 9.8mm (5.2-14.1) in the dorsal direction compared to a mean of 11.0mm (5.9-16.2) in the 45° dorso-medial direction. It is a paradox that hypermobility of the first ray is measured in only a dorsal (vertical) direction whereas a hallux valgus angle and an intermetatarsal angle are only measured in a transverse plane. Furthermore, the weightbearing foot pronates during gait and the first metatarsal is displaced in a dorsomedial direction rather than a pure dorsal direction. It is suggested that measurement hypermobility of the first ray at a 45° dorso-medial direction is more appropriate. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  6. Effect of aquatine endodontic cleanser on smear layer removal in the root canals of ex vivo human teeth

    Directory of Open Access Journals (Sweden)

    Faustino Garcia

    2010-08-01

    Full Text Available OBJECTIVES: The purpose of this study was to measure and compare the root canal cleanliness and smear layer removal effectiveness of Aquatine Endodontic Cleanser (Aquatine EC when used as an endodontic irrigating solution in comparison with 6% sodium hypochlorite (NaOCl. MATERIAL AND METHODS: Forty-five human teeth were randomly allocated to five treatment groups; the pulp chamber was accessed, cleaned, and shaped by using ProTaper and ProFile rotary instrumentation to an ISO size #40. The teeth were then processed for scanning electron microscopy, and the root canal cleanliness and removal of smear layer were examined. RESULTS: The most effective removal of smear layer occurred with Aquatine EC and NaOCl, both with a rinse of EDTA. CONCLUSIONS: Aquatine EC appears to be the first hypochlorous acid approved by the FDA to be a possible alternative to the use of NaOCl as an intracanal irrigant. Further research is needed to identify safer and more effective alternatives to the use of NaOCl irrigation in endodontics.

  7. Learning, Judgment, and the Rooted Particular

    Science.gov (United States)

    McCabe, David

    2012-01-01

    This article begins by acknowledging the general worry that scholarship in the humanities lacks the rigor and objectivity of other scholarly fields. In considering the validity of that criticism, I distinguish two models of learning: the covering law model exemplified by the natural sciences, and the model of rooted particularity that…

  8. Two White Spot Syndrome Virus MicroRNAs Target the Dorsal Gene To Promote Virus Infection in Marsupenaeus japonicus Shrimp.

    Science.gov (United States)

    Ren, Qian; Huang, Xin; Cui, Yalei; Sun, Jiejie; Wang, Wen; Zhang, Xiaobo

    2017-04-15

    In eukaryotes, microRNAs (miRNAs) serve as regulators of many biological processes, including virus infection. An miRNA can generally target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs has not yet been extensively explored during virus infection. This study found that the Spaztle (Spz)-Toll-Dorsal-antilipopolysaccharide factor (ALF) signaling pathway plays a very important role in antiviral immunity against invasion of white spot syndrome virus (WSSV) in shrimp ( Marsupenaeus japonicus ). Dorsal , the central gene in the Toll pathway, was targeted by two viral miRNAs (WSSV-miR-N13 and WSSV-miR-N23) during WSSV infection. The regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo , leading to virus infection. Our study contributes novel insights into the viral miRNA-mediated Toll signaling pathway during the virus-host interaction. IMPORTANCE An miRNA can target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs during virus infection has not yet been extensively explored. The results of this study indicated that the shrimp Dorsal gene, the central gene in the Toll pathway, was targeted by two viral miRNAs during infection with white spot syndrome virus. Regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo , leading to virus infection. Our study provides new insight into the viral miRNA-mediated Toll signaling pathway in virus-host interactions. Copyright © 2017 American Society for Microbiology.

  9. Joint Contribution of Left Dorsal Premotor Cortex and Supramarginal Gyrus to Rapid Action Reprogramming

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Siebner, Hartwig R

    2015-01-01

    human subjects performed a spatially-precued reaction time task. RESULTS: Relative to sham rTMS, effective online perturbation of left PMd significantly impaired both the response speed and accuracy in trials that were invalidly pre-cued and required the subject to reprogram the prepared action......BACKGROUND: The rapid adaptation of actions to changes in the environment is crucial for survival. We previously demonstrated a joint contribution of left dorsal premotor cortex (PMd) and left supramarginal gyrus (SMG) to action reprogramming. However, we did not probe the contribution of PMd...... to the speed and accuracy of action reprogramming and how the functional relevance of PMd changes in the presence of a dysfunctional SMG. OBJECTIVE: This study further dissociated the unique contribution of left PMd and SMG to action reprogramming. Specifically, we tested whether the critical contribution...

  10. Phenotypic variation in dorsal fin morphology of coastal bottlenose dolphins (Tursiops truncatus off Mexico

    Directory of Open Access Journals (Sweden)

    Eduardo Morteo

    2017-06-01

    Full Text Available Geographic variation in external morphology is thought to reflect an interplay between genotype and the environment. Morphological variation has been well-described for a number of cetacean species, including the bottlenose dolphin (Tursiops truncatus. In this study we analyzed dorsal fin morphometric variation in coastal bottlenose dolphins to search for geographic patterns at different spatial scales. A total of 533 dorsal fin images from 19 available photo-identification catalogs across the three Mexican oceanic regions (Pacific Ocean n = 6, Gulf of California n = 6 and, Gulf of Mexico n = 7 were used in the analysis. Eleven fin shape measurements were analyzed to evaluate fin polymorphism through multivariate tests. Principal Component Analysis on log-transformed standardized ratios explained 94% of the variance. Canonical Discriminant Function Analysis on factor scores showed separation among most study areas (p < 0.05 with exception of the Gulf of Mexico where a strong morphometric cline was found. Possible explanations for the observed differences are related to environmental, biological and evolutionary processes. Shape distinction between dorsal fins from the Pacific and those from the Gulf of California were consistent with previously reported differences in skull morphometrics and genetics. Although the functional advantages of dorsal fin shape remains to be assessed, it is not unlikely that over a wide range of environments, fin shape may represent a trade-off among thermoregulatory capacity, hydrodynamic performance and the swimming/hunting behavior of the species.

  11. Effect of ProRoot MTA, Portland cement, and amalgam on the expression of fibronectin, collagen I, and TGFβ by human periodontal ligament fibroblasts in vitro.

    Science.gov (United States)

    Fayazi, Sara; Ostad, Seyed Nasser; Razmi, Hasan

    2011-01-01

    Today many materials have been introduced for root-end filling materials. One of them is mineral trioxide aggregate (MTA) that is mentioned as a gold standard. The purpose of this in vitro study was to evaluate the reaction of human periodontal ligament fibroblasts to the root-end filling materials, such as ProRoot MTA, Portland cement, and amalgam. Eight impacted teeth were extracted in aseptic condition. The tissues around the roots were used to obtain fibroblast cells. After cell proliferation, they were cultured in the chamber slides and the extracts of the materials were added to the wells. Immunocytochemical method for measuring the expression of Fibronectin, collagen I and transforming growth factor beta (TGF®) was performed by Olysia Bioreport Imaging Software. The results were analyzed by SPSS 13.0 and Tukey post hoc test with PPortland cement group showed the most expression of collagen significantly and after 1 week, Portland cement and MTA groups had the most expression of collagen but there was no significant difference between these 2 groups. After 1 week, the Portland cement group demonstrated a higher amount of TGF® and fibronectin. The results suggest that Portland cement can be used as a less expensive root filling material with low toxicity. It has better effects than amalgam on the fibroblasts.

  12. Ovarian steroid regulation of monoamine oxidase-A and -B mRNAs in the macaque dorsal raphe and hypothalamic nuclei.

    Science.gov (United States)

    Gundlah, Chrisana; Lu, Nick Z; Bethea, Cynthia L

    2002-03-01

    The serotonin neural system plays a pivotal role in mood, affective regulation and integrative cognition, as well as numerous autonomic functions. We have shown that ovarian steroids alter the expression of several genes in the dorsal raphe of macaques, which may increase serotonin synthesis and decrease serotonin autoinhibition. Another control point in aminergic neurotransmission involves degradation by MAO. This enzyme occurs in two isoforms, A and B, which have different substrate preferences. We questioned the effect of ovarian steroid hormones on MAO-A and MAO-B mRNA expression in the dorsal raphe nucleus and hypothalamus using in situ hybridization in non-human primates. Rhesus monkeys ( Macaca mulatta; n=5/group) were spayed and either placebo treated (controls), estrogen (E) treated (28 days), progesterone (P) treated (14 days placebo+14 days P), or E+P treated (14 days E+14 days E+P). Perfusion-fixed sections (25 microm) were hybridized with a 233 bp MAO-A, or a 373 bp MAO-B, radiolabeled-antisense monkey specific probes. Autoradiographic films were analyzed by densitometry, which was performed with NIH Image Software. MAO-A and -B mRNAs were detected in the dorsal raphe nucleus (DRN) and in the hypothalamic suprachiasmatic nucleus (SCN), preoptic area (POA), paraventricular nucleus (PVN), supraoptic nucleus (SON), lateral hypothalamus (LH) and ventromedial nucleus (VMN). MAO-A mRNA optical density was significantly decreased by E, P, and E+P in the DRN and in the hypothalamic PVN, LH and VMN. Ovarian hormones had no effect on MAO-B mRNA expression in the DRN. However, there was a significant decrease in MAO-B optical density in the hypothalamic POA, LH and VMN with E, P or E+P treatment. Pixel area generally reflected optical density. Ovarian steroids decreased MAO-A, but not B, in the raphe nucleus. However, both MAO-A and B were decreased in discrete hypothalamic nuclei by hormone replacement. These data suggest that the transcriptional regulation of

  13. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    Science.gov (United States)

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  14. Lmx1b-targeted cis-regulatory modules involved in limb dorsalization.

    Science.gov (United States)

    Haro, Endika; Watson, Billy A; Feenstra, Jennifer M; Tegeler, Luke; Pira, Charmaine U; Mohan, Subburaman; Oberg, Kerby C

    2017-06-01

    Lmx1b is a homeodomain transcription factor responsible for limb dorsalization. Despite striking double-ventral (loss-of-function) and double-dorsal (gain-of-function) limb phenotypes, no direct gene targets in the limb have been confirmed. To determine direct targets, we performed a chromatin immunoprecipitation against Lmx1b in mouse limbs at embryonic day 12.5 followed by next-generation sequencing (ChIP-seq). Nearly 84% ( n =617) of the Lmx1b-bound genomic intervals (LBIs) identified overlap with chromatin regulatory marks indicative of potential cis -regulatory modules (PCRMs). In addition, 73 LBIs mapped to CRMs that are known to be active during limb development. We compared Lmx1b-bound PCRMs with genes regulated by Lmx1b and found 292 PCRMs within 1 Mb of 254 Lmx1b-regulated genes. Gene ontological analysis suggests that Lmx1b targets extracellular matrix production, bone/joint formation, axonal guidance, vascular development, cell proliferation and cell movement. We validated the functional activity of a PCRM associated with joint-related Gdf5 that provides a mechanism for Lmx1b-mediated joint modification and a PCRM associated with Lmx1b that suggests a role in autoregulation. This is the first report to describe genome-wide Lmx1b binding during limb development, directly linking Lmx1b to targets that accomplish limb dorsalization. © 2017. Published by The Company of Biologists Ltd.

  15. [Distortion and vertical fracture of the root: effect produced by condenser design].

    Science.gov (United States)

    Dang, D A; Walton, R E

    1990-01-01

    The incidence of vertical root fractures and the amount of root distortion created during lateral condensation of gutta-percha with either D11 spreaders or B-finger pluggers were evaluated in vitro. Fifty-five extracted human, single-rooted teeth were instrumented using the step-back flare technique. Ten teeth served as positive controls (obturation to the point of fracture) and five teeth as negative controls (prepared but not obtured). Strain gauges were attached to the root surfaces. In the experimental group, 20 teeth were obturated using a D11 spreader and 20 with a B-finger plugger. Recordings were made of root distortion (expansion) created during obturation. Then, after sectioning the teeth, root surfaces of obturated samples were examined for fractures under the scanning electron microscope. Only the more tapered spreader, the D11, produces vertical root fractures, although very few in number. Also, the D11 spreader caused greater root distortion than did the B-finger plugger.

  16. Emotional detachment in psychopathy: Involvement of dorsal default-mode connections.

    Science.gov (United States)

    Sethi, Arjun; Gregory, Sarah; Dell'Acqua, Flavio; Periche Thomas, Eva; Simmons, Andy; Murphy, Declan G M; Hodgins, Sheilagh; Blackwood, Nigel J; Craig, Michael C

    2015-01-01

    Criminal psychopathy is defined by emotional detachment [Psychopathy Checklist - Revised (PCL-R) factor 1], and antisocial behaviour (PCL-R factor 2). Previous work has associated antisocial behaviour in psychopathy with abnormalities in a ventral temporo-amygdala-orbitofrontal network. However, little is known of the neural correlates of emotional detachment. Imaging studies have indicated that the 'default-mode network' (DMN), and in particular its dorsomedial (medial prefrontal - posterior cingulate) component, contributes to affective and social processing in healthy individuals. Furthermore, recent work suggests that this network may be implicated in psychopathy. However, no research has examined the relationship between psychopathy, emotional detachment, and the white matter underpinning the DMN. We therefore used diffusion tensor imaging (DTI) tractography in 13 offenders with psychopathy and 13 non-offenders to investigate the relationship between emotional detachment and the microstructure of white matter connections within the DMN. These included the dorsal cingulum (containing the medial prefrontal - posterior cingulate connections of the DMN), and the ventral cingulum (containing the posterior cingulate - medial temporal connections of the DMN). We found that fractional anisotropy (FA) was reduced in the left dorsal cingulum in the psychopathy group (p = .024). Moreover, within this group, emotional detachment was negatively correlated with FA in this tract portion bilaterally (left: r = -.61, p = .026; right: r = -.62, p = .023). These results suggest the importance of the dorsal DMN in the emotional detachment observed in individuals with psychopathy. We propose a 'dual-network' model of white matter abnormalities in the disorder, which incorporates these with previous findings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain.

    Science.gov (United States)

    Schwabe, Lars; Tegenthoff, Martin; Höffken, Oliver; Wolf, Oliver T

    2013-12-01

    Accumulating evidence suggests that stress may orchestrate the engagement of multiple memory systems in the brain. In particular, stress is thought to favor dorsal striatum-dependent procedural over hippocampus-dependent declarative memory. However, the neuroendocrine mechanisms underlying these modulatory effects of stress remain elusive, especially in humans. Here, we targeted the role of the mineralocorticoid receptor (MR) in the stress-induced modulation of dorsal striatal and hippocampal memory systems in the human brain using a combination of event-related functional magnetic resonance imaging and pharmacologic blockade of the MR. Eighty healthy participants received the MR antagonist spironolactone (300 mg) or a placebo and underwent a stressor or control manipulation before they performed, in the scanner, a classification task that can be supported by the hippocampus and the dorsal striatum. Stress after placebo did not affect learning performance but reduced explicit task knowledge and led to a relative increase in the use of more procedural learning strategies. At the neural level, stress promoted striatum-based learning at the expense of hippocampus-based learning. Functional connectivity analyses showed that this shift was associated with altered coupling of the amygdala with the hippocampus and dorsal striatum. Mineralocorticoid receptor blockade before stress prevented the stress-induced shift toward dorsal striatal procedural learning, same as the stress-induced alterations of amygdala connectivity with hippocampus and dorsal striatum, but resulted in significantly impaired performance. Our findings indicate that the stress-induced shift from hippocampal to dorsal striatal memory systems is mediated by the amygdala, required to preserve performance after stress, and dependent on the MR. © 2013 Society of Biological Psychiatry.

  18. Neural retina-specific Aldh1a1 controls dorsal choroidal vascular development via Sox9 expression in retinal pigment epithelial cells.

    Science.gov (United States)

    Goto, So; Onishi, Akishi; Misaki, Kazuyo; Yonemura, Shigenobu; Sugita, Sunao; Ito, Hiromi; Ohigashi, Yoko; Ema, Masatsugu; Sakaguchi, Hirokazu; Nishida, Kohji; Takahashi, Masayo

    2018-04-03

    VEGF secreted from retinal pigment epithelial (RPE) cells is responsible for the choroidal vascular development; however, the molecular regulatory mechanism is unclear. We found that Aldh1a1 -/- mice showed choroidal hypoplasia with insufficient vascularization in the dorsal region, although Aldh1a1, an enzyme that synthesizes retinoic acids (RAs), is expressed in the dorsal neural retina, not in the RPE/choroid complex. The level of VEGF in the RPE/choroid was significantly decreased in Aldh1a1 -/- mice, and RA-dependent enhancement of VEGF was observed in primary RPE cells. An RA-deficient diet resulted in dorsal choroidal hypoplasia, and simple RA treatment of Aldh1a1 -/- pregnant females suppressed choroid hypoplasia in their offspring. We also found downregulation of Sox9 in the dorsal neural retina and RPE of Aldh1a1 -/- mice and RPE-specific disruption of Sox9 phenocopied Aldh1a1 -/- choroidal development. These results suggest that RAs produced by Aldh1a1 in the neural retina directs dorsal choroidal vascular development via Sox9 upregulation in the dorsal RPE cells to enhance RPE-derived VEGF secretion. © 2018, Goto et al.

  19. An in vitro study of mesiobuccal root thickness of maxillary first molars.

    Science.gov (United States)

    Mohammadzadeh Akhlaghi, Nahid; Ravandoust, Yasaman; Najafi, Mohammad; Dadresanfar, Bahareh

    2012-01-01

    Understanding the internal anatomy of root canal system can significantly influence outcomes of root canal treatment. The aim of this in vitro study was to measure the thickness of mesiobuccal root at different levels in maxillary first molars. In this cross-sectional study, forty extracted human maxillary first molars were radiographed; accordingly, the mesial and distal root thicknesses of mesiobuccal (MB) roots were measured at four parallel horizontal levels. The samples were sectioned at the measured levels and then sections were scanned and saved in the computer. Buccal (B), Palatal (P), Mesial (M) and Distal (D) aspects of root thicknesses in single-canalled roots were measured. In two-canalled mesiobuccal roots, Distobuccal (DB) and Distopalatal (DP) aspects were evaluated alongside other measurements. Average radicular thickness in each aspect and each level was compared using ANOVA and t-test. A total of 25 had two canals and 15 had one canal in MB root. In single-canalled roots M and D aspects were the thinnest whereas in two-canalled samples, the thicknesses of DP and DB aspects were significantly less than others (Pmolar roots in order to avoid technical mishaps.

  20. [Case of surgical treatment for giant hemangioblastoma in the dorsal medulla oblongata].

    Science.gov (United States)

    Kamoshima, Yuuta; Terasaka, Shunsuke; Shimoda, Yusuke; Kobayashi, Hiroyuki; Kuroda, Satoshi; Asano, Takeshi; Yamaguchi, Shigeru; Murata, Junichi; Houkin, Kiyohiro

    2012-03-01

    Hemangioblastoma in the medulla oblongata is a relatively rare tumor. We present the case of a giant hemangioblastoma occurring in the dorsal medulla oblongata. A 33-year-old man with no neurological symptoms was diagnosed with a hemangioblastoma in the dorsal medulla oblongata, and opted for observation in the outpatient department. After 22 months of observation time, MRI scans showed rapid local tumor progression and obstructive hydrocephalus. At this point, he presented with mild dysphagia as a preoperative neurological deficit. Total surgical removal of the tumor was performed after temporary ventricle drainage and preoperative embolization of the feeding artery. Postoperatively, he became fully conscious but developed bulbar palsy followed by tracheostomy. During the 12 months of postoperative follow-up, severe dysphagia was still present.

  1. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  2. Paresthesia thresholds in spinal cord stimulation: a comparison of theoretical results with clinical data

    NARCIS (Netherlands)

    Struijk, J.J.; Struijk, Johannes J.; Holsheimer, J.; Barolat, Giancarlo; He, Jiping; Boom, H.B.K.

    1993-01-01

    The potential distributions produced in the spinal cord and surrounding tissues by dorsal epidural stimulation at the midcervical, midthoracic, and low thoracic levels were calculated with the use of a volume conductor model. Stimulus thresholds of myelinated dorsal column fibers and dorsal root

  3. Effect of Peracetic Acid as A Final Rinse on Push Out Bond Strength of Root Canal Sealers to Root Dentin.

    Science.gov (United States)

    Gaddala, Naresh; Veeramachineni, Chandrasekhar; Tummala, Muralidhar

    2015-05-01

    Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear.

  4. Light and electron microscopy of contacts between primary afferent fibres and neurones with axons ascending the dorsal columns of the feline spinal cord.

    Science.gov (United States)

    Maxwell, D J; Koerber, H R; Bannatyne, B A

    1985-10-01

    In addition to primary afferent fibres, the dorsal columns of the cat spinal cord contain ascending second-order axons which project to the dorsal column nuclei. The aim of the present study was to obtain morphological evidence that certain primary afferent axons form monosynaptic contacts with cells of origin of this postsynaptic dorsal column pathway. In ten adult cats, neurones with axons ascending the dorsal columns were retrogradely labelled with horseradish peroxidase using a pellet implantation method in the thoracic dorsal columns. In the lumbosacral regions of the same animals, primary afferent fibres were labelled intra-axonally with ionophoretic application of horseradish peroxidase. Tissue containing labelled axons was prepared for light and combined light and electron microscopy. Ultrastructural examination demonstrated that slowly adapting (Type I), hair follicle, Pacinian corpuscle and group Ia muscle spindle afferents formed monosynaptic contacts with labelled cells and light microscopical analysis suggested that they also received monosynaptic input from rapidly adapting (Krause) afferents. This evidence suggests that sensory information from large-diameter cutaneous and muscle spindle afferent fibres is conveyed disynaptically via the postsynaptic dorsal column pathway to the dorsal column nuclei. Some of the input to this pathway is probably modified in the spinal cord as the majority of primary afferent boutons forming monosynaptic contacts were postsynaptic to other axon terminals. The postsynaptic dorsal column system appears to constitute a major somatosensory pathway in the cat.

  5. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    Science.gov (United States)

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  6. Anatomy of the dorsal default-mode network in conduct disorder: Association with callous-unemotional traits.

    Science.gov (United States)

    Sethi, Arjun; Sarkar, Sagari; Dell'Acqua, Flavio; Viding, Essi; Catani, Marco; Murphy, Declan G M; Craig, Michael C

    2018-04-01

    We recently reported that emotional detachment in adult psychopathy was associated with structural abnormalities in the dorsal 'default-mode' network (DMN). However, it is unclear whether these differences are present in young people at risk of psychopathy. The most widely recognised group at risk for psychopathy are children/adolescents with conduct disorder (CD) and callous-unemotional (CU) traits. We therefore examined the microstructure of the dorsal DMN in 27 CD youths (14-with/13-without CU traits) compared to 16 typically developing controls using DTI tractography. Both CD groups had significantly (p < 0.025) reduced dorsal DMN radial diffusivity compared to controls. In those with diagnostically significant CU traits, exploratory analyses (uncorrected for multiple comparisons) suggested that radial diffusivity was negatively correlated with CU severity (Left: rho = -0.68, p = 0.015). These results suggest that CD youths have microstructural abnormalities in the same network as adults with psychopathy. Further, the association with childhood/adolescent measures of emotional detachment (CU traits) resembles the relationship between emotional detachment and network microstructure in adult psychopaths. However, these changes appear to occur in opposite directions - with increased myelination in adolescent CD but reduced integrity in adult psychopathy. Collectively, these findings suggest that developmental abnormalities in dorsal DMN may play a role in the emergence of psychopathy. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Antibodies to the extracellular pore loop of TRPM8 act as antagonists of channel activation.

    Directory of Open Access Journals (Sweden)

    Silke Miller

    Full Text Available The mammalian transient receptor potential melastatin channel 8 (TRPM8 is highly expressed in trigeminal and dorsal root ganglia. TRPM8 is activated by cold temperature or compounds that cause a cooling sensation, such as menthol or icilin. TRPM8 may play a role in cold hypersensitivity and hyperalgesia in various pain syndromes. Therefore, TRPM8 antagonists are pursued as therapeutics. In this study we explored the feasibility of blocking TRPM8 activation with antibodies. We report the functional characterization of a rabbit polyclonal antibody, ACC-049, directed against the third extracellular loop near the pore region of the human TRPM8 channel. ACC-049 acted as a full antagonist at recombinantly expressed human and rodent TRPM8 channels in cell based agonist-induced 45Ca2+ uptake assays. Further, several poly-and monoclonal antibodies that recognize the same region also blocked icilin activation of not only recombinantly expressed TRPM8, but also endogenous TRPM8 expressed in rat dorsal root ganglion neurons revealing the feasibility of generating monoclonal antibody antagonists. We conclude that antagonist antibodies are valuable tools to investigate TRPM8 function and may ultimately pave the way for development of therapeutic antibodies.

  8. A radiologic study on the urinary bladder following dorsal and ...

    African Journals Online (AJOL)

    Pneumocystography and positive contrast cystography using solutrast® were carried out immediately after surgery and on the second operative day following dorsal and ventral cystotomy in 22 adult mongrel dogs. In all the radiographs, there was no contrast observed in the abdominal cavity and the apex of the bladder had ...

  9. Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak visuospatial coherence?

    Science.gov (United States)

    Pellicano, Elizabeth; Gibson, Lisa; Maybery, Murray; Durkin, Kevin; Badcock, David R

    2005-01-01

    Frith and Happe (Frith, U., & Happe, F. (1994). Autism: Beyond theory of mind. Cognition, 50, 115-132) argue that individuals with autism exhibit 'weak central coherence': an inability to integrate elements of information into coherent wholes. Some authors have speculated that a high-level impairment might be present in the dorsal visual pathway in autism, and furthermore, that this might account for weak central coherence, at least at the visuospatial level. We assessed the integrity of the dorsal visual pathway in children diagnosed with an autism spectrum disorder (ASD), and in typically developing children, using two visual tasks, one examining functioning at higher levels of the dorsal cortical stream (Global Dot Motion (GDM)), and the other assessing lower-level dorsal stream functioning (Flicker Contrast Sensitivity (FCS)). Central coherence was tested using the Children's Embedded Figures Test (CEFT). Relative to the typically developing children, the children with ASD had shorter CEFT latencies and higher GDM thresholds but equivalent FCS thresholds. Additionally, CEFT latencies were inversely related to GDM thresholds in the ASD group. These outcomes indicate that the elevated global motion thresholds in autism are the result of high-level impairments in dorsal cortical regions. Weak visuospatial coherence in autism may be in the form of abnormal cooperative mechanisms in extra-striate cortical areas, which might contribute to differential performance when processing stimuli as Gestalts, including both dynamic (i.e., global motion perception) and static (i.e., disembedding performance) stimuli.

  10. Functional reorganization of human motor cortex after unaffected side C7 nerve root transposition

    International Nuclear Information System (INIS)

    Gao Gejun; Feng Xiaoyuan; Xu Wendong; Gu Yudong; Tang Weijun; Sun Guixin; Li Ke; Li Yuan; Geng Daoying

    2006-01-01

    Objective: To assess the characteristics of neuronal activity in human motor cortex after the seventh cervical nerve root transposition of the unaffected side by using functional MRI (fMRI). Methods: Thirteen patients who accepted the seventh cervical nerve root transposition of the unaffected side, due to total brachial plexus traction injury diagnosed by manifestation and operation, were examined retrospectively by using fMRI. 10 patients were injured on the left side and 3 on the right side. According to functional recovery of the affected hand, all subjects can be divided into 2 groups. The patients of the first group could not move the affected hand voluntarily. The patients of the second group could move the affected hand self-determined. 12 healthy volunteer's were also involved in this study as control. The fMRI examinations were performed by using echo-planer BOLD sequence. Then the SPM 99 software was used for post-processing. Results: The neuronal activation induced by the movement of both unaffected and affected upper' limb was seen in the contralateral PMC in all patients; Neuronal activation in the ipsilateral PMC evoked by movement of the unaffected extremity was seen in 10 cases, and induced by movement of the affected limb was seen in 7 cases. In the first group, the sharp of clusters in the contralateral PMC resulted by movement of the unaffected extremity showed normal in 9 eases, the average size of clusters resulted by the unaffected hand was 3159 (voxel), and resulted by the unaffected shoulder was 1746(voxel). The sharp of clusters in the contralateral PMC resulted by the affected shoulder or hand were revealed enlargement in 6 cases of each. In the second group, 1 case showed neuronal activation induced by movement of the affected limb in the PMC in both sides of motor cortex, and 2 cases showed neuronal activation in the contralateral PMC. Conclusions: Peripheral nerve injury was able to cause changes of motor cortex in human brain

  11. Is freedom rooted in the brain?

    Directory of Open Access Journals (Sweden)

    Jesús Conill Sancho

    2017-08-01

    Full Text Available This article first of all attempts to provide a new concept of human nature, beyond that of traditional metaphysics and the naturalistic interpretation of today’s neurosciences; it thus surpasses the unilateral scientistic appropriation of the concept of human nature and defends a biohermeneutics containing a plurality of standpoints for understanding human reality, as in Habermasian epistemic dualism. It secondly examines whether freedom is rooted in the brain in the sense of «free will» and of «autonomy», taking into account the stance of accredited neurologists and the study of natural dispositions in the Kantian notion of moral autonomy.

  12. A double dissociation of dorsal and ventral hippocampal function on a learning and memory task mediated by the dorso-lateral striatum.

    Science.gov (United States)

    McDonald, Robert J; Jones, Jana; Richards, Blake; Hong, Nancy S

    2006-09-01

    The objectives of this research were to further delineate the neural circuits subserving proposed memory-based behavioural subsystems in the hippocampal formation. These studies were guided by anatomical evidence showing a topographical organization of the hippocampal formation. Briefly, perpendicular to the medial/lateral entorhinal cortex division there is a second system of parallel circuits that separates the dorsal and ventral hippocampus. Recent work from this laboratory has provided evidence that the hippocampus incidentally encodes a context-specific inhibitory association during acquisition of a visual discrimination task. One question that emerges from this dataset is whether the dorsal or ventral hippocampus makes a unique contribution to this newly described function. Rats with neurotoxic lesions of the dorsal or ventral hippocampus were assessed on the acquisition of the visual discrimination task. Following asymptotic performance they were given reversal training in either the same or a different context from the original training. The results showed that the context-specific inhibition effect is mediated by a circuit that includes the ventral but not the dorsal hippocampus. Results from a control procedure showed that rats with either dorso-lateral striatum damage or dorsal hippocampal lesions were impaired on a tactile/spatial discrimination. Taken together, the results represent a double dissociation of learning and memory function between the ventral and dorsal hippocampus. The formation of an incidental inhibitory association was dependent on ventral but not dorsal hippocampal circuitry, and the opposite dependence was found for the spatial component of a tactile/spatial discrimination.

  13. A preliminary study of the sensory distribution of the penile dorsal and ventral nerves: implications for effective penile block for circumcision.

    LENUS (Irish Health Repository)

    Long, Ronan M

    2012-01-31

    OBJECTIVE: To determine the sensory innervation of the penis, as regional anaesthesia is often used either for postoperative analgesia or as the sole anaesthetic technique for circumcision. Since first described in 1978 the dorsal penile nerve block has become the standard technique, but some blocks are ineffective; a better understanding of the sensory innervation of the penis might improve the efficacy of the dorsal penile block technique. PATIENTS AND METHODS: In 13 men undergoing circumcision with local anaesthetic, cutaneous sensation was tested before and after infiltration of the dorsal aspect of the penis, and then again after infiltration of the ventral aspect. The area of anaesthesia was mapped using pin-prick sensation. RESULTS: Ten of the 13 patients showed a similar pattern of sensory distribution. After the dorsal block, the dorsal aspect of the shaft of the penis and glans penis became insensate. The ventral aspect of the shaft remained sensate up to and including the frenulum. After successful ventral infiltration all sensate areas became insensate and circumcision proceeded. In one case the frenulum and distal ventral foreskin was anaesthetized after the dorsal block and ventral infiltration was not required. No patient experienced pain during circumcision. CONCLUSION: For consistently successful regional anaesthesia of the foreskin in circumcision, a dorsal block must be used. This should be combined with ventral infiltration at the site of incision. This method will avoid inconsistencies and allow pain-free circumcision using local anaesthesia in most men.

  14. SCANNING ELECTRON MICROSCOPY STUDY OF THE DORSAL SURFACE OF THE TONGUE IN Chaetophractus vellerosus (MAMMALIA, DASYPODIDAE)

    OpenAIRE

    Estecondo, Silvia; Codón, Stella Maris; Casanave, Emma Beatriz

    2001-01-01

    The characteristics of the dorsal surface of Chaetophractus vellerosus tongue were studied by scanning electron microscopy. Simple or branched filiform, fungiform and vallate papillae are described. Simple conical filiform papillae appear in the apex, lateral edges and posterior third, caudally to the circumvallated ones. The branched papillae are densely distributed all over the dorsal surface of the lingual body. Fungiform ones are scattered among the branched filiform papillae. In the post...

  15. Age-related reduction in microcolumnar structure correlates with cognitive decline in ventral but not dorsal area 46 of the rhesus monkey.

    Science.gov (United States)

    Cruz, L; Roe, D L; Urbanc, B; Inglis, A; Stanley, H E; Rosene, D L

    2009-02-18

    The age-related decline in cognitive function that is observed in normal aging monkeys and humans occurs without significant loss of cortical neurons. This suggests that cognitive impairment results from subtle, sub-lethal changes in the cortex. Recently, changes in the structural coherence in mini- or microcolumns without loss of neurons have been linked to loss of function. Here we use a density map method to quantify microcolumnar structure in both banks of the sulcus principalis (prefrontal cortical area 46) of 16 (ventral) and 19 (dorsal) behaviorally tested female rhesus monkeys from 6 to 33 years of age. While total neuronal density does not change with age in either of these banks, there is a significant age-related reduction in the strength of microcolumns in both regions on the order of 40%. This likely reflects a subtle but definite loss of organization in the structure of the cortical microcolumn. The reduction in strength in ventral area 46 correlates with cognitive impairments in learning and memory while the reduction in dorsal area 46 does not. This result is congruent with published data attributing cognitive functions to ventral area 46 that are similar to our particular cognitive battery which does not optimally tap cognitive functions attributed to dorsal area 46. While the exact mechanisms underlying this loss of microcolumnar organization remain to be determined, it is plausible that they reflect age-related alterations in dendritic and/or axonal organization which alter connectivity and may contribute to age-related declines in cognitive performance.

  16. The linguistic roots of Modern English anatomical terminology.

    Science.gov (United States)

    Turmezei, Tom D

    2012-11-01

    Previous research focusing on Classical Latin and Greek roots has shown that understanding the etymology of English anatomical terms may be beneficial for students of human anatomy. However, not all anatomical terms are derived from Classical origins. This study aims to explore the linguistic roots of the Modern English terminology used in human gross anatomy. By reference to the Oxford English Dictionary, etymologies were determined for a lexicon of 798 Modern English gross anatomical terms from the 40(th) edition of Gray's Anatomy. Earliest traceable language of origin was determined for all 798 terms; language of acquisition was determined for 747 terms. Earliest traceable languages of origin were: Classical Latin (62%), Classical Greek (24%), Old English (7%), Post-Classical Latin (3%), and other (4%). Languages of acquisition were: Classical Latin (42%), Post-Classical Latin (29%), Old English (8%), Modern French (6%), Classical Greek (5%), Middle English (3%), and other (7%). While the roots of Modern English anatomical terminology mostly lie in Classical languages (accounting for the origin of 86% of terms), the anatomical lexicon of Modern English is actually much more diverse. Interesting and perhaps less familiar examples from these languages and the methods by which such terms have been created and absorbed are discussed. The author suggests that awareness of anatomical etymologies may enhance the enjoyment and understanding of human anatomy for students and teachers alike. Copyright © 2012 Wiley Periodicals, Inc.

  17. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in res...

  18. OpenSimRoot: widening the scope and application of root architectural models.

    Science.gov (United States)

    Postma, Johannes A; Kuppe, Christian; Owen, Markus R; Mellor, Nathan; Griffiths, Marcus; Bennett, Malcolm J; Lynch, Jonathan P; Watt, Michelle

    2017-08-01

    OpenSimRoot is an open-source, functional-structural plant model and mathematical description of root growth and function. We describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the plant science community. OpenSimRoot is an extended version of SimRoot, established to simulate root system architecture, nutrient acquisition and plant growth. OpenSimRoot has a plugin, modular infrastructure, coupling single plant and crop stands to soil nutrient and water transport models. It estimates the value of root traits for water and nutrient acquisition in environments and plant species. The flexible OpenSimRoot design allows upscaling from root anatomy to plant community to estimate the following: resource costs of developmental and anatomical traits; trait synergisms; and (interspecies) root competition. OpenSimRoot can model three-dimensional images from magnetic resonance imaging (MRI) and X-ray computed tomography (CT) of roots in soil. New modules include: soil water-dependent water uptake and xylem flow; tiller formation; evapotranspiration; simultaneous simulation of mobile solutes; mesh refinement; and root growth plasticity. OpenSimRoot integrates plant phenotypic data with environmental metadata to support experimental designs and to gain a mechanistic understanding at system scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Re-thinking the role of the dorsal striatum in egocentric/response strategy.

    Science.gov (United States)

    Botreau, Fanny; Gisquet-Verrier, Pascale

    2010-01-01

    Rats trained in a dual-solution cross-maze task, which can be solved by place and response strategies, predominantly used a response strategy after extensive training. This paper examines the involvement of the medial and lateral dorsal striatum (mDS and lDS) in the choice of these strategies after partial and extensive training. Our results show that rats with lDS and mDS lesions used mainly a response strategy from the early phase of training. We replicated these unexpected data in rats with lDS lesions and confirmed their tendency to use the response strategy in a modified cross-maze task. When trained in a dual-solution water-maze task, however, control and lesioned rats consistently used a place strategy, demonstrating that lDS and mDS lesioned rats can use a place strategy and that the shift towards a response strategy did not systematically result from extensive training. The present data did not show any clear dissociation between the mDS and lDS in dual solution tasks. They further indicate that the dorsal striatum seems to determine the strategies adopted in a particular context but cannot be considered as a neural support for the response memory system. Accordingly, the role of the lateral and medial part of the dorsal striatum in egocentric/response memory should be reconsidered.

  20. The brain's dorsal route for speech represents word meaning: evidence from gesture.

    Science.gov (United States)

    Josse, Goulven; Joseph, Sabine; Bertasi, Eric; Giraud, Anne-Lise

    2012-01-01

    The dual-route model of speech processing includes a dorsal stream that maps auditory to motor features at the sublexical level rather than at the lexico-semantic level. However, the literature on gesture is an invitation to revise this model because it suggests that the premotor cortex of the dorsal route is a major site of lexico-semantic interaction. Here we investigated lexico-semantic mapping using word-gesture pairs that were either congruent or incongruent. Using fMRI-adaptation in 28 subjects, we found that temporo-parietal and premotor activity during auditory processing of single action words was modulated by the prior audiovisual context in which the words had been repeated. The BOLD signal was suppressed following repetition of the auditory word alone, and further suppressed following repetition of the word accompanied by a congruent gesture (e.g. ["grasp" + grasping gesture]). Conversely, repetition suppression was not observed when the same action word was accompanied by an incongruent gesture (e.g. ["grasp" + sprinkle]). We propose a simple model to explain these results: auditory and visual information converge onto premotor cortex where it is represented in a comparable format to determine (in)congruence between speech and gesture. This ability of the dorsal route to detect audiovisual semantic (in)congruence suggests that its function is not restricted to the sublexical level.