WorldWideScience

Sample records for human dna methyltransferase

  1. Properties of human O/sup 6/-methylguanine-DNA methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Boulden, A.M.; Foote, R.S.; Mitra, S.

    1987-05-01

    The premutagenic base, O/sup 6/-methylguanine, is repaired in the DNA of both bacterial and mammalian cells by stoichiometric transfer of the methyl group to a protein cysteine residue. The human O/sup 6/-methylguanine-DNA methyltransferase has been extensively purified from placenta and partially characterized with respect to reaction kinetics, pH and temperature dependencies, and the effects of salt, metal ions, and DNA concentration. The methyl-transfer reaction has apparent second-order kinetics and an energy of activation, calculated from temperature-dependence studies, of approximately 18 kcal. The reaction rate is optimal at a pH of about 8.5. Chromatofocusing experiments indicate a pI of 6.2 for the methyltransferase. Like the E. coli and rodent methyltransferases, the human protein has no cofactor requirements. The reaction is significantly inhibited by physiological concentrations of NaCl. Both single- and double-stranded DNA also inhibit the reaction, presumably by nonspecific binding of the protein. Changes in the human methyltransferase due to its reaction with O/sup 6/-methylguanine were examined by chromatofocusing and binding to DNA-cellulose. The results were compared with those obtained in parallel experiments using purified methyltransferase from E. coli.

  2. Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis

    OpenAIRE

    Saito, Yoshimasa; Kanai, Yae; Sakamoto, Michiie; Saito, Hidetsugu; Ishii, Hiromasa; Hirohashi, Setsuo

    2002-01-01

    DNA hypomethylation on pericentromeric satellite regions is an early and frequent event associated with heterochromatin instability during human hepatocarcinogenesis. A DNA methyltransferase, DNMT3b, is required for methylation on pericentromeric satellite regions during mouse development. To clarify the molecular mechanism underlying DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis, we examined mutations of the DNMT3b gene and mRNA expression levels ...

  3. ANTITUMOR EFFECT OF SARCNU IN A 06-METHYLGUANINE-DNA METHYLTRANSFERASE POSITIVE HUMAN GLIOMA XENOGRAFT MODEL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To assess whether novel analogue of nitrosoureas, 2-chloroethyl-3-sarcosinamide-1-nitrosourea (SarCNU), has antitumor effect to 06-methylguanine-DNA methyltransferase (MGMT) positive tumors in vivo. Methods: MGMT positive human glioma cell line SF-767 xenografts in nude mice were treated with SarCNU. The antitumor efficacy of SarCNU was compared with the results of 1, 3-bis(2-chloroethyl)-1-nitrosourea (BCNU) treatment with or without 06-benzylguanine (06-BG) preadministration. Results: Since the SF-767 is MGMT strongly positive, BCNU treatment alone did not result in a satisfactory anticancer effect. As expected, 06-BG by depleting MGMT activity, significantly enhanced BCNU antitumor efficacy (p<0.001). More interestingly, SarCNU treatment alone had a better antitumor effect than 06-BG plus BCNU treatment (F=51.7, p=0.00036). Conclusion: Since SarCNU enters cells via extraneuronal monoamine transporter (EMT), the enhanced antitumor activity of SarCNU in this MGMT positive human tumor xenograft model may be due to the presence of EMT in SF-767.SarCNU may be used as an alternative treatment for MGMT positive tumors, specifically for tumors expressing EMT.

  4. Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis.

    Science.gov (United States)

    Saito, Yoshimasa; Kanai, Yae; Sakamoto, Michiie; Saito, Hidetsugu; Ishii, Hiromasa; Hirohashi, Setsuo

    2002-07-23

    DNA hypomethylation on pericentromeric satellite regions is an early and frequent event associated with heterochromatin instability during human hepatocarcinogenesis. A DNA methyltransferase, DNMT3b, is required for methylation on pericentromeric satellite regions during mouse development. To clarify the molecular mechanism underlying DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis, we examined mutations of the DNMT3b gene and mRNA expression levels of splice variants of DNMT3b in noncancerous liver tissues showing chronic hepatitis and cirrhosis, which are considered to be precancerous conditions, and in hepatocellular carcinomas (HCCs). Mutation of the DNMT3b gene was not found in HCCs. Overexpression of DNMT3b4, a splice variant of DNMT3b lacking conserved methyltransferase motifs IX and X, significantly correlated with DNA hypomethylation on pericentromeric satellite regions in precancerous conditions and HCCs (P = 0.0001). In particular, the ratio of expression of DNMT3b4 to that of DNMT3b3, which is the major splice variant in normal liver tissues and retains conserved methyltransferase motifs I, IV, VI, IX, and X, showed significant correlation with DNA hypomethylation (P = 0.009). Transfection of human epithelial 293 cells with DNMT3b4 cDNA induced DNA demethylation on satellite 2 in pericentromeric heterochromatin DNA. These results suggest that overexpression of DNMT3b4, which may lack DNA methyltransferase activity and compete with DNMT3b3 for targeting to pericentromeric satellite regions, results in DNA hypomethylation on these regions, even in precancerous stages, and plays a critical role in human hepatocarcinogenesis by inducing chromosomal instability.

  5. The expression of O(6) -methylguanine-DNA methyltransferase in human oral keratinocytes stimulated with arecoline.

    Science.gov (United States)

    Lee, Shiuan-Shinn; Tsai, Chung-Hung; Yu, Cheng-Chia; Ho, Yung-Chuan; Hsu, Hsin-I; Chang, Yu-Chao

    2013-09-01

    O(6) -methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that can protect cells from carcinogenic effects of alkylating agents by removing adducts from the O(6) position of guanine. Evidences indicated that areca quid chewing may increase the risk of oral squamous cell carcinoma (OSCC). This study was to investigate the role of MGMT expression in OSCCs and the normal oral tissues. Thirty-two OSCCs from areca quid chewers and ten normal oral tissue biopsy samples without areca quid chewing were analyzed by the immunohistochemistry for MGMT. Primary human oral keratinocytes (HOKs) were challenged with arecoline, the major alkaloid of areca nut, by Western blot. Nicotine, an important component of cigarette smoke, was added to find the possible regulatory mechanisms. Significant association was observed between low MGMT expression and advanced clinical stage of OSCCs and lymph node metastasis (P = 0.03). MGMT expression was significantly higher in patients only chewing areca quid than patients both chewing areca quid and smoking (P = 0.028). Arecoline was found to elevate MGMT expression in a dose- and time-dependent manner. The addition of nicotine was found to enhance arecoline-induced MGMT expression. Our results indicate that MGMT could be used clinically as a predictive marker for tumor processing, the potential for lymph node metastasis as well as advanced clinical stage. MGMT expression was significantly upregulated by arecoline in HOKs. Nicotine has a synergistic effect of arecoline-induced MGMT expression. The cigarette smoking may act synergistically in the pathogenesis of OSCC in areca quid chewers via the upregulation of MGMT. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Human DNA (cytosine-5)-methyltransferases: a functional and structural perspective for epigenetic cancer therapy.

    Science.gov (United States)

    Rondelet, Grégoire; Wouters, Johan

    2017-08-01

    Epigenetic modifications modulate chromatin states to regulate gene expression. Among them, DNA methylation and histone modifications play a crucial role in the establishment of the epigenome. In cancer, these epigenetic events may act in concert to repress tumor suppressor genes or promote oncogenic pathways. In the context of cancer initiation and progression, recruitment of DNA (cytosine-5)-methyltransferases to specific genomic regions is mainly mediated by histone epigenetic marks, transcription factors and co-regulators as part of a dynamic process. Herein, we will review these mechanisms and present state-of-the-art of DNA methylation, treatment and development of epigenetic cancer therapies targeting this epigenetic modification. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. Human intelligence and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking.

    Directory of Open Access Journals (Sweden)

    Paul Haggarty

    Full Text Available Epigenetic mechanisms have been implicated in syndromes associated with mental impairment but little is known about the role of epigenetics in determining the normal variation in human intelligence. We measured polymorphisms in four DNA methyltransferases (DNMT1, DNMT3A, DNMT3B and DNMT3L involved in epigenetic marking and related these to childhood and adult general intelligence in a population (n = 1542 consisting of two Scottish cohorts born in 1936 and residing in Lothian (n = 1075 or Aberdeen (n = 467. All subjects had taken the same test of intelligence at age 11yrs. The Lothian cohort took the test again at age 70yrs. The minor T allele of DNMT3L SNP 11330C>T (rs7354779 allele was associated with a higher standardised childhood intelligence score; greatest effect in the dominant analysis but also significant in the additive model (coefficient = 1.40(additive; 95%CI 0.22,2.59; p = 0.020 and 1.99(dominant; 95%CI 0.55,3.43; p = 0.007. The DNMT3L C allele was associated with an increased risk of being below average intelligence (OR 1.25(additive; 95%CI 1.05,1.51; p = 0.011 and OR 1.37(dominant; 95%CI 1.11,1.68; p = 0.003, and being in the lowest 40(th (p(additive = 0.009; p(dominant = 0.002 and lowest 30(th (p(additive = 0.004; p(dominant = 0.002 centiles for intelligence. After Bonferroni correction for the number variants tested the link between DNMT3L 11330C>T and childhood intelligence remained significant by linear regression and centile analysis; only the additive regression model was borderline significant. Adult intelligence was similarly linked to the DNMT3L variant but this analysis was limited by the numbers studied and nature of the test and the association was not significant after Bonferroni correction. We believe that the role of epigenetics in the normal variation in human intelligence merits further study and that this novel finding should be tested in other cohorts.

  8. Human intelligence and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking.

    Science.gov (United States)

    Haggarty, Paul; Hoad, Gwen; Harris, Sarah E; Starr, John M; Fox, Helen C; Deary, Ian J; Whalley, Lawrence J

    2010-06-25

    Epigenetic mechanisms have been implicated in syndromes associated with mental impairment but little is known about the role of epigenetics in determining the normal variation in human intelligence. We measured polymorphisms in four DNA methyltransferases (DNMT1, DNMT3A, DNMT3B and DNMT3L) involved in epigenetic marking and related these to childhood and adult general intelligence in a population (n = 1542) consisting of two Scottish cohorts born in 1936 and residing in Lothian (n = 1075) or Aberdeen (n = 467). All subjects had taken the same test of intelligence at age 11yrs. The Lothian cohort took the test again at age 70yrs. The minor T allele of DNMT3L SNP 11330C>T (rs7354779) allele was associated with a higher standardised childhood intelligence score; greatest effect in the dominant analysis but also significant in the additive model (coefficient = 1.40(additive); 95%CI 0.22,2.59; p = 0.020 and 1.99(dominant); 95%CI 0.55,3.43; p = 0.007). The DNMT3L C allele was associated with an increased risk of being below average intelligence (OR 1.25(additive); 95%CI 1.05,1.51; p = 0.011 and OR 1.37(dominant); 95%CI 1.11,1.68; p = 0.003), and being in the lowest 40(th) (p(additive) = 0.009; p(dominant) = 0.002) and lowest 30(th) (p(additive) = 0.004; p(dominant) = 0.002) centiles for intelligence. After Bonferroni correction for the number variants tested the link between DNMT3L 11330C>T and childhood intelligence remained significant by linear regression and centile analysis; only the additive regression model was borderline significant. Adult intelligence was similarly linked to the DNMT3L variant but this analysis was limited by the numbers studied and nature of the test and the association was not significant after Bonferroni correction. We believe that the role of epigenetics in the normal variation in human intelligence merits further study and that this novel finding should be tested in other cohorts.

  9. Enzymology of Mammalian DNA Methyltransferases.

    Science.gov (United States)

    Jurkowska, Renata Z; Jeltsch, Albert

    2016-01-01

    DNA methylation is currently one of the hottest topics in basic and biomedical research. Despite tremendous progress in understanding the structures and biochemical properties of the mammalian DNA nucleotide methyltransferases (DNMTs), principles of their regulation in cells have only begun to be uncovered. In mammals, DNA methylation is introduced by the DNMT1, DNMT3A, and DNMT3B enzymes, which are all large multi-domain proteins. These enzymes contain a catalytic C-terminal domain with a characteristic cytosine-C5 methyltransferase fold and an N-terminal part with different domains that interacts with other proteins and chromatin and is involved in targeting and regulation of the DNMTs. The subnuclear localization of the DNMT enzymes plays an important role in their biological function: DNMT1 is localized to replicating DNA via interaction with PCNA and UHRF1. DNMT3 enzymes bind to heterochromatin via protein multimerization and are targeted to chromatin by their ADD and PWWP domains. Recently, a novel regulatory mechanism has been discovered in DNMTs, as latest structural and functional data demonstrated that the catalytic activities of all three enzymes are under tight allosteric control of their N-terminal domains having autoinhibitory functions. This mechanism provides numerous possibilities for the precise regulation of the methyltransferases via controlling the binding and release of autoinhibitory domains by protein factors, noncoding RNAs, or by posttranslational modifications of the DNMTs. In this chapter, we summarize key enzymatic properties of DNMTs, including their specificity and processivity, and afterward we focus on the regulation of their activity and targeting via allosteric processes, protein interactors, and posttranslational modifications.

  10. Histone deacetylase inhibitors inducing human cervical cancer cell apoptosis by decreasing DNA-methyltransferase 3B

    Institute of Scientific and Technical Information of China (English)

    LIU Ning; ZHAO Li-jun; LI Xiao-ping; WANG Jian-liu; CHAI Guo-lin; WEI Li-hui

    2012-01-01

    Background Histone deacetylase (HDAC) inhibitors are a group of small chemical molecules that inhibit histone deacetylase.At cell level,HDAC inhibitors have multiple biological effects such as cell cycle arrest,apoptosis,cell differentiation and auotophagy.At molecular level,HDAC inhibitors cause histone and nonhistone acetylation and induce gene expression.HDAC inhibitors are widely used in cancer therapy because of its function of inducing apoptosis.However,the mechanisms of apoptosis effect are not fully understood.TSA is a classical HDAC inhibitor and widely used in epigenetic and anti-cancer research.In this study,we selected Trichostatin A (TSA) to investigate the mechanisms of HDAC inhibitors apoptotic effect on cancer cells.Methods Cervical cancer cell lines such as Hela,Caski and normal human keratinocyte line HaCaT were treated with various concentrations of TSA.Crystal violent assay and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were performed to determine cell number.PARP cleavage and FITC-AnexinV were performed to determine apoptosis.DNA-methyltransferase (DNMT)1,DNMT3A and DNMT3B were determined by regular PCR,qPCR and Western Blotting.Small interfering RNA (SiRNAi) was used to knock down DNMT3B.Results HDAC inhibitors only induce cervical cancer cell apoptosis.At 1 μmol/L of TSA,86% of Hela cell and 76% of Caski went apoptosis.For normal cells,HDAC inhibitors have no cytotoxic effect at therapeutic dosage,(90.0±8.4)% of normal cell survive after treated with 1 μmol/L of TSA.We compared 1 μmol/L group with untreated control with t-test.There was no significance between 1 μmol/L group and untreated control for normal cell (P >0.05).HDAC inhibitors decreased DNMT3B in cancer cell but not in normal cell.Manually knock-down of DNMT3B induced Hela and Caski cell apoptosis.More than 99% of Hela and Caski cell went apoptosis after deprived of DNMT3B.Conclusions DNMT3B was essential to cervical cancer cell survival

  11. DNA methylation-mediated down-regulation of DNA methyltransferase-1 (DNMT1) is coincident with, but not essential for, global hypomethylation in human placenta.

    Science.gov (United States)

    Novakovic, Boris; Wong, Nick C; Sibson, Mandy; Ng, Hong-Kiat; Morley, Ruth; Manuelpillai, Ursula; Down, Thomas; Rakyan, Vardhman K; Beck, Stephan; Hiendleder, Stefan; Roberts, Claire T; Craig, Jeffrey M; Saffery, Richard

    2010-03-26

    The genome of extraembryonic tissue, such as the placenta, is hypomethylated relative to that in somatic tissues. However, the origin and role of this hypomethylation remains unclear. The DNA methyltransferases DNMT1, -3A, and -3B are the primary mediators of the establishment and maintenance of DNA methylation in mammals. In this study, we investigated promoter methylation-mediated epigenetic down-regulation of DNMT genes as a potential regulator of global methylation levels in placental tissue. Although DNMT3A and -3B promoters lack methylation in all somatic and extraembryonic tissues tested, we found specific hypermethylation of the maintenance DNA methyltransferase (DNMT1) gene and found hypomethylation of the DNMT3L gene in full term and first trimester placental tissues. Bisulfite DNA sequencing revealed monoallelic methylation of DNMT1, with no evidence of imprinting (parent of origin effect). In vitro reporter experiments confirmed that DNMT1 promoter methylation attenuates transcriptional activity in trophoblast cells. However, global hypomethylation in the absence of DNMT1 down-regulation is apparent in non-primate placentas and in vitro derived human cytotrophoblast stem cells, suggesting that DNMT1 down-regulation is not an absolute requirement for genomic hypomethylation in all instances. These data represent the first demonstration of methylation-mediated regulation of the DNMT1 gene in any system and demonstrate that the unique epigenome of the human placenta includes down-regulation of DNMT1 with concomitant hypomethylation of the DNMT3L gene. This strongly implicates epigenetic regulation of the DNMT gene family in the establishment of the unique epigenetic profile of extraembryonic tissue in humans.

  12. Human DNA methyltransferase gene-transformed yeasts display an inducible flocculation inhibited by 5-aza-2'-deoxycytidine.

    Science.gov (United States)

    Sugiyama, Kei-Ichi; Takamune, Makiko; Furusawa, Hiroko; Honma, Masamitsu

    2015-01-09

    Mammalian DNA methyltransferases (DNMTs) play an important role in establishing and maintaining the proper regulation of epigenetic information. However, it remains unclear whether mammalian DNMTs can be functionally expressed in yeasts, which probably lack endogenous DNMTs. We cotransformed the budding yeast Saccharomyces cerevisiae with the human DNMT1 gene, which encodes a methylation maintenance enzyme, and the DNMT3A/3B genes, which encode de novo methylation enzymes, in an expression vector also containing the GAL1 promoter, which is induced by galactose, and examined the effects of the DNMT inhibitor 5-aza-2'-deoxycytidine (5AZ) on cell growth. Transformed yeast strains grown in galactose- and glucose-containing media showed growth inhibition, and their growth rate was unaffected by 5AZ. Conversely, 5AZ, but not 2'-deoxycytidine, dose-dependently interfered with the flocculation exhibited by DNMT-gene transformants grown in glucose-containing medium. Further investigation of the properties of this flocculation indicated that it may be dependent on the expression of a Flocculin-encoding gene, FLO1. Taken together, these findings suggest that DNMT-gene transformed yeast strains functionally express these enzymes and represent a useful tool for in vivo screening for DNMT inhibitors.

  13. Influence of fatty acid synthase inhibitor orlistat on the DNA repair enzyme O6-methylguanine-DNA methyltransferase in human normal or malignant cells in vitro.

    Science.gov (United States)

    Cioccoloni, Giorgia; Bonmassar, Laura; Pagani, Elena; Caporali, Simona; Fuggetta, Maria Pia; Bonmassar, Enzo; D'Atri, Stefania; Aquino, Angelo

    2015-08-01

    Tetrahydrolipstatin (orlistat), an inhibitor of lipases and fatty acid synthase, is used orally for long-term treatment of obesity. Although the drug possesses striking antitumor activities in vitro against human cancer cells and in vitro and in vivo against animal tumors, it also induces precancerous lesions in rat colon. Therefore, we tested the in vitro effect of orlistat on the expression of O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme that plays an essential role in the control of mutagenesis and carcinogenesis. Western blot analysis demonstrated that 2-day continuous exposure to 40 µM orlistat did not affect MGMT levels in a human melanoma cell line, but downregulated the repair protein by 30-70% in human peripheral blood mononuclear cells, in two leukemia and two colon cancer cell lines. On the other hand, orlistat did not alter noticeably MGMT mRNA expression. Differently from lomeguatrib (a false substrate, strong inhibitor of MGMT) orlistat did not reduce substantially MGMT function after 2-h exposure of target cells to the agent, suggesting that this drug is not a competitive inhibitor of the repair protein. Combined treatment with orlistat and lomeguatrib showed additive reduction of MGMT levels. More importantly, orlistat-mediated downregulation of MGMT protein expression was markedly amplified when the drug was combined with a DNA methylating agent endowed with carcinogenic properties such as temozolomide. In conclusion, even if orlistat is scarcely absorbed by oral route, it is possible that this drug could reduce local MGMT-mediated protection against DNA damage provoked by DNA methylating compounds on gastrointestinal tract epithelial cells, thus favoring chemical carcinogenesis.

  14. Sensitive Electrochemical Detection of Human Methyltransferase Based on a Dual Signal Amplification Strategy Coupling Gold Nanoparticle-DNA Complexes with Ru(III) Redox Recycling.

    Science.gov (United States)

    Zhang, Hui; Dong, Huilei; Yang, Guoqing; Chen, Hongfei; Cai, Chenxin

    2016-11-15

    Effective detection of DNA methyltransferase (DNMT) activity is significant for cancer research. Herein, we developed a sensitive electroanalytical method to detect human DNA (cytosine-5)-methyltransferase 1 (DNMT1) from crude lysates of cancer cells. In this assay, capture DNA having a preferred DNMT1 methylation site was immobilized on a gold electrode and then hybridized with gold nanoparticle (Au NP)-DNA complexes. The modified electrodes were equilibrated with the lysate and then incubated with methylation-sensitive restriction enzyme. If the lysate was negative for DNMT1 activity, the Au NP-DNA complexes would be cut by the restriction enzyme and released from the electrode. Conversely, restriction enzyme cleavage would be blocked by the fully methylated duplexes, and the Au NP-DNA complexes would remain on the electrode. Electroactive Ru(NH3)6(3+) was used as the signal reporter, because of its electrostatic attraction to DNA, resulting in an electrochemical signal. Since the electrochemical signal reflects the amount of Ru(III) redox and the amount of Ru(III) redox is correlated with the activity of DNMT1, the activity of DNMT1 is proportional to the electrochemical signal. The signal could be amplified by the numerous DNAs on the Au NPs and further amplified by Ru(III) redox recycling. With this method, a detection limit down to 0.3 U/mL for pure DNMT1 and 8 MCF-7 cells was achieved. DNMT1 activities of different cell lines were also successfully evaluated.

  15. DNA methyltransferases as targets for cancer therapy.

    Science.gov (United States)

    Ghoshal, Kalpana; Bai, Shoumei

    2007-06-01

    Methylation of DNA at 5-position of cytosine, catalyzed by DNA methyltransferases, is the predominant epigenetic modification in mammals. Aberrations in methylation play a causal role in a variety of diseases, including cancer. Recent studies have established that like mutation, methylation-mediated gene silencing often leads to tumorigenesis. Paradoxically, genome-wide DNA hypomethylation may also play a causal role in carcinogenesis by inducing chromosomal instability and spurious gene expression. Since methylation does not alter DNA base sequence, much attention has been focused recently on developing small molecule inhibitors of DNA methyltransferases that can potentially be used as anticancer agents. Vidaza (5-azacytidine), marketed by Pharmion (Boulder, CO, USA), was the first DNA methyltransferase inhibitor approved by the U.S. Food and Drug Administration (FDA) for chemotherapy against myelodysplastic syndrome (MDS), a heterogeneous bone marrow disorder. Recently MGI Pharma Inc. (Bloomington, MN, USA) got FDA approval to market Dacogen (5-aza-2'-deoxycytidine, or decitabine) for treating MDS patients. These drugs were used earlier against certain anemias to induce expression of fetal globin genes. Interest in clinical trials of these drugs as anticancer agents has been renewed only recently because of reversal of methylation-mediated silencing of critical genes in cancer. Clinical trials have shown that both drugs have therapeutic potential against leukemia such as MDS, acute myeloid leukemia, chronic myelogenous leukemia and chronic myelomonocytic leukemia. In contrast, their effectiveness with solid tumors appears to be less promising, which challenges researchers to develop inhibitors with more efficacy and less toxicity. The major hindrance of their usage as anticancer agents is their instability in vivo as well as the toxicity secondary to their excessive incorporation into DNA, which causes cell cycle arrest. Gene expression profiling in cancer cells

  16. IN VITRO STUDY ON THE CLONING AND TRANSDUCTION OF HUMAN O6-METHYLGUANINE-DNA-METHYLTRANSFERASE CDNA INTO HUMAN UMBILICAL CORD BLOOD CD34+ CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To explore whether human umbilical cord blood hematopoietic progenitor cells transduced with human O6-methylguanine-DNA-methyltransferase (MGMT) gene could increase resistance to 1,3-Bis(2-Chloroethyl)-1-Nitrosourea (BCNU). Methods: The cDNA encoding the MGMT was isolated by using RT-PCR method from total RNA of fresh human liver, the fragment was cloned into pGEM-T vector and further subcloned into G1Na retrovirus vector. Then the G1Na-MGMT was transduced into the packaging cell lines GP+E86 and PA317 by LipofectAMINE. By using the medium containing BCNU for cloning selection and ping-ponging supernatant infection between ecotropic producer clone and amphotropic producer clone, high titer amphotropic PA317 producer clone with the highest titer up to 5.8′ 105 CFU/ml was obtained. Cord blood CD34+ cells were transfected repeatedly with supernatant of retrovirus containing human MGMT-cDNA under stimulation of hemopoietic growth factors. Results: The retrovirus vector construction was verified by restriction endonuclease analysis and DNA sequencing. PCR, RT-PCR, Southern Blot, Western Blot and MTT analyses showed that MGMT drug resistance gene has been integrated into the genomic DNA of cord blood CD34+ cells and expressed efficiently. The transgene cord blood CD34+ cells conferred 4-folds stronger resistance to BCNU than untransduced cells. Conclusion: The retrovirus vector-mediated transfer of MGMT drug resistance gene into human cord blood CD34+ cells and its expression provided an experimental foundation for gene therapy in clinical trial.

  17. EXPRESSION OF THE O6-METHYLGUANINE-DNA METHYLTRANSFERASE GENE IN EIGHT HUMAN TUMOR CELL LINES

    Institute of Scientific and Technical Information of China (English)

    陈建敏; 章扬培; 吴英

    1994-01-01

    O6-methylguanine-DNA methltransferase(MGMT) gene expression in 6 Mer+(HeLa S3,SMMC-7721,SGC-7901,B-239,AGZY83-a,and Cc801)and 2Mer-(SHG-44,AND HeLa MR) haman tumor cell lines was examined.Southern blot analysis revealed no deletion,amplification,or rearrangement of the MGMT gene in these cell lines.However,-1.0kb transcripts were detected in the 6 Mer+ cell lines but not in the 2 Mer- cell lines by Northern blot analysis.Furthermore,a rough correlation between MGMT activity and mRNA level in these cell lines was observed.These results suggest that transcriptional regulation of the MGMT gene is the molecular basis of the absence of MGMT activity in Mer- cell lines.

  18. Novel non-specific DNA adenine methyltransferases

    Science.gov (United States)

    Drozdz, Marek; Piekarowicz, Andrzej; Bujnicki, Janusz M.; Radlinska, Monika

    2012-01-01

    The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N6-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N6-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N6-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential ‘sequence specificity’ could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation. PMID:22102579

  19. Human C6orf211 Encodes Armt1, a Protein Carboxyl Methyltransferase that Targets PCNA and Is Linked to the DNA Damage Response

    Directory of Open Access Journals (Sweden)

    J. Jefferson P. Perry

    2015-03-01

    Full Text Available Recent evidence supports the presence of an L-glutamyl methyltransferase(s in eukaryotic cells, but this enzyme class has been defined only in certain prokaryotic species. Here, we characterize the human C6orf211 gene product as “acidic residue methyltransferase-1” (Armt1, an enzyme that specifically targets proliferating cell nuclear antigen (PCNA in breast cancer cells, predominately methylating glutamate side chains. Armt1 homologs share structural similarities with the SAM-dependent methyltransferases, and negative regulation of activity by automethylation indicates a means for cellular control. Notably, shRNA-based knockdown of Armt1 expression in two breast cancer cell lines altered survival in response to genotoxic stress. Increased sensitivity to UV, adriamycin, and MMS was observed in SK-Br-3 cells, while in contrast, increased resistance to these agents was observed in MCF7 cells. Together, these results lay the foundation for defining the mechanism by which this post-translational modification operates in the DNA damage response (DDR.

  20. Development of fluorescent methods for DNA methyltransferase assay

    Science.gov (United States)

    Li, Yueying; Zou, Xiaoran; Ma, Fei; Tang, Bo; Zhang, Chun-yang

    2017-03-01

    DNA methylation modified by DNA methyltransferase (MTase) plays an important role in regulating gene transcription, cell growth and proliferation. The aberrant DNA MTase activity may lead to a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA MTase activity is crucial to biomedical research, clinical diagnostics and therapy. However, conventional DNA MTase assays often suffer from labor-intensive operations and time-consuming procedures. Alternatively, fluorescent methods have significant advantages of simplicity and high sensitivity, and have been widely applied for DNA MTase assay. In this review, we summarize the recent advances in the development of fluorescent methods for DNA MTase assay. These emerging methods include amplification-free and the amplification-assisted assays. Moreover, we discuss the challenges and future directions of this area.

  1. Improving cancer immunotherapy with DNA methyltransferase inhibitors.

    Science.gov (United States)

    Saleh, Mohammad H; Wang, Lei; Goldberg, Michael S

    2016-07-01

    Immunotherapy confers durable clinical benefit to melanoma, lung, and kidney cancer patients. Challengingly, most other solid tumors, including ovarian carcinoma, are not particularly responsive to immunotherapy, so combination with a complementary therapy may be beneficial. Recent findings suggest that epigenetic modifying drugs can prime antitumor immunity by increasing expression of tumor-associated antigens, chemokines, and activating ligands by cancer cells as well as cytokines by immune cells. This review, drawing from both preclinical and clinical data, describes some of the mechanisms of action that enable DNA methyltransferase inhibitors to facilitate the establishment of antitumor immunity.

  2. nucleoside DNA methyltransferase 1 inhibitors for treating epi ...

    African Journals Online (AJOL)

    Keywords: Epi-mutation, DNA methyltransferase, Non-nucleoside, DNMT1 inhibitor, Docking .... associated genes [18] and the effect could not be ... compound that may inhibit DNA methylation non- ... potential of which is over estimated [16];.

  3. Interactions within the mammalian DNA methyltransferase family

    Directory of Open Access Journals (Sweden)

    Ehrenhofer-Murray Ann E

    2003-05-01

    Full Text Available Abstract Background In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity. Results The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b. Conclusions The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase.

  4. Transcriptional and post-transcriptional control of DNA methyltransferase 3B is regulated by phosphatidylinositol 3 kinase/Akt pathway in human hepatocellular carcinoma cell lines.

    Science.gov (United States)

    Mei, Chuanzhong; Sun, Lidong; Liu, Yonglei; Yang, Yong; Cai, Xiumei; Liu, Mingzhu; Yao, Wantong; Wang, Can; Li, Xin; Wang, Liying; Li, Zengxia; Shi, Yinghong; Qiu, Shuangjian; Fan, Jia; Zha, Xiliang

    2010-09-01

    DNA methyltransferases (DNMTs) are essential for maintenance of aberrant methylation in cancer cells and play important roles in the development of cancers. Unregulated activation of PI3K/Akt pathway is a prominent feature of many human cancers including human hepatocellular carcinoma (HCC). In present study, we found that DNMT3B mRNA and protein levels were decreased in a dose- and time-dependent manner in HCC cell lines with LY294002 treatment. However, we detected that LY294002 treatment did not induce increase of the degradation of DNMT3B protein using protein decay assay. Moreover we found that Akt induced alteration of the expression of DNMT3B in cells transfected with myristylated variants of Akt2 or cells transfected with small interfering RNA respectively. Based on DNMT3B promoter dual-luciferase reporter assay, we found PI3K pathway regulates DNMT3B expression at transcriptional level. And DNMT3B mRNA decay analysis suggested that down-regulation of DNMT3B by LY294002 is also post-transcriptional control. Furthermore, we demonstrated that LY294002 down-regulated HuR expression in a time-dependent manner in BEL-7404. In summary, we have, for the first time, demonstrate that PI3K/Akt pathway regulates the expression of DNMT3B at transcriptional and post-transcriptional levels, which is particularly important to understand the effects of PI3K/Akt and DNMT3B on hepatocarcinogenesis.

  5. DNA Methyltransferase Inhibitor Promotes Human CD4+CD25hFOXP3+ Regulatory T Lymphocyte Induction under Suboptimal TCR Stimulation

    Directory of Open Access Journals (Sweden)

    Chun-Hao Lu

    2016-11-01

    Full Text Available The master transcription factor FOXP3 regulates the differentiation, homeostasis, and suppressor function of CD4+ regulatory T (Treg cells, which are critical in maintaining immune tolerance. Epigenetic regulation of FOXP3 expression has been demonstrated to be important to Treg cell development, but the induction of human Treg cells through epigenetic modification has not been clearly described. We report that the combination of the DNA methyltransferase inhibitor 5-azacytidine (5-Aza and suboptimal T cell receptor (TCR stimulation promoted CD4+CD25hFOXP3+ T cell induction from human CD4+CD25- T cells. 5-Aza treatment enhanced the expression of Treg cell signature genes, CD25, FOXP3, CTLA-4, and GITR, in CD4+CD25h cells. Moreover, 5-Aza-treated CD4+CD25h T cells showed potent suppressive activity in a cell contact-dependent manner and reduced methylation in the Treg-specific demethylated region (TSDR in the FOXP3 gene. The analysis of cytokine production revealed that CD4+CD25- T cells with 5-Aza treatment produced comparable levels of interferon (IFN-γ and transforming growth factor (TGF-β, but less IL-10, and more IL-2 when compared to cells without 5-Aza treatment. The increased IL-2 was indispensible to the enhanced FOXP3 expression in 5-Aza-treated CD4+CD25h cells. Finally, 5-Aza-treated CD4+CD25h T cells could be expanded with IL-2 supplementation alone and maintained FOXP3 expression and suppressor function through the expansion. Our findings demonstrate that DNA demethylation can enhance the induction of human Treg cells and promise to solve one of the challenges with using Treg cells in therapeutic approaches.

  6. Local chromatin microenvironment determines DNMT activity : from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; Venkiteswaran, Muralidhar; Chen, Hui; Xu, Guo-Liang; Plosch, Torsten; Rots, Marianne G.

    2015-01-01

    Insights on active DNA demethylation disproved the original assumption that DNA methylation is a stable epigenetic modification. Interestingly, mammalian DNA methyltransferases 3A and 3B (DNMT-3A and -3B) have also been reported to induce active DNA demethylation, in addition to their well-known fun

  7. DNA methyltransferase DNMT3A associates with viral proteins and impacts HSV-1 infection.

    Science.gov (United States)

    Rowles, Daniell L; Tsai, Yuan-Chin; Greco, Todd M; Lin, Aaron E; Li, Minghao; Yeh, Justin; Cristea, Ileana M

    2015-06-01

    Viral infections can alter the cellular epigenetic landscape, through modulation of either DNA methylation profiles or chromatin remodeling enzymes and histone modifications. These changes can act to promote viral replication or host defense. Herpes simplex virus type 1 (HSV-1) is a prominent human pathogen, which relies on interactions with host factors for efficient replication and spread. Nevertheless, the knowledge regarding its modulation of epigenetic factors remains limited. Here, we used fluorescently-labeled viruses in conjunction with immunoaffinity purification and MS to study virus-virus and virus-host protein interactions during HSV-1 infection in primary human fibroblasts. We identified interactions among viral capsid and tegument proteins, detecting phosphorylation of the capsid protein VP26 at sites within its UL37-binding domain, and an acetylation within the major capsid protein VP5. Interestingly, we found a nuclear association between viral capsid proteins and the de novo DNA methyltransferase DNA (cytosine-5)-methyltransferase 3A (DNMT3A), which we confirmed by reciprocal isolations and microscopy. We show that drug-induced inhibition of DNA methyltransferase activity, as well as siRNA- and shRNA-mediated DNMT3A knockdowns trigger reductions in virus titers. Altogether, our results highlight a functional association of viral proteins with the mammalian DNA methyltransferase machinery, pointing to DNMT3A as a host factor required for effective HSV-1 infection.

  8. DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells.

    Science.gov (United States)

    Rajabi, H; Tagde, A; Alam, M; Bouillez, A; Pitroda, S; Suzuki, Y; Kufe, D

    2016-12-15

    Aberrant expression of the DNA methyltransferases (DNMTs) and disruption of DNA methylation patterns are associated with carcinogenesis and cancer cell survival. The oncogenic MUC1-C protein is aberrantly overexpressed in diverse carcinomas; however, there is no known link between MUC1-C and DNA methylation. Our results demonstrate that MUC1-C induces the expression of DNMT1 and DNMT3b, but not DNMT3a, in breast and other carcinoma cell types. We show that MUC1-C occupies the DNMT1 and DNMT3b promoters in complexes with NF-κB p65 and drives DNMT1 and DNMT3b transcription. In this way, MUC1-C controls global DNA methylation as determined by analysis of LINE-1 repeat elements. The results further demonstrate that targeting MUC1-C downregulates DNA methylation of the CDH1 tumor suppressor gene in association with induction of E-cadherin expression. These findings provide compelling evidence that MUC1-C is of functional importance to induction of DNMT1 and DNMT3b and, in turn, changes in DNA methylation patterns in cancer cells.

  9. DNA Electrochemistry Shows DNMT1 Methyltransferase Hyperactivity in Colorectal Tumors.

    Science.gov (United States)

    Furst, Ariel L; Barton, Jacqueline K

    2015-07-23

    DNMT1, the most abundant human methyltransferase, is responsible for translating the correct methylation pattern during DNA replication, and aberrant methylation by DNMT1 has been linked to tumorigenesis. We have developed a sensitive signal-on electrochemical assay for the measurement of DNMT1 activity in crude tissue lysates. We have further analyzed ten tumor sets and have found a direct correlation between DNMT1 hyperactivity and tumorous tissue. In the majority of samples analyzed, the tumorous tissue has significantly higher DNMT1 activity than the healthy adjacent tissue. No such correlation is observed in measurements of DNMT1 expression by qPCR, DNMT1 protein abundance by western blotting, or DNMT1 activity using a radiometric DNA labeling assay. DNMT1 hyperactivity can result from both protein overexpression and enzyme hyperactivity. DNMT1 activity measured electrochemically provides a direct measure of activity in cell lysates and, as a result, provides a sensitive and early indication of cancerous transformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Antiproliferative effects of DNA methyltransferase 3B depletion are not associated with DNA demethylation.

    Directory of Open Access Journals (Sweden)

    Sabine Hagemann

    Full Text Available Silencing of genes by hypermethylation contributes to cancer progression and has been shown to occur with increased frequency at specific genomic loci. However, the precise mechanisms underlying the establishment and maintenance of aberrant methylation marks are still elusive. The de novo DNA methyltransferase 3B (DNMT3B has been suggested to play an important role in the generation of cancer-specific methylation patterns. Previous studies have shown that a reduction of DNMT3B protein levels induces antiproliferative effects in cancer cells that were attributed to the demethylation and reactivation of tumor suppressor genes. However, methylation changes have not been analyzed in detail yet. Using RNA interference we reduced DNMT3B protein levels in colon cancer cell lines. Our results confirm that depletion of DNMT3B specifically reduced the proliferation rate of DNMT3B-overexpressing colon cancer cell lines. However, genome-scale DNA methylation profiling failed to reveal methylation changes at putative DNMT3B target genes, even in the complete absence of DNMT3B. These results show that DNMT3B is dispensable for the maintenance of aberrant DNA methylation patterns in human colon cancer cells and they have important implications for the development of targeted DNA methyltransferase inhibitors as epigenetic cancer drugs.

  11. Hepatitis viruses exploitation of host DNA methyltransferases functions.

    Science.gov (United States)

    Pazienza, Valerio; Panebianco, Concetta; Andriulli, Angelo

    2016-08-01

    Hepatitis B virus (HBV), hepatitis C virus (HCV) and Delta (HDV) infections are a global health burden. With different routes of infection and biology, HBV, HCV and HDV are capable to induce liver cirrhosis and cancer by impinging on epigenetic mechanisms altering host cell's pathways. In the present manuscript, we reviewed the published studies taking into account the relationship between the hepatitis viruses and the DNA methyltransferases proteins.

  12. Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage

    Science.gov (United States)

    Srivenugopal, Kalkunte S.

    2014-01-01

    The alcohol aversion drug disulfiram (DSF) reacts and conjugates with the protein-bound nucleophilic cysteines and is known to elicit anticancer effects alone or improve the efficacy of many cancer drugs. We investigated the effects of DSF on human O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein and chemotherapy target that removes the mutagenic O6-akyl groups from guanines, and thus confers resistance to alkylating agents in brain tumors. We used DSF, copper-chelated DSF or CuCl2–DSF combination and found that all treatments inhibited the MGMT activity in two brain tumor cell lines in a rapid and dose-dependent manner. The drug treatments resulted in the loss of MGMT protein from tumor cells through the ubiquitin-proteasome pathway. Evidence showed that Cys145, a reactive cysteine, critical for DNA repair was the sole site of DSF modification in the MGMT protein. DSF was a weaker inhibitor of MGMT, compared with the established O6-benzylguanine; nevertheless, the 24–36h suppression of MGMT activity in cell cultures vastly increased the alkylation-induced DNA interstrand cross-linking, G2/M cell cycle blockade, cytotoxicity and the levels of apoptotic markers. Normal mice treated with DSF showed significantly attenuated levels of MGMT activity and protein in the liver and brain tissues. In nude mice bearing T98 glioblastoma xenografts, there was a preferential inhibition of tumor MGMT. Our studies demonstrate a strong and direct inhibition of MGMT by DSF and support the repurposing of this brain penetrating drug for glioma therapy. The findings also imply an increased risk for alkylation damage in alcoholic patients taking DSF. PMID:24193513

  13. Laccaic Acid A Is a Direct, DNA-competitive Inhibitor of DNA Methyltransferase 1*

    Science.gov (United States)

    Fagan, Rebecca L.; Cryderman, Diane E.; Kopelovich, Levy; Wallrath, Lori L.; Brenner, Charles

    2013-01-01

    Methylation of cytosines in CpG dinucleotides is the predominant epigenetic mark on vertebrate DNA. DNA methylation is associated with transcriptional repression. The pattern of DNA methylation changes during development and with disease. Human DNA methyltransferase 1 (Dnmt1), a 1616-amino acid multidomain enzyme, is essential for maintenance of DNA methylation in proliferating cells and is considered an important cancer drug target. Using a fluorogenic, endonuclease-coupled DNA methylation assay with an activated form of Dnmt1 engineered to lack the replication foci targeting sequence domain, we discovered that laccaic acid A (LCA), a highly substituted anthraquinone natural product, is a direct inhibitor with a 310 nm Ki. LCA is competitive with the DNA substrate in in vitro methylation assays and alters the expression of methylated genes in MCF-7 breast cancer cells synergistically with 5-aza-2′-deoxycytidine. LCA represents a novel class of Dnmt-targeted molecular probes, with biochemical properties that allow it to distinguish between non DNA-bound and DNA-bound Dnmt1. PMID:23839987

  14. Coordinate regulation of DNA methyltransferase expression during oogenesis

    Directory of Open Access Journals (Sweden)

    Bestor Timothy H

    2007-04-01

    Full Text Available Abstract Background Normal mammalian development requires the action of DNA methyltransferases (DNMTs for the establishment and maintenance of DNA methylation within repeat elements and imprinted genes. Here we report the expression dynamics of Dnmt3a and Dnmt3b, as well as a regulator of DNA methylation, Dnmt3L, in isolated female germ cells. Results Our results indicate that these enzymes are coordinately regulated and that their expression peaks during the stage of postnatal oocyte development when maternal methylation imprints are established. We find that Dnmt3a, Dnmt3b, Dnmt3L and Dnmt1o transcript accumulation is related to oocyte diameter. Furthermore, DNMT3L deficient 15 dpp oocytes have aberrantly methylated Snrpn, Peg3 and Igf2r DMRs, but normal IAP and LINE-1 methylation levels, thereby highlighting a male germ cell specific role for DNMT3L in the establishment of DNA methylation at repeat elements. Finally, real-time RT-PCR analysis indicates that the depletion of either DNMT3L or DNMT1o in growing oocytes results in the increased expression of the de novo methyltransferase Dnmt3b, suggesting a potential compensation mechanism by this enzyme for the loss of one of the other DNA methyltransferases. Conclusion Together these results provide a better understanding of the developmental regulation of Dnmt3a, Dnmt3b and Dnmt3L at the time of de novo methylation during oogenesis and demonstrate that the involvement of DNMT3L in retrotransposon silencing is restricted to the male germ line. This in turn suggests the existence of other factors in the oocyte that direct DNA methylation to transposons.

  15. Characterization of cytosine methylated regions and 5-cytosine DNA methyltransferase (Ehmeth) in the protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Fisher, Ohad; Siman-Tov, Rama; Ankri, Serge

    2004-01-01

    The DNA methylation status of the protozoan parasite Entamoeba histolytica was heretofore unknown. In the present study, we developed a new technique, based on the affinity of methylated DNA to 5-methylcytosine antibodies, to identify methylated DNA in this parasite. Ribosomal DNA and ribosomal DNA circles were isolated by this method and we confirmed the validity of our approach by sodium bisulfite sequencing. We also report the identification and the characterization of a gene, Ehmeth, encoding a DNA methyltransferase strongly homologous to the human DNA methyltransferase 2 (Dnmt2). Immunofluorescence microscopy using an antibody raised against a recombinant Ehmeth showed that Ehmeth is concentrated in the nuclei of trophozoites. The recombinant Ehmeth has a weak but significant methyltransferase activity when E.histolytica genomic DNA is used as substrate. 5-Azacytidine (5-AzaC), an inhibitor of DNA methyltransferase, was used to study in vivo the role of DNA methylation in E.histolytica. Genomic DNA of trophozoites grown with 5-AzaC (23 microM) was undermethylated and the ability of 5-AzaC-treated trophozoites to kill mammalian cells or to cause liver abscess in hamsters was strongly impaired.

  16. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation.

    Science.gov (United States)

    Baubec, Tuncay; Colombo, Daniele F; Wirbelauer, Christiane; Schmidt, Juliane; Burger, Lukas; Krebs, Arnaud R; Akalin, Altuna; Schübeler, Dirk

    2015-04-09

    DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.

  17. Chromatin Targeting of de Novo DNA Methyltransferases by the PWWP Domain

    Institute of Scientific and Technical Information of China (English)

    Ying-ZiGe; Min-TiePu; HumairaGowher; Hai-PingWu; Jian-PingDing; AlbertJeltsch; Guo-LiangXu

    2005-01-01

    DNA methylation patterns of mammalian genomes are generated in gametogenesis and early embryonic development. Two de novo DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the process. Both en-zymes contain a long N-terminal regulatory region linked to a conserved C-terminal domain responsible forthe catalytic activity. Although a PWWP domain in the N-terminal region has been shown to bind DNA in vitro, it is unclear how the DNA methyltransferases access their substrate in chromatin in vivo. We show here that the two proteins are associated with chromatin including mitotic chromosomes in mammalian cells, and the PWWP domain is essential for the chromatin targeting of the enzymes. The functional significance of PWWPmediated chromatin targeting is suggested by the fact that a missense mutation in this domain of human DNMT3B causes immunodeficiency, centromeric heterochromatin instability, facial anomalies (ICF) syndrome, which is characterized by loss of methylation insatellite DNA, pericentromeric instability, and immunodeficiency. We demonstrate that the mutant protein completely loses its chromatin targeting capacity. Our data establish the PWWP domain as a novel chromatin/chromosome-targeting module and suggest that the PWWP-mediated chromatin association is essential for the function of the de novo methyltransferases during development.

  18. Cell and molecular biology of DNA methyltransferase 1.

    Science.gov (United States)

    Mohan, K Naga; Chaillet, J Richard

    2013-01-01

    The DNA cytosine methyltransferase 1 (DNMT1) is a ubiquitous nuclear enzyme that catalyzes the well-established reaction of placing methyl groups on the unmethylated cytosines in methyl-CpG:CpG base pairs in the hemimethylated DNA formed by methylated parent and unmethylated daughter strands. This activity regenerates fully methylated methyl-CpG:methyl-CpG pairs. Despite the straightforward nature of its catalytic activity, detailed biochemical, genetic, and developmental studies revealed intricate details of the central regulatory role of DNMT1 in governing the epigenetic makeup of the nuclear genome. DNMT1 mediates demethylation and also participates in seemingly wide cellular functions unrelated to maintenance DNA methylation. This review brings together mechanistic details of maintenance methylation by DNMT1, its regulation at transcriptional and posttranscriptional levels, and the seemingly unexpected functions of DNMT1 in the context of DNA methylation which is central to epigenetic changes that occur during development and the process of cell differentiation.

  19. The role of human equilibrative nucleoside transporter 1 on the cellular transport of the DNA methyltransferase inhibitors 5-azacytidine and CP-4200 in human leukemia cells.

    Science.gov (United States)

    Hummel-Eisenbeiss, Johanna; Hascher, Antje; Hals, Petter-Arnt; Sandvold, Marit Liland; Müller-Tidow, Carsten; Lyko, Frank; Rius, Maria

    2013-09-01

    The nucleoside analog 5-azacytidine is an archetypical drug for epigenetic cancer therapy, and its clinical effectiveness has been demonstrated in the treatment of myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML). However, therapy resistance in patients with MDS/AML remains a challenging issue. Membrane proteins that are involved in drug uptake are potential mediators of drug resistance. The responsible proteins for the transport of 5-azacytidine into MDS/AML cells are unknown. We have now systematically analyzed the expression and activity of various nucleoside transporters. We identified the human equilibrative nucleoside transporter 1 (hENT1) as the most abundant nucleoside transporter in leukemia cell lines and in AML patient samples. Transport assays using [¹⁴C]5-azacytidine demonstrated Na⁺-independent uptake of the drug into the cells, which was inhibited by S-(4-nitrobenzyl)-6-thioinosine (NBTI), a hENT1 inhibitor. The cellular toxicity of 5-azacytidine and its DNA demethylating activity were strongly reduced after hENT1 inhibition. In contrast, the cellular activity of the 5-azacytidine derivative 5-azacytidine-5'-elaidate (CP-4200), a nucleoside transporter-independent drug, persisted after hENT1 inhibition. A strong dependence of 5-azacytidine-induced DNA demethylation on hENT1 activity was also confirmed by array-based DNA methylation profiling, which uncovered hundreds of loci that became demethylated only when hENT1-mediated transport was active. Our data establish hENT1 as a key transporter for the cellular uptake of 5-azacytidine in leukemia cells and raise the possibility that hENT1 expression might be a useful biomarker to predict the efficiency of 5-azacytidine treatments. Furthermore, our data suggest that CP-4200 may represent a valuable compound for the modulation of transporter-related 5-azacytidine resistances.

  20. Pine (Pinus morrisonicola Hayata) needle extracts sensitize GBM8901 human glioblastoma cells to temozolomide by downregulating autophagy and O(6)-methylguanine-DNA methyltransferase expression.

    Science.gov (United States)

    Liao, Chia-Leng; Chen, Chien-Min; Chang, Yan-Zin; Liu, Guang-Yaw; Hung, Hui-Chih; Hsieh, Tung-Ying; Lin, Chih-Li

    2014-10-29

    Pine needle extracts of Pinus morrisonicola (Hayata) are commonly used as a functional health beverage. However, it remains unclear what the mechanism is underlying the antitumor activity of pine needle extract. The aims of present study were to investigate the anti-glioblastoma effects of pine needle extracts as well as its bioactive compounds. From three different solvent extracts of pine needles, the water extract displayed the strongest cytotoxicity effects on GBM8901 glioblastoma cells. The isolated compounds were identified as pinocembrin, chrysin, and tiliroside. Chrysin was the most active ingredient of pine needle extract for the induction of apoptosis and suppression of migration and invasion. It also markedly inhibited temozolomide (TMZ)-induced autophagy and O(6)-methylguanine-DNA methyltransferase (MGMT) expression. Because both autophagy and MGMT overexpression have been implicated to TMZ-induced drug resistance in glioblastoma, our results showed that pine needle extract and chrysin may serve as a potential anticancer agent against glioblastoma, especially with regard to sensitizing glioblastoma cells resistant to TMZ.

  1. Expression of exogenous DNA methyltransferases: application in molecular and cell biology.

    Science.gov (United States)

    Dyachenko, O V; Tarlachkov, S V; Marinitch, D V; Shevchuk, T V; Buryanov, Y I

    2014-02-01

    DNA methyltransferases might be used as powerful tools for studies in molecular and cell biology due to their ability to recognize and modify nitrogen bases in specific sequences of the genome. Methylation of the eukaryotic genome using exogenous DNA methyltransferases appears to be a promising approach for studies on chromatin structure. Currently, the development of new methods for targeted methylation of specific genetic loci using DNA methyltransferases fused with DNA-binding proteins is especially interesting. In the present review, expression of exogenous DNA methyltransferase for purposes of in vivo analysis of the functional chromatin structure along with investigation of the functional role of DNA methylation in cell processes are discussed, as well as future prospects for application of DNA methyltransferases in epigenetic therapy and in plant selection.

  2. A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer.

    Science.gov (United States)

    Shen, Hongbing; Wang, Luo; Spitz, Margaret R; Hong, Waun K; Mao, Li; Wei, Qingyi

    2002-09-01

    DNA repair is central to genomic integrity. Reduced expression of several nucleotide excision repair genes has been demonstrated to be associated with increased risk of lung cancer. Because methylation of gene promoters is one of the major regulatory mechanisms of gene expression and most nucleotide excision repair gene promoters have not been fully characterized, we hypothesized that genetic variants of the genes that are responsible for regulating genomic methylation are associated with increased risk of lung cancer. Recently, we identified a C-->T transition at a novel promoter region of cytosine DNA-methyltransferase-3B (DNMT3B) and found that this polymorphic transition significantly increases the promoter activity. In this hospital-based case-control study of 319 patients with incident lung cancer and 340 healthy controls frequency matched on age (+/-5 years), sex, ethnicity, and smoking status, we genotyped subjects for this DNMT3B promoter polymorphism to determine the association between this genetic variant and risk of lung cancer. Compared with CC homozygotes, CT heterozygotes had a >2-fold increased risk of lung cancer [adjusted odds ratio (OR), 2.13; 95% confidence interval (CI), 1.47-3.08] and TT homozygotes an OR of 1.42 (95% CI, 0.91-2.21). The combined variant genotype (CT + TT) was associated with a nearly 2-fold increased risk (adjusted OR, 1.88; 95% CI, 1.32-2.66). These results suggest that this novel variant of DNMT3B is associated with increased risk of lung cancer and may contribute to identifying individuals genetically susceptible to tobacco-induced cancers. Additional studies on the underlying molecular mechanism of this polymorphism are warranted.

  3. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry

    DEFF Research Database (Denmark)

    Vranken, Charlotte; Deen, Jochem; Dirix, Lieve

    2014-01-01

    We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore...... to the DNA. We achieve a labelling efficiency of ∼70% with an average labelling density approaching one site every 500 bp. Such labelling density bridges the gap between the output of a typical DNA sequencing experiment and the long-range information derived from traditional optical DNA mapping. We lay...... the foundations for a wider-scale adoption of DNA mapping by screening 11 methyltransferases for their ability to direct sequence-specific DNA transalkylation; the first step of the DNA labelling process and by optimizing reaction conditions for fluorophore coupling via a click reaction. Three of 11 enzymes...

  4. miR-29 Represses the Activities of DNA Methyltransferases and DNA Demethylases

    Directory of Open Access Journals (Sweden)

    Izuho Hatada

    2013-07-01

    Full Text Available Members of the microRNA-29 (miR-29 family directly target the DNA methyltransferases, DNMT3A and DNMT3B. Disturbances in the expression levels of miR-29 have been linked to tumorigenesis and tumor aggressiveness. Members of the miR-29 family are currently thought to repress DNA methylation and suppress tumorigenesis by protecting against de novo methylation. Here, we report that members of the miR-29 family repress the activities of DNA methyltransferases and DNA demethylases, which have opposing roles in control of DNA methylation status. Members of the miR-29 family directly inhibited DNA methyltransferases and two major factors involved in DNA demethylation, namely tet methylcytosine dioxygenase 1 (TET1 and thymine DNA glycosylase (TDG. Overexpression of miR-29 upregulated the global DNA methylation level in some cancer cells and downregulated DNA methylation in other cancer cells, suggesting that miR-29 suppresses tumorigenesis by protecting against changes in the existing DNA methylation status rather than by preventing de novo methylation of DNA.

  5. Identification of a novel DNA methyltransferase 2 from the brine shrimp, Artemia franciscana.

    Science.gov (United States)

    Feng, Chen-Zhuo; Zhu, Xiao-Jing; Dai, Zhong-Min; Liu, Feng-Qi; Xiang, Jian-Hai; Yang, Wei-Jun

    2007-06-01

    DNA methyltransferase 2 (Dnmt2) is a dual-specificity DNA methyltransferase, which contains a weak DNA methyltransferase and novel tRNA methyltransferase activity. However, its biological function is still enigmatic. To elucidate the expression profiles of Dnmt2 in Artemia franciscana, we isolated the gene encoding a Dnmt2 from A. franciscana and named it as AfDnmt2. The cDNA of AfDnmt2 contained a 1140-bp open reading frame that encoded a putative Dnmt2 protein of 379 amino acids exhibiting 32% approximately 39% identities with other known Dnmt2 homologs. This is the first report of a DNA methyltransferase gene in Crustacean. By using semi-quantitative RT-PCR, AfDnmt2 was found to be expressed through all developmental stages and its expression increased during resumption of diapause cysts development. Southern blot analysis indicated the presence of multiple copies of AfDnmt2 genes in A. franciscana.

  6. An essential role for DNA methyltransferase DNMT3B in cancer cell survival.

    Science.gov (United States)

    Beaulieu, Normand; Morin, Steves; Chute, Ian C; Robert, Marie-France; Nguyen, Hannah; MacLeod, A Robert

    2002-08-02

    Abnormal methylation and associated silencing of tumor suppressor genes is a common feature of many types of cancers. The observation of persistent methylation in human cancer cells lacking the maintenance methyltransferase DNMT1 suggests the involvement of other DNA methyltransferases in gene silencing in cancer. To test this hypothesis, we have evaluated methylation and gene expression in cancer cells specifically depleted of DNMT3A or DNMT3B, de novo methyltransferases that are expressed in adult tissues. Here we have shown that depletion of DNMT3B, but not DNMT3A, induced apoptosis of human cancer cells but not normal cells. DNMT3B depletion reactivated methylation-silenced gene expression but did not induce global or juxtacentromeric satellite demethylation as did specific depletion of DNMT1. Furthermore, the effect of DNMT3B depletion was rescued by exogenous expression of either of the splice variants DNMT3B2 or DNMT3B3 but not DNMT1. These results indicate that DNMT3B has significant site selectivity that is distinct from DNMT1, regulates aberrant gene silencing, and is essential for cancer cell survival.

  7. Role of the DNA methyltransferase variant DNMT3b3 in DNA methylation.

    Science.gov (United States)

    Weisenberger, Daniel J; Velicescu, Mihaela; Cheng, Jonathan C; Gonzales, Felicidad A; Liang, Gangning; Jones, Peter A

    2004-01-01

    Several alternatively spliced variants of DNA methyltransferase (DNMT) 3b have been described. Here, we identified new murine Dnmt3b mRNA isoforms and found that mouse embryonic stem (ES) cells expressed only Dnmt3b transcripts that contained exons 10 and 11, whereas the Dnmt3b transcripts in somatic cells lacked these exons, suggesting that this region is important for embryonic development. DNMT3b2 and 3b3 were the major isoforms expressed in human cell lines and the mRNA levels of these isoforms closely correlated with their protein levels. Although DNMT3b3 may be catalytically inactive, it still may be biologically important because D4Z4 and satellites 2 and 3 repeat sequences, all known DNMT3b target sequences, were methylated in cells that predominantly expressed DNMT3b3. Treatment of cells with the mechanism-based inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) caused a complete depletion of DNMT1, 3a, 3b1, and 3b2 proteins. Human DNMT3b3 and the murine Dnmt3b3-like isoform, Dnmt3b6, were also depleted although less efficiently, suggesting that DNMT3b3 also may be capable of DNA binding. Moreover, de novo methylation of D4Z4 in T24 cancer cells after 5-Aza-CdR treatment only occurred when DNMT3b3 was expressed, reinforcing its role as a contributing factor of DNA methylation. The expression of either DNMT3b2 or 3b3, however, was not sufficient to explain the abnormal methylation of DNMT3b target sequences in human cancers, which may therefore be dependent on factors that affect DNMT3b targeting. Methylation analyses of immunodeficiency, chromosomal instabilities, and facial abnormalities cells revealed that an Alu repeat sequence was highly methylated, suggesting that Alu sequences are not DNMT3b targets.

  8. Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53- and DNMT1(DNA methyltransferase 1)-independent manner.

    Science.gov (United States)

    Jin, Lihua; Hanigan, Christin L; Wu, Yu; Wang, Wei; Park, Ben Ho; Woster, Patrick M; Casero, Robert A

    2013-01-15

    Epigenetic silencing of gene expression is important in cancer. Aberrant DNA CpG island hypermethylation and histone modifications are involved in the aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) is a H3K4 (histone H3 Lys4) demethylase associated with gene repression and is overexpressed in multiple cancer types. LSD1 has also been implicated in targeting p53 and DNMT1 (DNA methyltransferase 1), with data suggesting that the demethylating activity of LSD1 on these proteins is necessary for their stabilization. To examine the role of LSD1 we generated LSD1 heterozygous (LSD1+/-) and homozygous (LSD1-/-) knockouts in the human colorectal cancer cell line HCT116. The deletion of LSD1 led to a reduced cell proliferation both in vitro and in vivo. Surprisingly, the knockout of LSD1 in HCT116 cells did not result in global increases in its histone substrate H3K4me2 (dimethyl-H3K4) or changes in the stability or function of p53 or DNMT1. However, there was a significant difference in gene expression between cells containing LSD1 and those null for LSD1. The results of the present study suggested that LSD1 is critical in the regulation of cell proliferation, but also indicated that LSD1 is not an absolute requirement for the stabilization of either p53 or DNMT1.

  9. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation

    DEFF Research Database (Denmark)

    Shaknovich, Rita; Cerchietti, Leandro; Tsikitas, Lucas;

    2011-01-01

    The phenotype of germinal center (GC) B cells includes the unique ability to tolerate rapid proliferation and the mutagenic actions of activation induced cytosine deaminase (AICDA). Given the importance of epigenetic patterning in determining cellular phenotypes, we examined DNA methylation and t......, the GC B cells of Dnmt1 hypomorphic animals showed evidence of increased DNA damage, suggesting dual roles for DNMT1 in DNA methylation and double strand DNA break repair.......The phenotype of germinal center (GC) B cells includes the unique ability to tolerate rapid proliferation and the mutagenic actions of activation induced cytosine deaminase (AICDA). Given the importance of epigenetic patterning in determining cellular phenotypes, we examined DNA methylation...... and the role of DNA methyltransferases in the formation of GCs. DNA methylation profiling revealed a marked shift in DNA methylation patterning in GC B cells versus resting/naive B cells. This shift included significant differential methylation of 235 genes, with concordant inverse changes in gene expression...

  10. An association between overexpression of DNA methyltransferase 3B4 and clear cell renal cell carcinoma.

    Science.gov (United States)

    Liu, You; Sun, Liantao; Fong, Peter; Yang, Jie; Zhang, Zhuxia; Yin, Shuihui; Jiang, Shuyuan; Liu, Xiaolei; Ju, Hongge; Huang, Lihua; Bai, Jing; Gong, Kerui; Yan, Shaochun; Zhang, Chunyang; Shao, Guo

    2017-02-01

    It is well known that abnormal DNA methylations occur frequently in kidney cancer. However, it remains unclear exactly which types of DNA methyltransferases (DNMT) contribute to the pathologies of kidney cancers. In order to determine the functions of DNA methyltransferase in kidney tumorigenesis on the molecular level, we examined the mRNA expression levels of DNMT1, DNMT3A, DNMT3B, and DNMT3B variants in renal cell carcinoma tissue. Both mRNA and protein levels of DNMT3B4, a splice variant of DNMT3B, were increased in renal cell carcinoma tissue compared with adjacent control tissues. Additionally, Alu elements and long interspersed nuclear elements (LINE-1) were hypomethylated in renal cell carcinoma tissue. Meanwhile, methylation of the promoter for RASSF1A, a tumor suppressor gene, was moderately increased in renal cell carcinoma tissue, while RASSF1A expression was decreased. Thus, our data suggest that the overexpression of DNMT3B4 may play an important role in human kidney tumorigenesis through chromosomal instability and methylation of RASSF1A.

  11. Enhanced anti-tumor effect of zoledronic acid combined with temozolomide against human malignant glioma cell expressing O6-methylguanine DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Junya Fukai

    Full Text Available Temozolomide (TMZ, a DNA methylating agent, is widely used in the adjuvant treatment of malignant gliomas. O6-methylguanine-DNA methyltranferase (MGMT, a DNA repair enzyme, is frequently discussed as the main factor that limits the efficacy of TMZ. Zoledronic acid (ZOL, which is clinically applied to treat cancer-induced bone diseases, appears to possess direct anti-tumor activity through apoptosis induction by inhibiting mevalonate pathway and prenylation of intracellular small G proteins. In this study, we evaluated whether ZOL can be effectively used as an adjuvant to TMZ in human malignant glioma cells that express MGMT. Malignant glioma cell lines, in which the expression of MGMT was detected, did not exhibit growth inhibition by TMZ even at a longer exposure. However, combination experiment of TMZ plus ZOL revealed that a supra-additive effect resulted in a significant decrease in cell growth. In combined TMZ/ZOL treatment, an increased apoptotic rate was apparent and significant activation of caspase-3 and cleavage of poly-(ADP-ribose polymerase were observed compared with each single drug exposure. There were decreased amounts of Ras-GTP, MAPK and Akt phosphorylation and MGMT expression in the ZOL-treated cells. Subcutanous xenograft models showed significant decrease of tumor growth with combined TMZ/ZOL treatment. These results suggest that ZOL efficaciously inhibits activity of Ras in malignant glioma cells and potentiates TMZ-mediated cytotoxicity, inducing growth inhibition and apoptosis of malignant glioma cells that express MGMT and resistant to TMZ. Based on this work, combination of TMZ with ZOL might be a potential therapy in malignant gliomas that receive less therapeutic effects of TMZ due to cell resistance.

  12. Human nicotinamide N-methyltransferase gene: Molecular cloning, structural characterization and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, S.; Weinshilboum, R.M. [Mayo Medical School/Mayo Clinic/Mayo Foundation, Rochester, MN (United States); Brandriff, B.F. [Lawrence Livermore National Lab., CA (United States); Ward, A.; Little, P.F.R. [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    1995-10-10

    Genomic DNA clones for nicotinamide N-methyltransferase (NNMT), an enzyme that catalyzes drug and xenobiotic metabolism, were isolated from a human chromosome 11-specific DNA library. Study of one of those clones, when combined with PCR-based experiments performed with human genomic DNA, made it possible to determine the structure of the human NNMT gene. The gene was approximately 16.5 kb in length and consisted of 3 exons and 2 introns. Transcription initiation for the NNMT gene occurred 105-109 nucleotides 5{prime}-upstream from the cDNA translation initiation codon on the basis of the results of both primer extension and 5{prime}-rapid amplification of cDNA ends. NNMT mapped to chromosome band 11q23.1 by fluorescence in situ hybridization.

  13. DNA methyltransferase and alcohol dehydrogenase: gene-nutrient interactions in relation to risk of colorectal polyps.

    NARCIS (Netherlands)

    Jung, A.Y.; Poole, E.M.; Bigler, J.; Whitton, J.; Potter, J.D.; Ulrich, C.M.

    2008-01-01

    Disturbances in DNA methylation are a characteristic of colorectal carcinogenesis. Folate-mediated one-carbon metabolism is essential for providing one-carbon groups for DNA methylation via DNA methyltransferases (DNMTs). Alcohol, a folate antagonist, could adversely affect one-carbon metabolism. In

  14. DNA methyltransferase and alcohol dehydrogenase: gene-nutrient interactions in relation to risk of colorectal polyps.

    NARCIS (Netherlands)

    Jung, A.Y.; Poole, E.M.; Bigler, J.; Whitton, J.; Potter, J.D.; Ulrich, C.M.

    2008-01-01

    Disturbances in DNA methylation are a characteristic of colorectal carcinogenesis. Folate-mediated one-carbon metabolism is essential for providing one-carbon groups for DNA methylation via DNA methyltransferases (DNMTs). Alcohol, a folate antagonist, could adversely affect one-carbon metabolism. In

  15. Human catechol-O-methyltransferase: Cloning and expression of the membrane-associated form

    Energy Technology Data Exchange (ETDEWEB)

    Bertocci, B.; Miggiano, V.; Da Prada, M.; Dembic, Z.; Lahm, H.W.; Malherbe, P. (F. Hoffmann-La Roche Ltd., Basel (Switzerland))

    1991-02-15

    A cDNA clone for human catechol-O-methyltransferase was isolated from a human hepatoma cell line (Hep G2) cDNA library by hybridization screening with a porcine cDNA probe. The cDNA clone was sequenced and found to have an insert of 1226 nucleotides. The deduced primary structure of hCOMT is composed of 271 amino acid residues with the predicted molecular mass of 30 kDa. At its N terminus it has a hydrophobic segment of 21 amino acid residues that may be responsible for insertion of hCOMT into the endoplasmic reticulum membrane. The primary structure of hCOMT exhibits high homology to the porcine partial cDNA sequence (93%). The deduced amino acid sequence contains two tryptic peptide sequences (T-22, T-33) found in porcine liver catechol-O-methyltransferase (CEMT). The coding region of hCOMT cDNA was placed under the control of the cytomegalovirus promoter to transfect human kidney 293 cells. The recombinant hCOMT was shown by immunoblot analysis to be mainly associated with the membrane fraction. RNA blot analysis revealed one COMT mRNA transcript of 1.4 kilobases in Hep G2 poly(A){sup +} RNA.

  16. Rationalization of Activity Cliffs of a Sulfonamide Inhibitor of DNA Methyltransferases with Induced-Fit Docking

    Directory of Open Access Journals (Sweden)

    José L. Medina-Franco

    2014-02-01

    Full Text Available Inhibitors of human DNA methyltransferases (DNMT are of increasing interest to develop novel epi-drugs for the treatment of cancer and other diseases. As the number of compounds with reported DNMT inhibition is increasing, molecular docking is shedding light to elucidate their mechanism of action and further interpret structure–activity relationships. Herein, we present a structure-based rationalization of the activity of SW155246, a distinct sulfonamide compound recently reported as an inhibitor of human DNMT1 obtained from high-throughput screening. We used flexible and induce-fit docking to develop a binding model of SW155246 with a crystallographic structure of human DNMT1. Results were in excellent agreement with experimental information providing a three-dimensional structural interpretation of ‘activity cliffs’, e.g., analogues of SW155246 with a high structural similarity to the sulfonamide compound, but with no activity in the enzymatic assay.

  17. DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents.

    NARCIS (Netherlands)

    B.J. Glassner (Brian); G. Weeda (Geert); J.M. Allan (James); J.L.M. Broekhof (Jose'); N.H.E. Carls (Nick); I. Donker (Ingrid); B.P. Engelward (Bevin); R.J. Hampson (Richard); R. Hersmus (Remko); M.J. Hickman (Mark); R.B. Roth (Richard); H.B. Warren (Henry); M.M. Wu (Mavis); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1999-01-01

    textabstractWe have generated mice deficient in O6-methylguanine DNA methyltransferase activity encoded by the murine Mgmt gene using homologous recombination to delete the region encoding the Mgmt active site cysteine. Tissues from Mgmt null mice displayed very low O6-methylguanine DNA methyltransf

  18. Differential Expression and Clinical Significance of DNA Methyltransferase 3B (DNMT3B), Phosphatase and Tensin Homolog (PTEN) and Human MutL Homologs 1 (hMLH1) in Endometrial Carcinomas.

    Science.gov (United States)

    Li, Wenting; Wang, Ying; Fang, Xinzhi; Zhou, Mei; Li, Yiqun; Dong, Ying; Wang, Ruozheng

    2017-02-21

    BACKGROUND The aim of this study was to investigate the expression and the clinicopathologic significance of DNA methyltransferase 3B (DNMT3B), phosphatase and tensin homolog (PTEN) and human MutL homologs 1 (hMLH1) in endometrial carcinomas between Han and Uygur women in Xinjiang. MATERIAL AND METHODS The expression of DNMT3B, PTEN, and hMLH1 in endometrial carcinomas were assessed by immunohistochemistry, followed by an analysis of their relationship to clinical-pathological features and prognosis. RESULTS There were a 61.7% (95/154) overexpression of DNMT3B, 50.0% (77/154) loss of PTEN expression and 18.2% (28/154) loss of hMLH1 expression. The expression of DNMT3B and PTEN in endometrial carcinomas was statistically significantly different between Uygur women and Han women (p=0.001, p=0.010, respectively). DNMT3B expression was statistically significant based on the grade of endometrial carcinomas (p=0.031). PTEN loss was statistically significant between endometrioid carcinomas (ECs) and non endometrioid carcinomas (NECs) (p=0.040). DNMT3B expression was statistically significant in different myometrial invasion groups in Uygur women (p=0.010). Furthermore, the correlation of DNMT3B and PTEN expression was significant in endometrial carcinomas (p=0.021). PTEN expression was statistically significant in the overall survival (OS) rate of women with endometrial cancers (p=0.041). CONCLUSIONS Our findings suggest that PTEN and DNMT3B possess common regulation features as well as certain ethnic differences in expression between Han women and Uygur women. An interaction may exist in the pathogenesis of endometrial carcinoma. DNMT3B was expressed differently in cases of myometrial invasion and PTEN was associated with OS, which suggested that these molecular markers may be useful in the evaluation of the biological behavior of endometrial carcinomas and may be useful indicators of prognosis in women with endometrial carcinomas.

  19. Protective effect of O6-methylguanine-DNA-methyltransferase on mammalian cells

    Institute of Scientific and Technical Information of China (English)

    LI Dong-bo; WANG Ji-shi; FANG Qin; SUN Hai-yang; XU Wei; LI Wei-da

    2007-01-01

    Background O6-methylguanine-DNA-methyltransferase (MGMT) is a specific DNA revising enzyme transferring alkylated groups from DNA to its cysteine residue to avoid the abnormal twisting of DNA. Therefore, it is one of the drug resistant genes targeted in the treatment of cancer. This study explored the protective effect of MGMT gene transferred into mammalian cells.Methods Mammalian expression vector containing the MGMT gene cloned from human hepatocytes by RT-PCR was constructed and transferred into K562 cells and human peripheral blood mononuclear cells (PBMCs) via liposome, then assayed for gene expression at RNA and protein levels. MTT assay was used to check the drug resistance of cells transfected with MGMT gene.Results MGMT gene was successfully cloned. Real-time PCR showed that the mRNA expression in gene transfected groups in K562 cell line and PBMC were 13.4 and 4.0 times that of the empty vector transfected groups respectively.Results of Western blotting showed distinct higher expression of MGMT in gene transfected group than in other two groups. The IC50 values increased to 7 and 2 times that of the original values respectively in stable transfected K562 cells and transient transfected PBMC.Conclusion The alkylating resistance of eukaryotic cells is enhanced after being transfected with MGMT gene which protein product performs the protective function, and may provide the reference for the protective model of peripheral blood cells in cancer chemotherapy.

  20. A G4-DNA/B-DNA junction at codon 12 of c-Ha-ras is actively and asymmetrically methylated by DNA(cytosine-5)methyltransferase.

    Science.gov (United States)

    Smith, S S; Baker, D J; Jardines, L A

    1989-05-15

    Oligodeoxynucleotides spanning codon 12 of the human c-Ha-ras gene were found to be exceptionally good substrates for de novo methylation by human DNA(cytosine-5)methyltransferase. In the complex formed by two complementary 30mers, only the C-rich strand was methylated by the enzyme. Guanines at the 3' end of the G-rich strand of the complex could not be completely modified by dimethyl sulfate [corrected] suggesting tetrameric bonding at these G-residues. An eight-stranded structure, composed of four duplex DNAs at one end, joined to a G4-DNA segment at the other with the junction between the two DNA forms at codon 12, can account for our results.

  1. Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes.

    Directory of Open Access Journals (Sweden)

    Rohini Garg

    Full Text Available DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases, namely Methyltransferase (MET, Chromomethylase (CMT and Domains Rearranged Methyltransferase (DRM, which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2 subfamilies based on their domain organization. First three MTases represent DNA MTases, whereas DNMT2 represents a transfer RNA (tRNA MTase. Structural comparison of all the MTases in plants with known MTases in mammalian and plant systems have been reported to assign structural features in context of biological functions of these proteins. The structure analysis clearly specified regions crucial for protein-protein interactions and regions important for nucleosome binding in various domains of CMT and MET proteins. In addition, structural model of DRM suggested that circular permutation of motifs does not have any effect on overall structure of DNA methyltransferase domain. These results provide valuable insights into role of various domains in molecular recognition and should facilitate mechanistic understanding of their function in mediating specific methylation patterns. Further, the comprehensive gene expression analyses of MTases in legumes provided evidence of their role in various developmental processes throughout the plant life cycle and response to various abiotic stresses. Overall, our study will be very helpful in establishing the specific functions of DNA MTases in legumes.

  2. Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes.

    Science.gov (United States)

    Garg, Rohini; Kumari, Romika; Tiwari, Sneha; Goyal, Shweta

    2014-01-01

    DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases), namely Methyltransferase (MET), Chromomethylase (CMT) and Domains Rearranged Methyltransferase (DRM), which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2) subfamilies based on their domain organization. First three MTases represent DNA MTases, whereas DNMT2 represents a transfer RNA (tRNA) MTase. Structural comparison of all the MTases in plants with known MTases in mammalian and plant systems have been reported to assign structural features in context of biological functions of these proteins. The structure analysis clearly specified regions crucial for protein-protein interactions and regions important for nucleosome binding in various domains of CMT and MET proteins. In addition, structural model of DRM suggested that circular permutation of motifs does not have any effect on overall structure of DNA methyltransferase domain. These results provide valuable insights into role of various domains in molecular recognition and should facilitate mechanistic understanding of their function in mediating specific methylation patterns. Further, the comprehensive gene expression analyses of MTases in legumes provided evidence of their role in various developmental processes throughout the plant life cycle and response to various abiotic stresses. Overall, our study will be very helpful in establishing the specific functions of DNA MTases in legumes.

  3. Cyclical DNA Methyltransferase 3a Expression Is a Seasonal and Estrus Timer in Reproductive Tissues.

    Science.gov (United States)

    Lynch, Eloise W J; Coyle, Chris S; Lorgen, Marlene; Campbell, Ewan M; Bowman, Alan S; Stevenson, Tyler J

    2016-06-01

    It is becoming clear that epigenetic modifications such as DNA methylation can be dynamic and, in many cases, reversible. Here we investigated the photoperiod and hormone regulation of DNA methylation in testes, ovaries, and uterine tissue across multiple time scales. We hypothesized that DNA methyltransferase 3a (dnmt3a) is driven by photoperiodic treatment and exhibits natural variation across the female reproductive cycle and that melatonin increases whereas estrogen reduces DNA methylation. We used Siberian hamsters (Phodopus sungorus) due to their robust changes in reproductive physiology across seasonal and estrus time scales. Our findings indicate that short-day (SD) winter-like conditions significantly increased global DNA methylation and dnmt3a expression in the testes. Using immunohistochemistry, we confirm that increased dnmt3a expression was primarily localized to spermatogonium. Conversely, the ovaries did not exhibit variation in DNA methylation or dnmt3a/3b expression. However, exposure to SD significantly increased uterine dnmt3a expression. We then determined that dnmt3a was significantly decreased during the estrus stage. Next, we ovariectomized females and subsequently identified that a single estrogen+progesterone injection was sufficient to rapidly inhibit dnmt3a and dnmt3b expression. Finally, we demonstrate that treatment of human embryonic kidney-293 cells with melatonin significantly increased both dnmt3a and dnmt3b expression, suggesting that long-duration nocturnal signaling in SD may be involved in the regulation of DNA methylation in both sexes. Overall, our data indicate that dnmt3a shows marked photoperiod and estrus plasticity that likely has broad downstream effects on the timing of the genomic control of reproductive function.

  4. DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated?

    Directory of Open Access Journals (Sweden)

    Alessandra eMaresca

    2015-03-01

    Full Text Available Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5-methyltransferase 1. DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is

  5. Disulfiram sensitizes pituitary adenoma cells to temozolomide by regulating O6-methylguanine-DNA methyltransferase expression.

    Science.gov (United States)

    Zhao, Yachao; Xiao, Zheng; Chen, Wenna; Yang, Jinsheng; Li, Tao; Fan, Bo

    2015-08-01

    O6-methylguanine-DNA methyltransferase (MGMT) activity is responsible for temozolomide (TMZ) resistance in patients harboring aggressive pituitary adenomas. Recently, disulfiram (DSF) has been shown to induce the loss of MGMT protein and increase TMZ efficacy in glioblastoma cells, while CD133+ nestin+ cells isolated from the cell population have been implicated as pituitary adenoma stem-like cells. However, whether DSF is able to potentiate the cytotoxic effects of TMZ on human pituitary adenoma cells has not been investigated to date. In the present study, CD133+ nestin+ phenotype cells were isolated from primary cultured human pituitary adenoma cells using microbeads. It was found that DSF reduced MGMT protein expression and sensitized human pituitary adenoma cells and stem-like cells to TMZ in vitro, while the proteasome inhibitor PS-341 abrogated the inhibitory effect of DSF on MGMT in vitro. The sensitizing effect of DSF was also verified in primary cultured human pituitary adenoma cells in vivo. The results of the present study suggested that DSF can increase the efficacy of the anti-tumor effect of TMZ on human pituitary adenoma cells and CD133+ nestin+ stem like cells via the ubiquitin-proteasomal MGMT protein elimination route. DSF combined with TMZ may be an effective therapeutic strategy against aggressive pituitary adenomas.

  6. Association of the patterns of globalDNA methylation and expression analysis ofDNA methyltransferases in impaired spermatogenic patients

    Institute of Scientific and Technical Information of China (English)

    DeepikaJaiswal; SameerTrivedi; NeerajK Agrawal; KiranSingh

    2015-01-01

    Objective:To analyse global DNA methylation along with DNA methyltransferases (DNMTs) expression at transcript level in patients with impaired spermatogenesis to dissect its role in pathophysiology of human male infertility.Methods:The content of global methylated cytosine (mC) was determined using ELISA system (Imprint Methylated DNA Quantification Kit, Sigma-Aldrich) in 31 testicular biopsies showing impaired spermatogenesis and 8 with normal spermatogenesis. Real-time reverse transcription-polymerase chain reaction was done to analyze DNMTs (DNMT1, DNMT3A, DNMT3B and DNMT3l) mRNA levels in biopsies with different testicular phenotypes.Results:There was significant increase in levels of global methylation in different impaired testicular phenotypes as compared to normal. Expression analysis revealed significantly increased expression of DNMT1 and its positive correlation with global DNA methylation.Conclusion:In conclusion, increased levels of global methylation in impaired cases might be the one of the contributing factors for aberrant gene expression in infertile patients.

  7. Structural biology of human H3K9 methyltransferases.

    Directory of Open Access Journals (Sweden)

    Hong Wu

    Full Text Available UNLABELLED: SET domain methyltransferases deposit methyl marks on specific histone tail lysine residues and play a major role in epigenetic regulation of gene transcription. We solved the structures of the catalytic domains of GLP, G9a, Suv39H2 and PRDM2, four of the eight known human H3K9 methyltransferases in their apo conformation or in complex with the methyl donating cofactor, and peptide substrates. We analyzed the structural determinants for methylation state specificity, and designed a G9a mutant able to tri-methylate H3K9. We show that the I-SET domain acts as a rigid docking platform, while induced-fit of the Post-SET domain is necessary to achieve a catalytically competent conformation. We also propose a model where long-range electrostatics bring enzyme and histone substrate together, while the presence of an arginine upstream of the target lysine is critical for binding and specificity. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  8. De Novo DNA Methyltransferase DNMT3b Interacts with NEDD8-modified Proteins*

    OpenAIRE

    Shamay, Meir; Greenway, Melanie; Liao, Gangling; AMBINDER, RICHARD F; Hayward, S. Diane

    2010-01-01

    DNA methylation and histone modifications play an important role in transcription regulation. In cancer cells, many promoters become aberrantly methylated through the activity of the de novo DNA methyltransferases DNMT3a and DNMT3b and acquire repressive chromatin marks. NEDD8 is a ubiquitin-like protein modifier that is conjugated to target proteins, such as cullins, to regulate their activity, and cullin 4A (CUL4A) in its NEDD8-modified form is essential for repressive chromatin formation. ...

  9. Biochemical characterization of maintenance DNA methyltransferase DNMT-1 from silkworm, Bombyx mori.

    Science.gov (United States)

    Mitsudome, Takumi; Mon, Hiroaki; Xu, Jian; Li, Zhiqing; Lee, Jae Man; Patil, Anandrao Ashok; Masuda, Atsushi; Iiyama, Kazuhiro; Morokuma, Daisuke; Kusakabe, Takahiro

    2015-03-01

    DNA methylation is an important epigenetic mechanism involved in gene expression of vertebrates and invertebrates. In general, DNA methylation profile is established by de novo DNA methyltransferases (DNMT-3A, -3B) and maintainance DNA methyltransferase (DNMT-1). DNMT-1 has a strong substrate preference for hemimethylated DNA over the unmethylated one. Because the silkworm genome lacks an apparent homologue of de novo DNMT, it is still unclear that how silkworm chromosome establishes and maintains its DNA methylation profile. As the first step to unravel this enigma, we purified recombinant BmDNMT-1 using baculovirus expression system and characterized its DNA-binding and DNA methylation activity. We found that the BmDNMT-1 preferentially methylates hemimethylated DNA despite binding to both unmethylated and hemimethylated DNA. Interestingly, BmDNMT-1 formed a complex with DNA in the presence or absence of methyl group donor, S-Adenosylmethionine (AdoMet) and the AdoMet-dependent complex formation was facilitated by Zn(2+) and Mn(2+). Our results provide clear evidence that BmDNMT-1 retained the function as maintenance DNMT but its sensitivity to metal ions is different from mammalian DNMT-1.

  10. Identification and characterization of DNAzymes targeting DNA methyltransferase I for suppressing bladder cancer proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiangbo; Zhang, Lu; Ding, Nianhua; Yang, Xinghui; Zhang, Jin; He, Jiang; Li, Zhi; Sun, Lun-Quan, E-mail: lunquansun@csu.edu.cn

    2015-05-29

    Epigenetic inactivation of genes plays a critical role in many important human diseases, especially in cancer. A core mechanism for epigenetic inactivation of the genes is methylation of CpG islands in genome DNA, which is catalyzed by DNA methyltransferases (DNMTs). The inhibition of DNMTs may lead to demethylation and expression of the silenced tumor suppressor genes. Although DNMT inhibitors are currently being developed as potential anticancer agents, only limited success is achieved due to substantial toxicity. Here, we utilized a multiplex selection system to generate efficient RNA-cleaving DNAzymes targeting DNMT1. The lead molecule from the selection was shown to possess efficient kinetic profiles and high efficiency in inhibiting the enzyme activity. Transfection of the DNAzyme caused significant down-regulation of DNMT1 expression and reactivation of p16 gene, resulting in reduced cell proliferation of bladder cancers. This study provides an alternative for targeting DNMTs for potential cancer therapy. - Highlights: • Identified DNMT1-targeted DNAzymes by multiplex selection system. • Biochemically characterized a lead DNAzyme with high kinetic efficiency. • Validated DNMT1-targeted DNAzyme in its enzymatic and cellular activities.

  11. DNA Methyltransferase Gene dDnmt2 and Longevity of Drosophila

    Institute of Scientific and Technical Information of China (English)

    Meng-JauLin; Lin-YaTang; M.NarsaReddy; C.K.JamesShen

    2005-01-01

    The DNA methylation program of the fruit fly Drosophila melanogaster is carried out by the single DNA methyltransferase gene dDnmt2, the function of which is unknown before. We present evidence that intactness of the gene is required for maintenance of the normal life span of the fruit flies. In contrast, overexpression of dDnmt2 could extend Drosophila life span. The study links the Drosophila DNA methylation program with the small heatshock proteins and longevity/aging and has interesting implication on the eukaryotic DNA methyl-ation programs in general.

  12. DNA methyltransferase inhibitors improve the effect of chemotherapeutic agents in SW48 and HT-29 colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Sylwia Flis

    Full Text Available DNA methylation is an epigenetic phenomenon known to play an important role in the development and progression of human cancer. Enzyme responsible for this process is DNA methyltransferase 1 (DNMT1 that maintains an altered methylation pattern by copying it from parent to daughter DNA strands after replication. Aberrant methylation of the promoter regions of genes critical for normal cellular functions is potentially reversible. Therefore, inactivation of DNMT1 seems to be a valuable target for the development of cancer therapies. Currently, the most popular DNMT inhibitors (DNMTi are cytidine analogues like 5-azacytidine, 5-aza-2'-deoxycytidine (decitabine and pyrimidin-2-one ribonucleoside (zebularine. In colorectal cancer, epigenetic modifications play an essential role at each step of carcinogenesis. Therefore, we have addressed the hypothesis that DNA methyltransferase inhibitors may potentiate inhibitory effects of classical chemotherapeutic agents, such as oxaliplatin and 5-fluorouracil (5-FU, commonly used in colorectal cancer therapy. Here, our report shows that DNMTi can have positive interactions with standard chemotherapeutics in colorectal cancer treatment. Using pharmacological models for the drug-drug interaction analysis, we have revealed that the combination of decitabine with 5-FU or oxaliplatin shows the most attractive interaction (synergism, whereas the effect of zebularine in combinations with chemotherapeutics is moderate and may be depended on genetic/epigenetic background of a cell line or secondary drug used in combination. Our results suggest that DNMTi administered in combination with standard chemotherapeutics might improve the treatment of patients with colorectal cancers.

  13. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  14. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Robert J Wood

    Full Text Available BACKGROUND: DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein and quencher (dabcyl and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71+/-0.07 indicating that it is a sensitive assay for the identification of inhibitors. CONCLUSIONS/SIGNIFICANCE: The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.

  15. The Eukaryotic DNMT2 Genes Encode a New Class of Cytosine-5 DNA Methyltransferases

    Institute of Scientific and Technical Information of China (English)

    Lin-YaTang; M.NarsaReddy; VanyaRasheva; Tai-LinLee; Meng-JauLin; Ming-ShiuHung; C.-K.JamesShen

    2005-01-01

    DNMT2 is a subgroup of the eukaryotic cytosine-5 DNA methyltransferase gene family. Unlike the other family members, proteins encoded by DNMT2 genes were not known before to possess DNA methyltransferase activities. Most recently, we have showm that thegenome of Drosophila S2 cells stably expressing an exogenous Drosophila dDNMT2 cDNA became anoma-lously methylated at the 5'-positions of cytosines(Reddy, M. N., Tang, L. Y., Lee, T. L., and Shen, C.-K. J.(2003) Oncogene, in press). We present evidence here that the genomes of transgenic flies overexpressing the dDnmt2 protein also became hypermethylated at specific regions. Furthermore, transient transfection studies in combination with sodium bisulfite sequencing demonstrated that dDnmt2 as well as its mousc ortholog, mDnmt2, are capable of methylating a cotrans-fected plasmid DNA. These data provide solid evidence that the fly and mouse DNMT2 gene products are genuine cytosine-5 DNA methyltransferases.

  16. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase

    Institute of Scientific and Technical Information of China (English)

    Bin-Zhong Li; Guo-Liang Xu; Zheng Huang; Qing-Yan Cui; Xue-Hui Song; Lin Du; Albert Jeltsch; Ping Chen; Guohong Li; En Li

    2011-01-01

    Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity.

  17. Regulation of expression and activity of DNA (cytosine-5) methyltransferases in mammalian cells.

    Science.gov (United States)

    Kinney, Shannon R Morey; Pradhan, Sriharsa

    2011-01-01

    Three active DNA (cytosine-5) methyltransferases (DNMTs) have been identified in mammalian cells, Dnmt1, Dnmt3a, and Dnmt3b. DNMT1 is primarily a maintenance methyltransferase, as it prefers to methylate hemimethylated DNA during DNA replication and in vitro. DNMT3A and DNMT3B are de novo methyltransferases and show similar activity on unmethylated and hemimethylated DNA. DNMT3L, which lacks the catalytic domain, binds to DNMT3A and DNMT3B variants and facilitates their chromatin targeting, presumably for de novo methylation. There are several mechanisms by which mammalian cells regulate DNMT levels, including varied transcriptional activation of the respective genes and posttranslational modifications of the enzymes that can affect catalytic activity, targeting, and enzyme degradation. In addition, binding of miRNAs or RNA-binding proteins can also alter the expression of DNMTs. These regulatory processes can be disrupted in disease or by environmental factors, resulting in altered DNMT expression and aberrant DNA methylation patterns.

  18. Aberrant DNA methylation in 5'regions of DNA methyltransferase genes in aborted bovine clones

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.

  19. An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines

    Science.gov (United States)

    Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their rela...

  20. Cooperativity between DNA Methyltransferases in the Maintenance Methylation of Repetitive Elements

    Science.gov (United States)

    Liang, Gangning; Chan, Matilda F.; Tomigahara, Yoshitaka; Tsai, Yvonne C.; Gonzales, Felicidad A.; Li, En; Laird, Peter W.; Jones, Peter A.

    2002-01-01

    We used mouse embryonic stem (ES) cells with systematic gene knockouts for DNA methyltransferases to delineate the roles of DNA methyltransferase 1 (Dnmt1) and Dnmt3a and -3b in maintaining methylation patterns in the mouse genome. Dnmt1 alone was able to maintain methylation of most CpG-poor regions analyzed. In contrast, both Dnmt1 and Dnmt3a and/or Dnmt3b were required for methylation of a select class of sequences which included abundant murine LINE-1 promoters. We used a novel hemimethylation assay to show that even in wild-type cells these sequences contain high levels of hemimethylated DNA, suggestive of poor maintenance methylation. We showed that Dnmt3a and/or -3b could restore methylation of these sequences to pretreatment levels following transient exposure of cells to 5-aza-CdR, whereas Dnmt1 by itself could not. We conclude that ongoing de novo methylation by Dnmt3a and/or Dnmt3b compensates for inefficient maintenance methylation by Dnmt1 of these endogenous repetitive sequences. Our results reveal a previously unrecognized degree of cooperativity among mammalian DNA methyltransferases in ES cells. PMID:11756544

  1. DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas.

    Science.gov (United States)

    Amara, Khaled; Ziadi, Sonia; Hachana, Mohamed; Soltani, Nabil; Korbi, Sadok; Trimeche, Mounir

    2010-07-01

    Diffuse large B-cell lymphomas (DLBCL) are the most common type of aggressive lymphomas, with considerable heterogeneity in clinical presentation, molecular characteristics, and outcome. Previous studies have showed significant correlations between DNA methyltransferase (DNMT) overexpression and unfavorable prognosis in human cancers. Therefore, we investigated in this study the biological and prognostic significance of DNMT1, DNMT3a, and DNMT3b protein expression in DLBCL. DNA methyltransferase (DNMT) expression was analyzed by immunohistochemistry in 81 DLBCL cases and correlated with clinicopathological parameters. Kaplan-Meier curves were used to estimate survival rates, and the Cox proportional hazard regression model was used to evaluate the prognostic impact of DNMT expression. Our results showed that overexpression of DNMT1, DNMT3a, and DNMT3b were detected in 48%, 13%, and 45% of investigated cases, respectively. DNA methyltransferase 1 (DNMT1) and DNMT3b overexpression was significantly correlated with advanced clinical stages (P = 0.028 and P = 0.016, respectively). Moreover, concomitant expression of DNMT1 and DNMT3b was significantly correlated with resistance to treatment (P = 0.015). With regard to survival rates, although data was available only for 40 patients, DNMT3b overexpression was significantly correlated with shorter overall survival (P = 0.006) and progression-free survival (P = 0.016). Interestingly, multivariate analysis demonstrated that DNMT3b overexpression was an independent prognostic factor for predicting shortened overall survival (P = 0.004) and progression-free survival (P = 0.024). In conclusion, DNMT3b overexpression was identified as an independent prognostic factor for predicting shortened survival of patients with DLBCL and could be, therefore, useful in identifying patients who would benefit from aggressive therapy.

  2. Survival and tumorigenesis in O6-methylguanine DNA methyltransferase-deficient mice following cyclophosphamide exposure

    OpenAIRE

    Nagasubramanian, Ramamoorthy; Hansen, Ryan J.; Delaney, Shannon M.; Cherian, Mathew M.; Samson, Leona D.; Kogan, Scott C.; Dolan, M Eileen

    2008-01-01

    O6-methylguanine DNA methyltransferase (MGMT) deficiency is associated with an increased susceptibility to alkylating agent toxicity. To understand the contribution of MGMT in protecting against cyclophosphamide (CP)-induced toxicity, mutagenesis and tumorigenesis, we compared the biological effects of this agent in transgenic Mgmt knockout and wild-type mice. In addition, neurofibromin (Nf1)+/− background was used to increase the likelihood of CP-induced tumorigenesis. Cohorts of Mgmt-profic...

  3. Identification and characterization of alternatively spliced variants of DNA methyltransferase 3a in mammalian cells.

    Science.gov (United States)

    Weisenberger, Daniel J; Velicescu, Mihaela; Preciado-Lopez, Miguel A; Gonzales, Felicidad A; Tsai, Yvonne C; Liang, Gangning; Jones, Peter A

    2002-09-18

    CpG methylation is mediated by the functions of at least three active DNA methyltransferases (DNMTs). While DNMT1 is thought to perform maintenance methylation, the more recently discovered DNMT3a and DNMT3b enzymes are thought to facilitate de novo methylation. Murine Dnmt3a and 3b are developmentally regulated and a new Dnmt3a isoform, Dnmt3a2, has been recently shown to be expressed preferentially in mouse embryonic stem (ES) cells. Here we have characterized four alternatively spliced variants of human and mouse DNMT3a. These transcripts included a novel exon 1 (1beta) that was spliced into the same exon 2 acceptor splice site used by the original exon 1 (1alpha). Cloning and sequencing of the 5' region of the human DNMT3a gene revealed that exon 1beta was situated upstream of exon 1alpha and that the entire region was contained within a CpG island. We also identified other alternatively spliced species containing intron 4 inclusions that were associated with either exon 1alpha or 1beta. These were expressed at low levels in mouse and human cells. All transcripts were highly conserved between human and mouse. The levels of Dnmt3a mRNA containing exon 1beta were 3-25-fold greater in mouse ES cells than in various somatic cells as determined by semiquantitative reverse transcription-polymerase chain reaction analysis, while the levels of exon 1alpha-containing transcripts were slightly higher in human and mouse somatic cells. The preferential expression of the beta transcript in ES cells suggests that this transcript, in addition to Dnmt3a2, may also be important for de novo methylation during development.

  4. Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G0/G1 to S phase transition in normal and tumor cells

    Science.gov (United States)

    Robertson, Keith D.; Keyomarsi, Khandan; Gonzales, Felicidad A.; Velicescu, Mihaela; Jones, Peter A.

    2000-01-01

    DNA methylation is essential for mammalian development, X-chromosome inactivation, and imprinting yet aberrant methylation patterns are one of the most common features of transformed cells. One of the proposed causes for these defects in the methylation machinery is overexpression of one or more of the three known catalytically active DNA methyltransferases (DNMTs) 1, 3a and 3b, yet there are clearly examples in which overexpression is minimal or non-existent but global methylation anomalies persist. An alternative mechanism which could give rise to global methylation errors is the improper expression of one or more of the DNMTs during the cell cycle. To begin to study the latter possibility we examined the expression of the mRNAs for DNMT1, 3a and 3b during the cell cycle of normal and transformed cells. We found that DNMT1 and 3b levels were significantly downregulated in G0/G1 while DNMT3a mRNA levels were less sensitive to cell cycle alterations and were maintained at a slightly higher level in tumor lines compared to normal cell strains. Enzymatic activity assays revealed a similar decrease in the overall methylation capacity of the cells during G0/G1 arrest and again revealed that a tumor cell line maintained a higher methylation capacity during arrest than a normal cell strain. These results reveal a new level of control exerted over the cellular DNA methylation machinery, the loss of which provides an alternative mechanism for the genesis of the aberrant methylation patterns observed in tumor cells. PMID:10773079

  5. DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hume Stroud

    2012-07-01

    Full Text Available The relationship between epigenetic marks on chromatin and the regulation of DNA replication is poorly understood. Mutations of the H3K27 methyltransferase genes, Arabidopsis trithorax-related protein5 (ATXR5 and ATXR6, result in re-replication (repeated origin firing within the same cell cycle. Here we show that mutations that reduce DNA methylation act to suppress the re-replication phenotype of atxr5 atxr6 mutants. This suggests that DNA methylation, a mark enriched at the same heterochromatic regions that re-replicate in atxr5/6 mutants, is required for aberrant re-replication. In contrast, RNA sequencing analyses suggest that ATXR5/6 and DNA methylation cooperatively transcriptionally silence transposable elements (TEs. Hence our results suggest a complex relationship between ATXR5/6 and DNA methylation in the regulation of DNA replication and transcription of TEs.

  6. Comparative analysis of DNA methyltransferase gene family in fungi: a focus on Basidiomycota

    Directory of Open Access Journals (Sweden)

    Ruirui Huang

    2016-10-01

    Full Text Available DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes.

  7. Comparative Analysis of DNA Methyltransferase Gene Family in Fungi: A Focus on Basidiomycota

    Science.gov (United States)

    Huang, Ruirui; Ding, Qiangqiang; Xiang, Yanan; Gu, Tingting; Li, Yi

    2016-01-01

    DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases) in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes. PMID:27818666

  8. Comparative Analysis of DNA Methyltransferase Gene Family in Fungi: A Focus on Basidiomycota.

    Science.gov (United States)

    Huang, Ruirui; Ding, Qiangqiang; Xiang, Yanan; Gu, Tingting; Li, Yi

    2016-01-01

    DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases) in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes.

  9. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers.

    Science.gov (United States)

    Holman, Luke; Trontti, Kalevi; Helanterä, Heikki

    2016-01-01

    DNA methylation is emerging as an important regulator of polyphenism in the social insects. Research has concentrated on differences in methylation between queens and workers, though we hypothesized that methylation is involved in mediating other flexible phenotypes, including pheromone-dependent changes in worker behaviour and physiology. Here, we find that exposure to queen pheromone affects the expression of two DNA methyltransferase genes in Apis mellifera honeybees and in two species of Lasius ants, but not in Bombus terrestris bumblebees. These results suggest that queen pheromones influence the worker methylome, pointing to a novel proximate mechanism for these key social signals. © 2016 The Author(s).

  10. The 'de novo' DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium.

    Science.gov (United States)

    Elliott, Ellen N; Sheaffer, Karyn L; Kaestner, Klaus H

    2016-01-25

    Dnmt1 is critical for immediate postnatal intestinal development, but is not required for the survival of the adult intestinal epithelium, the only rapidly dividing somatic tissue for which this has been shown. Acute Dnmt1 deletion elicits dramatic hypomethylation and genomic instability. Recovery of DNA methylation state and intestinal health is dependent on the de novo methyltransferase Dnmt3b. Ablation of both Dnmt1 and Dnmt3b in the intestinal epithelium is lethal, while deletion of either Dnmt1 or Dnmt3b has no effect on survival. These results demonstrate that Dnmt1 and Dnmt3b cooperate to maintain DNA methylation and genomic integrity in the intestinal epithelium.

  11. Highly Iterated Palindromic Sequences (HIPs and Their Relationship to DNA Methyltransferases

    Directory of Open Access Journals (Sweden)

    Jeff Elhai

    2015-03-01

    Full Text Available The sequence GCGATCGC (Highly Iterated Palindrome, HIP1 is commonly found in high frequency in cyanobacterial genomes. An important clue to its function may be the presence of two orphan DNA methyltransferases that recognize internal sequences GATC and CGATCG. An examination of genomes from 97 cyanobacteria, both free-living and obligate symbionts, showed that there are exceptional cases in which HIP1 is at a low frequency or nearly absent. In some of these cases, it appears to have been replaced by a different GC-rich palindromic sequence, alternate HIPs. When HIP1 is at a high frequency, GATC- and CGATCG-specific methyltransferases are generally present in the genome. When an alternate HIP is at high frequency, a methyltransferase specific for that sequence is present. The pattern of 1-nt deviations from HIP1 sequences is biased towards the first and last nucleotides, i.e., those distinguish CGATCG from HIP1. Taken together, the results point to a role of DNA methylation in the creation or functioning of HIP sites. A model is presented that postulates the existence of a GmeC-dependent mismatch repair system whose activity creates and maintains HIP sequences.

  12. Regulation of DNA replication and chromosomal polyploidy by the MLL-WDR5-RBBP5 methyltransferases

    Science.gov (United States)

    Lu, Fei; Wu, Xiaojun; Yin, Feng; Chia-Fang Lee, Christina; Yu, Min; Mihaylov, Ivailo S.; Yu, Jiekai; Sun, Hong

    2016-01-01

    ABSTRACT DNA replication licensing occurs on chromatin, but how the chromatin template is regulated for replication remains mostly unclear. Here, we have analyzed the requirement of histone methyltransferases for a specific type of replication: the DNA re-replication induced by the downregulation of either Geminin, an inhibitor of replication licensing protein CDT1, or the CRL4CDT2 ubiquitin E3 ligase. We found that siRNA-mediated reduction of essential components of the MLL-WDR5-RBBP5 methyltransferase complexes including WDR5 or RBBP5, which transfer methyl groups to histone H3 at K4 (H3K4), suppressed DNA re-replication and chromosomal polyploidy. Reduction of WDR5/RBBP5 also prevented the activation of H2AX checkpoint caused by re-replication, but not by ultraviolet or X-ray irradiation; and the components of MLL complexes co-localized with the origin recognition complex (ORC) and MCM2-7 replicative helicase complexes at replication origins to control the levels of methylated H3K4. Downregulation of WDR5 or RBBP5 reduced the methylated H3K4 and suppressed the recruitment of MCM2-7 complexes onto replication origins. Our studies indicate that the MLL complexes and H3K4 methylation are required for DNA replication but not for DNA damage repair. PMID:27744293

  13. New insights on the mechanism of quinoline-based DNA Methyltransferase inhibitors.

    Science.gov (United States)

    Gros, Christina; Fleury, Laurence; Nahoum, Virginie; Faux, Céline; Valente, Sergio; Labella, Donatella; Cantagrel, Frédéric; Rilova, Elodie; Bouhlel, Mohamed Amine; David-Cordonnier, Marie-Hélène; Dufau, Isabelle; Ausseil, Frédéric; Mai, Antonello; Mourey, Lionel; Lacroix, Laurent; Arimondo, Paola B

    2015-03-06

    Among the epigenetic marks, DNA methylation is one of the most studied. It is highly deregulated in numerous diseases, including cancer. Indeed, it has been shown that hypermethylation of tumor suppressor genes promoters is a common feature of cancer cells. Because DNA methylation is reversible, the DNA methyltransferases (DNMTs), responsible for this epigenetic mark, are considered promising therapeutic targets. Several molecules have been identified as DNMT inhibitors and, among the non-nucleoside inhibitors, 4-aminoquinoline-based inhibitors, such as SGI-1027 and its analogs, showed potent inhibitory activity. Here we characterized the in vitro mechanism of action of SGI-1027 and two analogs. Enzymatic competition studies with the DNA substrate and the methyl donor cofactor, S-adenosyl-l-methionine (AdoMet), displayed AdoMet non-competitive and DNA competitive behavior. In addition, deviations from the Michaelis-Menten model in DNA competition experiments suggested an interaction with DNA. Thus their ability to interact with DNA was established; although SGI-1027 was a weak DNA ligand, analog 5, the most potent inhibitor, strongly interacted with DNA. Finally, as 5 interacted with DNMT only when the DNA duplex was present, we hypothesize that this class of chemical compounds inhibit DNMTs by interacting with the DNA substrate.

  14. A superstructure-based electrochemical assay for signal-amplified detection of DNA methyltransferase activity.

    Science.gov (United States)

    Zhang, Hui; Yang, Yin; Dong, Huilei; Cai, Chenxin

    2016-12-15

    DNA methyltransferase (MTase) activity is highly correlated with the occurrence and development of cancer. This work reports a superstructure-based electrochemical assay for signal-amplified detection of DNA MTase activity using M.SssI as an example. First, low-density coverage of DNA duplexes on the surface of the gold electrode was achieved by immobilized mercaptohexanol, followed by immobilization of DNA duplexes. The duplex can be cleaved by BstUI endonuclease in the absence of DNA superstructures. However, the cleavage is blocked after the DNA is methylated by M.SssI. The DNA superstructures are formed with the addition of helper DNA. By using an electroactive complex, RuHex, which can bind to DNA double strands, the activity of M.SssI can be quantitatively detected by differential pulse voltammetry. Due to the high site-specific cleavage by BstUI and signal amplification by the DNA superstructure, the biosensor can achieve ultrasensitive detection of DNA MTase activity down to 0.025U/mL. The method can be used for evaluation and screening of the inhibitors of MTase, and thus has potential in the discovery of methylation-related anticancer drugs.

  15. A methylation-stimulated DNA machine: an autonomous isothermal route to methyltransferase activity and inhibition analysis.

    Science.gov (United States)

    Zhu, Changfeng; Wen, Yanqin; Peng, Hongzhen; Long, Yitao; He, Yao; Huang, Qing; Li, Di; Fan, Chunhai

    2011-04-01

    The operation of DNA nanomachines is generally triggered by either conformational changes of DNA nanostructure or external environmental stimuli. In the present study, we demonstrate an alternative driving force, DNA methylation, to stimulate DNA machine operation. DNA methylation changes neither DNA sequence and conformation nor external environment, however, blocks its cleavage by corresponding methylation-sensitive restriction endonuclease. We thus designed a strand displacement amplification DNA machine, which could be stimulated upon DNA methylation and then autonomously generates accumulated amounts of peroxidase-mimicking DNAzyme signaling machine products in an isothermal manner. The machine product DNAzyme could catalyze the H(2)O(2)-mediated oxidation of 2,2'-azino-bis(3-ethylbenzo thiazoline-6-sulfonic acid) (ABTS(2-)) to a colored product ABTS(·-). This methylation-stimulated DNA machine was further used as a colorimetric assay for analysis of methyltransferases activities and screening of methylation inhibitors. As compared with classical methylation assay, this facile isothermal DNA machine avoids the introduction of methylation-specific polymerase chain reaction and radioactive labels, which might be employed as an effective tool for DNA methylation analysis.

  16. New insights into estrogenic regulation of O(6)-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O(6)-benzylguanine indicates fresh avenues for therapy.

    Science.gov (United States)

    Paranjpe, Ameya; Bailey, Nathan I; Konduri, Santhi; Bobustuc, George C; Ali-Osman, Francis; Yusuf, Mohd A; Punganuru, Surendra R; Madala, Hanumantha Rao; Basak, Debasish; Mostofa, Agm; Srivenugopal, Kalkunte S

    2016-09-01

    Endocrine therapy using estrogen receptor-α (ER-α) antagonists for attenuating horm2one-driven cell proliferation is a major treatment modality for breast cancers. To exploit any DNA repair deficiencies associated with endocrine therapy, we investigated the functional and physical interactions of ER-α with O(6)-methylguanine DNA methyltransferase (MGMT), a unique DNA repair protein that confers tumor resistance to various anticancer alkylating agents. The ER-α -positive breast cancer cell lines (MCF-7, T47D) and ER- negative cell lines (MDAMB-468, MDAMB-231), and established inhibitors of ER-α and MGMT, namely, ICI-182,780 (Faslodex) and O(6)-benzylguanine, respectively, were used to study MGMT- ER interactions. The MGMT gene promoter was found to harbor one full and two half estrogen-responsive elements (EREs) and two antioxidant-responsive elements (AREs). MGMT expression was upregulated by estrogen, downregulated by tamoxifen in Western blot and promoter-linked reporter assays. Similarly, both transient and stable transfections of Nrf-2 (nuclear factor-erythroid 2-related factor-2) increased the levels of MGMT protein and activity 3 to 4-fold reflecting novel regulatory nodes for this drug-resistance determinant. Of the different ER-α antagonists tested, the pure anti-estrogen fulvestrant was most potent in inhibiting the MGMT activity in a dose, time and ER-α dependent manner, similar to O(6)-benzylguanine. Interestingly, fulvestrant exposure led to a degradation of both ER-α and MGMT proteins and O(6)-benzylguanine also induced a specific loss of ER-α and MGMT proteins in MCF-7 and T47D breast cancer cells with similar kinetics. Immunoprecipitation revealed a specific association of ER-α and MGMT proteins in breast cancer cells. Furthermore, silencing of MGMT gene expression triggered a decrease in the levels of both MGMT and ER-α proteins. The involvement of proteasome in the drug-induced degradation of both proteins was also demonstrated

  17. New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy

    Science.gov (United States)

    Paranjpe, Ameya; Bailey, Nathan I.; Konduri, Santhi; Bobustuc, George C.; Ali-Osman, Francis; Yusuf, Mohd. A.; Punganuru, Surendra R.; Madala, Hanumantha Rao; Basak, Debasish; Mostofa, AGM; Srivenugopal, Kalkunte S.

    2016-01-01

    Abstract Endocrine therapy using estrogen receptor-α (ER-α) antagonists for attenuating horm2one-driven cell proliferation is a major treatment modality for breast cancers. To exploit any DNA repair deficiencies associated with endocrine therapy, we investigated the functional and physical interactions of ER-α with O6-methylguanine DNA methyltransferase (MGMT), a unique DNA repair protein that confers tumor resistance to various anticancer alkylating agents. The ER-α -positive breast cancer cell lines (MCF-7, T47D) and ER- negative cell lines (MDAMB-468, MDAMB-231), and established inhibitors of ER-α and MGMT, namely, ICI-182,780 (Faslodex) and O6-benzylguanine, respectively, were used to study MGMT- ER interactions. The MGMT gene promoter was found to harbor one full and two half estrogen-responsive elements (EREs) and two antioxidant-responsive elements (AREs). MGMT expression was upregulated by estrogen, downregulated by tamoxifen in Western blot and promoter-linked reporter assays. Similarly, both transient and stable transfections of Nrf-2 (nuclear factor-erythroid 2-related factor-2) increased the levels of MGMT protein and activity 3 to 4-fold reflecting novel regulatory nodes for this drug-resistance determinant. Of the different ER-α antagonists tested, the pure anti-estrogen fulvestrant was most potent in inhibiting the MGMT activity in a dose, time and ER-α dependent manner, similar to O6-benzylguanine. Interestingly, fulvestrant exposure led to a degradation of both ER-α and MGMT proteins and O6-benzylguanine also induced a specific loss of ER-α and MGMT proteins in MCF-7 and T47D breast cancer cells with similar kinetics. Immunoprecipitation revealed a specific association of ER-α and MGMT proteins in breast cancer cells. Furthermore, silencing of MGMT gene expression triggered a decrease in the levels of both MGMT and ER-α proteins. The involvement of proteasome in the drug-induced degradation of both proteins was also demonstrated

  18. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuan [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); Wu, Keqiang [Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (China); Dhaubhadel, Sangeeta [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); An, Lizhe, E-mail: lizhean@lzu.edu.cn [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Tian, Lining, E-mail: tianl@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada)

    2010-05-28

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  19. Function of DNA methyltransferase 3a in lead (Pb(2+) )-Induced Cyclooxygenase-2 gene.

    Science.gov (United States)

    Tsai, Yao-Ting; Chang, Che-Mai; Wang, Jaw-Yuan; Hou, Ming-Feng; Wang, Ju-Ming; Shiurba, Robert; Chang, Wen-Chang; Chang, Wei-Chiao

    2015-09-01

    Lead ions (Pb(2+) ) are toxic industrial pollutants associated with chronic inflammatory diseases in humans and animals. Previously, we found that Pb(2+) ions induce COX-2 gene expression via the EGF receptor/nuclear factor-κB signal transduction pathway in epidermoid carcinoma cell line A431. In this study, to see whether Pb(2+) ions affect COX-2 expression by epigenetic mechanisms, we looked at the mRNAs of DNA methyltransferases (DNMTs) using real-time PCR of total RNA from these cells. Cells exposed to Pb(2+) had low levels of DNMT3a mRNA, whereas the levels of DNMT1 and DNMT3b mRNAs remained unchanged. Pretreatment of cells with DNMT inhibitor 5-aza-2'-deoxycytidine (5 μM) followed by Pb(2+) (1 μM) significantly increased levels of COX-2 mRNA compared with cells treated with Pb(2+) alone. Overexpression of tumor suppressor gene Rb correlated with an increase in COX-2 mRNA and a decrease in DNMT3a mRNA. Conversely, overexpression of transcription factor E2F1 correlated with a decrease in COX-2 mRNA and an increase in DMNT3a mRNA. Pretreatment with EGFR inhibitors AG1478 and PD153035 significantly limited Pb(2+) -induced reduction in DNMT3a mRNA. In addition, gene knockdown of DNMT3a with short hairpin RNA correlated with increased COX-2 mRNA induced by Pb(2+) . Our findings suggest Pb(2+) ions induce COX-2 expression indirectly by reducing DNMT3a methylation of the COX-2 promoter via transcription factors Rb and E2F1. © 2014 Wiley Periodicals, Inc.

  20. Discovery and development of DNA methyltransferase inhibitors using in silico approaches.

    Science.gov (United States)

    Medina-Franco, José L; Méndez-Lucio, Oscar; Dueñas-González, Alfonso; Yoo, Jakyung

    2015-05-01

    Multiple strategies have evolved during the past few years to advance epigenetic compounds targeting DNA methyltransferases (DNMTs). Significant progress has been made in HTS, lead optimization and determination of 3D structures of DNMTs. In light of the emerging concept of epi-informatics, computational approaches are employed to accelerate the development of DNMT inhibitors helping to screen chemical databases, mine the DNMT-relevant chemical space, uncover SAR and design focused libraries. Computational methods also synergize with natural-product-based drug discovery and drug repurposing. Herein, we survey the latest developments of in silico approaches to advance epigenetic drug and probe discovery targeting DNMTs.

  1. Structure and dynamics of H. pylori 98-10 C5-cytosine specific DNA methyltransferase in complex with S-adenosyl-l-methionine and DNA.

    Science.gov (United States)

    Singh, Swati; Tanneeru, Karunakar; Guruprasad, Lalitha

    2016-10-20

    Helicobacter pylori is a Gram-negative bacterium that inhabits the human gastrointestinal tract, and some strains of this bacterium cause gastric ulcers and cancer. DNA methyltransferases (MTases) are promising drug targets for the treatment of cancer and other diseases that are also caused by epigenetic alternations of the genome. The C5-cytosine specific DNA methyltransferase from H. pylori (M. Hpy C5mC) catalyzes the transfer of the methyl group from the cofactor S-adenosyl-l-methionine (AdoMet) to the flipped cytosine of the substrate DNA. Herein we report the sequence analyses, 3-D structure modeling and molecular dynamics simulations of M. Hpy C5mC, when complexed with AdoMet as well as DNA. We analyzed the protein-DNA interactions prominently established by the flipped cytosine and the interactions between the protein and cofactor in the active site. We propose that the contacts made by cytosine O2 with Arg155 and Arg157, and the water-mediated interactions with cytosine N3 may be essential for the activity of methyl transfer as well as the deprotonation at the C5 position in our C5mC model. Specific recognition of DNA was mediated mainly by residues from Ser221-Arg229 and Ser243-Gln246 of the target recognition domain (TRD) and some residues of the loop Ser75-Lys83 from the large domain. These findings are further supported by alanine scanning mutagenesis studies. The results reported here explain the sequence, structure and binding features necessary for the recognition between the cofactor and the substrate by the key epigenetic enzyme, M. Hpy C5mC.

  2. Two novel temperate bacteriophages co-existing in Aeromonas sp. ARM81 - characterization of their genomes, proteomes and DNA methyltransferases.

    Science.gov (United States)

    Dziewit, Lukasz; Radlinska, Monika

    2016-08-01

    Aeromonas species are causative agents of a wide spectrum of diseases in animals and humans. Although these bacteria are commonly found in various environments, little is known about their phages. Thus far, only one temperate Aeromonas phage has been characterized. Whole-genome sequencing of an Aeromonas sp. strain ARM81 revealed the presence of two prophage clusters. One of them is integrated into the chromosome and the other was maintained as an extrachromosomal, linear plasmid-like prophage encoding a protelomerase. Both prophages were artificially and spontaneously inducible. We separately isolated both phages and compared their genomes with other known viruses. The novel phages show no similarity to the previously characterized Aeromonas phages and might represent new evolutionary lineages of viruses infecting Aeromonadaceae. Apart from the comparative genomic analyses of these phages, complemented with their structural and molecular characterization, a functional analysis of four DNA methyltransferases encoded by these viruses was conducted. One of the investigated N6-adenine-modifying enzymes shares sequence specificity with a Dam-like methyltransferase of its bacterial host, while another one is non-specific, as it catalyzes adenine methylation in various sequence contexts. The presented results shed new light on the diversity of Aeromonas temperate phages.

  3. Posttranslational Regulation of O(6)-Methylguanine-DNA Methyltransferase (MGMT) and New Opportunities for Treatment of Brain Cancers.

    Science.gov (United States)

    Srivenugopal, Kalkunte S; Rawat, Amit; Niture, Suryakant K; Paranjpe, Ameya; Velu, Chinavenmani; Venugopal, Sanjay N; Madala, Hanumantha Rao; Basak, Debasish; Punganuru, Surendra R

    2016-01-01

    O(6)-Methylguanine-DNA-methyltransferase (MGMT) is an antimutagenic DNA repair protein highly expressed in human brain tumors. Because MGMT repairs the mutagenic, carcinogenic and cytotoxic O(6)-alkylguanine adducts, including those generated by the clinically used anticancer alkylating agents, it has emerged as a central and rational target for overcoming tumor resistance to alkylating agents. Although the pseudosubstrates for MGMT [O(6)-benzylguanine, O(6)-(4- bromothenyl)guanine] have gained attention as powerful and clinically-relevant inhibitors, bone marrow suppression due to excessive alkylation damage has diminished this strategy. Our laboratory has been working on various posttranslational modifications of MGMT that affect its protein stability, DNA repair activity and response to oxidative stress. While these modifications greatly impact the physiological regulation of MGMT, they also highlight the opportunities for inactivating DNA repair and new drug discovery in this specific area. This review briefly describes the newer aspects of MGMT posttranslational regulation by ubiquitination, sumoylation and glutathionylation and reveals how the reactivity of the active site Cys145 can be exploited for potent inhibition and depletion of MGMT by thiol-reacting drugs such as the disulfiram and various dithiocarbamate derivatives. The possible repurposing of these nontoxic and safe drugs for improved therapy of pediatric and adult brain tumors is discussed.

  4. Crystallization and preliminary crystallographic analysis of a DNA (cytosine-5)-methyltransferase from Haemophilus aegyptius bound covalently to DNA.

    Science.gov (United States)

    Reinisch, K M; Chen, L; Verdine, G L; Lipscomb, W N

    1994-05-13

    A DNA (cytosine)-5-methyltransferase from Haemophilus aegyptius (M.Hae III), which catalyzes methyl transfer from S-adenosyl-L-methionine to DNA, has been crystallized as a covalent complex with a suicide oligonucleotide substrate. Crystals of the co-complex were grown by vapor diffusion with hanging droplets, using polyethylene glycol 3500 as the precipitant. The crystals belong to the orthorhombic space group P2(1)2(1)2(1); the unit cell parameters are a = 57.6 A, b = 108.0 A, c = 155.8 A with two protein-DNA complexes in the asymmetric unit. Complete sets of native and derivative data have been collected to 2.7 A using a laboratory source.

  5. Site specificity of the Arabidopsis METI DNA methyltransferase demonstrated through hypermethylation of the superman locus.

    Science.gov (United States)

    Kishimoto, N; Sakai, H; Jackson, J; Jacobsen, S E; Meyerowitz, E M; Dennis, E S; Finnegan, E J

    2001-05-01

    Plants with low levels of DNA methylation show a range of developmental abnormalities including homeotic transformation of floral organs. Two independent DNA METHYLTRANSFERASEI (METI) antisense transformants with low levels of DNA methylation had flowers with increased numbers of stamens which resembled flowers seen on the loss-of-function superman (sup) mutant plants and on transgenic plants that ectopically express APETALA3 (AP3). These METI antisense plants have both increased and decreased methylation in and around the sup gene, compared with untransformed controls. DNA from the antisense plants was demethylated at least 4 kb upstream of the sup gene, while there was dense methylation around the start of transcription and within the coding region of this gene; these regions were unmethylated in control DNA. Methylation within the sup gene was correlated with an absence of SUP transcripts. The pattern and density of methylation was heterogeneous among different DNA molecules from the same plant, with some molecules being completely unmethylated. Methylcytosine occurred in asymmetric sites and in symmetric CpA/TpG but rarely in CpG dinucleotides in the antisense plants. In contrast, segregants lacking the METI antisense construct and epimutants with a hypermethylated allele of sup (clark kent 3), both of which have active METI genes, showed a higher frequency of methylation of CpG dinucleotides and of asymmetric cytosines. We conclude that METI is the predominant CpG methyltransferase and directly or indirectly affects asymmetric methylation.

  6. Genome-wide identification and comparative analysis of cytosine-5 DNA methyltransferases and demethylase families in wild and cultivated peanut

    Directory of Open Access Journals (Sweden)

    Pengfei eWang

    2016-02-01

    Full Text Available AbstractDNA methylation plays important roles in genome protection, regulation of gene expression and was associated with plants development. Plant DNA methylation pattern was mediated by cytosine-5 DNA methyltransferases and demethylase. Although the genomes of AA and BB wild peanuts have been fully sequence, these two gene families have not been studied. In this study we report the identification and analysis of putative cytosine-5 DNA methyltransferases (C5-MTases and demethylase in AA and BB wild peanuts. Cytosine-5 DNA methyltransferases in AA and BB wild peanuts could be classified in known MET, CMT and DRM2 groups based on their domain organization. This result was supported by the gene and protein structural characteristics and phylogenetic analysis. We found that some wild peanut DRM2 numbers didn’t contain UBA domain which was different from other plants such as Arabidopsis, maize, soybean. Five DNA demethylase were found in AA genome and five in BB genome. The selective pressure analysis showed that wild peanut C5-MTases gene mainly underwent purifying selection but many positive selection sites can be detected. Conversely, DNA demethylase genes mainly underwent positive selection during evolution. Additionally, the expression dynamic of cytosine-5 DNA methyltransferases and demethylase genes in different cultivated peanut tissues were analyzed. Expression result showed that cold, heat or drought stress could influence the expression level of C5-MTases and DNA demethylase genes in cultivated peanut. These results are useful for better understanding the complexity of these two gene families, and will facilitate epigenetic studies in peanut.

  7. Quantitative analysis of DNA methylation in the promoter region of the methylguanine-O(6) -DNA-methyltransferase gene by COBRA and subsequent native capillary gel electrophoresis.

    Science.gov (United States)

    Goedecke, Simon; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2015-12-01

    Along with histone modifications, RNA interference and delayed replication timing, DNA methylation belongs to the key processes in epigenetic regulation of gene expression. Therefore, reliable information about the methylation level of particular DNA fragments is of major interest. Herein the methylation level at two positions of the promoter region of the gene methylguanine-O(6) -DNA-Methyltransferase (MGMT) was investigated. Previously, it was demonstrated that the epigenetic status of this DNA region correlates with response to alkylating anticancer agents. An automated CGE method with LIF detection was established to separate the six DNA fragments resulting from combined bisulfite restriction analysis of the methylated and non-methylated MGMT promoter. In COBRA, the DNA was treated with bisulfite converting cytosine into uracil. During PCR uracil pairs with adenine, which changes the original recognition site of the restriction enzyme Taql. Artificial probes generated by mixing appropriate amounts of DNA after bisulfite treatment and PCR amplification were used for validation of the method. The methylation levels of these samples could be determined with high accuracy and precision. DNA samples prepared by mixing the corresponding clones first and then performing PCR amplification led to non-linear correlation between the corrected peak areas and the methylation levels. This effect is explained by slightly different PCR amplification of DNA with different sequences present in the mixture. The superiority of CGE over PAGE was clearly demonstrated. Finally, the established method was used to analyze the methylation levels of human brain tumor tissue samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. HBP1-Mediated Transcriptional Regulation of DNA Methyltransferase 1 and Its Impact on Cell Senescence

    Science.gov (United States)

    Pan, Kewu; Chen, Yifan; Roth, Mendel; Wang, Weibin; Wang, Shuya; Yee, Amy S.

    2013-01-01

    The activity of DNA methyltransferase 1 (DNMT1) is associated with diverse biological activities, including cell proliferation, senescence, and cancer development. In this study, we demonstrated that the HMG box-containing protein 1 (HBP1) transcription factor is a new repressor of DNMT1 in a complex mechanism during senescence. The DNMT1 gene contains an HBP1-binding site at bp −115 to −134 from the transcriptional start site. HBP1 repressed the endogenous DNMT1 gene through sequence-specific binding, resulting in both gene-specific (e.g., p16INK4) and global DNA hypomethylation changes. The HBP1-mediated repression by DNMT1 contributed to replicative and premature senescence, the latter of which could be induced by Ras and HBP1 itself. A detailed investigation unexpectedly revealed that HBP1 has dual and complex transcriptional functions, both of which contribute to premature senescence. HBP1 both repressed the DNMT1 gene and activated the p16 gene in premature senescence. The opposite transcriptional functions proceeded through different DNA sequences and differential protein acetylation. While intricate, the reciprocal partnership between HBP1 and DNMT1 has exceptional importance, since its abrogation compromises senescence and promotes tumorigenesis. Together, our results suggest that the HBP1 transcription factor orchestrates a complex regulation of key genes during cellular senescence, with an impact on overall DNA methylation state. PMID:23249948

  9. Affinity modification of EcoRII DNA methyltransferase by the dialdehyde-substituted DNA duplexes: mapping the enzyme region that interacts with DNA.

    Science.gov (United States)

    Gritsenko, Oksana M; Koudan, Elizaveta V; Mikhailov, Sergey N; Ermolinsky, Boris S; Van Aerschot, Arthur; Herdewijn, Piet; Gromova, Elizaveta S

    2002-01-01

    Affinity modification of EcoRII DNA methyltransferase (M x EcoRII) by DNA duplexes containing oxidized 2'-O-beta-D-ribofuranosylcytidine (Crib*) or 1-(beta-D-galactopyranosyl)thymine (Tgal*) residues was performed. Cross-linking yields do not change irrespective of whether active Crib* replaces an outer or an inner (target) deoxycytidine within the EcoRII recognition site. Chemical hydrolysis of M x EcoRII in the covalent cross-linked complex with the Tgal*-substituted DNA indicates the region Gly268-Met391 of the methylase that is likely to interact with the DNA sugar-phosphate backbone. Both specific and non-specific DNA interact with the same M x EcoRII region. Our results support the theoretically predicted DNA binding region of M x EcoRII.

  10. Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O(6-methylguanine-DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Wang

    Full Text Available Lung cancer is the leading cause of cancer-related deaths in the world. Achaete-scute complex homolog-1 (Ascl1 is a member of the basic helix-loop-helix (bHLH transcription factor family that has multiple functions in the normal and neoplastic lung such as the regulation of neuroendocrine differentiation, prevention of apoptosis and promotion of tumor-initiating cells. We now show that Ascl1 directly regulates matrix metalloproteinase-7 (MMP-7 and O(6-methylguanine-DNA methyltransferase (MGMT. Loss- and gain-of-function experiments in human bronchial epithelial and lung carcinoma cell lines revealed that Ascl1, MMP-7 and MGMT are able to protect cells from the tobacco-specific nitrosamine NNK-induced DNA damage and the alkylating agent cisplatin-induced apoptosis. We also examined the role of Ascl1 in NNK-induced lung tumorigenesis in vivo. Using transgenic mice which constitutively expressed human Ascl1 in airway lining cells, we found that there was a delay in lung tumorigenesis. We conclude that Ascl1 potentially enhances DNA repair through activation of MMP-7 and MGMT which may impact lung carcinogenesis and chemoresistance. The study has uncovered a novel and unexpected function of Ascl1 which will contribute to better understanding of lung carcinogenesis and the broad implications of transcription factors in tobacco-related carcinogenesis.

  11. MiR-221/222 target the DNA methyltransferase MGMT in glioma cells.

    Directory of Open Access Journals (Sweden)

    Cristina Quintavalle

    Full Text Available Glioblastoma multiforme (GBM is one of the most deadly types of cancer. To date, the best clinical approach for treatment is based on administration of temozolomide (TMZ in combination with radiotherapy. Much evidence suggests that the intracellular level of the alkylating enzyme O(6-methylguanine-DNA methyltransferase (MGMT impacts response to TMZ in GBM patients. MGMT expression is regulated by the methylation of its promoter. However, evidence indicates that this is not the only regulatory mechanism present. Here, we describe a hitherto unknown microRNA-mediated mechanism of MGMT expression regulation. We show that miR-221 and miR-222 are upregulated in GMB patients and that these paralogues target MGMT mRNA, inducing greater TMZ-mediated cell death. However, miR-221/miR-222 also increase DNA damage and, thus, chromosomal rearrangements. Indeed, miR-221 overexpression in glioma cells led to an increase in markers of DNA damage, an effect rescued by re-expression of MGMT. Thus, chronic miR-221/222-mediated MGMT downregulation may render cells unable to repair genetic damage. This, associated also to miR-221/222 oncogenic potential, may poor GBM prognosis.

  12. Prenatal Exposure to Lipopolysaccharide Alters Renal DNA Methyltransferase Expression in Rat Offspring

    Science.gov (United States)

    Chen, Rui; Deng, Youcai; Liao, Xi; Wei, Yanling; Li, Xiaohui; Su, Min; Yu, Jianhua; Yi, Ping

    2017-01-01

    Prenatal exposure to inflammation results in hypertension during adulthood but the mechanisms are not well understood. Maternal exposure to lipopolysaccharide (LPS) alters interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in the fetal environment. As reported in many recent studies, IL-6 regulates DNA methyltransferases (DNMTs) through the transcription factor friend leukemia virus integration 1 (Fli-1). The present study explores the role of intrarenal DNMTs during development of hypertension induced by prenatal exposure to LPS. Pregnant rats were randomly divided into four treatment groups: control, LPS, pyrrolidine dithiocarbamate (PDTC, a NF-κB inhibitor), and the combination of LPS and PDTC. Expression of IL-6, Fli-1, TNF-α, DNMT1 and DNMT3B was significantly increased in the offspring of LPS-treated rats. Global DNA methylation level of renal cortex also increased dramatically in rat offspring of the LPS group. Prenatal PDTC administration reversed the increases in gene expression and global DNA methylation level. These findings suggest that prenatal exposure to LPS may result in changes of intrarenal DNMTs through the IL-6/Fli-1 pathway and TNF-α, which probably involves hypertension in offspring due to maternal exposure to inflammation. PMID:28103274

  13. De novo DNA methyltransferase DNMT3b interacts with NEDD8-modified proteins.

    Science.gov (United States)

    Shamay, Meir; Greenway, Melanie; Liao, Gangling; Ambinder, Richard F; Hayward, S Diane

    2010-11-19

    DNA methylation and histone modifications play an important role in transcription regulation. In cancer cells, many promoters become aberrantly methylated through the activity of the de novo DNA methyltransferases DNMT3a and DNMT3b and acquire repressive chromatin marks. NEDD8 is a ubiquitin-like protein modifier that is conjugated to target proteins, such as cullins, to regulate their activity, and cullin 4A (CUL4A) in its NEDD8-modified form is essential for repressive chromatin formation. We found that DNMT3b associates with NEDD8-modified proteins. Whereas DNMT3b interacts directly in vitro with NEDD8, conjugation of NEDD8 to target proteins enhances this interaction in vivo. DNMT3b immunoprecipitated two major bands of endogenously NEDDylated proteins at the size of NEDDylated cullins, and indeed DNMT3b interacted with CUL1, CUL2, CUL3, CUL4A, and CUL5. Moreover, DNMT3b preferentially immunoprecipitated the NEDDylated form of endogenous CUL4A. NEDD8 enhanced DNMT3b-dependent DNA methylation. Chromatin immunoprecipitation assays suggest that DNMT3b recruits CUL4A and NEDD8 to chromatin, whereas deletion of Dnmt3b reduces the association of CUL4A and NEDD8 at a repressed promoter in a cancer cell line.

  14. Abnormal expression of DNA methyltransferases and genomic imprinting in cloned goat fibroblasts.

    Science.gov (United States)

    Wan, Yongjie; Deng, Mingtian; Zhang, Guomin; Ren, Caifang; Zhang, Hao; Zhang, Yanli; Wang, Lizhong; Wang, Feng

    2016-01-01

    Somatic cell nuclear transfer (SCNT) is a useful way to produce cloned animals. However, SCNT animals exhibit DNA methylation and genomic imprinting abnormalities. These abnormalities may be due to the faulty epigenetic reprogramming of donor cells. To investigate the consequence of SCNT on the genomic imprinting and global methylation in the donor cells, growth patterns and apoptosis of cloned goat fibroblast cells (CGFCs) at passage 7 were determined. Growth patterns in CGFCs were similar to the controls; however, the growth rate in log phase was lower and apoptosis in CGFCs were significantly higher (P < 0.01). In addition, quantitative expression analysis of three DNA methyltransferases (Dnmt) and two imprinted genes (H19, IGF2R) was conducted in CGFCs: Dnmt1 and Dnmt3b expression was significantly reduced (P < 0.01), and H19 expression was decreased sixfold (P < 0.01); however, the expression of Dnmt3a was unaltered and IGF2R expression was significantly increased (P < 0.05). Finally, we used bisulfite sequencing PCR to compare the DNA methylation patterns in differentially methylated regions (DMRs) of H19 and IGF2R. The DMRs of H19 (P < 0.01) and IGF2R (P < 0.01) were both highly methylated in CGFCs. These results indicate that the global genome might be hypomethylated. Moreover, there is an aberrant expression of imprinted genes and DMR methylation in CGFCs.

  15. Dysregulated DNA Methyltransferase 3A Upregulates IGFBP5 to Suppress Trophoblast Cell Migration and Invasion in Preeclampsia.

    Science.gov (United States)

    Jia, Yuanhui; Li, Ting; Huang, Xiaojie; Xu, Xianghong; Zhou, Xinyao; Jia, Linyan; Zhu, Jingping; Xie, Dandan; Wang, Kai; Zhou, Qian; Jin, Liping; Zhang, Jiqin; Duan, Tao

    2017-02-01

    Preeclampsia is a unique multiple system disorder during human pregnancy, which affects ≈5% to 8% of pregnancies. Its risks and complications have become the major causes of maternal and fetal morbidity and mortality. Although abnormal placentation to which DNA methylation dysregulation is always linked is speculated to be one of the reasons causing preeclampsia, the underlying mechanisms still remain elusive to date. Here we revealed that aberrant DNA methyltransferase 3A (DNMT3A) plays a critical role in preeclampsia. Our results show that the expression and localization of DNMT3A are dysregulated in preeclamptic placenta. Moreover, knockdown of DNMT3A obviously inhibits trophoblast cell migration and invasion. Mechanistically, IGFBP5 (insulin-like growth factor-binding protein 5), known as a suppressor, is upregulated by decreased DNMT3A because of promoter hypomethylation. Importantly, IGFBP5 downregulation can rescue the defects caused by DNMT3A knockdown, thereby, consolidating the significance of IGFBP5 in the downstream of DNMT3A in trophoblast. Furthermore, we detected low promoter methylation and high protein expression of IGFBP5 in the clinical samples of preeclamptic placenta. Collectively, our study suggests that dysregulation of DNMT3A and IGFBP5 is relevant to preeclampsia. Thus, we propose that DNMT3A and IGFBP5 can serve as potential markers and targets for the clinical diagnosis and therapy of preeclampsia. © 2017 American Heart Association, Inc.

  16. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jinsong, E-mail: pangjs542@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Dong, Mingyue; Li, Ning; Zhao, Yanli [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Liu, Bao, E-mail: baoliu@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China)

    2013-03-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  17. Hypermethylation and post-transcriptional regulation of DNA methyltransferases in the ovarian carcinomas of the laying hen.

    Science.gov (United States)

    Lee, Jin-Young; Jeong, Wooyoung; Lim, Whasun; Lim, Chul-Hong; Bae, Seung-Min; Kim, Jinyoung; Bazer, Fuller W; Song, Gwonhwa

    2013-01-01

    DNA methyltransferases (DNMTs) are key regulators of DNA methylation and have crucial roles in carcinogenesis, embryogenesis and epigenetic modification. In general, DNMT1 has enzymatic activity affecting maintenance of DNA methylation, whereas DNMT3A and DNMT3B are involved in de novo methylation events. Although DNMT genes are well known in mammals including humans and mice, they are not well studied in avian species, especially the laying hen which is recognized as an excellent animal model for research on human ovarian carcinogenesis. Results of the present study demonstrated that expression of DNMT1, DNMT3A and DNMT3B genes was significantly increased, particularly in the glandular epithelia (GE) of cancerous ovaries, but not normal ovaries. Consistent with this result, immunoreactive 5-methylcytosine protein was predominantly abundant in nuclei of stromal and GE cells of cancerous ovaries, but it was also found that, to a lesser extent, in nuclei of stromal cells of normal ovaries. Methylation-specific PCR analysis detected hypermethylation of the promoter regions of the tumor suppressor genes in the initiation and development of chicken ovarian cancer. Further, several microRNAs, specifically miR-1741, miR-16c, and miR-222, and miR-1632 were discovered to influence expression of DNMT3A and DNMT3B, respectively, via their 3'-UTR which suggests post-transcriptional regulation of their expression in laying hens. Collectively, results of the present study demonstrated increased expression of DNMT genes in cancerous ovaries of laying hens and post-transcriptional regulation of those genes by specific microRNAs, as well as control of hypermethylation of the promoters of tumor suppressor genes.

  18. A Novel Catechol-O-Methyltransferase Variant Associated with Human Disc Degeneration

    Science.gov (United States)

    Gruber, Helen E.; Sha, Wei; Brouwer, Cory R.; Steuerwald, Nury; Hoelscher, Gretchen L.; Hanley, Edward N. Jr.

    2014-01-01

    Background: Disc degeneration and its associated low back pain are a major health care concern causing disability with a prominent role in this country's medical, social and economic structure. Low back pain is devastating and influences the quality of life for millions. Low back pain lifetime prevalence approximates 80% with an estimated direct cost burden of $86 billion per year. Back pain patients incur higher costs, greater health care utilization, and greater work loss than patients without back pain. Methods: Research was performed following approval of our Institutional Review Board. DNA was isolated, processed and amplified using routine techniques. Amplified DNA was hybridized to Affymetrix Genome-Wide Human SNP Arrays. Quality control and genotyping analysis were performed using Affymetrix Genotyping Console. The Birdseed v2 algorithm was used for genotyping analysis. 2589 SNPs were selected a priori to enter statistical analysis using lotistic regression in SAS. Results: Our objective was to search for novel single nucleotide polymorphisms (SNPs) associated with disc degeneration. Four SNPs were found to have a significant relationship to disc degeneration; three are novel. Rs165656, a new SNP found to be associated with disc degeneration, was in catechol-O-methyltransferase (COMT), a gene with well-recognized pain involvement, especially in female subjects (p=0.01). Analysis confirmed the previously association between COMT SNP rs4633 and disc degeneration. We also report two novel disc degeneration-related SNPs (rs2095019 and rs470859) located in intergenic regions upstream to thrombospondin 2. Conclusions: Findings contribute to the challenging field of disc degeneration and pain, and are important in light of the high clinical relevance of low back pain and the need for improved understanding of its fundamental basis. PMID:24904231

  19. Inlfuence of DNA methyltransferase 3b on FHIT expression and DNA methylation of the FHIT promoter region in hepatoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Jia-Xiang Wang; Yong-Gan Zhang; Long-Shuan Zhao

    2009-01-01

    BACKGROUND: Alterations in DNA methylation occur during the pathogenesis of human tumors. In this study, we investigated the inlfuence of DNA methyltransferase 3b (DNMT3b) on fragile histidine trial (FHIT) expression and on DNA methylation of the FHIT promoter region in the hepatoma cell line SMMC-7721. METHODS: DNMT3b siRNA was used to down-regulate DNMT3b expression. DNMT3b and FHIT proteins were determined by Western blotting. Methylation-speciifc PCR was used to analyze the methylation status of the FHIT gene. RESULTS: After DNMT3b siRNA transfection, the expression of DNMT3b was inhibited in SMMC-7721 cells, and the expression of FHIT was signiifcantly higher than that in the control group. There was no signiifcant difference in methylation status between the DNMT3b siRNA transfected cells and control cells. CONCLUSION: DNMT3b may play an important role in regulation of FHIT expression in hepatoma SMMC-7721 cells, but not through methylation of the FHIT promoter.

  20. Expression of O(6)-methylguanine DNA methyltransferase (MGMT) and its clinical significance in gastroenteropancreatic neuroendocrine neoplasm.

    Science.gov (United States)

    Yang, Qiu-Chen; Wang, Yu-Hong; Lin, Yuan; Xue, Ling; Chen, Yuan-Jia; Chen, Min-Hu; Chen, Jie

    2014-01-01

    O(6)-methylguanine-DNA methyltransferase (MGMT) is a widespread DNA repair enzyme defending against mutation caused by guanine O(6)-alkylating agents. Until now, we know only little about the expression of MGMT in gastroenteropancreatic neuroendocrine neoplasm (GEP-NEN). To study the expression of MGMT and its clinical significance in GEP-NEN, 174 specimens of GEP-NEN were examined, of which 152 specimens came from The First Affiliated Hospital, Sun Yat-sen University during October 1995 to November 2013, 22 specimens came from Peking Union Medical College Hospital during September 2004 to April 2010. MGMT protein was detected with EnVision immunohistochemical staining method. Clinicopathological factors were also collected and analyzed. We observed that the overall expression rate of MGMT was 83.9%. Over expression of MGMT protein was not associated with sex, age, functional status, primary tumor location, grading, classification, TNM stage and metastasis (P > 0.05). Kaplan-Meier analysis revealed that there was no significant difference in survival between MGMT-positive and MGMT-negative tumors of GEP-NEN patients (χ(2) = 0.887, P = 0.346). In multivariate analyses carried out by Cox proportional hazards regression model, MGMT expression was also not an independent predictors of survival. These results demonstrated that MGMT protein was highly expressed in GEP-NEN. MGMT deficiency rate was similar in pancreatic NEN and in gastrointestinal NEN. MGMT expression was not correlated with prognosis of GEP-NEN.

  1. Quetiapine treatment reverses depressive-like behavior and reduces DNA methyltransferase activity induced by maternal deprivation.

    Science.gov (United States)

    Ignácio, Zuleide M; Réus, Gislaine Z; Abelaira, Helena M; Maciel, Amanda L; de Moura, Airam B; Matos, Danyela; Demo, Júlia P; da Silva, Júlia B I; Gava, Fernanda F; Valvassori, Samira S; Carvalho, André F; Quevedo, João

    2017-03-01

    Stress in early life has been appointed as an important phenomenon in the onset of depression and poor response to treatment with classical antidepressants. Furthermore, childhood trauma triggers epigenetic changes, which are associated with the pathophysiology of major depressive disorder (MDD). Treatment with atypical antipsychotics such as quetiapine, exerts therapeutic effect for MDD patients and induces epigenetic changes. This study aimed to analyze the effect of chronic treatment with quetiapine (20mg/kg) on depressive-like behavior of rats submitted to maternal deprivation (MD), as well as the activity of histone acetylation by the enzymes histone acetyl transferases (HAT) and deacetylases (HDAC) and DNA methylation, through DNA methyltransferase enzyme (DNMT) in the prefrontal cortex (PFC), nucleus accumbens (NAc) and hippocampus. Maternally deprived rats had a depressive-like behavior in the forced swimming test and an increase in the HDAC and DNMT activities in the hippocampus and NAc. Treatment with quetiapine reversed depressive-like behavior and reduced the DNMT activity in the hippocampus. This is the first study to show the antidepressant-like effect of quetiapine in animals subjected to MD and a protective effect by quetiapine in reducing epigenetic changes induced by stress in early life. These results reinforce an important role of quetiapine as therapy for MDD. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The Study of DNA Methyltransferase-3B Promoter Variant Genotype among Iranian Sporadic Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ebrahim Eftekhar

    2014-05-01

    Full Text Available Background: DNA methyltransferase-3B (DNMT3B is an important enzyme responsible for maintaining the DNA methylation pattern in eukaryotic cells. In this study we have investigated the correlation between the 46359C→T polymorphism in the DNMT3B gene and the risk of breast cancer incidence among sporadic breast cancer patients in Fars Province, Southern Iran. Methods: In this case-control study, 100 breast cancer patients and 138 healthy control subjects were genotyped for the DNMT3B gene by the polymerase chain reaction-restriction fragment length polymorphism method. Results: The genotype frequency in the case (CC 27%, CT 47%, TT 26% group significantly (P=0.008 differed from the control (CC 19.56%, CT 67.3%, TT 13% group. We observed a decreased association between the CT genotype and lymph node involvement in breast cancer patients. Our results have shown that in comparison to the homozygous CC genotype carriers the DNMT3B-CT genotype has a significantly lower risk for breast cancer (OR=0.515, 95% CI=0.267-0.994, P=0.048. Conclusion: Our case-control study showed that the CT genotype was significantly associated with decreased breast cancer risk. Consistent with these results, a significant decrease of CT genotype among lymph node positive breast cancer patients was observed. However, a larger study population with more clinical data is needed to confirm these results.

  3. Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants.

    Directory of Open Access Journals (Sweden)

    Nataliya E Yelina

    Full Text Available Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO. Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 (met1 mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1, coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1, suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1. Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a, and we demonstrate that it undergoes increased recombination activity in met1. We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes.

  4. Atomic Insight into the Altered O6-Methylguanine-DNA Methyltransferase Protein Architecture in Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Naveed Anjum Chikan

    Full Text Available O6-methylguanine-DNA methyltransferase (MGMT is one of the major DNA repair protein that counteracts the alkalyting agent-induced DNA damage by replacing O6-methylguanine (mutagenic lesion back to guanine, eventually suppressing the mismatch errors and double strand crosslinks. Exonic alterations in the form of nucleotide polymorphism may result in altered protein structure that in turn can lead to the loss of function. In the present study, we focused on the population feared for high exposure to alkylating agents owing to their typical and specialized dietary habits. To this end, gastric cancer patients pooled out from the population were selected for the mutational screening of a specific error prone region of MGMT gene. We found that nearly 40% of the studied neoplastic samples harbored missense mutation at codon151 resulting into Serine to Isoleucine variation. This variation resulted in bringing about the structural disorder, subsequently ensuing into a major stoichiometric variance in recognition domain, substrate binding and selectivity loop of the active site of the MGMT protein, as observed under virtual microscope of molecular dynamics simulation (MDS. The atomic insight into MGMT protein by computational approach showed a significant change in the intra molecular hydrogen bond pattern, thus leading to the observed structural anomalies. To further examine the mutational implications on regulatory plugs of MGMT that holds the protein in a DNA-Binding position, a MDS based analysis was carried out on, all known physically interacting amino acids essentially clustered into groups based on their position and function. The results generated by physical-functional clustering of protein indicated that the identified mutation in the vicinity of the active site of MGMT protein causes the local and global destabilization of a protein by either eliminating the stabilizing salt bridges in cluster C3, C4, and C5 or by locally destabilizing the

  5. Approaches to enzyme and substrate design of the murine Dnmt3a DNA methyltransferase.

    Science.gov (United States)

    Jurkowska, Renata Z; Siddique, Abu Nasar; Jurkowski, Tomasz P; Jeltsch, Albert

    2011-07-01

    Dnmt3a-C, the catalytic domain of the Dnmt3a DNA-(cytosine-C5)-methyltransferase, is active in an isolated form but, like the full-length Dnmt3a, shows only weak DNA methylation activity. To improve this activity by directed evolution, we set up a selection system in which Dnmt3a-C methylated its own expression plasmid in E. coli, and protected it from cleavage by methylation-sensitive restriction enzymes. However, despite screening about 400 clones that were selected in three rounds from a random mutagenesis library of 60 000 clones, we were not able to isolate a variant with improved activity, most likely because of a background of uncleaved plasmids and plasmids that had lost the restriction sites. To improve the catalytic activity of Dnmt3a-C by optimization of the sequence of the DNA substrate, we analyzed its flanking-sequence preference in detail by bisulfite DNA-methylation analysis and sequencing of individual clones. Based on the enrichment and depletion of certain bases in the positions flanking >1300 methylated CpG sites, we were able to define a sequence-preference profile for Dnmt3a-C from the -6 to the +6 position of the flanking sequence. This revealed preferences for T over a purine at position -2, A over G at -1, a pyrimidine at +1, and A and T over G at +3. We designed one "good" substrate optimized for methylation and one "bad" substrate designed not to be efficiently methylated, and showed that the optimized substrate is methylated >20 times more rapidly at its central CpG site. The optimized Dnmt3a-C substrate can be applied in enzymatic high-throughput assays with Dnmt3a-C (e.g., for inhibitor screening), because the increased activity provides an improved dynamic range and better signal/noise ratio.

  6. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis

    OpenAIRE

    Cui, Chenghua; Gan, Ying; Gu, Liankun; Wilson, James; Liu, Zhaojun; Zhang, Baozhen; Deng, Dajun

    2015-01-01

    Background P16 DNA methylation is well known to be the most frequent event in cancer development. It has been reported that genetic inactivation of P16 drives cancer growth and metastasis, however, whether P16 DNA methylation is truly a driver in cancer metastasis remains unknown. Results A P16-specific DNA methyltransferase (P16-dnmt) expression vector is designed using a P16 promoter-specific engineered zinc finger protein fused with the catalytic domain of dnmt3a. P16-dnmt transfection sig...

  7. De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells

    OpenAIRE

    Tadokoro, Yuko; Ema, Hideo; Okano, Masaki; Li, En; Nakauchi, Hiromitsu

    2007-01-01

    DNA methylation is an epigenetic modification essential for development. The DNA methyltransferases Dnmt3a and Dnmt3b execute de novo DNA methylation in gastrulating embryos and differentiating germline cells. It has been assumed that these enzymes generally play a role in regulating cell differentiation. To test this hypothesis, we examined the role of Dnmt3a and Dnmt3b in adult stem cells. CD34−/low, c-Kit+, Sca-1+, lineage marker− (CD34− KSL) cells, a fraction of mouse bone marrow cells hi...

  8. O6-Methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients

    OpenAIRE

    Spiegl-Kreinecker, Sabine; Pirker, Christine; Filipits, Martin; Lötsch, Daniela; Buchroithner, Johanna; Pichler, Josef; Silye, Rene; Weis, Serge; Micksche, Michael; Fischer, Johannes; Berger, Walter

    2009-01-01

    O6-Methylguanine DNA methyltransferase (MGMT) is implicated as a major predictive factor for treatment response to alkylating agents including temozolomide (TMZ) of glioblastoma multiforme (GBM) patients. However, whether the MGMT status in GBM patients should be detected at the level of promoter methylation or protein expression is still a matter of debate. Here, we compared promoter methylation (by methylation-specific polymerase chain reaction) and protein expression (by Western blot) in t...

  9. Deoxyribonucleic acid (DNA) methyltransferase contributes to p16 promoter CpG island methylation in lung adenocarcinoma with smoking.

    Science.gov (United States)

    Sun, Rongju; Liu, Jiahong; Wang, Bo; Ma, Lingyun; Quan, Xiaojiao; Chu, Zhixiang; Li, Tanshi

    2015-01-01

    In this study, the relationship between CpG island methylation and smoking and DNA methyltransferase in the occurrence and development of lung adenocarcinoma was explored by detecting p16 promoter methylation status. Protein and mRNA levels of p16 were detected by immunohistochemistry and in situ hybridization assays. p16 gene promoter and exon 1 CpG island locus Hap II sites methylation status was analyzed with the methylation-specific PCR. Only 4 of 40 p16-positive cases were detected to methylate on CpG islands with 10% methylating rate whereas 18 of p16-negative cases were methylated up to 36.73% of methylating rate. The methylating rates of both p16-positive and p16-negative groups were significantly different. 17 of 50 cases with smoking from total 89 lung adenocarcinoma cases were detected to methylate on CpG islands while only 5 of the remaining 39 non-smokers to methylate. The difference of the methylating rates in both smokers and non-smokers was significant to suggest the closely association of CpG island methylation of p16 with smoking. Furthermore, p16 promoter CpG islands were detected to methylate in 15 of 35 cases with higher DNA methyltransferase activity whereas only 7 detected to methylate in the remaining 54 cases with lower DNA methyltransferase activity. p16 promoter CpG island methylation likely made p16 expressing silence thus contributed to the tumorigenesis of lung adenocarcinoma. Smoking is likely to promote p16 CpG island methylation or by its effect of the activity and metabolism of DNA methyltransferase 1 (DNMT) on CpG island methylation status.

  10. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence.

    Directory of Open Access Journals (Sweden)

    Allison E James

    Full Text Available DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam. To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence.

  11. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence.

    Science.gov (United States)

    James, Allison E; Rogovskyy, Artem S; Crowley, Michael A; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence.

  12. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wei, E-mail: polo5352877@163.com [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan (China); Zhou, Wei; Yu, Hong-gang; Luo, He-Sheng; Shen, Lei [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan (China)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Zebularine inhibited cell growth of gastric cancer in a time- and dose-dependent manner. Black-Right-Pointing-Pointer Chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Zebularine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by zebularine. -- Abstract: DNA methyltransferase (DNMT) inhibitor zebularine has been reported to potentiate the anti-tumor effect by reactivating the expression of tumor suppressor genes and apoptosis-related genes in various malignant cells. However, the apoptotic signaling pathway in gastric cancer cells induced by zebularine is not well understood. In the study, the effects of zebularine on the growth and apoptosis of gastric cancer cells were investigated by MTT assay, Hoechst assay, Western blot analysis, flow cytometric analysis of annexin V-FITC/PI staining, and TUNEL assay. Zebularine was an effective inhibitor of human gastric cancer cells proliferation in vitro and in vivo. The effects were dose dependent. A zebularine concentration of 50 {mu}M accounted for the inhibition of cell proliferation of 67% at 48 h. The treatment with zebularine upregulated Bax, and decreased Bcl-2 protein. Caspase-3 was activated, suggesting that the apoptosis is mediated by mitochondrial pathways. Moreover, zebularine injection successfully inhibited the tumor growth via apoptosis induction which was demonstrated by TUNEL assay in xenograft tumor mouse model. These results demonstrated that zebularine induced apoptosis in gastric cancer cells via mitochondrial pathways, and zebularine might become a therapeutic approach for the treatment of gastric cancer.

  13. DNA Methyltransferases Modulate Hepatogenic Lineage Plasticity of Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Chien-Wei Lee

    2017-07-01

    Full Text Available The irreversibility of developmental processes in mammalian cells has been challenged by rising evidence that de-differentiation of hepatocytes occurs in adult liver. However, whether reversibility exists in mesenchymal stromal cell (MSC-derived hepatocytes (dHeps remains elusive. In this study, we find that hepatogenic differentiation (HD of MSCs is a reversible process and is modulated by DNA methyltransferases (DNMTs. DNMTs are regulated by transforming growth factor β1 (TGFβ1, which in turn controls hepatogenic differentiation and de-differentiation. In addition, a stepwise reduction in TGFβ1 concentrations in culture media increases DNMT1 and decreases DNMT3 in primary hepatocytes (Heps and confers Heps with multi-differentiation potentials similarly to MSCs. Hepatic lineage reversibility of MSCs and lineage conversion of Heps are regulated by DNMTs in response to TGFβ1. This previously unrecognized TGFβ1-DNMTs-MSC-HD axis may further increase the understanding the normal and pathological processes in the liver, as well as functions of MSCs after transplantation to treat liver diseases.

  14. Immunohistochemical evaluation of O6 -methylguanine DNA methyltransferase (MGMT) expression in 117 cases of glioblastoma.

    Science.gov (United States)

    Miyazaki, Masaya; Nishihara, Hiroshi; Terasaka, Shunsuke; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Ito, Tamio; Kamoshima, Yuuta; Fujimoto, Shin; Kaneko, Sadao; Katoh, Masahito; Ishii, Nobuaki; Mohri, Hiromi; Tanino, Mishie; Kimura, Taichi; Tanaka, Shinya

    2014-06-01

    Temozolomide (TMZ) is an oral alkylating agent which is widely used in the treatment of glioblastoma (GBM) and is composed of astrocytic and/or oligodendroglial tumors, and the evaluation of O(6) -methylguanine DNA methyltransferase (MGMT) expression is important to predict the response to TMZ therapy. In this study, we conducted immunohistochemical analysis of 117 cases of Japanese GBM including 19 cases of GBM with oligodendroglioma component (GBMO), using a scoring system for quantitative evaluation of staining intensity and proportion of MGMT, and performed survival analysis of these patients. Immunohistochemically, 55 cases (47%) were positive for MGMT with various intensities and proportions (total score (TS) ≥ 2), while 62 cases (53%) were negative (TS = 0). The distribution of MGMT expression pattern was not affected by any clinicopathological parameters such as the histological subtype (GBM vs. GBMO), age and gender. The survival analysis of these patients revealed that the minimal expression of MGMT (TS ≥ 2) was a significant unfavorable prognostic factor (P MGMT expression in GBM was the most potent independent predictor for progression free survival (P MGMT expression in GBM. In addition, our results emphases the clinicopathological values of the immunohistochemical approach for MGMT expression in glioma patients as a routine laboratory examination.

  15. O(6)-Methylguanine-DNA methyltransferase (MGMT): A drugable target in lung cancer?

    Science.gov (United States)

    Hiddinga, Birgitta I; Pauwels, Patrick; Janssens, Annelies; van Meerbeeck, Jan P

    2016-07-18

    This manuscript addresses the role of O(6)-methylguanine-DNA methyltransferase (MGMT) as a biomarker in the oncogenesis of cancer and the opportunity of turning this gene into a drugable target in neuroendocrine tumours of the lung. Studies in brain tumours conclude that MGMT promoter methylation is considered a strong predictive factor for a favourable outcome for treatment with temozolomide, e.g. alkylating agent. We conducted a systematic review of MGMT in non-small cell lung cancer (NSCLC), small-cell lung cancer (SCLC) and other pulmonary neuroendocrine tumours (NETs) to evaluate whether MGMT is a prognostic and/or predictive factor to select patients with lung cancer who can benefit from treatment with temozolomide. In NSCLC MGMT promoter methylation is not a prognostic and predictive factor, hence temozolomide has no place. In SCLC and NET patients with a MGMT promoter methylation benefit of temozolomide has to be confirmed.Temozolomide can be considered a 'personalized' treatment if the predictive role of MGMT is further confirmed.

  16. DNA methyltransferase 3B expression is associated with poor outcome of stage I testicular seminoma

    Science.gov (United States)

    Arai, Eri; Nakagawa, Tohru; Wakai-Ushijima, Saori; Fujimoto, Hiroyuki; Kanai, Yae

    2012-01-01

    Aims To examine in testicular seminomas the expression of DNA methyltransferase 3B (DNMT3B), which is known to be associated with early embryonic development and carcinogenesis, and to obtain a predictive marker for relapse of stage I seminomas. Methods and results Immunohistochemical examination of DNMT3B was performed in 88 cases of seminoma, 35 (39.8%) of which showed widely scattered nuclear immunoreactivity for DNMT3B, and 53 (60.2%) of which were completely negative. The incidence of focal DNMT3B expression was higher in stage III seminomas (5/5, 100%) than in stage I (25/70, 35.7%) or stage II (5/13, 38.5%) seminomas (P = 0.011). In stage I seminomas there were no significant correlations between DNMT3B expression and tumour size, invasion of the rete testis, or lymphatic or vascular involvement. Six of 25 cases (24%) showing DNMT3B expression relapsed, whereas only 3/45 cases (6.7%) lacking such expression did so (P = 0.037). Patients with seminomas showing DNMT3B expression had a significantly lower relapse-free survival rate than patients whose tumours lacked this feature (P = 0.0464). Conclusions Patients with seminomas showing focal DNMT3B expression are at increased risk of relapse, and should be followed up carefully. PMID:22394436

  17. Association of DNA methyltransferase polymorphisms with susceptibility to primary gouty arthritis

    Science.gov (United States)

    Zhong, Xiaowu; Peng, Yuanhong; Yao, Chengjiao; Qing, Yufeng; Yang, Qibin; Guo, Xiaolan; Xie, Wenguang; Zhao, Mingcai; Cai, Xiaoming; Zhou, Jing-Guo

    2016-01-01

    Gouty arthritis is the most common type of inflammatory and immune disease, and the prevalence and incidence of gout increases annually. Genetic variations in the DNA methyltransferases (DNMTs) gene have not, to the best of our knowledge, been reported to influence gene expression and to participate in the pathogenesis of gout. The aim of the present study was to investigate whether the DNMT1, DNMT3A and DNMT3B polymorphisms contribute to gout susceptibility. These polymorphisms were screened for in 336 gout patients and 306 healthy control subjects (from a South China population) for association with gout. The distribution frequencies of DNMT1 rs2228611 AA genotype (P=0.007) and A allele (P=0.002; odds ratio=1.508, 95% confidence interval=1.158–1.964) were found to be significantly increased in the gout patients when compared with those in the healthy control subjects. The rs1550117 in DNMT3A and rs2424913 in DNMT3B exhibited no significant associations with gout susceptibility between the patients and control subjects. These results demonstrated that the DNMT1 rs2228611 polymorphism may be involved in the pathogenesis of gout, while DNMT3A rs1550117 and DNMT3B rs2424913 did not show any obvious significance in the current study; thus, may not be used as risk factors to predict the susceptibility to gout. However, further studies are required to investigate the functions and regulatory mechanism of the polymorphisms of DNMTs in gout. PMID:27699015

  18. Association of DNA methyltransferase polymorphisms with susceptibility to primary gouty arthritis.

    Science.gov (United States)

    Zhong, Xiaowu; Peng, Yuanhong; Yao, Chengjiao; Qing, Yufeng; Yang, Qibin; Guo, Xiaolan; Xie, Wenguang; Zhao, Mingcai; Cai, Xiaoming; Zhou, Jing-Guo

    2016-10-01

    Gouty arthritis is the most common type of inflammatory and immune disease, and the prevalence and incidence of gout increases annually. Genetic variations in the DNA methyltransferases (DNMTs) gene have not, to the best of our knowledge, been reported to influence gene expression and to participate in the pathogenesis of gout. The aim of the present study was to investigate whether the DNMT1, DNMT3A and DNMT3B polymorphisms contribute to gout susceptibility. These polymorphisms were screened for in 336 gout patients and 306 healthy control subjects (from a South China population) for association with gout. The distribution frequencies of DNMT1 rs2228611 AA genotype (P=0.007) and A allele (P=0.002; odds ratio=1.508, 95% confidence interval=1.158-1.964) were found to be significantly increased in the gout patients when compared with those in the healthy control subjects. The rs1550117 in DNMT3A and rs2424913 in DNMT3B exhibited no significant associations with gout susceptibility between the patients and control subjects. These results demonstrated that the DNMT1 rs2228611 polymorphism may be involved in the pathogenesis of gout, while DNMT3A rs1550117 and DNMT3B rs2424913 did not show any obvious significance in the current study; thus, may not be used as risk factors to predict the susceptibility to gout. However, further studies are required to investigate the functions and regulatory mechanism of the polymorphisms of DNMTs in gout.

  19. DNA methyltransferase 3b is dispensable for mouse neural crest development.

    Directory of Open Access Journals (Sweden)

    Bridget T Jacques-Fricke

    Full Text Available The neural crest is a population of multipotent cells that migrates extensively throughout vertebrate embryos to form diverse structures. Mice mutant for the de novo DNA methyltransferase DNMT3b exhibit defects in two neural crest derivatives, the craniofacial skeleton and cardiac ventricular septum, suggesting that DNMT3b activity is necessary for neural crest development. Nevertheless, the requirement for DNMT3b specifically in neural crest cells, as opposed to interacting cell types, has not been determined. Using a conditional DNMT3b allele crossed to the neural crest cre drivers Wnt1-cre and Sox10-cre, neural crest DNMT3b mutants were generated. In both neural crest-specific and fully DNMT3b-mutant embryos, cranial neural crest cells exhibited only subtle migration defects, with increased numbers of dispersed cells trailing organized streams in the head. In spite of this, the resulting cranial ganglia, craniofacial skeleton, and heart developed normally when neural crest cells lacked DNMT3b. This indicates that DNTM3b is not necessary in cranial neural crest cells for their development. We conclude that defects in neural crest derivatives in DNMT3b mutant mice reflect a requirement for DNMT3b in lineages such as the branchial arch mesendoderm or the cardiac mesoderm that interact with neural crest cells during formation of these structures.

  20. Role of microRNAs and DNA methyltransferases in transmitting induced genomic instability between cell generations

    Directory of Open Access Journals (Sweden)

    Katriina eHuumonen

    2014-09-01

    Full Text Available There is limited understanding of how radiation or chemicals induce genomic instability, and how the instability is epigenetically transmitted to the progeny of exposed cells or organisms. Here we measured the expression of microRNAs (miRNAs and DNA methyltransferases (DNMTs in murine embryonal fibroblasts exposed to ionizing radiation or 2,3,7,8 -tetrachlorodibenzo-p-dioxin (TCDD, which were previously shown to induce genomic instability in this cell line. Cadmium was used as a reference agent that does not induce genomic instability in our experimental model. Measurements at 8 and 15 days after exposure did not identify any such persistent changes that could be considered as signals transmitting genomic instability to the progeny of exposed cells. However, measurements at 2 days after exposure revealed findings that may reflect initial stages of genomic instability. Changes that were common to TCDD and two doses of radiation (but not to cadmium included 5 candidate signature miRNAs and general up-regulation of miRNA expression. Expression of DNMT3a, DNMT3b and DNMT2 were suppressed by cadmium but not by TCDD or radiation, consistently with the hypothesis that sufficient expression of DNMTs is necessary in the initial phase of induced genomic instability.

  1. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases.

    Directory of Open Access Journals (Sweden)

    Julia Arand

    2012-06-01

    Full Text Available The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites. The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position-, cell type-, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM to calculate the relative contribution of DNA methyltransferases (Dnmts for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs.

  2. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

    Directory of Open Access Journals (Sweden)

    Yoda Satoshi

    2008-11-01

    Full Text Available Abstract Background Alterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis. Results We observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1 that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest. Conclusion Our results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.

  3. Isolation of DNA-methyltransferase genes from strawberry (Fragaria x ananassa Duch.) and their expression in relation to micropropagation.

    Science.gov (United States)

    Chang, Linlin; Zhang, Zhihong; Han, Baiming; Li, He; Dai, Hongyan; He, Ping; Tian, Hongzhe

    2009-09-01

    DNA methylation can control gene expression and may also play a role in plant development. Methylation of cytosine residues in DNA is enzymatically catalyzed by DNA methyltransferases. In this study, full-length genomic genes and cDNAs of methyltransferase (MET1) and domain-rearranged methyltransferase (DRM) were isolated from strawberry (Fragaria x ananassa Duch.). Two genomic clones (FaMET1a and FaMET1b) encoding MET1 had open-reading frame of 4,695 and 4,671 nucleotides with two introns, respectively. Amino acid sequence comparison indicated high similarity (98.72% identity) of strawberry MET1 protein to other plant MET1 sequences. The full-length cDNA of strawberry DRM genes (FaDRMa, FaDRMb and FaDRMc) were 2,273, 2,282 and 2,288 bp, respectively. Ten introns with different sizes were dispersed in FaDRM genes. Similarly, FaDRMa, FaDRMb and FaDRMc had high-sequence similarity overall. Expressions of strawberry MET1 and DRM genes were compared among in vitro-micropropagated plants, generations of micropropagated plants and conventionally propagated plants. The transcriptional expressions of both FaMET1 and FaDRM genes were downregulated in micropropagated plants, and they were recovered in the first and second runner generations of micropropagated plants. However, there was a slighter difference in global DNA methylation rates between micropropagated plants and conventionally propagated plants. Therefore, there was no positive relation between global DNA methylation rates and the expression levels of MET1 and DRM genes.

  4. A dual amplification fluorescent strategy for sensitive detection of DNA methyltransferase activity based on strand displacement amplification and DNAzyme amplification.

    Science.gov (United States)

    Cui, Wanling; Wang, Lei; Jiang, Wei

    2016-03-15

    DNA methyltransferase (MTase) plays a critical role in many biological processes and has been regarded as a predictive cancer biomarker and a therapeutic target in cancer treatment. Sensitive detection of DNA MTase activity is essential for early cancer diagnosis and therapeutics. Here, we developed a dual amplification fluorescent strategy for sensitive detection of DNA MTase activity based on strand displacement amplification (SDA) and DNAzyme amplification. A trifunctional double-stranded DNA (dsDNA) probe was designed including a methylation site for DNA MTase recognition, a complementary sequence of 8-17 DNAzyme for synthesizing DNAzyme, and a nicking site for nicking enzyme cleavage. Firstly, the trifunctional dsDNA probe was methylated by DNA MTase to form the methylated dsDNA. Subsequently, HpaII restriction endonuclease specifically cleaved the residue of unmethylated dsDNA. Next, under the action of polymerase and nicking enzyme, the methylared dsDNA initiated SDA, releasing numbers of 8-17 DNAzymes. Finally, the released 8-17 DNAzymes triggered DNAzyme amplification reaction to induce a significant fluorescence enhancement. This strategy could detect DNA MTase activity as low as 0.0082U/mL. Additionally, the strategy was successfully applied for evaluating the inhibitions of DNA MTase using two anticancer drugs, 5-azacytidine and 5-aza-2'-deoxycytidine. The results indicate the proposed strategy has a potential application in early cancer diagnosis and therapeutics.

  5. Direct, real-time PCR (MethyLight) assay for methylation of O6-methylguanine-DNA methyltransferase promoter in glioma

    Institute of Scientific and Technical Information of China (English)

    CHEN Gong; WU Xing; YAO Yu; ZHOU Liang-fu; MAO Ying

    2009-01-01

    @@ O6-Methylguanine-DNA methyltransferase (MGMT) is a cellular DNA repair protein that rapidly reverses alkylation (e.g. methylation) at the O6 position of guanine,thereby neutralizing the cytotoxic effects of alkylating agent therapy such as temozolomide (TMZ) and carmustine.1It has been shown that epigenetic silencing of the MGMT gene by promoter methylation shuts down gene transcription2 and reflects a common alteration in primary human tumors leading to MGMT deficiency)Epigenetic silencing of the MGMT gene has been shown to correlate with improved survival in several studies of glioma" patients treated with the alkylating agent. 56therapy4 and has been substantiated in two clinical trials.5.6

  6. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs.

    Directory of Open Access Journals (Sweden)

    Ah-Young So

    Full Text Available Epigenetic regulation of gene expression is well known mechanism that regulates cellular senescence of cancer cells. Here we show that inhibition of DNA methyltransferases (DNMTs with 5-azacytidine (5-AzaC or with specific small interfering RNA (siRNA against DNMT1 and 3b induced the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs and increased p16(INK4A and p21(CIP1/WAF1 expression. DNMT inhibition changed histone marks into the active forms and decreased the methylation of CpG islands in the p16(INK4A and p21(CIP1/WAF1 promoter regions. Enrichment of EZH2, the key factor that methylates histone H3 lysine 9 and 27 residues, was decreased on the p16(INK4A and p21(CIP1/WAF1 promoter regions. We found that DNMT inhibition decreased expression levels of Polycomb-group (PcG proteins and increased expression of microRNAs (miRNAs, which target PcG proteins. Decreased CpG island methylation and increased levels of active histone marks at genomic regions encoding miRNAs were observed after 5-AzaC treatment. Taken together, DNMTs have a critical role in regulating the cellular senescence of hUCB-MSCs through controlling not only the DNA methylation status but also active/inactive histone marks at genomic regions of PcG-targeting miRNAs and p16(INK4A and p21(CIP1/WAF1 promoter regions.

  7. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation

    DEFF Research Database (Denmark)

    Shaknovich, Rita; Cerchietti, Leandro; Tsikitas, Lucas

    2011-01-01

    The phenotype of germinal center (GC) B cells includes the unique ability to tolerate rapid proliferation and the mutagenic actions of activation induced cytosine deaminase (AICDA). Given the importance of epigenetic patterning in determining cellular phenotypes, we examined DNA methylation and t...

  8. DNA Methyltransferase 3B Gene Promoter and Interleukin-1 Receptor Antagonist Polymorphisms in Childhood Immune Thrombocytopenia

    Directory of Open Access Journals (Sweden)

    Margarita Pesmatzoglou

    2012-01-01

    Full Text Available Primary immune thrombocytopenia (ITP is one of the most common blood diseases as well as the commonest acquired bleeding disorder in childhood. Although the etiology of ITP is unclear, in the pathogenesis of the disease, both environmental and genetic factors including polymorphisms of TNF-a, IL-10, and IL-4 genes have been suggested to be involved. In this study, we investigated the rs2424913 single-nucleotide polymorphism (SNP (C46359T in DNA methyltransferase 3B (DNMT3B gene promoter and the VNTR polymorphism of IL-1 receptor antagonist (IL-1 Ra intron-2 in 32 children (17 boys with the diagnosis of ITP and 64 healthy individuals. No significant differences were found in the genotype distribution of DNMT3B polymorphism between the children with ITP and the control group, whereas the frequency of allele T appeared significantly increased in children with ITP (P = 0.03, OR = 2, 95% CI: 1.06–3.94. In case of IL-1 Ra polymorphism, children with ITP had a significantly higher frequency of genotype I/II, compared to control group (P = 0.043, OR = 2.60, 95% CI: 1.02–6.50. Moreover, genotype I/I as well as allele I was overrepresented in the control group, suggesting that allele I may have a decreased risk for development of ITP. Our findings suggest that rs2424913 DNMT3B SNP as well as IL-1 Ra VNTR polymorphism may contribute to the susceptibility to ITP.

  9. The aberrant expression and localization of DNA methyltransferase 3B in endometriotic stromal cells

    Science.gov (United States)

    Dyson, Matthew T.; Kakinuma, Toshiyuki; Pavone, Mary Ellen; Monsivais, Diana; Navarro, Antonia; Malpani, Saurabh S.; Ono, Masanori; Bulun, Serdar E.

    2015-01-01

    Objective To define the expression and function of DNA methyltransferases (DNMTs) in response to decidualizing stimuli in endometriotic cells compared with healthy endometrial stroma. Design Basic science. Setting University research center. Patients Premenopausal women with or without endometriosis. Interventions Primary cultures of stromal cells from healthy endometrium (E-IUM) or endometriomas (E-OSIS) were subjected to in vitro decidualization (IVD) using 1 µM medroxyprogesterone acetate, 35 nM 17β-estradiol, and 0.05 mM 8-Br-cAMP. Main Outcome Measure(s) DNMT1, DNMT3A, and DNMT3B expression in E-IUM and E-OSIS were assessed by qRT-PCR and immunoblotting. DNMT3B recruitment to the promoters of steroidogenic factor 1 (SF-1) and estrogen receptor α (ESR1) was examined by chromatin immunoprecipitation Results IVD treatment reduced DNMT3B mRNA (74%) and protein levels (81%) only in E-IUM. DNMT1 and DNMT3A were unchanged in both cell types. Significantly more DNMT3B bound to the SF-1 promoter in E-IUM compared with E-OSIS, and IVD treatment reduced binding in E-IUM to levels similar to those in E-OSIS. DNMT3B enrichment across three ESR1 promoters was reduced in E-IUM after IVD, although the more distal promoter showed increased DNMT3B enrichment in E-OSIS after IVD. Conclusions The inability to downregulate DNMT3B expression in E-OSIS may contribute to an aberrant epigenetic fingerprint that misdirects gene expression in endometriosis and contributes to its altered response to steroid hormones. PMID:26239024

  10. Expression pattern and clinical significance of DNA methyltransferase 3B variants in gastric carcinoma.

    Science.gov (United States)

    Su, Xianwei; Lv, Chengyu; Qiao, Fengchang; Qiu, Xuemei; Huang, Wenbin; Wu, Qingxiang; Zhao, Zhujiang; Fan, Hong

    2010-03-01

    The aim of this study was to detect the expression pattern of DNA methyltransferase 3B (DNMT3B) variants in primary gastric cancer (GC) and to explore the clinical significance of DNMT3B variants in gastric carcinogenesis. Specific polymerase chain reaction (PCR) primer sets were designed to distinguish individual DNMT3B variants according to their splicing patterns. Expression levels of DNMT3B variants were assessed by quantitative real-time RT-PCR in gastric cancer tissue, normal gastric mucosae and GC cell lines. The relationship between the expression patterns of the DNMT3B variants and corresponding clinical information was analyzed by observing the expression levels of different variants in the tumors. These results demonstrate that DNMT3B overexpression is related to late phase invasion (P=0.029) and intestinal type (P=0.012) in GC. DNMT3B3 expression was higher in normal tissue, compared to tumor tissue (P=0.033). In contrast, only 18, 32 and 35% of the patient tumors overexpressed DNMT3B1, DNMT3B4 and DNMT3B5, respectively. While taking into account environmental factors (H. pylori, Epstein-Barr virus infection), H. pylori infection elevated DNMT3B1 and DNMT3B3 variants in tumors, while increasing DNMT3B4 in both tumor and non-cancerous tissues. Our findings indicated that the expression of DNMT3B3 is the major splice variant in normal gastric mucosae and may be affected by H. pylori infection. Elevated DNMT3B variants may influence the progression of gastric cancer and may possibly be a powerful indicator for the disease.

  11. DNA methyltransferase activity is required for memory-related neural plasticity in the lateral amygdala.

    Science.gov (United States)

    Maddox, Stephanie A; Watts, Casey S; Schafe, Glenn E

    2014-01-01

    We have previously shown that auditory Pavlovian fear conditioning is associated with an increase in DNA methyltransferase (DNMT) expression in the lateral amygdala (LA) and that intra-LA infusion or bath application of an inhibitor of DNMT activity impairs the consolidation of an auditory fear memory and long-term potentiation (LTP) at thalamic and cortical inputs to the LA, in vitro. In the present study, we use awake behaving neurophysiological techniques to examine the role of DNMT activity in memory-related neurophysiological changes accompanying fear memory consolidation and reconsolidation in the LA, in vivo. We show that auditory fear conditioning results in a training-related enhancement in the amplitude of short-latency auditory-evoked field potentials (AEFPs) in the LA. Intra-LA infusion of a DNMT inhibitor impairs both fear memory consolidation and, in parallel, the consolidation of training-related neural plasticity in the LA; that is, short-term memory (STM) and short-term training-related increases in AEFP amplitude in the LA are intact, while long-term memory (LTM) and long-term retention of training-related increases in AEFP amplitudes are impaired. In separate experiments, we show that intra-LA infusion of a DNMT inhibitor following retrieval of an auditory fear memory has no effect on post-retrieval STM or short-term retention of training-related changes in AEFP amplitude in the LA, but significantly impairs both post-retrieval LTM and long-term retention of AEFP amplitude changes in the LA. These findings are the first to demonstrate the necessity of DNMT activity in the consolidation and reconsolidation of memory-associated neural plasticity, in vivo.

  12. Risk-Association of DNA Methyltransferases Polymorphisms with Gastric Cancer in the Southern Chinese Population

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2012-07-01

    Full Text Available DNA hypomethylation and/or hypermethylation are presumed to be early events in carcinogenesis, and one or more DNA methyltransferases (DNMTs have been suggested to play roles in carcinogenesis of gastric cancer (GC. However, there have been no systematic studies regarding the association between DNMT gene polymorphisms and GC risk. Here, we examined the associations of 16 single nucleotide polymorphisms (SNPs from DNMT1 (rs2114724, rs2228611, rs2228612, rs8101866, rs16999593, DNMT2 (rs11695471, rs11254413, DNMT3A (rs1550117, rs11887120, rs13420827, rs13428812, rs6733301, DNMT3B (rs2424908, rs2424913, rs6087990 and DNMT3L (rs113593938 with GC in the Southern Chinese population. We assessed the associations of these 16 SNPs with GC in a case-control study that consisted of 242 GC cases and 294 controls, using the Sequenom MALDI-TOF-MS platform. Association analyses based on the χ2 test and binary logistic regression were performed to determine the odds ratio (OR and 95% confidence interval (95%CI for each SNP. We found that rs16999593 in DNMT1, rs11254413 in DNMT2 and rs13420827 in DNMT3A were significantly associated with GC susceptibility (OR 1.45, 0.15, 0.66, respectively; 95% CI 1.00–2.11, p = 0.047; 0.08–0.27, p < 0.01; 0.45–0.97, p = 0.034, respectively, overdominant model. These results suggested that DNMT1, DNMT2 and DNMT3A may play important roles in GC carcinogenesis. However, further studies are required to elucidate the mechanism.

  13. O 6 -methylguanine DNA methyltransferase gene promoter methylation in high-grade gliomas: A review of current status

    Directory of Open Access Journals (Sweden)

    Vaishali Suri

    2011-01-01

    Full Text Available Assessment of promoter methylation of the O 6 -methylguanine DNA methyltransferase (MGMT gene has recently gained importance in molecular profiling of high-grade gliomas. It has emerged not only as an important prognostic marker but also as a predictive marker for response to temozolomide in patients with newly diagnosed glioblastoma. Further, recent studies indicate that MGMT promoter methylation has strong prognostic relevance even in anaplastic (grade III gliomas, irrespective of therapy (chemotherapy or radiotherapy. This article provides an overview of its use as a predictive and prognostic biomarker, as well as the methods employed for its assessment and use in therapeutic decision making.

  14. Phosphatidylethanolamine N-methyltransferase and choline dehydrogenase gene polymorphisms are associated with human sperm concentration

    Institute of Scientific and Technical Information of China (English)

    Leandros Lazaros; Ioannis Georgiou; Nectaria Xita; Elissavet Hatzi; Apostolos Kaponis; Georgios Makrydimas; Atsushi Takenaka; Nikolaos Sofikitis; Theodoros Stefos; Konstantinos Zikopoulos

    2012-01-01

    Choline is a crucial factor in the regulation of sperm membrane structure and fluidity,and this nutrient plays an important role in the maturation and fertilizing capacity of spermatozoa.Transcripts of phosphatidylethanolamine N-methyltransferase (PEMT) and choline dehydrogenase (CHDH),two basic enzymes of choline metabolism,have been observed in the human testis,demonstrating their gene expression in this tissue.In the present study,we explored the contribution of the PEMTand CHDHgene variants to sperm parameters.Two hundred oligospermic and 250 normozoospermic men were recruited.DNA was extracted from the spermatozoa,and the PEMT -774G>C and CHDH +432G>T polymorphisms were genotyped.The genotype distribution of the PEMT -774G>C polymorphism did not differ between oligospermic and normozoospermic men.In contrast,in the case of the CHDH +432G>T polymorphism,oligospermic men presented the CHDH432G/G genotype more frequently than normozoospermic men (62% vs.42%,P<0.001).The PEMT774G/G genotype was associated with a higher sperm concentration compared to the PEMT774G/C and 774C/C genotypes in oligospermic men (12.5±5.6×106 spermatozoa ml-1 vs.8.3±5.2×106 spermatozoa ml-1,P<0.002) and normozoospermic men (81.5±55.6×106 vs.68.1±44.5× 106 spermatozoa ml-1,P<0.006).In addition,the CHDH432G/G genotype was associated with higher sperm concentration compared to CHDH432G/T and 432T/T genotypes in oligospermic (11.8± 5.1 × 106 VS.7.8±5.3 × 106spermatozoa ml-1,P<0.003)and normozoospermic men(98.6±62.2×106vs.58.8±33.6×106 spermatozoa ml-1,p<0.001).In our series,the PEMT-774G>C and CHDH +432G>T polymorphisms were associated with sperm concentration.This finding suggests a possible influence of these genes on sperm quality.

  15. DNA Methyltransferase 1 Is Indispensable for Development of the Hippocampal Dentate Gyrus.

    Science.gov (United States)

    Noguchi, Hirofumi; Murao, Naoya; Kimura, Ayaka; Matsuda, Taito; Namihira, Masakazu; Nakashima, Kinichi

    2016-06-01

    Development of the hippocampal dentate gyrus (DG) in the mammalian brain is achieved through multiple processes during late embryonic and postnatal stages, with each developmental step being strictly governed by extracellular cues and intracellular mechanisms. Here, we show that the maintenance DNA methyltransferase 1 (Dnmt1) is critical for development of the DG in the mouse. Deletion of Dnmt1 in neural stem cells (NSCs) at the beginning of DG development led to a smaller size of the granule cell layer in the DG. NSCs lacking Dnmt1 failed to establish proper radial processes or to migrate into the subgranular zone, resulting in aberrant neuronal production in the molecular layer of the DG and a reduction of integrated neurons in the granule cell layer. Interestingly, prenatal deletion of Dnmt1 in NSCs affected not only the developmental progression of the DG but also the properties of NSCs maintained into adulthood: Dnmt1-deficient NSCs displayed impaired neurogenic ability and proliferation. We also found that Dnmt1 deficiency in NSCs decreased the expression of Reelin signaling components in the developing DG and increased that of the cell cycle inhibitors p21 and p57 in the adult DG. Together, these findings led us to propose that Dnmt1 functions as a key regulator to ensure the proper development of the DG, as well as the proper status of NSCs maintained into adulthood, by modulating extracellular signaling and intracellular mechanisms. Here, we provide evidence that Dnmt1 is required for the proper development of the hippocampal dentate gyrus (DG). Deletion of Dnmt1 in neural stem cells (NSCs) at an early stage of DG development impaired the ability of NSCs to establish secondary radial glial scaffolds and to migrate into the subgranular zone of the DG, leading to aberrant neuronal production in the molecular layer, increased cell death, and decreased granule neuron production. Prenatal deletion of Dnmt1 in NSCs also induced defects in the proliferation and

  16. The inhibition of the mammalian DNA methyltransferase 3a (Dnmt3a by dietary black tea and coffee polyphenols

    Directory of Open Access Journals (Sweden)

    Jeltsch Albert

    2011-04-01

    Full Text Available Abstract Background Black tea is, second only to water, the most consumed beverage globally. Previously, the inhibition of DNA methyltransferase 1 was shown by dietary polyphenols and epi-gallocatechin gallate (EGCG, the main polyphenolic constituent of green tea, and 5-caffeoyl quinic acid, the main phenolic constituent of the green coffee bean. Results We studied the inhibition of DNA methyltransferase 3a by a series of dietary polyphenols from black tea such as theaflavins and thearubigins and chlorogenic acid derivatives from coffee. For theaflavin 3,3 digallate and thearubigins IC50 values in the lower micro molar range were observed, which when compared to pharmacokinetic data available, suggest an effect of physiological relevance. Conclusions Since Dnnmt3a has been associated with development, cancer and brain function, these data suggest a biochemical mechanism for the beneficial health effect of black tea and coffee and a possible molecular mechanism for the improvement of brain performance and mental health by dietary polyphenols.

  17. Epigenetic Guardian: A Review of the DNA Methyltransferase DNMT3A in Acute Myeloid Leukaemia and Clonal Haematopoiesis

    Science.gov (United States)

    Chaudry, Sabah F.

    2017-01-01

    Acute myeloid leukaemia (AML) is a haematological malignancy characterized by clonal stem cell proliferation and aberrant block in differentiation. Dysfunction of epigenetic modifiers contributes significantly to the pathogenesis of AML. One frequently mutated gene involved in epigenetic modification is DNMT3A (DNA methyltransferase-3-alpha), a DNA methyltransferase that alters gene expression by de novo methylation of cytosine bases at CpG dinucleotides. Approximately 22% of AML and 36% of cytogenetically normal AML cases carry DNMT3A mutations and around 60% of these mutations affect the R882 codon. These mutations have been associated with poor prognosis and adverse survival outcomes for AML patients. Advances in whole-exome sequencing techniques have recently identified a large number of DNMT3A mutations present in clonal cells in normal elderly individuals with no features of haematological malignancy. Categorically distinct from other preleukaemic conditions, this disorder has been termed clonal haematopoiesis of indeterminate potential (CHIP). Further insight into the mutational landscape of CHIP may illustrate the consequence of particular mutations found in DNMT3A and identify specific “founder” mutations responsible for clonal expansion that may contribute to leukaemogenesis. This review will focus on current research and understanding of DNMT3A mutations in both AML and CHIP. PMID:28286768

  18. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas.

    Science.gov (United States)

    Paz, Maria F; Yaya-Tur, Ricard; Rojas-Marcos, Iñigo; Reynes, Gaspar; Pollan, Marina; Aguirre-Cruz, Lucinda; García-Lopez, Jose Luis; Piquer, Jose; Safont, María-Jose; Balaña, Carmen; Sanchez-Cespedes, Montserrat; García-Villanueva, Mercedes; Arribas, Leoncio; Esteller, Manel

    2004-08-01

    The DNA repair enzyme O(6)-methylguanine DNA methyltransferase (MGMT) inhibits the killing of tumor cells by alkylating agents, and its loss in cancer cells is associated with hypermethylation of the MGMT CpG island. Thus, methylation of MGMT has been correlated with the clinical response to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in primary gliomas. Here, we investigate whether the presence of MGMT methylation in gliomas is also a good predictor of response to another emergent alkylating agent, temozolomide. Using a methylation-specific PCR approach, we assessed the methylation status of the CpG island of MGMT in 92 glioma patients who received temozolomide as first-line chemotherapy or as treatment for relapses. Methylation of the MGMT promoter positively correlated with the clinical response in the glioma patients receiving temozolomide as first-line chemotherapy (n = 40). Eight of 12 patients with MGMT-methylated tumors (66.7%) had a partial or complete response, compared with 7 of 28 patients with unmethylated tumors (25.0%; P = 0.030). We also found a positive association between MGMT methylation and clinical response in those patients receiving BCNU (n = 35, P = 0.041) or procarbazine/1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (n = 17, P = 0.043) as first-line chemotherapy. Overall, if we analyze the clinical response of all of the first-line chemotherapy treatments with temozolomide, BCNU, and procarbazine/1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea as a group in relation to the MGMT methylation status, MGMT hypermethylation was strongly associated with the presence of partial or complete clinical response (P < 0.001). Finally, the MGMT methylation status determined in the initial glioma tumor did not correlate with the clinical response to temozolomide when this drug was administered as treatment for relapses (P = 0.729). MGMT methylation predicts the clinical response of primary gliomas to first-line chemotherapy with the alkylating agent

  19. Genetics Home Reference: guanidinoacetate methyltransferase deficiency

    Science.gov (United States)

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions guanidinoacetate methyltransferase deficiency guanidinoacetate methyltransferase ...

  20. Type III methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 regulates biofilm formation and human cell invasion

    Directory of Open Access Journals (Sweden)

    Agnieszka eKwiatek

    2015-12-01

    Full Text Available Neisseria gonorrhoeae is the etiological factor of the sexually transmitted gonorrhea disease that may lead, under specific conditions, to systemic infections. The gonococcal genome encodes many Restriction Modification (RM systems, which main biological role is to defend the pathogen from potentially harmful foreign DNA. However, RM systems seem also to be involved in several other functions. In this study, we examined the effect of inactivation the N. gonorrhoeae FA1090 ngo0545 gene encoding M.NgoAX methyltransferase on the global gene expression, biofilm formation, interactions with human epithelial host cells and overall bacterial growth. Expression microarrays showed at least a two-fold deregulation of a total of 121 genes in the NgoAX knock-out mutant compared to the wt strain under standard grow conditions. As determined by the assay with crystal violet, the NgoAX knock-out strain formed a slightly larger biofilm biomass per cell than the wt strain (OD570/600 = 13.8  2.24 and 9.35  2.06, respectively. SCLM observations showed that the biofilm formed by the gonococcal ngo0545 gene mutant is more relaxed and dispersed than the one formed by the wt strain. Thickness of the biofilm formed by both strains was 48.3 (14.9 µm for the mutant and 28.6 (4.0 µm for the wt. This more relaxed feature of the biofilm in respect to adhesion and bacterial interactions seems advantageous for pathogenesis of the NgoAX-deficient gonococci at the stage of human epithelial cell invasion. Indeed, the overall adhesion of mutant bacterial cells to human cells was lower than adhesion of the wt gonococci (adhesion index = 0.672 ( 0.2 and 2.15 ( 1.53, respectively; yet, a higher number of mutant than wt bacteria were found inside the Hec-1-B epithelial cells (invasion index = 3.38 ( 0.93  105 for mutant and 4.67 ( 3.09  104 for the wt strain. These results indicate that NgoAX-deficient cells have lower ability to attach to human cells

  1. Influence of DNA methyltransferase 3b on the expression of cylin D1 gene and methylation of its promoters in human hepatocellular carcinoma cells%DNA甲基转移酶3b对肝癌细胞系中细胞周期素D1基因的表达和启动子甲基化的影响

    Institute of Scientific and Technical Information of China (English)

    王佳辰; 王家祥; 刘怀然; 张勇敢

    2009-01-01

    Objeetive To investigate the influence of DNA methyltransferase(DNMT)3b on the expression of cylin D1 gene and methylation of its promoters and to investigate the function of DNMT3b.Methods Human hepatocellular carcinoma cells of the line SMMC7721 were cuhured and randomly divided into 3 groups:experimental group transfected with siRNA to silence the DNMT3b,control group transfected with control siRNA,and normal group without transfection.The transfection rate of siRNA was detected by fluorescence microscopy.MTr method was used to measure the survival rate of the SMMC-7721 cells.Western blotting and cell proliferation assay were performed to evaluate the expression of cyclin D1 and cell growth.Methylation specific PCR(MSP)was performed to investigate whether the promoter of cyclin D1 was methylated.Results F1uorescence microscopy showed that the transfection rate of siRNA was over 90%.MTr method showed that 24 h and 36 h after transfection the A value and survival rate of the SMMC7721cells of the experimental group were both significantly higher than those of the control d normal groups(all P<0.05).Western blotting showed that the expression levels of DNMl3b and cyclin D1 of the experimental groud decreased significantly compared with the control and the normal groups.MSP showed no obvious change of the state of methylation among the 3 groups.Condusions DNMT3b may regulate the expression and the function of cyclin D1 gene in the human hepatocellular carcinoma cells,but does not change its methylation state.DNMT3b may play their role as a signal transduction element rather than as a DNA methyltransferase.%目的 探讨DNA甲基转移酶3b(DNMT3b)在人肝癌细胞系(SMMC7721)中对细胞周期素D1(cylin D1)表达及其启动子甲基化水平的影响,并进一步探讨DNMT3b的作用.方法 用小分子干扰RNA(siRNA)技术抑制DNMT3b在SMMC7721细胞系中的表达(实验组),另设转染对照siRNA的对照组,及未加任何处理因素的正常组.用蛋

  2. Loss of the N-terminal methyltransferase NRMT1 increases sensitivity to DNA damage and promotes mammary oncogenesis

    Science.gov (United States)

    Bonsignore, Lindsay A.; Butler, Jill Sergesketter; Klinge, Carolyn M.; Tooley, Christine E. Schaner

    2015-01-01

    Though discovered over four decades ago, the function of N-terminal methylation has mostly remained a mystery. Our discovery of the first mammalian N-terminal methyltransferase, NRMT1, has led to the discovery of many new functions for N-terminal methylation, including regulation of DNA/protein interactions, accurate mitotic division, and nucleotide excision repair (NER). Here we test whether NRMT1 is also important for DNA double-strand break (DSB) repair, and given its previously known roles in cell cycle regulation and the DNA damage response, assay if NRMT1 is acting as a tumor suppressor. We find that NRMT1 knockdown significantly enhances the sensitivity of breast cancer cell lines to both etoposide treatment and γ-irradiation, as well as, increases proliferation rate, invasive potential, anchorage-independent growth, xenograft tumor size, and tamoxifen sensitivity. Interestingly, this positions NRMT1 as a tumor suppressor protein involved in multiple DNA repair pathways, and indicates, similar to BRCA1 and BRCA2, its loss may result in tumors with enhanced sensitivity to diverse DNA damaging chemotherapeutics. PMID:25909287

  3. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence.

    Science.gov (United States)

    Tan, Aimee; Hill, Dorothea M C; Harrison, Odile B; Srikhanta, Yogitha N; Jennings, Michael P; Maiden, Martin C J; Seib, Kate L

    2016-02-12

    Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the 'hyperinvasive lineages' are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains.

  4. A DNA methylation signature associated with aberrant promoter DNA hypermethylation of DNMT3B in human colorectal cancer.

    Science.gov (United States)

    Huidobro, Covadonga; Urdinguio, Rocío G; Rodríguez, Ramón María; Mangas, Cristina; Calvanese, Vincenzo; Martínez-Camblor, Pablo; Ferrero, Cecilia; Parra-Blanco, Adolfo; Rodrigo, Luis; Obaya, Alvaro J; Suárez-Fernández, Laura; Astudillo, Aurora; Hernando, Henar; Ballestar, Esteban; Fernández, Agustín F; Fraga, Mario F

    2012-09-01

    Altered promoter DNA methylation, one of the most important molecular alterations in cancer, is proposed to correlate with deregulation of DNA methyltransferases, although the molecular mechanisms implicated are still poorly understood. Here we show that the de novo DNA methyltransferase DNMT3B is frequently repressed in human colorectal cancer cell lines (CCL) and primary tumours by aberrant DNA hypermethylation of its distal promoter. At the epigenome level, DNMT3B promoter hypermethylation was associated with the hypomethylation of gene promoters usually hypermethylated in the healthy colon. Forced DNMT3B overexpression in cancer cells restored the methylation levels of these promoters in the healthy colon. Our results show a new molecular mechanism of aberrant DNMT3B regulation in colon cancer and suggest that its expression is associated with the methylation of constitutively hypermethylated promoters in the healthy colon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. TGF-β regulates DNA methyltransferase expression in prostate cancer, correlates with aggressive capabilities, and predicts disease recurrence.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available BACKGROUND: DNA methyltransferase (DNMT is one of the major factors mediating the methylation of cancer related genes such as TGF-β receptors (TβRs. This in turn may result in a loss of sensitivity to physiologic levels of TGF-β in aggressive prostate cancer (CaP. The specific mechanisms of DNMT's role in CaP remain undetermined. In this study, we describe the mechanism of TGF-β-mediated DNMT in CaP and its association with clinical outcomes following radical prostatectomy. METHODOLOGY/PRINCIPAL FINDINGS: We used human CaP cell lines with varying degrees of invasive capability to describe how TGF-β mediates the expression of DNMT in CaP, and its effects on methylation status of TGF-β receptors and the invasive capability of CaP in vitro and in vivo. Furthermore, we determined the association between DNMT expression and clinical outcome after radical prostatectomy. We found that more aggressive CaP cells had significantly higher TGF-β levels, increased expression of DNMT, but reduced TβRs when compared to benign prostate cells and less aggressive prostate cancer cells. Blockade of TGF-β signaling or ERK activation (p-ERK was associated with a dramatic decrease in the expression of DNMT, which results in a coincident increase in the expression of TβRs. Blockade of either TGF-β signaling or DNMT dramatically decreased the invasive capabilities of CaP. Inhibition of TGF-β in an TRAMP-C2 CaP model in C57BL/6 mice using 1D11 was associated with downregulation of DNMTs and p-ERK and impairment in tumor growth. Finally, independent of Gleason grade, increased DNMT1 expression was associated with biochemical recurrence following surgical treatment for prostate cancer. CONCLUSIONS AND SIGNIFICANCE: Our findings demonstrate that CaP derived TGF-β may induce the expression of DNMTs in CaP which is associated with methylation of its receptors and the aggressive potential of CaP. In addition, DNMTs is an independent predictor for disease

  6. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability

    DEFF Research Database (Denmark)

    Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise

    2014-01-01

    Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband...... and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P ... methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancies....

  7. Cardiac Myocyte De Novo DNA Methyltransferases 3a/3b Are Dispensable for Cardiac Function and Remodeling after Chronic Pressure Overload in Mice.

    Directory of Open Access Journals (Sweden)

    Thomas G Nührenberg

    Full Text Available Recent studies reported altered DNA methylation in failing human hearts. This may suggest a role for de novo DNA methylation in the development of heart failure. Here, we tested whether cardiomyocyte-specific loss of de novo DNA methyltransferases Dnmt3a and Dnmt3b altered cardiac function and remodeling after chronic left ventricular pressure overload.Mice with specific ablation of Dnmt3a and Dnmt3b expression in cardiomyocytes were generated by crossing floxed Dnmt3afl and Dnmt3bfl alleles with mice expressing Cre recombinase under control of the atrial myosin light chain gene promoter. The efficacy of combined Dnmt3a/3b ablation (DKO was characterized on cardiomyocyte-specific genomic DNA and mRNA levels. Cardiac phenotyping was carried out without (sham or with left ventricular pressure overload induced by transverse aortic constriction (TAC. Under similar conditions, cardiac genome-wide transcriptional profiling was performed and DNA methylation levels of promoters of differentially regulated genes were assessed by pyrosequencing.DKO cardiomyocytes showed virtual absence of targeted Dnmt3a and Dnmt3b mRNA transcripts. Cardiac phenotyping revealed no significant differences between DKO and control mice under sham and TAC conditions. Transcriptome analyses identified upregulation of 44 and downregulation of 9 genes in DKO as compared with control sham mice. TAC mice showed similar changes with substantial overlap of regulated genes compared to sham. Promoters of upregulated genes were largely unmethylated in DKO compared to control mice.The absence of cardiac pathology in the presence of the predicted molecular phenotype suggests that de novo DNA methylation in cardiomyocytes is dispensable for adaptive mechanisms after chronic cardiac pressure overload.

  8. Human calmodulin methyltransferase: expression, activity on calmodulin, and Hsp90 dependence.

    Directory of Open Access Journals (Sweden)

    Sophia Magen

    Full Text Available Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34 has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2(nd known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes.

  9. New progress of the research on the DNA methyltransferases in the pathogenesis of carcinoma%DNA 甲基转移酶在肿瘤发病机制中的研究进展

    Institute of Scientific and Technical Information of China (English)

    赵淑磊(综述); 王京(审校)

    2014-01-01

    DNA甲基化是表观遗传学的主要形式,而DNA甲基转移酶( DNMTs)是DNA甲基化的主要调节酶,DNA甲基转移酶的激活参与了肿瘤的发生和发展过程,同时伴有肿瘤抑制基因的高甲基化沉默和低表达,是病人预后不良的标志;DNA甲基转移酶3b( DNMT3b)的多态性及吸烟所致的DNMTs表达的改变是肿瘤发生的危险因素,靶向DNMTs治疗由于其细胞毒性小,是当前研究的一个热点。本文就DNA甲基转移酶在肿瘤发病机制中的作用做一综述。%DNA methylation is the main profile of epigenetics .DNA methyltransferases ( DNMTs) is the main regulatory enzyme during DNA methylation .The activation of DNMTs ,the hypermethylation and low expres-sion of some tumor suppressor genes are involved in the carcinogenesis and development of various human canc -ers,which is a biomarker of poor prognosis .Both of the polymorphism of DNA methyltransferases ( DNMT3b) and tobacco smoking are risk factors of tumorgenesis .The targeted therapy of DNMTs is very popular due to its low cy-totoxity.This review will focus on new progress of the research on DNMTs in pathogenesis of carcinoma .

  10. Analysis of the subcellular localization of the human histone methyltransferase SETDB1

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Gotoh, Eiko; Kawamata, Natsuko [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ishimoto, Kenji [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Uchihara, Yoshie [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Iwanari, Hiroko [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sugiyama, Akira; Kawamura, Takeshi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Mochizuki, Yasuhiro [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Tanaka, Toshiya [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sakai, Juro [Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Hamakubo, Takao [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Kodama, Tatsuhiko [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); and others

    2015-10-02

    SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclear export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol. - Highlights: • Endogenous human SETDB1 was localized mainly in the cytoplasm. • Combined treatment with LMB and MG132 led to accumulation of human SETDB1 in the nucleus. • HeLa cells expressing EFGP-hSETDB1 are useful for subcellular localization analyses.

  11. Evaluation of O6-methylguanine-DNA methyltransferase enzyme expression effect on survival of patients with Grade 4 brain astrocytoma

    Directory of Open Access Journals (Sweden)

    Simin Hemati

    2014-01-01

    Full Text Available Background: High-grade astrocytoma (Grade 4 or glioblastoma multiforme (GBM are deadly brain tumors. New therapies attempt to increase lifetime and quality of life in patients with malignant astrocytoma. O6-methylguanine-DNA methyltransferase (MGMT enzyme expression may be effective in prognosis and response to treatment of these patients. The aim of this study was assessment of MGMT enzyme expression in patients with astrocytoma Grade 4. Materials and Methods: In this study, 48 patients with GBM that were treated with surgery, chemotherapy and radiotherapy were investigated and followed-up for 47 months for the survival rate. Pathology blocks of patients were examined for MGMT enzyme expression using immunohistochemistry method. Results: The patients were 34 males and 14 females. The ages ranged from 24 to 77 years, with a mean age of 53.52 ± 13.39 years. There was no significant difference between two groups (positive and negative MGMT enzyme expression in overall survival (median [range] 11.5 [4-30] vs. 13 [5-22], P = 0.9. The results of our study showed that patients although who were undergone near total surgery had higher overall survival than the group of patients who had biopsy only however, it was not significant. Patients who were treated with temozolomide (TMZ (Temodal, Merck Canada had significant overall median survival (14.5 more than the patients who were treated with Procarbazine (Roche, Swiss-Lomustine (Lilly, USA-Vincristine (Lilly, USA regimen (8.75 (P < 0.05. Conclusion: O6-methylguanine-DNA methyltransferase enzyme expression had no effect on survival of patients with Grade 4 brain astrocytoma TMZ may increase survival rate.

  12. The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ian R Henderson

    2010-10-01

    Full Text Available Eukaryotic DNA cytosine methylation can be used to transcriptionally silence repetitive sequences, including transposons and retroviruses. This silencing is stable between cell generations as cytosine methylation is maintained epigenetically through DNA replication. The Arabidopsis thaliana Dnmt3 cytosine methyltransferase ortholog DOMAINS rearranged methyltransferase2 (DRM2 is required for establishment of small interfering RNA (siRNA directed DNA methylation. In mammals PIWI proteins and piRNA act in a convergently evolved RNA-directed DNA methylation system that is required to repress transposon expression in the germ line. De novo methylation may also be independent of RNA interference and small RNAs, as in Neurospora crassa. Here we identify a clade of catalytically mutated DRM2 paralogs in flowering plant genomes, which in A.thaliana we term domains rearranged methyltransferase3 (DRM3. Despite being catalytically mutated, DRM3 is required for normal maintenance of non-CG DNA methylation, establishment of RNA-directed DNA methylation triggered by repeat sequences and accumulation of repeat-associated small RNAs. Although the mammalian catalytically inactive Dnmt3L paralogs act in an analogous manner, phylogenetic analysis indicates that the DRM and Dnmt3 protein families diverged independently in plants and animals. We also show by site-directed mutagenesis that both the DRM2 N-terminal UBA domains and C-terminal methyltransferase domain are required for normal RNA-directed DNA methylation, supporting an essential targeting function for the UBA domains. These results suggest that plant and mammalian RNA-directed DNA methylation systems consist of a combination of ancestral and convergent features.

  13. 2′-Deoxyriboguanylurea, the primary breakdown product of 5-aza-2′-deoxyribocytidine, is a mutagen, an epimutagen, an inhibitor of DNA methyltransferases and an inducer of 5-azacytidine-type fragile sites

    Science.gov (United States)

    Lamparska, Katarzyna; Clark, Jarrod; Babilonia, Gail; Bedell, Victoria; Yip, Wesley; Smith, Steven S.

    2012-01-01

    5-Aza-2′-deoxycytidine (5azaC-dR) has been employed as an inhibitor of DNA methylation, a chemotherapeutic agent, a clastogen, a mutagen, an inducer of fragile sites and a carcinogen. However, its effects are difficult to quantify because it rapidly breaks down in aqueous solution to the stable compound 2′-deoxyriboguanylurea (GuaUre-dR). Here, we used a phosphoramidite that permits the introduction of GuaUre-dR at defined positions in synthetic oligodeoxynucleotides to demonstrate that it is a potent inhibitor of human DNA methyltransferase 1 (hDNMT1) and the bacterial DNA methyltransferase (M.EcoRII) and that it is a mutagen that can form productive base pairs with either Guanine or Cytosine. Pure GuaUre-dR was found to be an effective demethylating agent and was able to induce 5azaC-dR type fragile sites FRA1J and FRA9E in human cells. Moreover, we report that demethylation associated with C:G → G:C transversion and C:G → T:A transition mutations was observed in human cells exposed to pure GuaUre-dR. The data suggest that most of the effects attributed to 5azaC-dR are exhibited by its stable primary breakdown product. PMID:22850746

  14. 2'-Deoxyriboguanylurea, the primary breakdown product of 5-aza-2'-deoxyribocytidine, is a mutagen, an epimutagen, an inhibitor of DNA methyltransferases and an inducer of 5-azacytidine-type fragile sites.

    Science.gov (United States)

    Lamparska, Katarzyna; Clark, Jarrod; Babilonia, Gail; Bedell, Victoria; Yip, Wesley; Smith, Steven S

    2012-10-01

    5-Aza-2'-deoxycytidine (5azaC-dR) has been employed as an inhibitor of DNA methylation, a chemotherapeutic agent, a clastogen, a mutagen, an inducer of fragile sites and a carcinogen. However, its effects are difficult to quantify because it rapidly breaks down in aqueous solution to the stable compound 2'-deoxyriboguanylurea (GuaUre-dR). Here, we used a phosphoramidite that permits the introduction of GuaUre-dR at defined positions in synthetic oligodeoxynucleotides to demonstrate that it is a potent inhibitor of human DNA methyltransferase 1 (hDNMT1) and the bacterial DNA methyltransferase (M.EcoRII) and that it is a mutagen that can form productive base pairs with either Guanine or Cytosine. Pure GuaUre-dR was found to be an effective demethylating agent and was able to induce 5azaC-dR type fragile sites FRA1J and FRA9E in human cells. Moreover, we report that demethylation associated with C:G → G:C transversion and C:G → T:A transition mutations was observed in human cells exposed to pure GuaUre-dR. The data suggest that most of the effects attributed to 5azaC-dR are exhibited by its stable primary breakdown product.

  15. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter.

    Science.gov (United States)

    Alonso, Marta M; Gomez-Manzano, Candelaria; Bekele, B Nebiyou; Yung, W K Alfred; Fueyo, Juan

    2007-12-15

    Currently, the most efficacious treatment for malignant gliomas is temozolomide; however, gliomas expressing the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) are resistant to this drug. Strong clinical evidence shows that gliomas with methylation and subsequent silencing of the MGMT promoter are sensitive to temozolomide. Based on the fact that adenoviral proteins directly target and inactivate key DNA repair genes, we hypothesized that the oncolytic adenovirus Delta-24-RGD could be successfully combined with temozolomide to overcome the reported MGMT-mediated resistance. Our studies showed that the combination of Delta-24-RGD and temozolomide induces a profound therapeutic synergy in glioma cells. We observed that Delta-24-RGD treatment overrides the temozolomide-mediated G(2)-M arrest. Furthermore, Delta-24-RGD infection was followed by down-modulation of the RNA levels of MGMT. Chromatin immunoprecipitation assays showed that Delta-24-RGD prevented the recruitment of p300 to the MGMT promoter. Importantly, using mutant adenoviruses and wild-type and dominant-negative forms of the p300 protein, we showed that Delta-24-RGD interaction with p300 was required to induce silencing of the MGMT gene. Of further clinical relevance, the combination of Delta-24-RGD and temozolomide significantly improved the survival of glioma-bearing mice. Collectively, our data provide a strong mechanistic rationale for the combination of oncolytic adenoviruses and temozolomide, and should propel the clinical testing of this therapy approach in patients with malignant gliomas.

  16. Cloning and expression of sheep DNA methyltransferase 1 and its development-specific isoform.

    Science.gov (United States)

    Taylor, Jane; Moore, Hannah; Beaujean, Nathalie; Gardner, John; Wilmut, Ian; Meehan, Richard; Young, Lorraine

    2009-05-01

    Unlike the mouse embryo, where loss of DNA methylation in the embryonic nucleus leaves cleavage stage embryos globally hypomethylated, sheep preimplantation embryos retain high levels of methylation until the blastocyst stage. We have cloned and sequenced sheep Dnmt1 and found it to be highly conserved with both the human and mouse homologues. Furthermore, we observed that the transcript normally expressed in adult somatic tissues is highly abundant in sheep oocytes. Throughout sheep preimplantation development the protein is retained in the cytoplasm whereas Dnmt1 transcript production declines after the embryonic genome activation at the 8-16 cell stage. Attempts to clone oocyte-specific 5' regions of Dnmt1, known to be present in the mouse and human gene, were unsuccessful. However, a novel ovine Dnmt1 exon, theoretically encoding 13 amino acids, was found to be expressed in sheep oocytes, preimplantation embryos and early fetal lineages, but not in the adult tissue. RNAi-mediated knockdown of this novel transcript resulted in embryonic developmental arrest at the late morula stage, suggesting an essential role for this isoform in sheep blastocyst formation.

  17. Structural and Functional Profiling of the Human Histone Methyltransferase SMYD3

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, Kenneth W.; Brown, Mark; Park, Frances; Emtage, Spencer; Harriss, June; Das, Chhaya; Zhu, Li; Crew, Andy; Arnold, Lee; Shaaban, Salam; Tucker, Philip (AltheaDx); (DiscoverEluc.); (Abbott Bioresearch); (OSI Pharm.); (Lilly); (Texas)

    2012-10-23

    The SET and MYND Domain (SMYD) proteins comprise a unique family of multi-domain SET histone methyltransferases that are implicated in human cancer progression. Here we report an analysis of the crystal structure of the full length human SMYD3 in a complex with an analog of the S-adenosyl methionine (SAM) methyl donor cofactor. The structure revealed an overall compact architecture in which the 'split-SET' domain adopts a canonical SET domain fold and closely assembles with a Zn-binding MYND domain and a C-terminal superhelical 9 ?-helical bundle similar to that observed for the mouse SMYD1 structure. Together, these structurally interlocked domains impose a highly confined binding pocket for histone substrates, suggesting a regulated mechanism for its enzymatic activity. Our mutational and biochemical analyses confirm regulatory roles of the unique structural elements both inside and outside the core SET domain and establish a previously undetected preference for trimethylation of H4K20.

  18. Investigating the potential role of genetic and epigenetic variation of DNA methyltransferase genes in hyperplastic polyposis syndrome.

    Directory of Open Access Journals (Sweden)

    Musa Drini

    Full Text Available BACKGROUND: Hyperplastic Polyposis Syndrome (HPS is a condition associated with multiple serrated polyps, and an increased risk of colorectal cancer (CRC. At least half of CRCs arising in HPS show a CpG island methylator phenotype (CIMP, potentially linked to aberrant DNA methyltransferase (DNMT activity. CIMP is associated with methylation of tumor suppressor genes including regulators of DNA mismatch repair (such as MLH1, MGMT, and negative regulators of Wnt signaling (such as WIF1. In this study, we investigated the potential for interaction of genetic and epigenetic variation in DNMT genes, in the aetiology of HPS. METHODS: We utilized high resolution melting (HRM analysis to screen 45 cases with HPS for novel sequence variants in DNMT1, DNMT3A, DNMT3B, and DNMT3L. 21 polyps from 13 patients were screened for BRAF and KRAS mutations, with assessment of promoter methylation in the DNMT1, DNMT3A, DNMT3B, DNMT3L MLH1, MGMT, and WIF1 gene promoters. RESULTS: No pathologic germline mutations were observed in any DNA-methyltransferase gene. However, the T allele of rs62106244 (intron 10 of DNMT1 gene was over-represented in cases with HPS (p<0.01 compared with population controls. The DNMT1, DNMT3A and DNMT3B promoters were unmethylated in all instances. Interestingly, the DNMT3L promoter showed low levels of methylation in polyps and normal colonic mucosa relative to matched disease free cells with methylation level negatively correlated to expression level in normal colonic tissue. DNMT3L promoter hypomethylation was more often found in polyps harbouring KRAS mutations (p = 0.0053. BRAF mutations were common (11 out of 21 polyps, whilst KRAS mutations were identified in 4 of 21 polyps. CONCLUSIONS: Genetic or epigenetic alterations in DNMT genes do not appear to be associated with HPS, but further investigation of genetic variation at rs62106244 is justified given the high frequency of the minor allele in this case series.

  19. Inhibition of DNA methyltransferase or histone deacetylase protects retinal pigment epithelial cells from DNA damage induced by oxidative stress by the stimulation of antioxidant enzymes.

    Science.gov (United States)

    Tokarz, Paulina; Kaarniranta, Kai; Blasiak, Janusz

    2016-04-05

    Epigenetic modifications influence DNA damage response (DDR). In this study we explored the role of DNA methylation and histone acetylation in DDR in cells challenged with acute or chronic oxidative stress. We used retinal pigment epithelial cells (ARPE-19), which natively are exposed to oxidative stress due to permanent exposure to light and high blood flow. We employed a DNA methyltransferase inhibitor - RG108 (RG), or a histone deacetylase inhibitor - valproic acid (VA). ARPE-19 cells were exposed to tert-butyl hydroperoxide, an acute oxidative stress inducer, or glucose oxidase, which slowly liberates low-doses of hydrogen peroxide in the presence of glucose, creating chronic conditions. VA and RG reduced level of intracellular reactive oxygen species and DNA damage in ARPE-19 cells in normal condition and in oxidative stress. This protective effect of VA and RG was associated with the up-regulated expression of antioxidant enzyme genes: CAT, GPx1, GPx4, SOD1 and SOD2. RG decreased the number of cells in G2/M checkpoint in response to chronic oxidative stress. Neither RG nor VA changed the DNA repair or apoptosis induced by oxidative stress. Therefore, certain epigenetic manipulations may protect ARPE-19 cells from detrimental effects of oxidative stress by modulation of antioxidative enzyme gene expression, which may be further explored in pharmacological studies on oxidative stress-related eye diseases.

  20. Betaine-homocysteine methyltransferase (BHMT) : genomic sequencing and relevance to hyperhomocysteinemia and vascular disease in humans

    NARCIS (Netherlands)

    Heil, S.G.; Lievers, K.J.A.; Boers, G.H.; Verhoef, P.; Heijer, den M.; Trijbels, F.J.M.; Blom, H.J.

    2000-01-01

    Elevated homocysteine levels have been associated with arteriosclerosis and thrombosis. Hyperhomocysteinemia is caused by altered functioning of enzymes of its metabolism due to either inherited or acquired factors. Betaine-homocysteine methyltransferase (BHMT) serves, next to methionine synthase, a

  1. Ursolic acid attenuates temozolomide resistance in glioblastoma cells by downregulating O6-methylguanine-DNA methyltransferase (MGMT) expression

    Science.gov (United States)

    Zhu, Zhongling; Du, Shuangshuang; Ding, Fengxia; Guo, Shanshan; Ying, Guoguang; Yan, Zhao

    2016-01-01

    The DNA-alkylating agent temozolomide (TMZ) is an effective chemotherapeutic agent against malignant glioma, including glioblastoma multiforme (GBM). However, the clinical efficacy of TMZ is limited in many patients because of O6-methylguanine-DNA methyltransferase (MGMT)-driven resistance. Thus, new strategies to overcome TMZ resistance are urgently needed. Ursolic acid (UA) is a naturally derived pentacyclic triterpene acid that exerts broad anticancer effects, and shows capability to cross the blood-brain barrier. In this study, we evaluated the possible synergistic effect of TMZ and UA in resistant GBM cell lines. The results showed that UA prevented the proliferation of resistant GBM cells in a concentration-dependent manner. Compared with TMZ or UA treatment alone, the combination treatment of TMZ and UA synergistically enhanced cytotoxicity and senescence in TMZ-resistant GBM cells. This effect was correlated with the downregulation of MGMT. Moreover, experimental results with an in vivo mouse xenograft model showed that the combination treatment of UA and TMZ reduced tumor volumes by depleting MGMT. Therefore, UA as both a monotherapy and a resensitizer, might be a candidate agent for patients with refractory malignant gliomas. PMID:27508051

  2. Immunohistochemical Assessment of O(6)-Methylguanine-DNA Methyltransferase (MGMT) and Its Relationship with p53 Expression in Endometrial Cancers.

    Science.gov (United States)

    Lee, Kyung Eun

    2013-12-01

    O(6)-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein, the loss of MGMT expression was commonly known due to hypermethylation of CpG islands in its promoter region. Overexpression of p53 protein may be associated with downregulated MGMT expression in brain tumors. The aims of this study were to investigate the role of MGMT expression loss and its correlation with p53 overexpression in endometrial cancers. MGMT and p53 expression was examined in formalin-fixed, paraffin-embedded tissues from 36 endometrial cancer cases using immnunohistochemical staining. The loss of MGMT expression was detected in 11 (30.6%) out of the 36 endometrial cancers and p53 immunoreactivity was detected in 23 (63.9%) out of the 36 endometrial cancers. Ten (90.9%) of the 11 cases with negative MGMT immunoreactivity showed positive p53 expression, so the loss of MGMT expression was significantly associated with the p53 overexpression (P=0.03). These findings suggest that the loss of MGMT expression may be one of factors capable of p53 overexpression in endometrial cancer. Further studies are needed to define the relation between MGMT and p53 for examining the mechanisms of tissue-specific MGMT expression.

  3. The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis.

    Science.gov (United States)

    Schmidt, Anja; Wöhrmann, Heike J P; Raissig, Michael T; Arand, Julia; Gheyselinck, Jacqueline; Gagliardini, Valeria; Heichinger, Christian; Walter, Joern; Grossniklaus, Ueli

    2013-03-01

    In flowering plants, double fertilization of the female gametes, the egg and the central cell, initiates seed development to give rise to a diploid embryo and the triploid endosperm. In the absence of fertilization, the FERTILIZATION-INDEPENDENT SEED Polycomb Repressive Complex 2 (FIS-PRC2) represses this developmental process by histone methylation of certain target genes. The FERTILIZATION-INDEPENDENT SEED (FIS) class genes MEDEA (MEA) and FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) encode two of the core components of this complex. In addition, DNA methylation establishes and maintains the repression of gene activity, for instance via DNA METHYLTRANSFERASE1 (MET1), which maintains methylation of symmetric CpG residues. Here, we demonstrate that Arabidopsis MET1 interacts with MEA in vitro and in a yeast two-hybrid assay, similar to the previously identified interaction of the mammalian homologues DNMT1 and EZH2. MET1 and MEA share overlapping expression patterns in reproductive tissues before and after fertilization, a prerequisite for an interaction in vivo. Importantly, a much higher percentage of central cells initiate endosperm development in the absence of fertilization in mea-1/MEA; met1-3/MET1 as compared to mea-1/MEA mutant plants. In addition, DNA methylation at the PHERES1 and MEA loci, imprinted target genes of the FIS-PRC2, was affected in the mea-1 mutant compared with wild-type embryos. In conclusion, our data suggest a mechanistic link between two major epigenetic pathways involved in histone and DNA methylation in plants by physical interaction of MET1 with the FIS-PRC2 core component MEA. This concerted action is relevant for the repression of seed development in the absence of fertilization. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  4. Characterization of hMTr1, a human Cap1 2'-O-ribose methyltransferase.

    Science.gov (United States)

    Bélanger, François; Stepinski, Janusz; Darzynkiewicz, Edward; Pelletier, Jerry

    2010-10-22

    Cellular eukaryotic mRNAs are capped at their 5' ends with a 7-methylguanosine nucleotide, a structural feature that has been shown to be important for conferring mRNA stability, stimulating mRNA biogenesis (splicing, poly(A) addition, nucleocytoplasmic transport), and increasing translational efficiency. Whereas yeast mRNAs have no additional modifications to the cap, called cap0, higher eukaryotes are methylated at the 2'-O-ribose of the first or the first and second transcribed nucleotides, called cap1 and cap2, respectively. In the present study, we identify the methyltransferase responsible for cap1 formation in human cells, which we call hMTr1 (also known as FTSJD2 and ISG95). We show in vitro that hMTr1 catalyzes specific methylation of the 2'-O-ribose of the first nucleotide of a capped RNA transcript. Using siRNA-mediated knockdown of hMTr1 in HeLa cells, we demonstrate that hMTr1 is responsible for cap1 formation in vivo.

  5. Biochemical and genetic analysis of the phosphoethanolamine methyltransferase of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Reynolds, Jennifer M; Takebe, Sachiko; Choi, Jae-Yeon; El Bissati, Kamal; Witola, William H; Bobenchik, April M; Hoch, Jeffrey C; Voelker, Dennis R; Mamoun, Choukri Ben

    2008-03-21

    The PfPMT enzyme of Plasmodium falciparum, the agent of severe human malaria, is a member of a large family of known and predicted phosphoethanolamine methyltransferases (PMTs) recently identified in plants, worms, and protozoa. Functional studies in P. falciparum revealed that PfPMT plays a critical role in the synthesis of phosphatidylcholine via a plant-like pathway involving serine decarboxylation and phosphoethanolamine methylation. Despite their important biological functions, PMT structures have not yet been solved, and nothing is known about which amino acids in these enzymes are critical for catalysis and binding to S-adenosyl-methionine and phosphoethanolamine substrates. Here we have performed a mutational analysis of PfPMT focused on 24 residues within and outside the predicted catalytic motif. The ability of PfPMT to complement the choline auxotrophy of a yeast mutant defective in phospholipid methylation enabled us to characterize the activity of the PfPMT mutants. Mutations in residues Asp-61, Gly-83 and Asp-128 dramatically altered PfPMT activity and its complementation of the yeast mutant. Our analyses identify the importance of these residues in PfPMT activity and set the stage for advanced structural understanding of this class of enzymes.

  6. Characterization of the P140K, PVP(138-140)MLK, and G156A O6-methylguanine-DNA methyltransferase mutants: implications for drug resistance gene therapy.

    Science.gov (United States)

    Davis, B M; Roth, J C; Liu, L; Xu-Welliver, M; Pegg, A E; Gerson, S L

    1999-11-20

    The G156A O6-alkylguanine-DNA alkyltransferase (AGT) mutant protein, encoded by the G156A O6-methylguanine-DNA methyltransferase gene (MGMT), is resistant to O6-benzylguanine (BG) inactivation and, after transduction into hematopoietic progenitors, transmits remarkable resistance to BG and BCNU. As a result, a clinical trial, in which the MGMT gene is transduced into CD34+ cells of patients with cancer, has been approved. A newly identified AGT mutation, P140K, generates dramatically increased BG resistance relative to G156A, and suggests that gene transfer of P140K may confer improved hematopoietic cell protection. To address this hypothesis, we measured BG + BCNU and BG + TMZ resistance in G156A, P140K, or P138M/V139L/P140K (MLK) MGMT-transduced K562 cells. In addition, we performed a detailed characterization of individual properties including BG resistance, activity, and protein stability of these mutants in human hematopoetic K562 cells and E86 retroviral producer cells. In K562 cell extracts, the MLK and P140K mutants retained full activity at doses up to 1 mM BG, while G156A had a BG ED50 of 15 microM, compared with 0.1 microM for wtAGT. In the absence of BG, the G156A protein possessed a 56% reduction in specific O6-methyltransferase activity compared with wtAGT. MLK, P140K, and wtAGT all possessed similar specific activities, although the O6-methyl repair rate of all mutants was reduced 4- to 13-fold relative to wtAGT. The wtAGT, MLK, and P140K proteins were stable, with half-lives of greater than 18 hr. In contrast, only 20% of the G156A protein was stable after 12 hr in cycloheximide and, interestingly, the remaining protein appeared to retain most of the activity present in non-cycloheximide-treated cells. Differences in BG resistance, activity, and stability between P140K, MLK, and G156A suggest that P140K may be the optimal mutant for drug resistance gene transfer. However, hematopoietic K562 cells transduced with MFG-G156A, P140K, or MLK had similar

  7. Structure prediction of the EcoRV DNA methyltransferase based on mutant profiling, secondary structure analysis, comparison with known structures of methyltransferases and isolation of catalytically inactive single mutants.

    Science.gov (United States)

    Jeltsch, A; Sobotta, T; Pingoud, A

    1996-05-01

    The EcoRV DNA methyltransferase (M.EcoRV) is an alpha-adenine methyltransferase. We have used two different programs to predict the secondary structure of M.EcoRV. The resulting consensus prediction was tested by a mutant profiling analysis. 29 neutral mutations of M.EcoRV were generated by five cycles of random mutagenesis and selection for active variants to increase the reliability of the prediction and to get a secondary structure prediction for some ambiguously predicted regions. The predicted consensus secondary structure elements could be aligned to the common topology of the structures of the catalytic domains of M.HhaI and M.TaqI. In a complementary approach we have isolated nine catalytically inactive single mutants. Five of these mutants contain an amino acid exchange within the catalytic domain of M.EcoRV (Val2-Ala, Lys81Arg, Cys192Arg, Asp193Gly, Trp231Arg). The Trp231Arg mutant binds DNA similarly to wild-type M.EcoRV, but is catalytically inactive. Hence this mutant behaves like a bona fide active site mutant. According to the structure prediction, Trp231 is located in a loop at the putative active site of M.EcoRV. The other inactive mutants were insoluble. They contain amino acid exchanges within the conserved amino acid motifs X, III or IV in M.EcoRV confirming the importance of these regions.

  8. High DNA methyltransferase DNMT3B levels: a poor prognostic marker in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Sandrine Hayette

    Full Text Available It has been recently shown that DNA methyl transferase overexpression is correlated with unfavourable prognosis in human malignancies while methylation deregulation remains a hallmark that defines acute myeloid leukemia (AML. The oncogenic transcription factor EVI1 is involved in methylation deregulation and its overexpression plays a major role for predicting an adverse outcome. Moreover, the identification of DNMT3A mutations in AML patients has recently been described as a poor prognostic indicator. In order to clarify relationship between these key actors in methylation mechanisms and their potential impact on patient outcomes, we analysed 195 de novo AML patients for the expression of DNMT3A, 3B (and its non-catalytic variant 3B(NC and their correlations with the outcome and the expression of other common prognostic genetic biomarkers (EVI1, NPM1, FLT3ITD/TKD and MLL in adult AML. The overexpression of DNMT3B/3B(NC is (i significantly correlated with a shorter overall survival, and (ii inversely significantly correlated with event-free survival and DNMT3A expression level. Moreover, multivariate analysis showed that a high expression level of DNMT3B/3B(NC is statistically a significant independent poor prognostic indicator. This study represents the first report showing that the overexpression of DNMT3B/3B(NC is an independent predictor of poor survival in AML. Its quantification should be implemented to the genetic profile used to stratify patients for therapeutical strategies and should be useful to identify patients who may benefit from therapy based on demethylating agents.

  9. O6-Methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients.

    Science.gov (United States)

    Spiegl-Kreinecker, Sabine; Pirker, Christine; Filipits, Martin; Lötsch, Daniela; Buchroithner, Johanna; Pichler, Josef; Silye, Rene; Weis, Serge; Micksche, Michael; Fischer, Johannes; Berger, Walter

    2010-01-01

    O(6)-Methylguanine DNA methyltransferase (MGMT) is implicated as a major predictive factor for treatment response to alkylating agents including temozolomide (TMZ) of glioblastoma multiforme (GBM) patients. However, whether the MGMT status in GBM patients should be detected at the level of promoter methylation or protein expression is still a matter of debate. Here, we compared promoter methylation (by methylation-specific polymerase chain reaction) and protein expression (by Western blot) in tumor cell explants with respect to prediction of TMZ response and survival of GBM patients (n = 71). Methylated MGMT gene promoter sequences were detected in 47 of 71 (66%) cases, whereas 37 of 71 (52%) samples were scored positive for MGMT protein expression. Although overall promoter methylation correlated significantly with protein expression (chi(2) test, P < .001), a small subgroup of samples did not follow this association. In the multivariate Cox regression model, a significant interaction between MGMT protein expression, but not promoter methylation, and TMZ therapy was observed (test for interaction, P = .015). In patients treated with TMZ (n = 42), MGMT protein expression predicted a significantly shorter overall survival (OS; hazard ratio [HR] for death 5.53, 95% confidence interval [CI] 1.76-17.37; P = .003), whereas in patients without TMZ therapy (n = 29), no differences in OS were observed (HR for death 1.00, 95% CI 0.45-2.20; P = .99). These data suggest that lack of MGMT protein expression is superior to promoter methylation as a predictive marker for TMZ response in GBM patients.

  10. O6-methylguanine-DNA methyltransferase (MGMT) immunohistochemistry as a predictor of resistance to temozolomide in primary CNS lymphoma.

    Science.gov (United States)

    Jiang, Xiaoyin; Reardon, David A; Desjardins, Annick; Vredenburgh, James J; Quinn, Jennifer A; Austin, Alan D; Herndon, James E; McLendon, Roger E; Friedman, Henry S

    2013-08-01

    Temozolomide, an alkylating agent, has shown promise in treating primary central nervous system lymphoma (PCNSL). The enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) repairs alkylating damage, such as that induced by temozolomide. We hypothesized that MGMT immunohistochemistry would predict resistance to temozolomide in PCNSL. A retrospective study of newly-diagnosed and recurrent PCNSL patients treated at our institution was conducted to study the predictive value of MGMT immunohistochemistry for response to temozolomide. 20 patients who were treated with temozolomide as a single agent were identified during the study time period. 6/20 patients demonstrated a response, corresponding to an objective response rate of 30 % (95 % CI 8-52). Five patients with low MGMT level (temozolomide. Only one of 10 patients (10 %) with high MGMT level (≥30 %) exhibited a response to temozolomide. Small sample numbers precluded formal statistical comparisons. Two patients with complete response remain alive without progressive disease 6.7 and 7.2 years after temozolomide initiation. Immunohistochemistry can be performed on small biopsies to selectively assess MGMT status in tumor versus surrounding inflammation. MGMT analysis by immunohistochemistry may predict response to temozolomide in PCNSL and should be prospectively investigated.

  11. Therapy and progression – induced O6-methylguanine-DNA methyltransferase and mismatch repair alterations in recurrent glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    S Agarwal

    2015-01-01

    Full Text Available Despite multimodality treatment protocol including surgical resection, radiotherapy, and chemotherapy in patients with glioblastoma multiforme (GBM, most suffer from treatment failure and tumor recurrence within a few months of initial surgery. The effectiveness of temozolomide (TMZ, the most commonly used chemotherapeutic agent, is largely dependent on the methylation status of the promoter of the gene O6-methylguanine-DNA methyltransferase (MGMT and the integrity of the mismatch repair (MMR system. Changes in these regulatory mechanisms at the time of recurrence may influence response to therapy. Deciphering the molecular mechanisms of resistance to these drugs may in future lead to improvised patient management. In this article, we provide an update of the spectrum of molecular changes that occur in recurrent GBMs, and thus may have an impact on patient survival and treatment response. For review, electronic search for the keywords “Recurrent GBM”, “Recurrent GBM AND MGMT” “Recurrent glioma AND MGMT”, “Recurrent GBM AND MMR” and “Recurrent glioma AND MMR”, “Recurrent GBM AND MMR” and “Recurrent glioma AND MMR” was done on PubMed and relevant citations were screened including cross-references.

  12. Crystal structures of human 108V and 108M catechol O-methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, K.; Le Trong, I.; Stenkamp, R.E.; Parson, W.W. (UWASH)

    2008-08-01

    Catechol O-methyltransferase (COMT) plays important roles in the metabolism of catecholamine neurotransmitters and catechol estrogens. The development of COMT inhibitors for use in the treatment of Parkinson's disease has been aided by crystallographic structures of the rat enzyme. However, the human and rat proteins have significantly different substrate specificities. Additionally, human COMT contains a common valine-methionine polymorphism at position 108. The methionine protein is less stable than the valine polymorph, resulting in decreased enzyme activity and protein levels in vivo. Here we describe the crystal structures of the 108V and 108M variants of the soluble form of human COMT bound with S-adenosylmethionine (SAM) and a substrate analog, 3,5-dinitrocatechol. The polymorphic residue 108 is located in the {alpha}5-{beta}3 loop, buried in a hydrophobic pocket {approx}16 {angstrom} from the SAM-binding site. The 108V and 108M structures are very similar overall [RMSD of C{sup {alpha}} atoms between two structures (C{sup {alpha}} RMSD) = 0.2 {angstrom}], and the active-site residues are superposable, in accord with the observation that SAM stabilizes 108M COMT. However, the methionine side chain is packed more tightly within the polymorphic site and, consequently, interacts more closely with residues A22 ({alpha}2) and R78 ({alpha}4) than does valine. These interactions of the larger methionine result in a 0.7-{angstrom} displacement in the backbone structure near residue 108, which propagates along {alpha}1 and {alpha}5 toward the SAM-binding site. Although the overall secondary structures of the human and rat proteins are very similar (C{sup {alpha}} RMSD = 0.4 {angstrom}), several nonconserved residues are present in the SAM-(I89M, I91M, C95Y) and catechol- (C173V, R201M, E202K) binding sites. The human protein also contains three additional solvent-exposed cysteine residues (C95, C173, C188) that may contribute to intermolecular disulfide bond

  13. The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus.

    Science.gov (United States)

    Wright, R; Stephens, C; Shapiro, L

    1997-09-01

    The Caulobacter crescentus DNA methyltransferase CcrM (M.CcrMI) methylates the adenine residue in the sequence GANTC. The CcrM DNA methyltransferase is essential for viability, but it does not appear to be part of a DNA restriction-modification system. CcrM homologs are widespread in the alpha subdivision of gram-negative bacteria. We have amplified and sequenced a 258-bp region of the cerM gene from several of these bacteria, including Rhizobium meliloti, Brucella abortus, Agrobacterium tumefaciens, and Rhodobacter capsulatus. Alignment of the deduced amino acid sequences revealed that these proteins constitute a highly conserved DNA methyltransferase family. Isolation of the full-length ccrM genes from the aquatic bacterium C. crescentus, the soil bacterium R. meliloti, and the intracellular pathogen B. abortus showed that this sequence conservation extends over the entire protein. In at least two alpha subdivision bacteria, R. meliloti and C. crescentus, CcrM-mediated methylation has important cellular functions. In both organisms, CcrM is essential for viability. Overexpression of CcrM in either bacterium results in defects in cell division and cell morphology and in the initiation of DNA replication. Finally, the C. crescentus and R. meliloti ccrM genes are functionally interchangeable, as the complemented strains are viable and the chromosomes are methylated. Thus, in both R. meliloti and C. crescentus, CcrM methylation is an integral component of the cell cycle. We speculate that CcrM-mediated DNA methylation is likely to have similar roles among alpha subdivision bacteria.

  14. Immunomodulatory drugs act as inhibitors of DNA methyltransferases and induce PU.1 up-regulation in myeloma cells.

    Science.gov (United States)

    Endo, Shinya; Amano, Masayuki; Nishimura, Nao; Ueno, Niina; Ueno, Shikiko; Yuki, Hiromichi; Fujiwara, Shiho; Wada, Naoko; Hirata, Shinya; Hata, Hiroyuki; Mitsuya, Hiroaki; Okuno, Yutaka

    2016-01-08

    Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide, and pomalidomide are efficacious in the treatment of multiple myeloma and significantly prolong their survival. However, the mechanisms of such effects of IMiDs have not been fully elucidated. Recently, cereblon has been identified as a target binding protein of thalidomide. Lenalidomide-resistant myeloma cell lines often lose the expression of cereblon, suggesting that IMiDs act as an anti-myeloma agent through interacting with cereblon. Cereblon binds to damaged DNA-binding protein and functions as a ubiquitin ligase, inducing degradation of IKZF1 and IKZF3 that are essential transcription factors for B and T cell development. Degradation of both IKZF1 and IKZF3 reportedly suppresses myeloma cell growth. Here, we found that IMiDs act as inhibitors of DNA methyltransferases (DMNTs). We previously reported that PU.1, which is an ETS family transcription factor and essential for myeloid and lymphoid development, functions as a tumor suppressor in myeloma cells. PU.1 induces growth arrest and apoptosis of myeloma cell lines. In this study, we found that low-dose lenalidomide and pomalidomide up-regulate PU.1 expression through inducing demethylation of the PU.1 promoter. In addition, IMiDs inhibited DNMT1, DNMT3a, and DNMT3b activities in vitro. Furthermore, lenalidomide and pomalidomide decreased the methylation status of the whole genome in myeloma cells. Collectively, IMiDs exert demethylation activity through inhibiting DNMT1, 3a, and 3b, and up-regulating PU.1 expression, which may be one of the mechanisms of the anti-myeloma activity of IMiDs.

  15. Characterisation of the histone methyltransferase SET8 in cell cycle progression and the DNA damage response

    DEFF Research Database (Denmark)

    Jørgensen, Stine

    2008-01-01

    component of the replication fork, further supporting the involvement of SET8 in replication, suggesting that SET8 may be required to support replication fork progression. Finally, we showed that SET8 was rapidly degraded by DNA damage such as UV and ionizing radiation (IR), which was accompanied...... by a decrease in H4K20me1. The removal of SET8 could be rescued by addition of a proteasomal inhibitor. Combined with data showing in vivo ubiquitylation of SET8, we suggest that the degradation of SET8 is mediated via the ubiquitin-proteasomal pathway. Collectively, these data suggest that SET8, during normal...... cellular homeostasis, has a role in supporting the chromatin structure to facilitate DNA replication. However, when cells are challenged by DNA damage efficient repair may be dependent on rapid degradation of SET8 and a reduction of the monomethyl mark on histone H4 lysine 20....

  16. A radioisotope-nondependent high-sensitivity method for measuring the activity of glioblastoma-related O(6)-methylguanine DNA methyltransferase.

    Science.gov (United States)

    Hongo, Aya; Gu, Ran; Suzuki, Miho; Nemoto, Naoto; Nishigaki, Koichi

    2015-07-01

    O(6)-Methylguanine DNA methyltransferase (MGMT) cancels the anticancer effect of temozolomide (drug for glioblastoma), which introduces methylation to DNA. Therefore, developing an MGMT inhibitor is a promising strategy for the treatment of this cancer. For this purpose, a sensitive detection method that does not depend on the conventional radioisotope (RI) method was developed. This was realized by a fluorescence-based method that measured the amount of cleavable restriction sites demethylated by the action of MGMT; this method was enhanced by introducing a polymerase chain reaction (PCR) amplification step. As an assay of enzyme activity, 20-fold higher sensitivity (subnanomolar) was attained compared with our and others' fluorescence-based approaches.

  17. Low enzymatic activity haplotypes of the human catechol-O-methyltransferase gene: enrichment for marker SNPs.

    Directory of Open Access Journals (Sweden)

    Andrea G Nackley

    Full Text Available Catechol-O-methyltransferase (COMT is an enzyme that plays a key role in the modulation of catechol-dependent functions such as cognition, cardiovascular function, and pain processing. Three common haplotypes of the human COMT gene, divergent in two synonymous and one nonsynonymous (val(158met position, designated as low (LPS, average (APS, and high pain sensitive (HPS, are associated with experimental pain sensitivity and risk of developing chronic musculoskeletal pain conditions. APS and HPS haplotypes produce significant functional effects, coding for 3- and 20-fold reductions in COMT enzymatic activity, respectively. In the present study, we investigated whether additional minor single nucleotide polymorphisms (SNPs, accruing in 1 to 5% of the population, situated in the COMT transcript region contribute to haplotype-dependent enzymatic activity. Computer analysis of COMT ESTs showed that one synonymous minor SNP (rs769224 is linked to the APS haplotype and three minor SNPs (two synonymous: rs6267, rs740602 and one nonsynonymous: rs8192488 are linked to the HPS haplotype. Results from in silico and in vitro experiments revealed that inclusion of allelic variants of these minor SNPs in APS or HPS haplotypes did not modify COMT function at the level of mRNA folding, RNA transcription, protein translation, or enzymatic activity. These data suggest that neutral variants are carried with APS and HPS haplotypes, while the high activity LPS haplotype displays less linked variation. Thus, both minor synonymous and nonsynonymous SNPs in the coding region are markers of functional APS and HPS haplotypes rather than independent contributors to COMT activity.

  18. Hyperhomocysteinemia-Induced Monocyte Chemoattractant Protein-1 Promoter DNA Methylation by Nuclear Factor-κB/DNA Methyltransferase 1 in Apolipoprotein E-Deficient Mice.

    Science.gov (United States)

    Wang, Ju; Jiang, Yideng; Yang, Anning; Sun, Weiwei; Ma, Changjian; Ma, Shengchao; Gong, Huihui; Shi, Yingkang; Wei, Jun

    2013-04-01

    Hyperhomocysteinemia is considered to be a significant risk factor in atherosclerosis and plays an important role in it. The purpose of this study was to determine the molecular mechanism of blood monocyte chemoattractant protein-1 (MCP-1) promoter DNA hypomethylation in the formation of atherosclerosis induced by hyperhomocysteinemia, and to explore the effect of nuclear factor-κB (NF-κB)/DNA methyltransferase 1 (DNMT1) in this mechanism. The atherosclerotic effect of MCP-1 in apolipoprotein E-deficient (ApoE(-/-)) and wild-type C57BL/6J mice was evaluated using atherosclerotic lesion area; serum NF-κB, MCP-1, and DNMT1 levels; and MCP-1 promoter DNA methylation expression. In vitro, the mechanism responsible for the effect of NF-κB/DNMT1 on foam cells was investigated by measuring NF-κB and DNMT1 levels to determine whether NF-κB/DNMT1 had an effect on gene expression. Compared with the control group, atherosclerotic lesions in ApoE(-/-) mice fed a high methionine diet significantly increased, as did the expression of MCP-1. In vitro study showed that pyrrolidine dithiocarbamate treatment down-regulated levels of NF-κB and raised DNMT1 concentrations, confirming the effect of NF-κB/DNMT1 in the MCP-1 promoter DNA methylation process. In conclusion, our results suggest that through NF-κB/DNMT1, MCP-1 promoter DNA hypomethylation may play a key role in formation of atherosclerosis under hyperhomocysteinemia.

  19. Benzo[a]pyrene diol epoxide suppresses retinoic acid receptor-β2 expression by recruiting DNA (cytosine-5--methyltransferase 3A

    Directory of Open Access Journals (Sweden)

    Xu Xiao-Chun

    2010-04-01

    Full Text Available Abstract Tobacco smoke is an important risk factor for various human cancers, including esophageal cancer. How benzo [a]pyrene diol epoxide (BPDE, a carcinogen present in tobacco smoke as well as in environmental pollution, induces esophageal carcinogenesis has yet to be defined. In this study, we investigated the molecular mechanism responsible for BPDE-suppressed expression of retinoic acid receptor-beta2 (RAR-β2 in esophageal cancer cells. We treated esophageal cancer cells with BPDE before performing methylation-specific polymerase chain reaction (MSP to find that BPDE induced methylation of the RAR-β2 gene promoter. We then performed chromatin immunoprecipitation (ChIP assays to find that BPDE recruited genes of the methylation machinery into the RAR-β2 gene promoter. We found that BPDE recruited DNA (cytosine-5--methyltransferase 3 alpha (DNMT3A, but not beta (DNMT3B, in a time-dependent manner to methylate the RAR-β2 gene promoter, which we confirmed by reverse transcription-polymerase chain reaction (RT-PCR analysis of the reduced RAR-β2 expression in these BPDE-treated esophageal cancer cell lines. However, BPDE did not significantly change DNMT3A expression, but it slightly reduced DNMT3B expression. DNA methylase inhibitor 5-aza-2'-deoxycytidine (5-Aza and DNMT3A small hairpin RNA (shRNA vector antagonized the effects of BPDE on RAR-β2 expressions. Transient transfection of the DNMT3A shRNA vector also antagonized BPDE's effects on expression of RAR-β2, c-Jun, phosphorylated extracellular signal-regulated protein kinases 1/2 (ERK1/2, and cyclooxygenase-2 (COX-2, suggesting a possible therapeutic effect. The results of this study form the link between the esophageal cancer risk factor BPDE and the reduced RAR-β2 expression.

  20. 5-aza-2'-deoxycytidine leads to reduced embryo implantation and reduced expression of DNA methyltransferases and essential endometrial genes.

    Directory of Open Access Journals (Sweden)

    Yu-Bin Ding

    Full Text Available BACKGROUND: The DNA demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR incorporates into DNA and decreases DNA methylation, sparking interest in its use as a potential therapeutic agent. We aimed to determine the effects of maternal 5-aza-CdR treatment on embryo implantation in the mouse and to evaluate whether these effects are associated with decreased levels of DNA methyltransferases (Dnmts and three genes (estrogen receptor α [Esr1], progesterone receptor [Pgr], and homeobox A10 [Hoxa10] that are vital for control of endometrial changes during implantation. METHODS AND PRINCIPAL FINDINGS: Mice treated with 5-aza-CdR had a dose-dependent decrease in number of implantation sites, with defected endometrial decidualization and stromal cell proliferation. Western blot analysis on pseudo-pregnant day 3 (PD3 showed that 0.1 mg/kg 5-aza-CdR significantly repressed Dnmt3a protein level, and 0.5 mg/kg 5-aza-CdR significantly repressed Dnmt1, Dnmt3a, and Dnmt3b protein levels in the endometrium. On PD5, mice showed significantly decreased Dnmt3a protein level with 0.1 mg/kg 5-aza-CdR, and significantly decreased Dnmt1 and Dnmt3a with 0.5 mg/kg 5-aza-CdR. Immunohistochemical staining showed that 5-aza-CdR repressed DNMT expression in a cell type-specific fashion within the uterus, including decreased expression of Dnmt1 in luminal and/or glandular epithelium and of Dnmt3a and Dnmt3b in stroma. Furthermore, the 5' flanking regions of the Esr1, Pgr, and Hoxa10 were hypomethylated on PD5. Interestingly, the higher (0.5 mg/kg dose of 5-aza-CdR decreased protein expression of Esr1, Pgr, and Hoxa10 in the endometrium on PD5 in both methylation-dependent and methylation-independent manners. CONCLUSIONS: The effects of 5-aza-CdR on embryo implantation in mice were associated with altered expression of endometrial Dnmts and genes controlling endometrial changes, suggesting that altered gene methylation, and not cytotoxicity alone, contributes to implantation

  1. The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states

    Directory of Open Access Journals (Sweden)

    Tochiki Keri K

    2012-02-01

    Full Text Available Abstract Background DNA CpG methylation is carried out by DNA methyltransferases and induces chromatin remodeling and gene silencing through a transcription repressor complex comprising the methyl-CpG-binding protein 2 (MeCP2 and a subset of histone deacetylases. Recently, we have found that MeCP2 activity had a crucial role in the pattern of gene expression seen in the superficial dorsal horn rapidly after injection of Complete Freund's Adjuvant (CFA in the rat ankle joint. The aim of the present study was to analyse the changes in expression of MeCP2, DNA methyltransferases and a subset of histone deacetylases in the superficial dorsal horn during the maintenance phase of persistent pain states. In this process, the cell specific expression of MeCP2 was also investigated. Results Using immunohistochemistry, we found that neurones, oligodendrocytes and astrocytes expressed MeCP2. Microglia, oligodendrocyte precursor cells and Schwann cells never showed any positive stain for MeCP2. Quantitative analyses showed that MeCP2 expression was increased in the superficial dorsal horn 7 days following CFA injection in the ankle joint but decreased 7 days following spared nerve injury. Overall, the expression of DNA methyltransferases and a subset of histone deacetylases followed the same pattern of expression. However, there were no significant changes in the expression of the MeCP2 targets that we had previously shown are regulated in the early time points following CFA injection in the ankle joint. Finally, the expression of MeCP2 was also down regulated in damaged dorsal root ganglion neurones following spared nerve injury. Conclusion Our results strongly suggest that changes in chromatin compaction, regulated by the binding of MeCP2 complexes to methylated DNA, are involved in the modulation of gene expression in the superficial dorsal horn and dorsal root ganglia during the maintenance of persistent pain states.

  2. The histone methyltransferase and putative oncoprotein MMSET is overexpressed in a large variety of human tumors

    DEFF Research Database (Denmark)

    Hudlebusch, Heidi Rye; Santoni-Rugiu, Eric; Simon, Ronald

    2011-01-01

    Multiple myeloma SET (Suppressor of variegation, Enhancer of zeste, and Trithorax) domain (MMSET) is a histone lysine methyltransferase deregulated in a subgroup of multiple myelomas with the t(4;14)(p16;q32) translocation and poor prognosis. With the aim of understanding, if MMSET can be involve...

  3. O6-methylguanine-DNA methyltransferase in equine sarcoids: molecular and epigenetic analysis

    Directory of Open Access Journals (Sweden)

    Altamura Gennaro

    2012-11-01

    Full Text Available Abstract Background Bovine papillomaviruses (BPVs types 1 and 2 are the only known papillomaviruses able to jump the species. In fact, BPVs 1/2 induce neoplasia in their natural bovine host but infection is also associated to neoplastic skin lesions in equids termed sarcoids. The equine sarcoid is considered to be the most common equine cutaneous tumour worldwide for which no effective therapy is available. Very little is known about the molecular mechanisms underlying tumourigenesis, although genes contributing to sarcoid development have been identified. Several studies associate the development of cancer to the loss of function of a number of oncosuppressor genes. In this study the putative role of O6-methylguanine-DNA methyltrasferase (MGMT was investigated for sarcoids. The expression of the oncosuppressor protein was assessed in normal and sarcoid cells and tissues. In addition, the DNA methylation profile was analysed to assess the role of epigenetic mechanism in regulation of MGMT expression. Results A group of 15 equine sarcoids and two primary sarcoid cell lines (fibroblasts were analyzed for the expression of MGMT protein by immunohistochemistry, immunofluorescence and Western blotting techniques. The sarcoid cell line EqSO4b and the tumour samples showed a reduction or absence of MGMT expression. To investigate the causes of deregulated MGMT expression, ten samples were analyzed for the DNA methylation profile of the CpG island associated to the MGMT promoter. The analysis of 73 CpGs encompassing the region of interest showed in 1 out of 10 (10% sarcoids a pronouncedly altered methylation profile when compared to the control epidermal sample. Similarily the EqSO4b cell line showed an altered MGMT methylation pattern in comparison to normal fibroblasts. Conclusion As previously demonstrated for the oncosuppressor gene FHIT, analysis of MGMT expression in sarcoid tissues and a sarcoid-derived fibroblast cell line further suggests that

  4. Meningeal hemangiopericytomas: a clinicopathological study with emphasis on MGMT (O(6) -methylguanine-DNA methyltransferase) promoter methylation status.

    Science.gov (United States)

    Kakkar, Aanchal; Kumar, Anupam; Jha, Prerana; Goyal, Nishant; Mallick, Supriya; Sharma, Mehar Chand; Suri, Ashish; Singh, Manmohan; Kale, Shashank S; Julka, Pramod Kumar; Sarkar, Chitra; Suri, Vaishali

    2014-08-01

    Meningeal hemangiopericytomas (HPCs) are aggressive dural-based tumors, for which no prognostic or predictive marker has been identified. Gross total resection is treatment of choice, but not easily achieved; hence, alkylating agents like temozolomide (TMZ) are now being tried. O(6) -methylguanine-DNA methyltransferase (MGMT) promoter methylation has proven prognostic and predictive value in glioblastomas. This study evaluates MGMT promoter methylation in meningeal HPCs to determine its role in HPC oncogenesis and its association with patient outcome. Meningeal HPCs diagnosed between 2002 and 2011 were retrieved and clinicopathological features reviewed. MGMT promoter methylation status was assessed by methylation-specific polymerase chain reaction (MSP) and immunohistochemistry (IHC) for MGMT protein. HPCs accounted for 1.1% of all CNS tumors. Forty cases were analyzed; the majority were adults (mean age = 41.4 years). Seventy percent were primary and 30% were recurrent tumors; 60% were grade II and 40% were grade III. MGMT promoter methylation was identified in 45% of cases, including Grade II (54.2%) and Grade III (31.3%) (P = 0.203). Promoter methylation was significantly (P = 0.035) more frequent in primary (57.1%) than in recurrent (16.7%) tumors. No correlation was noted between MGMT promoter methylation by MSP and MGMT protein expression by IHC, or with progression-free survival. Thus, a significant proportion of HPCs demonstrate MGMT promoter methylation, suggesting possible susceptibility to TMZ. As promoter methylation is more frequent in primary tumors, TMZ may serve as a therapeutic option in residual primary tumors. Epigenetic inactivation of MGMT in HPCs necessitates the assessment of prognostic and predictive value of MGMT promoter methylation in HPCs in larger clinical trials.

  5. ModM DNA methyltransferase methylome analysis reveals a potential role for Moraxella catarrhalis phasevarions in otitis media.

    Science.gov (United States)

    Blakeway, Luke V; Power, Peter M; Jen, Freda E-C; Worboys, Sam R; Boitano, Matthew; Clark, Tyson A; Korlach, Jonas; Bakaletz, Lauren O; Jennings, Michael P; Peak, Ian R; Seib, Kate L

    2014-12-01

    Moraxella catarrhalis is a significant cause of otitis media and exacerbations of chronic obstructive pulmonary disease. Here, we characterize a phase-variable DNA methyltransferase (ModM), which contains 5'-CAAC-3' repeats in its open reading frame that mediate high-frequency mutation resulting in reversible on/off switching of ModM expression. Three modM alleles have been identified (modM1-3), with modM2 being the most commonly found allele. Using single-molecule, real-time (SMRT) genome sequencing and methylome analysis, we have determined that the ModM2 methylation target is 5'-GAR(m6)AC-3', and 100% of these sites are methylated in the genome of the M. catarrhalis 25239 ModM2 on strain. Proteomic analysis of ModM2 on and off variants revealed that ModM2 regulates expression of multiple genes that have potential roles in colonization, infection, and protection against host defenses. Investigation of the distribution of modM alleles in a panel of M. catarrhalis strains, isolated from the nasopharynx of healthy children or middle ear effusions from patients with otitis media, revealed a statistically significant association of modM3 with otitis media isolates. The modulation of gene expression via the ModM phase-variable regulon (phasevarion), and the significant association of the modM3 allele with otitis media, suggests a key role for ModM phasevarions in the pathogenesis of this organism.

  6. Expression of O6-methylguanine-DNA methyltransferase in human gliomas and therapeutic evaluation of STZ and ACNU combination chemotherapy%MGMT在神经胶质瘤中表达的临床意义及联合应用STZ对愈后的影响

    Institute of Scientific and Technical Information of China (English)

    胡苹; 娄晋宁; 章扬培; 马雄君; 赵奎明

    2006-01-01

    目的:通过观察神经胶质瘤中O6-甲基鸟嘌呤DNA甲基转移酶(O6-methylguanine-DNA methyltransferase MGMT)的表达状态,探讨MGMT在胶质瘤中的表达与亚硝脲(ACNU/BCNU)耐药之间的关系;同时对于部分MGMT阳性患者给予链脲菌素(STZ)联合ACNU/BCNU治疗,观察疗效.方法:采用免疫组化法对神经胶质瘤石蜡标本检测MGMT,并与临床亚硝脲的随访结果进行比较;对8例MGMT阳性率高且对亚硝脲治疗无效的难治性脑瘤患者,开展STZ联合ACNU治疗.结果:68例神经胶质瘤,MGMT表达的总阳性率为55.9%.在使用亚硝脲治疗的患者中,除8例加用STZ联合治疗外,余60例中,27例MGMT(-)者,使用ACNU治疗绝大部分有效;30例MGMT(+~++)者,使用ACNU治疗后绝大部分复发或死亡,表明MGMT表达与亚硝脲化疗呈负相关;另外8例MGMT阳性患者在进行了STZ联合ACNU治疗后,1例可测肿瘤全部消失,2例肿瘤体积缩小在50%以上,4例肿瘤体积消退<50%,1例无效.结论:MGMT阳性的胶质瘤患者比MGMT阴性的患者明显耐药,且耐药程度与MGMT表达强度无关,仅与其是否阳性有关.对于MGMT阳性患者,可选择ACNU/BCNU联合STZ使用,以提高亚硝脲的疗效.因此,化疗前检测胶质瘤MGMT的表达情况,预测化疗敏感性,对指导临床化疗具有重要意义.

  7. Lipoic acid inhibits the DNA repair protein O 6-methylguanine-DNA methyltransferase (MGMT) and triggers its depletion in colorectal cancer cells with concomitant autophagy induction.

    Science.gov (United States)

    Göder, Anja; Nagel, Georg; Kraus, Alexander; Dörsam, Bastian; Seiwert, Nina; Kaina, Bernd; Fahrer, Jörg

    2015-08-01

    Alkylating agents are present in food and tobacco smoke, but are also used in cancer chemotherapy, inducing the DNA lesion O (6)-methylguanine. This critical adduct is repaired by O (6)-methylguanine-DNA methyltransferase (MGMT), resulting in MGMT inactivation and degradation. In the present study, we analyzed the effects of the natural disulfide compound lipoic acid (LA) on MGMT in vitro and in colorectal cancer cells. We show that LA, but not its reduced form dihydrolipoic acid, potently inhibits the activity of recombinant MGMT by interfering with its catalytic Cys-145 residue, which was partially reversible by N-acetyl cysteine. Incubation of HCT116 colorectal cancer cells with LA altered their glutathione pool and caused a decline in MGMT activity. This was mirrored by LA-induced depletion of MGMT protein, which was not attributable to changes in MGMT messenger RNA levels. Loss of MGMT protein coincided with LA-induced autophagy, a process resulting in lysosomal degradation of proteins, including presumably MGMT. LA-stimulated autophagy in a p53-independent manner as revealed by the response of isogenic HCT116 cell lines. Knockdown of the crucial autophagy component beclin-1 and chemical inhibitors blocked LA-induced autophagy, but did not abrogate LA-triggered MGMT degradation. Concomitant with MGMT depletion, LA pretreatment resulted in enhanced O (6)-methylguanine levels in DNA. It also increased the cytotoxicity of the alkylating anticancer drug temozolomide in temozolomide-resistant colorectal cancer cells. Taken together, our study showed that the natural compound LA inhibits MGMT and induces autophagy. Furthermore, LA enhanced the cytotoxic effects of temozolomide, which makes it a candidate for a supplement in cancer therapy.

  8. Functions that Protect Escherichia coli from Tightly Bound DNA-Protein Complexes Created by Mutant EcoRII Methyltransferase.

    Directory of Open Access Journals (Sweden)

    Morgan L Henderson

    Full Text Available Expression of mutant EcoRII methyltransferase protein (M.EcoRII-C186A in Escherichia coli leads to tightly bound DNA-protein complexes (TBCs, located sporadically on the chromosome rather than in tandem arrays. The mechanisms behind the lethality induced by such sporadic TBCs are not well studied, nor is it clear whether very tight binding but non-covalent complexes are processed in the same way as covalent DNA-protein crosslinks (DPCs. Using 2D gel electrophoresis, we found that TBCs induced by M.EcoRII-C186A block replication forks in vivo. Specific bubble molecules were detected as spots on the 2D gel, only when M.EcoRII-C186A was induced, and a mutation that eliminates a specific EcoRII methylation site led to disappearance of the corresponding spot. We also performed a candidate gene screen for mutants that are hypersensitive to TBCs induced by M.EcoRII-C186A. We found several gene products necessary for protection against these TBCs that are known to also protect against DPCs induced with wild-type M.EcoRII (after 5-azacytidine incorporation: RecA, RecBC, RecG, RuvABC, UvrD, FtsK, XerCD and SsrA (tmRNA. In contrast, the RecFOR pathway and Rep helicase are needed for protection against TBCs but not DPCs induced by M.EcoRII. We propose that stalled fork processing by RecFOR and RecA promotes release of tightly bound (but non-covalent blocking proteins, perhaps by licensing Rep helicase-driven dissociation of the blocking M.EcoRII-C186A. Our studies also argued against the involvement of several proteins that might be expected to protect against TBCs. We took the opportunity to directly compare the sensitivity of all tested mutants to two quinolone antibiotics, which target bacterial type II topoisomerases and induce a unique form of DPC. We uncovered rep, ftsK and xerCD as novel quinolone hypersensitive mutants, and also obtained evidence against the involvement of a number of functions that might be expected to protect against quinolones.

  9. Characterization of Sinorhizobium sp. LM21 Prophages and Virus-Encoded DNA Methyltransferases in the Light of Comparative Genomic Analyses of the Sinorhizobial Virome.

    Science.gov (United States)

    Decewicz, Przemyslaw; Radlinska, Monika; Dziewit, Lukasz

    2017-06-26

    The genus Sinorhizobium/Ensifer mostly groups nitrogen-fixing bacteria that create root or stem nodules on leguminous plants and transform atmospheric nitrogen into ammonia, which improves the productivity of the plants. Although these biotechnologically-important bacteria are commonly found in various soil environments, little is known about their phages. In this study, the genome of Sinorhizobium sp. LM21 isolated from a heavy-metal-contaminated copper mine in Poland was investigated for the presence of prophages and DNA methyltransferase-encoding genes. In addition to the previously identified temperate phage, ΦLM21, and the phage-plasmid, pLM21S1, the analysis revealed the presence of three prophage regions. Moreover, four novel phage-encoded DNA methyltransferase (MTase) genes were identified and the enzymes were characterized. It was shown that two of the identified viral MTases methylated the same target sequence (GANTC) as cell cycle-regulated methyltransferase (CcrM) of the bacterial host strain, LM21. This discovery was recognized as an example of the evolutionary convergence between enzymes of sinorhizobial viruses and their host, which may play an important role in virus cycle. In the last part of the study, thorough comparative analyses of 31 sinorhizobial (pro)phages (including active sinorhizobial phages and novel putative prophages retrieved and manually re-annotated from Sinorhizobium spp. genomes) were performed. The networking analysis revealed the presence of highly conserved proteins (e.g., holins and endolysins) and a high diversity of viral integrases. The analysis also revealed a large number of viral DNA MTases, whose genes were frequently located within the predicted replication modules of analyzed prophages, which may suggest their important regulatory role. Summarizing, complex analysis of the phage protein similarity network enabled a new insight into overall sinorhizobial virome diversity.

  10. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases

    Institute of Scientific and Technical Information of China (English)

    Chi-NeuTsai

    2005-01-01

    The latent membrane protein (LMP1) of Epstein-Barr virus (EBV) is expressed in EBV-associated nasopharyngeal carcinoma, which isnotoriously metastatic. Although it Is established that LMP1 represses E-cadherin expression and enhances the invasive ability of carcinoma cells, the mechanism underlying this repression remains to be elucidated. In this study, we demonstrate that LMP1 induces the expression and activity of the DNA methyltransferases 1, 3a, and 3b, using real-time reverse transcription-PCR and enzyme activity assay. This results in hypermethylation of the E-cadherin promoter and down-regulation of E-cadherin gene expression, as revealed by methylation-specific PCR, real-time reverse transcription-PeR and Western blotting data. The DNA methyltransferase inhibitor, 5'-Aza-2'dC, restores E-cadherin promoter activity and protein expression in LMPl-expressing cells, which in turn blocks cell migration ability, as demonstrated by the Transwell cell migration assay. Our findings suggest that LMP1 down-regulates E-cadherin gene expression and induces cell migration activity by using cellular DNA methylation machinery.

  11. A comprehensive analysis of radiosensitization targets; functional inhibition of DNA methyltransferase 3B radiosensitizes by disrupting DNA damage regulation

    OpenAIRE

    Fujimori, Hiroaki; Sato, Akira; Kikuhara, Sota; Wang, Junhui; Hirai, Takahisa; Sasaki, Yuka; Murakami, Yasufumi; Okayasu, Ryuichi; Masutani, Mitsuko

    2015-01-01

    A comprehensive genome-wide screen of radiosensitization targets in HeLa cells was performed using a shRNA-library/functional cluster analysis and DNMT3B was identified as a candidate target. DNMT3B RNAi increased the sensitivity of HeLa, A549 and HCT116 cells to both γ-irradiation and carbon-ion beam irradiation. DNMT3B RNAi reduced the activation of DNA damage responses induced by γ-irradiation, including HP1β-, γH2AX- and Rad51-foci formation. DNMT3B RNAi impaired damage-dependent H2AX acc...

  12. A comprehensive analysis of radiosensitization targets; functional inhibition of DNA methyltransferase 3B radiosensitizes by disrupting DNA damage regulation

    OpenAIRE

    Fujimori, Hiroaki; Sato, Akira; Kikuhara, Sota; Wang, Junhui; Hirai, Takahisa; Sasaki, Yuka; Murakami, Yasufumi; Okayasu, Ryuichi; Masutani, Mitsuko

    2015-01-01

    A comprehensive genome-wide screen of radiosensitization targets in HeLa cells was performed using a shRNA-library/functional cluster analysis and DNMT3B was identified as a candidate target. DNMT3B RNAi increased the sensitivity of HeLa, A549 and HCT116 cells to both γ3-irradiation and carbon-ion beam irradiation. DNMT3B RNAi reduced the activation of DNA damage responses induced by γ3-irradiation, including HP1β-, γ3H2AX- and Rad51-foci formation. DNMT3B RNAi impaired damage-dependent H2AX ...

  13. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  14. Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N6-adenine DNA methyltransferases of Neisseria meningitidis

    Science.gov (United States)

    Seib, Kate L.; Jen, Freda E.-C.; Tan, Aimee; Scott, Adeana L.; Kumar, Ritesh; Power, Peter M.; Chen, Li-Tzu; Wu, Hsing-Ju; Wang, Andrew H.-J.; Hill, Dorothea M. C.; Luyten, Yvette A.; Morgan, Richard D.; Roberts, Richard J.; Maiden, Martin C. J.; Boitano, Matthew; Clark, Tyson A.; Korlach, Jonas; Rao, Desirazu N.; Jennings, Michael P.

    2015-01-01

    Phase variation (random ON/OFF switching) of gene expression is a common feature of host-adapted pathogenic bacteria. Phase variably expressed N6-adenine DNA methyltransferases (Mod) alter global methylation patterns resulting in changes in gene expression. These systems constitute phase variable regulons called phasevarions. Neisseria meningitidis phasevarions regulate genes including virulence factors and vaccine candidates, and alter phenotypes including antibiotic resistance. The target site recognized by these Type III N6-adenine DNA methyltransferases is not known. Single molecule, real-time (SMRT) methylome analysis was used to identify the recognition site for three key N. meningitidis methyltransferases: ModA11 (exemplified by M.NmeMC58I) (5′-CGYm6AG-3′), ModA12 (exemplified by M.Nme77I, M.Nme18I and M.Nme579II) (5′-ACm6ACC-3′) and ModD1 (exemplified by M.Nme579I) (5′-CCm6AGC-3′). Restriction inhibition assays and mutagenesis confirmed the SMRT methylome analysis. The ModA11 site is complex and atypical and is dependent on the type of pyrimidine at the central position, in combination with the bases flanking the core recognition sequence 5′-CGYm6AG-3′. The observed efficiency of methylation in the modA11 strain (MC58) genome ranged from 4.6% at 5′-GCGCm6AGG-3′ sites, to 100% at 5′-ACGTm6AGG-3′ sites. Analysis of the distribution of modified sites in the respective genomes shows many cases of association with intergenic regions of genes with altered expression due to phasevarion switching. PMID:25845594

  15. Polymorphisms of the DNA methyltransferase 1 associated with reduced risks of Helicobacter pylori infection and increased risks of gastric atrophy.

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    Full Text Available INTRODUCTION: DNA methyltransferase-1(DNMT1 is an important enzyme in determining genomic methylation patterns in mammalian cells. We investigated the associations between SNPs in the DNMT1 gene and risks of developing H. pylori seropositivity, gastric atrophy and gastric cancer in the Chinese population. METHODS: The study consisted of 447 patients with gastric cancer; 111 patients with gastric atrophy; and 961 healthy controls. Five SNPs, rs10420321, rs16999593, rs8101866, rs8111085 and rs2288349 of the DNMT1 gene were genotyped. Anti-H.pylori IgG was detected by ELISA. Gastric atrophy was screened by the level of serum pepsinogen Ι and II and then confirmed by endoscopy and histopatholgical examinations. RESULTS: The age- and sex-adjusted OR of H. pylori seropositivity was 0.67 (95%CI: 0.51-0.87 for rs8111085 TC/CC genotypes, significantly lower than the TT genotype in healthy controls. The adjusted OR of H.pylori seropositivity was 0.68 (95%CI: 0.52-0.89 for rs10420321 AG/GG genotypes. In addition, patients carrying rs2228349 AA genotype have a significantly increased risk for H.pylori seropositivity (OR=1.67; 95%CI: 1.02-2.75. Further haplotype analyses also showed that the ATTTG and ATCTA are significantly associated with increased risks in H.pylori infection compared to the GTCCG haplotype (OR=1.38, 95%CI: 1.08-1.77; OR=1.40, 95% CI: 1.09-1.80. The adjusted ORs of gastric atrophy were 1.66 (95%CI: 1.06-2.61 for rs10420321 GG genotype, and 1.67 (95%CI 1.06-2.63, P=0.03 for rs8111085 CC genotype, but no association was found between SNPs in the DNMT1 gene and risk of developing gastric cancer. CONCLUSIONS: Individuals with rs10420321 GG and rs8111085 CC genotype of the DNMT1 gene were associated with reduced risks for H.pylori infection. On the other hand, higher risks of gastric atrophy were found in the carriers with these two genotypes compared to other genotypes. Our results suggested that SNPs of DNMT1 could be used as genotypic

  16. Continuous and low-energy 125I seed irradiation changes DNA methyltransferases expression patterns and inhibits pancreatic cancer tumor growth

    Directory of Open Access Journals (Sweden)

    Gong Yan-fang

    2011-04-01

    Full Text Available Abstract Background Iodine 125 (125I seed irradiation is an effective treatment for unresectable pancreatic cancers. However, the radiobiological mechanisms underlying brachytherapy remain unclear. Therefore, we investigated the influence of continuous and low-energy 125I irradiation on apoptosis, expression of DNA methyltransferases (DNMTs and cell growth in pancreatic cancers. Materials and methods For in vitro 125I seed irradiation, SW-1990 cells were divided into three groups: control (0 Gy, 2 Gy, and 4 Gy. To create an animal model of pancreatic cancer, the SW 1990 cells were surgically implanted into the mouse pancreas. At 10 d post-implantation, the 30 mice with pancreatic cancer underwent 125I seed implantation and were separated into three groups: 0 Gy, 2 Gy, and 4 Gy group. At 48 or 72 h after irradiation, apoptosis was detected by flow cytometry; changes in DNMTs mRNA and protein expression were assessed by real-time PCR and western blotting analysis, respectively. At 28 d after 125I seed implantation, in vivo apoptosis was evaluated with TUNEL staining, while DNMTs protein expression was detected with immunohistochemical staining. The tumor volume was measured 0 and 28 d after 125I seed implantation. Results 125I seed irradiation induced significant apoptosis, especially at 4 Gy. DNMT1 and DNMT3b mRNA and protein expression were substantially higher in the 2 Gy group than in the control group. Conversely, the 4 Gy cell group exhibited significantly decreased DNMT3b mRNA and protein expression relative to the control group. There were substantially more TUNEL positive in the 125I seed implantation treatment group than in the control group, especially at 4 Gy. The 4 Gy seed implantation group showed weaker staining for DNMT1 and DNMT3b protein relative to the control group. Consequently, 125I seed implantation inhibited cancer growth and reduced cancer volume. Conclusion 125I seed implantation kills pancreatic cancer cells, especially

  17. DNA methyltrans-ferase 3b regulating the Cyclin D1 gene expression by microRNA-145 in the human hepatocellular carcinoma cell line%肝癌细胞DNA甲基转移酶3b通过微小RNA-145调节细胞周期素D1基因表达的研究

    Institute of Scientific and Technical Information of China (English)

    王佳辰; 司亚卿; 秦贯军

    2014-01-01

    Objective To discuss the mechanism of the DNA methyltrans-ferase 3b (DNMT3b) regulating the Cyclin D1 gene expression in SMMC7721 cell line.Methods DNMT3b small interfering RNA (siRNA) was transfected into SMMC-7721 cells.Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression of the microRNA (miR)-145 and Cyclin D1 mRNA.MSP was used to detect whether the promoter of miR-145 was methylated.Results DNMT3b has been successfully suppressed in the culture cells transfected by miR-145 with a transfection efficiency over 90% ; The methylation status of miR-145 gene showed no significant differences between two groups (P >0.05) ; The expression of miR-145 was significantly higher than in control group (P < 0.01) and the change between two groups had no difference (P > 0.05).Conclusion DNMT3b can regulate the expression of Cyclin D1 by miR-145,affect the cell cycle and cause a large number of apoptosis of SMMC-7721 cells.%目的 探讨DNA甲基转移酶3b(DNMT3b)在人肝癌细胞株(SMMC7721)中调节细胞周期素(Cyclin) D1基因表达的机制.方法 用DNMT3b的小干扰RNA(siRNA)表达载体转染SMMC7721细胞抑制DNMT3b的表达;采用逆转录-聚合酶链反应(RT-PCR)检测微小RNA(miR)-145、Cyclin D1 mRNA表达的变化;用甲基化特异性PCR (MSP)技术检测miR-145基因启动子区甲基化状态的变化.结果 siRNA转染肝癌细胞的效率可达90%以上,DNMT3b成功被抑制;两组中miR-145基因启动子区甲基化水平的差异无统计学意义(P>0.05);实验组miR-145表达水平明显高于对照组(P<0.01),但Cylin D1 mRNA表达水平的差异无统计学意义(P>0.05).结论 DNMT3b可以通过miR-145调节Cyclin D1的表达,从而影响细胞周期,进而引起肝癌细胞的大量凋亡.

  18. The phage growth limitation system in Streptomyces coelicolor A(3)2 is a toxin/antitoxin system, comprising enzymes with DNA methyltransferase, protein kinase and ATPase activity.

    Science.gov (United States)

    Hoskisson, Paul A; Sumby, Paul; Smith, Margaret C M

    2015-03-01

    The phage growth limitation system of Streptomyces coelicolor A3(2) is an unusual bacteriophage defence mechanism. Progeny ϕC31 phage from an initial infection are thought to be modified such that subsequent infections are attenuated in a Pgl(+) host but normal in a Pgl(-) strain. Earlier work identified four genes required for phage resistance by Pgl. Here we demonstrate that Pgl is an elaborate and novel phage restriction system that, in part, comprises a toxin/antitoxin system where PglX, a DNA methyltransferase is toxic in the absence of a functional PglZ. In addition, the ATPase activity of PglY and a protein kinase activity in PglW are shown to be essential for phage resistance by Pgl. We conclude that on infection of a Pgl(+) cell by bacteriophage ϕC31, PglW transduces a signal, probably via phosphorylation, to other Pgl proteins resulting in the activation of the DNA methyltransferase, PglX and this leads to phage restriction.

  19. An oligodeoxyribonucleotide containing 5-formyl-2'-deoxycytidine (fC) at the CpG site forms a covalent complex with DNA cytosine-5 methyltransferases (DNMTs).

    Science.gov (United States)

    Sato, Kousuke; Kawamoto, Kyoji; Shimamura, Shintaro; Ichikawa, Satoshi; Matsuda, Akira

    2016-11-15

    5-Methylcytosine (mC) is known to induce epigenetic changes. Ten-eleven translocation (TET) enzymes produce the further oxidized 5-substituted cytosine derivatives, 5-formylcytosine (fC) and 5-carboxylcytosine (caC). However, their roles are unclear thus far. Here, we synthesized oligodeoxyribonucleotides (ODNs) containing 5-formyl-2'-deoxycytidine and examined their interactions with DNA cytosine-5 methyltransferase (DNMT). We found that the ODN sequence containing fCpG formed a covalent complex with both bacterial and mouse recombinant DNMTs in the absence of any cofactors. The covalent bonding with DNMT suggests that the fCpG sequence in DNA may play a role in epigenetic regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Synthesis of S-adenosyl-L-methionine analogs with extended transferable groups for methyltransferase-directed labeling of DNA and RNA

    Science.gov (United States)

    Masevičius, Viktoras; Nainytė, Milda; Klimašauskas, Saulius

    2016-01-01

    S-Adenosyl-L-methionine (AdoMet) is a ubiquitous methyl donor for a variety of biological methylation reactions catalyzed by methyltransferases (MTases). AdoMet analogs with extended propargylic chains replacing the sulfonium-bound methyl group can serve as surrogate cofactors for many DNA and RNA MTases enabling covalent deposition of these linear chains to their cognate targets sites in DNA or RNA. Here we describe synthetic procedures for the preparation of two representative examples of AdoMet analogs with a transferable hex-2-ynyl group carrying a terminal azide or amine functionality. Our approach is based on direct chemoselective alkylation of S-adenosyl-L-homocysteine at sulfur with corresponding nosylates under acidic conditions. We also describe synthetic routes to 6-substituted hex-2-yn-1-ols and their conversion to the corresponding nosylates. Using these protocols, synthetic AdoMet analogs can be prepared within one to two weeks. PMID:26967468

  1. DNA Methylation

    OpenAIRE

    Alokail, Majed S.; Alenad, Amal M.

    2015-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication e...

  2. Ubiquitination of Lysine 867 of the Human SETDB1 Protein Upregulates Its Histone H3 Lysine 9 (H3K9) Methyltransferase Activity

    Science.gov (United States)

    Ishimoto, Kenji; Kawamata, Natsuko; Uchihara, Yoshie; Okubo, Moeka; Fujimoto, Reiko; Gotoh, Eiko; Kakinouchi, Keisuke; Mizohata, Eiichi; Hino, Nobumasa; Okada, Yoshiaki; Mochizuki, Yasuhiro; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Inoue, Tsuyoshi; Tachibana, Keisuke; Doi, Takefumi

    2016-01-01

    Posttranslational modifications (PTMs) of proteins play a crucial role in regulating protein-protein interactions, enzyme activity, subcellular localization, and stability of the protein. SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that regulates the methylation of histone H3 on lysine 9 (H3K9), gene silencing, and transcriptional repression. The C-terminal region of SETDB1 is a key site for PTMs, and is essential for its enzyme activity in mammalian and insect cells. In this study, we aimed to evaluate more precisely the effect of PTMs on the H3K9 methyltransferase activity of SETDB1. Using mass spectrometry analysis, we show that the C-terminal region of human SETDB1 purified from insect cells is ubiquitinated. We also demonstrate that the ubiquitination of lysine 867 of the human SETDB1 is necessary for full H3K9 methyltransferase activity in mammalian cells. Finally, we show that SETDB1 ubiquitination regulates the expression of its target gene, serpin peptidase inhibitor, clade E, member 1 (SERPINE1) by methylating H3K9. These results suggest that the ubiquitination of SETDB1 at lysine 867 controls the expression of its target gene by activating its H3K9 methyltransferase activity. PMID:27798683

  3. Associations between arsenic (+3 oxidation state) methyltransferase (AS3MT) and N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) polymorphisms, arsenic metabolism, and cancer risk in a chilean population.

    Science.gov (United States)

    de la Rosa, Rosemarie; Steinmaus, Craig; Akers, Nicholas K; Conde, Lucia; Ferreccio, Catterina; Kalman, David; Zhang, Kevin R; Skibola, Christine F; Smith, Allan H; Zhang, Luoping; Smith, Martyn T

    2017-07-01

    Inter-individual differences in arsenic metabolism have been linked to arsenic-related disease risks. Arsenic (+3) methyltransferase (AS3MT) is the primary enzyme involved in arsenic metabolism, and we previously demonstrated in vitro that N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) also methylates the toxic inorganic arsenic (iAs) metabolite, monomethylarsonous acid (MMA), to the less toxic dimethylarsonic acid (DMA). Here, we evaluated whether AS3MT and N6AMT1 gene polymorphisms alter arsenic methylation and impact iAs-related cancer risks. We assessed AS3MT and N6AMT1 polymorphisms and urinary arsenic metabolites (%iAs, %MMA, %DMA) in 722 subjects from an arsenic-cancer case-control study in a uniquely exposed area in northern Chile. Polymorphisms were genotyped using a custom designed multiplex, ligation-dependent probe amplification (MLPA) assay for 6 AS3MT SNPs and 14 tag SNPs in the N6AMT1 gene. We found several AS3MT polymorphisms associated with both urinary arsenic metabolite profiles and cancer risk. For example, compared to wildtypes, individuals carrying minor alleles in AS3MT rs3740393 had lower %MMA (mean difference = -1.9%, 95% CI: -3.3, -0.4), higher %DMA (mean difference = 4.0%, 95% CI: 1.5, 6.5), and lower odds ratios for bladder (OR = 0.3; 95% CI: 0.1-0.6) and lung cancer (OR = 0.6; 95% CI: 0.2-1.1). Evidence of interaction was also observed for both lung and bladder cancer between these polymorphisms and elevated historical arsenic exposures. Clear associations were not seen for N6AMT1. These results are the first to demonstrate a direct association between AS3MT polymorphisms and arsenic-related internal cancer risk. This research could help identify subpopulations that are particularly vulnerable to arsenic-related disease. Environ. Mol. Mutagen. 58:411-422, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Methylation by a unique α-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725.

    Directory of Open Access Journals (Sweden)

    Daehwan Chung

    Full Text Available Thermophilic microorganisms capable of using complex substrates offer special advantages for the conversion of lignocellulosic biomass to biofuels and bioproducts. Members of the gram-positive bacterial genus Caldicellulosiruptor are anaerobic thermophiles with optimum growth temperatures between 65°C and 78°C and are the most thermophilic cellulolytic organisms known. In fact, they efficiently use biomass non-pretreated as their sole carbon source and in successive rounds of application digest 70% of total switchgrass substrate. The ability to genetically manipulate these organisms is a prerequisite to engineering them for use in conversion of these complex substrates to products of interest as well as identifying gene products critical for their ability to utilize non-pretreated biomass. Here, we report the first example of DNA transformation of a member of this genus, C. bescii. We show that restriction of DNA is a major barrier to transformation (in this case apparently absolute and that methylation with an endogenous unique α-class N4-Cytosine methyltransferase is required for transformation of DNA isolated from E. coli. The use of modified DNA leads to the development of an efficient and reproducible method for DNA transformation and the combined frequencies of transformation and recombination allow marker replacement between non-replicating plasmids and chromosomal genes providing the basis for rapid and efficient methods of genetic manipulation.

  5. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    Science.gov (United States)

    Aluru, Neelakanteswar; Kuo, Elaine; Helfrich, Lily W.; Karchner, Sibel I.; Linney, Elwood A.; Pais, June E.; Franks, Diana G.

    2015-01-01

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for one hour from 4 to 5 hours post-fertilization (hpf) and sampled at 12, 24, 48, 72 and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2 and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. PMID:25732252

  6. Cigarette smoke induces proteasomal-mediated degradation of DNA methyltransferases and methyl CpG-/CpG domain-binding proteins in embryonic orofacial cells.

    Science.gov (United States)

    Mukhopadhyay, Partha; Greene, Robert M; Pisano, M Michele

    2015-12-01

    Orofacial clefts, the most prevalent of developmental anomalies, occur with a frequency of 1 in 700 live births. Maternal cigarette smoking during pregnancy represents a risk factor for having a child with a cleft lip and/or cleft palate. Using primary cultures of first branchial arch-derived cells (1-BA cells), which contribute to the formation of the lip and palate, the present study addressed the hypothesis that components of cigarette smoke alter global DNA methylation, and/or expression of DNA methyltransferases (Dnmts) and various methyl CpG-binding proteins. Primary cultures of 1-BA cells, exposed to 80μg/mL cigarette smoke extract (CSE) for 24h, exhibited a >13% decline in global DNA methylation and triggered proteasomal-mediated degradation of Dnmts (DNMT-1 and -3a), methyl CpG binding protein 2 (MeCP2) and methyl-CpG binding domain protein 3 (MBD-3). Pretreatment of 1-BA cells with the proteasomal inhibitor MG-132 completely reversed such degradation. Collectively, these data allow the suggestion of a potential epigenetic mechanism underlying maternal cigarette smoke exposure-induced orofacial clefting. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation.

    Science.gov (United States)

    Rius, Maria; Stresemann, Carlo; Keller, Daniela; Brom, Manuela; Schirrmacher, Esther; Keppler, Dietrich; Lyko, Frank

    2009-01-01

    The DNA methyltransferase inhibitors 5-azacytidine (5-azaCyd) and 5-aza-2'-deoxycytidine have found increasing use for the treatment of myeloid leukemias and solid tumors. Both nucleoside analogues must be transported into cells and phosphorylated before they can be incorporated into DNA and inactivate DNA methyltransferases. The members of the human equilibrative and concentrative nucleoside transporter families mediate transport of natural nucleosides and some nucleoside analogues into cells. However, the molecular identity of the transport proteins responsible for mediating the uptake of 5-azanucleosides has remained unknown. To this end, we have generated a stably transfected Madin-Darby canine kidney strain II cell line expressing recombinant hCNT1. An antiserum directed against hCNT1 specifically detected the protein in the apical membrane of hCNT1-expressing Madin-Darby canine kidney cells. Using [14C]5-azaCyd, we show here that hCNT1 mediated the Na+-dependent uptake of this drug with a Km value of 63 micromol/L. Na+-dependent transport of radiolabeled cytidine, uridine, and 5-fluoro-5'-deoxyuridine further showed the functionality of the transporter. hCNT1-expressing cells were significantly more sensitive to 5-azaCyd, and drug-dependent covalent trapping of DNA methyltransferase 1 was substantially more pronounced. Importantly, these results correlated with a significant sensitization of hCNT1-expressing cells toward the demethylating effects of 5-azaCyd and 5-aza-2'-deoxycytidine. In conclusion, our study identifies 5-azaCyd as a novel substrate for hCNT1 and provides direct evidence that hCNT1 is involved in the DNA-demethylating effects of this drug.

  8. Rational Design of Human Metapneumovirus Live Attenuated Vaccine Candidates by Inhibiting Viral mRNA Cap Methyltransferase

    Science.gov (United States)

    Zhang, Yu; Wei, Yongwei; Zhang, Xiaodong; Cai, Hui; Niewiesk, Stefan

    2014-01-01

    ABSTRACT The paramyxoviruses human respiratory syncytial virus (hRSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (hPIV3) are responsible for the majority of pediatric respiratory diseases and inflict significant economic loss, health care costs, and emotional burdens. Despite major efforts, there are no vaccines available for these viruses. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at positions guanine N-7 (G-N-7) and ribose 2′-O. In this study, we generated a panel of recombinant hMPVs carrying mutations in the S-adenosylmethionine (SAM) binding site in CR VI of L protein. These recombinant viruses were specifically defective in ribose 2′-O methylation but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of cotton rats. Importantly, vaccination of cotton rats with these recombinant hMPVs (rhMPVs) with defective MTases triggered a high level of neutralizing antibody, and the rats were completely protected from challenge with wild-type rhMPV. Collectively, our results indicate that (i) amino acid residues in the SAM binding site in the hMPV L protein are essential for 2′-O methylation and (ii) inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for hMPV and perhaps other paramyxoviruses, such as hRSV and hPIV3. IMPORTANCE Human paramyxoviruses, including hRSV, hMPV, and hPIV3, cause the majority of acute upper and lower respiratory tract infections in humans, particularly in infants, children, the elderly, and immunocompromised individuals. Currently, there is no licensed vaccine available. A formalin-inactivated vaccine is not suitable for these viruses because it causes enhanced lung damage upon reinfection with the same virus. A live attenuated vaccine

  9. A novel prokaryotic expression system for biosynthesis of recombinant human membrane-bound catechol-O-methyltransferase.

    Science.gov (United States)

    Pedro, A Q; Bonifácio, M J; Queiroz, J A; Maia, C J; Passarinha, L A

    2011-11-10

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. While large amounts of purified proteins are required for pharmaceutical and crystallization attempts, there is an unmet need for the development of novel heterologous membrane protein overexpression systems. Specifically, we tested the application of Brevibacillus choshinensis cells for the biosynthesis of human membrane bound catechol-O-methyltransferase (hMBCOMT). In terms of the upstream stage moderate to high expression was obtained for complex media formulation with a value near 45 nmol/h/mg for hMBCOMT specific activity achieved at 20 h culture with 37°C and 250 rpm. Subsequently, the efficiency for reconstitution of hMBCOMT is markedly null in the presence of ionic detergents, such as sodium dodecyl sulphate (SDS). In general, for non-ionic and zwiterionic detergents, until a detergent critic micellar concentration (CMC) of 1.0 mM, hMBCOMT shows more biological activity at lower detergent concentrations while for detergent CMC higher than 1 mM, higher detergent concentrations seem to be ideal for hMBCOMT solubilization. Indeed, from the detergents tested, the non-ionic digitonin at 0.5% (w/v) appears to be the most suitable for hMBCOMT solubilization. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Histone methyltransferases in cancer

    DEFF Research Database (Denmark)

    Albert, Mareike; Helin, Kristian

    2009-01-01

    Cancer is perceived as a heterogeneous group of diseases that is characterized by aberrant patterns of gene expression. In the last decade, an increasing amount of data has pointed to a key role for epigenetic alterations in human cancer. In this review, we focus on a subclass of epigenetic...... regulators, namely histone methyltransferases (HMTs). Several HMTs have been linked to different types of cancer; however, in most cases we only have limited knowledge regarding the molecular mechanisms by which the HMTs contribute to disease development. We summarize the current knowledge regarding some...

  11. Designs for the self-assembly of open and closed macromolecular structures and a molecular switch using DNA methyltransferases to order proteins on nucleic acid scaffolds

    Science.gov (United States)

    Smith, Steven S.

    2002-06-01

    The methyltransferase-directed addressing of fusion proteins to DNA scaffolds offers an approach to the construction of protein/nucleic acid biostructures with potential in a variety of applications. The technology is currently only limited by the yield of high occupancy structures. However, current evidence shows that DNA scaffolds that contain three or four targeted proteins can be reliably constructed. This permits a variety of macromolecular designs, several of which are given in this paper. Designs for open and closed two-dimensional and three-dimensional assemblies and a design for a molecular switch are discussed. The closed two-dimensional assembly takes the form of a square, and could find application as a component of other systems including a macromolecular rotaxane. The closed three-dimensional system takes the form of a trigonal bipyramid and could find application as a macromolecular carcerand. The molecular switch could find application as a peptide biosensor. Guidelines for the construction and structural verification of these designs are reported.

  12. Specificity protein 1-modulated superoxide dismutase 2 enhances temozolomide resistance in glioblastoma, which is independent of O6-methylguanine-DNA methyltransferase

    Directory of Open Access Journals (Sweden)

    Kwang-Yu Chang

    2017-10-01

    Full Text Available Acquisition of temozolomide (TMZ resistance is a major factor leading to the failure of glioblastoma (GBM treatment. The exact mechanism by which GBM evades TMZ toxicity is not always related to the expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT, and so remains unclear. In this study, TMZ-resistant variants derived from MGMT-negative GBM clinical samples and cell lines were studied, revealing there to be increased specificity protein 1 (Sp1 expression associated with reduced reactive oxygen species (ROS accumulation following TMZ treatment. Analysis of gene expression databases along with cell studies identified the ROS scavenger superoxide dismutase 2 (SOD2 as being disease-related. SOD2 expression was also increased, and it was found to be co-expressed with Sp1 in TMZ-resistant cells. Investigation of the SOD2 promoter revealed Sp1 as a critical transcriptional activator that enhances SOD2 gene expression. Co-treatment with an Sp1 inhibitor restored the inhibitory effects of TMZ, and decreased SOD2 levels in TMZ-resistant cells. This treatment strategy restored susceptibility to TMZ in xenograft animals, leading to prolonged survival in an orthotopic model. Thus, our results suggest that Sp1 modulates ROS scavengers as a novel mechanism to increase cancer malignancy and resistance to chemotherapy. Inhibition of this pathway may represent a potential therapeutic target for restoring treatment susceptibility in GBM.

  13. Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor.

    Science.gov (United States)

    Vasanthakumari, M M; Jadhav, S S; Sachin, Naik; Vinod, G; Shweta, Singh; Manjunatha, B L; Kumara, P Mohana; Ravikanth, G; Nataraja, Karaba N; Uma Shaanker, R

    2015-10-01

    Fungal endophytes inhabit living tissues of plants without any apparent symptoms and in many cases are known to produce secondary metabolites similar to those produced by their respective host plants. However on sub-culture, the endophytic fungi gradually attenuate their ability to produce the metabolites. Attenuation has been a major constraint in realizing the potential of endophytic fungi as an alternative source of plant secondary metabolites. In this study, we report attempts to restore camptothecine (CPT) production in attenuated endophytic fungi isolated from CPT producing plants, Nothapodytes nimmoniana and Miquelia dentata when they are passed through their host plant or plants that produce CPT and when treated with a DNA methyl transferase inhibitor. Attenuated endophytic fungi that traversed through their host tissue or plants capable of synthesizing CPT, produced significantly higher CPT compared to the attenuated fungi. Attenuated fungus cultured in the presence of 5-azacytidine, a DNA methyltransferase inhibitor, had an enhanced CPT content compared to untreated attenuated fungus. These results indicate that the attenuation of CPT production in endophytic fungi could in principle be reversed by eliciting some signals from plant tissue, most likely that which prevents the methylation or silencing of the genes responsible for CPT biosynthesis.

  14. Human histamine N-methyltransferase pharmacogenetics: gene resequencing, promoter characterization, and functional studies of a common 5'-flanking region single nucleotide polymorphism (SNP).

    Science.gov (United States)

    Wang, Liewei; Thomae, Bianca; Eckloff, Bruce; Wieben, Eric; Weinshilboum, Richard

    2002-08-15

    Histamine N-methyltransferase (HNMT) catalyzes one of two major metabolic pathways for histamine. The levels of HNMT activity and immunoreactive protein in human tissues are regulated primarily by inheritance. Previous studies of HNMT identified two common single nucleotide polymorphisms (SNPs), including a functionally significant nonsynonymous coding SNP (cSNP), (C314T, Thr105Ile), but that polymorphism did not explain all of the phenotypic variation. In the present study, a genotype-to-phenotype strategy was used to search for additional genetic factors that might contribute to the regulation of human HNMT activity. Specifically, we began by resequencing the human HNMT gene using 90 ethnically anonymous DNA samples from the Coriell Cell Repository and identified a total of eight SNPs, including the two that had been reported previously. No new nonsynonymous cSNPs were observed, but three of the six novel SNPs were located in the 5'-flanking region (5'-FR) of the gene-including a third common polymorphism with a frequency of 0.367 (36.7%). That observation directed our attention to possible genetic effects on HNMT transcription. As a first step in testing that possibility, we created and studied a series of reporter gene constructs for the initial 1kb of the HNMT 5'-FR. The core promoter and possible regulatory regions were identified and verified by electrophoresis mobility shift assays. We then studied the possible functional implications of the new common HNMT 5'-FR SNP. However, on the basis of reporter gene studies, that SNP appeared to have little effect on transcription. Phenotype-genotype correlation analysis performed with 112 human kidney biopsy samples that had been phenotyped for their level of HNMT activity confirmed that the common 5'-FR SNP was not associated with the level of HNMT activity in vivo. In summary, this series of experiments resulted in the identification of several novel HNMT polymorphisms, identification of the HNMT core promoter

  15. Inheritance of an epigenetic mark: the CpG DNA methyltransferase 1 is required for de novo establishment of a complex pattern of non-CpG methylation.

    Directory of Open Access Journals (Sweden)

    Valérie Grandjean

    Full Text Available Site-specific methylation of cytosines is a key epigenetic mark of vertebrate DNA. While a majority of the methylated residues are in the symmetrical (meCpG:Gp(meC configuration, a smaller, but significant fraction is found in the CpA, CpT and CpC asymmetric (non-CpG dinucleotides. CpG methylation is reproducibly maintained by the activity of the DNA methyltransferase 1 (Dnmt1 on the newly replicated hemimethylated substrates (meCpG:GpC. On the other hand, establishment and hereditary maintenance of non-CpG methylation patterns have not been analyzed in detail. We previously reported the occurrence of site- and allele-specific methylation at both CpG and non-CpG sites. Here we characterize a hereditary complex of non-CpG methylation, with the transgenerational maintenance of three distinct profiles in a constant ratio, associated with extensive CpG methylation. These observations raised the question of the signal leading to the maintenance of the pattern of asymmetric methylation. The complete non-CpG pattern was reinstated at each generation in spite of the fact that the majority of the sperm genomes contained either none or only one methylated non-CpG site. This observation led us to the hypothesis that the stable CpG patterns might act as blueprints for the maintenance of non-CpG DNA methylation. As predicted, non-CpG DNA methylation profiles were abrogated in a mutant lacking Dnmt1, the enzymes responsible for CpG methylation, but not in mutants defective for either Dnmt3a or Dnmt2.

  16. The future of human DNA vaccines.

    Science.gov (United States)

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans.

  17. Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene.

    OpenAIRE

    Watts, G S; Pieper, R O; Costello, J F; Peng, Y M; Dalton, W S; Futscher, B.W.

    1997-01-01

    O6-Methylguanine DNA methyltransferase (MGMT) repairs the mutagenic and cytotoxic O6-alkylguanine lesions produced by environmental carcinogens and the chemotherapeutic nitrosoureas. As such, MGMT-mediated repair of O6-alkylguanine lesions constitutes a major form of resistance to nitrosourea chemotherapy and makes control of MGMT expression of clinical interest. The variability of expression in cell lines and tissues, along with the ease with which the MGMT phenotype reverts under various co...

  18. DNA methyltransferase expressions in Japanese rice fish (Oryzias latipes) embryogenesis is developmentally regulated and modulated by ethanol and 5-azacytidine

    Science.gov (United States)

    We aimed to investigate the impact of the epigenome in inducting fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish embryogenesis. One of the significant events in epigenome is DNA methylation which is catalyzed by DNA methyl transferase (DNMT) enzymes. We analyzed DNMT enzyme m...

  19. Synthesis, chemical characterization, computational studies and biological activity of new DNA methyltransferases (DNMTs) specific inhibitor. Epigenetic regulation as a new and potential approach to cancer therapy.

    Science.gov (United States)

    Pellerito, C; Morana, O; Ferrante, F; Calvaruso, G; Notaro, A; Sabella, S; Fiore, T

    2015-09-01

    This work deals with the synthesis, the chemical characterization of dibutyltin(IV) complex of caffeic acid (Bu2Sn(IV)HCAF, caf1) and its cytotoxic action on tumor cells. The coordination environment at the tin center was investigated by FTIR, (119)Sn{(1)H} cross polarization magic angle spinning, electrospray ionization mass spectroscopy in the solid state and UV-vis, fluorescence and (1)H, (13)C and (119)Sn NMR spectroscopy in solution phases. Density functional theory study confirmed the proposed structures in solution phase and indicated the most probably stable conformation. The effects on viability of breast cancer MDA-MB231, colorectal cancer HCT116, hepatocellular carcinoma HepG2 and Chang liver cells, an immortalized non-tumor hepatic cell line, have been investigated. The effect of a variation in structure of caf1 was found to lead to a change in the respective antiproliferative properties: caf1 induces loss of viability in HCT116, MDA-MB-231, and HepG2; the complex shows only moderate effects in non-tumor Chang liver cells. caf1 exerts lower cytotoxic activity than Bu2SnCl2, suggesting that the binding with H3CAF modulates the marked cytotoxic activity exerted by Bu2SnCl2; caf1 displays a considerably more pronounced antitumoural effect towards cell lines than caffeic acid. It is known that caffeic acid can modulate DNA (cytosine-5)-methyltransferases 1 (DNMT1) mediated DNA methylation. In this paper we demonstrate that caf1 treatment was able to induce a time-dependent reduction of global DNA methylated status. This effect was also confirmed by a concomitant reduction DNMT1 expression level. The effect induced by caf1 was more evident not only with respect to untreated cells but also compared to H3CAF treated cells.

  20. DNA-methyltransferase 3B 39179 G > T polymorphism and risk of sporadic colorectal cancer in a subset of Iranian population

    Directory of Open Access Journals (Sweden)

    Abdolreza Daraei

    2011-01-01

    Full Text Available Background: Epigenetic event is a biological regulation that influences the expression of various genes involved in cancer. DNA methylation is established by DNA methyltransferases, particularly DNAmethyltransferase 3B (DNMT3B. It seems to play an oncogenic role in the creation of abnormal methylation during tumorigenesis. The polymorphisms of the DNMT3B gene may influence DNMT3B activity in DNA methylation and increase the susceptibility to several cancers. These genetic polymorphisms have been studied in several cancers in different populations. Methods: In this study, we performed a case-control study with 125 colorectal cancer patients and 135 cancer-free controls to evaluate the association between DNMT3B G39179T polymorphism (rs1569686 in the promoter region and the risk of sporadic colorectal cancer. Up to now, few studies have investigated the role of this gene variant in sporadic colorectal cancer with no familial history. The genotypes of DNMT3B G39179T polymorphism was analyzed by PCR-RFLP. Results: We found that compared with G allele carriers, statistically the DNMT3B TT genotype (%34 was significantly associated with increased risk of colorectal cancer (adjusted OR, 3.993, 95% CI, 1.726-9.238, P = 0.001. Compared with DNMT3B TT genotype, the GT and GG genotypes had lower risk of developing sporadic colorectal cancer (OR = 0.848, 95% CI = 0.436-1.650. Conclusions: Our findings were consistent with that of previously reported case-control studies with colorectal cancer. These results suggest that the DNMT3B G39179T polymorphism influences DNMT3B expression, thus contributing to the genetic susceptibility to colorectal cancer. Further mechanistic studies are needed to unravel the causal molecular mechanisms.

  1. Inhibition of human catechol-O-methyltransferase-mediated dopamine O-methylation by daphnetin and its Phase II metabolites.

    Science.gov (United States)

    Liang, Si-Cheng; Ge, Guang-Bo; Xia, Yang-Liu; Pei-Pei, Dong; Ping, Wang; Qi, Xiao-Yi; Cai-Xia, Tu; Ling, Yang

    2016-07-20

    1. Finding and developing inhibitors of catechol-O-methyltransferase (COMT) from natural products is highly recommended. Daphnetin, a naturally occurring catechol from the family thymelaeaceae, has a chemical structure similar to several potent COMT inhibitors reported previously. Here the potential of daphnetin and its Phase II metabolites as inhibitors of COMT was investigated with human liver cytosol (HLC). 2. Daphnetin and its methylated metabolite (8-O-methyldaphnetin) were found to inhibit COMT-mediated dopamine O-methylation in a dose-dependent manner. The IC50 values for daphnetin (0.51∼0.53 μM) and 8-O-methyldaphnetin (22.5∼24.3 μM) were little affected by changes in HLC concentrations. Further kinetic analysis showed the differences in inhibition type and parameters (Ki) between daphnetin (competitive, 0.37 μM) and 8-O-methyldaphnetin (noncompetitive, 25.7 μM). Other metabolites, including glucuronidated and sulfated species, showed negligible inhibition against COMT. By using in vitro-in vivo extrapolation (IV-IVE), a 24.3-fold increase in the exposure of the COMT substrates was predicted when they are co-administrated with daphnetin. 3. With high COMT-inhibiting activity, daphnetin could serve as a lead compound for the design and development of new COMT inhibitors. Also, much attention should be paid to the clinical impact of combination of daphnetin and herbal preparations containing daphnetin with the drugs primarily cleared by COMT.

  2. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Kuo, Elaine [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Helfrich, Lily W. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Northwestern University, 633 Clark St, Evanston, IL 60208 (United States); Karchner, Sibel I. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Linney, Elwood A. [Department of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710 (United States); Pais, June E. [New England Biolabs, 240 County Road, Ipswich, MA 01938 (United States); Franks, Diana G. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  3. Concerted Activities of Distinct H4K20 Methyltransferases at DNA Double-Strand Breaks Regulate 53BP1 Nucleation and NHEJ-Directed Repair

    Directory of Open Access Journals (Sweden)

    Creighton T. Tuzon

    2014-07-01

    Full Text Available Although selective binding of 53BP1 to dimethylated histone H4 lysine 20 (H4K20me2 at DNA double-strand breaks (DSBs is a necessary and pivotal determinant of nonhomologous end joining (NHEJ-directed repair, the enzymes that generate H4K20me2 at DSBs were unclear. Here, we determined that the PR-Set7 monomethyltransferase (H4K20me1 regulates de novo H4K20 methylation at DSBs. Rapid recruitment of PR-Set7 to DSBs was dependent on the NHEJ Ku70 protein and necessary for NHEJ-directed repair. PR-Set7 monomethyltransferase activity was required, but insufficient, for H4K20me2 and 53BP1 nucleation at DSBs. We determined that PR-Set7-mediated H4K20me1 facilitates Suv4-20 methyltransferase recruitment and catalysis to generate H4K20me2 necessary for 53BP1 binding. The orchestrated and concerted activities of PR-Set7 and Suv4-20 were required for proficient 53BP1 nucleation and DSB repair. This report identifies PR-Set7 as an essential component of NHEJ and implicates PR-Set7 as a central determinant of NHEJ-directed repair early in mammalian DSB repair pathway choice.

  4. De novo DNA Methyltransferases Dnmt3a and Dnmt3b regulate the onset of Igκ light chain rearrangement during early B-cell development.

    Science.gov (United States)

    Manoharan, Anand; Du Roure, Camille; Rolink, Antonius G; Matthias, Patrick

    2015-08-01

    Immunoglobulin genes V(D)J rearrangement during early lymphopoiesis is a critical process involving sequential recombination of the heavy and light chain loci. A number of transcription factors act together with temporally activated recombinases and chromatin accessibility changes to regulate this complex process. Here, we deleted the de novo DNA methyltransferases Dnmt3a and Dnmt3b in early B cells of conditionally targeted mice, and monitored the process of V(D)J recombination. Dnmt3a and Dnmt3b deletion resulted in precocious recombination of the immunoglobulin κ light chain without impairing the differentiation of mature B cells or overall B-cell development. Ex vivo culture of IL-7 restricted early B-cell progenitors lacking Dnmt3a and Dnmt3b showed precocious Vκ-Jκ rearrangements that are limited to the proximal Vκ genes. Furthermore, B-cell progenitors deficient in Dnmt3a and Dnmt3b showed elevated levels of germline transcripts at the proximal Vκ genes, alterations in methylation patterns at Igκ enhancer sites and increased expression of the transcription factor E2A. Our data suggest that Dnmt3a and Dnmt3b are critical to regulate the onset of Igκ light chain rearrangement during early B-cell development.

  5. Towards the chemoinformatic-based identification of DNA methyltransferase inhibitors: 2D- and 3D-similarity profile of screening libraries.

    Science.gov (United States)

    Yoo, Jakyung; Medina-Franco, José Luis

    2012-12-01

    DNA methyltransferases (DNMTs) are emerging targets for the treatment of cancer and other diseases. The quinolone-based compound, SGI-1027, is a promising inhibitor of DNMT1 with a distinct mode of action and it is an attractive starting point for further research. Several experimental and computational approaches can be used to further develop novel DNMT1 inhibitors based on SGI-1027. In this work, we used a chemoinformatic-based approach to explore the potential to identify novel inhibitors in large screening collections of natural products and synthetic commercial libraries. Using the principles of similarity searching, the similarity profile to the active reference compound SGI-1027 was computed for four different screening libraries using a total of 22 two- and three- dimensional representations and two similarity metrics. The compound library with the overall highest similarity profile to the probe molecule was identified as the most promising collection for experimental testing. Individual compounds with high similarity to the reference were also selected as suitable candidates for experimental validation. During the course of this work, the 22 two- and three- dimensional representations were compared to each other and classified based on the similarity values computed with the reference compound. This classification is valuable to select structure representations for similarity searching of any other screening library. This work represents a step forward to further advance epigenetic therapies using computational approaches.

  6. Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6.

    Science.gov (United States)

    Foran, Eilis; Garrity-Park, Megan M; Mureau, Coralie; Newell, John; Smyrk, Thomas C; Limburg, Paul J; Egan, Laurence J

    2010-04-01

    Inflammatory bowel disease is characterized by chronic inflammation which predisposes to colorectal cancer. The mechanisms by which inflammation promotes tumorigenesis are not fully known. We aimed to investigate the links between colonic inflammation and tumorigenesis via epigenetic gene silencing. Colon cancer specimens were assessed for the expression of DNA methyltransferase-1 (DNMT-1) using immunohistochemistry. Colorectal carcinoma cell lines were assessed for DNMT1 expression, methylcytosine content, promoter methylation, gene expression, and tumorigenesis in response to interleukin (IL)-6. DNMT1 was expressed at higher levels in both the peritumoral stroma and tumor in inflammatory bowel disease-associated cancers compared with sporadic colon cancers. IL-6 treatment of colon cancer cells resulted in an increase in DNMT1 expression, independent of de novo gene expression. IL-6 increased the methylation of promoter regions of genes associated with tumor suppression, adhesion, and apoptosis resistance. Expression of a subset of these genes was downregulated by IL-6, an effect that was prevented by preincubation with 5-azadeoxycytidine, a DNMT1 inhibitor. Anchorage-independent growth and migration of colon cancer cells was also increased by IL-6 in a 5-azadeoxycytidine-sensitive manner. Our results indicate that DNMT-mediated gene silencing may play a role in inflammation-associated colon tumorigenesis.

  7. Effects of prenatal Poly I:C exposure on global histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity in the mouse brain.

    Science.gov (United States)

    Pujol Lopez, Yara; Kenis, Gunter; Stettinger, Waldtraud; Neumeier, Karin; de Jonge, Sylvia; Steinbusch, Harry W M; Zill, Peter; van den Hove, Daniel L A; Myint, Aye M

    2016-07-01

    The aim of our study was to investigate the brain-specific epigenetic effects on global enzymatic histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity after prenatal exposure to maternal immune challenge by polyinosinic:polycytidylic acid (Poly I:C) at gestational day (GD) 17 in C57BL/6JRccHsd mouse offspring. Pregnant mice were randomly divided into 2 groups, receiving either 5 mg/kg Poly I:C or phosphate buffered saline (PBS) intravenously at GD 17. Subsequently, the effects on whole brain enzymatic HDAC and DNMT activity and the protein levels of various HDAC isoforms were assessed in the offspring. Overall, a significant sex × treatment interaction effect was observed after prenatal exposure to maternal immune challenge by Poly I:C, indicative of increased global HDAC activity particularly in female offspring from mothers injected with Poly I:C when compared to controls. Results on the levels of specific HDAC isoforms suggested that neither differences in the levels of HDAC1, HDAC2, HDAC3, HDAC4 or HDAC6 could explain the increased global HDAC activity observed in female Poly I:C offspring. In conclusion, we show that Poly I:C administration to pregnant mice alters global brain HDAC, but not DNMT activity in adult offspring, whereas it is still unclear which specific HDAC(s) mediate(s) this effect. These results indicate the necessity for further research on the epigenetic effects of Poly I:C.

  8. DNA-methyltransferase1 (DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients.

    Science.gov (United States)

    Dong, E; Ruzicka, W B; Grayson, D R; Guidotti, A

    2015-09-01

    The down regulation of glutamic acid decarboxylase67 (GAD1), reelin (RELN), and BDNF expression in brain of schizophrenia (SZ) and bipolar (BP) disorder patients is associated with overexpression of DNA methyltransferase1 (DNMT1) and ten-eleven translocase methylcytosine dioxygenase1 (TET1). DNMT1 and TET1 belong to families of enzymes that methylate and hydroxymethylate cytosines located proximal to and within cytosine phosphodiester guanine (CpG) islands of many gene promoters, respectively. Altered promoter methylation may be one mechanism underlying the down-regulation of GABAergic and glutamatergic gene expression. However, recent reports suggest that both DNMT1 and TET1 directly bind to unmethylated CpG rich promoters through their respective Zinc Finger (ZF-CXXC) domains. We report here, that the binding of DNMT1 to GABAergic (GAD1, RELN) and glutamatergic (BDNF-IX) promoters is increased in SZ and BP disorder patients and this increase does not necessarily correlate with enrichment in promoter methylation. The increased DNMT1 binding to these promoter regions is detected in the cortex but not in the cerebellum of SZ and BP disorder patients, suggesting a brain region and neuron specific dependent mechanism. Increased binding of DNMT1 positively correlates with increased expression of DNMT1 and with increased binding of MBD2. In contrast, the binding of TET1 to RELN, GAD1 and BDNF-IX promoters failed to change. These data are consistent with the hypothesis that the down-regulation of specific GABAergic and glutamatergic genes in SZ and BP disorder patients may be mediated, at least in part, by a brain region specific and neuronal-activity dependent DNMT1 action that is likely independent of its DNA methylation activity.

  9. MicroRNA-152 regulates DNA methyltransferase 1 and is involved in the development and lactation of mammary glands in dairy cows.

    Directory of Open Access Journals (Sweden)

    Jie Wang

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding, endogenous regulatory RNAs that function by controlling gene expression at the post-transcriptional level. Using small RNA sequencing and qRT-PCR techniques, we found that the expression of miR-152 was significantly increased during lactation in the mammary glands of dairy cows producing high quality milk compared with that in cows producing low quality milk. Furthermore, DNA methyltransferase 1 (DNMT1, which is a target of miR-152, was inversely correlated with the expression levels of miR-152 in the mammary glands of dairy cows. Dairy cow mammary epithelial cells (DCMECs were used as in vitro cell models to study the function of miR-152. The forced expression of miR-152 in DCMECs resulted in a marked reduction of DNMT1 at both mRNA and protein levels. This in turn led to a decrease in global DNA methylation and increased the expression of two lactation-related genes, serine/threonine protein kinase Akt (Akt and peroxisome proliferator-activated receptor gamma (Pparγ. In contrast, inhibition of miR-152 showed the opposite results. By using an electronic Coulter counter (CASY-TT and flow cytometer, we discovered that miR-152 enhanced the viability and multiplication capacity of DCMECs. In conclusion, miR-152 plays an important role in the development and lactation processes in the mammary glands of dairy cows. Our data provide insights into dairy cow mammary gland development and lactation.

  10. Scriptaid Treatment Decreases DNA Methyltransferase 1 Expression by Induction of MicroRNA-152 Expression in Porcine Somatic Cell Nuclear Transfer Embryos.

    Directory of Open Access Journals (Sweden)

    Shuang Liang

    Full Text Available Abnormal epigenetic reprogramming of donor nuclei after somatic cell nuclear transfer (SCNT is thought to be the main cause of low cloning efficiencies. A growing body of evidence has demonstrated a positive role of Scriptaid, a histone deacetylase inhibitor (HDACi that belongs to an existing class of hydroxamic acid-containing HDACis, on the development competence of cloned embryos in many species. The present study investigated the effects of Scriptaid on the development of porcine SCNT embryos in vitro and its mechanism. Treatment with 300 or 500 nM Scriptaid for 20 h after activation significantly increased the percentage of SCNT embryos that developed to the blastocyst stage and the total number of cells per blastocyst and significantly decreased the percentage of apoptotic cells in blastocysts. Scriptaid treatment significantly increased the level of histone H3 acetylated at K9 and the conversion of 5-methylcytosine into 5-hydroxymethylcytosine and significantly decreased the level of histone H3 trimethylated at K9 at the pronuclear stage. As a potential mechanism for the DNA methylation changes, our results showed that the expression of DNA methyltransferase 1 was frequently down-regulated in Scriptaid-treated embryos in comparison with untreated embryos and was inversely correlated to endogenous microRNA-152 (miR-152. Taken together, these findings illustrated a crucial functional crosstalk between miR-152 and DNMT1. Meanwhile, mRNA and protein levels of POU5F1 and CDX2 were increased in Scriptaid-treated embryos. mRNA levels of Caspase3, and Bax were significantly decreased and that of Bcl-xL was significantly increased in Scriptaid-treated embryos. In conclusion, these observations would contribute to uncover the nuclear reprogramming mechanisms underlying the effects of Scriptaid on the improvement of porcine SCNT embryos.

  11. Evaluation of MiR-34 Family and DNA Methyltransferases 1, 3A, 3B Gene Expression Levels in Hepatocellular Carcinoma Following Treatment with Dendrosomal Nanocurcumin.

    Science.gov (United States)

    Chamani, Fatemeh; Sadeghizadeh, Majid; Masoumi, Mahbobeh; Babashah, Sadegh

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver making up more than 80 percent of cases. It is known to be the sixth most prevalent cancer and the third most frequent cause of cancer related death worldwide. Epigenetic regulation constitutes an important mechanism by which dietary components can selectively activate or inactivate target gene expression. The miR-34 family members including mir-34a, mir-34b and mir-34c are tumor suppressor micro RNAs, which are expressed in the majority of normal tissues. Several studies have indicated silencing of miR-34 expression via DNA methylation in multiple types of cancers. Bioactive nutrients like curcumin (Cur) have excellent anticarcinogenic activity and minimal toxic manifestations in biological systems. This compound has recently been determined to induce epigenetic changes. However, Cur is lipophilic and has a poor systemic bioavailability and poor absorption. Its bioavailability is increased through employing dendrosome nanoparticles. The aim of the current study was to investigate the effect of dendrosomal nanocurcumin (DNC) on expression of mir-34 family members in two HCC cell lines, HepG2 and Huh7. We performed the MTT assay to evaluate DNC and dendrosome effects on cell viability. The ability of DNC to alter expression of the mir-34 family and DNA methyltransferases (DNMT1, DNMT3A and 3B) was evaluated using semi-quantitative and quantitative PCR. We observed the entrance of DNC into HepG2 and Huh7 cells. Gene expression assays indicated that DNC treatment upregulated mir34a, mir34b and mir34c expression (Pexpression (Pexpression. We showed that DNC could awaken the epigenetically silenced miR-34 family by downregulation of DNMTs. Our findings suggest that DNC has potential in epigenetic therapy of HCC.

  12. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  13. The novel quinolone CHM-1 induces DNA damage and inhibits DNA repair gene expressions in a human osterogenic sarcoma cell line.

    Science.gov (United States)

    Chen, Hung-Yi; Lu, Hsu-Feng; Yang, Jai-Sing; Kuo, Sheng-Chu; Lo, Chyi; Yang, Mei-Due; Chiu, Tsan-Hung; Chueh, Fu-Shin; Ho, Heng-Chien; Ko, Yang-Ching; Chung, Jing-Gung

    2010-10-01

    20-Fluoro-6,7-methylenedioxy-2-phenyl-4-quino-lone (CHM-1) has been reported to induce cell cycle arrest and apoptosis in many types of cancer cells. However, there is no available information to show CHM-1 affecting DNA damage and expression of associated repair genes. Herein, we investigated whether or not CHM-1 induced DNA damage and affected DNA repair gene expression in U-2 OS human osterogenic sarcoma cells. The comet assay showed that incubation of U-2 OS cells with 0, 0.75, 1.5, 3 and 6 μM of CHM-1 led to a longer DNA migration smear (comet tail). DNA gel electrophoresis showed that 3 μM of CHM-1 for 24 and 48 h treatment induced DNA fragmentation in U-2 OS cells. Real-time PCR analysis showed that treatment with 3 μM of CHM-1 for 24 h reduced the mRNA expression levels of ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR), breast cancer 1, early onset (BRCA1), 14-3-3sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK) and O(6)-methylguanine-DNA methyltransferase (MGMT) genes in a time-dependent manner. Taken together, the results indicate that CHM-1 caused DNA damage and reduced DNA repair genes in U-2 OS cells, which may be the mechanism for CHM-1-inhibited cell growth and induction of apoptosis.

  14. Residues in human arsenic (+3 oxidation state methyltransferase forming potential hydrogen bond network around S-adenosylmethionine.

    Directory of Open Access Journals (Sweden)

    Xiangli Li

    Full Text Available Residues Tyr59, Gly78, Ser79, Met103, Gln107, Ile136 and Glu137 in human arsenic (+3 oxidation state methyltransferase (hAS3MT were deduced to form a potential hydrogen bond network around S-adenosylmethionine (SAM from the sequence alignment between Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM and hAS3MT. Herein, seven mutants Y59A, G78A, S79A, M103A, Q107A, I136A and E137A were obtained. Their catalytic activities and conformations were characterized and models were built. Y59A and G78A were completely inactive. Only 7.0%, 10.6% and 13.8% inorganic arsenic (iAs was transformed to monomethylated arsenicals (MMA when M103A, Q107A and I136A were used as the enzyme. The Vmax (the maximal velocity of the reaction values of M103A, Q107A, I136A and E137A were decreased to 8%, 22%, 15% and 50% of that of WT-hAS3MT, respectively. The KM(SAM (the Michaelis constant for SAM values of mutants M103A, I136A and E137A were 15.7, 8.9 and 5.1 fold higher than that of WT-hAS3MT, respectively, indicating that their affinities for SAM were weakened. The altered microenvironment of SAM and the reduced capacity of binding arsenic deduced from KM(As (the Michaelis constant for iAs value probably synergetically reduced the catalytic activity of Q107A. The catalytic activity of S79A was higher than that of WT despite of the higher KM(SAM , suggesting that Ser79 did not impact the catalytic activity of hAS3MT. In short, residues Tyr59 and Gly78 significantly influenced the catalytic activity of hAS3MT as well as Met103, Ile136 and Glu137 because they were closely associated with SAM-binding, while residue Gln107 did not affect SAM-binding regardless of affecting the catalytic activity of hAS3MT. Modeling and our experimental results suggest that the adenine ring of SAM is sandwiched between Ile136 and Met103, the amide group of SAM is hydrogen bonded to Gly78 in hAS3MT and SAM is bonded to Tyr59 with van der Waals, cation-π and hydrogen bonding

  15. Genome-wide analysis of DNA methylation dynamics during early human development.

    Science.gov (United States)

    Okae, Hiroaki; Chiba, Hatsune; Hiura, Hitoshi; Hamada, Hirotaka; Sato, Akiko; Utsunomiya, Takafumi; Kikuchi, Hiroyuki; Yoshida, Hiroaki; Tanaka, Atsushi; Suyama, Mikita; Arima, Takahiro

    2014-12-01

    DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5-10% of all genomic CpGs, favoring those contained within CpG-rich regions. To obtain an unbiased and more complete representation of the methylome during early human development, we performed whole genome bisulfite sequencing of human gametes and blastocysts that covered>70% of all genomic CpGs. We found that the maternal genome was demethylated to a much lesser extent in human blastocysts than in mouse blastocysts, which could contribute to an increased number of imprinted differentially methylated regions in the human genome. Global demethylation of the paternal genome was confirmed, but SINE-VNTR-Alu elements and some other tandem repeat-containing regions were found to be specifically protected from this global demethylation. Furthermore, centromeric satellite repeats were hypermethylated in human oocytes but not in mouse oocytes, which might be explained by differential expression of de novo DNA methyltransferases. These data highlight both conserved and species-specific regulation of DNA methylation during early mammalian development. Our work provides further information critical for understanding the epigenetic processes underlying differentiation and pluripotency during early human development.

  16. DNA Methylation Landscapes of Human Fetal Development

    NARCIS (Netherlands)

    Slieker, Roderick C.; Roost, Matthias S.; van Iperen, Liesbeth; Suchiman, H. Eka D; Tobi, Elmar W.; Carlotti, Françoise; de Koning, Eelco J P; Slagboom, P. Eline; Heijmans, Bastiaan T.; Chuva de Sousa Lopes, Susana M.

    2015-01-01

    Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA

  17. 氢醌对DNA甲基转移酶表达的影响%Effects of Hydroquinone on the Expression of DNA Methyltransferase

    Institute of Scientific and Technical Information of China (English)

    凌晓璇; 梁海荣; 黄明元; 杨慧; 唐焕文

    2012-01-01

    Objective To explore the molecular mechanisms of global DNA hypomethylation induced by hydroquinone (HQ). Methods TK6 cells were exposed to 2.5, 5.0, 10.0 and 20.0 μmol/L HQ prepared by PBS buffer, and TK6 cells treated with PBS served as the control. Expressions of DNA methyltransferase (DNMT), DNMT1 , DNMT3a and DNMT3b, were tested by real - time fluorescence quantitive PCR. Results Expressions of DNMTI, DNMT3a and DNMT3b mRNA in the HQ- treated cells were severely inhibited as compared to those in the control cells, with the most remarkable inhibition at 20 μmol/L, showing a decrease by 46%, 83% and 48% respectively (all P<0.05). The expressions of DNMT1 and DNMT3a showed more decrease with the increase of HQ dose. Conclusions Global DNA hypomethylation induced by hydroquinone may be associated with the deregulated expressions of DNMT1, DNMT3a and DNMT3b.%目的 探索氢醌(hydroquinone,HQ)致DNA整体低甲基化的分子机制.方法 以磷酸盐缓冲液(PBS)溶解HQ,以PBS处理组为对照组,分别以2.5、5.0、10.0和20.0μmol/L HQ染毒TK6细胞为处理组.应用实时荧光定量-聚合酶链反应检测DNA甲基转移酶DNMT1、DNMT3a和DNMT3b的表达水平. 结果 与对照组相比,DNMT1、DNMT3a和DNMT3b的mRNA表达量在各HQ处理组细胞中均下降,其中以20.0 μmol/L组细胞的下降最为明显,分别下降46%(P<0.05)、83% (P<0.05)和48% (P<0.05),且DNMT1和DNMT3a的表达量随着HQ剂量的增加而下降. 结论 HQ致DNA整体低甲基化下调机制可能与DNMT1、DNMT3a和DNMT3b表达异常有关.

  18. Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells.

    Science.gov (United States)

    Ragg, S; Xu-Welliver, M; Bailey, J; D'Souza, M; Cooper, R; Chandra, S; Seshadri, R; Pegg, A E; Williams, D A

    2000-09-15

    Direct reversal of O6 adducts caused by chemotherapy agents is accomplished in mammalian cells by the protein O6-methylguanine DNA methyltransferase (MGMT). Some tumors overexpress MGMT and are resistant to alkylator therapy. One future approach to treatment of these tumors may rely on concurrent pharmacological depletion of tumor MGMT with O6-benzylguanine (6-BG) and protection of sensitive tissues, such as hematopoietic stem and progenitor cells, using genetic modification with 6-BG-resistant MGMT mutants. We have used retroviral-mediated gene transfer to transduce murine hematopoietic bone marrow cells with MGMT point mutants showing resistance to 6-BG depletion in vitro. These mutants include proline to alanine and proline to lysine substitutions at the 140 position (P140A and P140K, respectively), which show 40- and 1000-fold resistance to 6-BG compared with wild-type (WT) MGMT. Lethally irradiated mice were reconstituted with murine stem cells transduced with murine stem cell virus retrovirus expressing each mutant, WT MGMT, or mock-infected cells and then treated with a combination of 30 mg/kg 6-BG and 10 mg/kg 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or with 40 mg/kg BCNU alone. Compared with mice treated with BCNU alone, significant myeloid toxicity and death occurred in mice reconstituted with mock-infected or WT MGMT (0.70; no treatment, <0.1). These data demonstrate that mutant MGMT expressed in the bone marrow can protect mice from time- and dose-intensive chemotherapy and that the combination of 6-BG and BCNU leads to uniform selection of transduced stem cells in vivo in mice.

  19. Ursolic acid inhibited growth of hepatocellular carcinoma HepG2 cells through AMPKα-mediated reduction of DNA methyltransferase 1.

    Science.gov (United States)

    Yie, Yinyi; Zhao, Shunyu; Tang, Qin; Zheng, Fang; Wu, Jingjing; Yang, LiJuan; Deng, ShiGuan; Hann, Swei Sunny

    2015-04-01

    Hepatocellular carcinoma (HCC), the major histological subtype of primary liver cancer, remains one of the most common malignancies worldwide. Due to the complicated pathogenesis of this malignancy, the outcome for comprehensive treatment is limited. Chinese herbal medicine (CHM) is emerging as a promising choice for its multi-targets and coordinated intervention effects against HCC. Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid found in CHM, exerts anti-tumor effects and is emerging as an effective compound for cancer prevention and therapy. However, the molecular mechanisms underlying the action of UA remain largely unknown. In this study, we showed that UA inhibited the growth of HCC cells and induced apoptosis in the dose- and time-dependent fashion. Furthermore, we found that UA induced phosphorylation of AMP-activated protein kinase alpha (AMPKα) and suppressed the protein expression of DNA methyltransferase 1 (DNMT1) in the dose-dependent manner. The inhibitor of AMPK, compound C blocked, while an activator of AMPK, metformin augmented the effect of UA on DNMT1 expression. In addition, UA suppressed the expression of transcription factor Sp1. Conversely, overexpression of Sp1 reversed the effect of UA on DNMT1 expression and cell growth. Collectively, our results show for the first time that UA inhibits growth of HCC through AMPKα-mediated inhibition of Sp1; this in turn results in inhibition of DNMT1. This study reveals a potential novel mechanism by which UA controls growth of HCC cells and suggests that DNMT1 could be novel target for HCC chemoprevention and treatment.

  20. DNA methyltransferase 3B promoter polymorphism and its susceptibility to primary hepatocellular carcinoma in the Chinese Han nationality population: A case-control study

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the correlation between C/T single nucleotide polymorphism (SNP) in the promoter of the DNA methyltransferase 3B (DNMT3B) gene and risk for development and progression of primary hepatocellular carcinoma (HCC).METHODS: One hundred case subjects were selected consecutively from Tongji Hospital (Wuhan, China).from March to November 2006. They did not receive radiotherapy or chemotherapy for newly diagnosed and histopathologically confirmed HCC. One hundred and forty control subjects having no history of cancerous or genetic diseases were healthy volunteers to Wuhan Blood Center in the same period. Frequency was matched for sex, age, alcohol consumption and cigarette smoking status of the case subjects. C/T polymorphism of the DNMT3B promoter was analyzed using polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) and sequencing analysis. The association between genotypes of DNMT3B and clinicopathological parameters among cases was also studied.RESULTS: The CC genotype was not detected in both HCC patients and controls. In control ubjects, the frequency of TT and CT genotypes was 99.3% and 0.7%respectively, and that of T and C alleles was 99.6%and 0.4% respectively. The frequency of CT genotype was higher in HCC (3.0%). The frequency of T and C alleles was 98.5% and 1.5% respectively. However, the genotype and allelotype distribution in HCC patients was not significantly different from that in controls.CONCLUSION: C/T polymorphism is not associated with the increased risk of HCC. DNMT3B enetic polymorphism is variable in different races, ethnic groups or geographic areas. Further study is needed to clarify the role of DNMT3B SNP in the development of HCC among other populations.

  1. Evaluation of substrate and inhibitor binding to yeast and human isoprenylcysteine carboxyl methyltransferases (Icmts) using biotinylated benzophenone-containing photoaffinity probes.

    Science.gov (United States)

    Hahne, Kalub; Vervacke, Jeffrey S; Shrestha, Liza; Donelson, James L; Gibbs, Richard A; Distefano, Mark D; Hrycyna, Christine A

    2012-06-22

    Isoprenylcysteine carboxyl methyltransferases (Icmts) are a class of integral membrane protein methyltransferases localized to the endoplasmic reticulum (ER) membrane in eukaryotes. The Icmts from human (hIcmt) and Saccharomyces cerevisiae (Ste14p) catalyze the α-carboxyl methyl esterification step in the post-translational processing of CaaX proteins, including the yeast a-factor mating pheromones and both human and yeast Ras proteins. Herein, we evaluated synthetic analogs of two well-characterized Icmt substrates, N-acetyl-S-farnesyl-L-cysteine (AFC) and the yeast a-factor peptide mating pheromone, that contain photoactive benzophenone moieties in either the lipid or peptide portion of the molecule. The AFC based-compounds were substrates for both hIcmt and Ste14p, whereas the a-factor analogs were only substrates for Ste14p. However, the a-factor analogs were found to be micromolar inhibitors of hIcmt. Together, these data suggest that the Icmt substrate binding site is dependent upon features in both the isoprenyl moiety and upstream amino acid composition. Furthermore, these data suggest that hIcmt and Ste14p have overlapping, yet distinct, substrate specificities. Photocrosslinking and neutravidin-agarose capture experiments with these analogs revealed that both hIcmt and Ste14p were specifically photolabeled to varying degrees with all of the compounds tested. Our data suggest that these analogs will be useful for the future identification of the Icmt substrate binding sites.

  2. Circannual and circadian rhythms of hypothalamic DNA methyltransferase and histone deacetylase expression in male Siberian hamsters (Phodopus sungorus).

    Science.gov (United States)

    Stevenson, Tyler J

    2017-03-01

    Precise timing of gene transcription is a fundamental component of many biological rhythms. DNA methylation and histone acetylation are two epigenetic modifications that can affect the probability of gene transcription and RNA expression. Enzymes involved in DNA methylation (dnmts) have been shown to exhibit photoperiodic rhythms in expression in the hypothalamus, which coincide with hypothalamic expression of deiodinase type III (dio3), a gene involved in the photoperiodic regulation of reproduction. It is currently unknown whether enzymes involved in histone deacetylation (hdacs) also vary in response to photoperiod, nor have seasonal changes in the circadian waveforms of methylation and/or acetylation enzymes been examined. The present work documents circadian and photoperiodic changes in dnmts and hdacs in whole hypothalamic dissections obtained from male Siberian hamsters (Phodopus sungorus) after 5-6weeks of exposure to SD. The data indicate that short days (SD) markedly inhibit dnmt3a expression, and that SD inhibition of dnmt3a was evident regardless of the alignment of circadian waveforms. Among hdacs, photoperiodic and circadian changes in expression were only observed in hdac4 expression. Recurrent temporal waveforms in epigenetic enzyme expression may provide molecular inputs to the timing systems that reprogram RNA expression to generate daily and annual phenotypic plasticity.

  3. Human Insulin from Recombinant DNA Technology

    Science.gov (United States)

    Johnson, Irving S.

    1983-02-01

    Human insulin produced by recombinant DNA technology is the first commercial health care product derived from this technology. Work on this product was initiated before there were federal guidelines for large-scale recombinant DNA work or commercial development of recombinant DNA products. The steps taken to facilitate acceptance of large-scale work and proof of the identity and safety of such a product are described. While basic studies in recombinant DNA technology will continue to have a profound impact on research in the life sciences, commercial applications may well be controlled by economic conditions and the availability of investment capital.

  4. Apoptosis and DNA damage in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    R John Aitken; Adam J Koppers

    2011-01-01

    DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis,resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apoptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy.

  5. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase.

    Science.gov (United States)

    Bujnicki, Janusz M; Feder, Marcin; Radlinska, Monika; Blumenthal, Robert M

    2002-10-01

    MT-A70 is the S-adenosylmethionine-binding subunit of human mRNA:m(6)A methyl-transferase (MTase), an enzyme that sequence-specifically methylates adenines in pre-mRNAs. The physiological importance yet limited understanding of MT-A70 and its apparent lack of similarity to other known RNA MTases combined to make this protein an attractive target for bioinformatic analysis. The sequence of MT-A70 was subjected to extensive in silico analysis to identify orthologous and paralogous polypeptides. This analysis revealed that the MT-A70 family comprises four subfamilies with varying degrees of interrelatedness. One subfamily is a small group of bacterial DNA:m(6)A MTases. The other three subfamilies are paralogous eukaryotic lineages, two of which have not been associated with MTase activity but include proteins having substantial regulatory effects. Multiple sequence alignments and structure prediction for members of all four subfamilies indicated a high probability that a consensus MTase fold domain is present. Significantly, this consensus fold shows the permuted topology characteristic of the b class of MTases, which to date has only been known to include DNA MTases.

  6. Hepatitis B virus X protein induces hypermethylation of p16(INK4A) promoter via DNA methyltransferases in the early stage of HBV-associated hepatocarcinogenesis.

    Science.gov (United States)

    Zhu, Y-Z; Zhu, R; Fan, J; Pan, Q; Li, H; Chen, Q; Zhu, H-G

    2010-02-01

    The aim of the present study was to authenticate the involvement of DNA methyltransferases (DNMTs) and methyl-CpG binding domain protein 2 (MBD2) in the process of HBx induced p16(INK4A) promoter hypermethylation in HBV-related hepatocellular carcinoma (HCC) and their corresponding noncancerous liver tissues. Eighty-eight fresh tissue specimens of surgically resected HBV-associated HCC and their corresponding noncancerous liver tissues were studied. The methylation status of the p16(INK4A) promoter was determined by methylation-specific polymerase chain reaction (MSP). Reverse transcription and real-time polymerase chain reaction (RT-PCR) showed the expression of DNMTs, MBD2 and HBx. Western blot and immunohistochemistry were used for the protein analysis of HBx, DNMT1, DNMT3A and P16. Tissue HBV-DNA levels were determined by RT-PCR. HBV genotype was examined by nested PCR and restriction fragment length polymorphism (RFLP). In the corresponding noncancerous liver tissues, higher HBx expression was associated with the hypermethylation of the p16(INK4A) promoter. HBx was positively correlated with the DNMT1 and DNMT3A at both the mRNA and protein level. Furthermore, HBx, DNMT1 and DNMT3A protein expression were negatively correlated with p16 protein expression. In HCC tissues, HBx was positively correlated with DNMT1 and DNMT3A at both mRNA and protein level, but HBx expression did not correlate with hypermethylation of the p16(INK4A) promoter or p16 protein expression. The methylation status of the p16(INK4A) promoter did not correlate with clinicopathological characteristics. DNMT1 and DNMT3A may play important roles in the process of HBx inducing hypermethylation of the p16(INK4A) promoter in the early stages of HBV-associated HCC. HBx-DNMTs-p16(INK4A) promoter hypermethylation may constitute a mechanism for tumorigenesis during HBV-associated hepatocarcinogenesis.

  7. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model

    Science.gov (United States)

    Liu, Baohua; Wang, Zimei; Zhang, Le; Ghosh, Shrestha; Zheng, Huiling; Zhou, Zhongjun

    2013-01-01

    A de novo G608G mutation in LMNA gene leads to Hutchinson–Gilford progeria syndrome. Mice lacking the prelamin A-processing metalloprotease, Zmpste24, recapitulate many of the progeroid features of Hutchinson–Gilford progeria syndrome. Here we show that A-type lamins interact with SUV39H1, and prelamin A/progerin exhibits enhanced binding capacity to SUV39H1, protecting it from proteasomal degradation and, consequently, increasing H3K9me3 levels. Depletion of Suv39h1 reduces H3K9me3 levels, restores DNA repair capacity and delays senescence in progeroid cells. Remarkably, loss of Suv39h1 in Zmpste24−/− mice delays body weight loss, increases bone mineral density and extends lifespan by ∼60%. Thus, increased H3K9me3 levels, possibly mediated by enhanced Suv39h1 stability in the presence of prelamin A/progerin, compromise genome maintenance, which in turn contributes to accelerated senescence in laminopathy-based premature aging. Our study provides an explanation for epigenetic alterations in Hutchinson–Gilford progeria syndrome and a potential strategy for intervention by targeting SUV39H1-mediated heterochromatin remodelling. PMID:23695662

  8. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model.

    Science.gov (United States)

    Liu, Baohua; Wang, Zimei; Zhang, Le; Ghosh, Shrestha; Zheng, Huiling; Zhou, Zhongjun

    2013-01-01

    A de novo G608G mutation in LMNA gene leads to Hutchinson-Gilford progeria syndrome. Mice lacking the prelamin A-processing metalloprotease, Zmpste24, recapitulate many of the progeroid features of Hutchinson-Gilford progeria syndrome. Here we show that A-type lamins interact with SUV39H1, and prelamin A/progerin exhibits enhanced binding capacity to SUV39H1, protecting it from proteasomal degradation and, consequently, increasing H3K9me3 levels. Depletion of Suv39h1 reduces H3K9me3 levels, restores DNA repair capacity and delays senescence in progeroid cells. Remarkably, loss of Suv39h1 in Zmpste24(-/-) mice delays body weight loss, increases bone mineral density and extends lifespan by ∼60%. Thus, increased H3K9me3 levels, possibly mediated by enhanced Suv39h1 stability in the presence of prelamin A/progerin, compromise genome maintenance, which in turn contributes to accelerated senescence in laminopathy-based premature aging. Our study provides an explanation for epigenetic alterations in Hutchinson-Gilford progeria syndrome and a potential strategy for intervention by targeting SUV39H1-mediated heterochromatin remodelling.

  9. Simultaneous quantitative determination of 5-aza-2'-deoxycytidine genomic incorporation and DNA demethylation by liquid chromatography tandem mass spectrometry as exposure-response measures of nucleoside analog DNA methyltransferase inhibitors.

    Science.gov (United States)

    Anders, Nicole M; Liu, Jianyong; Wanjiku, Teresia; Giovinazzo, Hugh; Zhou, Jianya; Vaghasia, Ajay; Nelson, William G; Yegnasubramanian, Srinivasan; Rudek, Michelle A

    2016-06-01

    The epigenetic and anti-cancer activities of the nucleoside analog DNA methyltransferase (DNMT) inhibitors decitabine (5-aza-2'-deoxycytidine, DAC), azacitidine, and guadecitabine are thought to require cellular uptake, metabolism to 5-aza-2'-deoxycytidine triphosphate, and incorporation into DNA. This genomic incorporation can then lead to trapping and degradation of DNMT enzymes, and ultimately, passive loss of DNA methylation. To facilitate measurement of critical exposure-response relationships of nucleoside analog DNMT inhibitors, a sensitive and reliable method was developed to simultaneously quantitate 5-aza-2'-deoxycytidine genomic incorporation and genomic 5-methylcytosine content using LC-MS/MS. Genomic DNA was extracted and digested into single nucleosides. Chromatographic separation was achieved with a Thermo Hyperpcarb porous graphite column (100mm×2.1mm, 5μm) and isocratic elution with a 10mM ammonium acetate:acetonitrile with 0.1% formic acid (70:30, v/v) mobile phase over a 5min total analytical run time. An AB Sciex 5500 triple quadrupole mass spectrometer operated in positive electrospray ionization mode was used for the detection of 5-aza-2'-deoxycytidine, 2'-deoxycytidine, and 5-methyl-2'-deoxycytidine. The assay range was 2-400ng/mL for 5-aza-2'-deoxycytidine, 50-10,000ng/mL for 2'-deoxycytidine, and was 5-1000ng/mL for 5-methyl-2'-deoxycytidine. The assay proved to be accurate (93.0-102.2%) and precise (CV≤6.3%) across all analytes. All analytes exhibited long-term frozen digest matrix stability at -70°C for at least 117 days. The method was applied for the measurement of genomic 5-aza-2'-deoxycytidine and 5-methyl-2'-deoxycytidine content following exposure of in vitro cell culture and in vivo animal models to decitabine.

  10. DNA adenine methyltransferase (Dam) controls the expression of the cytotoxic enterotoxin (act) gene of Aeromonas hydrophila via tRNA modifying enzyme-glucose-inhibited division protein (GidA).

    Science.gov (United States)

    Erova, Tatiana E; Kosykh, Valeri G; Sha, Jian; Chopra, Ashok K

    2012-05-01

    Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam(+)) and GM33 (∆dam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA(+) strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ∆gidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation

  11. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α

    Science.gov (United States)

    Begley, Ulrike; Sosa, Maria Soledad; Avivar-Valderas, Alvaro; Patil, Ashish; Endres, Lauren; Estrada, Yeriel; Chan, Clement TY; Su, Dan; Dedon, Peter C; Aguirre-Ghiso, Julio A; Begley, Thomas

    2013-01-01

    Emerging evidence points to aberrant regulation of translation as a driver of cell transformation in cancer. Given the direct control of translation by tRNA modifications, tRNA modifying enzymes may function as regulators of cancer progression. Here, we show that a tRNA methyltransferase 9-like (hTRM9L/KIAA1456) mRNA is down-regulated in breast, bladder, colorectal, cervix and testicular carcinomas. In the aggressive SW620 and HCT116 colon carcinoma cell lines, hTRM9L is silenced and its re-expression and methyltransferase activity dramatically suppressed tumour growth in vivo. This growth inhibition was linked to decreased proliferation, senescence-like G0/G1-arrest and up-regulation of the RB interacting protein LIN9. Additionally, SW620 cells re-expressing hTRM9L did not respond to hypoxia via HIF1-α-dependent induction of GLUT1. Importantly, hTRM9L-negative tumours were highly sensitive to aminoglycoside antibiotics and this was associated with altered tRNA modification levels compared to antibiotic resistant hTRM9L-expressing SW620 cells. Our study links hTRM9L and tRNA modifications to inhibition of tumour growth via LIN9 and HIF1-α-dependent mechanisms. It also suggests that aminoglycoside antibiotics may be useful to treat hTRM9L-deficient tumours. PMID:23381944

  12. The ATF/CREB site is the key element for transcription of the human RNA methyltransferase like 1 (RNMTL1) gene, a newly discovered 17p13.3 gene

    Institute of Scientific and Technical Information of China (English)

    JIAN; XU; JING; DE; ZHU; MIN; NI; DA; FANG; WAN; JIAN; REN; GU

    2002-01-01

    The human RNA methyltransferase like i gene (RNMTL1) is one of thirteen newly discovered geneswithin a 116 Kb segment of the chromosome 17p13.3 that suffers from a high frequent loss of heterozygosityin human hepatocellular carcinoma in China[1-5]. To understand the molecular mechanisms underlyingtranscription control of the RNMTL1 gene in human cancers, we decline using of the conventional approachwhere the cis-elements bound by the known transcription factors are primary targets, and carried out thesystematic analyses to dissect the promoter structure and identify/characterize the key cis-elements thatare responsible for its strong expression in cell. The molecular approaches applied included 1, the primerextension for mapping of the transcription starts; 2, the transient transfection/reporter assays on a largenumber of deletion and site-specific mutants of the promoter segment for defining the minimal promoterand the crucial elements within; and 3, the electrophoresis mobility shift assay with specific antibodies forreconfirming the nature of the transcription factors and their cognate cis-elements. We have shown that theinteraction of an ATF/CREB element (-38 to -31) and its cognate transcription factors play a predominantrole in the promoter activity of the RNMTL1 gene. The secondary DNA structures of the ATF/CREBelement play a more vital role in the protein-DNA interaction. Finally, we reported a novel mechanismunderlying the YY1 mediated transcription repression, namely, the ATF/CREB dependent transcription-repression by YY1 is executed in absence of its own sequence-specific binding.

  13. Hypermethylation of CpG island in O6-methylguanine-DNA methyltransferase gene was associated with K-rasG to A mutation in colorectal tumor

    Institute of Scientific and Technical Information of China (English)

    Jian Qi; You-Qing Zhu; Mei-Fang Huang; Dong Yang

    2005-01-01

    AIM: To investigate the functions of promoter hypermethylation of O6-methylguanine-DNA methyltransferase (MGMT) gene in colorectal tumorigenesis and progression.METHODS: The promoter hypermethylation of MGMT gene was detected in 27 sporadic colorectal adenomas,62 sporadic colorectal carcinomas and 20 normal colorectal mucosa tissues by methylation-specific PCR. At the same time, the expression of MGMT protein was carried out in the same samples using immunohistochemistry. Mutantallele-specific amplification was used to detect K-rasG to A point mutation in codon 12.RESULTS: None of the normal colorectal mucosa tissues showed methylated bands. Promoter hypermethylation was detected in 40.7% (11 of 27) of adenomas and 43.5% (27 of 62) of carcinomas. MGMT proteins were expressed in nucleus and cytoplasm of normal colorectal mucosa tissues. Loss of MGMT expression was found in 22.2% (6 of 27) of adenomas and 45.2% (28 of 62) of carcinomas. The difference between them was significant (P = 0.041). In the 6 adenomas and 28 carcinomas losing MGMT expression, 5 and 24 cases presented methylation,respectively (P = 0.027, P<0.001). Thirteen of the 19 colorectal tumors with K-rasG to A point mutation in codon 12 had methylated MGMT(P = 0.011). The frequencies of K-rasG to A point mutation were 35.3% (12 of 34) and 12.7% (7 of 55) in tumors losing MGMT expression and with normal expression, respectively.CONCLUSION: Promoter hypermethylation and loss of expression of MGMT gene were common events in colorectal tumorigenesis, and loss of expression of MGMT occurs more frequently in carcinomas than in adenomas in sporadic patients. Hypermethylation of the CpG island of MGMT gene was associated with loss of MGMT expression and K-ras G to A point mutation in colorectal tumor. The frequency of K-ras G to A point mutation was increased in tumors losing MGMT expression. It suggests that epigenetic inactivation of MGMT plays an important role in colorectal neoplasia.

  14. Influence of histone deacetylase inhibitors and DNA-methyltransferase inhibitors on the NK cell-mediated lysis of pediatric B-lineage leukemia.

    Directory of Open Access Journals (Sweden)

    Matthias Manuel Pfeiffer

    2013-04-01

    Full Text Available Epigenetic drugs like histone deacetylase inhibitors and DNA methyltransferase inhibitors have been shown to be effective against a variety of tumor entities. Among different molecular anticancer activities of epigenetic active substances, up-regulation of NK cell ligands was described to contribute to an enhanced NK cell-mediated killing of tumor cell lines. So far, no data is available on this effect in childhood acute lymphoblastic leukemia. We investigated the effect of two HDACi (vorinostat, VPA and two DNMTi (azacytidine, decitabine on the viability, expression of NK ligands and NK-susceptibility of the pre-B-cell-ALL cell line MHH-CALL-4. Whereas vorinostat, azacytidine and decitabine directly reduced viability of the cell line, VPA had no direct cytotoxic effect. NKG2D ligands were expressed only at very low levels and not affected by epigenetic treatment. Higher expression was found for the DNAM1 ligands with significant up regulation of CD112 after treatment with VPA (p=0.02. No significant increase in lysis mediated by resting NK cells could be observed, whereas incubation of target cells with decitabine resulted in a significant increase in lysis mediated by IL-2 activated NK cells (p=0.0051, p=0.06 for azacytidine. Vorinostat and VPA could increase the lysis by expanded NK cells which was statistically not significant due to high inter-individual variability. Furthermore, HDACi but not DNMTi reduced the NK mediated lysis of MHH-CALL-4 after incubation of effector cells. In conclusion, there is a synergistic effect between epigenetic drugs and NK cells against MHH-CALL-4 which is not as strong as in other tumor entities. In situations where NK mediated control of leukemia is assumed or wanted, a sophisticated combination of single epigenetic drugs and ex vivo expanded NK cells is needed to maximize the synergistic effect of both treatment strategies and DNMTIs may be preferred based on the direct inhibitory effect of HDACi on NK cell

  15. DNA repair responses in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  16. Caffeine synthase and related methyltransferases in plants.

    Science.gov (United States)

    Misako, Kato; Kouichi, Mizuno

    2004-05-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid present in high concentrations in tea and coffee and it is also found in a number of beverages such as coca cola. It is necessary to elucidate the caffeine biosynthetic pathway and to clone the genes related to the production of caffeine not only to determine the metabolism of the purine alkaloid but also to control the content of caffeine in tea and coffee. The available data support the operation of a xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine pathway as the major route to caffeine. Since the caffeine biosynthetic pathway contains three S-adenosyl-L-methionine (SAM) dependent methylation steps, N-methyltransferases play important roles. This review focuses on the enzymes and genes involved in the methylation of purine ring. Caffeine synthase, the SAM-dependent methyltransferase involved in the last two steps of caffeine biosynthesis, was originally purified from young tea leaves (Camellia sinensis). The isolated cDNA, termed TCS1, consists of 1,483 base pairs and encodes a protein of 369 amino acids. Subsequently, the homologous genes that encode caffeine biosynthetic enzymes from coffee (Coffea arabica) were isolated. The recombinant proteins are classified into the three types on the basis of their substrate specificity i.e. 7-methylxanthosine synthase, theobromine synthase and caffeine synthase. The predicted amino acid sequences of caffeine biosynthetic enzymes derived from C. arabica exhibit more than 80% homology with those of the clones and but show only 40% homology with TCS1 derived from C. sinensis. In addition, they share 40% homology with the amino acid sequences of salicylic carboxyl methyltransferase, benzoic acid carboxyl methyltransferase and jasmonic acid carboxyl methyltransferase which belong to a family of motif B' methyltransferases which are novel plant methyltransferases with motif B' instead of motif B as the conserved region.

  17. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2 in human oral cancer cell line.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamamoto

    Full Text Available BACKGROUND: Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM, which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails. METHODOLOGY/PRINCIPAL FINDINGS: Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2. Protein level of DNA methyltransferase 3B (DNMT3B and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant. CONCLUSIONS/SIGNIFICANCE: OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

  18. Perinatal transmission of human papilomavirus DNA.

    Science.gov (United States)

    Rombaldi, Renato L; Serafini, Eduardo P; Mandelli, Jovana; Zimmermann, Edineia; Losquiavo, Kamille P

    2009-06-21

    The purpose was to study the perinatal transmission of human papillomavirus DNA (HPV-DNA) in 63 mother-newborn pairs, besides looking at the epidemiological factors involved in the viral DNA transmission. The following sampling methods were used: (1) in the pregnant woman, when was recruited, in cervix and clinical lesions of the vagina, vulva and perineal region; (2) in the newborn, (a) buccal, axillary and inguinal regions; (b) nasopharyngeal aspirate, and (c) cord blood; (3) in the children, buccal was repeated in the 4th week and 6th and 12th month of life. HPV-DNA was identified using two methodologies: multiplex PCR (PGMY09 and MY11 primers) and nested-PCR (genotypes 6/11, 16, 18, 31, 33, 42, 52 and 58). Perinatal transmission was considered when concordance was found in type-specific HPV between mother/newborn or mother/child. HPV-DNA genital was detected in 49 pregnant women submitted to delivery. Eleven newborns (22.4%, n = 11/49) were HPV-DNA positive. In 8 cases (16.3%, n = 8/49) there was type specific HPV concordance between mother/newborn samples. At the end of the first month of life three children (6.1%, n = 3/49) became HPV-DNA positive, while two remained positive from birth. In 3 cases (100%, n = 3/3) there was type specific HPV concordance between mother/newborn samples. In the 6th month, a child (2%, n = 1/49) had become HPV-DNA positive between the 1st and 6th month of life, and there was type specific HPV concordance of mother/newborn samples. All the HPV-DNA positive children (22.4%, n = 11/49) at birth and at the end first month of life (6.1%, n = 3/49) became HPV-DNA negative at the age of 6 months. The HPV-DNA positive child (2%, n = 1/49) from 1st to the 6th month of life became HPV-DNA negative between the 6th and 12th month of life and one child had anogenital warts. In the twelfth month all (100%, n = 49/49) the children studied were HPV-DNA negative. A positive and significant correlation was observed between perinatal transmission

  19. Perinatal transmission of human papilomavirus DNA

    Directory of Open Access Journals (Sweden)

    Serafini Eduardo P

    2009-06-01

    Full Text Available Abstract The purpose was to study the perinatal transmission of human papillomavirus DNA (HPV-DNA in 63 mother-newborn pairs, besides looking at the epidemiological factors involved in the viral DNA transmission. The following sampling methods were used: (1 in the pregnant woman, when was recruited, in cervix and clinical lesions of the vagina, vulva and perineal region; (2 in the newborn, (a buccal, axillary and inguinal regions; (b nasopharyngeal aspirate, and (c cord blood; (3 in the children, buccal was repeated in the 4th week and 6th and 12th month of life. HPV-DNA was identified using two methodologies: multiplex PCR (PGMY09 and MY11 primers and nested-PCR (genotypes 6/11, 16, 18, 31, 33, 42, 52 and 58. Perinatal transmission was considered when concordance was found in type-specific HPV between mother/newborn or mother/child. HPV-DNA genital was detected in 49 pregnant women submitted to delivery. Eleven newborns (22.4%, n = 11/49 were HPV-DNA positive. In 8 cases (16.3%, n = 8/49 there was type specific HPV concordance between mother/newborn samples. At the end of the first month of life three children (6.1%, n = 3/49 became HPV-DNA positive, while two remained positive from birth. In 3 cases (100%, n = 3/3 there was type specific HPV concordance between mother/newborn samples. In the 6th month, a child (2%, n = 1/49 had become HPV-DNA positive between the 1st and 6th month of life, and there was type specific HPV concordance of mother/newborn samples. All the HPV-DNA positive children (22.4%, n = 11/49 at birth and at the end first month of life (6.1%, n = 3/49 became HPV-DNA negative at the age of 6 months. The HPV-DNA positive child (2%, n = 1/49 from 1st to the 6th month of life became HPV-DNA negative between the 6th and 12th month of life and one child had anogenital warts. In the twelfth month all (100%, n = 49/49 the children studied were HPV-DNA negative. A positive and significant correlation was observed between perinatal

  20. Synthesis of PET probe O(6)-[(3-[(11)C]methyl)benzyl]guanine by Pd(0)-mediated rapid C-[(11)C]methylation toward imaging DNA repair protein O(6)-methylguanine-DNA methyltransferase in glioblastoma.

    Science.gov (United States)

    Koyama, Hiroko; Ikenuma, Hiroshi; Toda, Hiroshi; Kondo, Goro; Hirano, Masaki; Kato, Masaya; Abe, Junichiro; Yamada, Takashi; Wakabayashi, Toshihiko; Ito, Kengo; Natsume, Atsushi; Suzuki, Masaaki

    2017-03-18

    O(6)-Benzylguanine (O(6)-BG) is a substrate of O(6)-methylguanine-DNA methyltransferase (MGMT), which is involved in drug resistance of chemotherapy in the majority of glioblastoma multiform. For clinical diagnosis, it is hoped that the MGMT expression level could be determined by a noninvasive method to understand the detailed biological properties of MGMT-specific tumors. We synthesized (11)C-labeled O(6)-[(3-methyl)benzyl]guanine ([(11)C]mMeBG) as a positron emission tomography probe. Thus, a mixed amine-protected stannyl precursor, N(9)-(tert-butoxycarbonyl)-O(6)-[3-(tributylstannyl)benzyl]-N(2)-(trifluoroacetyl)guanine, was subjected to rapid C-[(11)C]methylation under [(11)C]CH3I/[Pd2(dba)3]/P(o-CH3C6H4)3/CuCl/K2CO3 in NMP, followed by quick deprotection with LiOH/H2O, giving [(11)C]mMeBG with total radioactivity of 1.34GBq and ≥99% radiochemical and chemical purities.

  1. Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching between Two DNA-Bound States

    Energy Technology Data Exchange (ETDEWEB)

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A.; Tomkinson, Alan E.; Ellenberger, Tom (Scripps); (Maryland-MED); (WU-MED); (LBNL)

    2010-09-13

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a 'jackknife model' in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.

  2. 肺癌患者血清中DNA甲基化酶的表达%Change of DNA methyltransferases in the serum of patients with lung cancer

    Institute of Scientific and Technical Information of China (English)

    魏小玲; 冯斐斐; 何其栋; 冯悦静; 王威; 吴拥军

    2014-01-01

    Aim: To explore the association of DNA methyltransferases ( DNMT1, DNMT3a and DNMT3b) and the risk of lung cancer .Methods:The levels of DNMT1, DNMT3a and DNMT3b in serum of 136 patients with lung cancer ( cancer group ) and 141 patients with benign pulmonary diseases ( control group ) were tested by ELISA .The impact of gen-der, age, smoking history, tumor histological type and stage on serum DNMT 1, DNMT3a and DNMT3b and associations between DNMT1, DNMT3a or DNMT3b and lung cancer risk were analyzed .Results:The levels of DNMT1 and DNMT3a (μg/L) in cancer group were[12.64(9.67-17.07), 0.74(0.61-1.05)], significantly higher than the control group [11.07(7.85-17.59), 0.66(0.49-1.00)(Z=1.884,P=0.002;Z=1.788,P=0.003)].The levels of DNMT3b had no significant difference between the 2 groups.When the subjects were categorized into four layers based on the 25%, 50%, 75%cut-off point of three DNA methyltransferases , it was shown that overexpressing of DNMT 1 and DNMT3a had increased risk of lung cancer (χ2trend=4.062 and 7.853,P<0.05).Conclusion:DNMT1 and DNMT3a are overexpressed in serum of lung cancer patients and detection the DNMTs levels could predict the risk of lung cancer .%目的:观察DNA甲基化酶( DNMT1、DNMT3a和DNMT3b)与肺癌危险性的关系。方法:采用酶联免疫吸附法检测136例肺癌患者(肺癌组)、141例肺良性疾病患者(对照组)血清DNMT1、DNMT3a和DNMT3b的水平。分析性别、年龄、吸烟史、肺癌组织学类型和临床分期对血清DNMT1、DNMT3a和DNMT3b的影响,以及血清DN-MT1、DNMT3a和DNMT3b表达水平与肺癌危险性的关系。结果:肺癌组DNMT1、DNMT3a表达水平(μg/L)[12.64(9.67~17.07),0.74(0.61~1.05)]高于对照组[11.07(7.85~17.59),0.66(0.49~1.00)(Z =1.884, P=0.002;Z=1.788,P=0.003)],DNMT3b差异无统计学意义。按3种DNMTs水平的百分位数25%、50%、75%为分界点

  3. Imprinting: DNA methyltransferases illuminate reprogramming.

    Science.gov (United States)

    Calarco, Joseph P; Martienssen, Robert A

    2012-11-06

    Progress in studying epigenetic reprogramming in plants has been impeded by the difficulty in obtaining tissue for analysis. Now, using a combination of fluorescent reporters and translational fusions, a new study sheds some light on this process.

  4. Scientists Spot 15 Regions of Human DNA Linked to Depression

    Science.gov (United States)

    ... Spot 15 Regions of Human DNA Linked to Depression Many are located near genes involved in brain ... identified 15 regions of human DNA associated with depression. These regions may contain genes that increase the ...

  5. Promoter Hypermethylation of DNA Repair Gene O6-methylguanine DNA Methyltransferase in Gliomas%胶质瘤组织中DNA修复基因MGMT启动子区过甲基化研究

    Institute of Scientific and Technical Information of China (English)

    王之敏; 高薇; 朱凤清; 许期年; 左剑玲; 王秀云; 周岱

    2005-01-01

    背景与目的:06-甲基鸟嘌呤-DNA甲基转移酶(06-methylguanine-DNA methyltransferase,MGMT)是肿瘤细胞产生亚硝脲药物抗药性的分子基础.启动子区过甲基化而导致MGMT基因的转录失活,影响MGMT蛋白表达.本研究探索了胶质瘤组织中MGMT基因启动子区过甲基化状态及其与MGMT蛋白表达的关系.方法:采用甲基化特异性聚合酶链反应分析胶质瘤组织中MGMT基因启动子区过甲基化状态,同时采用免疫组织化学法分析胶质瘤组织中MGMT蛋白表达情况.结果:在27例胶质瘤患者的肿瘤组织标本中,18例MGMT蛋白表达呈阳性的胶质瘤组织中7例MGMT基因启动子甲基化,阳性率为38.9%;9例MGMT蛋白表达呈阴性的胶质瘤组织中7例MGMT基因启动子甲基化,阳性率为77.8%(P<0.05).结论:MGMT基因启动子区的甲基化状态与MGMT蛋白的表达相关.MGMT基因启动子过甲基化,MGMT蛋白表达较低;MGMT基因启动子去甲基化,MGMT蛋白表达较高.

  6. Identification and characterization of a catechol-o-methyltransferase cDNA in the catfish Heteropneustes fossilis: Tissue, sex and seasonal variations, and effects of gonadotropin and 2-hydroxyestradiol-17β on mRNA expression.

    Science.gov (United States)

    Chaube, R; Rawat, A; Inbaraj, R M; Bobe, J; Guiguen, Y; Fostier, A; Joy, K P

    2016-12-08

    Catechol-O-methyltransferase (COMT) is involved in the methylation and inactivation of endogenous and xenobiotic catechol compounds, and serves as a common biochemical link in the catecholamine and catecholestrogen metabolism. Studies on cloning, sequencing and function characterization comt gene in lower vertebrates like fish are fewer. In the present study, a full-length comt cDNA of 1442bp with an open-reading frame (ORF) of 792bp, and start codon (ATG) at nucleotide 162 and stop codon (TAG) at nucleotide 953 was isolated and characterized in the stinging catfish Heteropneustes fossilis (accession No. KT597925). The ORF codes for a protein of 263 amino acid residues, which is also validated by the catfish transcriptome data analysis. The catfish Comt shared conserved putative structural regions important for S-adenosyl methionine (AdoMet)- and catechol-binding, transmembrane regions, two glycosylation sites (N-65 and N-91) at the N-terminus and two phosphorylation sites (Ser-235 and Thr-240) at the C-terminus. The gene was expressed in all tissues examined and the expression showed significant sex dimorphic distribution with high levels in females. The transcript was abundant in the liver, brain and gonads and low in muscles. The transcripts showed significant seasonal variations in the brain and ovary, increased progressively to the peak levels in spawning phase and then declined. The brain and ovarian comt mRNA levels showed periovulatory changes after in vivo and in vitro human chorionic gonadotropin (hCG) treatments with high fold increases at 16 and 24h in the brain and at 16h in the ovary. The catecholestrogen 2-hydroxyE2 up regulated ovarian comt expression in vitro with the highest fold increase at 16h. The mRNA and protein was localized in the follicular layer of the vitellogenic follicles and in the cytoplasm of primary follicles. The data were discussed in relation to catecholamine and catecholestrogen-mediated functions in the brain and ovary of the

  7. DNA methylation and healthy human aging.

    Science.gov (United States)

    Jones, Meaghan J; Goodman, Sarah J; Kobor, Michael S

    2015-12-01

    The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next-generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site-specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age-related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining 'epigenetic age' for human health and outline some important caveats to existing and future studies.

  8. Prolonged and severe thrombocytopenia with pancytopenia induced by radiation-combined temozolomide therapy in a patient with newly diagnosed glioblastoma--analysis of O6-methylguanine-DNA methyltransferase status.

    Science.gov (United States)

    Nagane, Motoo; Nozue, Kyoko; Shimizu, Saki; Waha, Andreas; Miyazaki, Hiroshi; Kurita, Hiroki; Homori, Masashi; Fujioka, Yasunori; Shiokawa, Yoshiaki

    2009-04-01

    We report a case of a 51-year-old woman with newly diagnosed glioblastoma multiforme (GBM) who was treated with surgery followed by the standard concomitant temozolomide (TMZ) and radiotherapy (RT). Although TMZ is generally safe and well-tolerated, she developed a sudden onset of prolonged and severe thrombocytopenia as the most prominent event of pancytopenia during the combined treatment, leading to discontinuation of the combined therapy. Thrombocytopenia lasted for more than 2 months with intensive, intermittent platelet transfusions. A bone marrow aspiration and biopsy performed after recovery of severe suppression still revealed reduced number of megakaryocytes. O(6)-methylguanine-DNA methyltransferase (MGMT) analyses showed methylated MGMT promoter in GBM, but unmethylated promoters in both peripheral blood leukocytes and bone marrow cells. This is the first report suggesting the irrelevance of MGMT status of normal hematopoietic cells to TMZ-induced severe thrombocytopenia and pancytopenia.

  9. Inhibition of human catechol-O-methyltransferase (COMT)-mediated O-methylation of catechol estrogens by major polyphenolic components present in coffee.

    Science.gov (United States)

    Zhu, Bao Ting; Wang, Pan; Nagai, Mime; Wen, Yujing; Bai, Hyoung-Woo

    2009-01-01

    In the present study, we investigated the inhibitory effect of three catechol-containing coffee polyphenols, chlorogenic acid, caffeic acid and caffeic acid phenethyl ester (CAPE), on the O-methylation of 2- and 4-hydroxyestradiol (2-OH-E(2) and 4-OH-E(2), respectively) catalyzed by the cytosolic catechol-O-methyltransferase (COMT) isolated from human liver and placenta. When human liver COMT was used as the enzyme, chlorogenic acid and caffeic acid each inhibited the O-methylation of 2-OH-E(2) in a concentration-dependent manner, with IC(50) values of 1.3-1.4 and 6.3-12.5 microM, respectively, and they also inhibited the O-methylation of 4-OH-E(2), with IC(50) values of 0.7-0.8 and 1.3-3.1 microM, respectively. Similar inhibition pattern was seen with human placental COMT preparation. CAPE had a comparable effect as caffeic acid for inhibiting the O-methylation of 2-OH-E(2), but it exerted a weaker inhibition of the O-methylation of 4-OH-E(2). Enzyme kinetic analyses showed that chlorogenic acid and caffeic acid inhibited the human liver and placental COMT-mediated O-methylation of catechol estrogens with a mixed mechanism of inhibition (competitive plus noncompetitive). Computational molecular modeling analysis showed that chlorogenic acid and caffeic acid can bind to human soluble COMT at the active site in a similar manner as the catechol estrogen substrates. Moreover, the binding energy values of these two coffee polyphenols are lower than that of catechol estrogens, which means that coffee polyphenols have higher binding affinity for the enzyme than the natural substrates. This computational finding agreed perfectly with our biochemical data.

  10. Expression of DNA-methyltransferases 3B gene in pancreatic adenocarcinoma%甲基转移酶3B基因在胰腺癌中的表达

    Institute of Scientific and Technical Information of China (English)

    王丽华; 李兆申; 李淑德; 杜奕奇; 高军; 龚燕芳; 满晓华; 胡先贵

    2009-01-01

    Objective To investigate the expression of DNA-methyltransferases 3B(DNMT3B)gene in human pancreatic carcinoma and to evaluate its relationship with elinicopathologic parameters.Methods 42 samples of pancreatic carcinoma tissues and 42 para-carcinoma tissues and 10 normal pancreatic tissues were collected and the expression of DNMT3B mRNA and protein Was detected by real.time PCR and immunohistochemistry techniques.Results The expression of DNMT3B mRNA(RQ level)in human pancreatic carcinoma tissues and para-carcinoma tissues,normal pancreatic tissues was 9.4±5.9,1.02±0.71 and 0,respectively,and the difference was statistically significant(P<0.05).The rate of expression of DNMT3B protein in human pancreatic carcinoma tissues,para-carcinoma tissues and normal pancreatic tissues were 83.3%,14.3%and 10%,respectively,and the difference wag also statistically significant(P<0.01).The expression of DNMT3B mRNA correlated significantly with clinical staging,differentiation degree of the tumor and lymph node metastasis(P<0.01 or P<0.05).The expression of DNMT3B protein correlated significantly with the location ofthe tumor and lymph node metastasis(P<0.01 or P<0.05).The expression of DNMT3B mRNA and protein Was not assecimed with age,sex,neural invasion,tumor size,sernm CEA and CA19-9.Conclusions Highly expressed DNMT3B mRNA and protein may indicate the lymph node metastasis and poor prognosis in human pancreatic carcinoma.%目的 检测胰腺癌组织中甲基转移酶3B(DNMT3B)基因表达,分析其与胰腺癌临床病理参数的关系.方法 应用实时定量PCR和免疫组织化学方法检测42例胰腺癌组织及相应癌旁组织、10例正常胰腺组织中DNMT3B mRNA和蛋白表达.结果 胰腺癌组织、癌旁组织和正常胰腺组织DNM33B mRNA表达量分别为9.4±5.9、1.02±0.71和0,相差非常显著(P<0.05);DNMT3B蛋白表达阳性率分别为83.3%、14.3%和10.0%,相差也非常显著(P<0.01).DNMT3B mRNA表达与I临床分期、肿瘤分化程度

  11. Quantification of human mitochondrial DNA using synthesized DNA standards.

    Science.gov (United States)

    Kavlick, Mark F; Lawrence, Helen S; Merritt, R Travis; Fisher, Constance; Isenberg, Alice; Robertson, James M; Budowle, Bruce

    2011-11-01

    Successful mitochondrial DNA (mtDNA) forensic analysis depends on sufficient quantity and quality of mtDNA. A real-time quantitative PCR assay was developed to assess such characteristics in a DNA sample, which utilizes a duplex, synthetic DNA to ensure optimal quality assurance and quality control. The assay's 105-base pair target sequence facilitates amplification of degraded DNA and is minimally homologous to nonhuman mtDNA. The primers and probe hybridize to a region that has relatively few sequence polymorphisms. The assay can also identify the presence of PCR inhibitors and thus indicate the need for sample repurification. The results show that the assay provides information down to 10 copies and provides a dynamic range spanning seven orders of magnitude. Additional experiments demonstrated that as few as 300 mtDNA copies resulted in successful hypervariable region amplification, information that permits sample conservation and optimized downstream PCR testing. The assay described is rapid, reliable, and robust.

  12. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair.

    Science.gov (United States)

    Chen, Xi; Zhong, Shijun; Zhu, Xiao; Dziegielewska, Barbara; Ellenberger, Tom; Wilson, Gerald M; MacKerell, Alexander D; Tomkinson, Alan E

    2008-05-01

    Based on the crystal structure of human DNA ligase I complexed with nicked DNA, computer-aided drug design was used to identify compounds in a database of 1.5 million commercially available low molecular weight chemicals that were predicted to bind to a DNA-binding pocket within the DNA-binding domain of DNA ligase I, thereby inhibiting DNA joining. Ten of 192 candidates specifically inhibited purified human DNA ligase I. Notably, a subset of these compounds was also active against the other human DNA ligases. Three compounds that differed in their specificity for the three human DNA ligases were analyzed further. L82 inhibited DNA ligase I, L67 inhibited DNA ligases I and III, and L189 inhibited DNA ligases I, III, and IV in DNA joining assays with purified proteins and in cell extract assays of DNA replication, base excision repair, and nonhomologous end-joining. L67 and L189 are simple competitive inhibitors with respect to nicked DNA, whereas L82 is an uncompetitive inhibitor that stabilized complex formation between DNA ligase I and nicked DNA. In cell culture assays, L82 was cytostatic whereas L67 and L189 were cytotoxic. Concordant with their ability to inhibit DNA repair in vitro, subtoxic concentrations of L67 and L189 significantly increased the cytotoxicity of DNA-damaging agents. Interestingly, the ligase inhibitors specifically sensitized cancer cells to DNA damage. Thus, these novel human DNA ligase inhibitors will not only provide insights into the cellular function of these enzymes but also serve as lead compounds for the development of anticancer agents.

  13. Two DNA-binding and Nick Recognition Modules in Human DNA Ligase III*

    OpenAIRE

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Tomkinson, Alan E.; Ellenberger, Tom

    2008-01-01

    Human DNA ligase III contains an N-terminal zinc finger domain that binds to nicks and gaps in DNA. This small domain has been described as a DNA nick sensor, but it is not required for DNA nick joining activity in vitro. In light of new structural information for mammalian ligases, we measured the DNA binding affinity and specificity of each domain of DNA ligase III. These studies identified two separate, independent DNA-binding modules in DNA ligase III that each bin...

  14. A new approach on the purification of recombinant human soluble catechol-O-methyltransferase from an Escherichia coli extract using hydrophobic interaction chromatography.

    Science.gov (United States)

    Passarinha, L A; Bonifácio, M J; Soares-da-Silva, P; Queiroz, J A

    2008-01-11

    Catechol-O-methyltransferase (COMT) is a significant target in protein engineering due to its role not only in normal brain function but also to its possible involvement in some human disorders. In this work, a new approach was employed for the purification of recombinant human soluble COMT (hSCOMT) using hydrophobic interaction chromatography, as the main isolation method, from an Escherichia coli culture broth. A simplified overall process flow is proposed. Indeed, with an optimized heterologous expression system for recombinant hSCOMT production, such as E. coli, it was possible to produce and recover the active monomeric enzyme directly from the cell crude culture broth either by a freeze/thaw or ultrasonication lysis step. The recombinant enzyme present in the bacterial soluble fraction, exhibited similar affinity for epinephrine (K(m) 276 [215; 337] microM) and the methyl donor (S-adenosyl-L-methionine, SAMe) (K(m) 36 [30; 41]microM) as human SCOMT. After the precipitation step by 55% of ammonium sulphate, a HIC step on the butyl-sepharose resin was found to be highly effective in selectively eluting a range of contaminating key proteins present in the concentrate soluble extract. Consequently, the partially purified eluate from HIC could then be loaded and polished by gel filtration in order to increase the process efficiency. The final product appeared as a single band in sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The procedure resulted in a global 10.9-fold purification with a specific activity of 5500 nmol/h/mg of protein. The widespread applicability of the process, here described, to different COMT sources could make this protocol highly useful for all studies requiring purified and active COMT proteins.

  15. Investigation of DNA repair in human oocytes and preimplantation embryos

    OpenAIRE

    Jaroudi, S.

    2010-01-01

    DNA repair genes are expressed in mammalian embryos and in human germinal vesicles, however, little is known about DNA repair in human preimplantation embryos. This project had three aims: 1) to produce a DNA repair profile of human MII oocytes and blastocysts using expression arrays and identify repair pathways that may be active before and after embryonic genome activation; 2) to design an in vitro functional assay that targeted mismatch repair and which could be applied to human oocytes...

  16. 子宫内膜癌中 DNA 甲基转移酶3B 的表达特点与临床意义%Characteristic and clinical significance of DNA methyltransferase 3B overexpression in endometrial carcinoma

    Institute of Scientific and Technical Information of China (English)

    董颖; 周梅; 巴晓军; 司婧文; 李文婷; 王颖; 李东; 李挺

    2016-01-01

    Objective:To determine the clinicopathological significance of the DNA methyltransferase 3B (DNMT3B)overexpression in endometrial carcinomas and to evaluate its correlation with hormone re-ceptor status.Methods:Immunohistochemistry was performed to assess the expression of DNMT3B and hormone receptors in 104 endometrial carcinomas.Results:DNMT3B overexpression occurred frequently in endometrioid carcinoma (EC,54.8%)more than in nonendometrioid carcinoma (NEC,30.0%) with statistical significance (P =0.028).Furthermore,there was a trend that EC with worse clinico-pathological variables and shorter survival had a higher DNMT3B expression,and the correlation between DNMT3B and tumor grade reached statistical significance (P =0.019).A negative correlation between DNMT3B and estrogen receptor (ER)or progesterone receptor (PR)expression was found in EC. NMT3B overexpression occurred frequently in the ER or PR negative subgroups (78.9%,86.7%)more than in the positive subgroups (47.7%,47.8%)with statistical significance (P =0.016,P =0.006). In addition,the DNMT3B overexpression increased in tumors with both ER and PR negative expression (92.9%,P =0.002).However,no such correlation was found in NEC (P >0.05).Sequence analyses demonstrated multiple ER and PR binding sites in the promoter regions of DNMT3B gene.Conclusion:This study showed that the expression of DNMT3B in EC and NEC was different.DNMT3B overexpres-sion in EC was associated with the worse clinicopathological variables and might have predictive value. The methylation status of EC and NEC maybe different.In addition,in EC,DNMT3B overexpression negatively correlated with ER or PR expression.In NEC,the correlation between DNMT3B and ER or PR status was not present.%目的:探讨子宫内膜癌中 DNA 甲基转移酶3B(DNA methyltransferase 3B,DNMT3B)的表达特点、与雌激素受体(estrogen receptor,ER)和孕激素受体(progesterone receptor,PR)的相关性及意义。方法

  17. Structures of NS5 Methyltransferase from Zika Virus

    Directory of Open Access Journals (Sweden)

    Javier Coloma

    2016-09-01

    Full Text Available The Zika virus (ZIKV poses a major public health emergency. To aid in the development of antivirals, we present two high-resolution crystal structures of the ZIKV NS5 methyltransferase: one bound to S-adenosylmethionine (SAM and the other bound to SAM and 7-methyl guanosine diphosphate (7-MeGpp. We identify features of ZIKV NS5 methyltransferase that lend to structure-based antiviral drug discovery. Specifically, SAM analogs with functionalities on the Cβ atom of the methionine portion of the molecules that occupy the RNA binding tunnel may provide better specificity relative to human RNA methyltransferases.

  18. FXR silencing in human colon cancer by DNA methylation and KRAS signaling.

    Science.gov (United States)

    Bailey, Ann M; Zhan, Le; Maru, Dipen; Shureiqi, Imad; Pickering, Curtis R; Kiriakova, Galina; Izzo, Julie; He, Nan; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Liang, Han; Kopetz, Scott; Powis, Garth; Guo, Grace L

    2014-01-01

    Farnesoid X receptor (FXR) is a bile acid nuclear receptor described through mouse knockout studies as a tumor suppressor for the development of colon adenocarcinomas. This study investigates the regulation of FXR in the development of human colon cancer. We used immunohistochemistry of FXR in normal tissue (n = 238), polyps (n = 32), and adenocarcinomas, staged I-IV (n = 43, 39, 68, and 9), of the colon; RT-quantitative PCR, reverse-phase protein array, and Western blot analysis in 15 colon cancer cell lines; NR1H4 promoter methylation and mRNA expression in colon cancer samples from The Cancer Genome Atlas; DNA methyltransferase inhibition; methyl-DNA immunoprecipitation (MeDIP); bisulfite sequencing; and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) knockdown assessment to investigate FXR regulation in colon cancer development. Immunohistochemistry and quantitative RT-PCR revealed that expression and function of FXR was reduced in precancerous lesions and silenced in a majority of stage I-IV tumors. FXR expression negatively correlated with phosphatidylinositol-4, 5-bisphosphate 3 kinase signaling and the epithelial-to-mesenchymal transition. The NR1H4 promoter is methylated in ~12% colon cancer The Cancer Genome Atlas samples, and methylation patterns segregate with tumor subtypes. Inhibition of DNA methylation and KRAS silencing both increased FXR expression. FXR expression is decreased early in human colon cancer progression, and both DNA methylation and KRAS signaling may be contributing factors to FXR silencing. FXR potentially suppresses epithelial-to-mesenchymal transition and other oncogenic signaling cascades, and restoration of FXR activity, by blocking silencing mechanisms or increasing residual FXR activity, represents promising therapeutic options for the treatment of colon cancer.

  19. Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE

    OpenAIRE

    Sen, Doyel; Patel, Gayatri; Smita S Patel

    2016-01-01

    A crucial component of the human mitochondrial DNA replisome is the ring-shaped helicase TWINKLE—a phage T7-gene 4-like protein expressed in the nucleus and localized in the human mitochondria. Our previous studies showed that despite being a helicase, TWINKLE has unique DNA annealing activity. At the time, the implications of DNA annealing by TWINKLE were unclear. Herein, we report that TWINKLE uses DNA annealing function to actively catalyze strand-exchange reaction between the unwinding su...

  20. Phase II study of targeted therapy with temozolomide in acute myeloid leukaemia and high-risk myelodysplastic syndrome patients pre-screened for low O(6) -methylguanine DNA methyltransferase expression.

    Science.gov (United States)

    Brandwein, Joseph M; Kassis, Jeannine; Leber, Brian; Hogge, Donna; Howson-Jan, Kang; Minden, Mark D; Galarneau, André; Pouliot, Jean-François

    2014-12-01

    Resistance to temozolomide is largely mediated by the DNA repair enzyme O(6) -methylguanine DNA methyltransferase (MGMT). We conducted a prospective multicentre study of patients with previously untreated acute myeloid leukaemia (AML) or high-risk myelodysplastic syndrome (MDS) who were not candidates for intensive therapy. Patient selection was based on MGMT expression by Western blot. Patients with MGMT:ACTB (β-actin) ratio temozolomide 200 mg/m(2) /d ×7 d. Patients achieving a complete response (CR) could receive up to 12 monthly cycles of temozolomide ×5/28 d. Of 166 patients screened, 81 (49%) demonstrated low MGMT expression; 45 of these were treated with temozolomide. The overall response rate was 53%; 36% achieved complete clearance of blasts, with 27% achieving a CR/CR with incomplete platelet recovery (CRp). Factors associated with a trend toward a higher response rate included MDS, methylated MGMT promoter and standard cytogenetic risk group. Induction and post-remission cycles were well-tolerated and most patients were treated on an outpatient basis. Patient who achieved CR/CRp had a superior overall survival compared to partial or non-responders. In conclusion, targeted therapy based on pre-selection for low MGMT expression was associated with a higher response rate to temozolomide compared to previous reports of unselected patients.

  1. DNA甲基转移酶在肝细胞癌中的表达及其临床意义%Expression and clinical significance of DNA methyltransferases in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    沈苑; 顾栋桦

    2012-01-01

    Objective To investigate the expression of DNA methyltransferase 1,3a,3b (DNMT1,DNMT3a,DNMT3b) in human hepatocellular carcinoma (HCC) and to determine their clinical significance.Methods The expression of DNMT1,3a,3b proteins was detected in 47 HCC tumor specimens and 42 HCC paracarcinoma liver tissues by immunohistochemistry.12 normal liver tissues were used as control.The results and clinicopathological parameters were analyzed.Results The positive expression rates of DNMT1,3a and 3b in HCC tissues were 80.9%,68.1% and 78.7% respectively.The positive expression rates of DNMT1,DNMT3a and DNMT3b in paracarcinoma tissues were 50.0%,52.4% and 57.1% respectively.The expression rates of DNMT1,3a and 3b in both HCC tissues and paracarcinoma tissues were significantly higher than normal liver tissues.The expression of DNMT1,DNMT3a,DNMT3b was correlated with tumor differentiation (P<0.05) and hepatitis B surface antigen (HBsAg) positivity.Conclusions DNMT1,3a and 3b play important roles in carcinog(c)n(c)sis and development of HCC.%目的 探讨DNA甲基转移酶1(DNMT1)、3a(DNMT3a)和3b(DNMT3b)在肝细胞癌(HCC)中的表达及其意义.方法 应用免疫组织化学检测47例HCC癌组织、42例HCC癌旁肝组织及12例正常肝组织中DNMT1、DNMT3a和DNMT3b的表达情况,分析三者与临床病理特征的关系.结果 DNMT1、DNMT3a和DNMT3b在HCC中阳性表达率分别为80.9%、68.1%和78.7%,在癌旁组织内分别为50.0%、52.4%和57.1%,均明显高于正常肝组织内的阳性表达(16.7%、16.7%和25.0%).而且DNMT1、DNMT3a和DNMT3b与HCC的病理分化类型及乙肝表面抗原阳性显著相关(P<0.05).结论 DNMT1、DNMT3a和DNMT3b的异常表达与HCC的发生发展有紧密的关系.

  2. Human identification & forensic analyses of degraded or low level DNA

    NARCIS (Netherlands)

    Westen, Antoinette-Andrea

    2013-01-01

    DNA-based human identification is employed in varying situations, such as disaster victim identification, relationship testing and forensic analyses. When DNA is of low quality and/or quantity, standard methods for DNA profiling may not suffice. The research described in this thesis is aimed at the

  3. Human identification & forensic analyses of degraded or low level DNA

    NARCIS (Netherlands)

    Westen, Antoinette-Andrea

    2013-01-01

    DNA-based human identification is employed in varying situations, such as disaster victim identification, relationship testing and forensic analyses. When DNA is of low quality and/or quantity, standard methods for DNA profiling may not suffice. The research described in this thesis is aimed at the

  4. Structural analysis of human 2'-O-ribose methyltransferases involved in mRNA cap structure formation

    Science.gov (United States)

    Smietanski, Miroslaw; Werner, Maria; Purta, Elzbieta; Kaminska, Katarzyna H.; Stepinski, Janusz; Darzynkiewicz, Edward; Nowotny, Marcin; Bujnicki, Janusz M.

    2014-01-01

    The 5' cap of human messenger RNA contains 2'-O-methylation of the first and often second transcribed nucleotide that is important for its processing, translation and stability. Human enzymes that methylate these nucleotides, termed CMTr1 and CMTr2, respectively, have recently been identified. However, the structures of these enzymes and their mechanisms of action remain unknown. In the present study, we solve the crystal structures of the active CMTr1 catalytic domain in complex with a methyl group donor and a capped oligoribonucleotide, thereby revealing the mechanism of specific recognition of capped RNA. This mechanism differs significantly from viral enzymes, thus providing a framework for their specific targeting. Based on the crystal structure of CMTr1, a comparative model of the CMTr2 catalytic domain is generated. This model, together with mutational analysis, leads to the identification of residues involved in RNA and methyl group donor binding.

  5. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation

    NARCIS (Netherlands)

    Dungen, van den Myrthe; Murk, Tinka; Steegenga, Wilma; Gils-Kok, van Dieuwertje

    2016-01-01

    Genome-wide DNA methylation profiling was performed in human mesenchymal stem cells (hMSCs) differentiated into adipocytes (day 10) while being continuously exposed to either one of three different persistent organic pollutants (POPs), namely TCDD, PFOS, and TBT. The Illumina Infinium 450K Human DNA

  6. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng;

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold pe...

  7. Rapid Extraction of Human DNA Containing Humic Acid

    OpenAIRE

    Sutlović, Davorka; Definis Gojanović, Marija; Anđelinović, Šimun

    2007-01-01

    The identification process of dead bodies or human remains is nowadays conducted in numerous fields of forensic science, archeology and other judicial cases. A particular problem is the isolation and DNA typing of human remains found in mass graves, due to the degradation process, as well as post mortal DNA contamination with bacteria, fungi, humic acids, metals, etc. In this study, the influence of humic acid (HA) on the DNA extraction and typing is investigated. If present in...

  8. Structural basis of human PCNA sliding on DNA

    Science.gov (United States)

    de March, Matteo; Merino, Nekane; Barrera-Vilarmau, Susana; Crehuet, Ramon; Onesti, Silvia; Blanco, Francisco J.; de Biasio, Alfredo

    2017-01-01

    Sliding clamps encircle DNA and tether polymerases and other factors to the genomic template. However, the molecular mechanism of clamp sliding on DNA is unknown. Using crystallography, NMR and molecular dynamics simulations, here we show that the human clamp PCNA recognizes DNA through a double patch of basic residues within the ring channel, arranged in a right-hand spiral that matches the pitch of B-DNA. We propose that PCNA slides by tracking the DNA backbone via a `cogwheel' mechanism based on short-lived polar interactions, which keep the orientation of the clamp invariant relative to DNA. Mutation of residues at the PCNA-DNA interface has been shown to impair the initiation of DNA synthesis by polymerase δ (pol δ). Therefore, our findings suggest that a clamp correctly oriented on DNA is necessary for the assembly of a replication-competent PCNA-pol δ holoenzyme.

  9. Human DNA ligase and DNA polymerase as molecular targets for heavy metals and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.

    1992-01-01

    DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase [alpha] are the molecular targets for two metal ions, Zn[sup 2+] and Cd[sup 2+], and an anticancer drug, F-ara-ATP. The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP. A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex. F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3[prime]-terminus of DNA nick by DNA polymerase [alpha]. All steps of the DNA ligation reaction were inhibited by Zn[sup 2+] and Cd[sup 2+] in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn[sup 2+] and Cd[sup 2+] showed their contradictory effects on the fidelity of the reaction by human DNA polymerase [alpha]. Zn[sup 2+] decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd[sup 2+] increased the frequencies of both misinsertion and mispair extension at very low concentration. The data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported.

  10. Relationship between nucleosome positioning and DNA methylation

    Science.gov (United States)

    Chodavarapu, Ramakrishna K.; Feng, Suhua; Bernatavichute, Yana V.; Chen, Pao-Yang; Stroud, Hume; Yu, Yanchun; Hetzel, Jonathan; Kuo, Frank; Kim, Jin; Cokus, Shawn J.; Casero, David; Bernal, Maria; Huijser, Peter; Clark, Amander T.; Krämer, Ute; Merchant, Sabeeha S.; Zhang, Xiaoyu; Jacobsen, Steven E.; Pellegrini, Matteo

    2010-01-01

    Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer1, 2. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana utilizing massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified ten base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results suggest that nucleosome positioning strongly influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA suggesting that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron-exon and exon-intron boundaries. RNA Pol II was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition. PMID:20512117

  11. Oxidized Extracellular DNA as a Stress Signal in Human Cells

    Directory of Open Access Journals (Sweden)

    Aleksei V. Ermakov

    2013-01-01

    Full Text Available The term “cell-free DNA” (cfDNA was recently coined for DNA fragments from plasma/serum, while DNA present in in vitro cell culture media is known as extracellular DNA (ecDNA. Under oxidative stress conditions, the levels of oxidative modification of cellular DNA and the rate of cell death increase. Dying cells release their damaged DNA, thus, contributing oxidized DNA fragments to the pool of cfDNA/ecDNA. Oxidized cell-free DNA could serve as a stress signal that promotes irradiation-induced bystander effect. Evidence points to TLR9 as a possible candidate for oxidized DNA sensor. An exposure to oxidized ecDNA stimulates a synthesis of reactive oxygen species (ROS that evokes an adaptive response that includes transposition of the homologous loci within the nucleus, polymerization and the formation of the stress fibers of the actin, as well as activation of the ribosomal gene expression, and nuclear translocation of NF-E2 related factor-2 (NRF2 that, in turn, mediates induction of phase II detoxifying and antioxidant enzymes. In conclusion, the oxidized DNA is a stress signal released in response to oxidative stress in the cultured cells and, possibly, in the human body; in particular, it might contribute to systemic abscopal effects of localized irradiation treatments.

  12. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome...

  13. Oxidized DNA induces an adaptive response in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V., E-mail: svet.kostyuk@gmail.com [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Tabakov, Viacheslav J.; Chestkov, Valerij V.; Konkova, Marina S.; Glebova, Kristina V.; Baydakova, Galina V.; Ershova, Elizaveta S.; Izhevskaya, Vera L. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha, E-mail: abaranov@gmu.edu [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2013-07-15

    Highlights: • We describe the effects of gDNAOX on human fibroblasts cultivated in serum withdrawal conditions. • gDNAOX evokes an adaptive response in human fibroblasts. • gDNAOX increases the survival rates in serum starving cell populations. • gDNAOX enhances the survival rates in cell populations irradiated at 1.2 Gy dose. • gDNAOX up-regulates NRF2 and inhibits NF-kappaB-signaling. - Abstract: Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA{sup OX}. The levels of cfDNA{sup OX} are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by H{sub 2}O{sub 2}in vitro (gDNA{sup OX}) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA{sup OX} on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA{sup OX} evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2 Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA{sup OX} leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of PSNA, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA{sup OX} and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA{sup OX} inhibits NF-κB signaling. gDNA{sup OX} is a model for oxidized cfDNA{sup OX} that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA

  14. DNA Aptamers in the Diagnosis and Treatment of Human Diseases

    Directory of Open Access Journals (Sweden)

    Qinchang Zhu

    2015-11-01

    Full Text Available Aptamers have a promising role in the field of life science and have been extensively researched for application as analytical tools, therapeutic agents and as vehicles for targeted drug delivery. Compared with RNA aptamers, DNA aptamers have inherent advantages in stability and facility of generation and synthesis. To better understand the specific potential of DNA aptamers, an overview of the progress in the generation and application of DNA aptamers in human disease diagnosis and therapy are presented in this review. Special attention is given to researches that are relatively close to practical application. DNA aptamers are expected to have great potential in the diagnosis and treatment of human diseases.

  15. O6-Methylguanine-DNA methyltransferase protein expression by immunohistochemistry in brain and non-brain systemic tumours: systematic review and meta-analysis of correlation with methylation-specific polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Ibáñez Javier

    2011-01-01

    Full Text Available Abstract Background The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP the most commonly used for promoter methylation study, while immunohistochemistry (IHC has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. Methods A computer-aided search of MEDLINE (1950-October 2009, EBSCO (1966-October 2009 and EMBASE (1974-October 2009 was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Results Of 254 studies identified as eligible for full-text review, 52 (20.5% met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Conclusions Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably.

  16. Sperm DNA fragmentation affects epigenetic feature in human male pronucleus.

    Science.gov (United States)

    Rajabi, H; Mohseni-Kouchesfehani, H; Eslami-Arshaghi, T; Salehi, M

    2017-03-06

    To evaluate whether the sperm DNA fragmentation affects male pronucleus epigenetic factors, semen analysis was performed and DNA fragmentation was assessed by the method of sperm chromatin structure assay (SCSA). Human-mouse interspecies fertilisation was used to create human male pronucleus. Male pronucleus DNA methylation and H4K12 acetylation were evaluated by immunostaining. Results showed a significant positive correlation between the level of sperm DNA fragmentation and DNA methylation in male pronuclei. In other words, an increase in DNA damage caused an upsurge in DNA methylation. In the case of H4K12 acetylation, no correlation was detected between DNA damage and the level of histone acetylation in the normal group, but results for the group in which male pronuclei were derived from sperm cells with DNA fragmentation, increased DNA damage led to a decreased acetylation level. Sperm DNA fragmentation interferes with the active demethylation process and disrupts the insertion of histones into the male chromatin in the male pronucleus, following fertilisation. © 2017 Blackwell Verlag GmbH.

  17. Human RAD52 Captures and Holds DNA Strands, Increases DNA Flexibility, and Prevents Melting of Duplex DNA: Implications for DNA Recombination

    Directory of Open Access Journals (Sweden)

    Ineke Brouwer

    2017-03-01

    Full Text Available Human RAD52 promotes annealing of complementary single-stranded DNA (ssDNA. In-depth knowledge of RAD52-DNA interaction is required to understand how its activity is integrated in DNA repair processes. Here, we visualize individual fluorescent RAD52 complexes interacting with single DNA molecules. The interaction with ssDNA is rapid, static, and tight, where ssDNA appears to wrap around RAD52 complexes that promote intra-molecular bridging. With double-stranded DNA (dsDNA, interaction is slower, weaker, and often diffusive. Interestingly, force spectroscopy experiments show that RAD52 alters the mechanics dsDNA by enhancing DNA flexibility and increasing DNA contour length, suggesting intercalation. RAD52 binding changes the nature of the overstretching transition of dsDNA and prevents DNA melting, which is advantageous for strand clamping during or after annealing. DNA-bound RAD52 is efficient at capturing ssDNA in trans. Together, these effects may help key steps in DNA repair, such as second-end capture during homologous recombination or strand annealing during RAD51-independent recombination reactions.

  18. Influence of DNA methyltransferase 3b on the expression of STAT1 and C-myc and the methylation of promoters in human hepatocellular carcinolna cell line%DNA甲基转移酶3b对肝癌细胞株中STAT1及其下游基因c-myc的表达和启动子甲基化的影响

    Institute of Scientific and Technical Information of China (English)

    司亚卿; 王佳辰; 王家祥

    2009-01-01

    Objective To invetigate the influence of DNMT3b of SMMC7721 on the expression of STAT1 and c-myc and the methylation of promoters,and further study the functions of DNMT3b.Methods DNMT3b was silenced by siRNA in human hepatocellular carcinoma cell line SMMC-7721.Westem blotting was performed to evaluate the expression of sTAT1 and c-myc.Methylation specific PCR(MSP)was performed to investigate whether the promoters of STAT1 and c-myc were methylated.Results Western blot analysis showed that the expression of DNMT3b and c-myc in DNMT3bsiRNA transfection group was decreased significantly as compared with the control group,and the expression of STATI increased significanfly.There was no significant difierence in the state of methylation between the transfection and control groups.Conclusion DNMT3b may regulate the expression STAT1 and c-myc in SMMC7721 cells,but not change the state of methylation,suggesting DNMT3b may play roles as transcription factors.%目的 探讨DNA甲基转移酶3b(DNMT3b)在人肝癌细胞株(SMMC7721)中对STAT1和c-myc基因表达及其启动子甲基化水平的影响,并进一步探讨DNMT3b的作用.方法 用DNMT3bsiRNA抑制DNMT3b在SMMC7721细胞系中的表达,用Western blot技术检测其转染前后DNMT3b及STAT1和c-myc基因的表达.应用甲基化特异性PCR(MSP)技术分别检测两组细胞中STAT1和c-myc基因启动子区的甲基化状况.结果 转染DNMT3bsiRNA的实验组DNMT3b表达水平明显低于对照组,STAT1基因的表达高于对照组;c-myc基因的表达低于对照组.两组中STAT1和c-myc基因启动子区甲基化状态无差异,均未发生甲基化.结论 DNM33b可以调节STAT1和c-myc基因的表达,而不改变基因的甲基化状态,可能发挥了转录调控因子的作用.

  19. Association of Global DNA Methylation and Global DNA Hydroxymethylation with Metals and Other Exposures in Human Blood DNA Samples

    Science.gov (United States)

    Tang, Wan-yee; Shang, Yan; Umans, Jason G.; Francesconi, Kevin A.; Goessler, Walter; Ledesma, Marta; Leon, Montserrat; Laclaustra, Martin; Pollak, Jonathan; Guallar, Eliseo; Cole, Shelley A.; Fallin, M. Dani; Navas-Acien, Ana

    2014-01-01

    Background: The association between human blood DNA global methylation and global hydroxymethylation has not been evaluated in population-based studies. No studies have evaluated environmental determinants of global DNA hydroxymethylation, including exposure to metals. Objective: We evaluated the association between global DNA methylation and global DNA hydroxymethylation in 48 Strong Heart Study participants for which selected metals had been measured in urine at baseline and DNA was available from 1989–1991 (visit 1) and 1998–1999 (visit 3). Methods: We measured the percentage of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in samples using capture and detection antibodies followed by colorimetric quantification. We explored the association of participant characteristics (i.e., age, adiposity, smoking, and metal exposure) with both global DNA methylation and global DNA hydroxymethylation. Results: The Spearman’s correlation coefficient for 5-mC and 5-hmC levels was 0.32 (p = 0.03) at visit 1 and 0.54 (p Ledesma M, Leon M, Laclaustra M, Pollak J, Guallar E, Cole SA, Fallin MD, Navas-Acien A. 2014. Association of global DNA methylation and global DNA hydroxymethylation with metals and other exposures in human blood DNA samples. Environ Health Perspect 122:946–954; http://dx.doi.org/10.1289/ehp.1306674 PMID:24769358

  20. [DNA image-fluorimetry of individual human chromosomes].

    Science.gov (United States)

    Agafonova, N A; Sakuta, G A; Rozanov, Iu M; Shteĭn, G I; Kudriavtsev, B N

    2013-01-01

    Mucrofluorimetric method for the determination of DNA content in individual human chromosomes has been developed. The method is based on a preliminary identification of chromosomes with Hoechst 33258, followed by staining of the chromosomes with Feulgen reaction using Schiffs reagent type ethidium bromide-SO2, then measuring the fluorescence intensity of the chromosomes using an image analyzer. The method allows to determine the DNA content of individual chromosomes with accuracy up to 4.5 fg. DNA content of individual human chromosomes, their p-and q-arms as well as homologous chromosomes were measured using the developed method. It has been shown that the DNA content in the chromosomes of normal human karyotype is unstable. Fluctuations in the DNA content in some chromosomes can vary 35-40 fg.

  1. DNA methylation profiling of human chromosomes 6, 20 and 22

    OpenAIRE

    Eckhardt, Florian; Lewin, Joern; Cortese, Rene; Rakyan, Vardhman K.; Attwood, John; Burger, Matthias; Burton, John; Cox, Tony V.; Davies, Rob; Down, Thomas A; Haefliger, Carolina; Horton, Roger; Howe, Kevin; Jackson, David K.; Kunde, Jan

    2006-01-01

    DNA methylation constitutes the most stable type of epigenetic modifications modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation reference profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of 6 annotation categories, revealed evolutionary conserved regions to be the predominant sites for differential DNA methyl...

  2. DNA and bone structure preservation in medieval human skeletons.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B

    2015-06-01

    Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified.

  3. Markov chain for estimating human mitochondrial DNA mutation pattern

    Science.gov (United States)

    Vantika, Sandy; Pasaribu, Udjianna S.

    2015-12-01

    The Markov chain was proposed to estimate the human mitochondrial DNA mutation pattern. One DNA sequence was taken randomly from 100 sequences in Genbank. The nucleotide transition matrix and mutation transition matrix were estimated from this sequence. We determined whether the states (mutation/normal) are recurrent or transient. The results showed that both of them are recurrent.

  4. Expressions and clinical significance of DNA methyltransferase 1 in pancreatic carcinoma%DNA甲基转移酶1在胰腺癌组织中的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    张尤历; 徐岷; 高道键; 张玉琦; 高军; 杜奕奇; 龚燕芳; 满晓华; 李兆申

    2010-01-01

    目的 探讨DNA甲基转移酶1(DNMT1)在胰腺癌组织中的表达及其临床意义.方法 收集手术切除的30例胰腺癌组织和配对癌旁组织.采用实时定量PCR法检测DNMT1 mRNA的表达;免疫组织化学法检测DNMT1蛋白的表达;分析胰腺癌组织DNMT1蛋白表达强度与临床病理参数之间的关系.结果 胰腺癌组织中DNMT1 mRNA的表达量为2.32(1.17~5.17),显著高于配对癌旁组织的0.78(0.07~3.14,P<0.05).胰腺癌组织中导管细胞DNMT1蛋白表达阳性率为(54.5±21.2)%,显著高于癌旁组织(10.9±15.0)%的表达阳性率(P<0.01).以胰腺癌导管细胞DNMT1阳性率54.5%为界,分为高表达组(19例)和低表达组(11例).DNMT1表达强度和临床分期(x2=6.897,P=0.029)、淋巴结转移(x2=4.739,P=0.029)、神经浸润与否(x2=5.44,P=0.020)相关,而与年龄、性别、肿瘤位置、肿瘤大小、肿瘤分化、血清CEA和CA19-9浓度无关.结论 胰腺癌组织DNMT1 mRNA和蛋白表达明显增加,DNMT1蛋白表达强度与胰腺癌的侵袭力、淋巴结转移和神经浸润相关.%Objective To investigate the expressions of DNA methyltransferase 1 (DNMT1) in pancreatic carcinoma and its clinical significance.Methods 30 samples of pancreatic cancer tissues and paired para-cancerous tissues were collected from patients who underwent curative pancreatectomy.The levels of DNMT1 mRNA were detected by real-time RT-PCR.Expressions of DNMT1 protein were detected by streptavidin peroxidase immunohistochemistry.The relationships between expression of DNMT1 and clinicopathological findings were analyzed.Results The value of relative quantification (RQ) of DNMT1 mRNA in human pancreatic cancer tissues was 2.32 (1.17 ~ 5.17 ), which was significant higher than 0.78 (0.07 ~3.14) in para-cancerous tissues(P <0.05).The index of expression of DNMT1 protein in human pancreatic cancer tissues was (54.5 ±21.2)% ,which was significant higher than( 10.9 ± 15.0)% in paracancerous tissues (P < 0

  5. Effects of Captan on DNA and DNA metabolic processes in human diploid fibroblasts.

    Science.gov (United States)

    Snyder, R D

    1992-01-01

    The fungicide Captan has been examined for its effects on DNA and DNA processing in order to better understand the genotoxicity associated with this agent. Captan treatment resulted in production of DNA single strand breaks and DNA-protein cross-links and elicited an excision repair response in human diploid fibroblasts. Captan was also shown to inhibit cellular DNA synthesis and to form stable adducts in herring sperm and human cellular DNA. Misincorporation of nucleotides into Captan-treated synthetic DNA templates was significantly elevated in an in vitro assay using E. coli DNA polymerase I, suggesting that DNA adduct formation by Captan could have mutagenic consequences. In sum, these studies demonstrate that Captan is capable of interacting with DNA at a number of levels and that these interactions could provide the basis for Captan's genotoxicity. The extreme cytotoxicity of this fungicide, however, could be due to other cellular effects since at the IC50 for cell killing, approximately 0.8 microM, none of the above genotoxic events could be detected by the methods employed.

  6. Bisdemethoxycurcumin induces DNA damage and inhibits DNA repair associated protein expressions in NCI-H460 human lung cancer cells.

    Science.gov (United States)

    Yu, Chien-Chih; Yang, Su-Tso; Huang, Wen-Wen; Peng, Shu-Fen; Huang, An-Cheng; Tang, Nou-Ying; Liu, Hsin-Chung; Yang, Mei-Due; Lai, Kuang-Chi; Chung, Jing-Gung

    2016-12-01

    Nonsmall cell lung carcinoma (NSCLC) is a devastating primary lung tumor resistant to conventional therapies. Bisdemethoxycurcumin (BDMC) is one of curcumin derivate from Turmeric and has been shown to induce NSCLC cell death. Although there is one report to show BDMC induced DNA double strand breaks, however, no available information to show BDMC induced DNA damage action with inhibited DNA repair protein in lung cancer cells in detail. In this study, we tested BDMC-induced DNA damage and condensation in NCI-H460 cells by using Comet assay and DAPI staining examinations, respectively and we found BDMC induced DNA damage and condension. Western blotting was used to examine the effects of BDMC on protein expression associated with DNA damage and repair and results indicated that BDMC suppressed the protein levels associated with DNA damage and repair, such as 14-3-3σ (an important checkpoint keeper of DDR), O6-methylguanine-DNA methyltransferase, DNA repair proteins breast cancer 1, early onset, mediator of DNA damage checkpoint 1 but activate phosphorylated p53 and p-H2A.X (phospho Ser140) in NCI-H460 cells. Confocal laser systems microscopy was used for examining the protein translocation and results show that BDMC increased the translocation of p-p53 and p-H2A.X (phospho Ser140) from cytosol to nuclei in NCI-H460 cells. In conclusion, BDMC induced DNA damage and condension and affect DNA repair proteins in NCI-H460 cells in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1859-1868, 2016. © 2015 Wiley Periodicals, Inc.

  7. Cerebellar oxidative DNA damage and altered DNA methylation in the BTBR T+tf/J mouse model of autism and similarities with human post mortem cerebellum.

    Directory of Open Access Journals (Sweden)

    Svitlana Shpyleva

    Full Text Available The molecular pathogenesis of autism is complex and involves numerous genomic, epigenomic, proteomic, metabolic, and physiological alterations. Elucidating and understanding the molecular processes underlying the pathogenesis of autism is critical for effective clinical management and prevention of this disorder. The goal of this study is to investigate key molecular alterations postulated to play a role in autism and their role in the pathophysiology of autism. In this study we demonstrate that DNA isolated from the cerebellum of BTBR T+tf/J mice, a relevant mouse model of autism, and from human post-mortem cerebellum of individuals with autism, are both characterized by an increased levels of 8-oxo-7-hydrodeoxyguanosine (8-oxodG, 5-methylcytosine (5mC, and 5-hydroxymethylcytosine (5hmC. The increase in 8-oxodG and 5mC content was associated with a markedly reduced expression of the 8-oxoguanine DNA-glycosylase 1 (Ogg1 and increased expression of de novo DNA methyltransferases 3a and 3b (Dnmt3a and Dnmt3b. Interestingly, a rise in the level of 5hmC occurred without changes in the expression of ten-eleven translocation expression 1 (Tet1 and Tet2 genes, but significantly correlated with the presence of 8-oxodG in DNA. This finding and similar elevation in 8-oxodG in cerebellum of individuals with autism and in the BTBR T+tf/J mouse model warrant future large-scale studies to specifically address the role of OGG1 alterations in pathogenesis of autism.

  8. Cerebellar oxidative DNA damage and altered DNA methylation in the BTBR T+tf/J mouse model of autism and similarities with human post mortem cerebellum.

    Science.gov (United States)

    Shpyleva, Svitlana; Ivanovsky, Samuil; de Conti, Aline; Melnyk, Stepan; Tryndyak, Volodymyr; Beland, Frederick A; James, S Jill; Pogribny, Igor P

    2014-01-01

    The molecular pathogenesis of autism is complex and involves numerous genomic, epigenomic, proteomic, metabolic, and physiological alterations. Elucidating and understanding the molecular processes underlying the pathogenesis of autism is critical for effective clinical management and prevention of this disorder. The goal of this study is to investigate key molecular alterations postulated to play a role in autism and their role in the pathophysiology of autism. In this study we demonstrate that DNA isolated from the cerebellum of BTBR T+tf/J mice, a relevant mouse model of autism, and from human post-mortem cerebellum of individuals with autism, are both characterized by an increased levels of 8-oxo-7-hydrodeoxyguanosine (8-oxodG), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC). The increase in 8-oxodG and 5mC content was associated with a markedly reduced expression of the 8-oxoguanine DNA-glycosylase 1 (Ogg1) and increased expression of de novo DNA methyltransferases 3a and 3b (Dnmt3a and Dnmt3b). Interestingly, a rise in the level of 5hmC occurred without changes in the expression of ten-eleven translocation expression 1 (Tet1) and Tet2 genes, but significantly correlated with the presence of 8-oxodG in DNA. This finding and similar elevation in 8-oxodG in cerebellum of individuals with autism and in the BTBR T+tf/J mouse model warrant future large-scale studies to specifically address the role of OGG1 alterations in pathogenesis of autism.

  9. Expression of DNA-dependent protein kinase in human granulocytes

    Institute of Scientific and Technical Information of China (English)

    Annahita SALLMYR; Anna MILLER; Aida GABDOULKHAKOVA; Valentina SAFRONOVA; Gunnel HENRIKSSON; Anders BREDBERG

    2004-01-01

    Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNAPK in P MN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration.In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.

  10. Human papillomavirus DNA in plasma of patients with cervical cancer

    Directory of Open Access Journals (Sweden)

    Voravud Narin

    2001-03-01

    Full Text Available Abstract Background Human papillomavirus (HPV is a crucial etiological factor for cervical cancer (CC development. From a diagnostic view-point, the consistent presence of HPV in CC allows the viral DNA to be used as a genetic marker. The aims of this study were to evaluate the presence, physical status and clinical significant of HPV DNA in circulation of CC patients. Results Whereas 6 out of 50 (12% HPV positive CC patients revealed plasma HPV DNA, it was detected in none of 20 normal controls or 13 HPV negative CC cases. The plasma DNA exhibited an HPV type identical to the HPV in the primary tumors and the DNA from both sources was integrated into host genome. Interestingly, several findings suggested an association between plasma HPV DNA and metastasis. First, three of the HPV DNA positive cases were CC patients with clinical stage IVB or recurrence with distance metastases (P = 0.001, RR = 15.67. Second, the amount of plasma HPV DNA from metastatic patients to be three times more than three other patients without metastases. Finally, the later cases had tendency to develop recurrence distant metastases within one year after complete treatment when compared with other HPV associated CC patients with the same stage but without the present of plasma HPV DNA. Conclusions The plasma HPV DNA originated from the CC, was associated with metastasis and could be used as a marker representing the circulating free CC DNA.

  11. Role of DNA methylation in expression control of the IKZF3-GSDMA region in human epithelial cells.

    Science.gov (United States)

    Moussette, Sanny; Al Tuwaijri, Abeer; Kohan-Ghadr, Hamid-Reza; Elzein, Samar; Farias, Raquel; Bérubé, Julie; Ho, Bianca; Laprise, Catherine; Goodyer, Cynthia G; Rousseau, Simon; Naumova, Anna K

    2017-01-01

    Chromosomal region 17q12-q21 is associated with asthma and harbors regulatory polymorphisms that influence expression levels of all five protein-coding genes in the region: IKAROS family zinc finger 3 (Aiolos) (IKZF3), zona pellucida binding protein 2 (ZPBP2), ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3), and gasdermins A and B (GSDMA, GSDMB). Furthermore, DNA methylation in this region has been implicated as a potential modifier of the genetic risk of asthma development. To further characterize the effect of DNA methylation, we examined the impact of treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) that causes DNA demethylation, on expression and promoter methylation of the five 17q12-q21 genes in the human airway epithelium cell line NuLi-1, embryonic kidney epithelium cell line 293T and human adenocarcinoma cell line MCF-7. 5-aza-dC treatment led to upregulation of expression of GSDMA in all three cell lines. ZPBP2 was upregulated in NuLi-1, but remained repressed in 293T and MCF-7 cells, whereas ORMDL3 was upregulated in 293T and MCF-7 cells, but not NuLi-1. Upregulation of ZPBP2 and GSDMA was accompanied by a decrease in promoter methylation. Moreover, 5-aza-dC treatment modified allelic expression of ZPBP2 and ORMDL3 suggesting that different alleles may respond differently to treatment. We also identified a polymorphic CTCF-binding site in intron 1 of ORMDL3 carrying a CG SNP rs4065275 and determined its methylation level. The site's methylation was unaffected by 5-aza-dC treatment in NuLi-1 cells. We conclude that modest changes (8-13%) in promoter methylation levels of ZPBP2 and GSDMA may cause substantial changes in RNA levels and that allelic expression of ZPBP2 and ORMDL3 is mediated by DNA methylation.

  12. Human papillomavirus DNA in plasma of patients with HPV16 DNA-positive uterine cervical cancer.

    OpenAIRE

    Shimada, Takako; Yamaguchi, Naohiro; Nishida, Noriyuki; Yamasaki, Kentaro; Miura, Kiyonori; Katamine, Shigeru; Masuzaki, Hideaki

    2010-01-01

    OBJECTIVES: The squamous cell carcinoma antigen is considered the most accurate serologic tumor marker for uterine cervical carcinoma. However, serum squamous cell carcinoma antigen levels were found to correlate significantly with clinical severity of atopic dermatitis and chronic renal failure. The present study was conducted in patients with human papillomavirus 16 DNA-positive uterine cervical cancer to determine the plasma level of human papillomavirus 16 DNA and the diagnostic values of...

  13. A DNA methylation fingerprint of 1628 human samples

    Science.gov (United States)

    Fernandez, Agustin F.; Assenov, Yassen; Martin-Subero, Jose Ignacio; Balint, Balazs; Siebert, Reiner; Taniguchi, Hiroaki; Yamamoto, Hiroyuki; Hidalgo, Manuel; Tan, Aik-Choon; Galm, Oliver; Ferrer, Isidre; Sanchez-Cespedes, Montse; Villanueva, Alberto; Carmona, Javier; Sanchez-Mut, Jose V.; Berdasco, Maria; Moreno, Victor; Capella, Gabriel; Monk, David; Ballestar, Esteban; Ropero, Santiago; Martinez, Ramon; Sanchez-Carbayo, Marta; Prosper, Felipe; Agirre, Xabier; Fraga, Mario F.; Graña, Osvaldo; Perez-Jurado, Luis; Mora, Jaume; Puig, Susana; Prat, Jaime; Badimon, Lina; Puca, Annibale A.; Meltzer, Stephen J.; Lengauer, Thomas; Bridgewater, John; Bock, Christoph; Esteller, Manel

    2012-01-01

    Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns revealed show this epigenetic mark to be critical in tissue-type definition and stemness, particularly around transcription start sites that are not within a CpG island. For disease, the generated DNA methylation fingerprints show that, during tumorigenesis, human cancer cells underwent a progressive gain of promoter CpG-island hypermethylation and a loss of CpG methylation in non-CpG-island promoters. Although transformed cells are those in which DNA methylation disruption is more obvious, we observed that other common human diseases, such as neurological and autoimmune disorders, had their own distinct DNA methylation profiles. Most importantly, we provide proof of principle that the DNA methylation fingerprints obtained might be useful for translational purposes by showing that we are able to identify the tumor type origin of cancers of unknown primary origin (CUPs). Thus, the DNA methylation patterns identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing higher-resolution DNA methylation maps and provide important clues concerning the contribution of CpG methylation to tissue identity and its changes in the most prevalent human diseases. PMID:21613409

  14. DNA methyltransferase 1/3a overexpression in sporadic breast cancer is associated with reduced expression of estrogen receptor-alpha/breast cancer susceptibility gene 1 and poor prognosis.

    Science.gov (United States)

    Yu, Zhaojin; Xiao, Qinghuan; Zhao, Lin; Ren, Jie; Bai, Xuefeng; Sun, Mingli; Wu, Huizhe; Liu, Xiaojian; Song, Zhiguo; Yan, Yuanyuan; Mi, Xiaoyi; Wang, Enhua; Jin, Feng; Wei, Minjie

    2015-09-01

    DNA methyltransferases (DNMTs), including DNMT1, 3a, and 3b, play an important role in the progression of many malignant tumors. However, it remains unclear whether expression of DNMTs is associated with the development of breast cancer. This study aimed to explore the clinical significance of DNMT proteins in sporadic breast cancer. We investigated the expression of DNMT1, 3a, and 3b in 256 breast cancer and 36 breast fibroadenoma, using immunohistochemistry. The expression of DNMT1 and 3a was significantly higher in breast cancer than in fibroadenoma. In breast cancer, the expression of DNMT1 was significantly correlated with lymph node metastasis (P = 0.020), and the expression of DNMT3a and 3b was significantly correlated with advanced clinical stages (P = 0.046 and 0.012, respectively). Overexpression of DNMT1/3a was correlated with promoter hypermethylation and reduced expression of ERα and BRCA1. The expression levels of DNMT1 or DNMT3a were associated with a significantly shorter DFS or OS in a subgroup of breast cancer patients (patients with the age ≤50 years old, ERα-negative status, or HER2-postive status). The expression of DNMT1 or a combined expression of DNMT1 and 3a was associated with poor prognosis in patients who received chemotherapy and endocrine therapy, but not in patients who received chemotherapy alone. These findings suggest that DNMT1 and 3a may be involved in the progression and prognosis of sporadic breast cancer.

  15. Effects of Sodium Arsenite and Sodium Arsenate on Expression of DNA and Arsenic Methyltransferases in Rats%不同价态砷对DNA和砷甲基转移酶的影响

    Institute of Scientific and Technical Information of China (English)

    吴军; 师喆; 郑玉建; 刘冬梅; 姜平

    2012-01-01

    Objective To investigate the influence on arsenic methyltransferase (As3MT) and DNA methyltransferase (DNMT1, DNMT3A, DNMT3B) mRNA expression in rats liver treated with sodium arsenite and sodium arsenate and seek for the difference of DNA and arsenic methylation and both' s correlation between sodium arsenite and sodium arsenate (iAs3+ and iAs5+). Methods Different valence state and doses of arsenic were administrated through drinking water to Wistar rats,male rats were divided into seven group randomly,five in each group,control group (deionized water),sodium arsenite low dose group (1/45 LD50,2.33 mg/kg),moderate dose group (1/15 LD50,6.67 mg/kg),high dose group (1/5 LD50,20.00 mg/kg) administrated with different concentrations of sodium arsenite; sodium arsenate low dose group (1/45 LD50,2.33 mg/kg), moderate dose group (1/15 LD50,6.67 mg/kg),high dose group (1/5 LD50,20.00 mg/kg) administrated with different concentrations of sodium arsenate. The reagents were given through drinking water, for 90 consecutive days. At the end of the third month, the rats were sacrificed to collect the liver,and the expression of DNA and arsenic methyltransferase were detected by real-time PCR in liver genome mRNA. Results The difference of As3MT and DNA methyltransferase mRNA expression in every group was significant (P<0.05) compared with the control group; the expression of As3MT mRNA increased and the expression of DNMT3A and DNMT3B mRNA were decreased in arsenic the exposed group; the expression of DNMT1 mRNA increased in high and low iAs3+ exposed group and in high iAs5+ exposed group,the expression of DNMT1 mRNA decreased in moderate iAs3+ exposed group and in low iAs5+ exposed group. With the increasing dose of iAs3+,As3MT mRNA expression showed an increasing trend and DNMT3A and DNMT3B mRNA expression showed a decresing trend in iAs3+ group; with the increase of iAs5+ dose,As3MT mRNA expression showed a decreasing trend and DNMT3A,DNMT3B and DNMT1 mRNA expression

  16. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons.

    Directory of Open Access Journals (Sweden)

    Kimberly D Siegmund

    Full Text Available The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5' CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts--defined by chronic neurodegeneration (Alzheimer's or lack thereof (schizophrenia--were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase.

  17. Dental DNA fingerprinting in identification of human remains

    Directory of Open Access Journals (Sweden)

    K L Girish

    2010-01-01

    Full Text Available The recent advances in molecular biology have revolutionized all aspects of dentistry. DNA, the language of life yields information beyond our imagination, both in health or disease. DNA fingerprinting is a tool used to unravel all the mysteries associated with the oral cavity and its manifestations during diseased conditions. It is being increasingly used in analyzing various scenarios related to forensic science. The technical advances in molecular biology have propelled the analysis of the DNA into routine usage in crime laboratories for rapid and early diagnosis. DNA is an excellent means for identification of unidentified human remains. As dental pulp is surrounded by dentin and enamel, which forms dental armor, it offers the best source of DNA for reliable genetic type in forensic science. This paper summarizes the recent literature on use of this technique in identification of unidentified human remains.

  18. Rapid extraction and preservation of genomic DNA from human samples.

    Science.gov (United States)

    Kalyanasundaram, D; Kim, J-H; Yeo, W-H; Oh, K; Lee, K-H; Kim, M-H; Ryew, S-M; Ahn, S-G; Gao, D; Cangelosi, G A; Chung, J-H

    2013-02-01

    Simple and rapid extraction of human genomic DNA remains a bottleneck for genome analysis and disease diagnosis. Current methods using microfilters require cumbersome, multiple handling steps in part because salt conditions must be controlled for attraction and elution of DNA in porous silica. We report a novel extraction method of human genomic DNA from buccal swab and saliva samples. DNA is attracted onto a gold-coated microchip by an electric field and capillary action while the captured DNA is eluted by thermal heating at 70 °C. A prototype device was designed to handle four microchips, and a compatible protocol was developed. The extracted DNA using microchips was characterized by qPCR for different sample volumes, using different lengths of PCR amplicon, and nuclear and mitochondrial genes. In comparison with a commercial kit, an equivalent yield of DNA extraction was achieved with fewer steps. Room-temperature preservation for 1 month was demonstrated for captured DNA, facilitating straightforward collection, delivery, and handling of genomic DNA in an environment-friendly protocol.

  19. Princess takamatsu symposium on DNA repair and human cancers.

    Science.gov (United States)

    Loeb, Lawrence A; Nishimura, Susumu

    2010-06-01

    The 40th International Symposium of the Princess Takamatsu Cancer Research Fund, entitled "DNA Repair and Human Cancers," was held on November 10-12, 2009 at Hotel Grand Palace, Tokyo, Japan. The meeting focused on the role of DNA repair in preventing mutations by endogenous and exogenous DNA damage and increasing the efficacy of chemotherapeutic agents by interfering with DNA repair. The 14 presentations by the speakers from the United States, four from the United Kingdom, one each from Italy, The Netherlands, and France, and 13 from Japan, covered most aspects of DNA repair, spanning DNA damage, molecular structures of repair enzymes, and clinical studies on inhibition of DNA repair processes. Extensive time was reserved for discussions with the active participation of the 150 invited Japanese scientists. The choice of a symposium on DNA repair in human cancers resulted in part from the excellent basic and clinical studies that have been carried out for many years in Japan, and the general lack of recognition versus the importance of DNA repair in understanding carcinogenesis. Copyright 2010 AACR.

  20. Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts.

    Science.gov (United States)

    Palsamy, Periyasamy; Bidasee, Keshore R; Ayaki, Masahiko; Augusteyn, Robert C; Chan, Jefferson Y; Shinohara, Toshimichi

    2014-07-01

    Age-related cataracts are a leading cause of blindness. Previously, we have demonstrated the association of the unfolded protein response with various cataractogenic stressors. However, DNA methylation alterations leading to suppression of lenticular antioxidant protection remains unclear. Here, we report the methylglyoxal-mediated sequential events responsible for Keap1 promoter DNA demethylation in human lens epithelial cells, because Keap1 is a negative regulatory protein that regulates the Nrf2 antioxidant protein. Methylglyoxal induces endoplasmic reticulum stress and activates the unfolded protein response leading to overproduction of reactive oxygen species before human lens epithelial cell death. Methylglyoxal also suppresses Nrf2 and DNA methyltransferases but activates the DNA demethylation pathway enzyme TET1. Bisulfite genomic DNA sequencing confirms the methylglyoxal-mediated Keap1 promoter DNA demethylation leading to overexpression of Keap1 mRNA and protein. Similarly, bisulfite genomic DNA sequencing shows that human clear lenses (n = 15) slowly lose 5-methylcytosine in the Keap1 promoter throughout life, at a rate of 1% per year. By contrast, diabetic cataractous lenses (n = 21) lose an average of 90% of the 5-methylcytosine regardless of age. Overexpressed Keap1 protein is responsible for decreasing Nrf2 by proteasomal degradation, thereby suppressing Nrf2-dependent stress protection. This study demonstrates for the first time the associations of unfolded protein response activation, Nrf2-dependent antioxidant system failure, and loss of Keap1 promoter methylation because of altered active and passive DNA demethylation pathway enzymes in human lens epithelial cells by methylglyoxal. As an outcome, the cellular redox balance is altered toward lens oxidation and cataract formation.

  1. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase.

    Science.gov (United States)

    Ticak, Tomislav; Kountz, Duncan J; Girosky, Kimberly E; Krzycki, Joseph A; Ferguson, Donald J

    2014-10-28

    COG5598 comprises a large number of proteins related to MttB, the trimethylamine:corrinoid methyltransferase. MttB has a genetically encoded pyrrolysine residue proposed essential for catalysis. MttB is the only known trimethylamine methyltransferase, yet the great majority of members of COG5598 lack pyrrolysine, leaving the activity of these proteins an open question. Here, we describe the function of one of the nonpyrrolysine members of this large protein family. Three nonpyrrolysine MttB homologs are encoded in Desulfitobacterium hafniense, a Gram-positive strict anaerobe present in both the environment and human intestine. D. hafniense was found capable of growth on glycine betaine with electron acceptors such as nitrate or fumarate, producing dimethylglycine and CO2 as products. Examination of the genome revealed genes for tetrahydrofolate-linked oxidation of a methyl group originating from a methylated corrinoid protein, but no obvious means to carry out corrinoid methylation with glycine betaine. DSY3156, encoding one of the nonpyrrolysine MttB homologs, was up-regulated during growth on glycine betaine. The recombinant DSY3156 protein converts glycine betaine and cob(I)alamin to dimethylglycine and methylcobalamin. To our knowledge, DSY3156 is the first glycine betaine:corrinoid methyltransferase described, and a designation of MtgB is proposed. In addition, DSY3157, an adjacently encoded protein, was shown to be a methylcobalamin:tetrahydrofolate methyltransferase and is designated MtgA. Homologs of MtgB are widely distributed, especially in marine bacterioplankton and nitrogen-fixing plant symbionts. They are also found in multiple members of the human microbiome, and may play a beneficial role in trimethylamine homeostasis, which in recent years has been directly tied to human cardiovascular health.

  2. The linguistics of DNA. [HUMAN GENOME PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Searls, D.B. (Univ. of Pennsylvania, Philadelphia (United States))

    Discusses the structure of DNA and RNA and the mechanisms of transcription and translation in relation to the grammatical rules of language. The ultimate purpose is to design a grammar which can be used to write flexible, adaptive computer programs for searching nucleotide sequences, with the goal of being able to search large sequences for gene-coding regions. 11 refs., 16 figs.

  3. The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer

    Science.gov (United States)

    Fernandez, Agustin F.; Rosales, Cecilia; Lopez-Nieva, Pilar; Graña, Osvaldo; Ballestar, Esteban; Ropero, Santiago; Espada, Jesus; Melo, Sonia A.; Lujambio, Amaia; Fraga, Mario F.; Pino, Irene; Javierre, Biola; Carmona, Francisco J.; Acquadro, Francesco; Steenbergen, Renske D.M.; Snijders, Peter J.F.; Meijer, Chris J.; Pineau, Pascal; Dejean, Anne; Lloveras, Belen; Capella, Gabriel; Quer, Josep; Buti, Maria; Esteban, Juan-Ignacio; Allende, Helena; Rodriguez-Frias, Francisco; Castellsague, Xavier; Minarovits, Janos; Ponce, Jordi; Capello, Daniela; Gaidano, Gianluca; Cigudosa, Juan Cruz; Gomez-Lopez, Gonzalo; Pisano, David G.; Valencia, Alfonso; Piris, Miguel Angel; Bosch, Francesc X.; Cahir-McFarland, Ellen; Kieff, Elliott; Esteller, Manel

    2009-01-01

    The natural history of cancers associated with virus exposure is intriguing, since only a minority of human tissues infected with these viruses inevitably progress to cancer. However, the molecular reasons why the infection is controlled or instead progresses to subsequent stages of tumorigenesis are largely unknown. In this article, we provide the first complete DNA methylomes of double-stranded DNA viruses associated with human cancer that might provide important clues to help us understand the described process. Using bisulfite genomic sequencing of multiple clones, we have obtained the DNA methylation status of every CpG dinucleotide in the genome of the Human Papilloma Viruses 16 and 18 and Human Hepatitis B Virus, and in all the transcription start sites of the Epstein-Barr Virus. These viruses are associated with infectious diseases (such as hepatitis B and infectious mononucleosis) and the development of human tumors (cervical, hepatic, and nasopharyngeal cancers, and lymphoma), and are responsible for 1 million deaths worldwide every year. The DNA methylomes presented provide evidence of the dynamic nature of the epigenome in contrast to the genome. We observed that the DNA methylome of these viruses evolves from an unmethylated to a highly methylated genome in association with the progression of the disease, from asymptomatic healthy carriers, through chronically infected tissues and pre-malignant lesions, to the full-blown invasive tumor. The observed DNA methylation changes have a major functional impact on the biological behavior of the viruses. PMID:19208682

  4. Cloning and expression analysis of an o-methyltransferase (OMT) gene from Chinese shrimp, Fenneropenaeus chinensis.

    Science.gov (United States)

    Li, Dian-Xiang; Du, Xin-Jun; Zhao, Xiao-Fan; Wang, Jin-Xing

    2006-09-01

    O-methyltransferase (OMT) is ubiquitously present in diverse organisms and plays an important regulatory role in plant and animal growth, development, reproduction and defence and has also been implicated in human emotion and disease. A putative o-methyltransferase (OMT) gene has been cloned from the haemocytes of bacteria-infected Chinese shrimp (Fenneropenaeus chinensis) by suppression subtractive hybridisation (SSH) coupled with the SMART cDNA method. The isolated 944 bp full-length cDNA contains a single 666bp open reading frame (ORF) encoding a putative OMT protein of 221 amino acids. The predicted protein has a molecular weight of 24,572.06 Da and a pI of 5.27 as well as ten phosphorylation sites. Northern blot and in situ hybridisation analyses demonstrated that the OMT transcripts were constitutively expressed in tissue of shrimp challenged by bacterial infection and in unchallenged shrimp tissue. Constitutive OMT transcript was found in areas such as haemocytes, heart, hepatopancreas, stomach, gill, intestine and ovary. However, the OMT transcripts were upregulated in hepatopancreas and stomach in challenged shrimp.

  5. Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma

    OpenAIRE

    Ostler, Kelly R.; Yang, Qiwei; Looney, Timothy J.; Li ZHANG; Vasanthakumar, Aparna; Tian, Yufeng; Kocherginsky, Masha; Stacey L. Raimondi; DeMaio, Jessica G.; Salwen, Helen R.; Gu, Song; Chlenski, Alexandre; Naranjo, Arlene; Gill, Amy; Peddinti, Radhika

    2012-01-01

    Epigenetic changes in pediatric neuroblastoma may contribute to the aggressive pathophysiology of this disease, but little is known about the basis for such changes. In this study, we examined a role for the DNA methyltransferase DNMT3B, in particular, the truncated isoform DNMT3B7 which is generated frequently in cancer. To investigate if aberrant DNMT3B transcripts alter DNA methylation, gene expression, and phenotypic character in neuroblastoma, we measured DNMT3B expression in primary tum...

  6. Nonneutral mitochondrial DNA variation in humans and chimpanzees

    Energy Technology Data Exchange (ETDEWEB)

    Nachman, M.W.; Aquadro, C.F. [Cornell Univ., Ithaca, NY (United States); Brown, W.M. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others

    1996-03-01

    We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions. We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases. 59 refs., 2 figs., 8 tabs.

  7. Effects of incense smoke on human lymphocyte DNA.

    Science.gov (United States)

    Szeto, Yim Tong; Sok Wa Leong, Kosca; Keong Lam, Kason; Min Min Hong, Cynthia; Kai Mui Lee, Daphne; Teng Fun Chan, Yui; Benzie, Iris F F

    2009-01-01

    Incense burning is common in Southeast Asia, where it is a traditional and ceremonial practice in deity worship and paying respect to ancestors. However, incense emissions are an important source of indoor air pollution in Asia, and may induce health problems to those exposed. In this in vitro study the effects of incense emissions on human DNA were investigated using the comet assay. Particulates in smoke from six kinds of incense were trapped in saline or ethanol and human lymphocytes were exposed under controlled conditions. Results showed that DNA damage, including strand breaks, was induced by both aqueous and ethanolic extracts of two samples. The ethanolic extract of one sample induced DNA damage, while no significant DNA damage was found in the remaining three samples. The mechanisms underlying DNA damage induced by incense emissions were also investigated. Catalase (CAT), sodium azide, and superoxide dismutase (SOD) were co-incubated with extract, which exerted significant DNA damaging effects. Results showed that CAT with or without SOD diminished DNA damage, whereas sodium azide did not seem able to reduce DNA damage. Data indicate there are potential adverse health effects of such exposure, particularly for temple workers.

  8. Hepatitis B virus X protein promotes hypermethylation of p16(INK4A) promoter through upregulation of DNA methyltransferases in hepatocarcinogenesis.

    Science.gov (United States)

    Zhu, Ya-Zhen; Zhu, Rong; Shi, Lian-Guo; Mao, Yi; Zheng, Guang-Juan; Chen, Qi; Zhu, Hong-Guang

    2010-12-01

    The hepatitis B virus×protein (HBx) has been implicated as a potential trigger of the epigenetic deregulation of some genes, but the underlying mechanism remains unknown. The aim of this study is to identify underlying mechanisms involved in HBx-mediated epigenetic modification in the process of HBx induced p16(INK4A) promoter hypermethylation. Liver cell lines were stably transfected with HBx-expressing vector. The methylation status of p16(INK4A) was examined by methyl-specific polymerase chain reaction (MSP) and bisulfite sequencing. Reverse transcription and real-time polymerase chain reaction (real-time RT-PCR), Western blot and immunohistochemistry were used to analyze the expression of HBx, HBx-mediated DNA methylation abnormalities and p16(INK4A). Some cases of HCC and corresponding noncancerous liver tissues were studied. HBx up-regulates DNMT1 and DNMT3A expression in both mRNA level and protein level, and HBx represses p16(INK4A) expression through inducing hypermethylation of p16(INK4A) promoter. Moreover, HBx induces hypermethylation of p16(INK4A) promoter through DNMT1 and DNMT3A. Regulation of DNMT1 and DNMT3A by HBx promoted hypermethylation of p16(INK4A) promoter region. HBx-DNMTs-p16(INK4A) promoter hypermethylation may suggest a mechanism for tumorigenesis during hepatocarcinogenesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4.

    Science.gov (United States)

    Wu, Peï-Yu; Frit, Philippe; Meesala, SriLakshmi; Dauvillier, Stéphanie; Modesti, Mauro; Andres, Sara N; Huang, Ying; Sekiguchi, JoAnn; Calsou, Patrick; Salles, Bernard; Junop, Murray S

    2009-06-01

    Nonhomologous end-joining represents the major pathway used by human cells to repair DNA double-strand breaks. It relies on the XRCC4/DNA ligase IV complex to reseal DNA strands. Here we report the high-resolution crystal structure of human XRCC4 bound to the carboxy-terminal tandem BRCT repeat of DNA ligase IV. The structure differs from the homologous Saccharomyces cerevisiae complex and reveals an extensive DNA ligase IV binding interface formed by a helix-loop-helix structure within the inter-BRCT linker region, as well as significant interactions involving the second BRCT domain, which induces a kink in the tail region of XRCC4. We further demonstrate that interaction with the second BRCT domain of DNA ligase IV is necessary for stable binding to XRCC4 in cells, as well as to achieve efficient dominant-negative effects resulting in radiosensitization after ectopic overexpression of DNA ligase IV fragments in human fibroblasts. Together our findings provide unanticipated insight for understanding the physical and functional architecture of the nonhomologous end-joining ligation complex.

  10. Structural and Functional Interaction Between the Human DNA Repair Proteins DNA ligase IV and XRCC4

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P.; Meesala, S; Dauvillier, S; Modesti, M; Andres, S; Huang, Y; Sekiguchi, J; Calsou, P; Salles, B; Junop, M

    2009-01-01

    Nonhomologous end-joining represents the major pathway used by human cells to repair DNA double-strand breaks. It relies on the XRCC4/DNA ligase IV complex to reseal DNA strands. Here we report the high-resolution crystal structure of human XRCC4 bound to the carboxy-terminal tandem BRCT repeat of DNA ligase IV. The structure differs from the homologous Saccharomyces cerevisiae complex and reveals an extensive DNA ligase IV binding interface formed by a helix-loop-helix structure within the inter-BRCT linker region, as well as significant interactions involving the second BRCT domain, which induces a kink in the tail region of XRCC4. We further demonstrate that interaction with the second BRCT domain of DNA ligase IV is necessary for stable binding to XRCC4 in cells, as well as to achieve efficient dominant-negative effects resulting in radiosensitization after ectopic overexpression of DNA ligase IV fragments in human fibroblasts. Together our findings provide unanticipated insight for understanding the physical and functional architecture of the nonhomologous end-joining ligation complex.

  11. Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA

    DEFF Research Database (Denmark)

    Boessenkool, Sanne; Epp, Laura S.; Haile, James Seymour

    2012-01-01

    , or bias, during the PCR. In this study, we test the utility of human-specific blocking primers in mammal diversity analyses of ancient permafrost samples from Siberia. Using quantitative PCR (qPCR) on human and mammoth DNA, we first optimized the design and concentration of blocking primer in the PCR...

  12. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining.

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L; Tomkinson, Alan E; Tainer, John A; Ellenberger, Tom

    2015-08-18

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.

  13. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  14. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation.

    Science.gov (United States)

    van den Dungen, Myrthe W; Murk, Albertinka J; Kok, Dieuwertje E; Steegenga, Wilma T

    2017-04-01

    Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what extent DNA methylation can be related to gene transcription. Adipocyte differentiation was induced in two human cell models with continuous exposure to different POPs throughout differentiation. From the seven tested POPs, perfluorooctanesulfonic acid (PFOS) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) decreased lipid accumulation, while tributyltin (TBT) increased lipid accumulation. In human mesenchymal stem cells (hMSCs), TCDD and TBT induced opposite gene expression profiles, whereas after PFOS exposure gene expression remained relatively stable. Genome-wide DNA methylation analysis showed that all three POPs affected DNA methylation patterns in adipogenic and other genes, possibly related to the phenotypic outcome, but without concomitant gene expression changes. Differential methylation was predominantly detected in intergenic regions, where the biological relevance of alterations in DNA methylation is unclear. This study demonstrates that POPs, at environmentally relevant levels, are able to induce differential DNA methylation in human differentiating adipocytes. Copyright © 2017 Wageningen University. Published by Elsevier Ltd.. All rights reserved.

  15. Pitfalls in the analysis of ancient human mtDNA

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The retrieval of DNA from ancient human specimens is not always successful owing to DNA deterioration and contamination although it is vital to provide new insights into the genetic structure of ancient people and to reconstruct the past history. Normally, only short DNA fragments can be retrieved from the ancient specimens. How to identify the authenticity of DNA obtained and to uncover the information it contained are difficult. We employed the ancient mtDNAs reported from Central Asia (including Xinjiang, China) as an example to discern potentially extraneous DNA contamination based on the updated mtDNA phylogeny derived from mtDNA control region, coding region, as well as complete sequence information. Our results demonstrated that many mtDNAs reported are more or less problematic. Starting from a reliable mtDNA phylogeney and combining the available modern data into analysis, one can ascertain the authenticity of the ancient DNA, distinguish the potential errors in a data set, and efficiently decipher the meager information it harbored. The reappraisal of the mtDNAs with the age of more than 2000 years from Central Asia gave support to the suggestion of extensively (pre)historical gene admixture in this region.

  16. D-ribose inhibits DNA repair synthesis in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zunica, G.; Marini, M.; Brunelli, M.A.; Chiricolo, M.; Franceschi, C.

    1986-07-31

    D-ribose is cytotoxic for quiescent human lymphocytes and severely inhibits their PHA-induced proliferation at concentrations (25-50 mM) at which other simple sugars are ineffective. In order to explain these effects, DNA repair synthesis was evaluated in PHA-stimulated human lymphocytes treated with hydroxyurea and irradiated. D-ribose, in contrast to other reducing sugars, did not induce repair synthesis and therefore did not apparently damage DNA in a direct way, although it markedly inhibited gamma ray-induced repair. Taking into account that lymphocytes must rejoin physiologically-formed DNA strand breaks in order to enter the cell cycle, we suggest that D-ribose exerts its cytotoxic activity by interfering with metabolic pathways critical for the repair of DNA breaks.

  17. Isolation and characterization of DNA probes for human chromosome 21.

    Science.gov (United States)

    Watkins, P C

    1990-01-01

    A coordinated effort to map and sequence the human genome has recently become a national priority. Chromosome 21, the smallest human chromosome accounting for less than 2% of the human genome, is an attractive model system for developing and evaluating genome mapping technology. Several strategies are currently being explored including the development of chromosome 21 libraries from somatic cell hybrids as reported here, the cloning of chromosome 21 in yeast artificial chromosomes (McCormick et al., 1989b), and the construction of chromosome 21 libraries using chromosome flow-sorting techniques (Fuscoe et al., 1989). This report describes the approaches used to identify DNA probes that are useful for mapping chromosome 21. Probes were successfully isolated from both phage and cosmid libraries made from two somatic cell hybrids that contain human chromosome 21 as the only human chromosome. The 15 cosmid clones from the WA17 library, reduced to cloned DNA sequences of an average size of 3 kb, total 525 kb of DNA which is approximately 1% of chromosome 21. From these clones, a set of polymorphic DNA markers that span the length of the long arm of chromosome 21 has been generated. All of the probes thus far analyzed from the WA17 libraries have been mapped to chromosome 21 both by physical and genetic mapping methods. It is therefore likely that the WA17 hybrid cell line contains human chromosome 21 as the only human component, in agreement with cytogenetic observation. The 153E7b cosmid libraries will provide an alternative source of cloned chromosome 21 DNA. Library screening techniques can be employed to obtain cloned DNA sequences from the same genetic loci of the two different chromosome 21s. Comparative analysis will allow direct estimation of DNA sequence variation for different regions of chromosome 21. Mapped DNA probes make possible the molecular analysis of chromosome 21 at a level of resolution not achievable by classical cytogenetic techniques (Graw et al

  18. Cocoa Consumption Alters the Global DNA Methylation of Peripheral Leukocytes in Humans with Cardiovascular Disease Risk Factors: A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Anna Crescenti

    Full Text Available DNA methylation regulates gene expression and can be modified by different bioactive compounds in foods, such as polyphenols. Cocoa is a rich source of polyphenols, but its role in DNA methylation is still unknown. The objective was to assess the effect of cocoa consumption on DNA methylation and to determine whether the enzymes involved in the DNA methylation process participate in the mechanisms by which cocoa exerts these effects in humans. The global DNA methylation levels in the peripheral blood were evaluated in 214 volunteers who were pre-hypertensive, stage-1 hypertensive or hypercholesterolemic. The volunteers were divided into two groups: 110 subjects who consumed cocoa (6 g/d for two weeks and 104 control subjects. In addition, the peripheral blood mononuclear cells (PBMCs from six subjects were treated with a cocoa extract to analyze the mRNA levels of the DNA methyltransferases (DNMTs, methylenetetrahydrofolate reductase (MTHFR, and methionine synthase reductase (MTRR genes. Cocoa consumption significantly reduced the DNA methylation levels (2.991±0.366 vs. 3.909±0.380, p<0.001. Additionally, we found an association between the cocoa effects on DNA methylation and three polymorphisms located in the MTHFR, MTRR, and DNMT3B genes. Furthermore, in PBMCs, the cocoa extract significantly lowered the mRNA levels of the DNMTs, MTHFR, and MTRR. Our study demonstrates for the first time that the consumption of cocoa decreases the global DNA methylation of peripheral leukocytes in humans with cardiovascular risk factors. In vitro experiments with PBMCs suggest that cocoa may exert this effect partially via the down-regulation of DNMTs, MTHFR and MTRR, which are key genes involved in this epigenetic process.Clinicaltrials.govNCT00511420 and NCT00502047.

  19. Functional interactions of DNA topoisomerases with a human replication origin.

    Science.gov (United States)

    Abdurashidova, Gulnara; Radulescu, Sorina; Sandoval, Oscar; Zahariev, Sotir; Danailov, Miltcho B; Demidovich, Alexander; Santamaria, Laura; Biamonti, Giuseppe; Riva, Silvano; Falaschi, Arturo

    2007-02-21

    The human DNA replication origin, located in the lamin B2 gene, interacts with the DNA topoisomerases I and II in a cell cycle-modulated manner. The topoisomerases interact in vivo and in vitro with precise bonds ahead of the start sites of bidirectional replication, within the pre-replicative complex region; topoisomerase I is bound in M, early G1 and G1/S border and topoisomerase II in M and the middle of G1. The Orc2 protein competes for the same sites of the origin bound by either topoisomerase in different moments of the cell cycle; furthermore, it interacts on the DNA with topoisomerase II during the assembly of the pre-replicative complex and with DNA-bound topoisomerase I at the G1/S border. Inhibition of topoisomerase I activity abolishes origin firing. Thus, the two topoisomerases are closely associated with the replicative complexes, and DNA topology plays an essential functional role in origin activation.

  20. Purification of human leucocyte DNA: proteinase K is not necessary.

    Science.gov (United States)

    Douglas, A M; Georgalis, A M; Benton, L R; Canavan, K L; Atchison, B A

    1992-03-01

    A rapid nontoxic method for the purification of DNA from human leucocytes is described. Preliminary experiments which tested different methods of DNA purification indicated that digestion of proteins with proteinase K was unnecessary. This led to the development of a simple procedure involving lysis of the cells in SDS followed by extraction with 6 M NaCl. The method described overcomes the requirement for lengthy incubations in the presence of expensive proteinase K and subsequent extraction with toxic chemicals.

  1. IDENTIFYING CRITICAL CYSTEINE RESIDUES IN ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE

    Science.gov (United States)

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes methylation of inorganic arsenic to mono, di, and trimethylated arsenicals. Orthologous AS3MT genes in genomes ranging from simple echinoderm to human predict a protein with five conserved cysteine (C) residues. In ...

  2. Human neuronal tau promoting the melting temperature of DNA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The hyperchromic effect of ultraviolet spectroscopy shows that adding recombinant human neuronal tau to the solution of calf thymus DNA will promote the melting temperature (Tm) from 67℃ to 81℃. Similar result has been detected when adding tau to plasmid pBluescript-Ⅱ SK, by raising Tm from 75℃ to 85℃. The kinetics of thermal denaturation of DNA with tau is much slower than that of control. It suggests that tau may stabilize the double helix conformation of DNA.

  3. Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    Science.gov (United States)

    Vieira, Alexandre R.; Deeley, Kathleen B.; Callahan, Nicholas F.; Noel, Jacqueline B.; Anjomshoaa, Ida; Carricato, Wendy M.; Schulhof, Louise P.; DeSensi, Rebecca S.; Gandhi, Pooja; Resick, Judith M.; Brandon, Carla A.; Rozhon, Christopher; Patir, Asli; Yildirim, Mine; Poletta, Fernando A.; Mereb, Juan C.; Letra, Ariadne; Menezes, Renato; Wendell, Steven; Lopez-Camelo, Jorge S.; Castilla, Eduardo E.; Orioli, Iêda M.; Seymen, Figen; Weyant, Robert J.; Crout, Richard; McNeil, Daniel W.; Modesto, Adriana; Marazita, Mary L.

    2011-01-01

    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults. PMID:21731912

  4. Mitochondrial DNA Hypomethylation Is a Biomarker Associated with Induced Senescence in Human Fetal Heart Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dehai Yu

    2017-01-01

    Full Text Available Background. Fetal heart can regenerate to restore its normal anatomy and function in response to injury, but this regenerative capacity is lost within the first week of postnatal life. Although the specific molecular mechanisms remain to be defined, it is presumed that aging of cardiac stem or progenitor cells may contribute to the loss of regenerative potential. Methods. To study this aging-related dysfunction, we cultured mesenchymal stem cells (MSCs from human fetal heart tissues. Senescence was induced by exposing cells to chronic oxidative stress/low serum. Mitochondrial DNA methylation was examined during the period of senescence. Results. Senescent MSCs exhibited flattened and enlarged morphology and were positive for the senescence-associated beta-galactosidase (SA-β-Gal. By scanning the entire mitochondrial genome, we found that four CpG islands were hypomethylated in close association with senescence in MSCs. The mitochondrial COX1 gene, which encodes the main subunit of the cytochrome c oxidase complex and contains the differentially methylated CpG island 4, was upregulated in MSCs in parallel with the onset of senescence. Knockdown of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3B also upregulated COX1 expression and induced cellular senescence in MSCs. Conclusions. This study demonstrates that mitochondrial CpG hypomethylation may serve as a critical biomarker associated with cellular senescence induced by chronic oxidative stress.

  5. Finding human promoter groups based on DNA physical properties

    Science.gov (United States)

    Zeng, Jia; Cao, Xiao-Qin; Zhao, Hongya; Yan, Hong

    2009-10-01

    DNA rigidity is an important physical property originating from the DNA three-dimensional structure. Although the general DNA rigidity patterns in human promoters have been investigated, their distinct roles in transcription are largely unknown. In this paper, we discover four highly distinct human promoter groups based on similarity of their rigidity profiles. First, we find that all promoter groups conserve relatively rigid DNAs at the canonical TATA box [a consensus TATA(A/T)A(A/T) sequence] position, which are important physical signals in binding transcription factors. Second, we find that the genes activated by each group of promoters share significant biological functions based on their gene ontology annotations. Finally, we find that these human promoter groups correlate with the tissue-specific gene expression.

  6. Finding human promoter groups based on DNA physical properties.

    Science.gov (United States)

    Zeng, Jia; Cao, Xiao-Qin; Zhao, Hongya; Yan, Hong

    2009-10-01

    DNA rigidity is an important physical property originating from the DNA three-dimensional structure. Although the general DNA rigidity patterns in human promoters have been investigated, their distinct roles in transcription are largely unknown. In this paper, we discover four highly distinct human promoter groups based on similarity of their rigidity profiles. First, we find that all promoter groups conserve relatively rigid DNAs at the canonical TATA box [a consensus TATA(A/T)A(A/T) sequence] position, which are important physical signals in binding transcription factors. Second, we find that the genes activated by each group of promoters share significant biological functions based on their gene ontology annotations. Finally, we find that these human promoter groups correlate with the tissue-specific gene expression.

  7. Extracellular DNA affects NO content in human endothelial cells.

    Science.gov (United States)

    Efremova, L V; Alekseeva, A Yu; Konkova, M S; Kostyuk, S V; Ershova, E S; Smirnova, T D; Konorova, I L; Veiko, N N

    2010-08-01

    Fragments of extracellular DNA are permanently released into the blood flow due to cell apoptosis and possible de novo DNA synthesis. To find out whether extracellular DNA can affect the synthesis of nitric oxide (NO), one of key vascular tone regulators, we studied in vitro effects of three artificial DNA probes with different sequences and 10 samples of extracellular DNA (obtained from healthy people and patients with hypertension and atherosclerosis) on NO synthesis in endothelial cell culture (HUVEC). For detection of NO in live cells and culture medium, we used a NO-specific agent CuFL penetrating into the cells and forming a fluorescent product FL-NO upon interaction with NO. Human genome DNA fragments affected the content of NO in endothelial cells; this effect depended on both the base sequence and concentration of DNA fragments. Addition of artificial DNA and extracellular DNA from healthy people into the cell culture in a low concentration (5 ng/ml) increased the detected NO concentration by 4-fold at most. Cytosine-guanine (CG)-rich fragment of the transcribed sequence of ribosomal repeat was the most powerful NO-inductor. The effect of DNA fragments on NO synthesis was comparable with that of low doses of oxidizing agents, H(2)O(2) and 17β-estradiol. Extracellular DNA samples obtained from patients with hypertension and atherosclerosis decreased NO content in cells and medium by 1.3-28 times compared to the control; the effect correlated with the content of CG-rich sequences.

  8. The mutation rate of the human mtDNA deletion mtDNA4977.

    Science.gov (United States)

    Shenkar, R; Navidi, W; Tavaré, S; Dang, M H; Chomyn, A; Attardi, G; Cortopassi, G; Arnheim, N

    1996-10-01

    The human mitochondrial mutation mtDNA4977 is a 4,977-bp deletion that originates between two 13-bp direct repeats. We grew 220 colonies of cells, each from a single human cell. For each colony, we counted the number of cells and amplified the DNA by PCR to test for the presence of a deletion. To estimate the mutation fate, we used a model that describes the relationship between the mutation rate and the probability that a colony of a given size will contain no mutants, taking into account such factors as possible mitochondrial turnover and mistyping due to PCR error. We estimate that the mutation rate for mtDNA4977 in cultured human cells is 5.95 x 10(-8) per mitochondrial genome replication. This method can be applied to specific chromosomal, as well as mitochondrial, mutations.

  9. The mutation rate of the human mtDNA deletion mtDNA{sup 4977}

    Energy Technology Data Exchange (ETDEWEB)

    Shenkar, R. [Univ. of Colorado Health Science Center, Denver, CO (United States); Navidi, W. [Colorado School of Mines, Golden, CO (United States); Tavare, S. [Univ. of California, Los Angeles, CA (United States)] [and others

    1996-10-01

    The human mitochondrial mutation mtDNA{sup 4977} is a 4,977-bp deletion that originates between two 13-bp direct repeats. We grew 220 colonies of cells, each from a single human cell. For each colony, we counted the number of cells and amplified the DNA by PCR to test for the presence of a deletion. To estimate the mutation rate, we used a model that describes the relationship between the mutation rate and the probability that a colony of a given size will contain no mutants, taking into account such factors as possible mitochondrial turnover and mistyping due to PCR error. We estimate that the mutation rate for mtDNA{sup 4977} in cultured human cells is 5.95 x 10{sup {minus}8} per mitochondrial genome replication. This method can be applied to specific chromosomal, as well as mitochondrial, mutations. 17 refs., 1 fig., 1 tab.

  10. The human DNA-activated protein kinase, DNA-PK: Substrate specificity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.W.; Connelly, M.A.; Zhang, H.; Sipley, J.A. [Brookhaven National Lab., Upton, NY (United States). Biology Dept.; Lees-Miller, S.P.; Lintott, L.G. [Univ. of Calgary, Alberta (Canada). Dept. of Biological Sciences; Sakaguchi, Kazuyasu; Appella, E. [National Institutes of Health, Bethesda, MD (United States). Lab. of Cell Biology

    1994-11-05

    Although much has been learned about the structure and function of p53 and the probable sequence of subsequent events that lead to cell cycle arrest, little is known about how DNA damage is detected and the nature of the signal that is generated by DNA damage. Circumstantial evidence suggests that protein kinases may be involved. In vitro, human DNA-PK phosphorylates a variety of nuclear DNA-binding, regulatory proteins including the tumor suppressor protein p53, the single-stranded DNA binding protein RPA, the heat shock protein hsp90, the large tumor antigen (TAg) of simian virus 40, a variety of transcription factors including Fos, Jun, serum response factor (SRF), Myc, Sp1, Oct-1, TFIID, E2F, the estrogen receptor, and the large subunit of RNA polymerase II (reviewed in Anderson, 1993; Jackson et al., 1993). However, for most of these proteins, the sites that are phosphorylated by DNA-PK are not known. To determine if the sites that were phosphorylated in vitro also were phosphorylated in vivo and if DNA-PK recognized a preferred protein sequence, the authors identified the sites phosphorylated by DNA-PK in several substrates by direct protein sequence analysis. Each phosphorylated serine or threonine is followed immediately by glutamine in the polypeptide chain; at no other positions are the amino acid residues obviously constrained.

  11. The human DNA-activated protein kinase, DNA-PK: Substrate specificity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.W.; Connelly, M.A.; Zhang, H.; Sipley, J.A. [Brookhaven National Lab., Upton, NY (United States). Biology Dept.; Lees-Miller, S.P.; Lintott, L.G. [Univ. of Calgary, Alberta (Canada). Dept. of Biological Sciences; Sakaguchi, Kazuyasu; Appella, E. [National Institutes of Health, Bethesda, MD (United States). Lab. of Cell Biology

    1994-11-05

    Although much has been learned about the structure and function of p53 and the probable sequence of subsequent events that lead to cell cycle arrest, little is known about how DNA damage is detected and the nature of the signal that is generated by DNA damage. Circumstantial evidence suggests that protein kinases may be involved. In vitro, human DNA-PK phosphorylates a variety of nuclear DNA-binding, regulatory proteins including the tumor suppressor protein p53, the single-stranded DNA binding protein RPA, the heat shock protein hsp90, the large tumor antigen (TAg) of simian virus 40, a variety of transcription factors including Fos, Jun, serum response factor (SRF), Myc, Sp1, Oct-1, TFIID, E2F, the estrogen receptor, and the large subunit of RNA polymerase II (reviewed in Anderson, 1993; Jackson et al., 1993). However, for most of these proteins, the sites that are phosphorylated by DNA-PK are not known. To determine if the sites that were phosphorylated in vitro also were phosphorylated in vivo and if DNA-PK recognized a preferred protein sequence, the authors identified the sites phosphorylated by DNA-PK in several substrates by direct protein sequence analysis. Each phosphorylated serine or threonine is followed immediately by glutamine in the polypeptide chain; at no other positions are the amino acid residues obviously constrained.

  12. Coal tar residues produce both DNA adducts and oxidative DNA damage in human mammary epithelial cells.

    Science.gov (United States)

    Leadon, S A; Sumerel, J; Minton, T A; Tischler, A

    1995-12-01

    In the present study we compare the metabolic activation of coal tar, as measured by the production of both DNA adducts and oxidative DNA damage, with that of a single carcinogen that is a constituent of this complex mixture in human mammary epithelial cells (HMEC). We find that a significant level of DNA adducts, detected by 32P-postlabeling, are formed in HMEC following exposure to coal tar residues. This treatment also results in the generation of high levels of oxidative DNA damage, as measured by the production of one type of oxidative base modification, thymine glycols. The amounts of both DNA adducts and thymine varied considerably between the various coal tar residues and did not correlate with either the total amount of polycyclic aromatic hydrocarbons (PAH) or the amount of benzo[a]pyrene (B[a]P) present in the residue. Fractionating the residue from one of the sites by sequential extraction with organic solvents indicated that while the ability to produce both types of DNA damage was contained mostly in a hexane-soluble fraction, a benzene-soluble fraction produced high levels of reactive oxygens relative to the number of total DNA adducts. We find that the total amount of PAH or B[a]P present in the coal tars from the various sites was not a predictor of the level of total DNA damage formed.

  13. Prospects for DNA methods to measure human heritable mutation rates

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.L.

    1985-06-14

    A workshop cosponsored by ICPEMC and the US Department of Energy was held in Alta, Utah, December 9-13, 1984 to examine the extent to which DNA-oriented methods might provide new approaches to the important but intractable problem of measuring mutation rates in control and exposed human populations. The workshop identified and analyzed six DNA methods for detection of human heritable mutation, including several created at the meeting, and concluded that none of the methods combine sufficient feasibility and efficiency to be recommended for general application. 8 refs.

  14. Distribution patterns of postmortem damage in human mitochondrial DNA

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Willerslev, Eske; Hansen, Anders J

    2002-01-01

    The distribution of postmortem damage in mitochondrial DNA retrieved from 37 ancient human DNA samples was analyzed by cloning and was compared with a selection of published animal data. A relative rate of damage (rho(v)) was calculated for nucleotide positions within the human hypervariable region......, such as MT5, have lower in vivo mutation rates and lower postmortem-damage rates. The postmortem data also identify a possible functional subregion of the HVR1, termed "low-diversity 1," through the lack of sequence damage. The amount of postmortem damage observed in mitochondrial coding regions...

  15. Correlation of O6-Methylguanine-DNA Methyltransferase with Prognosis of Malignant Glioblastom Patients Treated with Temozolomide%MGMT在恶性胶质瘤中的表达对替莫唑胺化疗预后的影响

    Institute of Scientific and Technical Information of China (English)

    王增光; 杨学军; 潘强; 高松; 杨树源

    2009-01-01

    目的 通过检测肿瘤组织O6-甲基鸟嘌呤-DNA甲基转移酶(O6-methylguanine-DNA methyltransferase,MGMT)的表达,探讨其对恶性胶质瘤替莫唑胺化疗预后的影响,以期为个体化化疗方案的选择提供临床依据.方法 经病理学确诊为恶性胶质瘤患者60例,使用免疫组织化学方法检测肿瘤组织MGMT表达,根据表达情况分为MGMT阴性组和MGMT阳性组;所有患者均接受手术治疗及术后常规放射治疗和替莫唑胺化疗,并对其长期随访,进行无进展生存时间、实体肿瘤客观疗效和药物安全性的评定.结果 肿瘤组织MGMT表达阴性者(-~±)为33例,MGMT表达阳性者(+~++)为27例;应用替莫唑胺化疗6个疗程末,MGMT阴性组客观有效率(CR+PR)为20/33,明显高于MGMT阳性组的5/27;MGMT阴性组平均无进展生存时间为(18±6.42)个月,明显长于MGMT阳性组的(9.0±1.91)个月,两组间差异具有统计学意义(P<0.01).结论 替莫唑胺化疗方案的疗效与MGMT在肿瘤组织中的表达程度密切相关,MGMT的检测对于指导恶性胶质瘤患者制定个体化化疗方案具有重要意义.

  16. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  17. DNA methylation-based variation between human populations.

    Science.gov (United States)

    Kader, Farzeen; Ghai, Meenu

    2017-02-01

    Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.

  18. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  19. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η.

    Science.gov (United States)

    Su, Yan; Egli, Martin; Guengerich, F Peter

    2016-02-19

    Ribonucleotides and 2'-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2'-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2'-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2'-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 10(3)-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2'-deoxyguanosine with a significant propeller twist. As a result, the 2'-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion.

  20. Retrieval of human DNA from rodent-human genomic libraries by a recombination process.

    Science.gov (United States)

    Neve, R L; Bruns, G A; Dryja, T P; Kurnit, D M

    1983-09-01

    Human Alu repeat ("BLUR") sequences have been cloned into the mini-plasmid vector piVX. The resulting piBLUR clones have been used to rescue selectively, by recombination, bacteriophage carrying human DNA sequences from genomic libraries constructed using DNA from rodent-human somatic cell hybrids. piBLUR clones are able to retrieve human clones from such libraries because at least one Alu family repeat is present on most 15 to 20 kb fragments of human DNA and because of the relative species-specificity of the sequences comprising the Alu family. The rapid, selective plaque purification achieved results in the construction of a collection of recombinant phage carrying diverse human DNA inserts from a specific subset of the human karyotype. Subfragments of two recombinants rescued from a mouse-human somatic cell hybrid containing human chromosomes X, 10, 13, and 22 were mapped to human chromosomes X and 13, respectively, demonstrating the utility of this protocol for the isolation of human chromosome-specific DNA sequences from appropriate somatic cell hybrids.

  1. Assessment of Human DNA Repair (NER) Capacity With DNA Repair Rate (DRR) by Comet Assay

    Institute of Scientific and Technical Information of China (English)

    WEI ZHENG; JI-LIANG HE; LI-FEN JIN; JIAN-LIN LOU; BAO-HONG WANG

    2005-01-01

    Objective Alkaline comet assay was used to evaluate DNA repair (nucleotide excision repair, NER) capacity of human fresh lymphocytes from 12 young healthy non-smokers (6 males and 6 females). Methods Lymphocytes were exposed to UV-C (254 nm) at the dose rate of 1.5 J/m2/sec. Novobiocin (NOV) and aphidicolin (APC), DNA repair inhibitors, were utilized to imitate the deficiency of DNA repair capacity at the incision and ligation steps of NER. Lymphocytes from each donor were divided into three grougs: UVC group, UVC plus NOV group, and UVC plus APC group. DNA single strand breaks were detected in UVC irradiated cells incubated for 0, 30, 60, 90, 120, 180, and 240 min after UVC irradiation. DNA repair rate (DRR) served as an indicator of DNA repair capacity. Results The results indicated that the maximum DNA damage (i.e. maximum tail length) in the UVC group mainly appeared at 90 min. The ranges of DRRs in the UVC group were 62.84%-98.71%. Average DRR value was 81.84%. The DRR difference between males and females was not significant (P<0.05). However, the average DRR value in the UVC plus NOV group and the UVC plus APC group was 52.98% and 39.57% respectively, which were significantly lower than that in the UVC group (P<0.01). Conclusion The comet assay is a rapid, simple and sensitive screening test to assess individual DNA repair (NER) capacity. It is suggested that the time to detect DNA single strand breaks in comet assay should include 0 (before UV irradiation), 90 and 240 min after exposure to 1.5 J·m-2 UVC at least. The DRR, as an indicator, can represent the individual DNA repair capacity in comet assay.

  2. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per...... strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found...... that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic...

  3. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human

    Science.gov (United States)

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-01-01

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation. PMID:28212312

  4. Involvement of DNA ligase III and ribonuclease H1 in mitochondrial DNA replication in cultured human cells.

    Science.gov (United States)

    Ruhanen, Heini; Ushakov, Kathy; Yasukawa, Takehiro

    2011-12-01

    Recent evidence suggests that coupled leading and lagging strand DNA synthesis operates in mammalian mitochondrial DNA (mtDNA) replication, but the factors involved in lagging strand synthesis are largely uncharacterised. We investigated the effect of knockdown of the candidate proteins in cultured human cells under conditions where mtDNA appears to replicate chiefly via coupled leading and lagging strand DNA synthesis to restore the copy number of mtDNA to normal levels after transient mtDNA depletion. DNA ligase III knockdown attenuated the recovery of mtDNA copy number and appeared to cause single strand nicks in replicating mtDNA molecules, suggesting the involvement of DNA ligase III in Okazaki fragment ligation in human mitochondria. Knockdown of ribonuclease (RNase) H1 completely prevented the mtDNA copy number restoration, and replication intermediates with increased single strand nicks were readily observed. On the other hand, knockdown of neither flap endonuclease 1 (FEN1) nor DNA2 affected mtDNA replication. These findings imply that RNase H1 is indispensable for the progression of mtDNA synthesis through removing RNA primers from Okazaki fragments. In the nucleus, Okazaki fragments are ligated by DNA ligase I, and the RNase H2 is involved in Okazaki fragment processing. This study thus proposes that the mitochondrial replication system utilises distinct proteins, DNA ligase III and RNase H1, for Okazaki fragment maturation.

  5. Sulforaphane induces DNA single strand breaks in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sestili, Piero, E-mail: piero.sestili@uniurb.it [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Paolillo, Marco [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Lenzi, Monia [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Fimognari, Carmela [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-07-07

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 {mu}M SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value

  6. Destabilization of the human epigenome: consequences of foreign DNA insertions.

    Science.gov (United States)

    Weber, Stefanie; Hofmann, Andrea; Herms, Stefan; Hoffmann, Per; Doerfler, Walter

    2015-08-01

    We previously reported changes of DNA methylation and transcription patterns in mammalian cells that carry integrated foreign DNA. Experiments were now designed to assess the epigenetic consequences of inserting a 5.6 kbp plasmid into the human genome. Differential transcription and CpG methylation patterns were compared between transgenomic and nontransgenomic cell clones by using gene chip microarray systems. In 4.7% of the 28.869 gene segments analyzed, transcriptional activities were up- or downregulated in the transgenomic cell clones. Genome-wide profiling revealed differential methylation in 3791 of > 480,000 CpG's examined in transgenomic versus nontransgenomic clones. The data document genome-wide effects of foreign DNA insertions on the epigenetic stability of human cells. Many fields in experimental biology and medicine employ transgenomic or otherwise genome-manipulated cells or organisms without considering the epigenetic consequences for the recipient genomes.

  7. The DNA-damage response in human biology and disease

    DEFF Research Database (Denmark)

    Jackson, Stephen P; Bartek, Jiri

    2009-01-01

    , signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management....

  8. False-positive Human Papillomavirus DNA tests in cervical screening

    DEFF Research Database (Denmark)

    Rebolj, Matejka; Pribac, Igor; Lynge, Elsebeth

    2011-01-01

    Based on data from randomised controlled trials (RCT) on primary cervical screening, it has been reported that the problem of more frequent false-positive tests in Human Papillomavirus (HPV) DNA screening compared to cytology could be overcome. However, these reports predominantly operated...

  9. Ancient DNA in human bone remains from Pompeii archaeological site.

    Science.gov (United States)

    Cipollaro, M; Di Bernardo, G; Galano, G; Galderisi, U; Guarino, F; Angelini, F; Cascino, A

    1998-06-29

    aDNA extraction and amplification procedures have been optimized for Pompeian human bone remains whose diagenesis has been determined by histological analysis. Single copy genes amplification (X and Y amelogenin loci and Y specific alphoid repeat sequences) have been performed and compared with anthropometric data on sexing.

  10. Cloning and expression of a novel catechol-O-methyltransferase in common marmosets.

    Science.gov (United States)

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-02-04

    Catechol-O-methyltransferase (COMT) catalyzes the O-methylation of endogenous catechol amines and estrogens and exogenous catechol-type of drugs. A Parkinson's disease model of common marmoset (Callithrix jacchus) has been widely used in preclinical studies to evaluate inhibitory potential of new drug candidates on marmoset COMT. Despite COMT inhibitors could potentiate the pharmacological action of levodopa on Parkinson's disease in animal models, marmoset COMT cDNA has not yet been identified and characterized. In this study, a cDNA highly homologous to human COMT was cloned from marmoset livers. This cDNA encoded 268 amino acids containing a transmembrane region and critical amino acid residues for catalytic function. The amino acid sequences of marmoset COMT shared high sequence identity (90%) with human COMT. COMT mRNA was expressed in all five tissues tested, including brain, lung, liver, kidney and small intestine, and was more abundant in marmoset liver and kidney. Membrane-bound COMT was immunochemically detected in livers and kidneys, whereas soluble COMT was detected in livers, similar to humans. These results indicated that the molecular characteristics of marmoset COMT were generally similar to the human ortholog.

  11. Diversity in mechanism and function of tRNA methyltransferases

    Science.gov (United States)

    Swinehart, William E; Jackman, Jane E

    2015-01-01

    tRNA molecules undergo extensive post-transcriptional processing to generate the mature functional tRNA species that are essential for translation in all organisms. These processing steps include the introduction of numerous specific chemical modifications to nucleotide bases and sugars; among these modifications, methylation reactions are by far the most abundant. The tRNA methyltransferases comprise a diverse enzyme superfamily, including members of multiple structural classes that appear to have arisen independently during evolution. Even among closely related family members, examples of unusual substrate specificity and chemistry have been observed. Here we review recent advances in tRNA methyltransferase mechanism and function with a particular emphasis on discoveries of alternative substrate specificities and chemistry associated with some methyltransferases. Although the molecular function for a specific tRNA methylation may not always be clear, mutations in tRNA methyltransferases have been increasingly associated with human disease. The impact of tRNA methylation on human biology is also discussed. PMID:25626150

  12. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ.

    Science.gov (United States)

    Kasiviswanathan, Rajesh; Minko, Irina G; Lloyd, R Stephen; Copeland, William C

    2013-05-17

    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates.

  13. Identification and characterization of new molecular partners for the protein arginine methyltransferase 6 (PRMT6.

    Directory of Open Access Journals (Sweden)

    Alessandra Lo Sardo

    Full Text Available PRMT6 is a protein arginine methyltransferase that has been implicated in transcriptional regulation, DNA repair, and human immunodeficiency virus pathogenesis. Only few substrates of this enzyme are known and therefore its cellular role is not well understood. To identify in an unbiased manner substrates and potential regulators of PRMT6 we have used a yeast two-hybrid approach. We identified 36 new putative partners for PRMT6 and we validated the interaction in vivo for 7 of them. In addition, using invitro methylation assay we identified 4 new substrates for PRMT6, extending the involvement of this enzyme to other cellular processes beyond its well-established role in gene expression regulation. Holistic approaches create molecular connections that allow to test functional hypotheses. The assembly of PRMT6 protein network allowed us to formulate functional hypotheses which led to the discovery of new molecular partners for the architectural transcription factor HMGA1a, a known substrate for PRMT6, and to provide evidences for a modulatory role of HMGA1a on the methyltransferase activity of PRMT6.

  14. Traumatic stress and human DNA methylation: a critical review.

    Science.gov (United States)

    Vinkers, Christiaan H; Kalafateli, Aimilia Lydia; Rutten, Bart P F; Kas, Martien J; Kaminsky, Zachary; Turner, Jonathan D; Boks, Marco P M

    2015-01-01

    Animal studies have identified persistent and functional effects of traumatic stress on the epigenome. This review discusses the clinical evidence for trauma-induced changes in DNA methylation across the life span in humans. Studies are reviewed based on reports of trauma exposure during the prenatal period (13 studies), early life (20 studies), and adulthood (ten studies). Even though it is apparent that traumatic stress influences the human epigenome, there are significant drawbacks in the existing human literature. These include a lack of longitudinal studies, methodological heterogeneity, selection of tissue type, and the influence of developmental stage and trauma type on methylation outcomes. These issues are discussed in order to present a way in which future studies can gain more insight into the functional relevance of trauma-related DNA methylation changes. Epigenetic studies investigating the detrimental effects of traumatic stress have great potential for an improved detection and treatment of trauma-related psychiatric disorders.

  15. DNA integrity of human leukocytes after magnetic resonance imaging.

    Science.gov (United States)

    Szerencsi, Ágnes; Kubinyi, Györgyi; Váliczkó, Éva; Juhász, Péter; Rudas, Gábor; Mester, Ádám; Jánossy, Gábor; Bakos, József; Thuróczy, György

    2013-10-01

    This study focuses on the effects of high-field (3T) magnetic resonance imaging (MRI) scans on the DNA integrity of human leukocytes in vitro in order to validate the study where genotoxic effects were obtained and published by Lee et al. The scanning protocol and exposure situation were the same as those used under routine clinical brain MRI scan. Peripheral blood samples from healthy non-smoking male donors were exposed to electromagnetic fields (EMF) produced by 3T magnetic resonance imaging equipment for 0, 22, 45, 67, and 89 min during the scanning procedure. Samples of positive control were exposed to ionizing radiation (4 Gy of (60)Co-γ). Single breaks of DNA in leukocytes were detected by single-cell gel electrophoresis (Comet assay). Chromosome breakage, chromosome loss and micronuclei formations were detected by a micronucleus test (MN). Three independent experiments were performed. The data of comet tail DNA%, olive tail moment and micronucleus frequency showed no DNA damages due to MRI exposure. The results of the Comet assay and the micronucleus test indicate that the applied exposure of MRI does not appear to produce breaks in the DNA and has no significant effect on DNA integrity.

  16. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells.

    Science.gov (United States)

    Valdiglesias, Vanessa; Méndez, Josefina; Pásaro, Eduardo; Cemeli, Eduardo; Anderson, Diana; Laffon, Blanca

    2010-07-07

    Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process. Copyright 2010 Elsevier B.V. All rights reserved.

  17. O6-甲基鸟嘌呤-DNA-甲基转移酶(MGMT)在乳腺癌中的表达及其临床意义%Expressions of O6 methylguanine-DNA methyltransferase(MGMT) in breast cancer and Its clinical significance

    Institute of Scientific and Technical Information of China (English)

    白金君; 王发亮; 薄爱华; 雷杰

    2008-01-01

    目的:研究DNA修复酶(O6-methylguanine-DNA methyltransferase,MGMT)在乳腺癌中的表达及其临床意义.方法:乳腺癌和腺瘤标本共计143例,10%福尔马林固定,石蜡包埋,采用SABC免疫组织化学方法检测MGMT表达.结果:MGMT在乳腺癌和乳腺腺瘤中的阳性率分别为57.85%和13.64%,组间比较具有显著性差异.MGMT在乳腺癌中的表达与患者的年龄、淋巴结转移有关.结论:MGMT的异常表达与乳腺癌的淋巴结转移有关;MGMT可以作为判断乳癌发生和预后的重要指标;检测其表达可以指导临床上化疗方案的制定.

  18. Detecting multiple DNA human profile from a mosquito blood meal.

    Science.gov (United States)

    Rabêlo, K C N; Albuquerque, C M R; Tavares, V B; Santos, S M; Souza, C A; Oliveira, T C; Moura, R R; Brandão, L A C; Crovella, S

    2016-08-26

    Criminal traces commonly found at crime scenes may present mixtures from two or more individuals. The scene of the crime is important for the collection of various types of traces in order to find the perpetrator of the crime. Thus, we propose that hematophagous mosquitoes found at crime scenes can be used to perform genetic testing of human blood and aid in suspect investigation. The aim of the study was to obtain a single Aedes aegypti mosquito profile from a human DNA mixture containing genetic materials of four individuals. We also determined the effect of blood acquisition time by setting time intervals of 24, 48, and 72 h after the blood meal. STR loci and amelogenin were analyzed, and the results showed that human DNA profiles could be obtained from hematophagous mosquitos at 24 h following the blood meal. It is possible that hematophagous mosquitoes can be used as biological remains at the scene of the crime, and can be used to detect human DNA profiles of up to four individuals.

  19. The val158met polymorphism of human catechol-O-methyltransferase (COMT affects anterior cingulate cortex activation in response to painful laser stimulation

    Directory of Open Access Journals (Sweden)

    Musso Francesco

    2010-05-01

    Full Text Available Abstract Background Pain is a complex experience with sensory, emotional and cognitive aspects. Genetic and environmental factors contribute to pain-related phenotypes such as chronic pain states. Genetic variations in the gene coding for catechol-O-methyltransferase (COMT have been suggested to affect clinical and experimental pain-related phenotypes including regional μ-opioid system responses to painful stimulation as measured by ligand-PET (positron emission tomography. The functional val158met single nucleotide polymorphism has been most widely studied. However, apart from its impact on pain-induced opioid release the effect of this genetic variation on cerebral pain processing has not been studied with activation measures such as functional magnetic resonance imaging (fMRI, PET or electroencephalography. In the present fMRI study we therefore sought to investigate the impact of the COMT val158met polymorphism on the blood oxygen level-dependent (BOLD response to painful laser stimulation. Results 57 subjects were studied. We found that subjects homozygous for the met158 allele exhibit a higher BOLD response in the anterior cingulate cortex (ACC, foremost in the mid-cingulate cortex, than carriers of the val158 allele. Conclusion This result is in line with previous studies that reported higher pain sensitivity in homozygous met carriers. It adds to the current literature in suggesting that this behavioral phenotype may be mediated by, or is at least associated with, increased ACC activity. More generally, apart from one report that focused on pain-induced opioid release, this is the first functional neuroimaging study showing an effect of the COMT val158met polymorphism on cerebral pain processing.

  20. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin.

    Science.gov (United States)

    Takenaka, Musashi; Okumura, Yuzo; Amino, Tomokazu; Miyachi, Yusuke; Ogino, Chiaki; Kondo, Akihiko

    2017-02-15

    DNA-duplex interactions in thymines and adenins are used as a linker for the novel methodology of Atomic Force Microscope-Systematic Evolution of Ligands by EXpotential enrichment (AFM-SELEX). This study used the hydrogen bonds in 10 mer of both thymines (T10) and adenines (A10). Initially, the interactive force in T10-A10 was measured by AFM, which returned an average interactive force of approximately 350pN. Based on this result, DNA aptamers against human serum albumin could be selected in the 4th round, and 15 different clones could be sequenced. The lowest dissociation constant of the selected aptamer was identified via surface plasmon resonance, and it proved to be identical to that of the commercial aptamer. Therefore, specific hydrogen bonds in DNA can be useful linkers for AFM-SELEX. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Protein Methyltransferases: A Distinct, Diverse, and Dynamic Family of Enzymes.

    Science.gov (United States)

    Boriack-Sjodin, P Ann; Swinger, Kerren K

    2016-03-22

    Methyltransferase proteins make up a superfamily of enzymes that add one or more methyl groups to substrates that include protein, DNA, RNA, and small molecules. The subset of proteins that act upon arginine and lysine side chains are characterized as epigenetic targets because of their activity on histone molecules and their ability to affect transcriptional regulation. However, it is now clear that these enzymes target other protein substrates, as well, greatly expanding their potential impact on normal and disease biology. Protein methyltransferases are well-characterized structurally. In addition to revealing the overall architecture of the subfamilies of enzymes, structures of complexes with substrates and ligands have permitted detailed analysis of biochemical mechanism, substrate recognition, and design of potent and selective inhibitors. This review focuses on how knowledge gained from structural studies has impacted the understanding of this large class of epigenetic enzymes.

  2. Effect of Zuojin Pill on Expression of APC and Activity of DNA Methyltransferase in Colorectal Adenomas%左金丸对大肠癌APC表达及DNA甲基转移酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    龚艳青; 文彬

    2010-01-01

    目的 研究左金丸对结肠腺瘤性息肉基因(adenomatous polyposis coli,APC)的表达及DNA甲基转移酶(DNA methyltransferase,Dnmts)各亚型Dnmt1、Dnmt3a、Dnmt3b活性的影响,探讨大肠癌的发病机制及左金丸中药的抑癌机理.方法 将120只Wistar大鼠按随机数字表法分为3组:正常组、左金丸组和对照组,每组40只.正常组为健康大鼠不做任何处理,左金丸组和对照组大鼠每周注射1次化学致癌剂1,2-二甲基酰肼(1,2-dimethylhydrazine,DMH)共12周,左金丸组从注射药物开始每天灌服左金丸汤剂,对照组与正常组灌服同等体积的生理盐水,分别在第11、21、34周将部分大鼠处死,切取肿物、进行切片、HE染色、病理观察Duke分期,用Western blotting半定量法检测不同肿瘤时期APC蛋白的表达;Elisa方法检测Dnmts活性.结果 APC相对蛋白含量比较:正常组>左金丸组>对照组,各组两两比较差异均有统计学意义(P左金丸组>正常组,各组两两比较差异均有统计学意义(P<0.05或P<0.01),其中对照组中Dnmt1、Dnmt3b的活性与肿瘤Dukes分期有关,随着肿瘤浸润程度的增加而升高.结论 APC蛋白参与了结直肠癌的发生,并且是肿瘤形成的早期事件,与肿瘤的发展进程无关;Dnmt1、Dnmt3a、Dnmt3b参与了结直肠癌的发生过程,且Dnmt1、Dnmt3b活性升高与结直肠癌进展有关;左金丸组APC蛋白表达量的增加及甲基转移酶活性的降低可能跟左金丸的抑癌作用有关.

  3. Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes

    Science.gov (United States)

    Burbano, Hernán A.; Green, Richard E.; Maricic, Tomislav; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Kelso, Janet; Pollard, Katherine S.; Lachmann, Michael; Pääbo, Svante

    2012-01-01

    Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations. PMID:22412940

  4. Androgen receptor function links human sexual dimorphism to DNA methylation.

    Directory of Open Access Journals (Sweden)

    Ole Ammerpohl

    Full Text Available Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.

  5. A promoter DNA demethylation landscape of human hematopoietic differentiation.

    Science.gov (United States)

    Calvanese, Vincenzo; Fernández, Agustín F; Urdinguio, Rocío G; Suárez-Alvarez, Beatriz; Mangas, Cristina; Pérez-García, Vicente; Bueno, Clara; Montes, Rosa; Ramos-Mejía, Verónica; Martínez-Camblor, Pablo; Ferrero, Cecilia; Assenov, Yassen; Bock, Christoph; Menendez, Pablo; Carrera, Ana Clara; Lopez-Larrea, Carlos; Fraga, Mario F

    2012-01-01

    Global mechanisms defining the gene expression programs specific for hematopoiesis are still not fully understood. Here, we show that promoter DNA demethylation is associated with the activation of hematopoietic-specific genes. Using genome-wide promoter methylation arrays, we identified 694 hematopoietic-specific genes repressed by promoter DNA methylation in human embryonic stem cells and whose loss of methylation in hematopoietic can be associated with gene expression. The association between promoter methylation and gene expression was studied for many hematopoietic-specific genes including CD45, CD34, CD28, CD19, the T cell receptor (TCR), the MHC class II gene HLA-DR, perforin 1 and the phosphoinositide 3-kinase (PI3K) and results indicated that DNA demethylation was not always sufficient for gene activation. Promoter demethylation occurred either early during embryonic development or later on during hematopoietic differentiation. Analysis of the genome-wide promoter methylation status of induced pluripotent stem cells (iPSCs) generated from somatic CD34(+) HSPCs and differentiated derivatives from CD34(+) HSPCs confirmed the role of DNA methylation in regulating the expression of genes of the hemato-immune system, and indicated that promoter methylation of these genes may be associated to stemness. Together, these data suggest that promoter DNA demethylation might play a role in the tissue/cell-specific genome-wide gene regulation within the hematopoietic compartment.

  6. Recovery of latent fingerprints and DNA on human skin.

    Science.gov (United States)

    Färber, Doris; Seul, Andrea; Weisser, Hans-Joachim; Bohnert, Michael

    2010-11-01

    The project "Latent Fingerprints and DNA on Human Skin" was the first systematic research in Europe dealing with detection of fingerprints and DNA left by offenders on the skin of corpses. One thousand samples gave results that allow general statements on the materials and methods used. The tests were carried out according to a uniform trial structure. Fingerprints were deposited by natural donors on corpses. The latent fingerprints were treated with magnetic powder or black fingerprint powder. Afterward, they were lifted with silicone casting material (Isomark(®)) or gelatine foil. All lifts were swabbed to recover DNA. It was possible to visualize comparable and identifiable fingerprints on the skin of corpses (16%). In the same categories, magnetic powder (18.4%) yielded better results than black fingerprint powder (13.6%). The number of comparable and identifiable fingerprints decreased on the lifts (12.7%). Isomark(®) (14.9%) was the better lifting material in comparison with gelatine foil (10.1%). In one-third of the samples, DNA could be extracted from the powdered and lifted latents. Black fingerprint powder delivered the better result with a rate of 2.2% for full DNA profiles and profiles useful for exclusion in comparison with 1.8% for the magnetic powder traces. Isomark(®) (3.1%) yielded better results than gelatine foil (0.6%).

  7. Nuclear responses to depletion of mitochondrial DNA in human cells.

    Science.gov (United States)

    Li, K; Neufer, P D; Williams, R S

    1995-11-01

    The derivation of human cell lines devoid of mitochondrial (mt) DNA (rho 0) provides an opportunity to study nuclear responses to a chronic impairment of mitochondrial oxidative phosphorylation. Expression of several nuclear genes is induced in human rho 0 cells, including those encoding integral proteins of the mitochondrial inner membrane, intermediate filaments, and ribosomes. In contrast to conditions in which mitochondrial respiration is altered acutely, expression of heat shock proteins and immediate early genes is not induced. Mitochondria from rho 0 cells maintain a transmembrane electrochemical potential and are distributed within the cytoplasm of these cells in a manner indistinguishable from that of wild-type cells. We conclude that a chronic deficiency of mitochondrial oxidative phosphorylation produced by elimination of mtDNA is associated with a different pattern of gene induction than that provoked by other acute or subacute conditions that impair mitochondrial respiration or create energy demands in excess of mitochondrial respiratory capacity.

  8. DNA-binding specificities of human transcription factors.

    Science.gov (United States)

    Jolma, Arttu; Yan, Jian; Whitington, Thomas; Toivonen, Jarkko; Nitta, Kazuhiro R; Rastas, Pasi; Morgunova, Ekaterina; Enge, Martin; Taipale, Mikko; Wei, Gonghong; Palin, Kimmo; Vaquerizas, Juan M; Vincentelli, Renaud; Luscombe, Nicholas M; Hughes, Timothy R; Lemaire, Patrick; Ukkonen, Esko; Kivioja, Teemu; Taipale, Jussi

    2013-01-17

    Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.

  9. DNA barcoding of fungi causing infections in humans and animals.

    Science.gov (United States)

    Irinyi, Laszlo; Lackner, Michaela; de Hoog, G Sybren; Meyer, Wieland

    2016-02-01

    Correct species identification is becoming increasingly important in clinical diagnostics. Till now, many mycological laboratories rely on conventional phenotypic identification. But this is slow and strongly operator-dependent. Therefore, to improve the quality of pathogen identification, rapid, reliable, and objective identification methods are essential. One of the most encouraging approaches is molecular barcoding using the internal transcribed spacer (ITS) of the rDNA, which is rapid, easily achievable, accurate, and applicable directly from clinical specimens. It relies on the comparison of a single ITS sequence with a curated reference database. The International Society for Human and Animal Mycology (ISHAM) working group for DNA barcoding has recently established such a database, focusing on the majority of human and animal pathogenic fungi (ISHAM-ITS, freely accessible at http://www.isham.org/ or directly from http://its.mycologylab.org). For some fungi the use of secondary barcodes may be necessary.

  10. Recurrent DNA inversion rearrangements in the human genome

    DEFF Research Database (Denmark)

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia

    2007-01-01

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome...... on chromosomes 3, 15, and 19, were analyzed. The relative proportion of wild-type to rearranged structures was determined in DNA samples from blood obtained from different, unrelated individuals. The results obtained indicate that recurrent genomic rearrangements occur at relatively high frequency in somatic...... cells. Interestingly, the rearrangements studied were significantly more abundant in adults than in newborn individuals, suggesting that such DNA rearrangements might start to appear during embryogenesis or fetal life and continue to accumulate after birth. The relevance of our results in regard...

  11. Detection of extracellular genomic DNA scaffold in human thrombus

    DEFF Research Database (Denmark)

    Oklu, Rahmi; Albadawi, Hassan; Watkins, Michael T

    2012-01-01

    PURPOSE: Mechanisms underlying transition of a thrombus susceptible to tissue plasminogen activator (TPA) fibrinolysis to one that is resistant is unclear. Demonstration of a new possible thrombus scaffold may open new avenues of research in thrombolysis and may provide mechanistic insight...... thrombi. CONCLUSIONS: Extensive detection of genomic DNA associated with histones in the extracellular matrix of human and mouse thrombi suggest the presence of a new thrombus-associated scaffold....

  12. DNA typing of Calliphorids collected from human corpses in Malaysia.

    Science.gov (United States)

    Kavitha, R; Tan, T C; Lee, H L; Nazni, W A; Sofian-Azirun, M

    2013-03-01

    Estimation of post-mortem interval (PMI) is crucial for time of death determination. The advent of DNA-based identification techniques forensic entomology saw the beginning of a proliferation of molecular studies into forensically important Calliphoridae (Diptera). The use of DNA to characterise morphologically indistinguishable immature calliphorids was recognised as a valuable molecular tool with enormous practical utility. The local entomofauna in most cases is important for the examination of entomological evidences. The survey of the local entomofauna has become a fundamental first step in forensic entomological studies, because different geographical distributions, seasonal and environmental factors may influence the decomposition process and the occurrence of different insect species on corpses. In this study, calliphorids were collected from 13 human corpses recovered from indoors, outdoors and aquatic conditions during the post-mortem examination by pathologists from the government hospitals in Malaysia. Only two species, Chrysomya megacephala and Chrysomya rufifacies were recovered from human corpses. DNA sequencing was performed to study the mitochondrial encoded COI gene and to evaluate the suitability of the 1300 base pairs of COI fragments for identification of blow fly species collected from real crime scene. The COI gene from blow fly specimens were sequenced and deposited in GenBank to expand local databases. The sequenced COI gene was useful in identifying calliphorids retrieved from human corpses.

  13. Defining functional DNA elements in the human genome.

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P; Bernstein, Bradley E; Kundaje, Anshul; Marinov, Georgi K; Ward, Lucas D; Birney, Ewan; Crawford, Gregory E; Dekker, Job; Dunham, Ian; Elnitski, Laura L; Farnham, Peggy J; Feingold, Elise A; Gerstein, Mark; Giddings, Morgan C; Gilbert, David M; Gingeras, Thomas R; Green, Eric D; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D; Myers, Richard M; Pazin, Michael J; Ren, Bing; Stamatoyannopoulos, John A; Weng, Zhiping; White, Kevin P; Hardison, Ross C

    2014-04-29

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.

  14. Mitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All Vertebrates

    Science.gov (United States)

    Bar-Yaacov, Dan; Frumkin, Idan; Yashiro, Yuka; Schlesinger, Orr; Bieri, Philipp; Greber, Basil; Ban, Nenad; Zarivach, Raz; Alfonta, Lital; Pilpel, Yitzhak; Suzuki, Tsutomu; Mishmar, Dan

    2016-01-01

    The mitochondrial ribosome, which translates all mitochondrial DNA (mtDNA)-encoded proteins, should be tightly regulated pre- and post-transcriptionally. Recently, we found RNA-DNA differences (RDDs) at human mitochondrial 16S (large) rRNA position 947 that were indicative of post-transcriptional modification. Here, we show that these 16S rRNA RDDs result from a 1-methyladenosine (m1A) modification introduced by TRMT61B, thus being the first vertebrate methyltransferase that modifies both tRNA and rRNAs. m1A947 is conserved in humans and all vertebrates having adenine at the corresponding mtDNA position (90% of vertebrates). However, this mtDNA base is a thymine in 10% of the vertebrates and a guanine in the 23S rRNA of 95% of bacteria, suggesting alternative evolutionary solutions. m1A, uridine, or guanine may stabilize the local structure of mitochondrial and bacterial ribosomes. Experimental assessment of genome-edited Escherichia coli showed that unmodified adenine caused impaired protein synthesis and growth. Our findings revealed a conserved mechanism of rRNA modification that has been selected instead of DNA mutations to enable proper mitochondrial ribosome function. PMID:27631568

  15. Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3.

    Science.gov (United States)

    Au Yeung, Chi Lam; Tsang, Tsun Yee; Yau, Pak Lun; Kwok, Tim Tak

    2017-01-06

    Oncogenic protein E6 of human papillomavirus type 16 (HPV-16) is believed to involve in the aberrant methylation in cervical cancer as it upregulates DNA methyltransferase 1 (DNMT1) through tumor suppressor p53. In addition, DNA demethylating agent induces the expression of one of the HPV-16 E6 regulated microRNAs (miRs), miR-23b, in human cervical carcinoma SiHa cells. Thus, the importance of DNA methylation and miR-23b in HPV-16 E6 associated cervical cancer development is investigated. In the present study, however, it is found that miR-23b is not embedded in any typical CpG island. Nevertheless, a functional CpG island is predicted in the promoter region of C9orf3, the host gene of miR-23b, and is validated by methylation-specific PCR and bisulfite genomic sequencing analyses. Besides, c-MET is confirmed to be a target gene of miR-23b. Silencing of HPV-16 E6 is found to increase the expression of miR-23b, decrease the expression of c-MET and thus induce the apoptosis of SiHa cells through the c-MET downstream signaling pathway. Taken together, the tumor suppressive miR-23b is epigenetically inactivated through its host gene C9orf3 and this is probably a critical pathway during HPV-16 E6 associated cervical cancer development.

  16. Trapping DNA replication origins from the human genome.

    Science.gov (United States)

    Eki, Toshihiko; Murakami, Yasufumi; Hanaoka, Fumio

    2013-04-17

    Synthesis of chromosomal DNA is initiated from multiple origins of replication in higher eukaryotes; however, little is known about these origins' structures. We isolated the origin-derived nascent DNAs from a human repair-deficient cell line by blocking the replication forks near the origins using two different origin-trapping methods (i.e., UV- or chemical crosslinker-treatment and cell synchronization in early S phase using DNA replication inhibitors). Single-stranded DNAs (of 0.5-3 kb) that accumulated after such treatments were labeled with bromodeoxyuridine (BrdU). BrdU-labeled DNA was immunopurified after fractionation by alkaline sucrose density gradient centrifugation and cloned by complementary-strand synthesis and PCR amplification. Competitive PCR revealed an increased abundance of DNA derived from known replication origins (c-myc and lamin B2 genes) in the nascent DNA fractions from the UV-treated or crosslinked cells. Nucleotide sequences of 85 and 208 kb were obtained from the two libraries (I and II) prepared from the UV-treated log-phase cells and early S phase arrested cells, respectively. The libraries differed from each other in their G+C composition and replication-related motif contents, suggesting that differences existed between the origin fragments isolated by the two different origin-trapping methods. The replication activities for seven out of 12 putative origin loci from the early-S phase cells were shown by competitive PCR. We mapped 117 (library I) and 172 (library II) putative origin loci to the human genome; approximately 60% and 50% of these loci were assigned to the G-band and intragenic regions, respectively. Analyses of the flanking sequences of the mapped loci suggested that the putative origin loci tended to associate with genes (including conserved sites) and DNase I hypersensitive sites; however, poor correlations were found between such loci and the CpG islands, transcription start sites, and K27-acetylated histone H3 peaks.

  17. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Science.gov (United States)

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research.

  18. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Sabine Hagemann

    Full Text Available The DNA methyltransferase inhibitors azacytidine and decitabine represent archetypal drugs for epigenetic cancer therapy. To characterize the demethylating activity of azacytidine and decitabine we treated colon cancer and leukemic cells with both drugs and used array-based DNA methylation analysis of more than 14,000 gene promoters. Additionally, drug-induced demethylation was compared to methylation patterns of isogenic colon cancer cells lacking both DNA methyltransferase 1 (DNMT1 and DNMT3B. We show that drug-induced demethylation patterns are highly specific, non-random and reproducible, indicating targeted remethylation of specific loci after replication. Correspondingly, we found that CG dinucleotides within CG islands became preferentially remethylated, indicating a role for DNA sequence context. We also identified a subset of genes that were never demethylated by drug treatment, either in colon cancer or in leukemic cell lines. These demethylation-resistant genes were enriched for Polycomb Repressive Complex 2 components in embryonic stem cells and for transcription factor binding motifs not present in demethylated genes. Our results provide detailed insights into the DNA methylation patterns induced by azacytidine and decitabine and suggest the involvement of complex regulatory mechanisms in drug-induced DNA demethylation.

  19. Human DNA quantification and sample quality assessment: Developmental validation of the PowerQuant(®) system.

    Science.gov (United States)

    Ewing, Margaret M; Thompson, Jonelle M; McLaren, Robert S; Purpero, Vincent M; Thomas, Kelli J; Dobrowski, Patricia A; DeGroot, Gretchen A; Romsos, Erica L; Storts, Douglas R

    2016-07-01

    Quantification of the total amount of human DNA isolated from a forensic evidence item is crucial for DNA normalization prior to short tandem repeat (STR) DNA analysis and a federal quality assurance standard requirement. Previous commercial quantification methods determine the total human DNA and total human male DNA concentrations, but provide limited information about the condition of the DNA sample. The PowerQuant(®) System includes targets for quantification of total human and total human male DNA as well as targets for evaluating whether the human DNA is degraded and/or PCR inhibitors are present in the sample. A developmental validation of the PowerQuant(®) System was completed, following SWGDAM Validation Guidelines, to evaluate the assay's specificity, sensitivity, precision and accuracy, as well as the ability to detect degraded DNA or PCR inhibitors. In addition to the total human DNA and total human male DNA concentrations in a sample, data from the degradation target and internal PCR control (IPC) provide a forensic DNA analyst meaningful information about the quality of the isolated human DNA and the presence of PCR inhibitors in the sample that can be used to determine the most effective workflow and assist downstream interpretation.

  20. Voxelwise eigenvector centrality mapping of the human functional connectome reveals an influence of the catechol-O-methyltransferase val158met polymorphism on the default mode and somatomotor network.

    Science.gov (United States)

    Markett, Sebastian; Montag, Christian; Heeren, Behrend; Saryiska, Rayna; Lachmann, Bernd; Weber, Bernd; Reuter, Martin

    2016-06-01

    Functional connections between brain regions constitute the substrate of the human functional connectome, whose topography has been discussed as an endophenotype for psychiatric disorders. Genetic influences on the entire connectome, however, have been rarely investigated so far. We tested for connectome-wide influences of the val158met (rs4860) polymorphism on the catechol-O-methyltransferase (COMT) gene by applying formal network analysis and eigenvector centrality mapping on the voxel level to resting-state functional magnetic imaging data. This approach finds brain regions that are central in the network by aggregating local and global connectivity patterns, most importantly without the requirement to select regions or networks of interest. The COMT variant linked to high enzyme activity increased network centrality in distributed brain areas that are known to constitute the brain's default mode network. Further results also indicated a COMT influence on areas implicated in the somatomotor network. These findings are in line with the polymorphism's alleged role in cognitive processing and its role in psychotic disorders. The study is the first to demonstrate the influence of a functional and behaviorally relevant genetic variant on connectome-wide functional connectivity and is an important step toward establishing the functional connectome as an endophenotype for psychiatric and behavioral phenotypes.

  1. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Nikita A Kuznetsov

    Full Text Available Human 8-oxoguanine DNA glycosylase (hOGG1 is a key enzyme responsible for initiating the base excision repair of 7,8-dihydro-8-oxoguanosine (oxoG. In this study a thermodynamic analysis of the interaction of hOGG1 with specific and non-specific DNA-substrates is performed based on stopped-flow kinetic data. The standard Gibbs energies, enthalpies and entropies of specific stages of the repair process were determined via kinetic measurements over a temperature range using the van't Hoff approach. The three steps which are accompanied with changes in the DNA conformations were detected via 2-aminopurine fluorescence in the process of binding and recognition of damaged oxoG base by hOGG1. The thermodynamic analysis has demonstrated that the initial step of the DNA substrates binding is mainly governed by energy due to favorable interactions in the process of formation of the recognition contacts, which results in negative enthalpy change, as well as due to partial desolvation of the surface between the DNA and enzyme, which results in positive entropy change. Discrimination of non-specific G base versus specific oxoG base is occurring in the second step of the oxoG-substrate binding. This step requires energy consumption which is compensated by the positive entropy contribution. The third binding step is the final adjustment of the enzyme/substrate complex to achieve the catalytically competent state which is characterized by large endothermicity compensated by a significant increase of entropy originated from the dehydration of the DNA grooves.

  2. The DNA methylome of human peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Yingrui Li

    Full Text Available DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand, we report a comprehensive (92.62% methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE. These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.

  3. Holes influence the mutation spectrum of human mitochondrial DNA

    Science.gov (United States)

    Villagran, Martha; Miller, John

    Mutations drive evolution and disease, showing highly non-random patterns of variant frequency vs. nucleotide position. We use computational DNA hole spectroscopy [M.Y. Suarez-Villagran & J.H. Miller, Sci. Rep. 5, 13571 (2015)] to reveal sites of enhanced hole probability in selected regions of human mitochondrial DNA. A hole is a mobile site of positive charge created when an electron is removed, for example by radiation or contact with a mutagenic agent. The hole spectra are quantum mechanically computed using a two-stranded tight binding model of DNA. We observe significant correlation between spectra of hole probabilities and of genetic variation frequencies from the MITOMAP database. These results suggest that hole-enhanced mutation mechanisms exert a substantial, perhaps dominant, influence on mutation patterns in DNA. One example is where a trapped hole induces a hydrogen bond shift, known as tautomerization, which then triggers a base-pair mismatch during replication. Our results deepen overall understanding of sequence specific mutation rates, encompassing both hotspots and cold spots, which drive molecular evolution.

  4. Environmental car exhaust pollution damages human sperm chromatin and DNA.

    Science.gov (United States)

    Calogero, A E; La Vignera, S; Condorelli, R A; Perdichizzi, A; Valenti, D; Asero, P; Carbone, U; Boggia, B; De Rosa, N; Lombardi, G; D'Agata, R; Vicari, L O; Vicari, E; De Rosa, M

    2011-06-01

    The adverse role of traffic pollutants on male fertility is well known. Aim of this study was to evaluate their effects on sperm chromatin/DNA integrity. To accomplish this, 36 men working at motorway tollgates and 32 unexposed healthy men (controls) were enrolled. All of them were interviewed about their lifestyle. Hormone, semen samples, and environmental and biological markers of pollution were evaluated. Sperm chromatin and DNA integrity were evaluated by flow cytometry following propidium iodide staining and TUNEL assay, respectively. LH, FSH, and testosterone serum levels were within the normal range in tollgate workers. Sperm concentration, total sperm count, total and progressive motility, and normal forms were significantly lower in these men compared with controls. Motorway tollgate workers had a significantly higher percentage of spermatozoa with damaged chromatin and DNA fragmentation, a late sign of apoptosis, compared with controls. A significant direct correlation was found between spermatozoa with damaged chromatin or fragmented DNA and the length of occupational exposure, suggesting a time-dependent relationship. This study showed that car exhaust exposure has a genotoxic effect on human spermatozoa. This may be of relevant importance not only for the reproductive performance of the men exposed, but also for the offspring health.

  5. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Directory of Open Access Journals (Sweden)

    Jinsil Kim

    2013-01-01

    Full Text Available The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3 gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies.

  6. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Science.gov (United States)

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  7. Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA.

    Science.gov (United States)

    Wong, Nicholas C; Ng, Jane; Hall, Nathan E; Lunke, Sebastian; Salmanidis, Marika; Brumatti, Gabriela; Ekert, Paul G; Craig, Jeffrey M; Saffery, Richard

    2013-07-01

    Illumina Infinium Human Methylation (HM) BeadChips are widely used for measuring genome-scale DNA methylation, particularly in relation to epigenome-wide association studies (EWAS) studies. The methylation profile of human samples can be assessed accurately and reproducibly using the HM27 BeadChip (27,578 CpG sites) or its successor, the HM450 BeadChip (482,421 CpG sites). To date no mouse equivalent has been developed, greatly hindering the application of this methodology to the wide range of valuable murine models of disease and development currently in existence. We found 1308 and 13,715 probes from HM27 and HM450 BeadChip respectively, uniquely matched the bisulfite converted reference mouse genome (mm9). We demonstrate reproducible measurements of DNA methylation at these probes in a range of mouse tissue samples and in a murine cell line model of acute myeloid leukaemia. In the absence of a mouse counterpart, the Infinium Human Methylation BeadChip arrays have utility for methylation profiling in non-human species.

  8. Human Rad51 mediated DNA unwinding is facilitated by conditions that favour Rad51-dsDNA aggregation

    Directory of Open Access Journals (Sweden)

    Kulkarni Anagha

    2009-01-01

    Full Text Available Abstract Background Human Rad51 (RAD51, analogous to its bacterial homolog, RecA, binds and unwinds double stranded DNA (dsDNA in the presence of certain nucleotide cofactors. ATP hydrolysis is not required for this process, because even ATP non hydrolysable analogs like AMP-PNP and ATPγS, support DNA unwinding. Even ADP, the product of ATP hydrolysis, feebly supports DNA unwinding. Results We find that human Rad52 (RAD52 stimulates RAD51 mediated DNA unwinding in the presence of all Adenine nucleotide cofactors, (except in AMP and no nucleotide conditions that intrinsically fail to support unwinding reaction while enhancing aggregation of RAD51-dsDNA complexes in parallel. Interestingly, salt at low concentration can substitute the role of RAD52, in facilitating aggregation of RAD51-dsDNA complexes, that concomitantly also leads to better unwinding. Conclusion RAD52 itself being a highly aggregated protein perhaps acts as scaffold to bring together RAD51 and DNA molecules into large co-aggregates of RAD52-RAD51-DNA complexes to promote RAD51 mediated DNA unwinding reaction, when appropriate nucleotide cofactors are available, presumably through macromolecular crowding effects. Our work highlights the functional link between aggregation of protein-DNA complexes and DNA unwinding in RAD51 system.

  9. Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee.

    OpenAIRE

    Jørgensen, A L; Laursen, H B; Jones, C; Bak, A L

    1992-01-01

    Centromeric alphoid DNA in primates represents a class of evolving repeat DNA. In humans, chromosomes 13 and 21 share one subfamily of alphoid DNA while chromosomes 14 and 22 share another subfamily. We show that similar pairwise homogenizations occur in the chimpanzee (Pan troglodytes), where chromosomes 14 and 22, homologous to human chromosomes 13 and 21, share one partially homogenized alphoid DNA subfamily and chromosomes 15 and 23, homologous to human chromosomes 14 and 22, share anothe...

  10. [Detection of DNA human cytomegalovirus of a molecular methods: hybrid capture DNA CMV by immunocompromised].

    Science.gov (United States)

    Mhiri, Leila; Arrouji, Zakia; Slim, Amine; Ben Redjeb, Saida

    2006-10-01

    Human cytomegalovirus (HCMV), a member of the beta-virus herpes family, is a ubiquitous human pathogen. After a primary infection, HCMV establishes life latency. HCMV rarely causes symptomatic disease in an immunocompetent host, however, it is a major cause of infectious morbidity and mortality in immunocompromised individuals and developing fetuses. The HCMV genome consists of 240 kbp of double stranded DNA. Early diagnosis molecular of CMV infection is important. The objective of this study was to develop a molecular methods: Quantitative Hybrid capture for the detection of DNA CMV. We present results for 200 immunocompromised collected from 1999 to 2003 (122 men and 78 women, whom mean age was 35 years). Our results showed that 25% of women and 36% of men were positif for hybrid capture DNA CMV. This simple test (cold probe) provide quantitative and fast results. Also the efficacity of anti-CMV therapy can be followed. More over, in contrary with pp65-antigenemia assay and CMV PCR, this test can be managed on biopsy sample.

  11. The use of dimorphic Alu insertions in human DNA fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Novick, G.E.; Gonzalez, T.; Garrison, J.; Novick, C.C.; Herrera, R.J. [Florida International Univ., Miami, FL (United States). Dept. of Biological Sciences; Batzer, M.A. [Lawrence Livermore National Lab., CA (United States); Deininger, P.L. [Louisiana State Univ., New Orleans, LA (United States). Medical Center

    1992-12-04

    We have characterized certain Human Specific Alu Insertions as either dimorphic (TPA25, PV92, APO), sightly dimorphic (C2N4 and C4N4) or monomorphic (C3N1, C4N6, C4N2, C4N5, C4N8), based on studies of Caucasian, Asian, American Black and African Black populations. Our approach is based upon: (1) PCR amplification using primers directed to the sequences that flank the site of insertion of the different Alu elements studied; (2) gel electrophoresis and scoring according to the presence or absence of an Alu insertion in one or both homologous chromosomes; (3) allelic frequencies calculated and compared according to Hardy-Weinberg equilibrium. Our DNA fingerprinting procedure using PCR amplification of dimorphic Human Specific Alu insertions, is stable enough to be used not only as a tool for genetic mapping but also to characterize populations, study migrational patterns and track the inheritance of human genetic disorders.

  12. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    the high-bendability regions position nucleosomes at the downstream end of the transcriptional start point, and consider the possibility of interaction between histone-like TAFs and this area. We also propose the use of this structural signature in computational promoter-finding algorithms.......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...... with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...

  13. Robotics for recombinant DNA and human genetics research

    Energy Technology Data Exchange (ETDEWEB)

    Beugelsdijk, T.J.

    1990-01-01

    In October of 1989, molecular biologists throughout the world formally embarked on ultimately determining the set of genetic instructions for a human being. Called by some the Manhattan Project'' a molecular biology, pursuit of this goal is projected to require approximately 3000 man years of effort over a 15-year period. The Humane Genome Initiative is a worldwide research effort that has the goal of analyzing the structure of human deoxyribonucleic acid (DNA) and determining the location of all human genes. The Department of Energy (DOE) has designated three of its national laboratories as centers for the Human Genome Project. These are Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Lawrence Berkeley Laboratory (LBL). These laboratories are currently working on different, but complementary technology development areas in support of the Human Genome Project. The robotics group at LANL is currently working at developing the technologies that address the problems associated with physical mapping. This article describes some of these problems and discusses some of the robotics approaches and engineering tolls applicable to their solution. 7 refs., 8 figs., 1 tab.

  14. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  15. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    Science.gov (United States)

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  16. Base composition at mtDNA boundaries suggests a DNA triple helix model for human mitochondrial DNA large-scale rearrangements.

    Science.gov (United States)

    Rocher, Christophe; Letellier, Thierry; Copeland, William C; Lestienne, Patrick

    2002-06-01

    Different mechanisms have been proposed to account for mitochondrial DNA (mtDNA) instability based on the presence of short homologous sequences (direct repeats, DR) at the potential boundaries of mtDNA rearrangements. Among them, slippage-mispairing of the replication complex during the asymmetric replication cycle of the mammalian mitochondrial DNA has been proposed to account for the preferential localization of deletions. This mechanism involves a transfer of the replication complex from the first neo-synthesized heavy (H) strand of the DR1, to the DR2, thus bypassing the intervening sequence and producing a deleted molecule. Nevertheless, the nature of the bonds between the DNA strands remains unknown as the forward sequence of DR2, beyond the replication complex, stays double-stranded. Here, we have analyzed the base composition of the DR at the boundaries of mtDNA deletions and duplications and found a skewed pyrimidine content of about 75% in the light-strand DNA template. This suggests the possible building of a DNA triple helix between the G-rich neo-synthesized DR1 and the base-paired homologous G.C-rich DR2. In vitro experiments with the purified human DNA polymerase gamma subunits enabled us to show that the third DNA strand may be used as a primer for DNA replication, using a template with the direct repeat forming a hairpin, with which the primer could initiate DNA replication. These data suggest a novel molecular basis for mitochondrial DNA rearrangements through the distributive nature of the DNA polymerase gamma, at the level of the direct repeats. A general model accounting for large-scale mitochondrial DNA deletion and duplication is proposed. These experiments extend to a DNA polymerase from an eucaryote source the use of a DNA triple helix strand as a primer, like other DNA polymerases from phage and bacterial origins.

  17. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase

    NARCIS (Netherlands)

    Bharti, S.K.; Sommers, J.A.; Zhou, J.; Kaplan, D.L.; Spelbrink, J.N.; Mergny, J.L.; Brosh, R.M., Jr.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective

  18. An integrated encyclopedia of DNA elements in the human genome.

    Science.gov (United States)

    2012-09-01

    The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

  19. The Three Genetics (Nuclear DNA, Mitochondrial DNA, and Gut Microbiome) of Longevity in Humans Considered as Metaorganisms

    Science.gov (United States)

    Candela, Marco; Brigidi, Patrizia; Luiselli, Donata; Bacalini, Maria Giulia; Salvioli, Stefano; Capri, Miriam; Collino, Sebastiano; Franceschi, Claudio

    2014-01-01

    Usually the genetics of human longevity is restricted to the nuclear genome (nDNA). However it is well known that the nDNA interacts with a physically and functionally separated genome, the mitochondrial DNA (mtDNA) that, even if limited in length and number of genes encoded, plays a major role in the ageing process. The complex interplay between nDNA/mtDNA and the environment is most likely involved in phenomena such as ageing and longevity. To this scenario we have to add another level of complexity represented by the microbiota, that is, the whole set of bacteria present in the different part of our body with their whole set of genes. In particular, several studies investigated the role of gut microbiota (GM) modifications in ageing and longevity and an age-related GM signature was found. In this view, human being must be considered as “metaorganism” and a more holistic approach is necessary to grasp the complex dynamics of the interaction between the environment and nDNA-mtDNA-GM of the host during ageing. In this review, the relationship between the three genetics and human longevity is addressed to point out that a comprehensive view will allow the researchers to properly address the complex interactions that occur during human lifespan. PMID:24868529

  20. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    Science.gov (United States)

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  1. The human Bloom syndrome gene suppresses the DNA replication and repair defects of yeast dna2 mutants.

    Science.gov (United States)

    Imamura, Osamu; Campbell, Judith L

    2003-07-08

    Bloom syndrome is a disorder of profound and early cancer predisposition in which cells become hypermutable, exhibit high frequency of sister chromatid exchanges, and show increased micronuclei. BLM, the gene mutated in Bloom syndrome, has been cloned previously, and the BLM protein is a member of the RecQ family of DNA helicases. Many lines of evidence suggest that BLM is involved either directly in DNA replication or in surveillance during DNA replication, but its specific roles remain unknown. Here we show that hBLM can suppress both the temperature-sensitive growth defect and the DNA damage sensitivity of the yeast DNA replication mutant dna2-1. The dna2-1 mutant is defective in a helicase-nuclease that is required either to coordinate with the crucial Saccharomyces cerevisiae (sc) FEN1 nuclease in Okazaki fragment maturation or to compensate for scFEN1 when its activity is impaired. We show that human BLM interacts with both scDna2 and scFEN1 by using coimmunoprecipitation from yeast extracts, suggesting that human BLM participates in the same steps of DNA replication or repair as scFEN1 and scDna2.

  2. DNA-hypomethylating agent, 5'-azacytidine, induces cyclooxygenase-2 expression via the PI3-kinase/Akt and extracellular signal-regulated kinase-1/2 pathways in human HT1080 fibrosarcoma cells.

    Science.gov (United States)

    Yu, Seon-Mi; Kim, Song-Ja

    2015-10-01

    The cytosine analogue 5'-azacytidine (5'-aza) induces DNA hypomethylation by inhibiting DNA methyltransferase. In clinical trials, 5'-aza is widely used in epigenetic anticancer treatments. Accumulated evidence shows that cyclooxygenase-2 (COX-2) is overexpressed in various cancers, indicating that it may play a critical role in carcinogenesis. However, few studies have been performed to explore the molecular mechanism underlying the increased COX-2 expression. Therefore, we tested the hypothesis that 5'-aza regulates COX-2 expression and prostaglandin E2 (PGE2) production. The human fibrosarcoma cell line HT1080, was treated with various concentrations of 5'-aza for different time periods. Protein expressions of COX-2, DNA (cytosine-5)-methyltransferase 1 (DNMT1), pAkt, Akt, extracellular signal-regulated kinase (ERK), and phosphorylated ERK (pERK) were determined using western blot analysis, and COX-2 mRNA expression was determined using RT-PCR. PGE2 production was evaluated using the PGE2 assay kit. The localization and expression of COX-2 were determined using immunofluorescence staining. Treatment with 5'-aza induces protein and mRNA expression of COX-2. We also observed that 5'-aza-induced COX-2 expression and PGE2 production were inhibited by S-adenosylmethionine (SAM), a methyl donor. Treatment with 5'-aza phosphorylates PI3-kinase/Akt and ERK-1/2; inhibition of these pathways by LY294002, an inhibitor of PI3-kinase/Akt, or PD98059, an inhibitor of ERK-1/2, respectively, prevents 5'-aza-induced COX-2 expression and PGE2 production. Overall, these observations indicate that the hypomethylating agent 5'-aza modulates COX-2 expression via the PI3-kinase/Akt and ERK-1/2 pathways in human HT1080 fibrosarcoma cells.

  3. Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture

    DEFF Research Database (Denmark)

    Mytych, Jennifer; Wnuk, Maciej; Rattan, Suresh

    2016-01-01

    oxygenease HO-1), sirtuin (SIRT1), and DNA methyltransferase II (DNMT2). These results imply that ND and SiO2-NP at low doses are potential hormetins, which exert mild stress-induced beneficial hormetic effects through improved survival, longevity, maintenance, repair and function of human cells...

  4. The single-strand DNA binding activity of human PC4 preventsmutagenesis and killing by oxidative DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.; Volkert, Michael R.

    2004-02-01

    Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.

  5. ISFG: Recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations

    DEFF Research Database (Denmark)

    Linacre, A.; Gusmão, L.; Hecht, W.;

    2010-01-01

    The use of non-human DNA typing in forensic science investigations, and specifically that from animal DNA, is ever increasing. The term animal DNA in this document refers to animal species encountered in a forensic science examination but does not include human DNA. Non-human DNA may either be......: the trade and possession of a species, or products derived from a species, which is contrary to legislation; as evidence where the crime is against a person or property; instances of animal cruelty; or where the animal is the offender. The first instance is addressed by determining the species present......, and the other scenarios can often be addressed by assigning a DNA sample to a particular individual organism. Currently there is little standardization of methodologies used in the forensic analysis of animal DNA or in reporting styles. The recommendations in this document relate specifically to animal DNA...

  6. A preliminary analysis of the DNA and diet of the extinct Beothuk: a systematic approach to ancient human DNA

    DEFF Research Database (Denmark)

    Kuch, Melanie; Gröcke, Darren R; Knyf, Martin C

    2007-01-01

    We have used a systematic protocol for extracting, quantitating, sexing and validating ancient human mitochondrial and nuclear DNA of one male and one female Beothuk, a Native American population from Newfoundland, which became extinct approximately 180 years ago. They carried mtDNA haplotypes......, and that their water sources were pooled or stored water. Both mtDNA sequence data and Y SNP data hint at possible gene flow or a common ancestral population for both the Beothuk and the current day Mikmaq, but more importantly the data do not lend credence to the proposed idea that the Beothuk (specifically......, Nonosabasut) were of admixed (European-Native American) descent. We also analyzed patterns of DNA damage in the clones of authentic mtDNA sequences; there is no tendency for DNA damage to occur preferentially at previously defined mutational hotspots, suggesting that such mutational hotspots...

  7. The Cloning of the Human Tumor Supressor Gene INGI: DNA Cloning into Plasmid Vector and DNA Analysis by Restriction Enzymes

    Directory of Open Access Journals (Sweden)

    Elza Ibrahim Auerkari

    2015-11-01

    Full Text Available DNA cloning is one of the most important techniques In the field of molecular biology, with a critical role in analyzing the structure and function of genes and their adjacent regulatory regions. DNA cloning is helpful in learning fundamental molecular biological techniques, since DNA cloning involves a series of them, such as polymerase chain reaction (PCR, DNA ligation, bacterial transformation, bacterial culture, plasmid DNA extraction, DNA digestion with restriction enzymes and agarose gel electrophoresis. In this paper the cloning of the human tumor suppressor gene INGI has been used to illustrate the methodology. The gene was amplified by PCR, cloned into a TA-cloning vectore, and restriction enzyme mapping was used to distinguish the sense INGI construct from the antisense INGI construct.

  8. Direct visual detection of DNA based on the light scattering of silica nanoparticles on a human papillomavirus DNA chip.

    Science.gov (United States)

    Piao, Jing Yu; Park, Eun Hee; Choi, Kihwan; Quan, Bo; Kang, Dong Ho; Park, Pan Yun; Kim, Dai Sik; Chung, Doo Soo

    2009-12-15

    A detection system for a human papillomavirus (HPV) DNA chip based on the light scattering of aggregated silica nanoparticle probes is presented. In the assay, a target HPV DNA is sandwiched between the capture DNA immobilized on the chip and the probe DNA immobilized on the plain silica nanoparticle. The spot where the sandwich reaction occurs appears bright white and is readily distinguishable to the naked eye. Scanning electron microscopy images clearly show the aggregation of the silica nanoparticle probes. When three different sized (55 nm, 137 nm, 286 nm) plain silica nanoparticles were compared, probes of the larger silica nanoparticles showed a higher scattering intensity. Using 286-nm silica nanoparticles, the spots obtained with 200 pM of target DNA were visually detectable. The demonstrated capability to detect a disease related target DNA with direct visualization without using a complex detection instrument provides the prerequisite for the development of portable testing kits for genotyping.

  9. involvement of methyltransferases enzymes during the energy ...

    African Journals Online (AJOL)

    Mgina

    semesiae sp. nov. to evaluate whether the enzyme systems involved were constitutive or inductive. ... methyl transfer reaction in DMS conversion proceeds in a manner similar to methyltransferases ..... influence the rate of methanogenesis.

  10. New spiro-acridines: DNA interaction, antiproliferative activity and inhibition of human DNA topoisomerases.

    Science.gov (United States)

    Almeida, Sinara Mônica Vitalino de; Lafayette, Elizabeth Almeida; Silva, Willams Leal; Lima Serafim, Vanessa de; Menezes, Thais Meira; Neves, Jorge Luiz; Ruiz, Ana Lucia Tasca Gois; Carvalho, João Ernesto de; Moura, Ricardo Olímpio de; Beltrão, Eduardo Isidoro Carneiro; Carvalho Júnior, Luiz Bezerra de; Lima, Maria do Carmo Alves de

    2016-11-01