WorldWideScience

Sample records for human cytochrome b5

  1. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene.

    Science.gov (United States)

    Stiborová, Marie; Indra, Radek; Moserová, Michaela; Frei, Eva; Schmeiser, Heinz H; Kopka, Klaus; Philips, David H; Arlt, Volker M

    2016-08-15

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by (32)P-postlabeling was characterized as 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP.

  2. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1)

    Science.gov (United States)

    Simonov, Alexandr N.; Holien, Jessica K.; Yeung, Joyee Chun In; Nguyen, Ann D.; Corbin, C. Jo; Zheng, Jie; Kuznetsov, Vladimir L.; Auchus, Richard J.; Conley, Alan J.; Bond, Alan M.; Parker, Michael W.; Rodgers, Raymond J.; Martin, Lisandra L.

    2015-01-01

    Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions. PMID:26587646

  3. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1.

    Directory of Open Access Journals (Sweden)

    Alexandr N Simonov

    Full Text Available Cytochrome P450c17 (P450 17A1, CYP17A1 is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions.

  4. Cytochrome b5 from Giardia lamblia.

    Science.gov (United States)

    Alam, Samiah; Yee, Janet; Couture, Manon; Takayama, Shin-ichi J; Tseng, Wan-Hsin; Mauk, A Grant; Rafferty, Steven

    2012-12-01

    The protozoan intestinal parasite Giardia lamblia lacks mitochondria and the ability to make haem yet encodes several putative haem-binding proteins, including three of the cytochrome b(5) family. We cloned one of these (gCYTb5-I) and expressed it within Escherichia coli as a soluble holoprotein. UV-visible and resonance Raman spectra of gCYTb5-I resemble those of microsomal cytochrome b(5), and homology modelling supports a structure in which a pair of invariant histidine residues act as axial ligands to the haem iron. The reduction potential of gCYTb5-I is -165 mV vs. SHE and is relatively low compared to most values (-110 to +80 mV) for this class of protein. The amino- and carboxy-terminal sequences that flank the central haem-binding core of the Giardia cytochromes are highly charged and differ from those of other family members. A core gCYTb5-I variant lacking these flanking sequences was also able to bind haem. The presence of one actual and two probable functional cytochromes b(5) in Giardia is evidence of uncharacterized cytochrome-mediated metabolic processes within this medically important protist.

  5. Structure of Physarum polycephalum cytochrome b5 reductase at 1.56 A resolution.

    Science.gov (United States)

    Kim, Sangwoo; Suga, Michihiro; Ogasahara, Kyoko; Ikegami, Terumi; Minami, Yoshiko; Yubisui, Toshitsugu; Tsukihara, Tomitake

    2007-04-01

    Physarum polycephalum cytochrome b(5) reductase catalyzes the reduction of cytochrome b(5) by NADH. The structure of P. polycephalum cytochrome b(5) reductase was determined at a resolution of 1.56 A. The molecular structure was compared with that of human cytochrome b(5) reductase, which had previously been determined at 1.75 A resolution [Bando et al. (2004), Acta Cryst. D60, 1929-1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data.

  6. The role of cytochrome b5 structural domains in interaction with cytochromes P450.

    Science.gov (United States)

    Sergeev, G V; Gilep, A A; Usanov, S A

    2014-05-01

    To understand the role of the structural elements of cytochrome b5 in its interaction with cytochrome P450 and the catalysis performed by this heme protein, we carried out comparative structural and functional analysis of the two major mammalian forms of membrane-bound cytochrome b5 - microsomal and mitochondrial, designed chimeric forms of the heme proteins in which the hydrophilic domain of one heme protein is replaced by the hydrophilic domain of another one, and investigated the effect of the highly purified native and chimeric heme proteins on the enzymatic activity of recombinant cytochromes P4503A4 and P45017A1 (CYP3A4 and CYP17A1). We show that the presence of a hydrophobic domain in the structure of cytochrome b5 is necessary for its effective interaction with its redox partners, while the nature of the hydrophobic domain has no significant effect on the ability of cytochrome b5 to stimulate the activity of cytochrome P450-catalyzed reactions. Thus, the functional properties of cytochrome b5 are mainly determined by the structure of the heme-binding domain.

  7. Kinetics of flavin semiquinone reduction of the components of the cytochrome c-cytochrome b5 complex.

    Science.gov (United States)

    Eltis, L; Mauk, A G; Hazzard, J T; Cusanovich, M A; Tollin, G

    1988-07-26

    The kinetics of flavin semiquinone reduction of the components of the 1:1 complex formed by cytochrome c with either cytochrome b5 or a derivative of cytochrome b5 in which the heme propionates are esterified (DME-cytochrome b5) have been studied. The rate constant for the reduction of horse heart cytochrome c by the electrostatically neutral lumiflavin semiquinone (LfH) is unaffected by complexation with native cytochrome b5 at pH 7. However, complex formation with DME-cytochrome b5 (pH 7) decreases by 35% the rate constant for cytochrome c reduction by LfH. At pH 8, complex formation with native cytochrome b5 decreases the rate constant for cytochrome c reduction by LfH markedly, whereas the rate constant for cytochrome c reduction, either unbound or in the complex formed with DME-cytochrome b5, is increased 2-fold relative to pH 7. These results indicate that the accessibility of the cytochrome c heme is not the same in the complexes formed with the two cytochrome b5 derivatives and that the docking geometry of the complex formed by the two native cytochromes is pH dependent. Binding of horse heart and tuna cytochromes c to native and DME-cytochromes b5 decreases the rate constants for reduction of cytochrome c by the negatively charged flavin mononucleotide semiquinone (FMNH) by approximately 30% and approximately 40%, respectively. This finding is attributed to substantial neutralization of the positive electrostatic potential surface of cytochrome c that occurs when it binds to either form of cytochrome b5.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. [Protein-protein interactions of cytochromes P450 3A4 and 3A5 with their intermediate redox partners cytochromes b5].

    Science.gov (United States)

    Gnedenko, O V; Ivanov, A S; Yablokov, E O; Usanov, S A; Mukha, D V; Sergeev, G V; Kuzikov, A V; Bulko, T V; Moskaleva, N E; Shumyantseva, V V; Archakov, A I

    2015-01-01

    Molecular interactions between proteins redox partners (cytochromes Р450 3А4, 3А5 and cytochrome b5) within the monooxygenase system, which is known to be involved in drug biotransformation, were investigated. Human cytochromes Р450 3А4 and 3А5 (CYP3A4 and CYP3A5) form complexes with various cytochromes b5: the microsomal (b5mc) and mitochondrial (b5om) forms of this protein, as well as with 2 "chimeric" proteins, b5(om-mc), b5(mc-om). Kinetic constants and equilibrium dissociation constants were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was only observed upon their interactions with cytochrome b5om. Electroanalytical characteristics of electrodes with immobilized hemoproteins were obtained. The electrochemical analysis of CYP3A4, CYP3A5, b5mc, b5om, b5(om-mc), and b5(mc-om) immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435  -0.350 V (vs. Ag/AgCl). Cytochrome b5mc was shown to be capable of stimulating the electrocatalytic activity of CYP3A4 in the presence of its substrate testosterone.

  9. Electrostatic effect on electron transfer between cytochrome b5 and cytochrome c

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The binding and electron transfer between wild type, E44A, E56A, E44/56A, E44/48/56A/D60Aand F35Y variants of cytochrome b5 and cytochrome c were studied. When mixed with cytochrome c, the cytochrome b5E44/48/56A/D60A did not show the typical UV-vis difference spectrum of absorption, indicating that the alteration ofthe surface electrostatic potential obviously influenced the spectrum. The electron transfer rates of wild type cytochromeb5, its variants and cytochrome e at different temperature and ionic strength exhibited an order of F35Y > wild type >E56A > E44A > E44/48/56A/D60A. The enthalpy and entropy of the reaction did not change obviously, suggestingthat the mutation did not significantly disturb the electron transfer conformation. The investigation of electron transfer rateconstants at different ionic strength demonstrated that electrostatic interaction obviously affected the electron transfer pro-cess. The significant difference of Cyt b5 F35Y and E44/48/56A/D60A from the wild type protein further confirmed thegreat importance of the electrostatic interaction in the protein electron transfer.

  10. Structure and properties of the recombinant NADH-cytochrome b5 reductase of Physarum polycephalum.

    Science.gov (United States)

    Ikegami, Terumi; Kameyama, Eiji; Yamamoto, Shin-ya; Minami, Yoshiko; Yubisui, Toshitsugu

    2007-03-01

    A cDNA for NADH-cytochrome b(5) reductase of Physarum polycephalum was cloned from a cDNA library, and the nucleotide sequence of the cDNA was determined (accession no. AB259870). The DNA of 943 base pairs contains 5'- and 3'-noncoding sequences, including a polyadenylation sequence, and a coding sequence of 843 base pairs. The amino acid sequence (281 residues) deduced from the nucleotide sequence was 25 residues shorter than those of vertebrate enzymes. Nevertheless, the recombinant Physarum enzyme showed enzyme activity comparable to that of the human enzyme. The recombinant Physarum enzyme showed a pH optimum of around 6.0, and apparent K(m) values of 2 microM and 14 microM for NADH and cytochrome b(5) respectively. The purified recombinant enzyme showed a typical FAD-derived absorption peak of cytochrome b(5) reductase at around 460 nm, with a shoulder at 480 nm. These results suggest that the Physarum enzyme plays an important role in the organism.

  11. Structures of Cytochrome b 5 Mutated at the Charged Surface-Residues and Their Interactions with Cytochrome c

    Institute of Scientific and Technical Information of China (English)

    WU,Jian(邬键); WANG,Yun-Hua(王韵华); GAN,Jian-Hua(甘建华); WANG,Wen-Hu(王文虎); SUN,Bing-Yun(孙炳耘); HUANG,Zhong-Xian(黄仲贤); XIA,Zong-Xiang(夏宗芗)

    2002-01-01

    Glu44, Glu48, Glu56 and Asp60 are the negatively charged residues located at the molecular surface of cytochrome b5@Two mutants of cytochrome b5 were prepared, in which two or all of these four residues were mutated to alanines. The mutations give rise to slightly positive shifts of the redox potentials of cytochrome b5 and obvious decrease of the cytochrome b5-cytochrome c binding constants and electron transfer rates. The crystal structures of the two mutants were determined at 0.18 nm resolution, showing no alteration in overall structures and exhibiting slight chages in the local conformations around the mutation sites as compared with the wild-type protein. Based on the crystal structure of the quadruple-site mutant, a model for the binding of this mutant with cytochrome c is proposed, which involves the salt bridges from Glu37, Glu38 and heme propionate of cytochrome b5 to three lysines of cytochrome c and can well account for the properties and behaviors of this mutant.

  12. Characterization and biosynthesis of cytochrome b5 in rat liver microsomes

    Science.gov (United States)

    Sargent, J. R.; Vadlamudi, B. P.

    1968-01-01

    1. Cytochrome b5 is released from rat liver microsomes by both proteolytic enzymes and by treatments that disrupt phospholipids. Cytochrome P-420 is only released to a marked extent by treatments that disrupt phospholipids. 2. Cytochrome b5 was isolated in a pure state from both the rough and smooth fractions of rat liver microsomes after treatment with trypsin, and was shown to contain two cytochrome components with identical spectral properties. 3. Amino acid analyses of the two components are presented, together with peptide `fingerprint' patterns of tryptic digests of the two components. 4. Studies based on the direct isolation of cytochrome b5 after administration of a single dose of radioactive amino acid to rats demonstrate that the cytochrome is synthesized initially in the rough fraction of microsomes and only subsequently appears in the smooth fraction. 5. Isolated rat liver microsomes are capable of incorporating radioactive amino acids into cytochrome b5 under standard conditions. 6. Under these conditions the amino acid is incorporated into peptide linkage in the cytochrome. PMID:16742610

  13. Proline-40 is Essential to Maintaining Cytochrome b5's Stability and Its Electron Transfer with Cytochrome c

    Institute of Scientific and Technical Information of China (English)

    WANG,Zhi-Qiang(王志强); WU,Jian(邬建); WANG,Yun-Hua(王韵华); QIAN,Wen(钱雯); XIE,Yi(谢毅); XIA,Zong-Xiang(夏宗芗); HUANG,Zhong-Xian(黄仲贤)

    2002-01-01

    In order to illustrate the roles played by Pro40 in the sturcture,properties and functions of Cytochrome b5, three mutated genes, P40V, P40Y, P40G were constructed in this work. Only the P40V gene was successfully expressed into holoprotein in E. coli JM83. According to the results of X-ray crystallographic analysis and various kinds of spectrostoscopy, it is evident that substituting valine for Pro40 does not result in significant alterations in the protein' soverall structure; however,local coformational perturbations in the proximity of the heme do occur. The redox potential of the P40V mutant is 40 mV lower than that of the wild type protein. Its stability towards heat, urea, acid and ethanol were significantly decreased. The mutation leads to a decrease in the hydrophobicity of the heme pocket, which is probably the major factor contributing to the above changes. Binding constants and electron transfer rates between cytochrome b5 and cytochrome c were determined using UV-visible spectroscopy and stopped-flow techniques for both the wild type and the mutant. The results showed that the substitution of Pro40 by valine does not influence the binding constant of cytochrome b5 to cytochrome c ; however, the electron transfer rate between them decreased significantly. This indicates that proline-40 is essential to maintaining cytochrome b5's stability and its electron transfer with cytochrome c.These studies also provided a good example that property and functional changes of a protein do not necessarily require large overall structural alterations; in most cases, only perturbations on the local conformations are suffcient to induce significant changes in protein′s properties and functions.

  14. [The effect of isatin on protein-protein interactions between cytochrome b5 and cytochromes P450].

    Science.gov (United States)

    Ershov, P V; Yablokov, E O; Mezentsev, Yu V; Kalushskiy, L A; Florinskaya, A V; Veselovsky, A V; Gnedenko, O V; Gilep, A A; Usanov, S A; Medvedev, A E; Ivanov, A S

    2017-03-01

    Cytochromes P450 (CYP) are involved in numerous biochemical processes including metabolism of xenobiotics, biosynthesis of cholesterol, steroid hormones etc. Since some CYP catalyze indol oxidation to isatin, we have hypothesized that isatin can regulate protein-protein interactions (PPI) between components of the CYP system thus representing a (negative?) feedback mechanism. The aim of this study was to investigate a possible effect of isatin on interaction of human CYP with cytochrome b5 (CYB5A). Using the optical biosensor test system employing surface plasmon resonance (SPR) we have investigated interaction of immobilized CYB5A with various CYP in the absence and in the presence of isatin. The SPR-based experiments have shown that a high concentration of isatin (270 mM) increases Kd values for complexes CYB5A/CYP3А5 and CYB5A/CYP3A4 (twofold and threefold, respectively), but has no influence on complex formation between CYB5A and other CYP (including indol-metabolizing CYP2C19 and CYP2E1). Isatin injection to the optical biosensor chip with the preformed molecular complex CYB5A/CYP3A4 caused a 30%-increase in its dissociation rate. Molecular docking manipulations have shown that isatin can influence interaction of CYP3А5 or CYP3A4 with CYB5A acting at the contact region of CYB5A/CYP.

  15. Thermodynamics of interactions between mammalian cytochromes P450 and b5.

    Science.gov (United States)

    Yablokov, Evgeny; Florinskaya, Anna; Medvedev, Alexei; Sergeev, Gennady; Strushkevich, Natallia; Luschik, Alexander; Shkel, Tatsiana; Haidukevich, Irina; Gilep, Andrei; Usanov, Sergey; Ivanov, Alexis

    2017-04-01

    Cytochromes P450 (CYPs) play an important role in the metabolism of xenobiotics and various endogenous substrates. Being a crucial component of the microsomal monooxygenase system, CYPs are involved in numerous protein-protein interactions. However, mechanisms underlying molecular interactions between components of the monooxygenase system still need better characterization. In this study thermodynamic parameters of paired interactions between mammalian CYPs and cytochromes b5 (CYB5) have been evaluated using a Surface Plasmon Resonance (SPR) based biosensor Biacore 3000. Analysis of 18 pairs of CYB5-CYP complexes formed by nine different isoforms of mammalian CYPs and two isoforms of human CYB5 has shown that thermodynamically these complexes can be subdivided into enthalpy-driven and entropy-driven groups. Formation of the enthalpy-driven complexes was observed in the case of microsomal CYPs allosterically regulated by CYB5 (CYB5A-CYP3A4, CYB5A-CYP3A5, CYB5A-CYP17A1). The entropy-driven complexes were formed when CYB5 had no effect on the CYP activity (CYB5A-CYP51A1, CYB5A-CYP1B1, CYB5B-CYP11A1). Results of this study suggest that such interactions determining protein clustering are indirectly linked to the monooxygenase functioning. Positive ΔH values typical for such interactions may be associated with displacement of the solvation shells of proteins upon clustering. CYB5-CYP complex formation accompanied by allosteric regulation of CYP activity by CYB5 is enthalpy-dependent. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Roles of Phe58 residue in stabilizing structure of cytochrome b5

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To understand effect of (-stacking interactions between the side chain of aromatic amino acids and the porphyrin ring on structures and properties in cytochrome b5 (cyt b5), the Phe58 residue was mutated to tyrosine and tryptophan, respectively by site-directed mutagenesis. The denaturation of cyt b5 F58W and F58Y toward guanidine hydrochloride was examined by UV-visible and fluorescence spectroscopy. The kinetics of heme transfer reactions between apo-myoglobin and the mutants were studied. The results indicated that the mutation of F58 residue for Y58 or W58 reduced the interaction between of peptide and the heme group, resulting in decrease of the Tm and Cm values of the proteins, increase of the heme transfer reaction rate, and shifts of the redox potential.

  17. SPR and electrochemical analyses of interactions between CYP3A4 or 3A5 and cytochrome b5

    Science.gov (United States)

    Gnedenko, O. V.; Yablokov, E. O.; Usanov, S. A.; Mukha, D. V.; Sergeev, G. V.; Bulko, T. V.; Kuzikov, A. V.; Moskaleva, N. E.; Shumyantseva, V. V.; Ivanov, A. S.; Archakov, A. I.

    2014-02-01

    The combination of SPR biosensor with electrochemical analysis was used for the study of protein-protein interaction between cytochromes CYP3A4 or 3А5 and cytochromes b5: the microsomal, mitochondrial forms of this protein, and 2 ≪chimeric≫ proteins. Kinetic constants of CYP3A4 and CYP3А5 complex formation with cytochromes b5 were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was observed upon their interactions with mitochondrial cytochrome b5. The electrochemical analysis of CYP3A4, CYP3A5, and cytochromes b5 immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435 to -0.350 V (vs. Ag/AgCl).

  18. Evaluation of data in terms of two-dimensional random walk model: interaction between NADH-cytochrome b5 reductase and cytochrome b5.

    Science.gov (United States)

    Tonegawa, Yoshihiro; Umeda, Noriaki; Hayakawa, Tohru; Ishibashi, Teruo

    2005-10-01

    Normally, bimolecular reactions are analyzed in terms of the Smoluchowski theory. However, when one attempts to generalize this analysis to cases where diffusion proceeds in two other than in three dimensions, one soon encounters severe conceptual difficulties. Although kinetic studies of membrane enzymes are generally difficult because the usual kinetic formalism refers to nonaggregated homogenous solutions, a major goal of our research is to define the molecular mechanism(s) by which alterations in membrane-bound substrate contents affect the enzyme activity in the same membrane. For that purpose, a simplified random-walk model was adopted in the present work. The enzyme reaction in the two-dimensional membrane could be calculated theoretically by applying the classical analysis of heat equation. As a result, the theoretical rate equation well accounting experimental findings was derived on the model of the liver microsomal NADH-cytochrome b5 reductase reaction. Furthermore, it was found that the modification of the simple rigid-sphere collision theory by including a term called the steric factor was not necessary in this derived equation.

  19. The cytochrome b5 reductase HPO-19 is required for biosynthesis of polyunsaturated fatty acids in Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Yuru; Wang, Haizhen; Zhang, Jingjing; Hu, Ying; Zhang, Linqiang; Wu, Xiaoyun; Su, Xiong; Li, Tingting; Zou, Xiaoju; Liang, Bin

    2016-04-01

    Polyunsaturated fatty acids (PUFAs) are fatty acids with backbones containing more than one double bond, which are introduced by a series of desaturases that insert double bonds at specific carbon atoms in the fatty acid chain. It has been established that desaturases need flavoprotein-NADH-dependent cytochrome b5 reductase (simplified as cytochrome b5 reductase) and cytochrome b5 to pass through electrons for activation. However, it has remained unclear how this multi-enzyme system works for distinct desaturases. The model organism Caenorhabditis elegans contains seven desaturases (FAT-1, -2, -3, -4, -5, -6, -7) for the biosynthesis of PUFAS, providing an excellent model in which to characterize different desaturation reactions. Here, we show that RNAi inactivation of predicted cytochrome b5 reductases hpo-19 and T05H4.4 led to increased levels of C18:1n-9 but decreased levels of PUFAs, small lipid droplets, decreased fat accumulation, reduced brood size and impaired development. Dietary supplementation with different fatty acids showed that HPO-19 and T05H4.4 likely affect the activity of FAT-1, FAT-2, FAT-3, and FAT-4 desaturases, suggesting that these four desaturases use the same cytochrome b5 reductase to function. Collectively, these findings indicate that cytochrome b5 reductase HPO-19/T05H4.4 is required for desaturation to biosynthesize PUFAs in C. elegans.

  20. TOF-SIMS structural characterization of self-assembly monolayer of cytochrome b5 onto gold substrate

    CERN Document Server

    Aoyagi, Satoka; Boireau, Wilfrid; 10.1016/j.apsusc.2008.05.086

    2010-01-01

    Orientation and three-dimensional structure of immobilized proteins on bio-devices are very important to assure their high performance. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is able to analyze upper surface of one layer of molecules. Orientation of immobilized proteins can be evaluated based on determination of a partial structure, representing ensemble of amino acids, on the surface part. In this study, a monolayer of cytochrome b5 was reconstituted onto gold substrate and investigated by surface plasmon resonance (SPR). After freeze-drying, the resulted protein self-assembly was evaluated using TOF-SIMS with the bismuth cluster ion source, and then TOF-SIMS spectra were analyzed to select peaks specific to cytochrome b5 and identify their chemical formula and ensembles of amino acids. The results from TOF-SIMS spectra analysis were compared to the amino acid sequence of the modified cytochrome b5 and three-dimensional structure of cytochrome b5 registered in the protein data bank. Finall...

  1. Evidence for cytochrome b5 as an electron donor in ricinoleic acid biosynthesis in microsomal preparations from developing castor bean (Ricinus communis L.).

    Science.gov (United States)

    Smith, M A; Jonsson, L; Stymne, S; Stobart, K

    1992-01-01

    The major b-type cytochrome in microsomal membrane preparations from developing endosperm of castor bean (Ricinus communis) was cytochrome b5. Cytochrome P-450 was also present. The microsomal membranes had delta 12-hydroxylase activity and catalysed the NAD(P)H-dependent hydroxylation of oleate to yield ricinoleic acid. CO had no effect on the hydroxylase activity. Rabbit polyclonal antibodies were raised against the hydrophilic cytochrome b5 fragment purified from cauliflower (Brassica oleracea) floret microsomes. The anti-(cytochrome b5) IgG inhibited delta 12-hydroxylase, delta 12-desaturase and cytochrome c reductase activity in the microsomes. The results indicate that electrons from NAD(P)H were transferred to the site of hydroxylation via cytochrome b5 and that cytochrome P-450 was not involved. Images Fig. 1. PMID:1417766

  2. Preparation and characteri-zation of some surface nega-tively charged residue mu-tants of cytochrome b5

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Site-directed mutagenesis was used to obtain seven variants of tryptic fragment of bovine liver cytochrome b5 (cyt b5), in which the negatively charged residues around the heme exposed edge of cyt b5 were replaced by hydrophobic amino acid alanine. Double-site mutants, triple-site mutants and even quadruple-site mutants were obtained. DNA sequencing and molecular weight measurements of the mutant proteins both confirmed that these site-directed muta- genesises were successfully performed. Spectroelectrochemistry of these mutant proteins revealed that the apparent redox potentials of these mutant proteins caused a positive shift of 2-10 mV. The global structure of these mutant proteins did not show much difference from that of the wild type cyt b5, providing a solid base for the further study on the roles of the proteins' surface charges.

  3. Molecular Characterization and Functional Analysis of Cytochrome b5 Reductase (CBR Encoding Genes from the Carotenogenic Yeast Xanthophyllomyces dendrorhous.

    Directory of Open Access Journals (Sweden)

    María Soledad Gutiérrez

    Full Text Available The eukaryotic microsomal cytochrome P450 systems consist of a cytochrome P450 enzyme (P450 and a cytochrome P450 redox partner, which generally is a cytochrome P450 reductase (CPR that supplies electrons from NADPH. However, alternative electron donors may exist such as cytochrome b5 reductase and cytochrome b5 (CBR and CYB5, respectively via, which is NADH-dependent and are also anchored to the endoplasmic reticulum. In the carotenogenic yeast Xanthophyllomyces dendrorhous, three P450-encoding genes have been described: crtS is involved in carotenogenesis and the CYP51 and CYP61 genes are both implicated in ergosterol biosynthesis. This yeast has a single CPR (encoded by the crtR gene, and a crtR- mutant does not produce astaxanthin. Considering that this mutant is viable, the existence of alternative cytochrome P450 electron donors like CBR and CYB5 could operate in this yeast. The aim of this work was to characterize the X. dendrorhous CBR encoding gene and to study its involvement in P450 reactions in ergosterol and carotenoid biosynthesis. Two CBRs genes were identified (CBR.1 and CBR.2, and deletion mutants were constructed. The two mutants and the wild-type strain showed similar sterol production, with ergosterol being the main sterol produced. The crtR- mutant strain produced a lower proportion of ergosterol than did the parental strain. These results indicate that even though one of the two CBR genes could be involved in ergosterol biosynthesis, crtR complements their absence in the cbr- mutant strains, at least for ergosterol production. The higher NADH-dependent cytochrome c reductase activity together with the higher transcript levels of CBR.1 and CYB5 in the crtR- mutant as well as the lower NADH-dependent activity in CBS-cbr.1- strongly suggest that CBR.1-CYB5 via participates as an alternative electron donor pathway for P450 enzymes involved in ergosterol biosynthesis in X. dendrorhous.

  4. Molecular Characterization and Functional Analysis of Cytochrome b5 Reductase (CBR) Encoding Genes from the Carotenogenic Yeast Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Gutiérrez, María Soledad; Rojas, María Cecilia; Sepúlveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2015-01-01

    The eukaryotic microsomal cytochrome P450 systems consist of a cytochrome P450 enzyme (P450) and a cytochrome P450 redox partner, which generally is a cytochrome P450 reductase (CPR) that supplies electrons from NADPH. However, alternative electron donors may exist such as cytochrome b5 reductase and cytochrome b5 (CBR and CYB5, respectively) via, which is NADH-dependent and are also anchored to the endoplasmic reticulum. In the carotenogenic yeast Xanthophyllomyces dendrorhous, three P450-encoding genes have been described: crtS is involved in carotenogenesis and the CYP51 and CYP61 genes are both implicated in ergosterol biosynthesis. This yeast has a single CPR (encoded by the crtR gene), and a crtR- mutant does not produce astaxanthin. Considering that this mutant is viable, the existence of alternative cytochrome P450 electron donors like CBR and CYB5 could operate in this yeast. The aim of this work was to characterize the X. dendrorhous CBR encoding gene and to study its involvement in P450 reactions in ergosterol and carotenoid biosynthesis. Two CBRs genes were identified (CBR.1 and CBR.2), and deletion mutants were constructed. The two mutants and the wild-type strain showed similar sterol production, with ergosterol being the main sterol produced. The crtR- mutant strain produced a lower proportion of ergosterol than did the parental strain. These results indicate that even though one of the two CBR genes could be involved in ergosterol biosynthesis, crtR complements their absence in the cbr- mutant strains, at least for ergosterol production. The higher NADH-dependent cytochrome c reductase activity together with the higher transcript levels of CBR.1 and CYB5 in the crtR- mutant as well as the lower NADH-dependent activity in CBS-cbr.1- strongly suggest that CBR.1-CYB5 via participates as an alternative electron donor pathway for P450 enzymes involved in ergosterol biosynthesis in X. dendrorhous.

  5. Cytochrome b(5) shifts oxidation of the anticancer drug ellipticine by cytochromes P450 1A1 and 1A2 from its detoxication to activation, thereby modulating its pharmacological efficacy.

    Science.gov (United States)

    Kotrbová, Věra; Mrázová, Barbora; Moserová, Michaela; Martínek, Václav; Hodek, Petr; Hudeček, Jiří; Frei, Eva; Stiborová, Marie

    2011-09-15

    Ellipticine is a pro-drug, whose activation is dependent on its oxidation by cytochromes P450 (CYP) and peroxidases. Cytochrome b(5) alters the ratio of ellipticine metabolites formed by isolated reconstituted CYP1A1 and 1A2, favoring formation of 12-hydroxy- and 13-hydroxyellipticine metabolites implicated in ellipticine-DNA adduct formation, at the expense of 9-hydroxy- and 7-hydroxyellipticine that are detoxication products. Cytochrome b(5) enhances the production of 12-hydroxy and 13-hydroxyellipticine. The change in metabolite ratio results in an increased formation of covalent ellipticine-DNA adducts, one of the DNA-damaging mechanisms of ellipticine antitumor action. This finding explains previous apparent discrepancies found with isolated enzymes and in vivo, where CYP1A enzymatic activation correlated with ellipticine-DNA-adduct levels while isolated CYP1A1 or 1A2 in reconstituted systems were much less effective than CYP3A4. The effect of cytochrome b(5) might be even more pronounced in vivo, since, as we show here, ellipticine increases levels of cytochrome b(5) in rat liver. Our results demonstrate that both the native 3D structure of cytochrome b(5) and the presence of the heme as an electron transfer agent in this protein enable a shift in ellipticine metabolites formed by CYP1A1/2. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Stabilization of cytochrome b5 by a conserved tyrosine in the secondary sphere of heme active site: A spectroscopic and computational study

    Science.gov (United States)

    Hu, Shan; He, Bo; Wang, Xiao-Juan; Gao, Shu-Qin; Wen, Ge-Bo; Lin, Ying-Wu

    2017-03-01

    Heme proteins perform a large array of biological functions, with the heme group bound non-covalently or covalently. To probe the stabilization role of conserved tyrosine residue in the secondary sphere of heme site in heme proteins, we herein used cytochrome b5 (Cyt b5) as a model protein, and mutated Tyr30 to Phe or His by removal of Tyr30 associated H-bond network and hydrophobic interaction. We performed thermal-induced unfolding studies for the two mutants, Y30F Cyt b5 and Y30H Cyt b5, as monitored by both UV-Vis and CD spectroscopy, as well as heme transfer studies from these proteins to apo-myoglobin, with wild-type Cyt b5 under the same conditions for comparison. The reduced stability of both mutants indicates that both the H-bonding and hydrophobic interactions associated with Tyr30 contribute to the protein stability. Moreover, we performed molecular modeling studies, which revealed that the hydrophobic interaction in the local region of Y30F Cyt b5 was well-remained, whereas Y30H Cyt b5 formed an H-bond network. These observations suggest that the conserved Tyr30 in Cyt b5 is not replaceable due to the presence of both the H-bond network and hydrophobic interaction in the secondary sphere of the heme active site. As demonstrated here for Cyt b5, it may be of practical importance for design of artificial heme proteins by engineering a Tyr in the secondary sphere with improved properties and functions.

  7. The induction of microsomal NADPH:cytochrome P450 and NADH:cytochrome b(5) reductases by long-term salt treatment of cotton (Gossypium hirsutum L.) and bean (Phaseolus vulgaris L.) plants.

    Science.gov (United States)

    Brankova, Liliana; Ivanov, Sergei; Alexieva, Vera

    2007-09-01

    We studied the effect of salinity on the activity of microsomal NADPH:cytochrome P450 reductase (CPR, EC 1.6.2.4) and NADH:ferricytochrome b(5) oxidoreductase (B5R, EC 1.6.2.2) in two dicotyledonous plant species differing in their sensitivity to salt, cotton (Gossypium hirsutum L. cv Ogosta) and common bean (Phaseolus vulgaris L. cv Dobrujanski 7). A significant inhibition of fresh weight of salt-treated bean plants was observed, while cotton was affected to a much lesser degree. NaCl application resulted in a significant increase in the activity of both reductases, but was more pronounced in salt-tolerant cotton. We suppose that alterations in B5R and CPR activities may be targeted to the maintenance of membrane lipids. Most probably, plants use both enzymes (B5R and CPR) and their respective electron donors (NADH and NADPH) to reduce cytochrome b(5), which can donate reducing equivalents to a series of lipid-modification reactions such as desaturation and hydroxylation.

  8. Two novel mutations in the reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase gene of a patient with generalized type, hereditary methemoglobinemia.

    Science.gov (United States)

    Manabe, J; Arya, R; Sumimoto, H; Yubisui, T; Bellingham, A J; Layton, D M; Fukumaki, Y

    1996-10-15

    Hereditary methemoglobinemia due to reduced nicotinamide adenine dinucleotide (NADH) cytochrome b5 reductase (b5R) deficiency is classified into two types, an erythrocyte (type I) and a generalized (type II). We investigated the b5R gene of a patient with type II from a white United Kingdom (UK) family and found that the patient was a compound heterozygote for two novel mutations. The first mutation was a C-to-A transversion changing codon 42 (TAC: Tyr) to a stop codon in the one allele. From this mutant allele, the product without the catalytic portion of the enzyme is generated. The second one was a missense mutation at codon 95 (CCC-->CAC) in the other allele with the result that Pro changed to His within the flavin adenine dinucleotide (FAD)-binding domain of the enzyme. To characterize effects of this missense mutation on the enzyme function, we compared glutathione S-transferase (GST)-fused b5R with the GST-fused mutant enzyme with the codon 95 missense mutation (P95H) expressed in Escherichia coll. The mutant enzyme showed less catalytic activity, less thermostability, and a greater susceptibility to trypsin than did the normal counterpart. The absorption spectrum of the mutant enzyme in the visual region differed from that of the wild-type. These results suggest that this amino acid substitution influences both secondary structure and catalytic activity of the enzyme. The compound heterozygosity for the nonsense and the missense mutations apparently caused hereditary methemoglobinemia type II in this patient.

  9. Heterologous expression of fungal cytochromes P450 (CYP5136A1 and CYP5136A3) from the white-rot basidiomycete Phanerochaete chrysosporium: Functionalization with cytochrome b5 in Escherichia coli.

    Science.gov (United States)

    Hatakeyama, Mayumi; Kitaoka, Takuya; Ichinose, Hirofumi

    2016-07-01

    Cytochromes P450 from the white-rot basidiomycete Phanerochaete chrysosporium, CYP5136A1 and CYP5136A3, are capable of catalyzing oxygenation reactions of a wide variety of exogenous compounds, implying their significant roles in the metabolism of xenobiotics by the fungus. It is therefore interesting to explore their biochemistry to better understand fungal biology and to enable the use of fungal enzymes in the biotechnology sector. In the present study, we developed heterologous expression systems for CYP5136A1 and CYP5136A3 using the T7 RNA polymerase/promoter system in Escherichia coli. Expression levels of recombinant P450s were dramatically improved by modifications and optimization of their N-terminal amino acid sequences. A CYP5136A1 reaction system was reconstructed in E. coli whole cells by coexpression of CYP5136A1 and a redox partner, NADPH-dependent P450 reductase (CPR). The catalytic activity of CYP5136A1 was significantly increased when cytochrome b5 (Cyt-b5) was further coexpressed with CPR, indicating that Cyt-b5 supports electron transfer reactions from NAD(P)H to CYP5136A1. Notably, P450 reaction occurred in E. coli cells that harbored CYP5136A1 and Cyt-b5 but not CPR, implying that the reducing equivalents required for the P450 catalytic cycle were transferred via a CPR-independent pathway. Such an "alternative" electron transfer system in CYP5136A1 reaction was also demonstrated using purified enzymes in vitro. The fungal P450 reaction system may be associated with sophisticated electron transfer pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Neoplastic lesions of the human liver in relation to the activity of the cytochrome P-450 dependent monooxygenase system.

    Science.gov (United States)

    Plewka, D; Plewka, A; Nowaczyk, G; Kamiński, M; Rutkowski, T; Ludyga, T; Ziaja, K

    2000-01-01

    We studied the activity of Mixed function oxidase (MFO) in human livers affected by cancer. We determined the content of cytochrome P-450 and b5, as well as the activity of their corresponding reductases, according to generally accepted methods. Liver fragments corresponding with a) healthy tissue, b) tissue at the cancer border and, c) cancerous tissue were collected during surgery from patients with liver cancer. We noted that the developing liver cancer decreased the level of cytochrome P-450, even by a magnitude order. The activity of its corresponding reductase was higher in cancerous than in healthy tissues. Cytochrome b5 behaved in an analogous manner, although the decrease in its content was less significant. NADH-cytochrome b5 reductase activity changes were insignificant.

  11. Effect of two intermediate electron donors, NADPH and FADH(2), on Spirulina Delta (6)-desaturase co-expressed with two different immediate electron donors, cytochrome b (5) and ferredoxin, in Escherichia coli.

    Science.gov (United States)

    Kurdrid, Pavinee; Subudhi, Sanjukta; Cheevadhanarak, Supapon; Tanticharoen, Morakot; Hongsthong, Apiradee

    2007-12-01

    When the gene desD encoding Spirulina Delta(6)-desaturase was heterologously expressed in E. coli, the enzyme was expressed without the ability to function. However, when this enzyme was co-expressed with an immediate electron donor, i.e. the cytochrome b (5) domain from Mucor rouxii, the results showed the production of GLA (gamma-linolenic acid), the product of the reaction catalyzed by Delta(6)-desaturase. The results revealed that in E. coli cells, where cytochrome b (5) is absent and ferredoxin, a natural electron donor of Delta(6)-desaturase, is present at a very low level, the cytochrome b (5) domain can complement for the function of ferredoxin in the host cells. In the present study, the Spirulina-ferredoxin gene was cloned and co-expressed with the Delta(6)-desaturase in E. coli. In comparison to the co-expression of cytochrome b ( 5 ) with the Delta(6)-desaturase, the co-expression with ferredoxin did not cause any differences in the GLA level. Moreover, the cultures containing the Delta(6)-desaturase co-expressed with cytochrome b (5) and ferredoxin were exogenously supplied with the intermediate electron donors, NADPH (nicotinamide adenine dinucleotide phosphate, reduced form) and FADH(2) (flavin adenine dinucleotide, reduced form), respectively. The GLA level in these host cells increased drastically, by approximately 50%, compared to the cells without the intermediate electron donors. The data indicated that besides the level of immediate electron donors, the level of intermediate electron donors is also critical for GLA production. Therefore, if the pools of the immediate and intermediate electron donors in the cells are manipulated, the GLA production in the heterologous host will be affected.

  12. A novel nine base deletion mutation in NADH-cytochrome b5 reductase gene in an Indian family with recessive congenital methemoglobinemia-type-II

    Directory of Open Access Journals (Sweden)

    Prashant Warang

    2015-12-01

    Full Text Available Recessive hereditary methemoglobinemia (RCM associated with severe neurological abnormalities is a very rare disorder caused by NADH- cytochrome b5 reductase (cb5r deficiency (Type II. We report a case of 11 month old male child who had severe mental retardation, microcephaly and gross global developmental delay with methemoglobin level of 61.1%. The diagnosis of NADH-CYB5R3 deficiency was made by the demonstration of significantly reduced NADH-CYB5R3 activity in the patient and intermediate enzyme activity in both the parents. Mutation analysis of the CYB5R gene revealed a novel nine nucleotide deletion in exon 6 leading to the elimination of 3 amino acid residues (Lys173, Ser174 and Val 175. To confirm that this mutation was not an artifact, we performed PCR-RFLP analysis using the restriction enzyme Drd I. As the normal sequence has a restriction recognition site for Drd I which was eliminated by the deletion, a single band of 603-bp was seen in the presence of the homozygous mutation. Molecular modeling analysis showed a significant effect of these 3 amino acids deletion on the protein structure and stability leading to a severe clinical presentation. A novel homozygous 9 nucleotide deletion (p.K173–p.V175del3 is shown to be segregated with the disease in this family. Knowing the profile of mutations would allow us to offer prenatal diagnosis in families with severe neurological disorders associated with RCM — Type II.

  13. Proteolytic processing of CmPP36, a protein from the cytochrome b(5) reductase family, is required for entry into the phloem translocation pathway.

    Science.gov (United States)

    Xoconostle-Cázares, B; Ruiz-Medrano, R; Lucas, W J

    2000-12-01

    Cucurbita maxima (pumpkin) phloem sap contains a 31 kDa protein that cross-reacts with antibodies directed against the red clover necrotic mosaic virus movement protein (RCNMV MP). Microsequence data from phloem-purified 31 kDa protein were used to isolate a complementary DNA: the open reading frame encodes a 36 kDa protein belonging to the cytochrome b(5) reductase (Cb5R) family; the gene was termed CmPP36. Western analyses established that CmPP36, RCNMV MP and CmPP16 (Xoconostle-Cázares et al., 1999, Science 283, 94-98) are immunologically related, probably due to a common epitope, represented by the NADH(+)-binding domain of CmPP36. An N-terminal 5 kDa membrane-targeting domain is cleaved to produce the 31 kDa Delta N-CmPP36 detected in the phloem sap. Microinjection experiments established that Delta N-CmPP36, but not CmPP36, is able to interact with plasmodesmata to mediate its cell-to-cell transport. Thus, intercellular movement of CmPP36 requires proteolytic processing in the companion cell to produce a soluble, movement-competent, protein. In contrast to RCNMV and CmPP16, Delta N-CmPP36 interacts with but does not mediate the trafficking of RNA. Northern and in situ RT-PCR studies established that CmPP36 mRNA is present in all plant organs, being highly abundant within vascular tissues. In roots of hydroponically grown pumpkin plants, CmPP36 mRNA levels respond to changes in available iron in the culture solution. Finally, enzymatic assays established that both CmPP36 and Delta N-CmPP36 could reduce Fe(3+)-citrate and Fe(3+)-EDTA in the presence of NADH(+). These findings are discussed in terms of the possible roles played by CmPP36 in phloem function.

  14. A microplate reader-based method to quantify NADH-cytochrome b5 reductase activity for diagnosis of recessive congenital methaemoglobinemia.

    Science.gov (United States)

    Kedar, Prabhakar; Desai, Anand; Warang, Prashant; Colah, Roshan

    2017-05-01

    Congenital methemoglobinemia due to NADH-cytochrome b5 reductase 3 (CYB5R3) deficiencies is an autosomal recessive disorder that occurs sporadically worldwide, A sensitive, accurate, and rapid analysis of NADH-CYB5R enzyme concentrations is necessary for the diagnosis of RCM. Here we present an alternative microplate method that is based on a standard 96-well microplate format and microplate reader that simplify the quantification of NADH-CYB5R activity. TECAN (Infinite 200 PRO series) microplate reader with Tecan's proven Magellan™ software measured the NADH-CYB5R enzyme activity in 250 normal controls and previously diagnosed 25 cases of RCM due to NADH-CYB5R deficiency in the Indian population using 96-well microplates using 200 μl of total reaction mixture and also compared with standard spectrophotometric assay. We have also studied stability of the hemolysate stored at 4 and -20°C temperature. Enzyme activity in all 25 samples ranged from 6.09 to 10.07 IU/g Hb (mean ± SD: 8.08 ± 1.99 IU/g Hb) where as normal control ranged (n = 250) between 13.42 and 21.58 IU/g Hb) (mean ± SD: 17.5 ± 4.08 IU/g of Hb). Data obtained from the microplate reader were compared with standard spectrophotometer method and found 100% concordance using both methods. Microplate method allows differentiating between normal, deficient and intermediate enzyme activity. It was observed that samples had significant loss of activity when stored at 4°C and retained stable activity at -20°C for 1 week time. Our new method, incorporating a whole process of enzyme assay into a microplate format is readily applicable and allows rapid monitoring of enzyme assay. It is readily applicable to quantitative assay on pediatric sample as well as large number of samples for population screening.

  15. Cloning, mapping and mutation analysis of human gene GJB5 encoding gap junction protein b-5

    Institute of Scientific and Technical Information of China (English)

    XIA; Jiahui; (夏家辉); ZHENG; Duo; (郑多),; TANG; Dongsheng; (唐冬生); DAI; Heping; (戴和平); PAN; Qian; (潘乾); LONG; Zhigao; (龙志高); LIAO; Xiaodong; (廖晓东)

    2001-01-01

    By homologous EST searching and nested PCR a new human gene GJB5 encoding gap junction protein b-5 was identified. GJB5 was genetically mapped to human chromosome 1p33-p35 by FISH. RT-PCR revealed that it was expressed in skin, placenta and fetal skin. DNA sequencing of GJB5 was carried out in 142 patients with sensorineural hearing impairment and probands of 36 families with genetic diseases, including erythrokeratodermia (5 families), Charcot-Marie-Tooth disease (13), ptosis (4), and retinitis pigmentosa and deafness (14). Two missense mutations (686A→G, H229R; 25C→T, L9F) were detected in two sensorineural hearing impairment families. A heterologous deletion of 18 bp within intron was found in 3 families with heredity hearing impairment, and in one of the 3 families, a missense mutation (R265P) was identified also. But the deletion and missense mutation seemed not segregating with hearing impairment in the family. No abnormal mRNA or mRNA expression was detected in deletion carriers by RT-PCR analysis in skin tissue. Mutation analysis in 199 unaffected individuals revealed that two of them were carriers with the same 18 bp deletion.

  16. Cloning, mapping and mutation analysis of human gene GJB5 encoding gap junction protein b-5

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By homologous EST searching and nested PCR a new human gene GJB5encoding gap junction protein b-5 was identified. GJB5 was genetically mapped to human chromosome 1p33-p35 by FISH. RT-PCR revealed that it was expressed in skin, placenta and fetal skin. DNA sequencing of GJB5 was carried out in 142 patients with sensorineural hearing impairment and probands of 36 families with genetic diseases, including erythrokeratodermia (5 families), Charcot-Marie-Tooth disease (13), ptosis (4), and retinitis pigmentosa and deafness (14). Two missense mutations (686A→G, H229R; 25C→T, L9F) were detected in two sensorineural hearing impairment families. A heterologous deletion of 18 bp within intron was found in 3 families with heredity hearing impairment, and in one of the 3 families, a missense mutation (R265P) was identified also. But the deletion and missense mutation seemed not segregating with hearing impairment in the family. No abnormal mRNA or mRNA expression was detected in deletion carriers by RT-PCR analysis in skin tissue. Mutation analysis in 199 unaffected individuals revealed that two of them were carriers with the same 18 bp deletion.

  17. Kinetic analysis of lauric acid hydroxylation by human cytochrome P450 4A11.

    Science.gov (United States)

    Kim, Donghak; Cha, Gun-Su; Nagy, Leslie D; Yun, Chul-Ho; Guengerich, F Peter

    2014-10-07

    Cytochrome P450 (P450) 4A11 is the only functionally active subfamily 4A P450 in humans. P450 4A11 catalyzes mainly ω-hydroxylation of fatty acids in liver and kidney; this process is not a major degradative pathway, but at least one product, 20-hydroxyeicosatetraenoic acid, has important signaling properties. We studied catalysis by P450 4A11 and the issue of rate-limiting steps using lauric acid ω-hydroxylation, a prototypic substrate for this enzyme. Some individual reaction steps were studied using pre-steady-state kinetic approaches. Substrate and product binding and release were much faster than overall rates of catalysis. Reduction of ferric P450 4A11 (to ferrous) was rapid and not rate-limiting. Deuterium kinetic isotope effect (KIE) experiments yielded low but reproducible values (1.2-2) for 12-hydroxylation with 12-(2)H-substituted lauric acid. However, considerable "metabolic switching" to 11-hydroxylation was observed with [12-(2)H3]lauric acid. Analysis of switching results [Jones, J. P., et al. (1986) J. Am. Chem. Soc. 108, 7074-7078] and the use of tritium KIE analysis with [12-(3)H]lauric acid [Northrop, D. B. (1987) Methods Enzymol. 87, 607-625] both indicated a high intrinsic KIE (>10). Cytochrome b5 (b5) stimulated steady-state lauric acid ω-hydroxylation ∼2-fold; the apoprotein was ineffective, indicating that electron transfer is involved in the b5 enhancement. The rate of b5 reoxidation was increased in the presence of ferrous P450 mixed with O2. Collectively, the results indicate that both the transfer of an electron to the ferrous·O2 complex and C-H bond-breaking limit the rate of P450 4A11 ω-oxidation.

  18. NADH-Cytochrome b5 Reductase 3 Promotes Colonization and Metastasis Formation and Is a Prognostic Marker of Disease-Free and Overall Survival in Estrogen Receptor-Negative Breast Cancer

    DEFF Research Database (Denmark)

    Lund, Rikke R; Leth-Larsen, Rikke; Caterino, Tina Di

    2015-01-01

    were analyzed by LC-MS/MS, identifying a number of proteins that exhibited altered expression in isogenic metastatic versus nonmetastatic cancer cell lines, including NADH-cytochrome b5 reductase 3 (CYB5R3), l-lactate dehydrogenase A (LDHA), Niemann-pick c1 protein (NPC1), and nucleolar RNA helicase 2......Metastasis is the main cause of cancer-related deaths and remains the most significant challenge to management of the disease. Metastases are established through a complex multistep process involving intracellular signaling pathways. To gain insight to proteins central to specific steps...... in metastasis formation, we used a metastasis cell line model that allows investigation of extravasation and colonization of circulating cancer cells to lungs in mice. Using stable isotopic labeling by amino acids in cell culture and subcellular fractionation, the nuclear, cytosol, and mitochondria proteomes...

  19. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    Energy Technology Data Exchange (ETDEWEB)

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu; Alterman, Michail A., E-mail: Michail.Alterman@fda.hhs.gov

    2013-02-15

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomic approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed more

  20. Cytochrome P450 aromatase expression in human seminoma

    Directory of Open Access Journals (Sweden)

    Montanaro Daniela

    2005-12-01

    Full Text Available Abstract Background The enzyme cytochrome P450 aromatase, catalysing the conversion of androgens into estrogens, has been detected in normal human testicular cells suggesting a physiological role of local estrogen biosynthesis on spermatogenesis control. Estrogens, regulating cell growth and apoptosis, can also be involved in tumorigenesis process, but the possible link between estrogens and testicular neoplastic process is, up to now, scarcely known. This study examined aromatase expression in human seminoma, which is the most common germ cell tumour of the testis. Methods The tumour-bearing testes were obtained from 20 patients with classic seminoma undergoing to therapeutic orchidectomy. Paraffin embedded tissues were processed for immunohistochemistry using a mouse monoclonal antibody generated against human placental cytochrome P450 arom, as primary antibody, and a biotinylated goat-anti-mouse IgG, as secondary antibody. Furthermore, Western blot analysis of seminoma extracts was carried out. Results Intense P450 arom immunoreactivity was observed in the seminoma cells and Western blot analysis confirmed the immunodetection. A strong immunostaining was also detected in cells of intratubular germ cell neoplasia (IGCN, adjacent to seminoma. Conclusion The present study demonstrated, for the first time in human, aromatase expression in neoplastic cells of seminoma suggesting a relation between local estrogen biosynthesis and germ cell tumorigenesis. The P450 arom immunolocalization in the cells of IGCN, representing the common precursor of most germ cell tumors, seems to support these findings.

  1. Increased Expression of microRNA-199b-5p Associates with Poor Prognosis Through Promoting Cell Proliferation, Invasion and Migration Abilities of Human Osteosarcoma.

    Science.gov (United States)

    Zeng, Haibin; Zhang, Zhong; Dai, Xiaoming; Chen, Yongzhong; Ye, Jianhua; Jin, Zhixin

    2016-04-01

    MicroRNA (miR)-199b-5p has been reported to be upregulated in human osteosarcoma tissues and participate in the Notch signaling in osteosarcoma cells. This study was aimed to investigate the associations of miR-199b-5p expression with tumor progression of primary osteosarcoma, and to deepen the understanding of its involvement in carcinogenesis. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to detect expression levels of miR-199b-5p in 98 osteosarcoma and corresponding adjacent normal tissues. Then, the correlations of its expression with clinicopathological characteristics and patient prognosis were statistically analyzed. Moreover, in vitro assays were performed to assess the effects of miR-199b-5p on the proliferation, migration and invasion of two human osteosarcoma cell lines MG63 and U2OS. Compared to normal controls, miR-199b-5p expression was significantly upregulated in osteosarcoma tissues (P osteosarcoma patients with high tumor grade (P = 0.008), positive metastasis (P = 0.001) and positive recurrence (P = 0.001) were markedly higher than those with low tumor grade, negative metastasis and negative recurrence. Moreover, osteosarcoma patients with high miR-199b-5p expression showed shorter overall survival (P osteosarcoma cells. This study offer the convincing evidence for the first time that the increased expression of miR-199b-5p may play crucial roles in aggressive progression and poor prognosis of human osteosarcoma. miR-199b-5p may function as an oncogene by positively regulating the malignant potentials of this neoplasm.

  2. A human-human hybridoma producing cytotoxic antibody to HLA-B15, cross-reacting with B17, B5, B35 and B18.

    Science.gov (United States)

    Hansen, T; Kolstad, A; Thorsby, E; Hannestad, K

    1987-05-01

    Mononuclear blood cells from a multiparous woman were transformed with Epstein Barr virus, and a cell line (Tr2D8) producing anti-HLA antibody was obtained. This cell line was immortalized by hybridization to the human fusion partners KR4 and KR12. While the EBV line died after 7 months, the hybridomas have remained stable for 13 months. The EBV line supernatant (40 micrograms IgM/ml) lysed peripheral blood mononuclear cells (PBMC) bearing B15, B17, B5 and B35. Consistent lysis of B18 bearing cells was only observed with lymphoblastoid cell lines. The supernatant from the Tr2D8 (EBV line X KR4) hybridoma (2.7 micrograms IgM/ml) only lysed B15 bearing PBMC. At a concentration of 13.5 micrograms IgM/ml, the hybridoma antibody lysed lymphoblastoid cell lines bearing B15, B17, B5, B35 and B18.

  3. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.

    Science.gov (United States)

    Storch, E M; Grinstead, J S; Campbell, A P; Daggett, V; Atkins, W M

    1999-04-20

    In the accompanying paper [Storch et al. (1999) Biochemistry 38, 5054-5064] equilibrium denaturation studies and molecular dynamics (MD) simulations were used to investigate localized dynamics on the surface of cytochrome b5 (cyt b5) that result in the formation of a cleft. In those studies, an S18C:R47C disulfide mutant was engineered to inhibit cleft mobility. Temperature- and urea-induced denaturation studies revealed significant differences in Trp 22 fluorescence between the wild-type and mutant proteins. On the basis of the results, it was proposed that wild type populates a conformational ensemble that is unavailable to the disulfide mutant and is mediated by cleft mobility. As a result, the solvent accessibility of Trp 22 is decreased in S18C:R47C, suggesting that the local environment of this residue is less mobile due to the constraining effects of the disulfide on cleft dynamics. To further probe the structural effects on the local environment of Trp 22 caused by inhibition of cleft formation, we report here the results of steady-state and time-resolved fluorescence quenching, differential phase/modulation fluorescence anisotropy, and 1H NMR studies. In Trp fluorescence experiments, the Stern-Volmer quenching constant increases in wild type versus the oxidized disulfide mutant with increasing temperature. At 50 degrees C, KSV is nearly 1.5-fold greater in wild type compared to the oxidized disulfide mutant. In the reduced disulfide mutant, KSV was the same as wild type. The bimolecular collisional quenching constant, kq, for acrylamide quenching of Trp 22 increases 2.7-fold for wild type and only 1.8-fold for S18C:R47C, upon increasing the temperature from 25 to 50 degrees C. The time-resolved anisotropy decay at 25 degrees C was fit to a double-exponential decay for both the wild type and S18C:R47C. Both proteins exhibited a minor contribution from a low-amplitude fast decay, consistent with local motion of Trp 22. This component was more prevalent in

  4. Bioconversion of Mono- and Sesquiterpenoids by Recombinant Human Cytochrome P450 Monooxygenases

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Fichera, Mario A.; Malz, Frank; Ebbelaar, Monique; Bos, Rein; Woerdenbag, Herman J.; Quax, Wim J.; Kayser, Oliver

    2008-01-01

    Cytochrome P450 monooxygenases play an important role in the biosynthesis and metabolism of terpenoids. We explored the potential of recombinant human liver cytochrome P450 monooxygenases CYP1A2, CYP2C9, and CYP3A4, heterologously expressed in Escherichia coli, to convert mono- and sesquiterpenoids

  5. Characterization of human cytochrome P450 induction by pesticides.

    Science.gov (United States)

    Abass, Khaled; Lämsä, Virpi; Reponen, Petri; Küblbeck, Jenni; Honkakoski, Paavo; Mattila, Sampo; Pelkonen, Olavi; Hakkola, Jukka

    2012-03-29

    Pesticides are a large group of structurally diverse toxic chemicals. The toxicity may be modified by cytochrome P450 (CYP) enzyme activity. In the current study, we have investigated effects and mechanisms of 24 structurally varying pesticides on human CYP expression. Many pesticides were found to efficiently activate human pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Out of the 24 compounds tested, 14 increased PXR- and 15 CAR-mediated luciferase activities at least 2-fold. While PXR was predominantly activated by pyrethroids, CAR was, in addition to pyrethroids, well activated by organophosphates and several carbamates. Induction of CYP mRNAs and catalytic activities was studied in the metabolically competent, human derived HepaRG cell line. CYP3A4 mRNA was induced most powerfully by pyrethroids; 50 μM cypermethrin increased CYP3A4 mRNA 35-fold. CYP2B6 was induced fairly equally by organophosphate, carbamate and pyrethroid compounds. Induction of CYP3A4 and CYP2B6 by these compound classes paralleled their effects on PXR and CAR. The urea herbicide diuron and the triazine herbicide atrazine induced CYP2B6 mRNA more than 10-fold, but did not activate CAR indicating that some pesticides may induce CYP2B6 via CAR-independent mechanisms. CYP catalyzed activities were induced much less than the corresponding mRNAs. At least in some cases, this is probably due to significant inhibition of CYP enzymes by the studied pesticides. Compared with human CAR activation and CYP2B6 expression, pesticides had much less effect on mouse CAR and CYP2B10 mRNA. Altogether, pesticides were found to be powerful human CYP inducers acting through both PXR and CAR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunxue; Pallan, Pradeep S.; Zhang, Wei; Lei, Li; Yoshimoto, Francis K.; Waterman, Michael R.; Egli, Martin; Guengerich, F. Peter (Vanderbilt-MED)

    2017-05-24

    Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 CYP21A2 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12 variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants (Ks) for four variants were 37–13,000-fold higher than for WT P450 21A2. Cytochrome b5, which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21-d3-progesterone, indicating that C–H bond breaking is a rate-limiting step over a 104-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.

  7. Effect of propylthiouracil on activity of thyroid NADH-cytochrome b5 reductase%丙基硫氧嘧啶对甲状腺NADH-细胞色素b5还原酶活性影响

    Institute of Scientific and Technical Information of China (English)

    黄国良; 林芬; 高妍

    2001-01-01

    目的探讨丙基硫氧嘧啶(PTU)抗甲状腺作用新的药理机制.方法以高铁氰化钾和二氯酚靛酚为底物测定NADH-细胞色素b5还原酶(b5R)活性,应用高香草酸荧光分析技术对H2O2浓度进行测定,观察PTU对甲状腺b5R活性和H2O2浓度影响. 结果 PTU可抑制b5R活性,且呈浓度依赖性,0.05 mmol·L-1 PTU即对b5R活性有抑制作用,以后随PTU浓度增加,b5R活性逐渐降低;H2O2浓度则随b5R活性降低而下降 .NADH有拮抗PTU对b5R的抑制作用.结论 PTU对甲状腺b5R活性有抑制作用 ,抑制b5R活性从而抑制H2O2的生成可能为PTU抗甲状腺作用另一重要药理机制.

  8. Interaction of rocuronium with human liver cytochromes P450.

    Science.gov (United States)

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-02-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 μM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6β-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  9. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans.

    Science.gov (United States)

    Danielson, P B

    2002-12-01

    Cytochrome p450s comprise a superfamily of heme-thiolate proteins named for the spectral absorbance peak of their carbon-monoxide-bound species at 450 nm. Having been found in every class of organism, including Archaea, the p450 superfamily is believed to have originated from an ancestral gene that existed over 3 billion years ago. Repeated gene duplications have subsequently given rise to one of the largest of multigene families. These enzymes are notable both for the diversity of reactions that they catalyze and the range of chemically dissimilar substrates upon which they act. Cytochrome p450s support the oxidative, peroxidative and reductive metabolism of such endogenous and xenobiotic substrates as environmental pollutants, agrochemicals, plant allelochemicals, steroids, prostaglandins and fatty acids. In humans, cytochrome p450s are best know for their central role in phase I drug metabolism where they are of critical importance to two of the most significant problems in clinical pharmacology: drug interactions and interindividual variability in drug metabolism. Recent advances in our understanding of cytochrome p450-mediated drug metabolism have been accelerated as a result of an increasing emphasis on functional genomic approaches to p450 research. While human cytochrome p450 databases have swelled with a flood of new human sequence variants, however, the functional characterization of the corresponding gene products has not kept pace. In response researchers have begun to apply the tools of proteomics as well as homology-based and ab initio modeling to salient questions of cytochrome p450 structure/function. This review examines the latest advances in our understanding of human cytochrome p450s.

  10. In vitro metabolism of genistein and tangeretin by human and murine cytochrome p450s

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Rasmussen, Salka; Brøsen, Kim

    2003-01-01

    Recombinant cytochrome P450 (CYP) 1A2, 3A4, 2C9 or 2D6 enzymes obtained from Escherichia coli and human liver microsomes samples were used to investigate the ability of human CYP enzymes to metabolize the two dietary flavonoids, genistein and tangeretin. Analysis of the metabolic profile from...

  11. In vitro metabolism of fipronil by human and rat cytochrome P450 and its interactions with testosterone and diazepam.

    Science.gov (United States)

    Tang, Jun; Amin Usmani, K; Hodgson, Ernest; Rose, Randy L

    2004-04-15

    Fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile) is a highly active, broad spectrum insecticide from the phenyl pyrazole family, which targets the gamma-amino butyric acid (GABA) receptor. Although fipronil is presently widely used as an insecticide and acaricide, little information is available with respect to its metabolic fate and disposition in mammals. This study was designed to investigate the in vitro human metabolism of fipronil and to examine possible metabolic interactions that fipronil may have with other substrates. Fipronil was incubated with human liver microsomes (HLM) and several recombinant cytochrome P450 (CYP) isoforms obtained from BD Biosciences. HPLC was used for metabolite identification and quantification. Fipronil sulfone was the predominant metabolite via CYP oxidation. The K(m) and V(max) values for human liver microsomes are 27.2 microM and 0.11 nmol/mg proteinmin, respectively; for rat liver microsomes (RLM) the K(m) and V(max) are 19.9 microM and 0.39 nmol/mg proteinmin, respectively. CYP3A4 is the major isoform responsible for fipronil oxidation in humans while CYP2C19 is considerably less active. Other human CYP isoforms have minimal or no activity toward fipronil. Co-expression of cytochrome b(5) (b(5)) is essential for CYP3A4 to manifest high activity toward fipronil. Ketoconazole, a specific inhibitor of CYP3A4, inhibits 78% of the HLM activity toward fipronil at a concentration of 2 microM. Oxidative activity toward fipronil in 19 single-donor HLMs correlated well with their ability to oxidize testosterone. The interactions of fipronil and other CYP3A4 substrates, such as testosterone and diazepam, were also investigated. Fipronil metabolism was activated by testosterone in HLM but not in CYP3A4 Supersomes. Testosterone 6beta-hydroxylation in HLM was inhibited by fipronil. Fipronil inhibited diazepam demethylation but had little effect on diazepam hydroxylation

  12. HspB1, HspB5 and HspB4 in Human Cancers: Potent Oncogenic Role of Some of Their Client Proteins

    Directory of Open Access Journals (Sweden)

    André-Patrick Arrigo

    2014-02-01

    Full Text Available Human small heat shock proteins are molecular chaperones that regulate fundamental cellular processes in normal unstressed cells as well as in many cancer cells where they are over-expressed. These proteins are characterized by cell physiology dependent changes in their oligomerization and phosphorylation status. These structural changes allow them to interact with many different client proteins that subsequently display modified activity and/or half-life. Nowdays, the protein interactomes of small Hsps are under intense investigations and will represent, when completed, key parameters to elaborate therapeutic strategies aimed at modulating the functions of these chaperones. Here, we have analyzed the potential pro-cancerous roles of several client proteins that have been described so far to interact with HspB1 (Hsp27 and its close members HspB5 (αB-crystallin and HspB4 (αA-crystallin.

  13. Human cytochrome p450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Punt, A.; Boersma, M.G.; Bogaards, J.J.P.; Fiamegos, Y.C.; Schilter, B.; Bladeren, van P.J.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2007-01-01

    Human cytochrome P450 enzymes involved in the bioactivation of estragole to its proximate carcinogen 1 '-hydroxyestragole were identified and compared to the enzymes of importance for 1'-hydroxylation of the related alkenylbenzenes methyleugenol and safrole. Incubations with Supersomes revealed that

  14. Human cytochrome P450 enzyme specificity for bioactivation of safrole to the proximate carcinogen 1'-hydroxysafrole

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Bogaards, J.J.P.; Awad, H.M.; Boersma, M.G.; Brand, W.; Fiamegos, Y.C.; Beek, van T.A.; Alink, G.M.; Sudhölter, E.J.R.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2004-01-01

    In the present study, the cytochrome P450 mediated bioactivation of safrole to its proximate carcinogenic metabolite, 1'-hydroxysafrole, has been investigated for the purpose of identifying the human P450 enzymes involved. The 1'-hydroxylation of safrole was characterized in a variety of in vitro te

  15. Human cytochrome P450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Punt, A.; Boersma, M.G.; Bogaards, J.J.P.; Fiamegos, Y.C.; Schilter, B.; Bladeren, P.J. van; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2007-01-01

    Human cytochrome P450 enzymes involved in the bioactivation of estragole to its proximate carcinogen 1′-hydroxyestragole were identified and compared to the enzymes of importance for 1′-hydroxylation of the related alkenylbenzenes methyleugenol and safrole. Incubations with Supersomes revealed that

  16. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    Science.gov (United States)

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  17. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability.

    Science.gov (United States)

    Goldes, Matthew E; Jeakins-Cooley, Margaret E; McClelland, Levi J; Mou, Tung-Chung; Bowler, Bruce E

    2016-05-01

    The hypothesis that the recent rapid evolution of primate cytochromes c, which primarily involves residues in the least stable Ω-loop (Ω-loop C, residues 40-57), stabilizes the heme crevice of cytochrome c relative to other mammals, is tested. To accomplish this goal, we have compared the properties of human and spider monkey cytochrome c and a set of four variants produced in the process of converting human cytochrome c into spider monkey cytochrome c. The global stability of all variants has been measured by guanidine hydrochloride denaturation. The stability of the heme crevice has been assessed with the alkaline conformational transition. Structural insight into the effects of the five amino acid substitutions needed to convert human cytochrome c into spider monkey cytochrome c is provided by a 1.15Å resolution structure of spider monkey cytochrome c. The global stability for all variants is near 9.0kcal/mol at 25°C and pH7, which is higher than that observed for other mammalian cytochromes c. The heme crevice stability is more sensitive to the substitutions required to produce spider monkey cytochrome c with decreases of up to 0.5 units in the apparent pKa of the alkaline conformational transition relative to human cytochrome c. The structure of spider monkey cytochrome c indicates that the Y46F substitution destabilizes the heme crevice by disrupting an extensive hydrogen bond network that connects three surface loops including Ω-loop D (residues 70-85), which contains the Met80 heme ligand.

  18. Characterization of triptolide hydroxylation by cytochrome P450 in human and rat liver microsomes.

    Science.gov (United States)

    Li, W; Liu, Y; He, Y-Q; Zhang, J-W; Gao, Y; Ge, G-B; Liu, H-X; Huo, H; Liu, H-T; Wang, L-M; Sun, J; Wang, Q; Yang, L

    2008-12-01

    Triptolide, the primary active component of a traditional Chinese medicine Tripterygium wilfordii Hook F, has a wide range of pharmacological activities. In the present study, the metabolism of triptolide by cytochrome P450s was investigated in human and rat liver microsomes. Triptolide was converted to four metabolites (M-1, M-2, M-3, and M-4) in rat liver microsomes and three (M-2, M-3, and M-4) in human liver microsomes. All the products were identified as mono-hydroxylated triptolides by liquid chromatography-mass spectrometry (LC-MS). The studies with chemical selective inhibitors, complementary DNA-expressed human cytochrome P450s, correlation analysis, and enzyme kinetics were also conducted. The results demonstrate that CYP3A4 and CYP2C19 could be involved in the metabolism of triptolide in human liver, and that CYP3A4 was the primary isoform responsible for its hydroxylation.

  19. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    Science.gov (United States)

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  20. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    OpenAIRE

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Jing-quan LI; Chu, Rui-Ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using q...

  1. Nasal cytochrome P4502A: Identification in rats and humans

    Energy Technology Data Exchange (ETDEWEB)

    Thornton-Manning, J.R.; Hotchkiss, J.A. [Michigan State Univ., East Lansing, MI (United States); Ding, Xinxin [Wadsworth Center for Laboratories and Research, Albany, NY (United States)] [and others

    1995-12-01

    The nasal mucosa, the first tissue of contact for inhaled xenobiotics, possesses substantial enobiotic-metabolizing capacti. Enzymes of the nasal cavity may metabolize xenobiotics to innocuous, more water-soluble compounds that are eliminated from the body, or they may bioactivate them to toxic metabolites. These toxic metabolites may find to cellular macromolecules in the nasal cavity or be transported to other parts of the body where they may react. Nasal carcinogenesis in rodents often results from bioactivation of xenobiotics. The increased incidences of nasal tumors associated with certain occupations suggest that xenobiotic bioactivation may be important in human nasal cancer etiology, as well. The increasing popularity of the nose as a route of drug administration makes information concerning nasal drug metabolism and disposition vital to accomplish therapeutic goals. For these reasons, the study of xenobiotic-met abolizing capacity of the nasal cavity is an important area of health-related research. In the present study, we have confirmed the presence of CYP2A6 mRNA in human respiratory mucosa.

  2. Motion and flexibility in human cytochrome p450 aromatase.

    Directory of Open Access Journals (Sweden)

    Wenhua Jiang

    Full Text Available The crystal structures of human placental aromatase in complex with the substrate androstenedione and exemestane have revealed an androgen-specific active site and the structural basis for higher order organization. However, X-ray structures do not provide accounts of movements due to short-range fluctuations, ligand binding and protein-protein association. In this work, we conduct normal mode analysis (NMA revealing the intrinsic fluctuations of aromatase, deduce the internal modes in membrane-free and membrane-integrated monomers as well as the intermolecular modes in oligomers, and propose a quaternary organization for the endoplasmic reticulum (ER membrane integration. Dynamics of the crystallographic oligomers from NMA is found to be in agreement with the isotropic thermal factors from the X-ray analysis. Calculations of the root mean square fluctuations of the C-alpha atoms from their equilibrium positions confirm that the rigid-core structure of aromatase is intrinsic regardless of the changes in steroid binding interactions, and that aromatase self-association does not deteriorate the rigidity of the catalytic cleft. Furthermore, NMA on membrane-integrated aromatase shows that the internal modes in all likelihood contribute to breathing of the active site access channel. The collective intermolecular hinge bending and twisting modes provide the flexibility in the quaternary association necessary for membrane integration of the aromatase oligomers. Taken together, fluctuations of the active site, the access channel, and the heme-proximal cavity, and a dynamic quaternary organization could all be essential components of the functional aromatase in its role as an ER membrane-embedded steroidogenic enzyme.

  3. miR-181b-5p Modulates Cell Migratory Proteins, Tissue Inhibitor of Metalloproteinase 3, and Annexin A2 During In Vitro Decidualization in a Human Endometrial Stromal Cell Line.

    Science.gov (United States)

    Graham, Amanda; Holbert, Joshua; Nothnick, Warren B

    2016-01-01

    Decidualization is essential for successful embryo implantation and is regulated by concerted actions of growth factors and hormones. More recently, microRNAs, small RNA molecules that regulate posttranscriptional gene expression, have been implicated to play a role in the decidualization process. Of these microRNAs, miR-181b-5p has been associated with decidualization but its precise role and targets are not well established. To address this gap in our knowledge, we assessed the expression of miR-181b-5p, and its target tissue inhibitor of metalloproteinase 3 (TIMP-3), during in vitro decidualization using the well-characterized human endometrial stromal cell line, t-HESC. miR-181b-5p expression was highest prior to decidualization and significantly decreased in response to decidualization stimulus. In contrast, TIMP-3 expression was absent prior to in vitro decidualization and increased during decidualization. Regulation of TIMP-3 expression by miR-181b-5p was confirmed in vitro by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot analysis, and 3' untranslated region reporter constructs. To identify unforeseen targets of miR-181b-5p during in vitro decidualization, t-HESC cells were transfected with pre- miR-181b-5p, and protein profiles were determined by 2-dimensional differential in-gel electrophoresis followed by matrix-assisted laser desorption-ionization time-of-flight/time-of-flight (MALDI TOF/TOF) tandem mass spectrometry. Of these proteins, several downregulated proteins associated with cell migration were identified including annexin A2, which we subsequently confirmed by qRT-PCR and Western blot analysis to be regulated by miR-181b-5p. In conclusion, miR-181b-5p is downregulated during the process of in vitro decidualization and may regulate the expression of proteins associated with cell migration including TIMP-3 and annexin A2.

  4. Potential inhibition of cytochrome P450 3A4 by propofol in human primary hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Li-Qun Yang; Wei-Feng Yu; Yun-Fei Cao; Bin Gong; Qing Chang; Guang-Shun Yang

    2003-01-01

    AIM: Hepatic cytochrome P450 isoenzymes constitute a superfamily of hemoproteins that play a major role in the metabolism of endogenous compounds and in the detoxification of xenobiotic molecules. P450 3A4 is one of the most important forms in human being, and mediates the metabolism of around 70% of therapeutic drugs and endogenous compounds. Propofol, a widely used intravenous anesthetic drug, is known to inhibit cytochrome P450activities in isolated rat hepatocytes. The goal of this study was to evaluate the potential efficacy of propofol on P4503A4 in a dose-dependent manner to understand its drugdrug interaction.METHODS: Hepatocytes were isolated from liver specimens from hepatic angioma patients undergone hepatic surgery.Primary incubated hepatocytes were treated with 0, 0.01,0.05, 0.1, 0.5, and 1.0 mM propofol for 24 hours. P450 3A4activity was measured with Nash′s colorimetry. The protein expression was assessed by Western blot analysis.RESULTS: A dose-dependent inhibitory effect of propofol was observed in cytochrome P450 3A4 activity. A minimal dosage of propofol (0.01 mM) induced a significant inhibition of P450 3A4 activity, although its regular dosages (0.01-0.1mM) showed no inhibitory effect on the cellular protein expression of P450 3A4.CONCLUSION: Propofol may be a potential CYP3A4 inhibitor as this anesthetic can inhibit isoenzyme activity significantly and reduce the metabolic rate of CYP3A4 substrates. This inhibition occurs at post-expression level, and concentration of propofol used clinically does not affect CYP3A4 protein expression. propofol may thus induce drug interaction of cytochrome P450 3A4 activity at the dosage used clinically.

  5. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    Science.gov (United States)

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans.

  6. Expression and Characterization of Truncated Recombinant Human Cytochrome P450 2J2

    OpenAIRE

    Park, Hyoung-Goo; Lim, Young-Ran; Han, Songhee; Kim, Donghak

    2014-01-01

    The human cytochrome P450 2J2 catalyzes an epoxygenase reaction to oxidize various fatty acids including arachidonic acid. In this study, three recombinant enzyme constructs of P450 2J2 were heterologously expressed in Escherichia coli and their P450 proteins were successfully purified using a Ni2+-NTA affinity column. Deletion of 34 amino acid residues in N-terminus of P450 2J2 enzyme (2J2-D) produced the soluble enzyme located in the cytosolic fraction. The enzymatic analysis of this trunca...

  7. The redox state of cytochrome c modulates resistance to methotrexate in human MCF7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Susana Barros

    Full Text Available BACKGROUND: Methotrexate is a chemotherapeutic agent used to treat a variety of cancers. However, the occurrence of resistance limits its effectiveness. Cytochrome c in its reduced state is less capable of triggering the apoptotic cascade. Thus, we set up to study the relationship among redox state of cytochrome c, apoptosis and the development of resistance to methotrexate in MCF7 human breast cancer cells. RESULTS: Cell incubation with cytochrome c-reducing agents, such as tetramethylphenylenediamine, ascorbate or reduced glutathione, decreased the mortality and apoptosis triggered by methotrexate. Conversely, depletion of glutathione increased the apoptotic action of methotrexate, showing an involvement of cytochrome c redox state in methotrexate-induced apoptosis. Methotrexate-resistant MCF7 cells showed increased levels of endogenous reduced glutathione and a higher capability to reduce exogenous cytochrome c. Using functional genomics we detected the overexpression of GSTM1 and GSTM4 in methotrexate-resistant MCF7 breast cancer cells, and determined that methotrexate was susceptible of glutathionylation by GSTs. The inhibition of these GSTM isoforms caused an increase in methotrexate cytotoxicity in sensitive and resistant cells. CONCLUSIONS: We conclude that overexpression of specific GSTMs, GSTM1 and GSTM4, together with increased endogenous reduced glutathione levels help to maintain a more reduced state of cytochrome c which, in turn, would decrease apoptosis, thus contributing to methotrexate resistance in human MCF7 breast cancer cells.

  8. Pi-pi Stacking Mediated Cooperative Mechanism for Human Cytochrome P450 3A4

    Directory of Open Access Journals (Sweden)

    Botao Fa

    2015-04-01

    Full Text Available Human Cytochrome P450 3A4 (CYP3A4 is an important member of the cytochrome P450 superfamily with responsibility for metabolizing ~50% of clinical drugs. Experimental evidence showed that CYP3A4 can adopt multiple substrates in its active site to form a cooperative binding model, accelerating substrate metabolism efficiency. In the current study, we constructed both normal and cooperative binding models of human CYP3A4 with antifungal drug ketoconazoles (KLN. Molecular dynamics simulation and free energy calculation were then carried out to study the cooperative binding mechanism. Our simulation showed that the second KLN in the cooperative binding model had a positive impact on the first one binding in the active site by two significant pi-pi stacking interactions. The first one was formed by Phe215, functioning to position the first KLN in a favorable orientation in the active site for further metabolism reactions. The second one was contributed by Phe304. This pi-pi stacking was enhanced in the cooperative binding model by the parallel conformation between the aromatic rings in Phe304 and the dioxolan moiety of the first KLN. These findings can provide an atomic insight into the cooperative binding in CYP3A4, revealing a novel pi-pi stacking mechanism for drug-drug interactions.

  9. Effect of butylated hydroxytoluene, curcumin, propyl gallate and thiabendazole on cytochrome P450 forms in cultured human hepatocytes

    NARCIS (Netherlands)

    Price, R.J.; Scott, M.P.; Giddings, A.M.; Walters, D.G.; Stierum, R.H.; Meredith, C.; Lake, B.G.

    2008-01-01

    1. The objective of this study was to investigate the effects of four food chemicals, namely butylated hydroxytoluene (BHT), curcumin (CC), propyl gallate (PG) and thiabendazole (TB), on cytochrome P450 (CYP) forms in cultured human hepatocytes. 2. Treatment of human hepatocytes for 72 h with 2-200

  10. Effect of butylated hydroxytoluene, curcumin, propyl gallate and thiabendazole on cytochrome P450 forms in cultured human hepatocytes

    NARCIS (Netherlands)

    Price, R.J.; Scott, M.P.; Giddings, A.M.; Walters, D.G.; Stierum, R.H.; Meredith, C.; Lake, B.G.

    2008-01-01

    1. The objective of this study was to investigate the effects of four food chemicals, namely butylated hydroxytoluene (BHT), curcumin (CC), propyl gallate (PG) and thiabendazole (TB), on cytochrome P450 (CYP) forms in cultured human hepatocytes. 2. Treatment of human hepatocytes for 72 h with 2-200

  11. IDENTIFICATION OF 3 HUMAN PSEUDOGENES FOR SUBUNIT-VIB OF CYTOCHROME-C-OXIDASE - A MOLECULAR RECORD OF GENE EVOLUTION

    NARCIS (Netherlands)

    TAANMAN, JW; SCHRAGE, C; REUVEKAMP, P; BIJL, J; HARTOG, M; DEVRIES, H; AGSTERIBBE, E

    1991-01-01

    Three pseudogenes for the nuclear-encoded subunit VIb of cytochrome c oxidase (COX) were isolated by screening a human genomic library with cloned human cDNA coding for COX subunit VIb. The nucleotide sequences of the pseudogenes, designated PSI-COX6b-1, PSI-COX6b-2 and PSI-COX6b-3, were determined.

  12. IDENTIFICATION OF 3 HUMAN PSEUDOGENES FOR SUBUNIT-VIB OF CYTOCHROME-C-OXIDASE - A MOLECULAR RECORD OF GENE EVOLUTION

    NARCIS (Netherlands)

    TAANMAN, JW; SCHRAGE, C; REUVEKAMP, P; BIJL, J; HARTOG, M; DEVRIES, H; AGSTERIBBE, E

    1991-01-01

    Three pseudogenes for the nuclear-encoded subunit VIb of cytochrome c oxidase (COX) were isolated by screening a human genomic library with cloned human cDNA coding for COX subunit VIb. The nucleotide sequences of the pseudogenes, designated PSI-COX6b-1, PSI-COX6b-2 and PSI-COX6b-3, were determined.

  13. Aromatic hydroxylation of salicylic acid and aspirin by human cytochromes P450.

    Science.gov (United States)

    Bojić, Mirza; Sedgeman, Carl A; Nagy, Leslie D; Guengerich, F Peter

    2015-06-20

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids-salicyluric acid and gentisuric acid-and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1.

  14. Pantothenic acid (Vitamin B5)

    Science.gov (United States)

    ... vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B12 (cyanocobalamin), and folic acid. However, some products do ... Pantothenas, Calcium D-Pantothenate, Calcium Pantothenate, Complexe de Vitamines B, D-Calcium Pantothenate, D-Panthenol, D-Panthénol, ...

  15. Expression of the cytochrome P450 epoxygenase CYP2J2 in human monocytic leukocytes.

    Science.gov (United States)

    Nakayama, Kaeko; Nitto, Takeaki; Inoue, Teruo; Node, Koichi

    2008-08-29

    CYP2J2 is one of the cytochrome P450 epoxygenases involved in the metabolism of arachidonic acid. CYP2J2 has been identified in several tissues, especially cardiovascular tissues. CYP2J2 has cardiovascular effects, as epoxyeicosatrienoic acid, one of its metabolites, has anti-inflammatory and vasodilative activities. We investigated the expression of CYP2J2 in human leukocytes using reverse transcription-polymerase chain reaction, immunoblotting and immunostaining. Human monocytic cells, but not human neutrophils, exhibited constitutive expression of CYP2J2. Furthermore, the expression of CYP2J2 mRNA increased when the human monocytic cell line THP-1 cells and human monocytes were stimulated with phorbol 12-myristate 13-acetate and macrophage-colony stimulating factor in combination with granulocyte/macrophage-colony stimulating factor, respectively. These results suggest that expression of CYP2J2 was up-regulated when human monocytes differentiated into macrophages and that human monocytic cells and macrophages have a pathway to metabolize arachidonic acid using CYP epoxygenases.

  16. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  17. Functional relationship of the cytochrome b to the superoxide-generating oxidase of human neutrophils.

    Science.gov (United States)

    Gabig, T G; Schervish, E W; Santinga, J T

    1982-04-25

    A subcellular particulate fraction containing the NADPH-dependent O2.--generating oxidase from stimulated human neutrophils was prepared. This fraction was depleted of certain enzyme markers of primary and secondary granules and was devoid of measurable myeloperoxidase, both enzymatically and spectrally. When prepared from neutrophils which had been previously stimulated with phorbal myristate acetate, this fraction contained cyanide-insensitive, pyridine nucleotide-dependent O2.--generating activity with a specific activity of 260 nmol min-1 mg-1. O2.--generating activity is completely ablated by p-chloromercuribenzoate exposure. Preparations from normal unstimulated neutrophils or stimulated neutrophils from a male patient with chronic granulomatous disease had negligible amounts of this O2.--generating enzymatic activity. The dominant chromophore in this preparation was a b-type cytochrome, the spectral and functional characteristics of which are further described herein. Pyridine nucleotide-dependent reduction of the intrinsic cytochrome b closely parallels O2.- generation in this preparation. Specifically, reduction occurs in preparations from phorbal myristate acetate-stimulated neutrophils and is absent in unstimulated or stimulated p-chloromercuribenzoate-inactivated preparations.

  18. Control of human energy expenditure by cytochrome c oxidase subunit IV-2.

    Science.gov (United States)

    Schiffer, Tomas A; Peleli, Maria; Sundqvist, Michaela L; Ekblom, Björn; Lundberg, Jon O; Weitzberg, Eddie; Larsen, Filip J

    2016-09-01

    Resting metabolic rate (RMR) in humans shows pronounced individual variations, but the underlying molecular mechanism remains elusive. Cytochrome c oxidase (COX) plays a key role in control of metabolic rate, and recent studies of the subunit 4 isoform 2 (COX IV-2) indicate involvement in the cellular response to hypoxia and oxidative stress. We evaluated whether the COX subunit IV isoform composition may explain the pronounced individual variations in resting metabolic rate (RMR). RMR was determined in healthy humans by indirect calorimetry and correlated to levels of COX IV-2 and COX IV-1 in vastus lateralis. Overexpression and knock down of the COX IV isoforms were performed in primary myotubes followed by evaluation of the cell respiration and production of reactive oxygen species. Here we show that COX IV-2 protein is constitutively expressed in human skeletal muscle and strongly correlated to RMR. Primary human myotubes overexpressing COX IV-2 displayed markedly (>60%) lower respiration, reduced (>50%) cellular H2O2 production, higher resistance toward both oxidative stress, and severe hypoxia compared with control cells. These results suggest an important role of isoform COX IV-2 in the control of energy expenditure, hypoxic tolerance, and mitochondrial ROS homeostasis in humans.

  19. Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes

    Science.gov (United States)

    Eagling, Victoria A; Tjia, John F; Back, David J

    1998-01-01

    Aims Chemical inhibitors of cytochrome P450 (CYP) are a useful tool in defining the role of individual CYPs involved in drug metabolism. The aim of the present study was to evaluate the selectivity and rank the order of potency of a range of isoform-selective CYP inhibitors and to compare directly the effects of these inhibitors in human and rat hepatic microsomes. Methods Four chemical inhibitors of human cytochrome P450 isoforms, furafylline (CYP1A2), sulphaphenazole (CYP2C9), diethyldithiocarbamate (CYP2E1), and ketoconazole (CYP3A4) were screened for their inhibitory specificity towards CYP-mediated reactions in both human and rat liver microsomal preparations. Phenacetin O-deethylation, tolbutamide 4-hydroxylation, chlorzoxazone 6-hydroxylation and testosterone 6β-hydroxylation were monitored for enzyme activity. Results Furafylline was a potent, selective inhibitor of phenacetin O-deethylation (CYP1A2-mediated) in human liver microsomes (IC50 = 0.48 μm), but inhibited both phenacetin O-deethylation and tolbutamide 4-hydroxylation (CYP2C9-mediated) at equimolar concentrations in rat liver microsomes (IC50 = 20.8 and 24.0 μm respectively). Sulphaphenazole demonstrated selective inhibition of tolbutamide hydroxylation in human liver microsomes but failed to inhibit this reaction in rat liver microsomes. DDC demonstrated a low level of selectivity as an inhibitory probe for chlorzoxazone 6-hydroxylation (CYP2E1-mediated). DDC also inhibited testosterone 6β-hydroxylation (CYP3A-mediated) in man and rat, and tolbutamide 4-hydroxylase activity in rat. Ketoconazole was a very potent, selective inhibitor of CYP3A4 activity in human liver (IC50 = 0.04 μm). Although inhibiting CYP3A in rat liver it also inhibited all other reactions at concentrations ≤5 μm. Conclusions It is evident that CYP inhibitors do not exhibit the same selectivity in human and rat liver microsomes. This is due to differential selectivity of the inhibitors and/or differences in the CYP

  20. Exploiting the versatility of human cytochrome P450 enzymes: the promise of blue roses from biotechnology.

    Science.gov (United States)

    Gillam, E M; Guengerich, F P

    2001-12-01

    The cytochrome P450 (P450) enzymes involved in drug metabolism are among the most versatile biological catalysts known. A small number of discrete forms of human P450 are capable of catalyzing the monooxygenation of a practically unlimited variety of xenobiotic substrates, with each enzyme showing a more or less wide and overlapping substrate range. This versatility makes P450s ideally suited as starting materials for engineering designer catalysts for industrial applications. In the course of heterologous expression of P450s in bacteria, we observed the unexpected formation of blue pigments. Although this was initially assumed to be an artifact, subsequent work led to the discovery of a new function of P450s in intermediary metabolism and toxicology, new screens for protein engineering, and potential applications in the dye and horticulture industries.

  1. Dynamics of water molecules in the active-site cavity of human cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Rod, Thomas Holm; Olsen, Lars;

    2007-01-01

    have quite big cavities, with 41 water molecules on average in 2C8 and 54-58 in 2C9 and 3A4, giving a water volume of 1500-2100 A3. The two crystal structures of 2C9 differ quite appreciably, whereas those of 3A4 are quite similar. The active-site cavity is connected to the surroundings by three to six......We have studied the dynamics of water molecules in six crystal structures of four human cytochromes P450, 2A6, 2C8, 2C9, and 3A4, with molecular dynamics simulations. In the crystal structures, only a few water molecules are seen and the reported sizes of the active-site cavity vary a lot...

  2. Sequential metabolism of sesamin by cytochrome P450 and UDP-glucuronosyltransferase in human liver.

    Science.gov (United States)

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2011-09-01

    Our previous study revealed that CYP2C9 played a central role in sesamin monocatecholization. In this study, we focused on the metabolism of sesamin monocatechol that was further converted into the dicatechol form by cytochrome P450 (P450) or the glucuronide by UDP-glucuronosyltransferase (UGT). Catecholization of sesamin monocatechol enhances its antioxidant activity, whereas glucuronidation strongly reduces its antioxidant activity. In human liver microsomes, the glucuronidation activity was much higher than the catecholization activity toward sesamin monocatechol. In contrast, in rat liver microsomes, catecholization is predominant over glucuronidation. In addition, rat liver produced two isomers of the glucuronide, whereas human liver produced only one glucuronide. These results suggest a significant species-based difference in the metabolism of sesamin between humans and rats. Kinetic studies using recombinant human UGT isoforms identified UGT2B7 as the most important UGT isoform for glucuronidation of sesamin monocatechol. In addition, a good correlation was observed between the glucuronidation activity and UGT2B7-specific activity in in vitro studies using 10 individual human liver microsomes. These results strongly suggest that UGT2B7 plays an important role in glucuronidation of sesamin monocatechol. Interindividual difference among the 10 human liver microsomes is approximately 2-fold. These results, together with our previous results on the metabolism of sesamin by human P450, suggest a small interindividual difference in sesamin metabolism. We observed the methylation activity toward sesamin monocatechol by catechol O-methyl transferase (COMT) in human liver cytosol. On the basis of these results, we concluded that CYP2C9, UGT2B7, and COMT played essential roles in the metabolism of sesamin in the human liver.

  3. Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chuanwu; Panda, Satya P.; Marohnic, Christopher C.; Martásek, Pavel; Masters, Bettie Sue; Kim, Jung-Ja P. (MCW); (Charles U); (UTSMC)

    2012-03-15

    NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure of human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.

  4. Human cytochrome P450 enzyme specificity for bioactivation of safrole to the proximate carcinogen 1′-hydroxysafrole

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Bogaards, J.J.P.; Awad, H.M.; Boersma, M.G.; Brand, W.; Fiamegos, Y.C.; Beek, T.A. van; Alink, G.M.; Sudhölter, E.J.R.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2004-01-01

    In the present study, the cytochrome P450 mediated bioactivation of safrole to its proximate carcinogenic metabolite, 1′-hydroxysafrole, has been investigated for the purpose of identifying the human P450 enzymes involved. The 1′-hydroxylation of safrole was characterized in a variety of in vitro te

  5. Human Cytochrome P450 Enzymes of Importance for the Bioactivation of Methyleugenol to the Proximate Carcinogen 1'-Hydroxymethyleugenol

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Bogaards, J.J.P.; Boersma, M.G.; Horst, ter J.P.F.; Awad, H.M.; Fiamegos, Y.C.; Beek, van T.A.; Alink, G.M.; Sudhölter, E.J.R.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2006-01-01

    In vitro studies were performed to elucidate the human cytochrome P450 enzymes involved in the bioactivation of methyleugenol to its proximate carcinogen 1'-hydroxymethyleugenol. Incubations with Supersomes, expressing individual P450 enzymes to a high level, revealed that P450 1A2, 2A6, 2C9, 2C19,

  6. Distinction between human cytochrome P450 (CYP) isoforms and identification of new phosphorylation sites by mass spectrometry

    DEFF Research Database (Denmark)

    Redlich, Gorden; Zanger, Ulrich M; Riedmaier, Stephan;

    2008-01-01

    In mammals, Cytochrome P450 (CYP) enzymes are bound to membranes of the endoplasmic reticulum and mitochondria, where they are responsible for the oxidative metabolism of many xenobiotics as well as organic endogenous compounds. In humans, 57 isoforms were identified which are classified based...

  7. Human cytochrome P450 enzymes of importance for the bioactivation of methyleugenol to the proximate carcinogen 1′-hydroxymethyleugenol

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Bogaards, J.J.P.; Boersma, M.G.; Horst, J.P.F. ter; Awad, H.M.; Fiamegos, Y.C.; Beek, T.A. van; Alink, G.M.; Sudhölter, E.J.R.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2006-01-01

    In vitro studies were performed to elucidate the human cytochrome P450 enzymes involved in the bioactivation of methyleugenol to its proximate carcinogen 1′-hydroxymethyleugenol. Incubations with Supersomes, expressing individual P450 enzymes to a high level, revealed that P450 1A2, 2A6, 2C9, 2C19,

  8. Data on cytochrome c oxidase assembly in mice and human fibroblasts or tissues induced by SURF1 defect.

    Science.gov (United States)

    Kovářová, Nikola; Pecina, Petr; Nůsková, Hana; Vrbacký, Marek; Zeviani, Massimo; Mráček, Tomáš; Viscomi, Carlo; Houštěk, Josef

    2016-06-01

    This paper describes data related to a research article entitled "Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects" [1]. This paper includes data of the quantitative analysis of individual forms of respiratory chain complexes I, III and IV present in SURF1 knockout (SURF1 (-/-) ) and control (SURF1 (+/+) ) mouse fibroblasts and tissues and in fibroblasts of human control and patients with SURF1 gene mutation. Also it includes data demonstrating response of complex IV, cytochrome c oxidase (COX), to reversible inhibition of mitochondrial translation in SURF1 (-/-) mouse and SURF1 patient fibroblast cell lines.

  9. Inhibition of human cytochrome P450 enzymes by the natural hepatotoxin safrole.

    Science.gov (United States)

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw

    2005-05-01

    The hepatotoxin, safrole is a methylenedioxy phenyl compound, found in sassafras oil and certain other essential oils. Recombinant cytochrome P450 (CYP, P450) and human liver microsomes were studied to investigate the selective inhibitory effects of safrole on human P450 enzymes and the mechanisms of action. Using Escherichia coli-expressed human P450, our results demonstrated that safrole was a non-selective inhibitor of CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP3A4 in the IC(50) order CYP2E1 Safrole strongly inhibited CYP1A2, CYP2A6, and CYP2E1 activities with IC(50) values less than 20 microM. Safrole caused competitive, non-competitive, and non-competitive inhibition of CYP1A2, CYP2A6 and CYP2E1 activities, respectively. The inhibitor constants were in the order CYP1A2 safrole strongly inhibited 7-ethoxyresorufin O-deethylation, coumarin hydroxylation, and chlorzoxazone hydroxylation activities. These results revealed that safrole was a potent inhibitor of human CYP1A2, CYP2A6, and CYP2E1. With relatively less potency, CYP2D6 and CYP3A4 were also inhibited.

  10. A novel quinazolinone derivative induces cytochrome c interdependent apoptosis and autophagy in human leukemia MOLT-4 cells

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2014-01-01

    Full Text Available Crosstalk between apoptosis and autophagy is budding as one of the novel strategies in the cancer therapeutics. The present study tinted toward the interdependence of autophagy and apoptosis induce by a novel quinazolinone derivative 2,3-dihydro-2-(quinoline-5-yl quinazolin-4(1H-one structure [DQQ] in human leukemia MOLT-4 cells. DQQ induces cytochrome c arbitrated apoptosis and autophagy in MOLT-4 cells. Apoptosis induces by DQQ was confirmed through a battery of assay e.g. cellular and nuclear microscopy, annexin-V assay, cell cycle analysis, loss of mitochondrial membrane potential and immune-expression of cytochrome c, caspases and PARP. Furthermore, acridine orange staining, LC3 immunofluorescence and western blotting of key autophagy proteins revealed the autophagic potential of DQQ. A universal caspase inhibitor, Z-VAD-FMK and cytochrome c silencing, strongly inhibited the DQQ induce autophagy and apoptosis. Beclin1 silencing through siRNA partially reversed the cell death, which was not as significant as by cytochrome c silencing. Although, it partially reversed the PARP cleavage induced by DQQ, indicating the role of autophagy in the regulation of apoptosis. The present study first time portrays the negative feedback potential of cytochrome c regulated autophagy and the importance of quinazolinone derivative in discovery of novel anticancer therapeutics.

  11. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development.

    Science.gov (United States)

    Sadler, Natalie C; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N; Smith, Jordan N; Corley, Richard A; Wright, Aaron T

    2016-07-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography-mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Acute hypoxia and cytochrome P450-mediated hepatic drug metabolism in humans

    DEFF Research Database (Denmark)

    Jürgens, Gesche; Christensen, Hanne Rolighed; Brøsen, Kim;

    2002-01-01

    Our objective was to investigate the effect of acute hypoxia on the activity of hepatic cytochrome P450 (CYP) enzymes.......Our objective was to investigate the effect of acute hypoxia on the activity of hepatic cytochrome P450 (CYP) enzymes....

  13. REGULATION OF THE EXPRESSION OF MITOCHONDRIAL PROTEINS - RELATIONSHIP BETWEEN MTDNA COPY NUMBER AND CYTOCHROME-C-OXIDASE ACTIVITY IN HUMAN-CELLS AND TISSUES

    NARCIS (Netherlands)

    VANDENBOGERT, C; DEVRIES, H; HOLTROP, M; MUUS, P; DEKKER, HL; VANGALEN, MJM; BOLHUIS, PA; TAANMAN, JW

    1993-01-01

    The relationship between the relative amounts of nuclear and mitochondrial genes for cytochrome-c oxidase subunits and their transcripts and cytochrome-c oxidase activity was investigated in several human tissues and cell lines to get more insight into the regulation of the expression of this mitoch

  14. Repurposing Resveratrol and Fluconazole To Modulate Human Cytochrome P450-Mediated Arachidonic Acid Metabolism.

    Science.gov (United States)

    El-Sherbeni, Ahmed A; El-Kadi, Ayman O S

    2016-04-04

    Cytochrome P450 (P450) enzymes metabolize arachidonic acid (AA) to several biologically active epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs). Repurposing clinically-approved drugs could provide safe and readily available means to control EETs and HETEs levels in humans. Our aim was to determine how to significantly and selectively modulate P450-AA metabolism in humans by clinically-approved drugs. Liquid chromatography-mass spectrometry was used to determine the formation of 15 AA metabolites by human recombinant P450 enzymes, as well as human liver and kidney microsomes. CYP2C19 showed the highest EET-forming activity, while CYP1B1 and CYP2C8 showed the highest midchain HETE-forming activities. CYP1A1 and CYP4 showed the highest subterminal- and 20-HETE-forming activity, respectively. Resveratrol and fluconazole produced the most selective and significant modulation of hepatic P450-AA metabolism, comparable to investigational agents. Monte Carlo simulations showed that 90% of human population would experience a decrease by 6-22%, 16-39%, and 16-35% in 16-, 18-, and 20-HETE formation, respectively, after 2.5 g daily of resveratrol, and by 22-31% and 14-23% in 8,9- and 14,15-EET formation after 50 mg of fluconazole. In conclusion, clinically-approved drugs can provide selective and effective means to modulate P450-AA metabolism, comparable to investigational drugs. Resveratrol and fluconazole are good candidates to be repurposed as new P450-based treatments.

  15. Metabolism of sesamin by cytochrome P450 in human liver microsomes.

    Science.gov (United States)

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2010-12-01

    Metabolism of sesamin by cytochrome P450 (P450) was examined using yeast expression system and human liver microsomes. Saccharomyces cerevisiae cells expressing each of human P450 isoforms (CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) were cultivated with sesamin, and monocatechol metabolite was observed in most of P450s. Kinetic analysis using the microsomal fractions of the recombinant S. cerevisiae cells revealed that CYP2C19 had the largest k(cat)/K(m) value. Based on the kinetic data and average contents of the P450 isoforms in the human liver, the putative contribution of P450s for sesamin metabolism was large in the order of CYP2C9, 1A2, 2C19, and 2D6. A good correlation was observed between sesamin catecholization activity and CYP2C9-specific activity in in vitro studies using 10 individual human liver microsomes, strongly suggesting that CYP2C9 is the most important P450 isoform for sesamin catecholization in human liver. Inhibition studies using each anti-P450 isoform-specific antibody confirmed that CYP2C9 was the most important, and the secondary most important P450 was CYP1A2. We also examined the inhibitory effect of sesamin for P450 isoform-specific activities and found a mechanism-based inhibition of CYP2C9 by sesamin. In contrast, no mechanism-based inhibition by sesamin was observed in CYP1A2-specific activity. Our findings strongly suggest that further studies are needed to reveal the interaction between sesamin and therapeutic drugs mainly metabolized by CYP2C9.

  16. Hepatic cytochrome P450 activity, abundance, and expression throughout human development

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo M.; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.; Wright, Aaron T.

    2016-07-01

    Cytochrome P450s are Phase I metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes can vary considerably throughout human development, especially when comparing fetal development to neonates, children, and adults. In an effort to develop a more comprehensive understanding of the ontogeny of P450 expression and activity we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. To quantify the functional activity of individual P450s we employ activity-based protein profiling, which uses modified mechanism-based inhibitors of P450s as chemical probes, in tandem with proteomic analyses to quantify activity. Our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. The results were used to distribute P450s into three general classes based upon developmental stage of expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that our ontogeny results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.

  17. Human cytochrome P450 oxidation of 5-hydroxythalidomide and pomalidomide, an amino analogue of thalidomide.

    Science.gov (United States)

    Chowdhury, Goutam; Shibata, Norio; Yamazaki, Hiroshi; Guengerich, F Peter

    2014-01-21

    The sedative and antiemetic drug thalidomide [α-(N-phthalimido)glutarimide] was withdrawn in the early 1960s because of its potent teratogenic effects but was approved for the treatment of lesions associated with leprosy in 1998 and multiple myeloma in 2006. The mechanism of teratogenicity of thalidomide still remains unclear, but it is well-established that metabolism of thalidomide is important for both teratogenicity and cancer treatment outcome. Thalidomide is oxidized by various cytochrome P450 (P450) enzymes, the major one being P450 2C19, to 5-hydroxy-, 5'-hydroxy-, and dihydroxythalidomide. We previously reported that P450 3A4 oxidizes thalidomide to the 5-hydroxy and dihydroxy metabolites, with the second oxidation step involving a reactive intermediate, possibly an arene oxide, that can be trapped by glutathione (GSH) to GSH adducts. We now show that the dihydroxythalidomide metabolite can be further oxidized to a quinone intermediate. Human P450s 2J2, 2C18, and 4A11 were also found to oxidize 5-hydroxythalidomide to dihydroxy products. Unlike P450s 2C19 and 3A4, neither P450 2J2, 2C18, nor 4A11 oxidized thalidomide itself. A recently approved amino analogue of thalidomide, pomalidomide (CC-4047, Actimid), was also oxidized by human liver microsomes and P450s 2C19, 3A4, and 2J2 to the corresponding phthalimide ring-hydroxylated product.

  18. Inhibition of Cytochrome P450 by Propolis in Human Liver Microsomes.

    Science.gov (United States)

    Ryu, Chang Seon; Oh, Soo Jin; Oh, Jung Min; Lee, Ji-Yoon; Lee, Sang Yoon; Chae, Jung-Woo; Kwon, Kwang-Il; Kim, Sang Kyum

    2016-07-01

    Although propolis is one of the most popular functional foods for human health, there have been no comprehensive studies of herb-drug interactions through cytochrome P450 (CYP) inhibition. The purpose of this study was to determine the inhibitory effects of propolis on the activities of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 using pooled human liver microsomes (HLMs). Propolis inhibited CYP1A2, CYP2E1 and CYP2C19 with an IC50 value of 6.9, 16.8, and 43.1 μg/mL, respectively, whereas CYP2A6, 2B6, 2C9, 2D6, and 3A4 were unaffected. Based on half-maximal inhibitory concentration shifts between microsomes incubated with and without nicotinamide adenine dinucleotide phosphate, propolis-induced CYP1A2, CYP2C19, and CYP2E1 inhibition was metabolism-independent. To evaluate the interaction potential between propolis and therapeutic drugs, the effects of propolis on metabolism of duloxetine, a serotonin-norepinephrine reuptake inhibitor, were determined in HLMs. CYP1A2 and CYP2D6 are involved in hydroxylation of duloxetine to 4-hydroxy duloxetine, the major metabolite, which was decreased following propolis addition in HLMs. These results raise the possibility of interactions between propolis and therapeutic drugs metabolized by CYP1A2.

  19. The Effect of Vinpocetine on Human Cytochrome P450 Isoenzymes by Using a Cocktail Method

    Directory of Open Access Journals (Sweden)

    Lingti Kong

    2016-01-01

    Full Text Available Vinpocetine is a derivative of the alkaloid vincamine, which had been prescribed for chronic cerebral vascular ischemia and acute ischemic stroke or used as a dietary supplement for its several different mechanisms of biological activities. However, information on the cytochrome P450 (CYP enzyme-mediated drug metabolism has not been previously studied. The present study was performed to investigate the effects of vinpocetine on CYPs activity, and cocktail method was used, respectively. To evaluate the effects of vinpocetine on the activity of human CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, human liver microsomes were utilized to incubate with the mixed CYPs probe substrates and the target components. The results indicate that vinpocetine exhibited weak inhibitory effect on the CYP2C9, where the IC50 value is 68.96 μM, whereas the IC50 values for CYP3A4, CYP2C19, CYP2D6, and CYP2E1 were all over range of 100 μM, which showed that vinpocetine had no apparent inhibitory effects on these CYPs. In conclusion, the results indicated that drugs metabolized by CYP2C9 coadministrated with vinpocetine may require attention or dose adjustment.

  20. In vitro Metabolism of Strychnine by Human Cytochrome P450 and Its Interaction with Glycyrrhetic Acid

    Institute of Scientific and Technical Information of China (English)

    LIU Li; XIAO Juan; PENG Zhi-hong; WU Wen-hua; DU Peng; CHEN Yong

    2012-01-01

    Objective To investigate the metabolism of strychnine (STN) and the metabolic interaction between STN and glycyrthetic acid (GA) in vitro.Methods Human liver microsomes (HLM) and human recombinant cytochrome P450 (CYP) isoforms were employed to study the metabolism of STN and the metabolic interaction of STN with GA in vitro.Results In HLM,the Km,Vmax,and clearance of STN were 88.50 μmol/L,0.88 nmol/(mg·min),and 9.93 mL/(mg·min),respectively.STN was metabolized mainly by CYP3A4.However,STN noncompetitively inhibited CYP3A4-catalyzed testosterone 6β-hydroxylation with IC50 value of 5.9 μtmol/L and Ki value of 5.5μmol/L.Moreover,GA competitively inhibited STN metabolism with IC5o value of 10.6 μmol/L and Ki value of 17.7 μmol/L.Conclusion Although STN is mainly metabolized by CYP3A4 in vitro,STN has noncompetitive inhibition on CYP3A4-catalyzed testosterone 6β-hydroxylation.Moreover,GA could competitively inhibit STN metabolism.The present work is helpful to elucidate the metabolic interaction between STN and GA.

  1. 23. Establishment of two transgenic cells stable expression of human cytochrome P450 2C

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To clone the human cytochrome P450 2C9 (CYP2C9) and CYP2C18 cDNA and establish two transgenic CHL cell line stable expressing human CYP2C9 and CYP2C18. METHODS:Extracting total RNA from human liver tissue, the human CYP2C9 and CYP2C18 cDNA was amplified with reverse transcription polymerase chain reaction (RT-PCR), and cloned into cloning vector pGEM-T. The cDNA segment was identified by DNA sequencing and subcloned into a mammalian expression vector pREP9. Two transgenic cell line were established by transfecting the recombinant vectors of pREP9-CYP2C9 and pREP9-CYP2C18 to Chinese hamster lung cell CHL. The enzyme activity of CYP2C9 and CYP2C18 catalyze tolbutamide to 4-hydroxy tolbutamide in S9 protein of the cells were determinated by HPLC. RESULTS: The sequence of the two cDNA segments cloned, which were 1540 bp and 1671 bp in length, were identical to those reported by Romkes et al(GenBank accession number: M61855, M61856, J05326) in coding amino acids. The S9 fraction of the established cell lines can metabolize tolbutamide to 4-hydroxy tolbutamide, the tolbutamide-4-hydroxylase activity was found to be 0.465±0.109 and 0.509±0.052 nmol*min-1*(mg S9 protein)-1 (n=3), but was not detectable in parental CHL cell. CONCLUSION: The cDNA of CYP2C9 and CYP2C18 were successfolly cloned and cell lines of CHL-CYP2C9 and CHL-CYP2C18 which efficiently expressed the protein of CYP2C9 and CYP2C18 were established.

  2. Effects of Eupatilin and Jaceosidin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ji Hyun Jeong

    2010-09-01

    Full Text Available Eupatilin and jaceosidin are bioactive flavones found in the medicinal herbs of the genus Artemisia. These bioactive flavones exhibit various antioxidant, antiinflammatory, antiallergic, and antitumor activities. The inhibitory potentials of eupatilin and jaceosidin on the activities of seven major human cytochrome P450 enzymes in human liver microsomes were investigated using a cocktail probe assay. Eupatilin and jaceosidin potently inhibited CYP1A2-catalyzed phenacetin O-deethylation with 50% inhibitory concentration (IC50 values of 9.4 mM and 5.3 mM, respectively, and CYP2C9-catalyzed diclofenac 4-hydroxylation with IC50 values of 4.1 mM and 10.2 mM, respectively. Eupatilin and jaceosidin were also found to moderately inhibit CYP2C19-catalyzed [S]-mephenytoin 4¢-hydroxylation, CYP2D6-catalyzed bufuralol 1¢-hydroxylation, and CYP2C8-catalyzed amodiaquine N-deethylation. Kinetic analysis of human liver microsomes showed that eupatilin is a competitive inhibitor of CYP1A2 with a Ki value of 2.3 mM and a mixed-type inhibitor of CYP2C9 with a Ki value of 1.6 mM. Jaceosidin was shown to be a competitive inhibitor of CYP1A2 with a Ki value of 3.8 mM and a mixed-type inhibitor of CYP2C9 with Ki value of 6.4 mM in human liver microsomes. These in vitro results suggest that eupatilin and jaceosidin should be further examined for potential pharmacokinetic drug interactions in vivo due to inhibition of CYP1A2 and CYP2C9.

  3. Sequence and phylogenetic analysis of host-range (E3L, K3L, and C7L) and structural protein (B5R) genes of buffalopox virus isolates from buffalo, cattle, and human in India.

    Science.gov (United States)

    Bera, Bidhan Ch; Shanmugasundaram, K; Barua, Sanjay; Anand, Taruna; Riyesh, T; Vaid, Rajesh K; Virmani, Nitin; Bansal, Manish; Shukla, Brihaspati N; Malik, Praveen; Singh, Raj K

    2012-12-01

    Buffalopox virus (BPXV), a close variant of vaccinia virus (VACV) has emerged as a zoonotic pathogen. The host tropism of poxviruses is governed by host-range genes. Among the host-range genes: E3L, K3L, and C7L are essential for virus replication by preventing interferon resistance, whereas B5R is essential for spread of the virus and evasion from the host's immune response as in VACV. We report sequence analysis of host-range genes: E3L, K3L, C7L, and membrane protein gene (B5R) of BPXVs from buffalo, cattle, and human from recent outbreaks in India-their phylogenetic relationship with reference strain (BP4) and other Orthopoxviruses. BPXVs revealed a sequence homology with VACVs including zoonotic Brazilian VACV-like viruses. The aa sequences of E3L and K3L genes were 100 % similar in buffalo, cattle, and human isolates. However, four significant point mutations (I11K; N12K and S36F in C7L gene and D249G in B5R gene) were observed specific to buffalo isolate only. This signifies that different strains of BPXV were circulated during the outbreak. The mutations in C7L and B5R could play an important role in adaptation of BPXV in human and cattle which needs further functional studies. The strain of BPXV isolated from buffalo may not be adopted in human and cow. Various point mutations were observed in the host-range genes of reference strain (BPXV-BP4) which may be due to several passages of virus in cell culture. The phylogeny constructed based on concatenated gene sequences revealed that BPXVs are not as closely related to vaccine strain (Lister and Lister-derived strain-LC16m8), as hypothesized earlier, rather they are more closely related to reference strain (BPXV-BP4) and other vaccinia and vaccinia-like viruses such as Passatempo and Aracatuba viruses. The availability of information regarding host tropism determinants would allow us to understand molecular mechanism of species tropism of poxviruses which would be useful in unveiling new strategies to

  4. Inhibition of fipronil and nonane metabolism in human liver microsomes and human cytochrome P450 isoforms by chlorpyrifos.

    Science.gov (United States)

    Joo, Hyun; Choi, Kyoungju; Rose, Randy L; Hodgson, Ernest

    2007-01-01

    Previous studies have established that chlorpyrifos (CPS), fipronil, and nonane can all be metabolized by human liver microsomes (HLM) and a number of cytochrome P450 (CYP) isoforms. However, metabolic interactions between these three substrates have not been described. In this study the effect of either coincubation or preincubation of CPS with HLM or CYP isoforms with either fipronil or nonane as substrate was investigated. In both co- and preincubation experiments, CPS significantly inhibited the metabolism of fipronil or nonane by HLM although CPS inhibited the metabolism of fipronil more effectively than that of nonane. CPS significantly inhibited the metabolism of fipronil by CYP3A4 as well as the metabolism of nonane by CYP2B6. In both cases, preincubation with CPS caused greater inhibition than coincubation, suggesting that the inhibition is mechanism based.

  5. Genetic polymorphism of human cytochrome P-450 (S)-mephenytoin 4-hydroxylase. Studies with human autoantibodies suggest a functionally altered cytochrome P-450 isozyme as cause of the genetic deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Meier, U.T.; Meyer, U.A.

    1987-12-15

    The metabolism of the anticonvulsant mephenytoin is subject to a genetic polymorphism. In 2-5% of Caucasians and 18-23% of Japanese subjects a specific cytochrome P-450 isozyme, P-450 meph, is functionally deficient or missing. The authors have accumulated evidence that autoimmune antibodies observed in sera of patients with tienilic acid induced hepatitis (anti-liver kidney microsome 2 or anti-LKM2 antibodies) specifically recognize the cytochrome P-450 involved in the mephrenytoin hydroxylation polymorphism. This is demonstrated by immunoinhibition and immunoprecipitation of microsomal (S)-mephenytoin 4-hydroxylation activity and by the recognition by anti-LKM2 antibodies of a single (/sup 125/I)-protein band on immunoblots of human liver microsomes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focusing. The cytochrome P-450 recognized by anti-LKM2 antibodies was immunopurified from microsomes derived from livers of extensive (EM) or poor metabolizers (PM) of (S)-mephenytoin. Comparison of the EM-type cytochrome P-450 to that isolated from PM livers revealed no difference in regard to immuno-cross-reactivity, molecular weight, isoelectric point, relative content in microsomes, two-dimensional tryptic peptide maps, one-dimensional peptide maps with three proteases, amino acid composition, and amino-terminal protein sequence. Finally, the same protein was precipitated from microsomes prepared from the liver biopsy of a subject phenotyped in vivo as a poor metabolizer of mephenytoin. These data strongly suggest that the mephenytoin hydroxylation deficiency is caused by a minor structural change leading to a functionally altered cytochrome P-450 isozyme.

  6. Metabolism of Oral Turinabol by Human Steroid Hormone-Synthesizing Cytochrome P450 Enzymes.

    Science.gov (United States)

    Schiffer, Lina; Brixius-Anderko, Simone; Hannemann, Frank; Zapp, Josef; Neunzig, Jens; Thevis, Mario; Bernhardt, Rita

    2016-02-01

    The human mitochondrial cytochrome P450 enzymes CYP11A1, CYP11B1, and CYP11B2 are involved in the biosynthesis of steroid hormones. CYP11A1 catalyzes the side-chain cleavage of cholesterol, and CYP11B1 and CYP11B2 catalyze the final steps in the biosynthesis of gluco- and mineralocorticoids, respectively. This study reveals their additional capability to metabolize the xenobiotic steroid oral turinabol (OT; 4-chlor-17β-hydroxy-17α-methylandrosta-1,4-dien-3-on), which is a common doping agent. By contrast, microsomal steroid hydroxylases did not convert OT. Spectroscopic binding assays revealed dissociation constants of 17.7 µM and 5.4 µM for CYP11B1 and CYP11B2, respectively, whereas no observable binding spectra emerged for CYP11A1. Catalytic efficiencies of OT conversion were determined to be 46 min(-1) mM(-1) for CYP11A1, 741 min(-1) mM(-1) for CYP11B1, and 3338 min(-1) mM(-1) for CYP11B2, which is in the same order of magnitude as for the natural substrates but shows a preference of CYP11B2 for OT conversion. Products of OT metabolism by the CYP11B subfamily members were produced at a milligram scale with a recombinant Escherichia coli-based whole-cell system. They were identified by nuclear magnetic resonance spectroscopy to be 11β-OH-OT for both CYP11B isoforms, whereby CYP11B2 additionally formed 11β,18-diOH-OT and 11β-OH-OT-18-al, which rearranges to its tautomeric form 11β,18-expoxy-18-OH-OT. CYP11A1 produces six metabolites, which are proposed to include 2-OH-OT, 16-OH-OT, and 2,16-diOH-OT based on liquid chromatography-tandem mass spectrometry analyses. All three enzymes are shown to be inhibited by OT in their natural function. The extent of inhibition thereby depends on the affinity of the enzyme for OT and the strongest effect was demonstrated for CYP11B2. These findings suggest that steroidogenic cytochrome P450 enzymes can contribute to drug metabolism and should be considered in drug design and toxicity studies. Copyright © 2016 by The

  7. Are there differences in the catalytic activity per unit enzyme of recombinantly expressed and human liver microsomal cytochrome P450 2C9? A systematic investigation into inter-system extrapolation factors.

    Science.gov (United States)

    Crewe, H K; Barter, Z E; Yeo, K Rowland; Rostami-Hodjegan, A

    2011-09-01

    The 'relative activity factor' (RAF) compares the activity per unit of microsomal protein in recombinantly expressed cytochrome P450 enzymes (rhCYP) and human liver without separating the potential sources of variation (i.e. abundance of enzyme per mg of protein or variation of activity per unit enzyme). The dimensionless 'inter-system extrapolation factor' (ISEF) dissects differences in activity from those in CYP abundance. Detailed protocols for the determination of this scalar, which is used in population in vitro-in vivo extrapolation (IVIVE), are currently lacking. The present study determined an ISEF for CYP2C9 and, for the first time, systematically evaluated the effects of probe substrate, cytochrome b5 and methods for assessing the intrinsic clearance (CL(int) ). Values of ISEF for S-warfarin, tolbutamide and diclofenac were 0.75 ± 0.18, 0.57 ± 0.07 and 0.37 ± 0.07, respectively, using CL(int) values derived from the kinetic values V(max) and K(m) of metabolite formation in rhCYP2C9 + reductase + b5 BD Supersomes™. The ISEF values obtained using rhCYP2C9 + reductase BD Supersomes™ were more variable, with values of 7.16 ± 1.25, 0.89 ± 0.52 and 0.50 ± 0.05 for S-warfarin, tolbutamide and diclofenac, respectively. Although the ISEF values obtained from rhCYP2C9 + reductase + b5 for the three probe substrates were statistically different (p ISEF. Furthermore, as ISEFs have been found to be sensitive to differences in accessory proteins, rhCYP system specific ISEFs are recommended.

  8. Effects of 3G cell phone exposure on the structure and function of the human cytochrome P450 reductase.

    Science.gov (United States)

    Tanvir, Shazia; Thuróczy, György; Selmaoui, Brahim; Silva Pires Antonietti, Viviane; Sonnet, Pascal; Arnaud-Cormos, Delia; Lévêque, Philippe; Pulvin, Sylviane; de Seze, René

    2016-10-01

    Cell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR). CPR plays a key role in the electron transfer to cytochrome P450, which takes part in a wide range of oxidative metabolic reactions in various organisms from microbes to humans. Human CPR was exposed for 60min to 1966-MHz RF inside a transverse electromagnetic cell (TEM-cell) placed in an incubator. The specific absorption rate (SAR) was 5W·kg(-1). Conformation changes have been detected through fluorescent spectroscopy of flavin and tryptophan residues, and investigated through circular dichroism, dynamic light scattering and microelectrophoresis. These showed that CPR was narrowed. By using cytochrome C reductase activity to assess the electron flux through the CPR, the Michaelis Menten constant (Km) and the maximum initial velocity (Vmax) decreased by 22% as compared with controls. This change was due to small changes in the tertiary and secondary structures of the protein at 37°C. The relevance of these findings to an actual RF exposure scenario demands further biochemical and in-vivo confirmation.

  9. Characterization of human cytochrome P450 enzymes involved in the metabolism of cyamemazine.

    Science.gov (United States)

    Arbus, Christophe; Benyamina, Amine; Llorca, Pierre-Michel; Baylé, Franck; Bromet, Norbert; Massiere, Frédéric; Garay, Ricardo P; Hameg, Ahcène

    2007-12-01

    Recombinant human liver microsomal enzymes of the cytochrome P450 family (CYP1A2, CYP2A6, CYP3A4, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1) were used to determine the metabolic fate of the antipsychotic anxiolytic agent cyamemazine. An LC/MS-MS tandem methodology was developed specifically for identifying the presence of cyamemazine and its metabolites in reaction media. All P450 enzymes investigated, with the exception of CYP2A6 and CYP2E1, degraded cyamemazine, albeit to a different extent, with CYP1A2, CYP2C8 and CYP2C19 being the most efficient (>80%). However, in microsomes prepared from native human hepatocytes, only relatively specific competitors (inhibitors and/or substrates) of CYP1A2, CYP2C8, CYP2C9 and CYP3A4 reduced notably the degradation cyamemazine. The main routes of cyamemazine biotransformation are N-mono-demethylation (CYP1A2, CYP3A4 and CYP2C8) and mono-oxidation (either S-oxidized or hydroxylated derivatives which could not be discriminated because characterized by the same mass value) by CYP1A2 and CYP2C9. Secondary metabolic routes yields N,N-di-demethylated and N-demethylated mono-oxidized products. Thus, under in vitro conditions, cyamemazine is extensively degraded by at least four distinct P450 enzymes, into two primary hydrophilic metabolites. These results suggest that cyamemazine detoxification process is unlikely to be significantly impaired by co-administration of therapeutic agents that are substrates of the CYP metabolic system.

  10. Human hepatic cytochrome P450-specific metabolism of the organophosphorus pesticides methyl parathion and diazinon.

    Science.gov (United States)

    Ellison, Corie A; Tian, Yuan; Knaak, James B; Kostyniak, Paul J; Olson, James R

    2012-01-01

    Organophosphorus pesticides (OPs) are a public health concern due to their worldwide use and documented human exposures. Phosphorothioate OPs are metabolized by cytochrome P450s (P450s) through either a dearylation reaction to form an inactive metabolite, or through a desulfuration reaction to form an active oxon metabolite, which is a potent cholinesterase inhibitor. This study investigated the rate of desulfuration (activation) and dearylation (detoxification) of methyl parathion and diazinon in human liver microsomes. In addition, recombinant human P450s were used to determine the P450-specific kinetic parameters (K(m) and V(max)) for each compound for future use in refining human physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models of OP exposure. The primary enzymes involved in bioactivation of methyl parathion were CYP2B6 (K(m) = 1.25 μM; V(max) = 9.78 nmol · min(-1) · nmol P450(-1)), CYP2C19 (K(m) = 1.03 μM; V(max) = 4.67 nmol · min(-1) · nmol P450(-1)), and CYP1A2 (K(m) = 1.96 μM; V(max) = 5.14 nmol · min(-1) · nmol P450(-1)), and the bioactivation of diazinon was mediated primarily by CYP1A1 (K(m) = 3.05 μM; V(max) = 2.35 nmol · min(-1) · nmol P450(-1)), CYP2C19 (K(m) = 7.74 μM; V(max) = 4.14 nmol · min(-1) · nmol P450(-1)), and CYP2B6 (K(m) = 14.83 μM; V(max) = 5.44 nmol · min(-1) · nmol P450(-1)). P450-mediated detoxification of methyl parathion only occurred to a limited extent with CYP1A2 (K(m) = 16.8 μM; V(max) = 1.38 nmol · min(-1) · nmol P450(-1)) and 3A4 (K(m) = 104 μM; V(max) = 5.15 nmol · min(-1) · nmol P450(-1)), whereas the major enzyme involved in diazinon detoxification was CYP2C19 (K(m) = 5.04 μM; V(max) = 5.58 nmol · min(-1) · nmol P450(-1)). The OP- and P450-specific kinetic values will be helpful for future use in refining human PBPK/PD models of OP exposure.

  11. Catalytic properties of the resolved flavoprotein and cytochrome B components of the NADPH dependent O2- . generating oxidase from human neutrophils.

    Science.gov (United States)

    Gabig, T G; Lefker, B A

    1984-01-30

    The resolved flavoprotein and cytochrome b559 components of the NADPH dependent O2- . generating oxidase from human neutrophils were the subject of further study. The resolved flavoprotein, depleted of cytochrome b559, was reduced by NADPH under anaerobic conditions and reoxidized by oxygen. NADPH dependent O2- . generation by the resolved flavoprotein fraction was not detectable, however it was competent in the transfer of electrons from NADPH to artificial electron acceptors. The resolved cytochrome b559, depleted of flavoprotein, demonstrated no measureable NADPH dependent O2- . generating activity and was not reduced by NADPH under anaerobic conditions. The dithionite reduced form of the resolved cytochrome b559 was rapidly oxidized by oxygen, as was the cytochrome b559 in the intact oxidase.

  12. Genotoxicity of tamoxifen, tamoxifen epoxide and toremifene in human lymphoblastoid cells containing human cytochrome P450s.

    Science.gov (United States)

    Styles, J A; Davies, A; Lim, C K; De Matteis, F; Stanley, L A; White, I N; Yuan, Z X; Smith, L L

    1994-01-01

    The clastogenicity of tamoxifen and toremifene was tested in six human lymphoblastoid cell lines each expressing increased monooxygenase activity associated with a specific transfected human cytochrome P450 cDNA (CYP1A1, CYP1A2, CYP2D6, CYP2E1 or CYP3A4). The chemicals were also tested in a cell line (MCL-5) expressing elevated native CYP1A1 and containing transfected CYP1A2, CYP2A6, CYP2E1 and CYP3A4 and epoxide hydrolase, and in a cell line containing only the viral vector (Ho1). Dose-related increases in micronuclei were observed when cells expressing 2E1, 3A4, 2D6 or MCL-5 cells were exposed to tamoxifen. The positive responses in the cell lines were in the order MCL-5 > 2E1 > 3A4 > 2D6. Toremifene also gave positive results with 2E1, 3A4 and MCL-5 cells, although the responses were less marked and the positive effects required higher doses than with tamoxifen. A synthesized epoxide of tamoxifen was also tested in these cell lines and produced similar increases in the incidences of micronucleated cells. The increases in the responses observed with the epoxide were greater than with tamoxifen or toremifene. The P450 isoenzyme activities in these cells were in a range similar to those of human tumour-derived cell lines. Microsomes (1A1, 2A2, 2A6, 2B6, 2E1, 3A4 and 2D6) from these cells all metabolized tamoxifen. The major metabolite detected by HPLC was N-desmethyltamoxifen, and 4-hydroxytamoxifen was also detected in cells with cytochrome P450 2E1 and 2D6. These results are consistent with the following conclusions. (1) Tamoxifen requires metabolic activation to DNA-reactive species by specific CYP monooxygenases in order to exert its genotoxic effects. (2) The positive clastogenic effects elicited in lymphoblastoid cells by tamoxifen epoxide suggest that the genotoxic (and possibly the carcinogenic) effects of tamoxifen may be due to one or more epoxide metabolites that are generated intracellularly, probably in close proximity to the nucleus. (3) Tamoxifen is

  13. Metabolism of bilirubin by human cytochrome P450 2A6

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arthur, Dionne M. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Wikman, Anna S. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Department of Pharmaceutical Biosciences, Uppsala University, SE-75123 Uppsala (Sweden); Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu [School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio (Finland); Ng, Jack C. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Lang, Matti A. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic

  14. Biotransformation of chlorpyrifos and diazinon by human liver microsomes and recombinant human cytochrome P450s (CYP).

    Science.gov (United States)

    Sams, C; Cocker, J; Lennard, M S

    2004-10-01

    The cytochrome P450 (CYP)-mediated biotransformation of the organophosphorothioate insecticides chlorpyrifos and diazinon was investigated. Rates of desulphuration to the active oxon metabolite (chlorpyrifos-oxon and diazinon-oxon) and dearylation to non-toxic hydrolysis products were determined in human liver microsome preparations from five individual donors and in recombinant CYP enzymes. Chlorpyrifos and diazinon underwent desulphuration in human liver microsome with mean Km = 30 and 45 microM and V(max) = 353 and 766 pmol min(-1) mg(-1), respectively. Dearylation of these compounds by human liver microsome proceeded with Km = 12 and 28 microM and V(max) = 653 and 1186 pmol min(-1) mg(-1), respectively. The apparent intrinsic clearance (V(max)/Km) of dearylation was 4.5- and 2.5-fold greater than desulphuration for chlorpyrifos and diazinon, respectively. Recombinant human CYP2B6 possessed the highest desulphuration activity for chlorpyrifos, whereas CYP2C19 had the highest dearylation activity. In contrast, both desulphuration and dearylation of diazinon were catalysed at similar rates, in the rank order CYP2C19 > CYP1A2 > CYP2B6 > CYP3A4. Both organophosphorothioates were more readily detoxified (dearylation) than bioactivated (desulphuration) in all human liver microsome preparations. However, the role of individual CYP enzymes in these two biotransformation pathways varied according to the structure of the organophosphorothioate, which was reflected in different activation/detoxification ratios for chlorpyrifos and diazinon. Variability in activity of individual CYP enzymes may influence interindividual sensitivity to the toxic effects of chlorpyrifos and diazinon.

  15. 32 CFR 806b.5 - Personal notes.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Personal notes. 806b.5 Section 806b.5 National... Overview of the Privacy Act Program § 806b.5 Personal notes. The Privacy Act does not apply to personal notes on individuals used as memory aids. Personal notes may become Privacy Act records if they...

  16. 18 CFR 1b.5 - Formal investigations.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Formal investigations. 1b.5 Section 1b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.5 Formal investigations....

  17. miR-181b-5p对卡波西肉瘤细胞系SLK细胞迁移、侵袭的影响%Effects of microRNA-181b-5p on Migration and Invasion of Human Kaposi's Sarcoma Cell Line SLK

    Institute of Scientific and Technical Information of China (English)

    丁媛; 梁俊琴; 吴秀娟; 向芳; 康晓静; 王红娟; 普雄明

    2015-01-01

    目的 通过脂质转染miR-181b-5p模拟物及抑制物到卡波西肉瘤细胞系SLK,研究miR-181b-5p对卡波西肉瘤细胞SLK细胞增殖、迁移、侵袭生物学功能的影响.方法 应用脂质体对人卡波西肉瘤细胞株SLK进行转染,转染miR-181b-5p模拟物及抑制物后应用MTT测定细胞增殖曲线,应用流式细胞仪行检测细胞周期.利用Transwell小室试验后行苏木素染色观察细胞迁移、细胞侵袭生物学特性.结果 miR-181b-5p模拟物促进细胞增殖,促进S期的转变,加速细胞周期进程;miR-181b-5p抑制物抑制细胞增殖,诱导细胞发生G0/G1期阻滞,延缓细胞周期进程.Transwell小室迁移实验结果显示,与阴性对照组迁移实验下室面细胞数目151-±11个相比,miR-181b-5p模拟物组184±9个,细胞数目明显数量增多,迁移能力均明显提高,差异有统计学意义(P<0.05).Transwell小室侵袭实验结果显示,与阴性对照组侵袭实验下室面细胞数目35 ±6个相比,miR-181b-5p模拟物组48±5个,细胞数目明显数量增多,侵袭能力均明显提高(P<0.05).结论 miR-181b-5p在SLK细胞中高表达,其对SLK细胞的增殖、侵袭和迁移能力可能存在正向调控作用,可能成为卡波西肉瘤的潜在治疗靶点.

  18. Metabolism of 7-benzyloxy-4-trifluoromethyl-coumarin by human hepatic cytochrome P450 isoforms.

    Science.gov (United States)

    Renwick, A B; Surry, D; Price, R J; Lake, B G; Evans, D C

    2000-10-01

    1. The metabolism of 7-benzyloxy-4-trifluoromethylcoumarin (BFC) to 7-hydroxy-4-trifluoromethylcoumarin (HFC) was studied in human liver microsomal preparations and in cDNA-expressed human cytochrome P450 (CYP) isoforms. 2. Kinetic analysis of the NADPH-dependent metabolism of BFC to HFC in four preparations of pooled human liver microsomes revealed mean (+/- SEM) Km and Vmax of 8.3 +/- 1.3 microM and 454 +/- 98 pmol/min/mg protein respectively. 3. The metabolism of BFC to HFC was determined in a characterized bank of 24 individual human liver microsomal preparations employing BFC substrate concentrations of 20 and 50 microM (i.e. about two and six times Km respectively). With 20 microM BFC the highest correlations were observed between BFC metabolism and markers of CYP1A2 (r2 = 0.784-0.797) and then with CYP3A (r2 = 0.434-0.547) isoforms, whereas with 50 microM BFC the highest correlations were observed between BFC metabolism and markers of CYP3A (r2 = 0.679-0.837) and then with CYP1A2 (r2 = 0.421-0.427) isoforms. At both BFC substrate concentrations, lower correlations were observed between BFC metabolism and enzymatic markers for CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP4A9/11. 4. Using human beta-lymphoblastoid cell microsomes containing cDNA-expressed CYP isoforms, 20 microM BFC was metabolized by CYP1A2 and CYP3A4, with lower rates of metabolism being observed with CYP2C9 and CYP2C19. Kinetic studies with the CYP1A2 and CYP3A4 preparations demonstrated a lower Km with the CYP1A2 preparation, but a higher Vmax with the CYP3A4 preparation. 5. The metabolism of 20 microM BFC in human liver microsomes was inhibited to 37-48% of control by 5-100 microM of the mechanism-based CYP1A2 inhibitor furafylline and to 64-69% of control by 5-100 microM of the mechanism-based CYP3A4 inhibitor troleandomycin. While some inhibition of BFC metabolism was observed in the presence of 100 and 200 microM diethyldithiocarbamate, the addition of 2-50 micro

  19. Inhibition of human cytochrome P450 enzymes by Bacopa monnieri standardized extract and constituents.

    Science.gov (United States)

    Ramasamy, Seetha; Kiew, Lik Voon; Chung, Lip Yong

    2014-02-24

    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.

  20. Inhibition of Human Cytochrome P450 Enzymes by Bacopa monnieri Standardized Extract and Constituents

    Directory of Open Access Journals (Sweden)

    Seetha Ramasamy

    2014-02-01

    Full Text Available Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL, CYP2C9 (36.49/12.5 µg/mL, CYP1A2 (52.20/25.1 µg/mL; competitive inhibition of CYP3A4 (83.95/14.5 µg/mL and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL. However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day, B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%. These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.

  1. Reversible inhibition of three important human liver cytochrome p450 enzymes by tiliroside.

    Science.gov (United States)

    Sun, Dong-Xue; Lu, Jin-Cai; Fang, Zhong-Ze; Zhang, Yan-Yan; Cao, Yun-Feng; Mao, Yu-Xi; Zhu, Liang-Liang; Yin, Jun; Yang, Ling

    2010-11-01

    Tiliroside, an active flavonoid extensively found in many medicinal plants including Helichrysum italicum, Geranium mexicanum and Helianthemum glomeratum, has been demonstrated to exert multiple biological effects including antiinflammatory, antimicrobial, antioxidant and antitumor activities. Cytochrome P450 (CYP) enzymes play an important role in the Phase I oxidation metabolism of a wide range of xenobiotics and inhibition of CYP isoforms might influence the elimination of drugs and induce serious adverse drug response. The inhibition of seven CYP isoforms (CYP3A4, CYP1A2, CYP2A6, CYP2D6, CYP2C9, CYP2C8 and CYP2E1) by tiliroside was investigated using in vitro human liver microsomal incubation assays. The results showed that tiliroside strongly inhibited the activity of CYP3A4 (IC(50) = 9.0 ± 1.7 μm), CYP2C8 (IC(50) = 12.1 ± 0.9 μm) and CYP2C9 (IC(50) = 10.2 ± 0.9 μm) with other CYP isoforms negligibly influenced. Further kinetic analysis showed that inhibition of these three CYP isoforms by tiliroside is best fit to a competitive way. The K(i) value was calculated to be 5.5 μm, 3.3 μm, 9.4 μm for CYP3A4, CYP2C9 and CYP2C8, respectively. The relatively low K(i) values suggested that tiliroside might induce drug-drug interactions with many clinically used drugs which are mainly metabolized by these three CYP isoforms. Therefore, attention should be given to the probable drug-drug interaction between tiliroside-containing herbs and substrates of CYP3A4, CYP2C9 and CYP2C8.

  2. Highly miniaturized formats for in vitro drug metabolism assays using vivid fluorescent substrates and recombinant human cytochrome P450 enzymes.

    Science.gov (United States)

    Trubetskoy, Olga V; Gibson, Jasmin R; Marks, Bryan D

    2005-02-01

    Highly miniaturized P450 screening assays designed to enable facile analysis of P450 drug interactions in a 1536-well plate format with the principal human cytochrome P450 enzymes (CYP3A4, 2D6, 2C9, 2C19, and 1A2) and Vivid fluorogenic substrates were developed. The detailed characterization of the assays included stability, homogeneity, and reproducibility of the recombinant P450 enzymes and the kinetic parameters of their reactions with Vivid fluorogenic substrates, with a focus on the specific characteristics of each component that enable screening in a low-volume 1536-well plate assay format. The screening assays were applied for the assessment of individual cytochrome P450 inhibition profiles with a panel of selected assay modifiers, including isozyme-specific substrates and inhibitors. IC(50) values obtained for the modifiers in 96- and 1536-well plate formats were similar and comparable with values obtained in assays with conventional substrates. An overall examination of the 1536-well assay statistics, such as signal-to-background ratio and Z' factor, demonstrated that these assays are a robust, successful, and reliable tool to screen for cytochrome P450 metabolism and inhibition in an ultra-high-throughput screening format.

  3. Inhibition selectivity of grapefruit juice components on human cytochromes P450.

    Science.gov (United States)

    Tassaneeyakul, W; Guo, L Q; Fukuda, K; Ohta, T; Yamazoe, Y

    2000-06-15

    Five compounds including furanocoumarin monomers (bergamottin, 6', 7'-dihydroxybergamottin (DHB)), furanocoumarin dimers (4-¿¿6-hydroxy-71-¿(1-hydroxy-1-methyl)ethyl-4-methyl-6-(7-oxo-7H- furo¿3,2-g1benzopyran-4-yl)-4-hexenyl]oxy]-3,7-dimethyl- 2-octenyl]oxy]-7H-furo[3,2-g]¿1benzopyran-7-one (GF-I-1) and 4-¿¿6-hydroxy-7¿¿4-methyl-1-(1-methylethenyl)-6-(7-oxo-7H-furo¿3, 2-g1benzopyran-4-yl)-4-hexenylŏxy-3, 7-dimethyl-2-octenylŏxy-7H-furo¿3,2-g1benzopyran-7-one (GF-I-4)), and a sesquiterpene nootkatone have been isolated from grapefruit juice and screened for their inhibitory effects toward human cytochrome P450 (P450) forms using selective substrate probes. Addition of ethyl acetate extract of grapefruit juice into an incubation mixture resulted in decreased activities of CYP3A4, CYP1A2, CYP2C9, and CYP2D6. All four furanocoumarins clearly inhibited CYP3A4-catalyzed nifedipine oxidation in concentration- and time-dependent manners, suggesting that these compounds are mechanism-based inhibitors of CYP3A4. Of the furanocoumarins investigated, furanocoumarin dimers, GF-I-1 and GF-I-4, were the most potent inhibitors of CYP3A4. Inhibitor concentration required for half-maximal rate of inactivation (K(I)) values for bergamottin, DHB, GF-I-1, and GF-I-4 were calculated, respectively, as 40.00, 5. 56, 0.31, and 0.13 microM, whereas similar values were observed on their inactivation rate constant at infinite concentration of inhibitor (k(inact), 0.05-0.08 min(-1)). Apparent selectivity toward CYP3A4 does occur with the furanocoumarin dimers. In contrast, bergamottin showed rather stronger inhibitory effect on CYP1A2, CYP2C9, CYP2C19, and CYP2D6 than on CYP3A4. DHB inhibited CYP3A4 and CYP1A2 activities at nearly equivalent potencies. Among P450 forms investigated, CYP2E1 was the least sensitive to the inhibitory effect of furanocoumarin components. A sesquiterpene nootkatone has no significant effect on P450 activities investigated except for CYP2A6 and CYP2C19

  4. Human plasma concentrations of cytochrome P450 probes extrapolated from pharmacokinetics in cynomolgus monkeys using physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Shida, Satomi; Utoh, Masahiro; Murayama, Norie; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-01-01

    1. Cynomolgus monkeys are widely used in preclinical studies as non-human primate species. Pharmacokinetics of human cytochrome P450 probes determined in cynomolgus monkeys after single oral or intravenous administrations were extrapolated to give human plasma concentrations. 2. Plasma concentrations of slowly eliminated caffeine and R-/S-warfarin and rapidly eliminated omeprazole and midazolam previously observed in cynomolgus monkeys were scaled to human oral biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Results of the simplified human PBPK models were consistent with reported experimental PK data in humans or with values simulated by a fully constructed population-based simulator (Simcyp). 3. Oral administrations of metoprolol and dextromethorphan (human P450 2D probes) in monkeys reportedly yielded plasma concentrations similar to their quantitative detection limits. Consequently, ratios of in vitro hepatic intrinsic clearances of metoprolol and dextromethorphan determined in monkeys and humans were used with simplified PBPK models to extrapolate intravenous PK in monkeys to oral PK in humans. 4. These results suggest that cynomolgus monkeys, despite their rapid clearance of some human P450 substrates, could be a suitable model for humans, especially when used in conjunction with simple PBPK models.

  5. Global (Q)SAR models on substrates for human Cytochrome P450 3A4

    DEFF Research Database (Denmark)

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Wedebye, Eva Bay;

    The Cytochrome P450 (CYP) is a superfamily of enzymes which catalyze the metabolism of a wide range of endobiotics and xenobiotics. The latter category comprises drugs and about 75% of marketed drugs are metabolised by CYP enzymes. Besides drugs, CYP enzymes detoxify environmental compounds...... domain. Domain coverage of EINECS chemicals and number of predicted substrates are discussed. Reference: C.W. Yap and Y.Z. Chen, Prediction of cytochrome p450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines, J. Chem. Inf. Model. 45 (2005), pp. 982–992....... but paradoxically they also have the ability to form reactive intermediates which can damage DNA, lipids and proteins. It is therefore important to gain knowledge on which substrates that can potentially be metabolised by CYP. The CYP 3A4 isoenzyme plays a dominant role by the metabolic elimination of up to 35...

  6. 10-(6'-Plastoquinonyl)decyltriphenylphosphonium (SkQ1) Does Not Increase the Level of Cytochromes P450 in Rat Liver and Human Hepatocyte Cell Culture.

    Science.gov (United States)

    Myasoedova, K N; Silachev, D N; Petrov, A D

    2016-12-01

    Mitochondria-targeted antioxidant SkQ1 did not increase the content of cytochromes P450 in livers of rats that were given SkQ1 in drinking water for 5 days in a dose (2.5 µmol per kg body weight) that exceeded 10 times the SkQ1 therapeutic dose. SkQ1 did not affect the levels of cytochrome P450 forms CYP1A2, CYP2B6, and CYP3A4 in monolayer cultures of freshly isolated human hepatocytes, while specific inducers of these forms (omeprazole, phenobarbital, and rifampicin, respectively) significantly increased expression of the cytochromes P450 under the same conditions. We conclude that therapeutic doses of SkQ1 do not induce cytochromes P450 in liver, and the absence of the inducing effect cannot be explained by poor availability of hepatocytes to SkQ1 in vivo.

  7. Price of Vitamin B5 Increases Rapidly

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The export price of vitamin B5 in China has increased constantly in 2007. According to the analysis made by experts, the demand of vitamin B5 has not grown greatly. The main reason for the price rise is the change of the supply mode.

  8. 15 CFR 8b.5 - Assurances required.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Assurances required. 8b.5 Section 8b.5 Commerce and Foreign Trade Office of the Secretary of Commerce PROHIBITION OF DISCRIMINATION AGAINST THE... otherwise encumber the real property as security to finance construction of new, or improvement of...

  9. Cytochrome c oxidase subunit 1-based human RNA quantification to enhance mRNA profiling in forensic biology

    Directory of Open Access Journals (Sweden)

    Dong Zhao

    2017-01-01

    Full Text Available RNA analysis offers many potential applications in forensic science, and molecular identification of body fluids by analysis of cell-specific RNA markers represents a new technique for use in forensic cases. However, due to the nature of forensic materials that often admixed with nonhuman cellular components, human-specific RNA quantification is required for the forensic RNA assays. Quantification assay for human RNA has been developed in the present study with respect to body fluid samples in forensic biology. The quantitative assay is based on real-time reverse transcription-polymerase chain reaction of mitochondrial RNA cytochrome c oxidase subunit I and capable of RNA quantification with high reproducibility and a wide dynamic range. The human RNA quantification improves the quality of mRNA profiling in the identification of body fluids of saliva and semen because the quantification assay can exclude the influence of nonhuman components and reduce the adverse affection from degraded RNA fragments.

  10. MR-1S Interacts with PET100 and PET117 in Module-Based Assembly of Human Cytochrome c Oxidase.

    Science.gov (United States)

    Vidoni, Sara; Harbour, Michael E; Guerrero-Castillo, Sergio; Signes, Alba; Ding, Shujing; Fearnley, Ian M; Taylor, Robert W; Tiranti, Valeria; Arnold, Susanne; Fernandez-Vizarra, Erika; Zeviani, Massimo

    2017-02-14

    The biogenesis of human cytochrome c oxidase (COX) is an intricate process in which three mitochondrial DNA (mtDNA)-encoded core subunits are assembled in a coordinated way with at least 11 nucleus-encoded subunits. Many chaperones shared between yeast and humans are involved in COX assembly. Here, we have used a MT-CO3 mutant cybrid cell line to define the composition of assembly intermediates and identify new human COX assembly factors. Quantitative mass spectrometry analysis led us to modify the assembly model from a sequential pathway to a module-based process. Each module contains one of the three core subunits, together with different ancillary components, including HIGD1A. By the same analysis, we identified the short isoform of the myofibrillogenesis regulator 1 (MR-1S) as a new COX assembly factor, which works with the highly conserved PET100 and PET117 chaperones to assist COX biogenesis in higher eukaryotes.

  11. Development of an on-line high performance liquid chromatography detection system for human cytochrome P450 1A2 inhibitors in extracts of natural products

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Claassen, F.W.; Havlik, J.; Bouwmans, E.E.; Cnubben, N.H.P.; Sudhölter, E.J.R.; Rietjens, I.M.C.M.; Beek, T.A. van

    2007-01-01

    An on-line HPLC screening method for detection of inhibitors of human cytochrome P450 1A2 in extracts was developed. HPLC separation of extracts is connected to a continuous methoxyresorufin-O-demethylation (MROD) assay in which recombinant human P450 1A2 converts methoxyresorufin to its fluorescent

  12. ASSIGNMENT OF THE GENE CODING FOR HUMAN CYTOCHROME-C-OXIDASE SUBUNIT-VIB TO CHROMOSOME-19, BAND-Q13.1, BY FLUORESCENCE INSITU HYBRIDIZATION

    NARCIS (Netherlands)

    TAANMAN, JW; VANDERVEEN, AY; SCHRAGE, C; DEVRIES, H; BUYS, CHCM

    1991-01-01

    A cloned, 40 kb, genomic DNA fragment, containing the last exon of the gene for human cytochrome c oxidase subunit VIb and its flanking sequences, was used as a probe to localize the subunit VIb gene on human metaphase chromosomes. The probe was labelled with Bio-11-dUTP and detected by fluorescence

  13. NUCLEOTIDE-SEQUENCE OF THE LAST EXON OF THE GENE FOR HUMAN CYTOCHROME-C-OXIDASE SUBUNIT-VIB AND ITS FLANKING REGIONS

    NARCIS (Netherlands)

    TAANMAN, JW; SCHRAGE, C; BOKMA, E; REUVEKAMP, P; AGSTERIBBE, E; DEVRIES, H

    1991-01-01

    A human genomic clone encompassing the last exon of the gene for cytochrome c oxidase subunit VIb and a human genomic clone containing the most distal end of this gene were characterized. The last exon of the gene codes for the 17 C-terminal amino acid residues of the subunit and the 3' noncoding re

  14. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    Science.gov (United States)

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-04

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  15. The cytochromes in microsomal fractions of germinating mung beans.

    Science.gov (United States)

    Hendry, G A; Houghton, J D; Jones, O T

    1981-01-01

    Detailed studies of microsomal cytochromes from mung-bean radicles showed the presence of cytochrome P-420, particularly in dark-grown seedlings, accompanied by smaller quantities of cytochrome P-450. Similar proportions of cytochrome P-420 to cytochrome P-450 were found spectrophotometrically in vivo with whole radicles and hypocotyls. Assayed in vitro, maximum concentrations of both cytochromes were attained after 4 days of growth, before undergoing rapid degradation. Illumination of seedlings stabilized cytochrome P-450 and decreased the amount of cytochrome P-420. Three b cytochromes were present in the microsomal fraction, namely cytochromes b-562.5 (Em + 105 +/- 23 mV), b-560.5 (Em + 49 +/- 13 mV) and b5 (Em - 45 +/- 14 mV), all at pH 7.0. Of the b cytochromes, cytochrome b5 alone undergoes a rapid degradation after day 4, Changes in cytochrome b concentrations were confined to the microsomal fraction: mitochondrial b cytochrome concentrations were unaltered with age. Protohaem degradation (of exogenous methaemalbumin) was detected in microsomal fractions of mung beans. The rates of degradation were highest in extracts of young tissue and declined after day 4. The degradation mechanism and products did not resemble those of mammalian haem oxygenase. PMID:7306021

  16. Role of protein-protein interactions in cytochrome P450-mediated drug metabolism and toxicity.

    Science.gov (United States)

    Kandel, Sylvie E; Lampe, Jed N

    2014-09-15

    Through their unique oxidative chemistry, cytochrome P450 monooxygenases (CYPs) catalyze the elimination of most drugs and toxins from the human body. Protein-protein interactions play a critical role in this process. Historically, the study of CYP-protein interactions has focused on their electron transfer partners and allosteric mediators, cytochrome P450 reductase and cytochrome b5. However, CYPs can bind other proteins that also affect CYP function. Some examples include the progesterone receptor membrane component 1, damage resistance protein 1, human and bovine serum albumin, and intestinal fatty acid binding protein, in addition to other CYP isoforms. Furthermore, disruption of these interactions can lead to altered paths of metabolism and the production of toxic metabolites. In this review, we summarize the available evidence for CYP protein-protein interactions from the literature and offer a discussion of the potential impact of future studies aimed at characterizing noncanonical protein-protein interactions with CYP enzymes.

  17. Simultaneous pharmacokinetics evaluation of human cytochrome P450 probes, caffeine, warfarin, omeprazole, metoprolol and midazolam, in common marmosets (Callithrix jacchus).

    Science.gov (United States)

    Uehara, Shotaro; Inoue, Takashi; Utoh, Masahiro; Toda, Akiko; Shimizu, Makiko; Uno, Yasuhiro; Sasaki, Erika; Yamazaki, Hiroshi

    2016-01-01

    1. Pharmacokinetics of human cytochrome P450 probes (caffeine, racemic warfarin, omeprazole, metoprolol and midazolam) composite, after single intravenous and oral administrations at doses of 0.20 and 1.0 mg kg(-1), respectively, to four male common marmosets were investigated. 2. The plasma concentrations of caffeine and warfarin decreased slowly in a monophasic manner but those of omeprazole, metoprolol and midazolam decreased extensively after intravenous and oral administrations, in a manner that approximated those as reported for pharmacokinetics in humans. 3. Bioavailabilities were ∼100% for caffeine and warfarin, but midazolam was 4% in marmosets, presumably because of contribution of marmoset P450 3A4 expressed in small intestine and liver, with a high catalytic efficiency for midazolam 1'-hydroxylation as evident in the recombinant system. 4. These results suggest that common marmosets, despite their rapid clearance of some human P450 probe substrates, could be an experimental model for humans and that marmoset P450s have functional characteristics that differ from those of human and/or cynomolgus monkey P450s in some aspects, indicating their importance in modeling in P450-dependent drug metabolism studies in marmosets and of further studies.

  18. Identification of Small Molecule Inhibitors of Human Cytochrome c Oxidase That Target Chemoresistant Glioma Cells.

    Science.gov (United States)

    Oliva, Claudia R; Markert, Tahireh; Ross, Larry J; White, E Lucile; Rasmussen, Lynn; Zhang, Wei; Everts, Maaike; Moellering, Douglas R; Bailey, Shannon M; Suto, Mark J; Griguer, Corinne E

    2016-11-11

    The enzyme cytochrome c oxidase (CcO) or complex IV (EC 1.9.3.1) is a large transmembrane protein complex that serves as the last enzyme in the respiratory electron transport chain of eukaryotic mitochondria. CcO promotes the switch from glycolytic to oxidative phosphorylation (OXPHOS) metabolism and has been associated with increased self-renewal characteristics in gliomas. Increased CcO activity in tumors has been associated with tumor progression after chemotherapy failure, and patients with primary glioblastoma multiforme and high tumor CcO activity have worse clinical outcomes than those with low tumor CcO activity. Therefore, CcO is an attractive target for cancer therapy. We report here the characterization of a CcO inhibitor (ADDA 5) that was identified using a high throughput screening paradigm. ADDA 5 demonstrated specificity for CcO, with no inhibition of other mitochondrial complexes or other relevant enzymes, and biochemical characterization showed that this compound is a non-competitive inhibitor of cytochrome c When tested in cellular assays, ADDA 5 dose-dependently inhibited the proliferation of chemosensitive and chemoresistant glioma cells but did not display toxicity against non-cancer cells. Furthermore, treatment with ADDA 5 led to significant inhibition of tumor growth in flank xenograft mouse models. Importantly, ADDA 5 inhibited CcO activity and blocked cell proliferation and neurosphere formation in cultures of glioma stem cells, the cells implicated in tumor recurrence and resistance to therapy in patients with glioblastoma. In summary, we have identified ADDA 5 as a lead CcO inhibitor for further optimization as a novel approach for the treatment of glioblastoma and related cancers.

  19. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice

    Science.gov (United States)

    Lee, Craig R.; Imig, John D.; Edin, Matthew L.; Foley, Julie; DeGraff, Laura M.; Bradbury, J. Alyce; Graves, Joan P.; Lih, Fred B.; Clark, James; Myers, Page; Perrow, A. Ligon; Lepp, Adrienne N.; Kannon, M. Alison; Ronnekleiv, Oline K.; Alkayed, Nabil J.; Falck, John R.; Tomer, Kenneth B.; Zeldin, Darryl C.

    2010-01-01

    Renal cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) regulate sodium transport and blood pressure. Although endothelial CYP-derived EETs are potent vasodilators, their contribution to the regulation of blood pressure remains unclear. Consequently, we developed transgenic mice with endothelial expression of the human CYP2J2 and CYP2C8 epoxygenases to increase endothelial EET biosynthesis. Compared to wild-type littermate controls, an attenuated afferent arteriole constrictor response to endothelin-1 and enhanced dilator response to acetylcholine was observed in CYP2J2 and CYP2C8 transgenic mice. CYP2J2 and CYP2C8 transgenic mice demonstrated modestly, but not significantly, lower mean arterial pressure under basal conditions compared to wild-type controls. However, mean arterial pressure was significantly lower in both CYP2J2 and CYP2C8 transgenic mice during coadministration of N-nitro-l-arginine methyl ester and indomethacin. In a separate experiment, a high-salt diet and subcutaneous angiotensin II was administered over 4 wk. The angiotensin/high-salt-induced increase in systolic blood pressure, proteinuria, and glomerular injury was significantly attenuated in CYP2J2 and CYP2C8 transgenic mice compared to wild-type controls. Collectively, these data demonstrate that increased endothelial CYP epoxygenase expression attenuates afferent arteriolar constrictor reactivity and hypertension-induced increases in blood pressure and renal injury in mice. We conclude that endothelial CYP epoxygenase function contributes to the regulation of blood pressure.—Lee, C. R., Imig, J. D., Edin, M. E., Foley, J., DeGraff, L. M., Bradbury, J. A., Graves, J. P., Lih, F. B., Clark, J., Myers, P., Perrow, A. L., Lepp, A. N., Kannon, M. A., Ronnekleiv, O. K., Alkayed, N. J., Falck, J. R., Tomer, K. B., Zeldin, D. C. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. PMID:20495177

  20. STEADY-STATE TRANSCRIPT LEVELS OF CYTOCHROME-C-OXIDASE GENES DURING HUMAN MYOGENESIS INDICATE SUBUNIT SWITCHING OF SUBUNIT VIA AND COEXPRESSION OF SUBUNIT VIIA ISOFORMS

    NARCIS (Netherlands)

    TAANMAN, JW; HERZBERG, NH; DEVRIES, H; BOLHUIS, PA; VANDENBOGERT, C

    1992-01-01

    Steady-state levels of the mitochondrial rRNAs, of mRNAs for mitochondrially and nuclear-encoded subunits of cytochrome c oxidase and for the beta-subunit of ATP synthase were assessed by Northern blot hybridizations during the in vitro differentiation of human myoblasts. Transcript levels of the so

  1. Thalidomide increases human hepatic cytochrome P450 3A enzymes by direct activation of the pregnane X receptor.

    Science.gov (United States)

    Murayama, Norie; van Beuningen, Rinie; Suemizu, Hiroshi; Guguen-Guillouzo, Christiane; Shibata, Norio; Yajima, Kanako; Utoh, Masahiro; Shimizu, Makiko; Chesné, Christophe; Nakamura, Masato; Guengerich, F Peter; Houtman, René; Yamazaki, Hiroshi

    2014-02-17

    Heterotropic cooperativity of human cytochrome P450 (P450) 3A4/3A5 by the teratogen thalidomide was recently demonstrated by H. Yamazaki et al. ( ( 2013 ) Chem. Res. Toxicol. 26 , 486 - 489 ) using the model substrate midazolam in various in vitro and in vivo models. Chimeric mice with humanized liver also displayed enhanced midazolam clearance upon pretreatment with orally administered thalidomide, presumably because of human P450 3A induction. In the current study, we further investigated the regulation of human hepatic drug metabolizing enzymes. Thalidomide enhanced levels of P450 3A4 and 2B6 mRNA, protein expression, and/or oxidation activity in human hepatocytes, indirectly suggesting the activation of upstream transcription factors involved in detoxication, e.g., the nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR). A key event after ligand binding is an alteration of nuclear receptor conformation and recruitment of coregulator proteins that alter chromatin accessibility of target genes. To investigate direct engagement and functional alteration of PXR and CAR by thalidomide, we utilized a peptide microarray with 154 coregulator-derived nuclear receptor-interaction motifs and coregulator and nuclear receptor boxes, which serves as a sensor for nuclear receptor conformation and activity status as a function of ligand. Thalidomide and its human proximate metabolite 5-hydroxythalidomide displayed significant modulation of coregulator interaction with PXR and CAR ligand-binding domains, similar to established agonists for these receptors. These results collectively suggest that thalidomide acts as a ligand for PXR and CAR and causes enzyme induction leading to increased P450 enzyme activity. The possibilities of drug interactions during thalidomide therapy in humans require further evaluation.

  2. Metabolism of (-)-cis- and (-)-trans-rose oxide by cytochrome P450 enzymes in human liver microsomes.

    Science.gov (United States)

    Nakahashi, Hiroshi; Yamamura, Yuuki; Usami, Atsushi; Rangsunvigit, Pramoch; Malakul, Pomthong; Miyazawa, Mitsuo

    2015-12-01

    The in vitro metabolism of (-)-cis- and (-)-trans-rose oxide was investigated using human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes for the first time. Both isomers of rose oxide were incubated with human liver microsomes, and the formation of the respective 9-oxidized metabolite were determined using gas chromatography-mass spectrometry (GC-MS). Of 11 different recombinant human P450 enzymes used, CYP2B6 and CYP2C19 were the primary enzymes catalysing the metabolism of (-)-cis- and (-)-trans-rose oxide. CYP1A2 also efficiently oxidized (-)-cis-rose oxide at the 9-position but not (-)-trans-rose oxide. α-Naphthoflavone (a selective CYP1A2 inhibitor), thioTEPA (a CYP2B6 inhibitor) and anti-CYP2B6 antibody inhibited (-)-cis-rose oxide 9-hydroxylation catalysed by human liver microsomes. On the other hand, the metabolism of (-)-trans-rose oxide was suppressed by thioTEPA and anti-CYP2B6 at a significant level in human liver microsomes. However, omeprazole (a CYP2C19 inhibitor) had no significant effects on the metabolism of both isomers of rose oxide. Using microsomal preparations from nine different human liver samples, (-)-9-hydroxy-cis- and (-)-9-hydroxy-trans-rose oxide formations correlated with (S)-mephenytoin N-demethylase activity (CYP2B6 marker activity). These results suggest that CYP2B6 plays important roles in the metabolism of (-)-cis- and (-)-trans-rose oxide in human liver microsomes.

  3. Role of cytochrome P450 and UDP-glucuronosyltransferases in metabolic pathway of homoegonol in human liver microsomes.

    Science.gov (United States)

    Kwon, Soon Sang; Kim, Ju Hyun; Jeong, Hyeon-Uk; Ahn, Kyung-Seop; Oh, Sei-Ryang; Lee, Hye Suk

    2015-08-01

    Homoegonol is being evaluated for the development of a new antiasthmatic drug. Based on a pharmacokinetic study of homoegonol in rats, homoegonol is almost completely eliminated via metabolism, but no study on its metabolism has been reported in animals and humans. Incubation of homoegonol in human liver microsomes in the presence of the reduced form of nicotinamide adenine dinucleotide phosphate and UDP-glucuronic acid resulted in the formation of five metabolites: 4-O-demethylhomoegonol (M1), hydroxyhomoegonol (M2 and M3), 4-O-demethylhomoegonol glucuronide (M4), and homoegonol glucuronide (M5). We characterized the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes responsible for homoegonol metabolism using human liver microsomes, and cDNA-expressed CYP and UGT enzymes. CYP1A2 played a more prominent role than CYP3A4 and CYP2D6 in the 4-O-demethylation of homoegonol to M1. CYP3A4 was responsible for the hydroxylation of homoegonol to M2. The hydroxylation of homoegonol to M3 was insufficient to characterize CYP enzymes. Glucuronidation of homoegonol to M5 was mediated by UGT1A1, UGT1A3, UGT1A4, and UGT2B7 enzymes, whereas M4 was formed from 4-O-demethylhomoegonol by UGT1A1, UGT1A8, UGT1A10, and UGT2B15 enzymes.

  4. Oxidation of N-Nitrosoalkylamines by Human Cytochrome P450 2A6

    Science.gov (United States)

    Chowdhury, Goutam; Calcutt, M. Wade; Guengerich, F. Peter

    2010-01-01

    Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH3CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect (Dkapp ∼ 10), which was highly expressed in a variety of competitive and non-competitive experiments. The Dkapp for DEN was ∼3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO2H and CH3CO2H, respectively. In neither case was a lag observed, which was unexpected considering the kcat and Km parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde). PMID:20061389

  5. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5′-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Kim

    2017-03-01

    Full Text Available AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP or uridine 5′-diphospho-glucuronosyltransferase (UGT enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4 and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7 enzymes in pooled human liver microsomes using liquid chromatography–tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP3A4-catalyzed midazolam 1′-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 μM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 μM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.

  6. In Vitro Inhibitory Effects of Scutellarin on Six Human/Rat Cytochrome P450 Enzymes and P-glycoprotein

    Directory of Open Access Journals (Sweden)

    Yong-Long Han

    2014-05-01

    Full Text Available Inhibition of cytochrome P450 (CYP and P-glycoprotein (P-gp are regarded as the most frequent and clinically important pharmacokinetic causes among the various possible factors for drug-drug interactions. Scutellarin is a flavonoid which is widely used for the treatment of cardiovascular diseases. In this study, the in vitro inhibitory effects of scutellarin on six major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 and six rat CYPs (CYP1A2, CYP2C7, CYP2C11, CYP2C79, CYP2D4, and CYP3A2 activities were examined by using liquid chromatography-tandem mass spectrometry. Meanwhile, the inhibitory effects of scutellarin on P-gp activity were examined on a human metastatic malignant melanoma cell line WM-266-4 by calcein-AM fluorometry screening assay. Results demonstrated that scutellarin showed negligible inhibitory effects on the six major CYP isoenzymes in human/rat liver microsomes with almost all of the IC50 values exceeding 100 μM, whereas it showed values of 63.8 μM for CYP2C19 in human liver microsomes, and 63.1 and 85.6 μM for CYP2C7 and CYP2C79 in rat liver microsomes, respectively. Scutellarin also showed weak inhibitory effect on P-gp. In conclusion, this study demonstrates that scutellarin is unlikely to cause any clinically significant herb-drug interactions in humans when co-administered with substrates of the six CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 and P-gp.

  7. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5'-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    Science.gov (United States)

    Kim, Ju-Hyun; Kwon, Soon-Sang; Kong, Tae Yeon; Cheong, Jae Chul; Kim, Hee Seung; In, Moon Kyo; Lee, Hye Suk

    2017-03-10

    AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP) or uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) enzymes in pooled human liver microsomes using liquid chromatography-tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP3A4-catalyzed midazolam 1'-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 μM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 μM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.

  8. Effect of Honokiol on Cytochrome P450 and UDP-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Yong Yeon Cho

    2013-09-01

    Full Text Available Honokiol is a bioactive component isolated from the medicinal herbs Magnolia officinalis and Magnolia grandiflora that has antioxidative, anti-inflammatory, antithrombotic, and antitumor activities. The inhibitory potentials of honokiol on eight major human cytochrome P450 (CYP enzymes 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4, and four UDP-glucuronosyltransferases (UGTs 1A1, 1A4, 1A9, and 2B7 in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. Honokiol strongly inhibited CYP1A2-mediated phenacetin O-deethylation, CYP2C8-mediated amodiaquine N-deethylation, CYP2C9-mediated diclofenac 4-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4-hydroxylation, and UGT1A9-mediated propofol glucuronidation with Ki values of 1.2, 4.9, 0.54, 0.57, and 0.3 μM, respectively. Honokiol also moderately inhibited CYP2B6-mediated bupropion hydroxylation and CYP2D6-mediated bufuralol 1'-hydroxylation with Ki values of 17.5 and 12.0 μM, respectively. These in vitro results indicate that honokiol has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP1A2, CYP2C8, CYP2C9, CYP2C19, and UGT1A9.

  9. Target Proteins in Human Autoimmunity: Cytochromes P450 and Udp-Glycoronosyltransferases

    Directory of Open Access Journals (Sweden)

    Petra Obermayer-Straub

    2000-01-01

    Full Text Available Cytochromes P450 (CYPs and UDP-glucuronosyltransferases (UGTs are targets of autoantibodies in several hepatic and extrahepatic autoimmune diseases. Autoantibodies directed against hepatic CYPs and UGTs were first detected by indirect immunofluorescence as antiliver and/or kidney microsomal antibodies. In autoimmune hepatitis (AIH type 2, liver and/or kidney microsomal (LKM type 1 autoantibodies are detected and are directed against CYP2D6. About 10% of AIH-2 sera further contain LKM-3 autoantibodies directed against family 1 UGTs. Chronic infections by hepatitis C virus and hepatitis delta virus may induce several autoimmune phenomena, and multiple autoantibodies are detected. Anti-CYP2D6 autoantibodies are detected in up to 4% of patients with chronic hepatitis C, and anti-CYP2A6 autoantibodies are detected in about 2% of these patients. In contrast, 14% of patients with chronic hepatitis delta virus infections generate anti-UGT autoantibodies. In a small minority of patients, certain drugs are known to induce immune-mediated, idiosyncratic drug reactions, also known as ’drug-induced hepatitis’. Drug-induced hepatitis is often associated with autoantibodies directed against hepatic CYPs or other hepatic proteins. Typical examples are tienilic acid-induced hepatitis with anti-CYP2C9, dihydralazine hepatitis with anti-CYP1A2, halothane hepatitis with anti-CYP2E1 and anticonvulsant hepatitis with anti-CYP3A. Recent data suggest that alcoholic liver disease may be induced by mechanisms similar to those that are active in drug-induced hepatitis. Autoantibodies directed against several CYPs are further detected in sera from patients with the autoimmune polyglandular syndrome type 1. Patients with autoimmune polyglandular syndrome type 1 with hepatitis often develop anti-CYP1A2; patients with adrenal failure develop anti-CYP21, anti- CYP11A1 or CYP17; and patients with gonadal failure develop anti-CYP11A1 or CYP17. In idiopathic Addison disease

  10. Computational Identification of the Paralogs and Orthologs of Human Cytochrome P450 Superfamily and the Implication in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Shu-Ting Pan

    2016-06-01

    Full Text Available The human cytochrome P450 (CYP superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA (“Orthologous MAtrix” Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery.

  11. Influence of Sulforaphane Metabolites on Activities of Human Drug-Metabolizing Cytochrome P450 and Determination of Sulforaphane in Human Liver Cells.

    Science.gov (United States)

    Vanduchova, Alena; Tomankova, Veronika; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-12-01

    The influence of metabolites of sulforaphane, natural compounds present in broccoli (Brassica oleracea var. botrytis italica) and in other cruciferous vegetables, on drug-metabolizing cytochrome P450 (CYP) enzymes in human liver microsomes and possible entry of sulforaphane into human hepatic cells were investigated. Metabolites studied are compounds derived from sulforaphane by the mercapturic acid pathway (conjugation with glutathione and by following reactions), namely sulforaphane glutathione and sulforaphane cysteine conjugates and sulforaphane-N-acetylcysteine. Their possible effect on four drug-metabolizing CYP enzymes, CYP3A4 (midazolam 1'-hydroxylation), CYP2D6 (bufuralol 1'-hydroxylation), CYP1A2 (7-ethoxyresorufin O-deethylation), and CYP2B6 (7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation), was tested. Inhibition of four prototypical CYP activities by sulforaphane metabolites was studied in pooled human liver microsomes. Sulforaphane metabolites did not considerably affect biological function of drug-metabolizing CYPs in human liver microsomes except for CYP2D6, which was found to be inhibited down to 73-78% of the original activity. Analysis of the entry of sulforaphane into human hepatocytes was done by cell disruption by sonication, methylene chloride extraction, and modified high-performance liquid chromatography method. The results have shown penetration of sulforaphane into the human hepatic cells.

  12. Activation of the human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559.

    Science.gov (United States)

    Gabig, T G; Lefker, B A

    1985-04-10

    The enzymatic activity underlying the respiratory burst in human neutrophils was examined in a subcellular fraction with high specific activity and shown to be a membrane-associated complex of a flavoprotein, ubiquinone-10, and cytochrome b559 in an approximate 1.3:1:2 molar ratio. Study of the redox poise of these electron carriers indicated that electron flow in the intact complex from unstimulated cells proceeded: NADPH----E-FAD----ubiquinone-10. Similar studies on the complex prepared from stimulated neutrophils indicated that electron flow proceeded: NADPH----E-FAD----ubiquinone-10----cytochrome b559----oxygen. The active enzyme complex was inhibited by p-chloromercuribenzoate. Inhibition persisted after removal of excess inhibitor, was reversed by dithiothreitol, and could be blocked by prior addition of substrate (NADPH). Inhibition of the active oxidase complex by p-chloromercuribenzoate also inhibited electron flow from NADPH to all purported electron carriers in the chain (i.e. E-FAD, ubiquinone-10, and cytochrome b559). We conclude that activation of the oxidase enzyme complex in the intact neutrophil resulted in linkage of electron carrier function between endogenous ubiquinone-10 and cytochrome b559 and was without demonstrable effect on proximal electron flow. The p-chloromercuribenzoate sensitive site(s) proximal to the initial electron acceptor (E-FAD) did not appear to be altered by the cellular activation process.

  13. Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes.

    Science.gov (United States)

    Castellano-González, Gloria; Pichaud, Nicolas; Ballard, J William O; Bessede, Alban; Marcal, Helder; Guillemin, Gilles J

    2016-02-16

    Mitochondrial dysfunction and resulting energy impairment have been identified as features of many neurodegenerative diseases. Whether this energy impairment is the cause of the disease or the consequence of preceding impairment(s) is still under discussion, however a recovery of cellular bioenergetics would plausibly prevent or improve the pathology. In this study, we screened different natural molecules for their ability to increase intracellular adenine triphosphate purine (ATP). Among them, epigallocatechin-3-gallate (EGCG), a polyphenol from green tea, presented the most striking results. We found that it increases ATP production in both human cultured astrocytes and neurons with different kinetic parameters and without toxicity. Specifically, we showed that oxidative phosphorylation in human cultured astrocytes and neurons increased at the level of the routine respiration on the cells pre-treated with the natural molecule. Furthermore, EGCG-induced ATP production was only blocked by sodium azide (NaN3) and oligomycin, inhibitors of cytochrome c oxidase (CcO; complex IV) and ATP synthase (complex V) respectively. These findings suggest that the EGCG modulates CcO activity, as confirmed by its enzymatic activity. CcO is known to be regulated differently in neurons and astrocytes. Accordingly, EGCG treatment is acting differently on the kinetic parameters of the two cell types. To our knowledge, this is the first study showing that EGCG promotes CcO activity in human cultured neurons and astrocytes. Considering that CcO dysfunction has been reported in patients having neurodegenerative diseases such as Alzheimer's disease (AD), we therefore suggest that EGCG could restore mitochondrial function and prevent subsequent loss of synaptic function.

  14. Inhibitory effect of salvianolate on human cytochrome P450 3A4 in vitro involving a noncompetitive manner.

    Science.gov (United States)

    Qin, Chong-Zhen; Ren, Xian; Zhou, Hong-Hao; Mao, Xiao-Yuan; Liu, Zhao-Qian

    2015-01-01

    Salvianolic acid B (Sal B), which is purified from Danshen, is a popular herb extract. Sal B has anti-oxidative, anti-inflammatory, anti-hypoxic, anti-arteriosclerotic and anti-apoptotic properties. This substance can also ameliorate brain injury or neurodegenerative diseases. The listed drug Salvianolate, which contains a substantial amount of Sal B, has been used for the treatment of coronary heart disease. Our present work aimed to evaluate the inhibitory effect of salvianolate on seven cytochrome P450 isoforms (CYP450), namely, CYP1A2, CYP2A6, CYP2E1, CYP2C9, CYP2C19, CYP2D6 and CYP3A4, in human liver microsomes (HLMs) and recombinant enzymes through high-performance liquid chromatography (HPLC) assay. Salvianolate have a potent inhibitory effect on CYP3A4 activity with IC50 values of 1.438 (HLMs) and 3.582 (recombinant cDNA-expressed CYP3A4) mg/L, respectively. Salvianolate strongly dose, but not time-dependently decreased CYP3A4 activity in HLMs. The typical Lineweaver-Burk plots showed that Salvianolate inhibited CYP3A4 activity noncompetitively, with a Ki value of 2.27 mg/L in HLMs. Other CYP450 isoforms are not markedly affected by Salvianolate. These findings indicate that salvianolate may be involved in potential drug interactions when co-administrated with CYP3A4 substrates.

  15. Differential expression of cytochrome P450 enzymes from the CYP2C subfamily in the human brain.

    Science.gov (United States)

    Booth Depaz, Iris M; Toselli, Francesca; Wilce, Peter A; Gillam, Elizabeth M J

    2015-03-01

    Cytochrome P450 enzymes from the CYP2C subfamily play a prominent role in the metabolic clearance of many drugs. CYP2C enzymes have also been implicated in the metabolism of arachidonic acid to vasoactive epoxyeicosatrienoic acids. CYP2C8, CYP2C9, and CYP2C19 are expressed in the adult liver at significant levels; however, the expression of CYP2C enzymes in extrahepatic tissues such as the brain is less well characterized. Form-specific antibodies to CYP2C9 and CYP2C19 were prepared by affinity purification of antibodies raised to unique peptides. CYP2C9 and CYP2C19 were located in microsomal fractions of all five human brain regions examined, namely the frontal cortex, hippocampus, basal ganglia, amygdala, and cerebellum. Both CYP2C9 and CYP2C19 were detected predominantly within the neuronal soma but with expression extending down axons and dendrites in certain regions. Finally, a comparison of cortex samples from alcoholics and age-matched controls suggested that CYP2C9 expression was increased in alcoholics.

  16. Conformational dynamics and the energetics of protein--ligand interactions: role of interdomain loop in human cytochrome P450 reductase.

    Science.gov (United States)

    Grunau, Alex; Geraki, Kalotina; Grossmann, J Günter; Gutierrez, Aldo

    2007-07-17

    A combination of mutagenesis, calorimetry, kinetics, and small-angle X-ray scattering (SAXS) has been used to study the mechanism of ligand binding energy propagation through human cytochrome P450 reductase (CPR). Remarkably, the energetics of 2',5'-ADP binding to R597 at the FAD-binding domain are affected by mutations taking place at an interdomain loop located 60 A away. Either deletion of a 7 amino acid long segment (T236-G237-E238-E239-S240-S241-I242) or its replacement by poly-proline repeats (5 and 10 residues) results in a significant increase in 2',5'-ADP enthalpy of binding (DeltaHB). This is accompanied by a decrease in the number of thermodynamic microstates available for the ligand-CPR complex. Moreover, the estimated heat capacity change (DeltaCp) for this interaction changes from -220 cal mol-1 K-1 in the wild-type enzyme to -580 cal mol-1 K-1 in the deletion mutant. Pre-steady-state kinetics measurements reveal a 50-fold decrease in the microscopic rate for interdomain (FAD --> FMN) electron transfer in the deletion mutant (kobs = 0.4 s-1). Multiple turnover cytochome c reduction assays indicate that these mutations impair the ability of the FMN-binding domain to shuttle electrons from the FAD-binding domain to the cytochrome partner. Binding of 2',5'-ADP to wild-type CPR triggers a large-scale structural rearrangement resulting in the complex having a more compact domain organization, and the maximum molecular dimension (Dmax) decreases from 110 A in ligand-free enzyme to 100 A in the ligand-bound CPR. The SAXS experiments also demonstrate that what is affected by the mutations is indeed the relative diffusional motion of the domains. Furthemore, ab initio shape reconstruction and homology modeling would suggest that-in the deletion mutant-hindering of domain motion occurs concomitantly with dimerization. The results presented here show that the energetics of this highly localized interaction (2',5'-ADP binding) have a global character, and are

  17. Aspergillus niger metabolism of citrus furanocoumarin inhibitors of human cytochrome P450 3A4

    Science.gov (United States)

    Fungi metabolize polycyclic aromatic hydrocarbons by a number of detoxification processes, including the formation of sulfated and glycosidated conjugates. A class of aromatic compounds important to the citrus industry is the furanocoumarins in grapefruit, and their metabolism in humans is critical...

  18. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics

    DEFF Research Database (Denmark)

    Mootha, Vamsi K; Lepage, Pierre; Miller, Kathleen;

    2003-01-01

    Identifying the genes responsible for human diseases requires combining information about gene position with clues about biological function. The recent availability of whole-genome data sets of RNA and protein expression provides powerful new sources of functional insight. Here we illustrate how...

  19. Cloning of cytochrome P-450 2C9 cDNA from human liver and its expression in CHL cells

    Institute of Scientific and Technical Information of China (English)

    Ge-Jian Zhu; Ying-Nian Yu; Xin Li; Yu-Li Qian

    2002-01-01

    AIM: Using bacterial, yeast, or mammalian cell expressing a human drug metabolism enzyme would seem good way to study drug metabolism-related problems. Human cytochrome P-450 2C9 ( CYP2 C9) is a polymorphic enzyme responsible for the metabolism of a large number of clinically important drugs. It ranks among the most important drug metabolizing enzymes in humans. In order to provide a sufficient amount of the enzyme for drug metabolic research, the CYP2 C9 eDNA was cloned and expressed stably in CHL cellsMETHODS: After extraction of total RNA from human livertissue, the human CYP2C9 eDNA was amplified withreverse transcription-polymerase chain reaction (RT-PCR),and cloned into cloning vector pGEM-T. The cDNA fragmentwas identified by DNA sequencing and subcloned into amammalian expression vector pREP9. A transgenic cell linewas established by transfecting the recombinant vector ofpREP9-CYP2C9 into CHL cells. The enzyme activity ofCYP2C9 catalyzing oxidation of tolbutamide to hydroxytolbutamide in S9 fraction of the cell was determined by highperformance liquid chromatography(HPLC).RESULTS: The amino acid sequence predicted from theeDNA segment was identical to that of CYP2 C9 * 1, the wildtype CYP2 C9. However, there were two base differences, i.e. 21T > C, 1146C > T, but the encoding amino acidsequence was the same, L7, P382. The S9 fraction of theestablished cell line metabolizes tolbutamide to hydroxytolbutamide; tolbutamide hydroxylass activity was found to be0.465 ± 0.109 μmol@ min-1 . g1 S9 protein or 8.62 ± 2.02 mol@ min 1 ~mol-1 CYP, but was undetectable in parental CHL cell.CONCLUSION: The cDNA of human CYP2C9 was successfullycloned and a cell line of CHL- CYP2C9, efficiently expressingthe protein of CYP2C9, was established.

  20. Reconstitution of the interplay between cytochrome P450 and human glutathione S-transferases in clozapine metabolism in yeast.

    Science.gov (United States)

    Vredenburg, Galvin; Vassell, Kadene P T; Commandeur, Jan N M; Vermeulen, Nico P E; Vos, J Chris

    2013-10-01

    Clozapine, an often-prescribed antipsychotic drug, is implicated in severe adverse drug reactions (ADRs). Formation of reactive intermediates by cytochrome P450s (CYPs) has been proposed as a possible explanation for these ADRs. Moreover, a protective role for human glutathione S-transferases (hGSTs) was recently shown using purified enzymes. We investigated the interplay between CYP bioactivation and GST detoxification in a reconstituted cellular context using recombinant yeast expressing a bacterial CYP BM3 mutant (M11), mimicking the drug-metabolizing potential of human CYPs, combined with hGSTA1-1, M1-1 or P1-1. Clozapine and the N-desmethylclozapine metabolite caused comparable growth inhibition and reactive oxygen species (ROS) formation, whereas the clozapine-N-oxide metabolite was clearly less toxic. Clozapine metabolism by BM3 M11 and the hGSTs in yeast was confirmed by identification of stable clozapine metabolites and hGST isoform-specific glutathione-conjugates. Oxidative metabolism of clozapine by BM3 M11 increased ROS formation and growth inhibition. Co-expression of hGSTP1-1 protected yeast from BM3 M11 induced growth inhibition in presence of clozapine, whereas similar expression levels of hGSTA1-1 and hGSTM1-1 did not. ROS formation was not lowered by hGSTP1-1 co-expression and was unrelated to mitochondrial electron transport chain (mETC) activity. We present a novel cellular model to study the effect of CYP and GST interplay in drug toxicity.

  1. Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells.

    Science.gov (United States)

    Ghosh, Chaitali; Hossain, Mohammed; Solanki, Jesal; Najm, Imad M; Marchi, Nicola; Janigro, Damir

    2017-04-01

    Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post-epilepsy surgery brain samples. PXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug-resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI-ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI-ECs (n = 4), and the impact on downstream CYP expression was determined. PXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI-ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic-nuclear subcellular fractions, with a significant increase of PXR/GR in EPI-ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI-ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI-ECs. GR silencing in EPI-ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI-ECs resulted in the specific downregulation of CYP3A4 expression. Our results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain

  2. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    Science.gov (United States)

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source.

  3. Heterologous expression of human cytochrome P450 2E1 in HepG2 cell line

    Institute of Scientific and Technical Information of China (English)

    Jian Zhuge; Ye Luo; Ying-Nian Yu

    2003-01-01

    AIM: Human cytochrome P-450 2E1 (CYP2E1) takes part in the biotransformation of ethanol, acetone, many smallmolecule substrates and volatile anesthetics. CYP2E1 is involved in chemical activation of many carcinogens,procarcinogens, and toxicants. To assess the metabolic and toxicological characteristics of CYP2E1, we cloned CYP2E1 cDNA and established a HepG2 cell line stably expressing recombinant CYP 2E1.METHODS: Human CYP2E1 cDNA was amplified with reverse transcription-polymerase chain reaction (RT-PCR)from total RNAs extracted from human liver and cloned into pGEM-T vector. The cDNA segment was identified by DNA sequencing and subcloned into a mammalian expression vector pREP9. A transgenic cell line was established by transfecting the recombinant plasmid of pREP9-CYP2E1 to HepG2 cells. The expression of CYP2E1 mRNA was validated by RT-PCR. The enzyme activity of CYP2E1 catalyzing oxidation of 4-nitrophenol in postmitochondrial supernate (S9) fraction of the cells was determined by spectrophotometry. The metabolic activation of HepG2-CYP2E1 cells was assayed by N-nitrosodiethylamine (NDEA)cytotoxicity and micronucleus test.RESULTS: The cloned CYP2E1 cDNA segment was identical to that reported by Umeno et al(GenBank access No.J02843). HepG2-CYP2E1 cells expressed CYP2E1 mRNA and had 4-nitrophenol hydroxylase activity (0.162±0.025nmol.min-1.mg-1 S9 protein), which were undetectable in parent HepG2 cells. HepG2-CYP2E1 cells increased the cytotoxicity and micronucleus rate of NDEA in comparison with those of HepG2 cells.CONCLUSION: The cDNA of human CYP2E1 can be successfully cloned, and a cell line, HepG2-CYP2E1, which can efficiently express mRNA and has CYP2E1 activity, is established. The cell line is useful for testing the cytotoxicity,mutagenicity and metabolism of xenobiotics, which may possibly be activated or metabolized by CYP2E1.

  4. [Inhibitory effect of imperatorin and isoimperatorin on activity of cytochrome P450 enzyme in human and rat liver microsomes].

    Science.gov (United States)

    Cao, Yan; Zhong, Yu-Huan; Yuan, Mei; Li, Hua; Zhao, Chun-Jie

    2013-04-01

    Imperatorin (IM) and isoimperatorin (ISOIM) are major active components of common herbal medicines from Umbelliferae plants, and widely used in clinic. This article studies the inhibitory effect of IM and ISOIM on the activity of cytochrome P450 (CYP) enzyme, and assesses their potential drug-drug interaction. IM and ISOIM were incubated separately with human or rat liver microsomes for 30 min, with phenacetin, bupropion, tolbutamide, S-mephenytoin, dextromethorphan and midazolam as probe substrates. Metabolites of the CYP probe substrates were determined by LC-MS/MS, and IC50 values were calculated to assess the inhibitory effect of the two drugs on human CYP1A2, 2B6, 2C9, 2C19, 2D6 and 3A4 enzymes, as well as on rat CYP1A2, 2B6, 2D2 and 3A1/2, and grade their inhibitory intensity. In human liver microsomes, IM and ISOIM showed different inhibitory effects on all of the six CYP isoenzymes. They were strong inhibitors for 1A2 and 2B6. The IC50 values were 0.05 and 0.20 micromol x L(-1) for 1A2, and 0.18 and 1.07 micromol x L(-1) for 2B6, respectively. They also showed moderate inhibitory effect on 2C19, and weak effect on 2C9, 2D6 and 3A4. In rat liver microsomes, IM and ISOIM were identified as moderate inhibitors for 1A2, with IC50 values of 1.95 and 2.98 micromol x L(-1). They were moderate and weak inhibitors for 2B6, with IC50 values of 6.22 and 21.71 micromol x L(-1), respectively. They also had weaker inhibitory effect on 2D2 and 3A1/2. The results indicated that IM and ISOIM had extensive inhibitory effects on human CYP enzymes. They are strong inhibitors of CYP1 A2 and 2B6 enzymes. However, it is worth noting the interaction arising from the inhibitory effect of CYP enzymes in clinic.

  5. In vitro inhibitory effects of asiaticoside and madecassoside on human cytochrome P450.

    Science.gov (United States)

    Winitthana, T; Niwattisaiwong, N; Patarapanich, C; Tantisira, M H; Lawanprasert, S

    2011-06-01

    The inhibitory effects and types of inhibition of asiaticoside and madecassoside on human CYPs were studied in vitro using recombinant human CYPs. The median inhibitory concentrations (IC50) of asiaticoside and madecassoside were determined for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. Asiaticoside inhibited CYP2C19 (IC50 = 412.68 ± 15.44 μM) and CYP3A4 (IC50=343.35 ± 29.35 μM). Madecassoside also inhibited CYP2C19 (IC50 = 539.04 ± 14.18 μM) and CYP3A4 (IC50 = 453.32 ± 39.33 μM). Asiaticoside and madecassoside had no effect on the activities of CYP1A2, CYP2C9 and CYP2D6 and CYP2E1. Assessment of mechanism-based inhibition and the type of inhibition were performed for asiaticoside and madecassoside with CYP2C19 and CYP3A4. These results suggested that madecassoside is a mechanism-based inhibitor of CYP2C19 and CYP3A4. Assessment of mechanism-based inhibition by asiaticoside was limited by its low solubility. Asiaticoside exhibited non-competitive inhibition of CYP2C19 (Ki=385.24 ± 8.75 μM) and CYP3A4 (Ki = 535.93 ± 18.99 μM). Madecassoside also showed non-competitive inhibition of CYP2C19 (Ki = 109.62 ± 6.14 μM) and CYP3A4 (Ki = 456.84 ± 16.43 μM). These results suggest that asiaticoside and madecassoside could cause drug-drug interactions via inhibition of CYP2C19 and CYP3A4. An in vivo study is needed to examine this further.

  6. Let-7b inhibits human cancer phenotype by targeting cytochrome P450 epoxygenase 2J2.

    Directory of Open Access Journals (Sweden)

    Fuqiong Chen

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small, noncoding RNA molecules of 20 to 22 nucleotides that regulate gene expression by binding to their 3' untranslated region (3'UTR. Increasing data implicate altered miRNA participation in the progress of cancer. We previously reported that CYP2J2 epoxygenase promotes human cancer phenotypes. But whether and how CYP2J2 is regulated by miRNA is not understood. METHODS AND RESULTS: Using bioinformatics analysis, we found potential target sites for miRNA let-7b in 3'UTR of human CYP2J2. Luciferase and western blot assays revealed that CYP2J2 was regulated by let-7b. In addition, let-7b decreased the enzymatic activity of endogenous CYP2J2. Furthermore, let-7b may diminish cell proliferation and promote cell apoptosis of tumor cells via posttranscriptional repression of CYP2J2. Tumor xenografts were induced in nude mice by subcutaneous injection of MDA-MB-435 cells. The let-7b expression vector, pSilencer-let-7b, was injected through tail vein every 3 weeks. Let-7b significantly inhibited the tumor phenotype by targeting CYP2J2. Moreover, quantitative real-time polymerase chain reaction and western blotting were used to determine the expression levels of let-7b and CYP2J2 protein from 18 matched lung squamous cell cancer and adjacent normal lung tissues; the expression level of CYP2J2 was inversely proportional to that of let-7b. CONCLUSIONS: Our results demonstrated that the decreased expression of let-7b could lead to the high expression of CYP2J2 protein in cancerous tissues. These findings suggest that miRNA let-7b reduces CYP2J2 expression, which may contribute to inhibiting tumor phenotypes.

  7. Imaging cytochrome C oxidase and FoF1-ATP synthase in mitochondrial cristae of living human cells by FLIM and superresolution microscopy

    Science.gov (United States)

    Foertsch, Franziska; Ilchenko, Mykhailo; Heitkamp, Thomas; Noßmann, Silke; Hoffmann, Birgit; Starke, Ilka; Mrowka, Ralf; Biskup, Christoph; Börsch, Michael

    2017-02-01

    Cytochrome C oxidase and FoF1-ATP synthase constitute complex IV and V, respectively, of the five membrane-bound enzymes in mitochondria comprising the respiratory chain. These enzymes are located in the inner mitochondrial membrane (IMM), which exhibits large invaginations called cristae. According to recent electron cryotomography, FoF1-ATP synthases are located predominantly at the rim of the cristae, while cytochrome C oxidases are likely distributed in planar membrane areas of the cristae. Previous FLIM measurements (K. Busch and coworkers) of complex II and III unravelled differences in the local environment of the membrane enzymes in the cristae. Here, we tagged complex IV and V with mNeonGreen and investigated their mitochondrial nano-environment by FLIM and superresolution microscopy in living human cells. Different lifetimes and anisotropy values were found and will be discussed.

  8. Inhibitory effects of seven components of danshen extract on catalytic activity of cytochrome P450 enzyme in human liver microsomes.

    Science.gov (United States)

    Qiu, Furong; Zhang, Rong; Sun, Jianguo; Jiye, A; Hao, Haiping; Peng, Ying; Ai, Hua; Wang, Guangji

    2008-07-01

    The potential for herb-drug interactions has recently received greater attention worldwide, considering the fact that the use of herbal products becomes more and more widespread. The goal of this work was to examine the potential for the metabolism-based drug interaction arising from seven active components (danshensu, protocatechuic aldehyde, protocatechuic acid, salvianolic acid B, tanshinone I, tanshinone IIA, and cryptotanshinone) of danshen extract. Probe substrates of cytochrome P450 enzymes were incubated in human liver microsomes (HLMs) with or without each component of danshen extract. IC(50) and K(i) values were estimated, and the types of inhibition were determined. Among the seven components of danshen extract, tanshinone I, tanshinone IIA, and cryptotanshinone were potent competitive inhibitors of CYP1A2 (K(i) = 0.48, 1.0, and 0.45 microM, respectively); danshensu was a competitive inhibitor of CYP2C9 (K(i) = 35 microM), and cryptotanshinone was a moderate mixed-type inhibitor of CYP2C9 (K(i) = 8 microM); cryptotanshinone inhibited weakly and in mixed mode against CYP2D6 activity (K(i) = 68 microM), and tanshinone I was a weak inhibitor of CYP2D6 (IC(50) = 120 microM); and protocatechuic aldehyde was a weak inhibitor of CYP3A4 (IC(50) = 130 and 160 microM for midazolam and testosterone, respectively). These findings provided some useful information for safe and effective use of danshen preparations in clinical practice. Our data indicated that it was necessary to study the in vivo interactions between drugs and pharmaceuticals with danshen extract.

  9. Phenotyping studies to assess the effects of phytopharmaceuticals on in vivo activity of main human cytochrome p450 enzymes.

    Science.gov (United States)

    Zadoyan, Gregor; Fuhr, Uwe

    2012-09-01

    The extensive use of herbal drugs and their multiple components and modes of action suggests that they may also cause drug interactions by changing the activity of human cytochrome P450 enzymes. The purpose of the present review is to present the available data for the top 14 herbal drug sales in the U. S. Studies describing the effects of herbal drugs on phenotyping substrates for individual CYPs were identified by a comprehensive MEDLINE search. Drugs included Allium sativum (Liliaceae), Echinacea purpurea (Asteraceae), Serenoa repens (Arecaceae), Ginkgo biloba (Ginkgoaceae), Vaccinium macrocarpon (Ericaceae), Glycine max (Fabaceae), Panax ginseng (Araliaceae), Actea racemosa (Ranunculaceae), Hypericum perforatum (Hypericaceae), Silybum marianum (Asteraceae), Camellia sinensis (Theaceae), Valeriana officinalis (Valerianaceae), Piper methysticum (Piperaceae), and Hydrastis canadensis (Ranunculaceae) preparations. We identified 70 clinical studies in 69 publications. The majority of the herbal drugs appeared to have no clear effects on most of the CYPs examined. If there was an effect, there was mild inhibition in almost all cases, as seen with garlic or kava effects on CYP2E1 and with soybean components on CYP1A2. The most pronounced effects were induction of CYP3A and other CYPs by St. John's wort and the inhibitory effect of goldenseal on CYP3A and CYP2D6, both being borderline between mild and moderate in magnitude. With the exceptions of St.John's wort and goldenseal, the information currently available suggests that concomitant intake of the herbal drugs addressed here is not a major risk for drugs that are metabolized by CYPs.

  10. Inhibition of Human Cytochrome P450 Enzymes by Allergen Removed Rhus verniciflua Stoke Standardized Extract and Constituents

    Directory of Open Access Journals (Sweden)

    Hyunsik Jung

    2014-01-01

    Full Text Available Objective. Potential interactions between herbal extracts and the cytochrome P450 (CYP system lead to serious adverse events or decreased drug efficacy. Rhus verniciflua stoke (RVS and its constituents have been reported to have various pharmacological properties. We evaluated the inhibitory potential of RVS and its constituents on the major CYP isoforms. Methods. The effects of allergen removed RVS (aRVS standardized extract and major components, fustin and fisetin isolated from aRVS, were evaluated on CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 isoenzyme activity by a luminescent CYP recombinant human enzyme assay. Results. The aRVS extract showed relative potent inhibitory effects on the CYP2C9 (IC50, <0.001 μg/mL, CYP2C19 (IC50, 9.68 μg/mL, and CYP1A2 (IC50, 10.0 μg/mL. However, it showed weak inhibition on CYP3A4 and CYP2D6. Fustin showed moderate inhibitory effects on the CYP2C19 (IC50, 64.3 μg/mL and weak inhibition of the other CYP isoforms similar to aRVS. Fisetin showed potent inhibitory effects on CYP2C9, CYP2C19, and CYP1A2. Fisetin showed moderate inhibition of CYP2D6 and weak inhibition of CYP3A4. Conclusions. These results indicate that aRVS, a clinically available herbal medicine, could contribute to herb-drug interactions when orally coadministered with drugs metabolized by CYP2C9, CYP2C19, and CYP1A2.

  11. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4

    Directory of Open Access Journals (Sweden)

    Qiao-Li Lv

    2015-12-01

    Full Text Available Glycyrrhetinic acid (GA has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450 cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver–Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4.

  12. Three-dimensional modelling of human cytochrome P450 1A2 and its interaction with caffeine and MeIQ

    Science.gov (United States)

    Lozano, J. J.; López-de-Briñas, E.; Centeno, N. B.; Guigó, R.; Sanz, F.

    1997-07-01

    The three-dimensional modelling of proteins is a useful tool to fill the gap between the number of sequenced proteins and the number of experimentally known 3D structures. However, when the degree of homology between the protein and the available 3D templates is low, model building becomes a difficult task and the reliability of the results depends critically on the correctness of the sequence alignment. For this reason, we have undertaken the modelling of human cytochrome P450 1A2 starting by a careful analysis of several sequence alignment strategies (multiple sequence alignments and the TOPITS threading technique). The best results were obtained using TOPITS followed by a manual refinement to avoid unlikely gaps. Because TOPITS uses secondary structure predictions, several methods that are available for this purpose (Levin, Gibrat, DPM, NnPredict, PHD, SOPM and NNSP) have also been evaluated on cytochromes P450 with known 3D structures. More reliable predictions on α-helices have been obtained with PHD, which is the method implemented in TOPITS. Thus, a 3D model for human cytochrome P450 1A2 has been built using the known crystal coordinates of P450 BM3 as the template. The model was refined using molecular mechanics computations. The model obtained shows a consistent location of the substrate recognition segments previously postulated for the CYP2 family members. The interaction of caffeine and a carcinogenic aromatic amine (MeIQ), which are characteristic P450 1A2 substrates, has been investigated. The substrates were solvated taking into account their molecular electrostatic potential distributions. The docking of the solvated substrates in the active site of the model was explored with the AUTODOCK programme, followed by molecular mechanics optimisation of the most interesting complexes. Stable complexes were obtained that could explain the oxidation of the considered substrates by cytochrome P450 1A2 and could offer an insight into the role played by water

  13. Stable expression of human cytochrome P450 2D6*10 in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Jian Zhuge; Ying-Nian Yu; Xiao-Dan Wu

    2004-01-01

    AIM: Over 90% of drugs are metabolized by the cytochrome P-450 (CYP) family of liver isoenzymes. The most important enzymes are CYP1A2, 3A4, 2C9/19, 2D6 and 2E1. Although CYP2D6 accounts for <2% of the total CYP liver enzyme content, it mediates metabolism in almost 25% of drugs. In order to study its enzymatic activity for drug metabolism, its cDNA was cloned and a HepG2 cell line stably expressing CYP2D6 was established.METHODS: Human CYP2D6 cDNA was amplified with reverse transcription-polymerase chain reaction (RT-PCR)from total RNA extracted from human liver tissue and cloned into pGEM-T vector, cDNA segment was identified by DNA sequencing and subcloned into a mammalian expression vector pREP9. A cell line was established by transfecting the recombinant plasmid of pREP9-CYP2D6 to hepatoma HepG2 cells. Expression of mRNA was validated by RT-PCR.Enzyme activity of catalyzing dextromethorphan O-demethylation in postmitochondrial supernant (S9) fraction of the cells was determined by high performance liquid chromatography (HPLC).RESULTS: The cloned cDNA had 4 base differences, e.g.100 C→T, 336 T→C, 408 C→G and 1 457 G→C, which resulted in P34S, and S486T amino acid substitutions, and two samesense mutations were 112 F and 136 V compared with that reported by Kimura et al(GenBank accession number: M33388). P34S and S486T amino acid substitutions were the characteristics of CYP2D6*10 allele. The relative activity of S9 fraction of HepG2-CYP2D6*10 metabolized detromethorphan O-demethylation was found to be 2.31±0.19 nmol.min-1.mg-1 S9 protein (n=3), but was undetectable in parental HepG2 cells.CONCLUSION: cDNA of human CYP2D6*10can be successfully doned. A cell line, HepG2-CYP2D6*10, expressing CYP2D6*10 mRNA and having metabolic activity, has been established.

  14. Diazinon, chlorpyrifos and parathion are metabolised by multiple cytochromes P450 in human liver.

    Science.gov (United States)

    Mutch, Elaine; Williams, Faith M

    2006-07-05

    This research describes both the activation and detoxification of diazinon, chlorpyrifos and parathion by recombinant P450 isozymes and by human liver microsomes that had been characterised for P450 marker activities. Wide variations in activity were found for diazinon (50 microM; 500 microM) activation to diazoxon, chlorpyrifos (100 microM) to chlorpyrifos oxon and parathion (5 microM, 20 microM and 200 microM) to paraoxon in NADPH-dependent reactions. In parallel, the dearylated metabolites pyrimidinol (IHMP), trichloro-2-pyridinol (TCP) and p-nitrophenol (PNP) were produced from diazinon, chlorpyrifos and parathion, respectively, with similarly wide variations in activity. There were significant correlations between diazoxon formation from diazinon (50 microM; 500 microM) with the three CYP3A4/5 marker reactions, while IHMP formation correlated significantly with the three CYP3A4/5 reactions, the CYP2C8 marker reaction (pdiazinon; CYPs 2D6, 3A5, 2B6 and 3A4 were best at producing chlorpyrifos-oxon and CYPs 2C19, 2D6, 3A5 and 3A4 at producing TCP from chlorpyrifos (100 microM). These data strongly suggest that CYPs 3A4/5, 2C8, 1A2, 2C19 and 2D6 are primarily involved in the metabolism of all three OPs, although the profile of participating isoforms was different for each of the pesticides suggesting that chemical structure influences which P450s mediate the reaction. The marked inter-individual variation in expression of the various P450 isozymes may result in sub-populations of individuals that produce higher systemic oxon levels with increased susceptibility to OP toxicity.

  15. In vitro metabolism of a novel synthetic cannabinoid, EAM-2201, in human liver microsomes and human recombinant cytochrome P450s.

    Science.gov (United States)

    Kim, Ju Hyun; Kim, Hee Seung; Kong, Tae Yeon; Lee, Joo Young; Kim, Jin Young; In, Moon Kyo; Lee, Hye Suk

    2016-02-05

    In vitro metabolism of a new synthetic cannabinoid, EAM-2201, has been investigated with human liver microsomes and major cDNA-expressed cytochrome P450 (CYP) isozymes using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Incubation of EAM-2201 with human liver microsomes in the presence of NADPH resulted in the formation of 37 metabolites, including nine hydroxy-EAM-2201 (M1-M9), five dihydroxy-EAM-2201 (M10-M14), dihydrodiol-EAM-2201 (M15), oxidative defluorinated EAM-2201 (M16), two hydroxy-M16 (M17 and M18), three dihydroxy-M16 (M19-M21), N-dealkyl-EAM-2201 (M22), two hydroxy-M22 (M23 and M24), dihydroxy-M22 (M25), EAM-2201 N-pentanoic acid (M26), hydroxy-M26 (M27), dehydro-EAM-2201 (M28), hydroxy-M28 (M29), seven dihydroxy-M28 (M30-M36), and oxidative defluorinated hydroxy-M28 (M37). Multiple CYPs, including CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2J2, 3A4, and 3A5, were involved in the metabolism of EAM-2201. In conclusion, EAM-2201 is extensively metabolized by CYPs and its metabolites can be used as an indicator of EAM-2201 abuse.

  16. The adsorption of cytochromes on a modified surface of gold electrodes

    Science.gov (United States)

    Zhavnerko, G. K.; Paribok, I. V.; Agabekov, V. E.; Zmachinskaya, Yu. A.; Usanov, S. A.

    2010-06-01

    The adsorption of cytochromes b 5 and c on the surface of gold electrodes, including the surface modified with cysteine, was studied. The quartz crystal microbalance method with parallel dissipation energy measurements, microcontact printing, and atomic-force microscopy were used to show that the special features of the structure and morphology of two-component cytochrome b 5 and c films were determined by the nature of the proteins themselves and the influence of the modifying "sublayer." The largest changes in the weight of films and dissipation energy were observed in the adsorption of cytochrome b 5 on a cytochrome c film deposited on a cysteine sublayer. Atomic-force microscopy measurements showed that strong interaction between cytochrome c and b 5 molecules on the surface of gold modified with cysteine could be related to the formation of the corresponding protein complex.

  17. Organization of the electron transfer chain to oxygen in the obligate human pathogen Neisseria gonorrhoeae: roles for cytochromes c4 and c5, but not cytochrome c2, in oxygen reduction.

    Science.gov (United States)

    Li, Ying; Hopper, Amanda; Overton, Tim; Squire, Derrick J P; Cole, Jeffrey; Tovell, Nicholas

    2010-05-01

    Although Neisseria gonorrhoeae is a prolific source of eight c-type cytochromes, little is known about how its electron transfer pathways to oxygen are organized. In this study, the roles in the respiratory chain to oxygen of cytochromes c(2), c(4), and c(5), encoded by the genes cccA, cycA, and cycB, respectively, have been investigated. Single mutations in genes for either cytochrome c(4) or c(5) resulted in an increased sensitivity to growth inhibition by excess oxygen and small decreases in the respiratory capacity of the parent, which were complemented by the chromosomal integration of an ectopic, isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible copy of the cycA or cycB gene. In contrast, a cccA mutant reduced oxygen slightly more rapidly than the parent, suggesting that cccA is expressed but cytochrome c(2) is not involved in electron transfer to cytochrome oxidase. The deletion of cccA increased the sensitivity of the cycB mutant to excess oxygen but decreased the sensitivity of the cycA mutant. Despite many attempts, a double mutant defective in both cytochromes c(4) and c(5) could not be isolated. However, a strain with the ectopically encoded, IPTG-inducible cycB gene with deletions in both cycA and cycB was constructed: the growth and survival of this strain were dependent upon the addition of IPTG, so gonococcal survival is dependent upon the synthesis of either cytochrome c(4) or c(5). These results define the gonococcal electron transfer chain to oxygen in which cytochromes c(4) and c(5), but not cytochrome c(2), provide alternative pathways for electron transfer from the cytochrome bc(1) complex to the terminal oxidase cytochrome cbb(3).

  18. Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes.

    Science.gov (United States)

    Wang, Zhe; Sun, Wei; Huang, Cheng-Ke; Wang, Li; Xia, Meng-Ming; Cui, Xiao; Hu, Guo-Xin; Wang, Zeng-Shou

    2015-04-01

    Cytochrome P450 2C9 (CYP2C9), one of the most important phase I drug metabolizing enzymes, could catalyze the reactions that convert diclofenanc into diclofenac 4'-hydroxylation. Evaluation of the inhibitory effects of compounds on CYP2C9 is clinically important because inhibition of CYP2C9 could result in serious drug-drug interactions. The objective of this work was to investigate the effects of curcumin on CYP2C9 in human and cytochrome P450 2C11 (CYP2C11) in rat liver microsomes. The results showed that curcumin inhibited CYP2C9 activity (10 µmol L(-1) diclofenac) with half-maximal inhibition or a half-maximal inhibitory concentration (IC50) of 15.25 µmol L(-1) and Ki = 4.473 µmol L(-1) in human liver microsomes. Curcumin's mode of action on CYP2C9 activity was noncompetitive for the substrate diclofenanc and uncompetitive for the cofactor NADPH. In contrast to its potent inhibition of CYP2C9 in human, diclofenanc had lesser effects on CYP2C11 in rat, with an IC50 ≥100 µmol L(-1). The observations imply that curcumin has the inhibitory effects on CYP2C9 activity in human. These in vitro findings suggest that more attention should be paid to special clinical caution when intake of curcumin combined with other drugs in treatment.

  19. Alignment of the amino terminal amino acid sequence of human cytochrome c oxidase subunits I and II with the sequence of their putative mRNAs.

    OpenAIRE

    CHOMYN, A.; Hunkapiller, M W; Attardi, G

    1981-01-01

    Thirteen of the first fifteen amino acids from the NH2-terminus of the primary sequence of human cytochrome c oxidase subunit I and eleven of the first twelve amino acids of subunit II have been identified by microsequencing procedures. These sequences have been compared with the recently determined 5'-end proximal sequences of the HeLa cell mitochondrial mRNAs and unambiguously aligned with two of them. This alignment has allowed the identification of the putative mRNA for subunit I, and has...

  20. Cytochrome c and insect cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Kai-Yu Liu; Hong Yang; Jian-Xin Peng; Hua-Zhu Hong

    2012-01-01

    The role ofcytochrome c in insect cell apoptosis has drawn considerable attention and has been subject to considerable controversy.In Drosophila,the majority of studies have demonstrated that cytochrome c may not be involved in apoptosis,although there are conflicting reports.Cytochrome c is not released from mitochondria into the cytosol and activation of the initiator caspase Dronc or effector caspase Drice is not associated with cytochrome c during apoptosis in Drosophila SL2 cells or BG2 cells.Cytochrome c failed to induce caspase activation and promote caspase activation in Drosophila cell lysates,but remarkably caused caspase activation in extracts from human cells.Knockdown of cytochrome c does not protect cells from apoptosis and over-expression of cytochrome c also does not promote apoptosis.Structural analysis has revealed that cytochrome c is not required for Dapaf-1 complex assembly.In Lepidoptera,the involvement of cytochrome c in apoptosis has been demonstrated by the accumulating evidence.Cytochrome c release from mitochondria into cytosol has been observed in different cell lines such as Spodoptera frugiperda Sf9,Spodoptera litura S1-1 and Lymantria dispar LdFB.Silencing of cytochrome c expression significantly affected apoptosis and activation of caspase and the addition of cytochrome c to cell-free extracts results in caspase activation,suggesting the activation of caspase is dependent on cytochrome c.Although Apaf- 1 has not been identified in Lepidoptera,the inhibitor of apoptosome formation can inhibit apoptosis and caspase activation.Cytochrome c may be exclusively required for Lepidoptera apoptosis.

  1. Mutations in the UQCC1-interacting protein, UQCC2, cause human complex III deficiency associated with perturbed cytochrome b protein expression.

    Directory of Open Access Journals (Sweden)

    Elena J Tucker

    Full Text Available Mitochondrial oxidative phosphorylation (OXPHOS is responsible for generating the majority of cellular ATP. Complex III (ubiquinol-cytochrome c oxidoreductase is the third of five OXPHOS complexes. Complex III assembly relies on the coordinated expression of the mitochondrial and nuclear genomes, with 10 subunits encoded by nuclear DNA and one by mitochondrial DNA (mtDNA. Complex III deficiency is a debilitating and often fatal disorder that can arise from mutations in complex III subunit genes or one of three known complex III assembly factors. The molecular cause for complex III deficiency in about half of cases, however, is unknown and there are likely many complex III assembly factors yet to be identified. Here, we used Massively Parallel Sequencing to identify a homozygous splicing mutation in the gene encoding Ubiquinol-Cytochrome c Reductase Complex Assembly Factor 2 (UQCC2 in a consanguineous Lebanese patient displaying complex III deficiency, severe intrauterine growth retardation, neonatal lactic acidosis and renal tubular dysfunction. We prove causality of the mutation via lentiviral correction studies in patient fibroblasts. Sequence-profile based orthology prediction shows UQCC2 is an ortholog of the Saccharomyces cerevisiae complex III assembly factor, Cbp6p, although its sequence has diverged substantially. Co-purification studies show that UQCC2 interacts with UQCC1, the predicted ortholog of the Cbp6p binding partner, Cbp3p. Fibroblasts from the patient with UQCC2 mutations have deficiency of UQCC1, while UQCC1-depleted cells have reduced levels of UQCC2 and complex III. We show that UQCC1 binds the newly synthesized mtDNA-encoded cytochrome b subunit of complex III and that UQCC2 patient fibroblasts have specific defects in the synthesis or stability of cytochrome b. This work reveals a new cause for complex III deficiency that can assist future patient diagnosis, and provides insight into human complex III assembly by

  2. Study of in vitro metabolism of m-nisoldipine in human liver microsomes and recombinant cytochrome P450 enzymes by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Yuan, Lin; Jia, Peipei; Sun, Yupeng; Zhao, Chengcheng; Zhi, Xuran; Sheng, Ning; Zhang, Lantong

    2014-08-01

    This is a report about the investigation of the metabolic fate of m-nisoldipine in human liver microsomes and the recombinant cytochrome P450 enzymes by using LC-MS/MS. A sensitive and reliable LC-MS/MS method was developed to obtain a rapid and complete characterization of new metabolites and the metabolism pathways. The analytes were separated on a reversed phase C18 column with acetonitrile and 0.1% aqueous formic acid as the mobile phase. Tandem mass spectrometry with positive electrospray ionization was used to enable the structural characterization of the metabolites. A total of 10 metabolites were characterized with proposed structures in the incubation of human liver microsomes by comparing their retention times and spectral patterns with those of the parent drug. Dehydrogenation of the dihydropyridine core and reactions of side chains such as hydroxylation and hydrolysis of ester bonds were the major metabolic pathways. The specific cytochrome P450 (CYP) enzymes responsible for m-nisoldipine metabolites were identified using chemical inhibition and cDNA expressed CYP enzymes. The results indicated that CYP2C19 and CYP3A4 might play major roles in the metabolism of m-nisoldipine in human liver microsomes.

  3. Main: 1B5Q [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1B5Q トウモロコシ Corn Zea mays L. Polyamine Oxidase Precursor Name=Pao; Zea Mays Molecul...EESRRIEQQSDEQTKAEIMQVLRKMFPGKDVPDATDILVPRWWSDRFYKGTFSNWPVGVNRYEYDQLRAPVGRVYFTGEHTSEHYNGYVHGAYLSGIDSAEILINCAQKKMCKYHVQGKYD corn_1B5Q.jpg ...

  4. 17 CFR 260.10b-5 - Content.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Content. 260.10b-5 Section 260.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rule Under Section 310 § 260.10b-5 Content. (a)...

  5. 17 CFR 260.10b-5 - Content.

    Science.gov (United States)

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Content. 260.10b-5 Section 260.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rule Under Section 310 § 260.10b-5 Content. (a) Each...

  6. Role of specific cytochrome P450 isoforms in the conversion of phenoxypropoxybiguanide analogs in human liver microsomes to potent antimalarial dihydrotriazines.

    Science.gov (United States)

    Diaz, Damaris S; Kozar, Michael P; Smith, Kirsten S; Asher, Constance O; Sousa, Jason C; Schiehser, Guy A; Jacobus, David P; Milhous, Wilbur K; Skillman, Donald R; Shearer, Todd W

    2008-02-01

    Phenoxypropoxybiguanides, such as PS-15, are antimalarial prodrugs analogous to the relationship of proguanil and its active metabolite cycloguanil. Unlike cycloguanil, however, WR99210, the active metabolite of PS-15, has retained in vitro potency against newly emerging antifolate-resistant malaria parasites. Recently, in vitro metabolism of a new series of phenoxypropoxybiguanide analogs has examined the production of the active triazine metabolites by human liver microsomes. The purpose of this investigation was to elucidate the primary cytochrome P450 isoforms involved in the production of active metabolites in the current lead candidate. By using expressed human recombinant isoform preparations, specific chemical inhibitors, and isoform-specific inhibitory antibodies, the primary cytochrome P450 isoforms involved in the in vitro metabolic activation of JPC-2056 were elucidated. Unlike proguanil, which is metabolized primarily by CYP2C19, the results indicate that CYP3A4 plays a more important role in the metabolism of both PS-15 and JPC-2056. Whereas CYP2D6 appears to play a major role in the metabolism of PS-15 to WR99210, it appears less important in the conversion of JPC-2056 to JPC-2067. These results are encouraging, considering the prominence of CYP2C19 and CYP2D6 polymorphisms in certain populations at risk for contracting malaria, because the current clinical prodrug candidate from this series may be less dependent on these enzymes for metabolic activation.

  7. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-c and induces apoptosis independent of p53 in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Vijay [School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat (India); Agarwal, Rajesh [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO (United States); Singh, Rana P., E-mail: ranaps@hotmail.com [School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat (India); Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India)

    2016-09-02

    Lung cancer is the most frequently diagnosed malignancy that contributes to high proportion of deaths globally among patients who die due to cancer. Chemotherapy remains the common mode of treatment for lung cancer patients though with limited success. We assessed the biological effects and associated molecular changes of evodiamine, a plant alkaloid, on human lung cancer A549 and H1299 cells along with other epithelial cancer and normal lung SAEC cells. Our data showed that 20–40 μM evodiamine treatment for 24–48 h strongly (up to 73%, P < 0.001) reduced the growth and survival of these cancer cells. However, it also moderately inhibited growth and survival of SAEC cells. A strong inhibition (P < 0.001) was observed on clonogenicity of A549 cells. Further, evodiamine increased (4-fold) mitochondrial membrane depolarization with 6-fold increase in apoptosis and a slight increase in Bax/Bcl-2 ratio. It increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. Cytosolic cytochrome-c activated cascade of caspase-9 and caspase-3 intrinsic pathway, however, DR5 and caspase-8 extrinsic pathway was also activated which could be due to nuclear cytochrome-c. Pan-caspase inhibitor (z-VAD.fmk) partially reversed evodiamine induced apoptosis. An increase in p53 as well as its serine 15 phosphorylation was also observed. Pifithrin-α, a p53 inhibitor, slightly inhibited growth of A549 cells and under p53 inhibitory condition evodiamine-induced apoptosis could not be reversed. Together these findings suggest that evodiamine is a strong inducer of apoptosis in lung epithelial cancer cells independent of their p53 status and that could involve both intrinsic as well as extrinsic pathway of apoptosis. Thus evodiamine could be a potential anticancer agent against lung cancer. - Highlights: • Evodiamine, a novel plant alkaloid, relatively selectively inhibited growth and survival of human lung cancer cells. • Increased cancer cell

  8. Progress on research of the alternative splicing of human cytochrome P450 pre-mRNA%人细胞色素P450前mRNA的可变剪接研究进展

    Institute of Scientific and Technical Information of China (English)

    诸葛坚; 余应年

    2005-01-01

    Human genes typically contain multiple introns, and in many cases the exons can be joined more than one way to generate multiple rnRNAs, encoding distinct protein isoforms. This process is called alternative splicing. The article summarized the human cytochrome P450 pre-mRNA alternative splicing and their regulatory mechanism and impacts on biological functions.

  9. Human plasma concentrations of five cytochrome P450 probes extrapolated from pharmacokinetics in dogs and minipigs using physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Shida, Satomi; Yamazaki, Hiroshi

    2016-09-01

    The pharmacokinetics of cytochrome P450 probes in humans can be extrapolated from corresponding data in cynomolgus monkeys using simplified physiologically based pharmacokinetic (PBPK) modeling. In the current study, despite some species difference in drug clearances, this modeling methodology was adapted to estimate human plasma concentrations of P450 probes based on data from commonly used medium-sized experimental animals, namely dogs and minipigs. Using known species allometric scaling factors and in vitro metabolic clearance data, the observed plasma concentrations of slowly eliminated caffeine and warfarin and rapidly eliminated omeprazole, metoprolol and midazolam in two young dogs were scaled to human oral monitoring equivalents. Using the same approach, the previously reported pharmacokinetics of the five P450 probes in minipigs was also scaled to human monitoring equivalents. The human plasma concentration profiles of the five P450 probes estimated by the simplified human PBPK models based on observed/reported pharmacokinetics in dogs/minipigs were consistent with previously published pharmacokinetic data in humans. These results suggest that dogs and minipigs, in addition to monkeys, could be suitable models for humans during research into new drugs, especially when used in combination with simple PBPK models.

  10. Distribution of cytochrome P450 2C, 2E1, 3A4, and 3A5 in human colon mucosa

    DEFF Research Database (Denmark)

    Parlesak, Alexandr

    2005-01-01

    BACKGROUND: Despite the fact that the alimentary tract is part of the body's first line of defense against orally ingested xenobiotica, little is known about the distribution and expression of cytochrome P450 (CYP) enzymes in human colon. Therefore, expression and protein levels of four...... representative CYPs (CYP2C(8), CYP2E1, CYP3A4, and CYP3A5) were determined in human colon mucosa biopsies obtained from ascending, descending and sigmoid colon. METHODS: Expression of CYP2C, CYP2E1, CYP3A4, and CYP3A5 mRNA in colon mucosa was determined by RT-PCR. Protein concentration of CYPs was determined...... to the descending colon. CONCLUSION: The current data suggest that the expression of CYP2C, CYP2E1, and CYP3A5 varies in different parts of the colon....

  11. The revised human liver cytochrome P450 "Pie": absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics.

    Science.gov (United States)

    Michaels, Scott; Wang, Michael Zhuo

    2014-08-01

    The CYP4F subfamily of enzymes has been identified recently to be involved in the metabolism of endogenous compounds (arachidonic acid and leukotriene B4), nutrients (vitamins K1 and E), and xenobiotics (pafuramidine and fingolimod). CYP4F2 and CYP4F3B are reported to be expressed in the human liver. However, absolute concentrations of these enzymes in human liver microsomes (HLMs) and their interindividual variability have yet to be determined because of the lack of specific antibodies. Here, an liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based targeted quantitative proteomic approach was employed to determine the absolute protein concentrations of CYP4F2 and CYP4F3B compared with CYP3A in two panels of HLMs (n = 31). As a result, the human hepatic cytochrome P450 (P450) "pie" has been revised to include the contribution of CYP4F enzymes, which amounts to 15% of the total hepatic cytochrome P450 enzymes. CYP4F3B displayed low interindividual variability (3.3-fold) in the HLM panels whereas CYP4F2 displayed large variability (21-fold). However, CYP4F2 variability decreased to 3.4-fold if the two donors with the lowest expression were excluded. In contrast, CYP3A exhibited 29-fold interindividual variability in the same HLM panels. The proposed marker reaction for CYP4F enzymes pafuramidine/DB289 M1 formation did not correlate with CYP4F protein content, suggesting alternate metabolic pathways for DB289 M1 formation in HLMs. In conclusion, CYP4F enzymes are highly expressed in the human liver and their physiologic and pharmacologic roles warrant further investigation.

  12. Tissue- and Condition-Specific Isoforms of Mammalian Cytochrome c Oxidase Subunits: From Function to Human Disease

    Directory of Open Access Journals (Sweden)

    Christopher A. Sinkler

    2017-01-01

    Full Text Available Cytochrome c oxidase (COX is the terminal enzyme of the electron transport chain and catalyzes the transfer of electrons from cytochrome c to oxygen. COX consists of 14 subunits, three and eleven encoded, respectively, by the mitochondrial and nuclear DNA. Tissue- and condition-specific isoforms have only been reported for COX but not for the other oxidative phosphorylation complexes, suggesting a fundamental requirement to fine-tune and regulate the essentially irreversible reaction catalyzed by COX. This article briefly discusses the assembly of COX in mammals and then reviews the functions of the six nuclear-encoded COX subunits that are expressed as isoforms in specialized tissues including those of the liver, heart and skeletal muscle, lung, and testes: COX IV-1, COX IV-2, NDUFA4, NDUFA4L2, COX VIaL, COX VIaH, COX VIb-1, COX VIb-2, COX VIIaH, COX VIIaL, COX VIIaR, COX VIIIH/L, and COX VIII-3. We propose a model in which the isoforms mediate the interconnected regulation of COX by (1 adjusting basal enzyme activity to mitochondrial capacity of a given tissue; (2 allosteric regulation to adjust energy production to need; (3 altering proton pumping efficiency under certain conditions, contributing to thermogenesis; (4 providing a platform for tissue-specific signaling; (5 stabilizing the COX dimer; and (6 modulating supercomplex formation.

  13. Polymorphisms in the Human Cytochrome P450 and Arylamine N-Acetyltransferase: Susceptibility to Head and Neck Cancers

    Directory of Open Access Journals (Sweden)

    Rim Khlifi

    2013-01-01

    Full Text Available The occurrence of head and neck cancer (HNC is associated with smoking and alcohol drinking. Tobacco smoking exposes smokers to a series of carcinogenic chemicals. Cytochrome P450 enzymes (CYP450s, such as CYP1A1, CYP1B1, and CYP2D6, usually metabolize carcinogens to their inactive derivatives, but they occasionally convert the chemicals to more potent carcinogens. In addition, via CYP450 (CYP2E1 oxidase, alcohol is metabolized to acetaldehyde, a highly toxic compound, which plays an important role in carcinogenesis. Furthermore, two N-acetyltransferase isozymes (NATs, NAT1 and NAT2, are polymorphic and catalyze both N-acetylation and O-acetylation of aromatic and heterocyclic amine carcinogens. Genetic polymorphisms are associated with a number of enzymes involved in the metabolism of carcinogens important in the induction of HNC. It has been suggested that such polymorphisms may be linked to cancer susceptibility. In this paper, we select four cytochrome P450 enzymes (CYP1A1, CYP1BA1, CYP2D6, and CYP2E1, and two N-acetyltransferase isozymes (NAT1 and NAT2 in order to summarize and analyze findings from the literature related to HNC risk by focusing on (i the interaction between these genes and the environment, (ii the impact of genetic defect on protein activity and/or expression, and (iii the eventual involvement of race in such associations.

  14. Similar substrate specificity of cynomolgus monkey cytochrome P450 2C19 to reported human P450 2C counterpart enzymes by evaluation of 89 drug clearances.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-12-01

    Cynomolgus monkeys are used widely in preclinical studies as non-human primate species. The amino acid sequence of cynomolgus monkey cytochrome P450 (P450 or CYP) 2C19 is reportedly highly correlated to that of human CYP2C19 (92%) and CYP2C9 (93%). In the present study, 89 commercially available compounds were screened to find potential substrates for cynomolgus monkey CYP2C19. Of 89 drugs, 34 were metabolically depleted by cynomolgus monkey CYP2C19 with relatively high rates. Among them, 30 compounds have been reported as substrates or inhibitors of, either or both, human CYP2C19 and CYP2C9. Several compounds, including loratadine, showed high selectivity to cynomolgus monkey CYP2C19, and all of these have been reported as human CYP2C19 and/or CYP2C9 substrates. In addition, cynomolgus monkey CYP2C19 formed the same loratadine metabolite as human CYP2C19, descarboethoxyloratadine. These results suggest that cynomolgus monkey CYP2C19 is generally similar to human CYP2C19 and CYP2C9 in its substrate recognition functionality.

  15. In vitro inhibition and induction of human liver cytochrome P450 enzymes by gentiopicroside: potent effect on CYP2A6.

    Science.gov (United States)

    Deng, Yating; Wang, Lu; Yang, Yong; Sun, Wenji; Xie, Renming; Liu, Xueying; Wang, Qingwei

    2013-01-01

    Gentiopicroside (GE), a naturally occurring iridoid glycoside, has been developed into a Novel Traditional Chinese Drug named gentiopicroside injection, and it was approved for the treatment of acute jaundice and chronic active hepatitis by SFDA. However, the inhibitory and inducible effects of GE on the activity of cytochrome P450 (CYP450) are unclear. The purpose of this study was to evaluate the ability of GE to inhibit and induce human cytochrome P450 enzymes in vitro. In human liver microsomes, GE inhibited CYP2A6 and CYP2E1 in a concentration-dependent manner, with IC₅₀ values of 21.8 µg/ml and 594 µg/ml, respectively, and the IC₅₀ of CYP2A6 was close to the C(max) value observed clinically. GE was a non-competitive inhibitor of CYP2A6 at lower concentrations and a competitive inhibitor at higher concentrations. GE did not produce inhibition of CYP2C9, CYP2D6, CYP1A2 or CYP3A4 activities. However, a significant increase of CYP1A2 and CYP3A4 activity was observed at high concentrations. In cultured human hepatocytes no significant induction of CYP1A2, CYP3A4 or CYP2B6 was observed. Given these results, the in vivo potential inhibition of GE on CYP2A6 deserves further investigation, and it seems that the hepatoprotective effect of GE is irrelevant to its effect on P450s.

  16. Effects of methoxychlor and 2,2-bis ( p -hydroxyphenyl)-1,1,1-trichloroethane on cytochrome P450 enzyme activities in human and rat livers.

    Science.gov (United States)

    Chen, Bingbing; Pan, Peipei; Wang, Li; Chen, Menchun; Dong, Yaoyao; Ge, Ren-Shan; Hu, Guo-Xin

    2015-01-01

    Cytochrome P450 (CYP) enzymes are involved in the metabolism of endogenous and exogenous compounds. Human and rat liver microsomes were used to investigate the inhibitory effects of methoxychlor (MXC) and its metabolite 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) on the activities of corresponding human and rat CYPs. Probe drugs were used to test the inhibitory effects of MXC and HPTE on human and rat CYPs. The results showed that MXC and HPTE inhibited both human CYP2C9 and rat liver CYP2C11 activity, with half-maximal inhibitory concentration (IC50) values of 15.47 ± 0.36 (MXC) and 8.87 ± 0.53 μmol/l (HPTE) for human CYP2C9, and of 22.45 ± 1.48 (MXC) and 24.63 ± 1.35 μmol/l (HPTE) for rat CYP2C11. MXC and HPTE had no effects on human CYP2C19 activity but inhibited rat CYP2C6 activity with IC50 values of 14.84 ± 0.04 (MXC) and 8.72 ± 0.25 μmol/l (HPTE). With regard to human CYP2D6 and rat CYP2D2 activity, only HPTE potently inhibited human CYP2D6 activity, with an IC50 value of 16.56 ± 0.69 μmol/l. Both chemicals had no effect on human CYP3A4 and rat CYP3A1 activity. In summary, MXC and HPTE are potent inhibitors of some human and rat CYPs.

  17. Cytochromes of Aquatic Fungi

    Science.gov (United States)

    Gleason, Frank H.; Unestam, Torgny

    1968-01-01

    The cytochrome systems of two classes of aquatic fungi, the Oomycetes and Chytridiomycetes, were studied by means of reduced-minus-oxidized difference spectra at room and at low temperature. At room temperature, all of these fungi have a c-type cytochrome with an absorption maximum at 551 mμ and a b-type cytochrome at 564 mμ. The Oomycetes have a-type cytochromes at 605 mμ, and the Chytridiomycetes have a-type cytochromes at 606 mμ (Blastocladiales) or at 609 mμ (Monoblepharidales). Additional b-type cytochromes are found at 557 mμ in the Oomycetes and at approximately 560 mμ in the Chytridiomycetes. The data obtained from spectra at low temperature are consistent with these conclusions. Thus, the difference spectra reveal variation between the cytochrome systems of these two classes of aquatic fungi. PMID:5650068

  18. 49 CFR 178.33b-5 - Material.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Material. 178.33b-5 Section 178.33b-5 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR PACKAGINGS...

  19. Characterization of a single peptide derived from cytochrome P4501B1 that elicits spontaneous human leukocyte antigen (HLA)-A1 as well as HLA-B35 restricted CD8 T-cell responses in cancer patients

    DEFF Research Database (Denmark)

    Kvistborg, P.; Hadrup, S.R.; Andersen, M.H.

    2008-01-01

    Cytochrome P450 1B1 (CYP1B1) is widely expressed in human malignancies, but silent in most normal tissues. Importantly, the protein is believed to play an important role in the survival and growth of cancer cells in a stressed environment, e.g., as a result of hypoxia or chemotherapy. Thus...

  20. Comparison between recombinant P450s and human liver microsomes in the determination of cytochrome P450 Michaelis-Menten constants.

    Science.gov (United States)

    Youdim, K; Dodia, R

    2010-04-01

    Non-linear dose-exposure (supra-proportionality) occurs when plasma drug concentrations increase in a non-linear fashion with increasing dose. To predict the likelihood of this, an understanding is required of the K(M), which reflects a drug ability to saturate a specific enzyme involved in its metabolism. This study assessed the accuracy of K(M) and V(max) determinations for compounds using a substrate-depletion approach with those determined using the product-formation approach, using both recombinant human cytochrome P450 (CYP) enzymes and human liver microsomes. For the vast majority of the compounds studied, the K(M)'s using recombinant CYPs and human liver microsomes in the two approaches predicted within two-fold. Further comparisons between the K(M) and V(max)-values were made between those measured using the product-formation approach and those estimated following simultaneous fitting of the Michaelis-Menten equation to all substrate depletion plots. In each case values were comparable. In conclusion, the current study showed the substrate-depletion approach can be used to estimate K(M) and V(max) using both human liver microsomes and recombinant P450s. Estimation of these parameters during early discovery will aid in the understanding of dosages at which non-linearity may occur, but potentially aid predictions of likely clinical drug-drug interactions.

  1. Identification of putative substrates for cynomolgus monkey cytochrome P450 2C8 by substrate depletion assays with 22 human P450 substrates and inhibitors.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2016-07-01

    Cynomolgus monkeys are widely used in drug developmental stages as non-human primate models. Previous studies used 89 compounds to investigate species differences associated with cytochrome P450 (P450 or CYP) function that reported monkey specific CYP2C76 cleared 19 chemicals, and homologous CYP2C9 and CYP2C19 metabolized 17 and 30 human CYP2C9 and/or CYP2C19 substrates/inhibitors, respectively. In the present study, 22 compounds selected from viewpoints of global drug interaction guidances and guidelines were further evaluated to seek potential substrates for monkey CYP2C8, which is highly homologous to human CYP2C8 (92%). Amodiaquine, montelukast, quercetin and rosiglitazone, known as substrates or competitive inhibitors of human CYP2C8, were metabolically depleted by recombinant monkey CYP2C8 at relatively high rates. Taken together with our reported findings of the slow eliminations of amodiaquine and montelukast by monkey CYP2C9, CYP2C19 and CYP2C76, the present results suggest that these at least four chemicals may be good marker substrates for monkey CYP2C8. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine.

    Science.gov (United States)

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Okamoto, Eriko; Sasaki, Erika; Yamazaki, Hiroshi

    2016-11-01

    1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans.

  3. Evidence for the activation of organophosphate pesticides by cytochromes P450 3A4 and 2D6 in human liver microsomes.

    Science.gov (United States)

    Sams, C; Mason, H J; Rawbone, R

    2000-08-16

    The role of specific cytochrome P450 isoforms in catalysing the oxidative biotransformation of the organophosphorothioate pesticides parathion, chlorpyrifos and diazinon into structures that inhibit cholinesterase has been investigated in human liver microsomes using chemical inhibitors. Pesticides were incubated with human liver microsomes and production of the anticholinergic oxon metabolite was investigated by the inhibition of human serum cholinesterase. Quinidine and ketoconazole at 10 micromol/l inhibited oxidative biotransformation. Compared to control incubations (no inhibitor) where cholinesterase activity was inhibited to between 1 and 4% of control levels, incorporation of the CYP2D6 inhibitor quinidine into the microsomal incubation resulted in cholinesterase activity of 50% for parathion, 38% for diazinon and 30% for chlorpyrifos. Addition of the CYP3A4 inhibitor ketoconazole to microsomal incubations resulted in 66% cholinesterase activity with diazinon, 20% with parathion and 5% with chlorpyrifos. The unexpected finding that CYP2D6, as well as CYP3A4, catalysed oxidative biotransformation was confirmed for chlorpyrifos and parathion using microsomes prepared from a human lymphoblastoid cell line expressing CYP2D6. While parathion has been investigated only as a model compound, chlorpyrifos and diazinon are both very important, widely used pesticides and CYP2D6 appears to be an important enzyme in their bioactivation pathway. CYP2D6 is polymorphic and hence may influence individual susceptibility to exposure to chlorpyrifos and diazinon as well as other structurally similar pesticides.

  4. High-throughput screening of inhibitory effects of Bo-yang-hwan-o-tang on human cytochrome P450 isoforms in vitro using UPLC/MS/MS.

    Science.gov (United States)

    Lee, Miran; Park, Jeonghyeon; Lim, Mi-sun; Seong, Sook Jin; Lee, Joomi; Seo, Jeong Ju; Park, Yong-Ki; Lee, Hae Won; Yoon, Young-Ran

    2012-01-01

    Bo-yang-hwan-o-tang (BHT) is an oriental herbal medicine for treating brain disorders such as cerebral ischemia. The objective of this study was to develop an economically feasible and time-saving high-throughput screening method to monitor the potential inhibitory effects of BHT on human cytochrome P450 (CYP) enzymes in vitro. Two cocktail sets were used for incubation of human liver microsomes: Cocktail A: 6 probe substrates for CYP1A2, CYP2A6, CYP2C8, CYP2C19, CYP2D6, CYP3A4; Cocktail B: 3 for CYP2B6, CYP2C9, CYP2E1. The concentrations of the substrate metabolites were simultaneously analyzed using UPLC/MS/MS. The BHT extract had almost negligible inhibitory effects on the nine human CYP isoforms tested, with the half-maximal inhibitory concentration value ranged from 3624.99 to 45412.44 μg/ml. The results suggest that BHT extract has no inhibitory effects on CYP isoforms within the clinically recommended dosage range. We conclude that BHT might be free of drug-herb interactions when co-administered with other medicines. However, more in vivo human studies are needed to confirm these results. The high-throughput screening method can be a useful tool for drug discovery and for understanding drug interactions.

  5. Redox-controlled backbone dynamics of human cytochrome c revealed by {sup 15}N NMR relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Koichi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kamiya, Masakatsu [Graduate School of Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Uchida, Takeshi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kawano, Keiichi [Graduate School of Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Ishimori, Koichiro, E-mail: koichiro@sci.hokudai.ac.jp [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2010-07-23

    Research highlights: {yields} The dynamic parameters for the backbone dynamics in Cyt c were determined. {yields} The backbone mobility of Cyt c is highly restricted due to the covalently bound heme. {yields} The backbone mobility of Cyt c is more restricted upon the oxidation of the heme. {yields} The redox-dependent dynamics are shown in the backbone of Cyt c. {yields} The backbone dynamics of Cyt c would regulate the electron transfer from Cyt c. -- Abstract: Redox-controlled backbone dynamics in cytochrome c (Cyt c) were revealed by 2D {sup 15}N NMR relaxation experiments. {sup 15}N T{sub 1} and T{sub 2} values and {sup 1}H-{sup 15}N NOEs of uniformly {sup 15}N-labeled reduced and oxidized Cyt c were measured, and the generalized order parameters (S{sup 2}), the effective correlation time for internal motion ({tau}{sub e}), the {sup 15}N exchange broadening contributions (R{sub ex}) for each residue, and the overall correlation time ({tau}{sub m}) were estimated by model-free dynamics formalism. These dynamic parameters clearly showed that the backbone dynamics of Cyt c are highly restricted due to the covalently bound heme that functions as the stable hydrophobic core. Upon oxidation of the heme iron in Cyt c, the average S{sup 2} value was increased from 0.88 {+-} 0.01 to 0.92 {+-} 0.01, demonstrating that the mobility of the backbone is further restricted in the oxidized form. Such increases in the S{sup 2} values were more prominent in the loop regions, including amino acid residues near the thioether bonds to the heme moiety and positively charged region around Lys87. Both of the regions are supposed to form the interaction site for cytochrome c oxidase (CcO) and the electron pathway from Cyt c to CcO. The redox-dependent mobility of the backbone in the interaction site for the electron transfer to CcO suggests an electron transfer mechanism regulated by the backbone dynamics in the Cyt c-CcO system.

  6. Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by human liver microsomes: identification of cytochrome P450 2B6 as the major enzyme involved.

    Science.gov (United States)

    Erratico, Claudio A; Szeitz, András; Bandiera, Stelvio M

    2013-05-20

    Polybrominated diphenyl ethers (PBDEs) were widely used flame retardants that have become persistent environmental pollutants. In the present study, we investigated the in vitro oxidative metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a major PBDE detected in human tissue and environmental samples. Biotransformation of BDE-47 by pooled and individual human liver microsomes and by human recombinant cytochrome P450 (P450) enzymes was assessed using a liquid chromatography/tandem mass spectrometry-based method. Of the nine hydroxylated metabolites of BDE-47 produced by human liver microsomes, seven metabolites were identified using authentic standards. A monohydroxy-tetrabrominated and a dihydroxy-tetrabrominated metabolite remain unidentified. Kinetic analysis of the rates of metabolite formation revealed that the major metabolites were 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE-47), 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47), and possibly the unidentified monohydroxy-tetrabrominated metabolite. Among the human recombinant P450 enzymes tested, P450 2B6 was the most active enzyme in the formation of the hydroxylated metabolites of BDE-47. Moreover, the formation of all metabolites of BDE-47 by pooled human liver microsomes was inhibited by a P450 2B6-specific antibody and was highly correlated with P450 2B6-mediated activity in single donor liver microsomes indicating that P450 2B6 was the major P450 responsible for the biotransformation of BDE-47. Additional experiments involving the incubation of liver microsomes with individual monohydroxy-tetrabrominated metabolites in place of BDE-47 demonstrated that 2,4-dibromophenol was a product of BDE-47 and several primary metabolites, but the dihydroxy-tetrabrominated metabolite was not formed by sequential hydroxylation of any of the monohydroxy-tetrabrominated metabolites tested. The present study provides a comprehensive characterization of the oxidative metabolism of BDE-47 by

  7. Metabolism of the major Echinacea alkylamide N-isobutyldodeca-2E,4E,8Z,10Z-tetraenamide by human recombinant cytochrome P450 enzymes and human liver microsomes.

    Science.gov (United States)

    Toselli, F; Matthias, A; Bone, K M; Gillam, E M J; Lehmann, R P

    2010-08-01

    Echinacea preparations are used for the treatment and prevention of upper respiratory tract infections. The phytochemicals believed responsible for the immunomodulatory properties are the alkylamides found in ethanolic extracts, with one of the most abundant being the N-isobutyldodeca-2E,4E,8Z,10Z-tetraenamide (1). In this study, we evaluated the human cytochrome P450 enzymes involved in the metabolism of this alkylamide using recombinant P450s, human liver microsomes and pure synthetic compound. Epoxidation, N-dealkylation and hydroxylation products were detected, with different relative amounts produced by recombinant P450s and microsomes. The major forms showing activity toward the metabolism of 1 were CYP1A1, CYP1A2 (both producing the same epoxide and N-dealkylation product), CYP2A13 (producing two epoxides), and CYP2D6 (producing two epoxides and an hydroxylated metabolite). Several other forms showed less activity. In incubations with human liver microsomes and selective inhibitors, CYP2E1 was found to be principally responsible for producing the dominant, hydroxylation product, whereas CYP2C9 was the principal source of the epoxides and CYP1A2 was responsible for the dealkylation product. In summary, in this study the relative impacts of the main human xenobiotic-metabolizing cytochrome P450s on the metabolism of a major Echinacea alkylamide have been established and the metabolites formed have been identified.

  8. A mutation in the FAM36A gene, the human ortholog of COX20, impairs cytochrome c oxidase assembly and is associated with ataxia and muscle hypotonia.

    Science.gov (United States)

    Szklarczyk, Radek; Wanschers, Bas F J; Nijtmans, Leo G; Rodenburg, Richard J; Zschocke, Johannes; Dikow, Nicola; van den Brand, Mariël A M; Hendriks-Franssen, Marthe G M; Gilissen, Christian; Veltman, Joris A; Nooteboom, Marco; Koopman, Werner J H; Willems, Peter H G M; Smeitink, Jan A M; Huynen, Martijn A; van den Heuvel, Lambertus P

    2013-02-15

    The mitochondrial respiratory chain complex IV (cytochrome c oxidase) is a multi-subunit enzyme that transfers electrons from cytochrome c to molecular oxygen, yielding water. Its biogenesis requires concerted expression of mitochondria- and nuclear-encoded subunits and assembly factors. In this report, we describe a homozygous missense mutation in FAM36A from a patient who displays ataxia and muscle hypotonia. The FAM36A gene is a remote, putative ortholog of the fungal complex IV assembly factor COX20. Messenger RNA (mRNA) and protein co-expression analyses support the involvement of FAM36A in complex IV function in mammals. The c.154A>C mutation in the FAM36A gene, a mutation that is absent in sequenced exomes, leads to a reduced activity and lower levels of complex IV and its protein subunits. The FAM36A protein is nearly absent in patient's fibroblasts. Cells affected by the mutation accumulate subassemblies of complex IV that contain COX1 but are almost devoid of COX2 protein. We observe co-purification of FAM36A and COX2 proteins, supporting that the FAM36A defect hampers the early step of complex IV assembly at the incorporation of the COX2 subunit. Lentiviral complementation of patient's fibroblasts with wild-type FAM36A increases the complex IV activity as well as the amount of holocomplex IV and of individual subunits. These results establish the function of the human gene FAM36A/COX20 in complex IV assembly and support a causal role of the gene in complex IV deficiency.

  9. Multiple luteinizing hormone receptor (LHR protein variants, interspecies reactivity of anti-LHR mAb clone 3B5, subcellular localization of LHR in human placenta, pelvic floor and brain, and possible role for LHR in the development of abnormal pregnancy, pelvic floor disorders and Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Fernando Romaine I

    2003-06-01

    Full Text Available Abstract Distinct luteinizing hormone receptor (LHR protein variants exist due to the posttranslational modifications. Besides ovaries, LHR immunoreactivity (LHRI was also found in other tissues, such as the brain, fallopian tube, endometrium, trophoblast and resident tissue macrophages. The 3B5 mouse monoclonal antibody was raised against purified rat LHR. In rat, porcine and human ovaries, the 3B5 identified six distinct LHR bands migrating at ~92, 80, 68, 59, 52 and 48 kDa. Characteristic LHRI was detected in rat, human and porcine corpora lutea. During cellular differentiation, subcellular LHR distribution changed from none to granular cytoplasmic, perinuclear, surface, nuclear and no staining. There were also differences in vascular LHR expression – lack of LHRI in ovarian vessels and strong staining of vessels in other tissues investigated. In normal human term placentae, villous LHRI was associated with blood sinusoids and cytotrophoblast cells, and rarely detected in trophoblastic syncytium. In all abnormal placentae, the LHRI of sinusoids was absent, and syncytium showed either enhanced (immature placental phenotypes or no LHRI (aged placental phenotype. LHRI in human brain was identified in microglial cells (CD68+ resident macrophages. Protein extracts from human vaginal wall and levator ani muscle and fascia showed strong ~92 and 68 kDa species, and LHRI was detected in smooth muscle cells, fibroblasts, resident macrophages and nuclei of skeletal muscle fibers. Our observations indicate that, in contrast to the theory on the role of vascular hormone receptors in preferential pick up of circulating hormones, there is no need to enhance selective pick up rather only prevent LH/CG transport to inappropriate sites. Abnormal placental LHR expression may play a role in the development of abnormal pregnancy. Expression of LHR in the pelvic floor compartments suggests that high LH levels in postmenopausal women may contribute to the pelvic

  10. Multiple luteinizing hormone receptor (LHR) protein variants, interspecies reactivity of anti-LHR mAb clone 3B5, subcellular localization of LHR in human placenta, pelvic floor and brain, and possible role for LHR in the development of abnormal pregnancy, pelvic floor disorders and Alzheimer's disease.

    Science.gov (United States)

    Bukovsky, Antonin; Indrapichate, Korakod; Fujiwara, Hiroshi; Cekanova, Maria; Ayala, Maria E; Dominguez, Roberto; Caudle, Michael R; Wimalsena, Jay; Elder, Robert F; Copas, Pleas; Foster, James S; Fernando, Romaine I; Henley, Donald C; Upadhyaya, Nirmala B

    2003-06-03

    Distinct luteinizing hormone receptor (LHR) protein variants exist due to the posttranslational modifications. Besides ovaries, LHR immunoreactivity (LHRI) was also found in other tissues, such as the brain, fallopian tube, endometrium, trophoblast and resident tissue macrophages. The 3B5 mouse monoclonal antibody was raised against purified rat LHR. In rat, porcine and human ovaries, the 3B5 identified six distinct LHR bands migrating at approximately 92, 80, 68, 59, 52 and 48 kDa. Characteristic LHRI was detected in rat, human and porcine corpora lutea. During cellular differentiation, subcellular LHR distribution changed from none to granular cytoplasmic, perinuclear, surface, nuclear and no staining. There were also differences in vascular LHR expression--lack of LHRI in ovarian vessels and strong staining of vessels in other tissues investigated. In normal human term placentae, villous LHRI was associated with blood sinusoids and cytotrophoblast cells, and rarely detected in trophoblastic syncytium. In all abnormal placentae, the LHRI of sinusoids was absent, and syncytium showed either enhanced (immature placental phenotypes) or no LHRI (aged placental phenotype). LHRI in human brain was identified in microglial cells (CD68+ resident macrophages). Protein extracts from human vaginal wall and levator ani muscle and fascia showed strong approximately 92 and 68 kDa species, and LHRI was detected in smooth muscle cells, fibroblasts, resident macrophages and nuclei of skeletal muscle fibers. Our observations indicate that, in contrast to the theory on the role of vascular hormone receptors in preferential pick up of circulating hormones, there is no need to enhance selective pick up rather only prevent LH/CG transport to inappropriate sites. Abnormal placental LHR expression may play a role in the development of abnormal pregnancy. Expression of LHR in the pelvic floor compartments suggests that high LH levels in postmenopausal women may contribute to the pelvic

  11. In vitro metabolism of a novel PPAR gamma agonist, KR-62980, and its stereoisomer, KR-63198, in human liver microsomes and by recombinant cytochrome P450s.

    Science.gov (United States)

    Kim, K-B; Seo, K-A; Yoon, Y-J; Bae, M-A; Cheon, H G; Shin, J-G; Liu, K-H

    2008-09-01

    1. KR-62980 and its stereoisomer KR-63198 are novel and selective peroxisome proliferator-activated receptor gamma (PPAR gamma) modulators with activity profiles different from that of rosiglitazone. This study was performed to identify the major metabolic pathways for KR-62980 and KR-63198 in human liver microsomes. 2. Human liver microsomal incubation of KR-62980 and KR-63198 in the presence of a beta-nicotinamide adenine dinucleotide phosphate (NADPH)-generating system resulted in hydroxy metabolite formation. In addition, the specific cytochrome P450s (CYPs) responsible for KR-62980 and KR-63198 hydroxylation were identified by using a combination of chemical inhibition in human liver microsomes and metabolism by recombinant P450s. It is shown that CYP1A2, CYP2D6, CYP3A4, and CYP3A5 are the predominant enzymes in the hydroxylation of KR-62980 and KR-63198. 3. The intrinsic clearance through hydroxylation was consistently and significantly higher for KR-62980 than for KR-63198, indicating metabolic stereoselectivity (CL(int) of 0.012 +/- 0.001 versus 0.004 +/- 0.001 microl min(-1) pmol(-1) P450, respectively). 4. In a drug-drug interaction study, KR-62980 and KR-63198 had no effect on the activities of the P450s tested (IC(50) > 50 microM), suggesting that in clinical interactions between KR-62980 and KR-63198 the P450s tested would not be expected.

  12. Optical isomers of dihydropyridine calcium channel blockers display enantiospecific effects on the expression and enzyme activities of human xenobiotics-metabolizing cytochromes P450.

    Science.gov (United States)

    Štěpánková, Martina; Krasulová, Kristýna; Dořičáková, Aneta; Kurka, Ondřej; Anzenbacher, Pavel; Dvořák, Zdeněk

    2016-11-16

    Dihydropyridine calcium channel blockers (CCBs) are used as anti-hypertensives and in the treatment of angina pectoris. Structurally, CCBs have at least one chiral center in the molecule, thereby existing in two or more different enantiomers. In the current paper we examined effects of benidipine, felodipine and isradipine enantiomers on the expression and enzyme activities of human xenobiotics-metabolizing cytochromes P450. All CCBs dose-dependently activated aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR), as revealed by gene reporter assays. Activation of AhR, but not PXR, was enantiospecific. Consistently, CCBs induced CYP1A1 and CYP1A2 mRNAs, but not protein, in human hepatocytes and HepG2 cells, with following pattern: benidipine (-)>(+), isradipine (-)>(+) and felodipine (+)>(-). All CCBs induced CYP2A6, CYP2B6 and CYP3A4 mRNA and protein in human hepatocytes, and there were not differences between the enantiomers. All CCBs transformed AhR in its DNA-binding form, as revealed by electromobility shift assay. Tested CCBs inhibited enzyme activities of CYP3A4 (benidipine (+)>(-); felodipine (-)>(+); isradipine (-)-(+)) and CYP2C9 (benidipine (-)>(+); felodipine (+)>(-); isradipine (-)>(+)). The data presented here might be of toxicological and clinical importance.

  13. Grape seed extract induces apoptotic death of human prostate carcinoma DU145 cells via caspases activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release.

    Science.gov (United States)

    Agarwal, Chapla; Singh, Rana P; Agarwal, Rajesh

    2002-11-01

    Grape seed extract (GSE), rich in the bioflavonoids commonly known as procyanidins, is one of the most commonly consumed dietary supplements in the United States because of its several health benefits. Epidemiological studies show that many prostate cancer (PCA) patients use herbal extracts as dietary supplements in addition to their prescription drugs. Accordingly, in recent years, we have focused our attention on assessing the efficacy of GSE against PCA. Our studies showed that GSE inhibits growth and induces apoptotic death of human PCA cells in culture and in nude mice. Here, we performed detailed studies to define the molecular mechanism of GSE-induced apoptosis in advanced human PCA DU145 cells. GSE treatment of cells at various doses (50-200 micro g/ml) for 12-72 h resulted in a moderate to strong apoptotic death in a dose- and time-dependent manner. In the studies assessing the apoptotic-signaling pathway induced by GSE, we observed an increase in cleaved fragments of caspases 3, 7 and 9 as well as PARP in GSE-treated cells after 48 and 72 h of treatment. Pre-treatment of cells with general caspases inhibitor, z-Val-Ala-Asp(OMe)-FMK or caspase 3-like proteases inhibitor [z-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-FMK], almost completely (approximately 90%) inhibited the GSE-induced apoptotic cell death. In a later case, GSE-induced caspase-3 activity was completely inhibited. Selective caspase 9 inhibitor [z-Leu-Glu(OMe)-His-Asp(OMe)-FMK] showed only partial inhibition of GSE-induced apoptosis whereas GSE-induced protease activity of caspase 9 was completely inhibited. Upstream of caspase cascade, GSE showed disappearance of mitochondrial membrane potential and an increase in cytochrome c release in cytosol. Together, these results suggest that GSE possibly causes mitochondrial damage leading to cytochrome c release in cytosol and activation of caspases resulting in PARP cleavage and execution of apoptotic death of human PCA DU145 cells. Furthermore, GSE

  14. Arecoline inhibits the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytochrome P450 1A1 activation in human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eddy Essen [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Miao Zhifeng [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Lee, W.-J. [Dept. of Environmental Engineering, National Cheng Kung Univ., Tainan 701, Taiwan (China)]|[Sustainable Environment Research Center, National Cheng Kung Univ., Tainan 701, Taiwan (China); Chao, H.-R. [Dept. of Environmental Science and Engineering, National Pingtung Univ. of Science and Technology, Pingtung 912, Taiwan (China); Li, Lih-Ann [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Wang, Y.-F. [Dept. of Chemical Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China); Ko, Y.-C. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China)]|[Dept. of Public Health, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Tsai, F.-Y. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Yeh, S.C. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Tsou, T.-C. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China)]. E-mail: tctsou@nhri.org.tw

    2007-07-19

    In the present study, we investigated the effect of arecoline, a major areca nut alkaloid, on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of cytochrome P4501A1 (CYP1A1) in a human hepatoma cell line Huh-7. We treated Huh-7 cells with 10 nM TCDD in the presence of different concentrations of arecoline (50-300 {mu}M). Our results indicated that arecoline attenuated the TCDD-induced CYP1A1 enzyme activation with an inhibitory effect on cell proliferation. By using real-time RT-PCR, we demonstrated that arecoline inhibited the TCDD-induced activations of CYP1A1 and AhR repressor (AhRR) mRNA expression in a similar pattern. Our results revealed that arecoline inhibited AhR mRNA expression with no direct effect on CYP1A1 enzyme activity. Therefore, in our present study, the observed inhibitory effect of arecoline on CYP1A1 activation was not due to the up-regulation of AhRR or direct inhibitory effect on CYP1A1. Taken together, here we have demonstrated that arecoline attenuates the TCDD-induced CYP1A1 activation mainly via down-regulation of AhR expression in human hepatoma cells, suggesting the possible involvement of arecoline in the AhR-mediated metabolism of environmental toxicants in liver.

  15. Influences of 3-methylcholanthrene, phenobarbital and dexamethasone on xenobiotic metabolizing-related cytochrome P450 enzymes and steroidogenesis in human fetal adrenal cortical cells

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Min HUANG; Ren-xiu PENG; Jiang LE

    2006-01-01

    Aim: To explore the influence and possible mechanism of xenobiotics on adrenal steroidogenesis during fetal development. Methods: Primary human fetal adrenal cortical cells were prepared, cultured and treated with 3-methylcholanthrene, phenobarbital and dexamethasone. The activities of 7-ethoxyresorufin 0-dealkylase, benzphetamine, aminopyrine and erythromycin N-demethylases were measured by enzyme assays. At the same time, quantitative analysis of steroid hormones cortisol, aldosterone, testosterone and progesterone were carried out in cultural medium by radioimmunoassays. Results: The activities of benzphetamine and aminopyrine Ar-demethylase were increased in the cultural fetal adrenal cells treated with phenobarbital (0.25-1 mmol/L) for 24 h. Dexamethasone (25-100 μmol/L) also increased the activity of erythromycin W-demethylase. The activity of 7-ethoxyresorufin 0-dealkylase was undetected in the cells treated without and with 3-methylcholanthrene (0.5-2 μmol/L). Meanwhile, the contents of medium cortisol, aldosterone and progesterone were decreased after treatment with 3-methylcholanthrene. Cortisol, aldosterone and progesterone concentrations were also slightly decreased with phenobarbital. Dexamethasone enhanced the productions of cortisol and progesterone remarkably. The trend of testosterone concentration was uncertain after 3-methylcholanthrene, phenobarbital or dexamethasone treatment. Conclusion: 3-Methylcholanthrene, phenobarbital or dexamethasone could interfere with the synthesis of cortisol, aldosterone and progesterone in primary human fetal adrenal cortical cells, which likely act through xenobiotic metabolizing-related cytochrome P450 isoform activation.

  16. Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator

    DEFF Research Database (Denmark)

    Jornil, Jakob; Jensen, Klaus Gjervig; Larsen, Frank

    2010-01-01

    the importance of the identified paroxetine-metabolizing P450 isoforms for human metabolism, taking mechanism-based inhibition into account. The amount of active hepatic CYP2D6 and CYP3A4 (not inactivated by mechanism-based inhibition) was also estimated by Simcyp. For extensive and poor metabolizers of CYP2D6......We identify here for the first time the low-affinity cytochrome P450 (P450) isoforms that metabolize paroxetine, using cDNA-expressed human P450s measuring substrate depletion and paroxetine-catechol (product) formation by liquid chromatography-tandem mass spectrometry. CYP1A2, CYP2C19, CYP2D6, CYP......3A4, and CYP3A5 were identified as paroxetine-catechol-forming P450 isoforms, and CYP2C19 and CYP2D6 were identified as metabolizing P450 isoforms by substrate depletion. Michaelis-Menten constants K(m) and V(max) were determined by product formation and substrate depletion. Using selective...

  17. Arecoline inhibits the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytochrome P450 1A1 activation in human hepatoma cells.

    Science.gov (United States)

    Chang, Eddy Essen; Miao, Zhi-Feng; Lee, Wen-Jhy; Chao, How-Ran; Li, Lih-Ann; Wang, Ya-Fen; Ko, Ying-Chin; Tsai, Feng-Yuan; Yeh, Szu Ching; Tsou, Tsui-Chun

    2007-07-19

    In the present study, we investigated the effect of arecoline, a major areca nut alkaloid, on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of cytochrome P4501A1 (CYP1A1) in a human hepatoma cell line Huh-7. We treated Huh-7 cells with 10nM TCDD in the presence of different concentrations of arecoline (50-300 microM). Our results indicated that arecoline attenuated the TCDD-induced CYP1A1 enzyme activation with an inhibitory effect on cell proliferation. By using real-time RT-PCR, we demonstrated that arecoline inhibited the TCDD-induced activations of CYP1A1 and AhR repressor (AhRR) mRNA expression in a similar pattern. Our results revealed that arecoline inhibited AhR mRNA expression with no direct effect on CYP1A1 enzyme activity. Therefore, in our present study, the observed inhibitory effect of arecoline on CYP1A1 activation was not due to the up-regulation of AhRR or direct inhibitory effect on CYP1A1. Taken together, here we have demonstrated that arecoline attenuates the TCDD-induced CYP1A1 activation mainly via down-regulation of AhR expression in human hepatoma cells, suggesting the possible involvement of arecoline in the AhR-mediated metabolism of environmental toxicants in liver.

  18. The basel cocktail for simultaneous phenotyping of human cytochrome P450 isoforms in plasma, saliva and dried blood spots.

    Science.gov (United States)

    Donzelli, Massimiliano; Derungs, Adrian; Serratore, Maria-Giovanna; Noppen, Christoph; Nezic, Lana; Krähenbühl, Stephan; Haschke, Manuel

    2014-03-01

    Phenotyping cocktails use a combination of cytochrome P450 (CYP)-specific probe drugs to simultaneously assess the activity of different CYP isoforms. To improve the clinical applicability of CYP phenotyping, the main objectives of this study were to develop a new cocktail based on probe drugs that are widely used in clinical practice and to test whether alternative sampling methods such as collection of dried blood spots (DBS) or saliva could be used to simplify the sampling process. In a randomized crossover study, a new combination of commercially available probe drugs (the Basel cocktail) was tested for simultaneous phenotyping of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. Sixteen subjects received low doses of caffeine, efavirenz, losartan, omeprazole, metoprolol and midazolam in different combinations. All subjects were genotyped, and full pharmacokinetic profiles of the probe drugs and their main metabolites were determined in plasma, dried blood spots and saliva samples. The Basel cocktail was well tolerated, and bioequivalence tests showed no evidence of mutual interactions between the probe drugs. In plasma, single timepoint metabolic ratios at 2 h (for CYP2C19 and CYP3A4) or at 8 h (for the other isoforms) after dosing showed high correlations with corresponding area under the concentration-time curve (AUC) ratios (AUC0-24h parent/AUC0-24h metabolite) and are proposed as simple phenotyping metrics. Metabolic ratios in dried blood spots (for CYP1A2 and CYP2C19) or in saliva samples (for CYP1A2) were comparable to plasma ratios and offer the option of minimally invasive or non-invasive phenotyping of these isoforms. This new combination of phenotyping probe drugs can be used without mutual interactions. The proposed sampling timepoints have the potential to facilitate clinical application of phenotyping but require further validation in conditions of altered CYP activity. The use of DBS or saliva samples seems feasible for phenotyping of the

  19. Characterization of the Ala62Pro polymorphic variant of human cytochrome P450 1A1 using recombinant protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Heon; Kang, Sukmo [College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul (Korea, Republic of); Dong, Mi Sook [School of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Park, Jung-Duck [College of Medicine, Chung-Ang University, Seoul (Korea, Republic of); Park, Jinseo; Rhee, Sangkee [College of Agriculture of Life Science, Seoul National University, Seoul (Korea, Republic of); Ryu, Doug-Young, E-mail: dyryu@snu.ac.kr [College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul (Korea, Republic of)

    2015-06-15

    Cytochrome P450 (CYP) 1A1 is a heme-containing enzyme involved in detoxification of hydrophobic pollutants. Its Ala62Pro variant has been identified previously. Ala62 is located in α-helix A of CYP1A1. Residues such as Pro and Gly are α-helix breakers. In this study, the Ala62Pro variant was characterized using heterologous expression. E. coli expressing the Ala62Pro variant, and the purified variant protein, had lower CYP (i.e. holoenzyme) contents than their wild-type (WT) equivalents. The CYP variant from E. coli and mammalian cells exhibited lower 7-ethoxyresorufin O-dealkylation (EROD) and benzo[a]pyrene hydroxylation activities than the WT. Enhanced supplementation of a heme precursor during E. coli culture did not increase CYP content in E. coli expressing the variant, but did for the WT. As for Ala62Pro, E. coli expressing an Ala62Gly variant had a lower CYP content than the WT counterpart, but substitution of Ala62 with α-helix-compatible residues such as Ser and Val partially recovered the level of CYP produced. Microsomes from mammalian cells expressing Ala62Pro and Ala62Gly variants exhibited lower EROD activities than those expressing the WT or Ala62Val variant. A region harboring α-helix A has interactions with another region containing heme-interacting residues. Site-directed mutagenesis analyses suggest the importance of interactions between the two regions on holoenzyme expression. Together, these findings suggest that the Ala62Pro substitution leads to changes in protein characteristics and function of CYP1A1 via structural disturbance of the region where the residue is located. - Highlights: • Ala62 is located in α-helix A of the carcinogen-metabolizing enzyme CYP1A1. • Pro acts as an α-helix breaker. • A variant protein of CYP1A1, Ala62Pro, had lower heme content than the wild-type. • The variant of CYP1A1 had lower enzyme activities than the wild-type.

  20. Assessment of inhibitory effects on major human cytochrome P450 enzymes by spasmolytics used in the treatment of overactive bladder syndrome

    Science.gov (United States)

    Dahlinger, Dominik; Aslan, Sevinc; Pietsch, Markus; Frechen, Sebastian; Fuhr, Uwe

    2017-01-01

    Background: The objective of this study was to examine the inhibitory potential of darifenacin, fesoterodine, oxybutynin, propiverine, solifenacin, tolterodine and trospium chloride on the seven major human cytochrome P450 enzymes (CYP) by using a standardized and validated seven-in-one cytochrome P450 cocktail inhibition assay. Methods: An in vitro cocktail of seven highly selective probe substrates was incubated with human liver microsomes and varying concentrations of the seven test compounds. The major metabolites of the probe substrates were simultaneously analysed using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Enzyme kinetics were estimated by determining IC50 and Ki values via nonlinear regression. Obtained Ki values were used for predictions of potential clinical impact of the inhibition using a static mechanistic prediction model. Results: In this study, 49 IC50 experiments were conducted. In six cases, IC50 values lower than the calculated threshold for drug–drug interactions (DDIs) in the gut wall were observed. In these cases, no increase in inhibition was determined after a 30 min preincubation. Considering a typical dosing regimen and applying the obtained Ki values of 0.72 µM (darifenacin, 15 mg daily) and 7.2 µM [propiverine, 30 mg daily, immediate release (IR)] for the inhibition of CYP2D6 yielded a predicted 1.9-fold and 1.4-fold increase in the area under the curve (AUC) of debrisoquine (CYP2D6 substrate), respectively. Due to the inhibition of the particular intestinal CYP3A4, the obtained Ki values of 14 µM of propiverine (30 mg daily, IR) resulted in a predicted doubling of the AUC for midazolam (CYP3A4 substrate). Conclusions: In vitro/in vivo extrapolation based on pharmacokinetic data and the conducted screening experiments yielded similar effects of darifenacin on CYP2D6 and propiverine on CYP3A4 as obtained in separately conducted in vivo DDI studies. As a novel finding, propiverine was identified

  1. Assessment of inhibitory effects on major human cytochrome P450 enzymes by spasmolytics used in the treatment of overactive bladder syndrome.

    Science.gov (United States)

    Dahlinger, Dominik; Aslan, Sevinc; Pietsch, Markus; Frechen, Sebastian; Fuhr, Uwe

    2017-07-01

    The objective of this study was to examine the inhibitory potential of darifenacin, fesoterodine, oxybutynin, propiverine, solifenacin, tolterodine and trospium chloride on the seven major human cytochrome P450 enzymes (CYP) by using a standardized and validated seven-in-one cytochrome P450 cocktail inhibition assay. An in vitro cocktail of seven highly selective probe substrates was incubated with human liver microsomes and varying concentrations of the seven test compounds. The major metabolites of the probe substrates were simultaneously analysed using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Enzyme kinetics were estimated by determining IC50 and Ki values via nonlinear regression. Obtained Ki values were used for predictions of potential clinical impact of the inhibition using a static mechanistic prediction model. In this study, 49 IC50 experiments were conducted. In six cases, IC50 values lower than the calculated threshold for drug-drug interactions (DDIs) in the gut wall were observed. In these cases, no increase in inhibition was determined after a 30 min preincubation. Considering a typical dosing regimen and applying the obtained Ki values of 0.72 µM (darifenacin, 15 mg daily) and 7.2 µM [propiverine, 30 mg daily, immediate release (IR)] for the inhibition of CYP2D6 yielded a predicted 1.9-fold and 1.4-fold increase in the area under the curve (AUC) of debrisoquine (CYP2D6 substrate), respectively. Due to the inhibition of the particular intestinal CYP3A4, the obtained Ki values of 14 µM of propiverine (30 mg daily, IR) resulted in a predicted doubling of the AUC for midazolam (CYP3A4 substrate). In vitro/in vivo extrapolation based on pharmacokinetic data and the conducted screening experiments yielded similar effects of darifenacin on CYP2D6 and propiverine on CYP3A4 as obtained in separately conducted in vivo DDI studies. As a novel finding, propiverine was identified to potentially inhibit CYP2D6 at clinically

  2. Membrane-bound human orphan cytochrome P450 2U1: Sequence singularities, construction of a full 3D model, and substrate docking.

    Science.gov (United States)

    Ducassou, Lionel; Dhers, Laura; Jonasson, Gabriella; Pietrancosta, Nicolas; Boucher, Jean-Luc; Mansuy, Daniel; André, François

    2017-09-01

    Human cytochrome P450 2U1 (CYP2U1) is an orphan CYP that exhibits several distinctive characteristics among the 57 human CYPs with a highly conserved sequence in almost all living organisms. We compared its protein sequence with those of the 57 human CYPs and constructed a 3D structure of a full-length CYP2U1 model bound to a POPC membrane. We also performed docking experiments of arachidonic acid (AA) and N-arachidonoylserotonin (AS) in this model. The protein sequence of CYP2U1 displayed two unique characteristics when compared to those of the human CYPs, the presence of a longer N-terminal region upstream of the putative trans-membrane helix (TMH) containing 8 proline residues, and of an insert of about 20 amino acids containing 5 arginine residues between helices A' and A. Its N-terminal part upstream of TMH involved an additional short terminal helix, in a manner similar to what was reported in the crystal structure of Saccharomyces cerevisiae CYP51. Our model also showed a specific interaction between the charged residues of insert AA' and phosphate groups of lipid polar heads, suggesting a possible role of this insert in substrate recruitment. Docking of AA and AS in this model showed these substrates in channel 2ac, with the terminal alkyl chain of AA or the indole ring of AS close to the heme, in agreement with the reported CYP2U1-catalyzed AA and AS hydroxylation regioselectivities. This model should be useful to find new endogenous or exogenous CYP2U1 substrates and to interpret the regioselectivity of their hydroxylation. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Selective inhibition of cytochrome P450 2D6 by Sarpogrelate and its active metabolite, M-1, in human liver microsomes.

    Science.gov (United States)

    Cho, Doo-Yeoun; Bae, Soo Hyeon; Lee, Joeng Kee; Kim, Yang Weon; Kim, Bom-Taeck; Bae, Soo Kyung

    2014-01-01

    The present study was performed to evaluate the in vitro inhibitory potential of sarpogrelate and its active metabolite, M-1, on the activities of nine human cytochrome (CYP) isoforms. Using a cocktail assay, the effects of sarpogrelate on nine CYP isoforms and M-1 were measured by specific marker reactions in human liver microsomes. Sarpogrelate potently and selectively inhibited CYP2D6-mediated dextromethorphan O-demethylation with an IC50 (Ki) value of 3.05 μM (1.24 μM), in a competitive manner. M-1 also markedly inhibited CYP2D6 activity; its inhibitory effect with an IC50 (Ki) value of 0.201 μM (0.120 μM) was more potent than that of sarpogrelate, and was similarly potent as quinidine (Ki, 0.129 μM), a well-known typical CYP2D6 inhibitor. In addition, sarpogrelate and M-1 strongly inhibited both CYP2D6-catalyzed bufuralol 1'-hydroxylation and metoprolol α-hydroxylation activities. However, sarpogrelate and M-1 showed no apparent inhibition of the other following eight CYPs: CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2E1, or CYP3A4/5. Upon 30-minute preincubation of human liver microsomes with sarpogrelate or M-1 in the presence of NADPH, no obvious shift in IC50 was observed in terms of inhibition of the nine CYP activities, suggesting that sarpogrelate and M-1 are not time-dependent inactivators. Sarpogrelate strongly inhibited the activity of CYP2D6 at clinically relevant concentrations in human liver microsomes. These observations suggest that sarpogrelate could have an effect on the metabolic clearance of drugs possessing CYP2D6-catalyzed metabolism as a major clearance pathway, thereby eliciting pharmacokinetic drug-drug interactions.

  4. Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol and dextromethorphan.

    Science.gov (United States)

    Uehara, Shotaro; Uno, Yasuhiro; Hagihira, Yuya; Murayama, Norie; Shimizu, Makiko; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2015-01-01

    1. Although the New World non-human primate, the common marmoset (Callithrix jacchus), is a potentially useful animal model, comprehensive understanding of drug metabolizing enzymes is insufficient. 2. A cDNA encoding a novel cytochrome P450 (P450) 2D8 was identified in marmosets. The amino acid sequence deduced from P450 2D8 cDNA showed a high sequence identity (83-86%) with other primate P450 2Ds. Phylogenetic analysis showed that marmoset P450 2D8 was closely clustered with human P450 2D6, unlike P450 2Ds of miniature pig, dog, rabbit, guinea pig, mouse or rat. 3. Marmoset P450 2D8 mRNA was predominantly expressed in the liver and small intestine among the tissues types analyzed, whereas marmoset P450 2D6 mRNA was expressed predominantly in the liver where P450 2D protein was detected by immunoblotting. 4. By metabolic assays using marmoset P450 2D8 protein heterologously expressed in Escherichia coli, although P450 2D8 exhibits lower catalytic efficiency compared to marmoset and human P450 2D6 enzymes, P450 2D8 mediated O-demethylations of metoprolol and dextromethorphan and bufuralol 1'-hydroxylation. 5. These results suggest that marmoset P450 2D8 (also expressed in the extrahepatic tissues) has potential roles in drug metabolism in a similar manner to those of human and marmoset P450 2D6.

  5. Gomisin A is a Novel Isoform-Specific Probe for the Selective Sensing of Human Cytochrome P450 3A4 in Liver Microsomes and Living Cells.

    Science.gov (United States)

    Wu, Jing-Jing; Ge, Guang-Bo; He, Yu-Qi; Wang, Ping; Dai, Zi-Ru; Ning, Jing; Hu, Liang-Hai; Yang, Ling

    2016-01-01

    Nearly half of prescription medicines are metabolized by human cytochrome P450 (CYP) 3A. CYP3A4 and 3A5 are two major isoforms of human CYP3A and share most of the substrate spectrum. A very limited previous study distinguished the activity of CYP3A4 and CYP3A5, identifying the challenge in predicting CYP3A-mediated drug clearance and drug-drug interaction. In the present study, we introduced gomisin A (GA) with a dibenzocyclooctadiene skeleton as a novel selective probe of CYP3A4. The major metabolite of GA was fully characterized as 8-hydroxylated GA by LC-MS and NMR. CYP3A4 was assigned as the predominant isozyme involved in GA 8-hydroxylation by reaction phenotyping assays, chemical inhibition assays, and correlation studies. GA 8-hydroxylation in both recombinant human CYP3A4 and human liver microsomes followed classic Michaelis-Menten kinetics. The intrinsic clearance values indicated that CYP3A4 contributed 12.8-fold more than CYP3A5 to GA 8-hydroxylation. Molecular docking studies indicated different hydrogen bonds and π-π interactions between CYP3A4 and CYP3A5, which might result in the different catalytic activity for GA 8-hydroxylation. Furthermore, GA exhibited a stronger inhibitory activity towards CYP3A4 than CYP3A5, which further suggested a preferred selectivity of CYP3A4 for the transformation of GA. More importantly, GA has been successfully applied to selectively monitor the modulation of CYP3A4 activities by the inducer rifampin in hepG2 cells, which is consistent with the level change of CYP3A4 mRNA expression. In summary, our results suggested that GA could be used as a novel probe for the selective sensing of CYP3A4 in tissue and cell preparations.

  6. Establishment of a transgenic cell line stably expressing human cytochrome P450 2C18 and identification of a CYP2C18 clone with exon 5 missing

    Institute of Scientific and Technical Information of China (English)

    Jian Zhu-Ge; Ying-Nian Yu; Yu-Li Qian; Xin Li

    2002-01-01

    AIM: The human cytochrome P-450 2C18(CYP2C18) hasbeen characterized. However, the protein has not beenpurified from liver and very little is known regarding thespecific substrate of CYP2C18. In order to study its enzymaticactivity for drug metabolism, the CYP2C18cDNA was clonedand a stable CHL cell line expressing recombinant CYP 2C18was established.METHODS: The human CYP2C18cDNA was amplified withreverse transcription-polymerase chain reaction (RT-PCR)from total RNAs extracted from human liver and cloned intopGEM-T vector. The cDNA segment was identified by DNAsequencing and subcloned into a mammalian expressionvector pREP9. A transgenic cell line was established bytransfecting the recombinant plasmid of pREPg-CYP2C18toChinese hamster lung (CHL) cell. The enzyme activity ofCYP2C18 catalyzing oxidation of tolbutamide tohydroxytolbutamide in postmitochondrial supernant(Sg)fraction of the cell was determined by high performanceliquid chromatography(HPLC).RESULTS: The amino acid sequence predicted from thecloned cDNA segment was identical to that of reported byRomkes et al(GenBank accession number: M61856,J05326).The S9 fraction of the established cell line metabolizestolbutamide to hydroxytolbutamide. Tolbutamide hydroxylaseactivity was found to be 0.509±0.052 μmol.min-1.g-1 S9protein or 8.82±0.90 mol.min-1.mol-1 CYP, but wasundetectable in parental CHL cell. In addition, we haveidentified a CYP2C18cDNA clone with exon 5 missing.CONCLUSION: The cDNA of human CYP2C18 wassuccessfully cloned and a cell line, CHL-CYP2C18, efficientlyexpressing the protein of CYP2C18, was established. Aspliced variant of CYP2C18 with exon 5 missing was identifiedin the cloning process.

  7. In vitro metabolic clearance of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms

    Science.gov (United States)

    Species differences in the intrinsic clearance (CLint) and the enzymes involved in the metabolism of pyrethroid pesticides were examined in rat and human hepatic microsomes. The pyrethroids bifenthrin, S-bioallethrin, bioresmethrin, β-cyfluthrin, cypermethrin, cis-per...

  8. MicroRNA-125b-5p mimic inhibits acute liver failure

    Science.gov (United States)

    Yang, Dakai; Yuan, Qinggong; Balakrishnan, Asha; Bantel, Heike; Klusmann, Jan-Henning; Manns, Michael P.; Ott, Michael; Cantz, Tobias; Sharma, Amar Deep

    2016-01-01

    The lack of broad-spectrum anti-acute liver failure (ALF) therapeutic agents contributes to ALF-related mortality. MicroRNAs (miRNAs) are suggested to be potent serum biomarkers for ALF, but their functional and therapeutic relevance in ALF are unclear. Here we show an unbiased approach, using two complementary miRNA screens, to identify miRNAs that can attenuate ALF. We identify miR-125b-5p as a regulator of cell death that attenuates paracetamol-induced and FAS-induced toxicity in mouse and human hepatocytes. Importantly, administration of miR-125b-5p mimic in mouse liver prevents injury and improves survival in models of ALF. Functional studies show that miR-125b-5p ameliorates ALF by directly regulating kelch-like ECH-associated protein 1, in turn elevating expression of nuclear factor-E2-related factor 2, a known regulator in ALF. Collectively, our findings establish miR-125b-5p as an important regulator of paracetamol-induced and FAS-induced cell death. Thus, miR-125b-5p mimic may serve as a broad-spectrum therapeutic attenuator of cell death during ALF. PMID:27336362

  9. Glucuronidation of the oxidative cytochrome P450-mediated phenolic metabolites of the endocrine disruptor pesticide: methoxychlor by human hepatic UDP-glucuronosyl transferases.

    Science.gov (United States)

    Hazai, Eszter; Gagne, Peter V; Kupfer, David

    2004-07-01

    Methoxychlor, a currently used pesticide, is a proestrogen exhibiting estrogenic activity in mammals in vivo. Methoxychlor undergoes oxidative metabolism by cytochromes P450, yielding 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M) and 1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane (bis-OH-M) as main metabolites. Since humans may be exposed to these estrogenic metabolites, which are potential substrates of UDP-glucuronosyltransferases (UGTs), their glucuronide conjugation was investigated with human liver preparations and individual UGTs. Incubation of both mono-OH-M and bis-OH-M with human liver microsomes formed monoglucuronides. The structures of the glucuronides were identified by liquid chromatography/tandem mass spectometry. Examination of cDNA-expressed recombinant human hepatic UGTs revealed that several catalyze glucuronidation of both compounds. Among the cDNA-expressed UGT1A enzymes, UGT1A9 seemed to be the main catalyst of formation of mono-OH-M-glucuronide, whereas UGT1A3 seemed to be the most active in bis-OH-M-glucuronide formation. Furthermore, the chiral selectivity of mono-OH-M glucuronidation was examined. The results of the incubation of single enantiomers generally agreed with the chiral analyses of mono-OH-M derived from the glucuronidase digestion of the glucuronides of the racemic mono-OH-M. There was a relatively slight but consistent enantioselective preference of individual UGT1A1, UGT1A3, UGT1A9, and UGT2B15 enzymes for glucuronidation of the S- over the R-mono-OH-M, whereas in human liver microsomes differences were observed among donors in generating the respective R/S-mono-OH-M ratio. Since it was previously shown that human liver microsomes demethylate methoxychlor mainly into S-mono-OH-M, the observation that UGT1A isoforms preferentially glucuronidate the S-mono-OH-M suggests a suitable mechanism for eliminating this major enantiomer. This enantiomeric preference, however, is not extended to all samples of

  10. Development and validation of an enzyme-linked immunosorbent assay for the quantification of cytochrome 3A4 in human liver microsomes.

    Science.gov (United States)

    De Bock, Lies; Colin, Pieter; Boussery, Koen; Van Bocxlaer, Jan

    2012-09-15

    Little is known about the influence of hepatic pathologies on cytochrome P450 (CYP) mediated drug metabolism in children. The determination of the abundance of the different isoforms in pediatric microsomes may provide valuable information on the mechanisms of possible changes in activity. Until now, western blotting was mostly used for abundance measurements, but this technique only provides semi-quantitative data. Therefore, this study aimed to develop and validate an indirect ELISA for the quantification of the most important CYP isoform, CYP3A4, in human liver microsomes, using commercially available reagents. Samples, calibrators and validation samples were diluted to a final concentration of 10 μg microsomal protein/ml. A polyclonal antibody raised against the full length human protein was used as primary antibody; horseradish peroxidase conjugated secondary antibodies for detection. The assay was validated for sensitivity, working range and calibration, accuracy and precision. Amounts of CYP3A4 between 2 and 300 pmol/mg microsomal protein could be quantified with a 5-parameter logistics function with 1/x weighting factor. Coefficients of variation of intra and inter assay variability were between 9.54 and 13.98% (16.34% at LLOQ), and between 10.51 and 14.55% (19.44% at LLOQ), respectively. The relative error (%RE) varied between -5.96 and 6.68% (11.53% at LLOQ), and the total error between 11.93 and 21.23% (30.97% at LLOQ). The cross-reactivity of the method with human CYP2E1 showed to have no significant effect on the accuracy of the results. Successful analysis of five samples from an ongoing study demonstrated the usefulness of the method.

  11. Differences in the Epigenetic Regulation of Cytochrome P450 Genes between Human Embryonic Stem Cell-Derived Hepatocytes and Primary Hepatocytes.

    Science.gov (United States)

    Park, Han-Jin; Choi, Young-Jun; Kim, Ji Woo; Chun, Hang-Suk; Im, Ilkyun; Yoon, Seokjoo; Han, Yong-Mahn; Song, Chang-Woo; Kim, Hyemin

    2015-01-01

    Human pluripotent stem cell-derived hepatocytes have the potential to provide in vitro model systems for drug discovery and hepatotoxicity testing. However, these cells are currently unsuitable for drug toxicity and efficacy testing because of their limited expression of genes encoding drug-metabolizing enzymes, especially cytochrome P450 (CYP) enzymes. Transcript levels of major CYP genes were much lower in human embryonic stem cell-derived hepatocytes (hESC-Hep) than in human primary hepatocytes (hPH). To verify the mechanism underlying this reduced expression of CYP genes, including CYP1A1, CYP1A2, CYP1B1, CYP2D6, and CYP2E1, we investigated their epigenetic regulation in terms of DNA methylation and histone modifications in hESC-Hep and hPH. CpG islands of CYP genes were hypermethylated in hESC-Hep, whereas they had an open chromatin structure, as represented by hypomethylation of CpG sites and permissive histone modifications, in hPH. Inhibition of DNA methyltransferases (DNMTs) during hepatic maturation induced demethylation of the CpG sites of CYP1A1 and CYP1A2, leading to the up-regulation of their transcription. Combinatorial inhibition of DNMTs and histone deacetylases (HDACs) increased the transcript levels of CYP1A1, CYP1A2, CYP1B1, and CYP2D6. Our findings suggest that limited expression of CYP genes in hESC-Hep is modulated by epigenetic regulatory factors such as DNMTs and HDACs.

  12. Characterization of the structural determinants required for potent mechanism-based inhibition of human cytochrome P450 1A1 by cannabidiol.

    Science.gov (United States)

    Yamaori, Satoshi; Okushima, Yoshimi; Yamamoto, Ikuo; Watanabe, Kazuhito

    2014-05-25

    We previously demonstrated that cannabidiol (CBD) was a potent mechanism-based inhibitor of human cytochrome P450 1A1 (CYP1A1). However, the moiety of CBD that contributes to the potent mechanism-based inhibition of human CYP1A1 remains unknown. Thus, the effects of compounds structurally related to CBD on CYP1A1 activity were examined with recombinant human CYP1A1 in order to characterize the structural requirements for potent inactivation by CBD. When preincubated in the presence of NADPH for 20min, olivetol, which corresponds to the pentylresorcinol moiety of CBD, enhanced the inhibition of the 7-ethoxyresorufin O-deethylase activity of CYP1A1. In contrast, d-limonene, which corresponds to the terpene moiety of CBD, failed to inhibit CYP1A1 activity in a metabolism-dependent manner. Pentylbenzene, which lacks two free phenolic hydroxyl groups, also did not enhance CYP1A1 inhibition. On the other hand, preincubation of the CBD-2'-monomethyl ether (CBDM) and CBD-2',6'-dimethyl ether (CBDD) enhanced the inhibition of CYP1A1 activity. Inhibition by cannabidivarin (CBDV), which possessed a propyl side chain, was strongly potentiated by its preincubation. Orcinol, which has a methyl group, augmented CYP1A1 inhibition, whereas its derivative without an alkyl side chain, resorcinol, did not exhibit any metabolism-dependent inhibition. The preincubation of CBD-hydroxyquinone did not markedly enhance CYP1A1 inhibition. We further confirmed that olivetol, CBDM, CBDD, CBDV, and orcinol, as well as CBD (kinact=0.215min(-1)), inactivated CYP1A1 activity; their kinact values were 0.154, 0.0638, 0.0643, 0.226, and 0.0353min(-1), respectively. These results suggest that the methylresorcinol structure in CBD may have structurally important roles in the inactivation of CYP1A1.

  13. Effect of hepatitis C virus infection on the mRNA expression of drug transporters and cytochrome p450 enzymes in chimeric mice with humanized liver.

    Science.gov (United States)

    Kikuchi, Ryota; McCown, Matthew; Olson, Pamela; Tateno, Chise; Morikawa, Yoshio; Katoh, Yumiko; Bourdet, David L; Monshouwer, Mario; Fretland, Adrian J

    2010-11-01

    The expression of drug transporters and metabolizing enzymes is a primary determinant of drug disposition. Chimeric mice with humanized liver, including PXB mice, are an available model that is permissive to the in vivo infection of hepatitis C virus (HCV), thus being a promising tool for investigational studies in development of new antiviral molecules. To investigate the potential of HCV infection to alter the pharmacokinetics of small molecule antiviral therapeutic agents in PXB mice, we have comprehensively determined the mRNA expression profiles of human ATP-binding cassette (ABC) transporters, solute carrier (SLC) transporters, and cytochrome P450 (P450) enzymes in the livers of these mice under noninfected and HCV-infected conditions. Infection of PXB mice with HCV resulted in an increase in the mRNA expression levels of a series of interferon-stimulated genes in the liver. For the majority of genes involved in drug disposition, minor differences in the mRNA expression of ABC and SLC transporters as well as P450s between the noninfected and HCV-infected groups were observed. The exceptions were statistically significantly higher expression of multidrug resistance-associated protein 4 and organic anion-transporting polypeptide 2B1 and lower expression of organic cation transporter 1 and CYP2D6 in HCV-infected mice. Furthermore, the enzymatic activities of the major human P450s were, in general, comparable in the two experimental groups. These data suggest that the pharmacokinetic properties of small molecule antiviral therapies in HCV-infected PXB mice are likely to be similar to those in noninfected PXB mice. However, caution is needed in the translation of this relationship to HCV-infected patients as the PXB mouse model does not accurately reflect the pathology of patients with chronic HCV infection.

  14. Cytochrome P450 enzymes involved in the metabolic pathway of the histamine 2 (H2)-receptor antagonist roxatidine acetate by human liver microsomes.

    Science.gov (United States)

    Sasaki, M; Nakayama, M; Numazawa, S; Oguro, T; Honma, S; Iwamura, S; Tsukamoto, K; Yoshida, T

    2001-01-01

    Roxatidine acetate hydrochloride (ROX, 2-acetoxy-N-[3-[m-(1-piperidinylmethyl)phenoxy]propyl]acetamide hydrochloride, CAS 78273-80-0), a histamine 2 (H2)-receptor antagonist, has been clinically applied for the treatment of gastritis, gastric and duodenal ulcers. There is no report on the identification of the metabolic enzyme of M-1 (2-hydroxy-N-[3-[m-(1-piperidinylmethyl)phenoxy]propyl]acetamide), the pharmacologically active metabolite, in humans. In this study, the Cytochrome P450 (CYP or P450) enzymes which participate in the metabolism of ROX were identified using human liver microsomes and S9 fractions. M-1 was converted to M-4 (3-[m-(1-piperidinyl-methyl)phenoxy]propylamine) by the enzyme reaction with the S9 but not with microsomes. M-4 was further metabolized to M-5 (3-[m-(1-piperidinylmethyl)phenoxy]propanol) by microsomes. The metabolism was inhibited by coumarin and anti-CYP2A1 serum. (3-[m-(1-piperidinylmethyl)-phenoxy]propionic acid) and M-3 (m-(1-piperidinylmethyl) phenol) formation from M-5 were inhibited by quinidine and anti-CYP2D6 serum. Moreover, M-5 was converted to M-2 and M-3 by cDNA-expressed CYP2D6. In conclusion, this study shows that microsomal enzymes do not participate in the clearance of the active metabolite M-1, CYP2A6 primarily catalyzes M-5 formation from M-4, and CYP2D6 primarily catalyzes M-2 and M-3 formation from M-5 in humans.

  15. Differential expression of human cytochrome P450 enzymes from the CYP3A subfamily in the brains of alcoholic subjects and drug-free controls.

    Science.gov (United States)

    Booth Depaz, Iris M; Toselli, Francesca; Wilce, Peter A; Gillam, Elizabeth M J

    2013-06-01

    Cytochrome P450 enzymes are responsible for the metabolism of most commonly used drugs. Among these enzymes, CYP3A forms mediate the clearance of around 40-50% of drugs and may also play roles in the biotransformation of endogenous compounds. CYP3A forms are expressed both in the liver and extrahepatically. However, little is known about the expression of CYP3A proteins in specific regions of the human brain. In this study, form-selective antibodies raised to CYP3A4 and CYP3A5 were used to characterize the expression of these forms in the human brain. Both CYP3A4 and CYP3A5 immunoreactivity were found to varying extents in the microsomal fractions of cortex, hippocampus, basal ganglia, amygdala, and cerebellum. However, only CYP3A4 expression was observed in the mitochondrial fractions of these brain regions. N-terminal sequencing confirmed the principal antigen detected by the anti-CYP3A4 antibody in cortical microsomes to be CYP3A4. Immunohistochemical analysis revealed that CYP3A4 and CYP3A5 expression was primarily localized in the soma and axonal hillock of neurons and varied according to cell type and cell layer within brain regions. Finally, analysis of the frontal cortex of chronic alcohol abusers revealed elevated expression of CYP3A4 in microsomal but not mitochondrial fractions; CYP3A5 expression was unchanged. The site-specific expression of CYP3A4 and CYP3A5 in the human brain may have implications for the role of these enzymes in both normal brain physiology and the response to drugs.

  16. Clinical Exposure Boost Predictions by Integrating Cytochrome P450 3A4-Humanized Mouse Studies With PBPK Modeling.

    Science.gov (United States)

    Zhang, Jin; Heimbach, Tycho; Scheer, Nico; Barve, Avantika; Li, Wenkui; Lin, Wen; He, Handan

    2016-04-01

    NVS123 is a poorly water-soluble protease 56 inhibitor in clinical development. Data from in vitro hepatocyte studies suggested that NVS123 is mainly metabolized by CYP3A4. As a consequence of limited solubility, NVS123 therapeutic plasma exposures could not be achieved even with high doses and optimized formulations. One approach to overcome NVS123 developability issues was to increase plasma exposure by coadministrating it with an inhibitor of CYP3A4 such as ritonavir. A clinical boost effect was predicted by using physiologically based pharmacokinetic (PBPK) modeling. However, initial boost predictions lacked sufficient confidence because a key parameter, fraction of drug metabolized by CYP3A4 (fmCYP3A4), could not be estimated with accuracy on account of disconnects between in vitro and in vivo preclinical data. To accurately estimate fmCYP3A4 in human, an in vivo boost effect study was conducted using CYP3A4-humanized mouse model which showed a 33- to 56-fold exposure boost effect. Using a top-down approach, human fmCYP3A4 for NVS123 was estimated to be very high and included in the human PBPK modeling to support subsequent clinical study design. The combined use of the in vivo boost study in CYP3A4-humanized mouse model mice along with PBPK modeling accurately predicted the clinical outcome and identified a significant NVS123 exposure boost (∼42-fold increase) with ritonavir.

  17. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts.

    Science.gov (United States)

    Ding, Xinxin; Kaminsky, Laurence S

    2003-01-01

    Cytochrome P450 (CYP) enzymes in extrahepatic tissues often play a dominant role in target tissue metabolic activation of xenobiotic compounds. They may also determine drug efficacy and influence the tissue burden of foreign chemicals or bioavailability of therapeutic agents. This review focuses on xenobiotic-metabolizing CYPs of the human respiratory and gastrointestinal tracts, including the lung, trachea, nasal respiratory and olfactory mucosa, esophagus, stomach, small intestine, and colon. Many CYPs are expressed in one or more of these organs, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2S1, CYP3A4, CYP3A5, and CYP4B1. Of particular interest are the preferential expression of certain CYPs in the respiratory tract and the regional differences in CYP expression profile in different parts of the gastrointestinal tract. Current research activities on the characterization of CYP expression, function, and regulation in these tissues, as well as future research needs, are discussed.

  18. Regulation of human pregnane X receptor and its target gene cytochrome P450 3A4 by Chinese herbal compounds and a molecular docking study.

    Science.gov (United States)

    Liu, Ya-He; Mo, Sui-Lin; Bi, Hui-Chang; Hu, Bing-Fang; Li, Chun Guang; Wang, Yi-Tao; Huang, Ling; Huang, Min; Duan, Wei; Liu, Jun-Ping; Wei, Ming Qian; Zhou, Shu-Feng

    2011-04-01

    The pregnane X receptor (PXR) plays a critical role in the regulation of human cytochrome P450 3A4 (CYP3A4) gene. In this study, we investigated the effect of an array of compounds isolated from Chinese herbal medicines on the activity of PXR using a luciferase reporter gene assay in transiently transfected HepG2 and Huh7 cells and on the expression of PXR and CYP3A4 in LS174T cells. Furthermore, molecular docking was performed to investigate the binding modes of herbal compounds with PXR. Praeruptorin A and C, salvianolic acid B, sodium danshensu, protocatechuic aldehyde, cryptotanshinone, emodin, morin, and tanshinone IIA significantly transactivated the CYP3A4 reporter gene construct in either HepG2 or Huh7 cells. The PXR mRNA expression in LS174T cells was significantly induced by physcion, protocatechuic aldehyde, salvianolic acid B, and sodium danshensu. However, epifriedelanol, morin, praeruptorin D, mulberroside A, tanshinone I, and tanshinone IIA significantly down-regulated the expression of PXR mRNA in LS174T cells. All the herbal compounds tested can be readily docked into the ligand-binding cavity of PXR mainly through hydrogen bond and aromatic interactions with Ser247, Gln285, His407, and Arg401. These findings suggest that herbal medicines can significantly regulate PXR and CYP3A4 and this has important implication in herb-drug interactions.

  19. Inhibition on human liver cytochrome P450 3A4 by constituents of fennel (Foeniculum vulgare): identification and characterization of a mechanism-based inactivator.

    Science.gov (United States)

    Subehan; Zaidi, Syed F H; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2007-12-12

    Fennel, a seed of Foeniculum vulgare, is used as a culinary spice and traditional medicine. The methanolic extract of fennel showed a characteristic of mechanism-based inactivation on erythromycin N-demethylation mediated by human liver microsomal cytochrome P450 3A4 (CYP3A4). The present study was conducted to identify the fennel constituent having the inhibition. Thirteen compounds have been isolated from a methanol extract of fennel and tested for their inhibition on CYP3A4. Among them, 5-methoxypsoralen (5-MOP) showed the strongest inhibition with an IC50 value of 18.3 microM and a mixed type of inhibition. In addition, with the preincubation time of 20 min only 5-MOP showed preincubation time dependency; the IC50 value decreased from 18.3 microM with a preincubation time of 0 min to 4.6 microM with a preincubation time of 20 min. Further investigation on 5-MOP showed the characteristics of time-dependent inhibition, requirement of NADPH, lack of protecting effect of nucleophiles, and recovery of CYP3A4 activity by the competitive inhibitor. This result suggests that the inhibitory activity of CYP3A4 by 5-MOP was a mechanism-based inactivation. The kinetic parameter for mechanism-based inactivation was characterized by a KI value of 15.0 microM and a kinact value of 0.098 min(-1).

  20. A high-throughput inhibition screening of major human cytochrome P450 enzymes using an in vitro cocktail and liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Qin, Chong-Zhen; Ren, Xian; Tan, Zhi-Rong; Chen, Yao; Yin, Ji-Ye; Yu, Jing; Qu, Jian; Zhou, Hong-Hao; Liu, Zhao-Qian

    2014-02-01

    A sensitive and high-throughput inhibition screening liquid chromatography-mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous quantification of five probe metabolites (7-hydroxycoumarin, CYP2A6; 4-hydroxytolbutamide, CYP2C9; 4'-hydroxymephenytoin, CYP2C19; α-hydroxymetoprolol, CYP2D6; and 1-hydroxymidazolam, CYP3A4) for in vitro cytochrome P450 activity determination in human liver microsome and recombinant. All the metabolites and the internal standard, tramadol, were separated on a Waters 2695 series liquid chromatograph with a Phenomenex Luna C18 column (150 × 2.0 mm, 5 µm). Quality control samples and a positive control CYP inhibitor were included in the method. The IC50 values determined for typical CYP inhibitors were reproducible and in agreement with the literature. The method was selective and showed good accuracy (99.13-103.37%), and inter-day (RSD high-quality and -throughput cocktail provides suitable information in drug discovery and screening for new drug entities.

  1. 7,12-Dimethylbenzanthracene induces apoptosis in RL95-2 human endometrial cancer cells: Ligand-selective activation of cytochrome P450 1B1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Lee, Seung Gee [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Chung, Jin-Yong [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Yoon-Jae [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Park, Ji-Eun [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Oh, Seunghoon [Department of Physiology, College of Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Se Yong [Department of Obstetrics and Gynecology, Busan Medical Center, Busan 611-072 (Korea, Republic of); Choi, Hong Jo [Department of General Surgery, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Yoo, Young Hyun, E-mail: yhyoo@dau.ac.kr [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); and others

    2012-04-15

    7,12-Dimethylbenzanthracene (DMBA), a polycyclic aromatic hydrocarbon, exhibits mutagenic, carcinogenic, immunosuppressive, and apoptogenic properties in various cell types. To achieve these functions effectively, DMBA is modified to its active form by cytochrome P450 1 (CYP1). Exposure to DMBA causes cytotoxicity-mediated apoptosis in bone marrow B cells and ovarian cells. Although uterine endometrium constitutively expresses CYP1A1 and CYP1B1, their apoptotic role after exposure to DMBA remains to be elucidated. Therefore, we chose RL95-2 endometrial cancer cells as a model system for studying DMBA-induced cytotoxicity and cell death and hypothesized that exposure to DMBA causes apoptosis in this cell type following CYP1A1 and/or CYP1B1 activation. We showed that DMBA-induced apoptosis in RL95-2 cells is associated with activation of caspases. In addition, mitochondrial changes, including decrease in mitochondrial potential and release of mitochondrial cytochrome c into the cytosol, support the hypothesis that a mitochondrial pathway is involved in DMBA-induced apoptosis. Exposure to DMBA upregulated the expression of AhR, Arnt, CYP1A1, and CYP1B1 significantly; this may be necessary for the conversion of DMBA to DMBA-3,4-diol-1,2-epoxide (DMBA-DE). Although both CYP1A1 and CYP1B1 were significantly upregulated by DMBA, only CYP1B1 exhibited activity. Moreover, knockdown of CYP1B1 abolished DMBA-induced apoptosis in RL95-2 cells. Our data show that RL95-2 cells are susceptible to apoptosis by exposure to DMBA and that CYP1B1 plays a pivotal role in DMBA-induced apoptosis in this system. -- Highlights: ► Cytotoxicity-mediated apoptogenic action of DMBA in human endometrial cancer cells. ► Mitochondrial pathway in DMBA-induced apoptosis of RL95-2 endometrial cancer cells. ► Requirement of ligand-selective activation of CYP1B1 in DMBA-induced apoptosis.

  2. Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart

    Science.gov (United States)

    Edin, Matthew L.; Wang, ZhongJing; Bradbury, J. Alyce; Graves, Joan P.; Lih, Fred B.; DeGraff, Laura M.; Foley, Julie F.; Torphy, Robert; Ronnekleiv, Oline K.; Tomer, Kenneth B.; Lee, Craig R.; Zeldin, Darryl C.

    2011-01-01

    Cytochrome P450 (CYP) epoxygenases CYP2C8 and CYP2J2 generate epoxyeicosatrienoic acids (EETs) from arachidonic acid. Mice with expression of CYP2J2 in cardiomyocytes (αMHC-CYP2J2 Tr) or treated with synthetic EETs have increased functional recovery after ischemia/reperfusion (I/R); however, no studies have examined the role of cardiomyocyte- vs. endothelial-derived EETs or compared the effects of different CYP epoxygenase isoforms in the ischemic heart. We generated transgenic mice with increased endothelial EET biosynthesis (Tie2-CYP2C8 Tr and Tie2-CYP2J2 Tr) or EET hydrolysis (Tie2-sEH Tr). Compared to wild-type (WT), αMHC-CYP2J2 Tr hearts showed increased recovery of left ventricular developed pressure (LVDP) and decreased infarct size after I/R. In contrast, LVDP recovery and infarct size were unchanged in Tie2-CYP2J2 Tr and Tie2-sEH Tr hearts. Surprisingly, compared to WT, Tie2-CYP2C8 Tr hearts had significantly reduced LVDP recovery (from 21 to 14%) and increased infarct size after I/R (from 51 to 61%). Tie2-CYP2C8 Tr hearts also exhibited increased reactive oxygen species (ROS) generation, dihydroxyoctadecenoic acid (DiHOME) formation, and coronary resistance after I/R. ROS scavengers and CYP2C8 inhibition reversed the detrimental effects of CYP2C8 expression in Tie2-CYP2C8 Tr hearts. Treatment of WT hearts with 250 nM 9,10-DiHOME decreased LVDP recovery compared to vehicle (16 vs. 31%, respectively) and increased coronary resistance after I/R. These data demonstrate that increased ROS generation and enhanced DiHOME synthesis by endothelial CYP2C8 impair functional recovery and mask the beneficial effects of increased EET production following I/R.—Edin, M. L., Wang, Z. J., Bradbury, J. A., Graves, J. P., Lih, F. B., DeGraff, L. M., Foley, J. F., Torphy, R., Ronnekleiv, O. K., Tomer, K. B., Lee, C. R., Zeldin, D. C. Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse

  3. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYTOCHROME P450 3A4

    Science.gov (United States)

    Conazoles represent a unique class of azole-containing fungicides that are widely used in both pharmaceutical and agriculture applications. The antifungal property of conazoles occurs via complexation with cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell...

  4. INTERINDIVIDUAL VARIANCE OF CYTOCHROME P450 FORMS IN HUMAN HEPATIC MICROSOMES: CORRELATION OF INDIVIDUAL FORMS WITH XENOBIOTIC METABOLISM AND IMPLICATIONS IN RISK ASSESSMENT

    Science.gov (United States)

    Differences in biotransformation activities may alter the bioavailability or efficacy of drugs, provide protection from certain xenobiotic and environmental agents, or increase toxicity of others. Cytochrome P450 (CYP450) enzymes are responsible for the majority of oxidation reac...

  5. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite.

    Directory of Open Access Journals (Sweden)

    Varsha Agarwal

    Full Text Available Cytochrome P450 (P450 is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

  6. The stress response of human proximal tubule cells to cadmium involves up-regulation of haemoxygenase 1 and metallothionein but not cytochrome P450 enzymes.

    Science.gov (United States)

    Boonprasert, Kanyarat; Satarug, Soisungwan; Morais, Christudas; Gobe, Glenda C; Johnson, David W; Na-Bangchang, Kesara; Vesey, David A

    2016-05-13

    Enzymes of the cytochrome P450 (CYP) super-family are implicated in cadmium (Cd) -induced nephrotoxicity, however, direct evidence is lacking. This study investigated the endogenous expression of various CYP proteins together with the stress-response proteins, heme oxygenase-1 (HO-1) and metallothionein (MT) in human kidney sections and in cadmium-exposed primary cultures of human proximal tubular epithelial cells (PTC). By immunohistochemistry, the CYP members 2B6, 4A11 and 4F2 were prominently expressed in the cortical proximal tubular cells and to a lesser extent in distal tubular cells. Low levels of CYPs 2E1 and 3A4 were also detected. In PTC, in the absence of Cd, CYP2E1, CYP3A4, CYP4F2 and MT were expressed, but HO-1, CYP2B6 and CYP4A11 were not detected. A range of cadmium concentrations (0-100μM) were utilized to induce stress conditions. MT protein was further induced by as little as 0.5μM cadmium, reaching a 6-fold induction at 20μM, whereas for HO-1, a 5μM cadmium concentration was required for initial induction and at 20μM cadmium reached a 15-fold induction. The expression of CYP2E1, CYP3A4, and CYP4F2 were not altered by any cadmium concentrations tested at 48h. Cadmium caused a reduction in cell viability at concentrations above 10μM. In conclusion although cultured PTC, do express CYP proteins, (CYP2E1, CYP3A4, and CYP4F2), Cd-induced cell stress as indicted by induction of HO-1 and MT does not alter expression of these CYP proteins at 48h. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450.

    Science.gov (United States)

    Chen, Yuan; Liu, Liling; Nguyen, Khanh; Fretland, Adrian J

    2011-03-01

    Reaction phenotyping using recombinant human cytochromes P450 (P450) has great utility in early discovery. However, to fully realize the advantages of using recombinant expressed P450s, the extrapolation of data from recombinant systems to human liver microsomes (HLM) is required. In this study, intersystem extrapolation factors (ISEFs) were established for CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 using 11 probe substrates, based on substrate depletion and/or metabolite formation kinetics. The ISEF values for CYP2C9, CYP2D6, and CYP3A4 determined using multiple substrates were similar across substrates. When enzyme kinetics of metabolite formation for CYP1A2, 2C9, 2D6, and 3A4 were used, the ISEFs determined were generally within 2-fold of that determined on the basis of substrate depletion. Validation of ISEFs was conducted using 10 marketed drugs by comparing the extrapolated data with published data. The major isoforms responsible for the metabolism were identified, and the contribution of the predominant P450s was similar to that of previously reported data. In addition, phenotyping data from internal compounds, extrapolated using the rhP450-ISEF method, were comparable to those obtained using an HLM-based inhibition assay approach. Moreover, the intrinsic clearance (CL(int)) calculated from extrapolated rhP450 data correlated well with measured HLM CL(int). The ISEF method established in our laboratory provides a convenient tool in early reaction phenotyping for situations in which the HLM-based inhibition approach is limited by low turnover and/or unavailable metabolite formation. Furthermore, this method allows for quantitative extrapolation of HLM intrinsic clearance from rhP450 phenotyping data simultaneously to obtaining the participating metabolizing enzymes.

  8. Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase.

    Science.gov (United States)

    Bourens, Myriam; Boulet, Aren; Leary, Scot C; Barrientos, Antoni

    2014-06-01

    Cytochrome c oxidase (CIV) deficiency is one of the most common respiratory chain defects in patients presenting with mitochondrial encephalocardiomyopathies. CIV biogenesis is complicated by the dual genetic origin of its structural subunits, and assembly of a functional holoenzyme complex requires a large number of nucleus-encoded assembly factors. In general, the functions of these assembly factors remain poorly understood, and mechanistic investigations of human CIV biogenesis have been limited by the availability of model cell lines. Here, we have used small interference RNA and transcription activator-like effector nucleases (TALENs) technology to create knockdown and knockout human cell lines, respectively, to study the function of the CIV assembly factor COX20 (FAM36A). These cell lines exhibit a severe, isolated CIV deficiency due to instability of COX2, a mitochondrion-encoded CIV subunit. Mitochondria lacking COX20 accumulate CIV subassemblies containing COX1 and COX4, similar to those detected in fibroblasts from patients carrying mutations in the COX2 copper chaperones SCO1 and SCO2. These results imply that in the absence of COX20, COX2 is inefficiently incorporated into early CIV subassemblies. Immunoprecipitation assays using a stable COX20 knockout cell line expressing functional COX20-FLAG allowed us to identify an interaction between COX20 and newly synthesized COX2. Additionally, we show that SCO1 and SCO2 act on COX20-bound COX2. We propose that COX20 acts as a chaperone in the early steps of COX2 maturation, stabilizing the newly synthesized protein and presenting COX2 to its metallochaperone module, which in turn facilitates the incorporation of mature COX2 into the CIV assembly line.

  9. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst.

    Science.gov (United States)

    Pearce, Robin E; Cohen-Wolkowiez, Michael; Sampson, Mario R; Kearns, Gregory L

    2013-09-01

    Despite metronidazole's widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a "therapeutic concentration" of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo.

  10. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5′-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Soon-Sang Kwon

    2016-04-01

    Full Text Available Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca2+-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP and uridine 5′-diphospho-glucuronosyltransferase (UGT enzymes of human liver microsomes to determine if mechanistic aschantin–enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4′-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4′-hydroxylation, and CYP3A4-mediated midazolam 1′-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1′-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4.

  11. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Schuetz, Erin G. [Department of Pharmaceutical Sciences, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Chen, Taosheng, E-mail: taosheng.chen@stjude.org [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States)

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  12. Selective and sensitive quantification of the cytochrome P450 3A4 protein in human liver homogenates through multiple reaction monitoring mass spectrometry.

    Science.gov (United States)

    Cieślak, Anna; Kelly, Isabelle; Trottier, Jocelyn; Verreault, Mélanie; Wunsch, Ewa; Milkiewicz, Piotr; Poirier, Guy; Droit, Arnaud; Barbier, Olivier

    2016-11-01

    This study aimed at establishing a sensitive multiple reaction monitoring-mass spectrometry (MRM-MS) method for the quantification of the drug metabolizing cytochrome P450 (CYP)3A4 enzyme in human liver homogenates. Liver samples were subjected to trypsin digestion. MRM-MS analyses were performed using three transitions optimized on one purified synthetic peptide unique to CYP3A4 and the standardizing protein, calnexin. Coefficient of variations for the precision and reproducibility of the MRM-MS measurement were also determined. The method was applied to liver samples from ten non-cholestatic donors and 34 cholestatic patients with primary biliary cholangitis (n = 12; PBC), primary sclerosing cholangitis (n = 10; PSC) or alcoholic liver disease (n = 12; ALD). The established method presented high sensitivity with limit of detection lower than 5 fmol, and was successfully applied for the absolute and relative quantification of CYP3A4 in both whole liver homogenate and microsomal fractions. When all groups were analyzed together, a significant correlation was observed for the MRM-based CYP3A4 protein quantification in homogenates and microsomes (r = 0.49, p < 0.001). No statistically significant difference was detected between CYP3A4 levels in PSC, PBC, ALD and control samples. Finally, the MRM-MS quantification of CYP3A4 in homogenates also correlated (r = 0.44; p < 0.05) with the level of enzyme activity in the same samples, as determined by measuring the chenodeoxycholic to hyocholic acid conversion. The established method provides a sensitive tool to evaluate the CYP3A4 protein in human liver homogenates from patients with normal or chronic/severe hepatic injury.

  13. miR-181b-5p对于卡波西肉瘤细胞SLK细胞增殖和凋亡的影响%The Effects of MicroRNA-18 lb-5p on Proliferation and Apoptosis of Human Kaposi's Sarcoma Cell Line SLK

    Institute of Scientific and Technical Information of China (English)

    丁媛; 吴秀娟; 向芳; 康晓静; 于世荣; 冯燕艳; 王红娟; 普雄明

    2015-01-01

    目的:通过脂质转染miR-181b-5p模拟物及抑制物到卡波西肉瘤细胞系SLK,首次研究miR-181b-5p对卡波西肉瘤细胞SLK细胞增殖、凋亡生物学功能的影响,为进一步研究miR-181b-5p在卡波西肉瘤发病机制中的作用奠定理论基础.方法:应用脂质体对人卡波西肉瘤细胞株SLK进行转染,对转染miR-181b-5p模拟物及抑制物后的卡波西肉瘤细胞株行MTT检测观察细胞增殖曲线;应用流式细胞仪行检测转染48小时后各组细胞凋亡率比较.结果:与阴性对照组比较,miR-181b-5p模拟物组细胞的增殖能力明显上升,(P<0.01).miR-181b-5p抑制物组细胞的增殖能力明显下降,(P<0.01).miR-181b-5p抑制物阴性对照组细胞的增殖能力无明显变化.流式细胞仪测定SLK细胞转染miR-181b-5p模拟物后凋亡率(5.5±0.6)%,与阴性对照组凋亡率(7.6±0.4)%相比,差异有统计学意义,明显下降(P<0.05);miR-181b-5p抑制物组凋亡率(14.8±1.0)%明显增高,有统计学差异(P<0.05).结论:通过转染miR-181b-5p模拟物/抑制物,发现其对SLK细胞的增殖、凋亡造成一定影响,进一步开展miR-181b-5p生物学特性和其相关靶基因验证的相关研究有十分重要的意义.

  14. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland); Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland)

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  15. The influence of single application of paracetamol and/or N-acetylcysteine on rats subchronic exposed to trichloroethylene vapours. I. Effect on hepatic moonooxygenase system dependent of cytochrome P450

    Directory of Open Access Journals (Sweden)

    Andrzej Plewka

    2012-06-01

    Full Text Available Background: There is a number of factors which potentially affect occurrence of toxic change in liver after overdosing of paracetamol. Hepatic metabolism of trichloroethylene has primary impact on hepatotoxic effect of this solvent. This means that the combined exposure to these xenobiotics can be particularly harmful for human. The influence of N-acetylcysteine (NAC as a protective factor after paracetamol intoxication was studies. Materials and method: Tests were carried out on rats which were treated with trichloroethylene, paracetamol and/or N-acetylcysteine. In the hepatic microsomal fraction activity of the components of cytochrome P450- dependent monooxygenases was determined Results: Paracetamol slightly stimulated cytochrome P450 having no effect on reductase activity cooperating with it. Cytochrome b5 and its reductase were inhibited by this compound. Trichloroethylene was the inhibitor of compounds of II microsomal electron transport chain. N-acetylcysteine inhibited activity of reductase of NADH-cytochrome b5. Conclusions: Tested doses of the xenobiotics influenced on II microsomal electron transport chain. Protective influence of N-acetylcysteine was better if this compound was applied 2 hours after exposure on xenobiotics

  16. Cytochrome P450 1B1, a novel chemopreventive target for benzo[a]pyrene-initiated human esophageal cancer.

    OpenAIRE

    Wen, Xia; Walle, Thomas

    2007-01-01

    Dietary modulation of carcinogenesis-related pathwaysDietary item or component studied: 5,7- dimethoxyflavone (5,7-DMF) and 30,40-dimethoxyflavone (30,40-DMF)Pathways studied: BaP- DNA binding by inhibition of CYP1B1/1A1 activity and/or protein expressionStudy type (in vitro, animals, humans): in vitroImpact on pathway (including dose-response): 5,7-DMF: BaP-DNA binding was markedly inhibited and the BaP-induced part of the CYP1B1 mRNA expression (P

  17. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency.

    Science.gov (United States)

    Almalki, Abdulraheem; Alston, Charlotte L; Parker, Alasdair; Simonic, Ingrid; Mehta, Sarju G; He, Langping; Reza, Mojgan; Oliveira, Jorge M A; Lightowlers, Robert N; McFarland, Robert; Taylor, Robert W; Chrzanowska-Lightowlers, Zofia M A

    2014-01-01

    Mitochondrial aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein synthesis since they charge tRNAs with their cognate amino acids. Mutations in the genes encoding mitochondrial aaRSs have been associated with a wide spectrum of human mitochondrial diseases. Here we report the identification of pathogenic mutations (a partial genomic deletion and a highly conserved p. Asp325Tyr missense variant) in FARS2, the gene encoding mitochondrial phenylalanyl-tRNA synthetase, in a patient with early-onset epilepsy and isolated complex IV deficiency in muscle. The biochemical defect was expressed in myoblasts but not in fibroblasts and associated with decreased steady state levels of COXI and COXII protein and reduced steady state levels of the mt-tRNA(Phe) transcript. Functional analysis of the recombinant mutant p. Asp325Tyr FARS2 protein showed an inability to bind ATP and consequently undetectable aminoacylation activity using either bacterial tRNA or human mt-tRNA(Phe) as substrates. Lentiviral transduction of cells with wildtype FARS2 restored complex IV protein levels, confirming that the p.Asp325Tyr mutation is pathogenic, causing respiratory chain deficiency and neurological deficits on account of defective aminoacylation of mt-tRNA(Phe).

  18. Cytochrome P450 1B1, a novel chemopreventive target for benzo[a]pyrene-initiated human esophageal cancer.

    Science.gov (United States)

    Wen, Xia; Walle, Thomas

    2007-02-08

    Esophageal cancer is common worldwide, with poor prognosis. Smoking, including exposure to polyaromatic hydrocarbons like benzo[a]pyrene (BaP), is a major risk factor. In human esophageal HET-1A cells, we found that time-dependent BaP-DNA binding was associated with upregulation of CYP1B1, but not CYP1A1, mRNA and protein. The dietary flavonoid 5,7-dimethoxyflavone significantly inhibited BaP-DNA binding and down-regulated BaP-induced CYP1B1 mRNA and protein. 3',4'-Dimethoxyflavone was an even more potent inhibitor of CYP1B1 expression, while resveratrol had no effect. Thus, dietary methoxylated flavones inhibited BaP-induced CYP1B1 transcription in a cell-specific manner and hold promise as chemopreventive agents in esophageal carcinogenesis.

  19. Optimization of heme precursors for the expression of human cytochrome P450 2A13 and its co-expression with oxidoreductase in baculovirus/sf9 system.

    Science.gov (United States)

    Lu, Hui-Yuan; Qiu, Liang-Lin; Yang, Xue-Jiao; Zhang, Xiao-Ming; Zhang, Zhan; Wang, Shou-Lin

    2013-06-01

    Human cytochrome P450 2A13 (CYP2A13), mainly expressed in respiratory tract, is active towards numerous toxicants. To establish the metabolism in vitro, we expressed CYP2A13 and NADPH-CYP450 oxidoreductase (POR) in a baculovirus/sf9 system. Due to the deficiency of sf9 cells in heme incorporation, we investigated the effects of different heme precursors on the expression of CYP2A13, POR and their co-expression. The present results showed that both CYP2A13 and POR were presented the highest expression levels or activity with 0.2 mM δ-aminolaevulinic acid (5-ALA), 0.02 mM Fe(3+) and 0.5-1.0 μg/ml hemin. The combination of 0.2 mM 5-ALA and 0.02 mM Fe(3+) significantly improved CYP2A13 expression and content compared with heme precursors alone, so was POR activity. A multiplicity of infection (MOI) value of 5 pfu/cell for CYP2A13 baculovirus particles induced very high CYP2A13 expression. When co-infected with different POR MOI values, a viral ratio of 5 : 2 was associated with the highest CYP2A13 activity, whereas POR activity dose dependently increased with POR MOI. Furthermore, the expressed CYP2A13 in the optimized conduction could eliminate its substrate aflatoxin B1 at a significantly higher than those in other condition (P < 0.01). Our results provide an efficient approach for expressing functionally characterized, highly active and homogeneous CYP2A13 proteins.

  20. Inhibitory Effect of Selaginellins from Selaginella tamariscina (Beauv. Spring against Cytochrome P450 and Uridine 5′-Diphosphoglucuronosyltransferase Isoforms on Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Jae-Kyung Heo

    2017-09-01

    Full Text Available Selaginella tamariscina (Beauv. has been used for traditional herbal medicine for treatment of cancer, hepatitis, and diabetes in the Orient. Numerous bioactive compounds including alkaloids, flavonoids, lignans, and selaginellins have been identified in this medicinal plant. Among them, selaginellins having a quinone methide unit and an alkylphenol moiety have been known to possess anticancer, antidiabetic, and neuroprotective activity. Although there have been studies on the biological activities of selaginellins, their modulatory potential of cytochrome P450 (P450 and uridine 5′-diphosphoglucuronosyltransferase (UGT activities have not been previously evaluated. In this study, we investigated the drug interaction potential of two selaginellins on ten P450 isoforms (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2 and 3A and six UGT isoforms (UGT1A1, 1A3, 1A4, 1A6, 1A9 and 2B7 using human liver microsomes and liquid chromatography-tandem mass spectrometry. Selaginellin and selaginellin M had high inhibitory potential for CYP2C8-mediated amodiaquine O-demethylation with IC50 values of 0.5 and 0.9 μM, respectively. Selaginellin and selaginellin M also showed medium inhibitory potential against CYP2C9, CYP2J2, UGT1A1, and UGT1A3 (1 μM < IC50 < 5 μM. These two selaginellins had low inhibitory potential against CYP1A2, CYP2A6, CYP2E1, and UGT1A6 (IC50 > 25 μM. This information might be helpful to predict possible drug interaction potential of between selaginellins and co-administered drugs.

  1. Inhibition of human cytochrome p450 2c8-catalyzed amodiaquine n-desethylation: Effect of five traditionally and commonly used herbs

    Directory of Open Access Journals (Sweden)

    Yasotha Devi Muthiah

    2016-01-01

    Full Text Available Background: In Southeast Asia and many parts of the world, herbal products are increasingly used in parallel with modern medicine. Objective: This study aimed to investigate the effects of herbs commonly used in Southeast Asia on activity of cytochrome P450 2C8 (CYP2C8, an important human hepatic enzyme in drug metabolism. Materials and Methods: The selected herbs, such as Eurycoma longifolia Jack (ELJ, Labisia pumila (LP, Echinacea purpurea (EP, Andrographis paniculata (AP, and Ginkgo biloba (GB, were subjected to inhibition studies using an in vitro CYP2C8 activity marker, amodiaquine N-desethylase assay. Inhibition parameters, inhibitory concentration 50% (IC50, and Kivalues were determined to study the potency and mode of inhibition. Results: All herbs inhibited CYP2C8 with the following order of potency: LP > ELJ > GB > AP > EP. LP and ELJ inhibited potently at Ki's of 2 and 4 times the Kiof quercetin, the positive control. The inhibition by LP was uncompetitive in nature as compared to competitive or mixed type inhibition observed with other herbs. GB exhibited moderate inhibitory effect at a Ki6 times larger than quercetin Ki. AP and EP, on the other hand, showed only weak inhibition. Conclusion: The herbs we chose represented the more commonly used herbs in Southeast Asia where collision of tradition and modernization in healthcare, if not properly managed, may lead to therapeutic misadventures. We conclude that concurrent consumption of some herbs, in particular, LP and ELJ, may have relevance in drug-herb interactions via CYP2C8 inhibition in vivo.

  2. Effect of Flavonoids on Glutathione Level, Lipid Peroxidation and Cytochrome P450 CYP1A1 Expression in Human Laryngeal Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Lidija Vuković

    2007-01-01

    Full Text Available Flavonoids are phytochemicals exhibiting a wide range of biological activities, among which are antioxidant activity, the ability to modulate activity of several enzymes or cell receptors and possibility to interfere with essential biochemical pathways. Using human laryngeal carcinoma HEp2 cells and their drug-resistant CK2 subline, we examined the effect of five flavonoids, three structurally related flavons (quercetin, fisetin, and myricetin, one flavonol (luteolin and one glycosilated flavanone (naringin for: (i their ability to inhibit mitochondrial dehydrogenases as an indicator of cytotoxic effect, (ii their influence on glutathione level, (iii antioxidant/prooxidant effects and influence on cell membrane permeability, and (iv effect on expression of cytochrome CYP1A1. Cytotoxic action of the investigated flavonoids after 72 hours of treatment follows this order: luteolin>quercetin>fisetin>naringin>myricetin. Our results show that CK2 were more resistant to toxic concentrations of flavonoids as compared to parental cells. Quercetin increased the total GSH level in both cell lines. CK2 cells are less perceptible to lipid peroxidation and damage caused by free radicals. Quercetin showed prooxidant effect in both cell lines, luteolin only in HEp2 cells, whereas other tested flavonoids did not cause lipid peroxidation in the tested cell lines. These data suggest that the same compound, quercetin, can act as a prooxidant, but also, it may prevent damage in cells caused by free radicals, due to the induction of GSH, by forming less harmful complex. Quercetin treatment damaged cell membranes in both cell lines. Fisetin caused higher cell membrane permeability only in HEp2 cells. However, these two compounds did not enhance the damage caused by hydrogen peroxide. Quercetin, naringin, myricetin and fisetin increased the expression of CYP1A1 in both cell lines, while luteolin decreased basal level of CYP1A1 only in HEp2 cells. In conclusion, small

  3. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xuejiao [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Jiaojiang District Center for Disease Control and Prevention, 518 Jingdong Rd., Taizhou 318000 (China); Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Wang, Shou-Lin, E-mail: wangshl@njmu.edu.cn [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China)

    2013-07-15

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  4. Analysis of cellular responses to aflatoxin B{sub 1} in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yingying [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Breeden, Linda L. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Fan, Wenhong [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zhao Lueping [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Eaton, David L. [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zarbl, Helmut [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States) and Fred Hutchinson Cancer Research Center, Seattle, WA (United States)]. E-mail: hzarbl@fhcrc.org

    2006-01-29

    Aflatoxin B1 (AFB{sub 1}) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB{sub 1} is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N{sup 7}-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB{sub 1}, a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB{sub 1} that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB{sub 1} treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB{sub 1}-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific

  5. Effect of human glutathione S-transferases on glutathione-dependent inactivation of cytochrome P450-dependent reactive intermediates of diclofenac.

    Science.gov (United States)

    Dragovic, Sanja; Boerma, Jan Simon; Vermeulen, Nico P E; Commandeur, Jan N M

    2013-11-18

    Idiosyncratic adverse drug reactions due to the anti-inflammatory drug diclofenac have been proposed to be caused by the generation of reactive acyl glucuronides and oxidative metabolites. For the oxidative metabolism of diclofenac by cytochromes P450 at least five different reactive intermediates have been proposed previously based on structural identification of their corresponding GSH-conjugates. In the present study, the ability of four human glutathione S-transferases (hGSTs) to catalyze the GSH-conjugation of the different reactive intermediates formed by P450s was investigated. Addition of pooled human liver cytosol and recombinant hGSTA1-1, hGSTM1-1, and hGSTP1-1 to incubations of diclofenac with human liver microsomes or purified CYP102A1M11 L437N as a model system significantly increased total GSH-conjugation. The strongest increase of total GSH-conjugation was observed by adding hGSTP1-1, whereas hGSTM1-1 and hGSTA1-1 showed lower activity. Addition of hGSTT1-1 only showed a minor effect. When considering the effects of hGSTs on GSH-conjugation of the different quinoneimines of diclofenac, it was found that hGSTP1-1 showed the highest activity in GSH-conjugation of the quinoneimine derived from 5-hydroxydiclofenac (5-OH-DF). hGSTM1-1 showed the highest activity in inactivation of the quinoneimine derived from 4'-hydroxydiclofenac (4'-OH-DF). Separate incubations with 5-OH-DF and 4'-OH-DF as substrates confirmed these results. hGSTs also catalyzed GSH-conjugation of the o-iminemethide formed by oxidative decarboxylation of diclofenac as well as the substitution of one of the chlorine atoms of DF by GSH. hGSTP1-1 showed the highest activity for the formation of these minor GSH-conjugates. These results suggest that hGSTs may play an important role in the inactivation of DF quinoneimines and its minor reactive intermediates especially in stress conditions when tissue levels of GSH are decreased.

  6. Cloning of Gene cyt b5 and cyt b5r and Their Co-expression with cyp51A in Penicillium digitatum%指状青霉cytb5和cytb5r基因克隆及与cyp51A的共表达

    Institute of Scientific and Technical Information of China (English)

    秦婷婷; 耿辉; 王胜强; 牛玉慧; 伍志; 刘德立

    2016-01-01

    为探究指状青霉细胞色素 b5(Cyt b5)与细胞色素 b5还原酶(Cyt b5r)在细胞色素 P450 CYP51A 电子传递方面的功用,研究了指状青霉 CYP51A 与 Cyt b5-Cyt b5r 共表达机制;并检测了其对于 cyp51A 基因表达水平的影响。通过转录组分析筛选并PCR 克隆获得了 cyt b5与 cyt b5r 基因,分别命名为 HS-Pdcyt b5和 HS-Pdcyt b5r。以多基因串联克隆载体 pPICZαA 为骨架构建了指状青霉共表达质粒 ppbrA(pPIC-Pdcyp51A-cyt b5-cyt b5r);电转化法将重组质粒 ppbrA 导入毕赤酵母 X-33中。qRT-PCR 分析结果显示, CYP51A 与 Cyt b5-Cyt b5r 共表达后,其基因表达水平升高54%-97%,并维持较长时间(48-72 h)。表明 Cyt b5-Cyt b5r 系统可将电子高效转移给 CYP51A,从而增强 cyp51A 基因的转录表达。从指状青霉中克隆表达 HS-PdCyt b5和 HS-PdCyt b5r 蛋白,并通过共表达的方式研究 cyp51A 基因的功能尚为首次报道。%In order to investigate the role of Cytochrome b5(Cyt b5)and Cytochrome b5 reductase(Cyt b5r)in the electron transport of cytochrome P450 CYP51A in Penicillium digitatum,the co-expression mechanism of CYP51A and Cyt b5-Cyt b5r in P. digitatum was studied, and its effects on the expression of gene cyp51A was detected. By analyzing and screening transcriptome as well as PCR cloning,gene cyt b5 and cyt b5r were acquired and designated as HS-Pdcyt b5 and HS-Pdcyt b5r. Further,a co-expressed plasmid vector ppbrA(pPIC-Pdcyp51A-cyt b5-cyt b5r)was constructed successfully using multiple-gene series cloning vector pPICZαA. This recombinant plasmid ppbrA was transformed into Pichia pastoris X-33 by electroporation. Analysis by qRT-PCR revealed that after CYP51A was co-expressed with Cyt b5-Cyt b5r,the expression level of cyp51A increased 54%-97% and it remained in a long period(48-72 h). This indicated that the Cyt b5-Cyt b5r complex was capable of transferring electrons to CYP51A,which thus enhanced the

  7. Cytochrome P450 isoenzymes in rat and human liver microsomes associate with the metabolism of total coumarins in Fructus Cnidii.

    Science.gov (United States)

    Hu, Xiao; Huang, Wei; Yang, Yuan

    2015-12-01

    Fructus Cnidii (Cnidium) is isolated from the dry and ripe fruit of Cnidium monnier (L.) Cuss (umbelifera), an annual herb. It is demonstrated that the active constituents of Fructus Cnidii are coumarins, known as Total Coumarins of Cnidium Monnier (TCCM). Osthole (Ost) and imperatorin (Imp) are the most active constituents of TCCM which are usually regarded as the quality indicators of medicinal Fructus Cnidii. The aim is to study the metabolism of Fructus Cnidii effective monomer osthole and imperatorin in vitro by liver microsomes. CYP3A4 inhibitor ketoconazole, CYP2D6 inhibitor qunidine, CYP2C8 inhibitor trimethoprim, CYP2C9 inhibitor sulfaphenazole, and CYP1A2 inhibitor α-naphthoflavone were used to investigate the metabolism from incubation time, substrate concentration and liver microsomal concentration, respectively. The concentration of liver microsomes was 0.2 mg/ml. Ost (0.8/3.2/12.8 uM) was incubated at 37 °C for 20 min while Imp (1.6/6.4/19.2 uM) was incubated for 30 min. Qunidine, trimethoprim and α-naphthoflavone could significantly inhibit the disappearance of Imp; meanwhile ketoconazole, sulfaphenazole and qunidine could inhibit the disappearance of Ost. CYP1A, CYP2C are involved in the metabolism of Imp and CYP3A mediates the metabolism of Ost in rat liver microsomes. In human liver microsomes, CYP1A2, CYP2C8, CYP2D6 are involved in the metabolism of Imp; CYP3A4 is involved in the metabolism of Ost at all the tested concentrations of Ost, while CYP2C9, CYP2D6 mediate the metabolism at high concentration of Ost.

  8. Cytotoxicity of acrylamide and its epoxide glycidamide in CHO cells expressing human cytochrome P450 2E1

    Institute of Scientific and Technical Information of China (English)

    Shoulin Wang; Xiaoyang He; Xinru Wang; Junyan Hong

    2006-01-01

    Objective: To investigate whether CYP2E1 is responsible for the acrylamide metabolic activation in Flp-In CHO cell system. Methods: CYP2E1 cDNA was subcloned from the human liver full-length cDNA library and subsequently transfected into the Flp-In CHO cells to generate the stable transfectant of CYP2E1. The CYP2E1 mRNA expression was determined by RT-PCR. Acrylamide and its epoxide glycidamide induced cytotoxicity and cell cycle arrest in G2/M were conducted using MTS assay and flow cytometry, respectively. Results: In the CHO cell stably expressing CYP2E1 (CHO-2E1), a ~1.5 kbsize of band was detected from the mRNA in the cells while no corresponding band in the CHO-vector cells, which indicated that CYP2E1 was successfully transfected in the CHO cells. Compared with the CHO-vector cells, acrylamide showed a concentrationdependent loss of viability in the CHO-2E1 cells but no significant change of G2/M arrest was found. As expected, glycidamide induced similar profile of cytotoxicity in both of the cells, and G2/M arrest presented a concentration-dependent increased in the CHO-2E1 cells. Conclusion: The result suggested that CYP2E1 might be responsible for the acrylamide metabolism, and its metabolite glycidamide was a direct cytotoxic and genotoxic agent. It should be further considered whether acrylamide-induced toxicity is through its epoxide glycidamide in the presence of CYP2E1.

  9. Construction of a 3D model of cytochrome P450 2B4.

    Science.gov (United States)

    Chang, Y T; Stiffelman, O B; Vakser, I A; Loew, G H; Bridges, A; Waskell, L

    1997-02-01

    A three-dimensional structural model of rabbit phenobarbital-inducible cytochrome P450 2B4 (LM2) was constructed by homology modeling techniques previously developed for building and evaluating a 3D model of the cytochrome P450choP isozyme. Four templates with known crystal structures including cytochrome P450cam, terp, BM-3 and eryF were used in multiple sequence alignments and construction of the cytochrome P450 2B4 coordinates. The model was evaluated for its overall quality using available protein analysis programs and found to be satisfactory. The model structure was stable at room temperature during a 140 ps unconstrained full protein molecular dynamics simulation. A putative substrate access channel and binding site were identified. Two different substrates, benzphetamine and androstenedione, that are metabolized by cytochrome P450 2B4 with pronounced product specificity were docked into the putative binding site. Two orientations were found for each substrate that could lead to the observed preferred products. Using a geometric fit method three regions on the surface of the model cytochrome P450 structure were identified as possible sites for interaction with cytochrome b5, a redox partner of P450 2B4. Residues that may interact with the substrates and with cytochrome b5 have been identified and mutagenesis studies are currently in progress.

  10. Mangifera indica L. extract and mangiferin modulate cytochrome P450 and UDP-glucuronosyltransferase enzymes in primary cultures of human hepatocytes.

    Science.gov (United States)

    Rodeiro, Idania; José Gómez-Lechón, M; Perez, Gabriela; Hernandez, Ivones; Herrera, José Alfredo; Delgado, Rene; Castell, José V; Teresa Donato, M

    2013-05-01

    The aqueous stem bark extract of Mangifera indica L. (MSBE) has been reported to have antioxidant, anti-inflammatory and analgesic properties. In previous studies, we showed that MSBE and mangiferin, its main component, lower the activity of some cytochrome P-450 (P450) enzymes in rat hepatocytes and human liver microsomes. In the present study, the effects of MSBE and mangiferin on several P450 enzymes and UDP-glucuronosyltransferases (UGTs) in human-cultured hepatocytes have been examined. After hepatocytes underwent a 48-h treatment with sub-cytotoxic concentrations of the products (50-250 µg/mL), a concentration-dependent decrease of the activity of the five P450 enzymes measured (CYP1A2, 2A6, 2C9, 2D6 and 3A4) was observed. For all the activities, a reduction of at least 50% at the highest concentration (250 µg/mL) was observed. In addition, UGT activities diminished. MSBE considerably reduced UGT1A9 activity (about 60% at 250 µg/mL) and lesser effects on the other UGTs. In contrast, 250 µg/mL mangiferin had greater effects on UGT1A1 and 2B7 than on UGT1A9 (about 55% vs. 35% reduction, respectively). Quantification of specific mRNAs revealed reduced CYP3A4 and 3A5 mRNAs content, and an increase in CYP1A1, CYP1A2, UGT1A1 and UGT1A9 mRNAs. No remarkable effects on the CYP2A6, 2B6, 2C9, 2C19, 2D6 and 2E1 levels were observed. Our results suggest that the activity and/or expression of major P450 and UGT enzymes is modulated by MSBE and that potential herb-drugs interactions could arise after a combined intake of this extract with conventional medicines. Therefore, the potential safety risks of this natural product derived by altering the ADMET properties of co-administered drugs should be examined.

  11. The Effect of Cholesterol on the Binding and Insertion of Cytochrome b5 into Liposomes of Phosphatidylcholines

    Science.gov (United States)

    1993-09-30

    mole percent, cholesterol decreases and broadens the sharp endothermic phase transition in multi lamellar veicles of DPPC (Estep et al., 1978), DHPC ...may similarly converge (i.e . the Ld+Lo immiscibility region narrows) above Tc in the POPC/cholesterol system. In the DHPC /cholesterol phase diagram...composition and temperature dependent. Particularly, the DHPC /cholescerol phase diagram shows that at about 37·C a single liquid-disordered phase

  12. Metabolism of methyl tert-butyl ether and other gasoline ethers by human liver microsomes and heterologously expressed human cytochromes P450: identification of CYP2A6 as a major catalyst.

    Science.gov (United States)

    Hong, J Y; Wang, Y Y; Bondoc, F Y; Lee, M; Yang, C S; Hu, W Y; Pan, J

    1999-10-01

    To reduce the production of carbon monoxide and other pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Previously, we demonstrated that human liver is active in metabolizing MTBE to tert-butyl alcohol (TBA) and that cytochrome P450 (CYP) enzymes play a critical role in the metabolism of MTBE. The present study demonstrates that human liver is also active in the oxidative metabolism of ETBE and TAME. A large interindividual variation in metabolizing these gasoline ethers was observed in 15 human liver microsomal samples. The microsomal activities in metabolizing MTBE, ETBE, and TAME were highly correlated among each other (r, 0.91-0. 96), suggesting that these ethers are metabolized by the same enzyme(s). Correlation analysis of the ether-metabolizing activities with individual CYP enzyme activities in the liver microsomes showed that the highest degree of correlation was with human CYP2A6 (r, 0. 90-0.95), which is constitutively expressed in human livers and known to be polymorphic. CYP2A6 displayed the highest turnover number in metabolizing gasoline ethers among a battery of human CYP enzymes expressed in human B-lymphoblastoid cells. Kinetic studies on MTBE metabolism with three human liver microsomes exhibited apparent Km values that ranged from 28 to 89 microM and the V(max) values from 215 to 783 pmol/min/mg, with similar catalytic efficiency values (7.7 to 8.8 microl/min/mg protein). Metabolism of MTBE, ETBE, and TAME by human liver microsomes was inhibited by coumarin, a known substrate of human CYP2A6, in a concentration-dependent manner. Monoclonal antibody against human CYP2A6 caused a significant inhibition (75% to 95%) of the metabolism of MTBE, ETBE, and TAME in human liver microsomes. Taken together, these results clearly indicate that in human liver, CYP2A6 is the major enzyme responsible for the

  13. Inhibition of tolbutamide 4-methylhydroxylation by a series of non-steroidal anti-inflammatory drugs in V79-NH cells expressing human cytochrome P4502C10

    NARCIS (Netherlands)

    Kappers, W.A.; Groene, E.M. de; Kleij, L.A.; Witkamp, R.F.; Zweers-Zeilmaker, W.M.; Feron, V.J.; Horbach, G.J.

    1996-01-01

    1. To study the role of cytochrome P4502C10 in the metabolism of the non-steroidal antiinflammatory drugs (NSAIDs) diclofenac, phenylbutazone, fenoprofen, ibuprofen, flurbiprofen, ketoprofen and naproxen, a cell line was developed stably expressing CYP2C10 cDNA. A retroviral vector construct, contai

  14. Comparative study of the metabolism of drug substrates by human cytochrome P450 3A4 expressed in bacterial, yeast and human lymphoblastoid cells.

    Science.gov (United States)

    Andrews, J; Abd-Ellah, M F; Randolph, N L; Kenworthy, K E; Carlile, D J; Friedberg, T; Houston, J B

    2002-11-01

    1. The aim was to compare the metabolic activity of human CYP3A4 expressed in bacteria (E. coli), yeast (S. cerevisiae) and human lymphoblastoid cells (hBl), with the native CYP3A4 activity observed in a panel of human livers. 2. Three CYP3A4 substrates were selected for study: dextromethorphan (DEM), midazolam (MDZ) and diazepam (DZ). The substrate metabolism in each of the four systems was characterized by deriving the kinetic parameters K(m) or S(50), V(max) and intrinsic clearance (CL(int)) or maximum clearance (CL(max)) from the kinetic profiles; the latter differing by 100-fold across the three substrates. 3. The K(m) or S(50) for the formation of metabolites 3-methoxymorphinan (MEM), 1'-hydroxymidazolam (1'-OH MDZ) and 3-hydroxydiazepam (3HDZ) compared well in all systems. For CYP3A4-mediated metabolism of DEM, MDZ and DZ, the V(max) for hBl microsomes were generally 2-9-fold higher than the respective yeast and human liver microsomes and E. coli membrane preparations, resulting in greater CL(int) or CL(max). In the case of 3HDZ formation, non-linear kinetics were observed for E. coli, hBl microsomes and human liver microsomes, whereas the kinetics observed for S. cerevisiae were linear. 4. The use of native human liver microsomes for drug metabolic studies will always be preferable. However, owing to the limited availability of human tissues, we find it is reasonable to use any of the recombinant systems described herein, since all three recombinant systems gave good predictions of the native human liver enzyme activities.

  15. Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells.

    Science.gov (United States)

    Cheng, An-Chin; Jian, Cheng-Bang; Huang, Yu-Ting; Lai, Ching-Shu; Hsu, Ping-Chi; Pan, Min-Hsiung

    2007-11-01

    Uncaria tomentosa (Wild.) DC., found in the Amazon rain forest in South-America and known commonly as cat's claw, has been used in traditional medicine to prevent and treat inflammation and cancer. Recently, it has been found to possess potent anti-inflammation activities. In this study, we extracted cat's claw using four different solvents of different polarities and compared their relative influence on proliferation in human premyelocytic leukemia HL-60 cell lines. Cat's claw n-hexane extracts (CC-H), ethyl acetate extracts (CC-EA) and n-butanol extracts (CC-B) had a greater anti-cancer effect on HL-60 cells than those extracted with methanol (CC-M). Furthermore, CC-EA induced DNA fragmentation in HL-60 cells in a clearly more a concentration- and time-dependent manner than the other extracts. CC-EA-induced cell death was characterized by cell body shrinkage and chromatin condensation. Further investigating the molecular mechanism behind CC-EA-induced apoptosis, sells treated with CC-EA underwent a rapid loss of mitochondrial transmembrane (DeltaPsi(m)) potential, stimulation of phosphatidylserine flip-flop, release of mitochondrial cytochrome c into cytosol, induction of caspase-3 activity in a time-dependent manner, and induced the cleavage of DNA fragmentation factor (DFF-45) and PARP poly-(ADP-ribose) polymerase (PARP). CC-EA promoted the up-regulation of Fas before the processing and activation of procaspase-8 and cleavage of Bid. In addition, the apoptosis induced by CC-EA was accompanied by up-regulation of Bax, down-regulation of Bcl-X(L) and cleavage of Mcl-1, suggesting that CC-EA may have some compounds that have anti-cancer activities and that further studies using cat's claw extracts need to be pursued. Taken together, the results of our studies show clearly that CC-EA's induction of apoptosis in HL-60 cells may make it very important in the development of medicine that can trigger chemopreventive actions in the body.

  16. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

    Science.gov (United States)

    Ye, Meiling; Tang, Ling; Luo, Mengjun; Zhou, Jing; Guo, Bin; Liu, Yangyuan; Chen, Bo

    2014-11-01

    Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV-vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the

  17. A forskolin derivative, FSK88, induces apoptosis in human gastric cancer BGC823 cells through caspase activation involving regulation of Bcl-2 family gene expression, dissipation of mitochondrial membrane potential and cytochrome c release.

    Science.gov (United States)

    Li, Zhonghai; Wang, Jingze

    2006-11-01

    FSK88, a forskolin derivative, was extracted and purified from cultured tropical plant roots, Coleus forskohlii. Our previous studies have demonstrated that FSK88 can inhibit HL-60 cell proliferation and induce the differentiation of HL-60 cells to monocyte macrophages. In this study, we showed that FSK88 can induce apoptotic death of human gastric cancer BGC823 cells in a dose- and time-dependent manner. Results showed that FSK88-induced apoptosis was accompanied by the mitochondrial release of cytochrome c and activation of caspase-3 in BGC823 cells. Furthermore, treatment with caspase-3 inhibitor (z-DEVD-fmk) was capable of preventing the FSK88-induced caspase-3 activity and apoptosis. FSK88-induced apoptosis in human gastric cancer BGC823 cells was also accompanied by the up-regulation of Bax, Bad and down-regulation of Bcl-2. Theses results clearly demonstrated that the induction of apoptosis by FSK88 involved multiple cellular and molecular pathways and strongly suggest that pro- and anti-apoptotic Bcl-2 family genes, mitochondrial membrane potential (Deltapsi(m)), cytochrome c, and caspase-3, participate in the FSK88-induced apoptotic process in human gastric cancer BGC823 cells.

  18. Exon-specific northern analysis and rapid amplification of cDNA ends (RACE) reveal that the proximal promoter II (PII) is responsible for aromatase cytochrome P450 (CYP19) expression in human ovary.

    Science.gov (United States)

    Jenkins, C; Michael, D; Mahendroo, M; Simpson, E

    1993-11-01

    Estrogens are synthesized from C19 steroids by a unique form of cytochrome P450, aromatase cytochrome P-450 (P-450AROM; the product of the CYP19 gene). We have shown that tissue-specific expression of human P-450AROM is determined, in part, by the use of alternative promoters. Previous methods of analysis for determining the specific 5'-termini of the different transcripts included S1 nuclease protection, primer extension, and Northern analysis. In the present study we have used the RACE procedure (rapid amplification of cDNA ends) to amplify and clone the 5' termini of P-450AROM transcripts expressed in human corpus luteum (CL). Sequencing of the resulting clones supports the results of the previously performed studies. Specifically, the proximal promoter, PII, is the predominant promoter utilized in CL, such that the start of transcription occurs 26 bp downstream of the putative TATA sequence. A minority of the clones possess an alternative 5'-end, namely I.3. Exon-specific Northern analysis confirms that the majority of the P-450AROM transcripts in CL tissue contain sequence specific for promoter II. Similarly, exon-specific Northern analysis indicates that transcripts in human follicles, as well as granulosa cells in culture, contain primarily sequence specific for promoter II.

  19. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Increases Reactive Oxygen Species Production in Human Endothelial Cells Via Induction of Cytochrome P4501A1

    OpenAIRE

    2010-01-01

    Studies in our laboratory have demonstrated that subchronic 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) exposure of adult mice results in hypertension, cardiac hypertrophy, and reduced nitric oxide (NO)-mediated vasodilation. Moreover, increased superoxide anion production was observed in cardiovascular organs of TCDD-exposed mice and this increase contributed to the reduced NO-mediated vasodilation. Since cytochrome P4501A1 (CYP1A1) can contribute to some TCDD-induced toxicity, we tested the...

  20. Traditional herbal formulas to as treatments for musculoskeletal disorders: Their inhibitory effects on the activities of human microsomal cytochrome p450s and udp-glucuronosyltransferases

    Directory of Open Access Journals (Sweden)

    Seong Eun Jin

    2016-01-01

    Abbreviation used: BPTSS: Bangpungtongseong-san, OJS: Ojeok-san, OYSGS: Oyaksungi-san, CYP450s: cytochrome P450s, UGTs: UDP-glucuronosyltransferases, MSDs: Musculoskeletal disorders, NSAIDs: nonsteroidal anti-inflammatory drugs, EOMCC: 7-ethoxy-methyloxy-3-cyanocoumarin, DBOMF: di(benzyloxymethoxyfluorescein, BOMCC: 7-benzyloxy-4-trifluoromethylcoumarin, HPLC: High-performance liquid chromatography, PDA: photo diode array, SEM: standard error of the mean, UDPGA: uridine 5'-diphosphoglucuronic acid.

  1. Drug Metabolism in Human Brain: High Levels of Cytochrome P4503A43 in Brain and Metabolism of Anti-Anxiety Drug Alprazolam to Its Active Metabolite

    OpenAIRE

    Varsha Agarwal; Reddy P. Kommaddi; Khader Valli; Daniel Ryder; Hyde, Thomas M.; Kleinman, Joel E; Strobel, Henry W.; Vijayalakshmi Ravindranath

    2008-01-01

    Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabo...

  2. Three new alternative splicing variants of human cytochrome P450 2D6 mRNA in human extratumoral liver tissue

    Institute of Scientific and Technical Information of China (English)

    Jian Zhuge; Ying-Nian Yu

    2004-01-01

    AIM: To identify the new alternative splicing variants of human CYP2D6 in human extratumoral liver tissue with RT-PCR and sequencing.METHODS: Full length of human CYP2D6 cDNAs was amplificated by reverse transcription-polymerase chain reaction (RT-PCR) from a human extratumoral liver tissue and cloned into pGEM-T vector. The cDNA was sequenced.Exons from 1 to 4 of human CYP2D6 cDNAs were also amplificated by RT-PCR from extratumoral liver tissues of17 human hepatocellular carcinomas. Some RT-PCR products were sequenced. Exons 1 to 4 of CYP2D6 gene were amplified by PCR from extratumoral liver tissue DNA.Two PCR products from extratumoral liver tissues expressing skipped mRNA were partially sequenced.RESULTS: One of the CYP2D6cDNAs had 470 nucleotides from 79 to 548 (3' portion of exons 1 to 5' portion of exon 4),and was skipped. Exons 1 to 4 of CYP2D6 cDNA were assayed with RT-PCR in 17 extratumoral liver tissues. Both wild type and skipped mRNAs were expressed in 4 samples,only wild type mRNA was expressed in 5 samples, and only skipped mRNA was expressed in 8 samples. Two more variants were identified by sequencing the RT-PCR products of exons 1 to 4 of CYP2D6cDNA. The second variant skipped 411 nucleotides from 175 to 585. This variant was identified in 4 different liver tissues by sequencing the RT-PCR products. We sequenced partially 2 of the PCR products amplified of CYP2D6 exon 1 to exon 4 from extratumoral liver tissue genomic DNA that only expressed skipped mRNA by RT-PCR. No point mutations around exon 1, intron 1, and exon 4, and no deletion in CYP2D6gene were detected. The third variant was the skipped exon 3, and 153 bp was lost.CONCLUSION: Three new alternative splicing variants of CYP2D6 mRNA have been identified. They may not be caused by gene mutation and may lose CYP2D6 activity and act as a down-regulator of CYP2D6.

  3. Simulation of multihaem cytochromes.

    Science.gov (United States)

    Soares, Cláudio M; Baptista, António M

    2012-03-09

    This article presents an overview of the simulation studies of the behaviour of multihaem cytochromes using theoretical/computational methodologies, with an emphasis on cytochrome c(3). It starts with the first studies using rigid molecules and continuum electrostatic models, where protonation and redox events were treated as independent. The gradual addition of physical details is then described, from the inclusion of proton isomerism, to the proper treatment of the thermodynamics of electron-proton coupling, to the explicit inclusion of the solvent and protein structural reorganization into the models, culminating with the method for molecular dynamics simulations at constant pH and reduction potential, where the solvation, conformational, protonation and redox features are all simulated in a fully integrated and coupled way. We end with a discussion of the strategies used to study the interaction between multihaem cytochromes, taking into account the further coupling effect introduced by the molecular association. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Enantioselective metabolism of the endocrine disruptor pesticide methoxychlor by human cytochromes P450 (P450s): major differences in selective enantiomer formation by various P450 isoforms.

    Science.gov (United States)

    Hu, Yiding; Kupfer, David

    2002-12-01

    Methoxychlor, a currently used pesticide that in mammals elicits proestrogenic/estrogenic activity and reproductive toxicity, has been classified as a prototype endocrine disruptor. Methoxychlor is prochiral, and its metabolites 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M); 1,1,1-trichloro- 2-(4-methoxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (catechol-M); and 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (tris-OH-M) are chiral; whereas 1,1,1-trichloro-2, 2-bis(4-hydroxyphenyl)ethane (bis-OH-M) is achiral. These metabolites are formed during methoxychlor incubation with liver microsomes or recombinant cytochrome p450s (rp450s). Since methoxychlor-metabolite enantiomers may have different estrogenic/antiestrogenic/antiandrogenic activities than corresponding racemates, the possibility that p450s preferentially generate or use R or S enantiomers, was examined. Indeed, rCYP1A2 and r2A6 mono-demethylated methoxychlor primarily into (R)-mono-OH-M at 91 and 75%, respectively, whereas rCYP1A1, 2B6, 2C8, 2C9, 2C19, and 2D6 formed the (S)-enantiomer at 69, 66, 75, 95, 96, and 80%, respectively. However, rCYP3A4, 3A5, and 2B1(rat) weakly demethylated methoxychlor without enantioselectivity. Human liver microsomes generated (S)-mono-OH-M (77-87%), suggesting that CYP1A2 and 2A6 display only minor catalytic contribution. P450 inhibitors demonstrated that CYP2C9 and possibly 2C19 are major hepatic catalysts forming (S)-mono-OH-M, and CYP1A2 is primarily involved in forming the (R)-mono-OH-M. Demethylation rate of (S)-mono-OH-M versus (R)-mono-OH-M forming achiral bis-OH-M by rCYP1A2 was 97/3, compared with 15/85 and 17/83 for rCYP2C9 and 2C19, respectively, indicating opposite substrate enantioselectivity of rCYP1A2 versus 2C9 and 2C19. Also, rCYP1A2 preferentially O-demethylated (R)-catechol-M into (R)-tris-OH-M (at 80%), contrasting r2C9 and r2C19 that yielded (S)-tris-OH-M at 80 and 77%, respectively. Ortho-hydroxylation of

  5. The mechanism by which oxygen and cytochrome c increase the rate of electron transfer from cytochrome a to cytochrome a3 of cytochrome c oxidase.

    Science.gov (United States)

    Bickar, D; Turrens, J F; Lehninger, A L

    1986-11-05

    When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c.

  6. Production of gold nanoparticles by Streptomyces djakartensis isolate B-5

    Directory of Open Access Journals (Sweden)

    Sara Biglari

    2014-09-01

    Full Text Available  Objective(s: Biosynthesis of gold nanoparticles (NGPs is environmentally safer than chemical and physical procedures. This method requires no use of toxic solvents and synthesis of dangerous products and is environmentally safe. In this study, we report the biosynthesis of NGPs using Streptomyces djakartensis isolate B-5. Materials and Methods: NGPs were biosynthesized by reducing aqueous gold chloride solution via a Streptomyces isolate without the need for any additive for protecting nanoparticles from aggregation. We characterized the responsible Streptomycete; its genome DNA was isolated, purified and 16S rRNA was amplified by PCR. The amplified isolate was sequenced; using the BLAST search tool from NCBI, the microorganism was identified to species level. Results: Treating chloroauric acid solutions with this bacterium resulted in reduction of gold ions and formation of stable NGPs. TEM and SEM electro micrographs of NGPs indicated size range from 2- 25 nm with average of 9.09 nm produced intracellular by the bacterium. SEM electro micrographs revealed morphology of spores and mycelia. The amplified PCR fragment of 16S rRNA gene was cloned and sequenced from both sides; it consisted of 741 nucleotides. According to NCBI GenBank, the bacterium had 97.1% homology with Streptomyces djakartensis strain RT-49. The GenBank accession number for partial 16S rRNA gene was recorded as JX162550. Conclusion: Optimized application of such findings may create applications of Streptomycetes for use as bio-factories in eco-friendly production of NGPs to serve in demanding industries and related biomedical areas. Research in this area should also focus on the unlocking the full mechanism of NGPs biosynthesis by Streptomycetes.

  7. On the association between HLA-A1 and B5 and clinical forms of schistosomiasis mansoni

    Directory of Open Access Journals (Sweden)

    P. H. Cabello

    1991-03-01

    Full Text Available The association between both HLA-A1 and B5 antigens and chronic forms of human schistosomiasis was studied in 64 patients and 26 normal controls from a southern Brazilian hospital. No apparent correlation between the chronic forms of the disease and the expression of those antigens was detected. However, the analysis of these date together with those observed on an Egyptian sample suggests that the presence of either of the antigens and the hepatomegalic forms of schistosomiasis is significant, without heterogeneity. Converseley, the association of histocompatibility antigens with splenogegaly is consistent and significant only for HLA-B5, but not HLA-A1

  8. Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth.

    Directory of Open Access Journals (Sweden)

    Lingyi Fu

    Full Text Available Berberine (BBR, an isoquinoline derivative alkaloid isolated from Chinese herbs, has a long history of uses for the treatment of multiple diseases, including cancers. However, the precise mechanisms of actions of BBR in human lung cancer cells remain unclear. In this study, we investigated the molecular mechanisms by which BBR inhibits cell growth in human non-small-cell lung cancer (NSCLC cells. Treatment with BBR promoted cell morphology change, inhibited cell migration, proliferation and colony formation, and induced cell apoptosis. Further molecular mechanism study showed that BBR simultaneously targeted multiple cell signaling pathways to inhibit NSCLC cell growth. Treatment with BBR inhibited AP-2α and AP-2β expression and abrogated their binding on hTERT promoters, thereby inhibiting hTERT expression. Knockdown of AP-2α and AP-2β by siRNA considerably augmented the BBR-mediated inhibition of cell growth. BBR also suppressed the nuclear translocation of p50/p65 NF-κB proteins and their binding to COX-2 promoter, causing inhibition of COX-2. BBR also downregulated HIF-1α and VEGF expression and inhibited Akt and ERK phosphorylation. Knockdown of HIF-1α by siRNA considerably augmented the BBR-mediated inhibition of cell growth. Moreover, BBR treatment triggered cytochrome-c release from mitochondrial inter-membrane space into cytosol, promoted cleavage of caspase and PARP, and affected expression of BAX and Bcl-2, thereby activating apoptotic pathway. Taken together, these results demonstrated that BBR inhibited NSCLC cell growth by simultaneously targeting AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF, PI3K/AKT, Raf/MEK/ERK and cytochrome-c/caspase signaling pathways. Our findings provide new insights into understanding the anticancer mechanisms of BBR in human lung cancer therapy.

  9. The reaction of neuroglobin with potential redox protein partners cytochrome b5  and cytochrome c

    DEFF Research Database (Denmark)

    Fago, Angela; Mathews, A.J.; Moens, L.

    2006-01-01

    Previously identified, potentially neuroprotective reactions of neuroglobin require the existence of yet unknown redox partners. We show here that the reduction of ferric neuroglobin by cytochrome b5 is relatively slow (k=6×102M-1s-1 at pH 7.0) and thus is unlikely to be of physiological signific...... significance. In contrast, the reaction between ferrous neuroglobin and ferric cytochrome c is very rapid (k=2×107M-1s-1) with an apparent overall equilibrium constant of 1μM. Based on this data we propose that ferrous neuroglobin may well play a role in preventing apoptosis...

  10. Data of evolutionary structure change: 1B5XA-1GHLA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1B5XA-1GHLA 1B5X 1GHL A A -KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGY...NTRATNYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLACSALLQDNIADAVACAKRVVRDPQGIRAWVAWRNRCQNRDVRQYVQGCGV GK...ID> A 1GHLA TNRNT-DGS

  11. 17 CFR 240.12b-5 - Determination of affiliates of banks.

    Science.gov (United States)

    2010-04-01

    ... banks. 240.12b-5 Section 240.12b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Securities Exchange Act of 1934 General § 240.12b-5 Determination of affiliates of banks. In determining whether a person is an “affiliate” or “parent” of a bank or whether a bank is a “subsidiary” or...

  12. Virtual Screening and Prediction of Site of Metabolism for Cytochrome P450 1A2 Ligands

    DEFF Research Database (Denmark)

    Vasanthanathan, P.; Hritz, Jozef; Taboureau, Olivier

    2009-01-01

    With the availability of an increasing number of high resolution 3D structures of human cytochrome P450 enzymes, structure-based modeling tools are more readily used. In this study we explore the possibilities of using docking and scoring experiments on cytochrome P450 1A2. Three different...... and earlier classification data using machine learning methods. The possibilities and limitations of using structure-based drug design tools for cytochrome P450 1A2 come to light and are discussed....

  13. Regioselective differences in C(8)- and N-oxidation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline by human and rat liver microsomes and cytochromes P450 1A2.

    Science.gov (United States)

    Turesky, R J; Parisod, V; Huynh-Ba, T; Langouët, S; Guengerich, F P

    2001-07-01

    The metabolism of the mutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) was investigated with human and rat liver microsomes, recombinant human cytochrome P450 1A2 (P450 1A2) expressed in Escherichia coli cells, and rat P450 1A2. Human liver microsomes and human P450 1A2 catalyzed the oxidation of the exocyclic amine group of MeIQx to form the genotoxic product 2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline (HONH-MeIQx). Human P450 1A2 also catalyzed the oxidation of C(8)-methyl group of MeIQx to form 2-amino-(8-hydroxymethyl)-3-methylimidazo[4,5-f]quinoxaline (8-CH(2)OH-IQx), 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carbaldehyde (IQx-8-CHO), and 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH). Thus, chemically stable C(8)-oxidation products of MeIQx may be useful biomarkers of P450 1A2 activity in humans. Rat liver microsomes were 10-15-fold less active than the human counterpart at both N-oxidation and C(8)-oxidation of MeIQx when expressed as nanomoles of product formed per minute per nanomoles of P450 1A2. Differences in regioselective oxidation of MeIQx were also observed with human and rat liver microsomes and the respective P450 1A2 orthologs. In contrast to human liver microsomes and P450 1A2, rat liver microsomes and purified rat P4501A2 were unable to catalyze the oxidation of MeIQx to the carboxylic derivative IQx-8-COOH, an important detoxication product formed in humans. However, rat liver microsomes and rat P4501A2, but not human liver microsomes or human P450 1A2, extensively catalyzed ring oxidation at the C-5 position of MeIQx to form the detoxication product 2-amino-3,8-dimethyl-5-hydroxyimidazo[4,5-f]quinoxaline (5-HO-MeIQx). There are important differences between human and rat P450 1A2, both in catalytic activities and oxidation pathways of MeIQx, that may affect the biological activity of this carcinogen and must be considered when assessing human health risk.

  14. Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: relevance of animal affective systems to human disorders, with a focus on resilience to adverse events.

    Science.gov (United States)

    Harro, Jaanus; Kanarik, Margus; Matrov, Denis; Panksepp, Jaak

    2011-10-01

    The search for novel antidepressants may be facilitated by pre-clinical animal models that relay on specific neural circuit and related neurochemical endpoint measures, which are anchored in concrete neuro-anatomical and functional neural-network analyzes. One of the most important initial considerations must be which regions of the brain are candidates for the maladaptive response to depressogenic challenges. Consideration of persistent differences or changes in the activity of cerebral networks can be achieved by mapping oxidative metabolism in ethologically or pathogenetically relevant animal models. Cytochrome oxidase histochemistry is a technique suitable to detect regional long-term brain activity changes relative to control conditions and has been used in a variety of animal models. This work is summarized and indicates that major changes occur mainly in subcortical areas, highlighting specific brain regions where some alterations in regional oxidative metabolism may represent adaptive changes to depressogenic adverse life events, while others may reflect failures of adaptation. Many of these changes in oxidative metabolism may depend upon the integrity of serotonergic neurotransmission, and occur in several brain regions shown by other techniques to be involved in endogenous affective circuits that control emotional behaviors as well as related higher brain regions that integrate learning and cognitive information processing. These brain regions appear as primary targets for further identification of endophenotypes specific to affective disorders.

  15. The cytochrome p450 homepage.

    Science.gov (United States)

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  16. Oxidation of N-Nitrosoalkylamines by human cytochrome P450 2A6: sequential oxidation to aldehydes and carboxylic acids and analysis of reaction steps.

    Science.gov (United States)

    Chowdhury, Goutam; Calcutt, M Wade; Guengerich, F Peter

    2010-03-12

    Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH(3)CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect ((D)k(app) approximately 10), which was highly expressed in a variety of competitive and non-competitive experiments. The (D)k(app) for DEN was approximately 3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO(2)H and CH(3)CO(2)H, respectively. In neither case was a lag observed, which was unexpected considering the k(cat) and K(m) parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde).

  17. Structural and biophysical characterization of human cytochromes P450 2B6 and 2A6 bound to volatile hydrocarbons: analysis and comparison.

    Science.gov (United States)

    Shah, Manish B; Wilderman, P Ross; Liu, Jingbao; Jang, Hyun-Hee; Zhang, Qinghai; Stout, C David; Halpert, James R

    2015-04-01

    X-ray crystal structures of complexes of cytochromes CYP2B6 and CYP2A6 with the monoterpene sabinene revealed two distinct binding modes in the active sites. In CYP2B6, sabinene positioned itself with the putative oxidation site located closer to the heme iron. In contrast, sabinene was found in an alternate conformation in the more compact CYP2A6, where the larger hydrophobic side chains resulted in a significantly reduced active-site cavity. Furthermore, results from isothermal titration calorimetry indicated a much more substantial contribution of favorable enthalpy to sabinene binding to CYP2B6 as opposed to CYP2A6, consistent with the previous observations with (+)-α-pinene. Structural analysis of CYP2B6 complexes with sabinene and the structurally similar (3)-carene and comparison with previously solved structures revealed how the movement of the F206 side chain influences the volume of the binding pocket. In addition, retrospective analysis of prior structures revealed that ligands containing -Cl and -NH functional groups adopted a distinct orientation in the CYP2B active site compared with other ligands. This binding mode may reflect the formation of Cl-π or NH-π bonds with aromatic rings in the active site, which serve as important contributors to protein-ligand binding affinity and specificity. Overall, the findings from multiple techniques illustrate how drugs metabolizing CYP2B6 and CYP2A6 handle a common hydrocarbon found in the environment. The study also provides insight into the role of specific functional groups of the ligand that may influence the binding to CYP2B6.

  18. Theoretical study of the cytochrome P450 mediated metabolism of phosphorodithioate pesticides

    DEFF Research Database (Denmark)

    Rydberg, Patrik

    2012-01-01

    The toxicity of phosphorodithioate pesticides is due to the formation of the active oxane product through desulfurization by cytochrome P450 enzymes, both in humans and insects. During this desulfurization, inhibition of cytochrome P450 and a loss of heme has been observed. Here, we study...

  19. Effect of a New Prokinetic Agent DA-9701 Formulated with Corydalis Tuber and Pharbitidis Semen on Cytochrome P450 and UDP-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Hye Young Ji

    2012-01-01

    Full Text Available DA-9701 is a new botanical drug composed of the extracts of Corydalis tuber and Pharbitidis semen, and it is used as an oral therapy for the treatment of functional dyspepsia in Korea. The inhibitory potentials of DA-9701 and its component herbs, Corydalis tuber and Pharbitidis semen, on the activities of seven major human cytochrome P450 (CYP enzymes and four UDP-glucuronosyltransferase (UGT enzymes in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. DA-9701 and Corydalis tuber extract slightly inhibited UGT1A1-mediated etoposide glucuronidation, with 50% inhibitory concentration (IC50 values of 188 and 290 μg/mL, respectively. DA-9701 inhibited CYP2D6-catalyzed bufuralol 1′-hydroxylation with an inhibition constant (Ki value of 6.3 μg/mL in a noncompetitive manner. Corydalis tuber extract competitively inhibited CYP2D6-mediated bufuralol 1′-hydroxylation, with a Ki value of 3.7 μg/mL, whereas Pharbitidis semen extract showed no inhibition. The volume in which the dose could be diluted to generate an IC50 equivalent concentration (volume per dose index value of DA-9701 for inhibition of CYP2D6 activity was 1.16 L/dose, indicating that DA-9701 may not be a potent CYP2D6 inhibitor. Further clinical studies are warranted to evaluate the in vivo extent of the observed in vitro interactions.

  20. MiR-181b-5p downregulates NOVA1 to suppress proliferation, migration and invasion and promote apoptosis in astrocytoma.

    Directory of Open Access Journals (Sweden)

    Feng Zhi

    Full Text Available MicroRNAs (miRNAs are small, short noncoding RNAs that modulate the expression of numerous genes by targeting their mRNA. Numerous abnormal miRNA expression patterns are observed in various human malignancies, and certain miRNAs can act as oncogenes or tumor suppressors. Astrocytoma, the most common neuroepithelial cancer, represents the majority of malignant brain tumors in humans. In our previous studies, we found that the downregulation of miR-181b-5p in astrocytomas is associated with a poor prognosis. The aim of the present study was to investigate the functional role of miR-181b-5p and its possible target genes. miR-181b-5p was significantly downregulated in astrocytoma specimens, and the reduced expression of miR-181b-5p was inversely correlated with the clinical stage. The ectopic expression of miR-181b-5p inhibited proliferation, migration and invasion and induced apoptosis in astrocytoma cancer cells in vitro. The NOVA1 (neuro-oncological ventral antigen 1 gene was further identified as a novel direct target of miR-181b-5p. Specifically, miR-181b-5p bound directly to the 3'-untranslated region (UTR of NOVA1 and suppressed its expression. In clinical specimens, NOVA1 was overexpressed, and its protein levels were inversely correlated with miR-181b-5p expression. Furthermore, the changing level of NOVA1 was significantly associated with a poor survival outcome. Similar to restoring miR-181b-5p expression, downregulating NOVA1 inhibited cell growth, migration and invasion. Overexpression of NOVA1 reversed the inhibitory effects of miR-181b-5p. Our results indicate that miR-181b-5p is a tumor suppressor in astrocytoma that inhibits tumor progression by targeting NOVA1. These findings suggest that miR-181b-5p may serve as a novel therapeutic target for astrocytoma.

  1. MiR-181b-5p downregulates NOVA1 to suppress proliferation, migration and invasion and promote apoptosis in astrocytoma.

    Science.gov (United States)

    Zhi, Feng; Wang, Qiang; Deng, Danni; Shao, Naiyuan; Wang, Rong; Xue, Lian; Wang, Suinuan; Xia, Xiwei; Yang, Yilin

    2014-01-01

    MicroRNAs (miRNAs) are small, short noncoding RNAs that modulate the expression of numerous genes by targeting their mRNA. Numerous abnormal miRNA expression patterns are observed in various human malignancies, and certain miRNAs can act as oncogenes or tumor suppressors. Astrocytoma, the most common neuroepithelial cancer, represents the majority of malignant brain tumors in humans. In our previous studies, we found that the downregulation of miR-181b-5p in astrocytomas is associated with a poor prognosis. The aim of the present study was to investigate the functional role of miR-181b-5p and its possible target genes. miR-181b-5p was significantly downregulated in astrocytoma specimens, and the reduced expression of miR-181b-5p was inversely correlated with the clinical stage. The ectopic expression of miR-181b-5p inhibited proliferation, migration and invasion and induced apoptosis in astrocytoma cancer cells in vitro. The NOVA1 (neuro-oncological ventral antigen 1) gene was further identified as a novel direct target of miR-181b-5p. Specifically, miR-181b-5p bound directly to the 3'-untranslated region (UTR) of NOVA1 and suppressed its expression. In clinical specimens, NOVA1 was overexpressed, and its protein levels were inversely correlated with miR-181b-5p expression. Furthermore, the changing level of NOVA1 was significantly associated with a poor survival outcome. Similar to restoring miR-181b-5p expression, downregulating NOVA1 inhibited cell growth, migration and invasion. Overexpression of NOVA1 reversed the inhibitory effects of miR-181b-5p. Our results indicate that miR-181b-5p is a tumor suppressor in astrocytoma that inhibits tumor progression by targeting NOVA1. These findings suggest that miR-181b-5p may serve as a novel therapeutic target for astrocytoma.

  2. Cytochrome P450 1B1, a new keystone in gene-environment interactions related to human head and neck cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Thier, R. [Dept. Physiology and Pharmacology, Univ. of Queensland, St. Lucia, Qld. (Australia); Bruening, T. [Berufsgenossenschaftliches Forschungsinstitut fuer Arbeitsmedizin (BGFA), Bochum (Germany); Roos, P.H.; Bolt, H.M. [Inst. fuer Arbeitsphysiologie an der Univ. Dortmund (IfADo), Dortmund (Germany)

    2002-06-01

    Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with other of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu (CYP1B1*3) and Asn453Ser (CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke. (orig.)

  3. Benzydamine N-oxygenation as an index for flavin-containing monooxygenase activity and benzydamine N-demethylation by cytochrome P450 enzymes in liver microsomes from rats, dogs, monkeys, and humans.

    Science.gov (United States)

    Taniguchi-Takizawa, Tomomi; Shimizu, Makiko; Kume, Toshiyuki; Yamazaki, Hiroshi

    2015-02-01

    Benzydamine is an anti-inflammatory drug that undergoes flavin-containing monooxygenase (FMO)-dependent metabolism to benzydamine N-oxide; however, benzydamine N-demethylation is also catalyzed by liver microsomes. In this study, benzydamine N-oxygenation and N-demethylation mediated by liver microsomes from rats, dogs, monkeys, and humans were characterized comprehensively. Values of the maximum velocity/Michaelis constant ratio for benzydamine N-oxygenation by liver microsomes from dogs and rats were higher than those from monkeys and humans, despite roughly similar rates of N-demethylation in the four species. Benzydamine N-oxygenation by liver microsomes was extensively suppressed by preheating liver microsomes at 45 °C for 5 min or at 37 °C for 5-10 min without NADPH, and benzydamine N-demethylation was strongly inhibited by 1-aminbobenztriazole. Liver microsomal benzydamine N-oxygenation was inhibited by dimethyl sulfoxide and methimazole, whereas N-demethylation was inhibited by quinidine. High benzydamine N-oxygenation activities of recombinant human FMO1 and FMO3 and human kidney microsomes were observed at pH 8.4, whereas N-demethylation by cytochrome P450 2D6 was faster at pH 7.4. These results suggest that benzydamine N-oxygenation and N-demethylation are mediated by FMO1/3 and P450s, respectively, and that the contribution of FMO to metabolic eliminations of new drug candidates might be underestimated under certain experimental conditions suitable for P450 enzymes.

  4. EGFR Signaling Regulates Maspin/SerpinB5 Phosphorylation and Nuclear Localization in Mammary Epithelial Cells

    Science.gov (United States)

    Reina, Jeffrey; Morais Freitas, Vanessa

    2016-01-01

    Maspin (SerpinB5) is a non-inhibitory serpin (serine protease inhibitor) with very diverse biological activities including regulation of cell adhesion, migration, death, control of gene expression and oxidative stress response. Initially described as a tumor and metastasis suppressor, clinical data brought controversies to the field, as some studies reported no correlation between SerpinB5 expression and prognosis value. These data underscore the importance of understanding SerpinB5 function in a normal physiological context and the molecular mechanism involved. Several SerpinB5 phosphoforms have been detected in different cell lines, but the signaling pathways involved and the biological significance of this post-translational modification in vivo remains to be explored. In this study we investigated SerpinB5 expression, subcellular localization and phosphorylation in different stages of the mouse mammary gland development and the signaling pathway involved. Here we show that SerpinB5 is first detected in late pregnancy, reaches its highest levels in lactation and remains at constant levels during post-lactational regression (involution). Using high resolution isoelectric focusing followed but immunoblot, we found at least 8 different phosphoforms of SerpinB5 during lactation, which decreases steadily at the onset of involution. In order to investigate the signaling pathway involved in SerpinB5 phosphorylation, we took advantage of the non-transformed MCF-10A model system, as we have previously observed SerpinB5 phosphorylation in these cells. We detected basal levels of SerpinB5 phosphorylation in serum- and growth factor-starved cells, which is due to amphiregulin autocrine activity on MCF-10A cells. EGF and TGF alpha, two other EGFR ligands, promote important SerpinB5 phosphorylation. Interestingly, EGF treatment is followed by SerpinB5 nuclear accumulation. Altogether, these data indicate that SerpinB5 expression and phosphorylation are developmentally

  5. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    Full Text Available VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.

  6. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

    Science.gov (United States)

    Lacroix, Benoît; Citovsky, Vitaly

    2011-01-01

    VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.

  7. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5

    Science.gov (United States)

    Hajo, Karima; Lenoci, Leonardo; Bron, Peter A.; Dijkstra, Annereinou; Alkema, Wynand; Wels, Michiel; Siezen, Roland J.; Minkova, Svetlana; van Hijum, Sacha A. F. T.

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 originates from homemade Bulgarian yogurt and was selected for its ability to form a strong association with Streptococcus thermophilus. The genome sequence will facilitate elucidating the genetic background behind the contribution of LBB.B5 to the taste and aroma of yogurt and its exceptional protocooperation with S. thermophilus.

  8. 26 CFR 1.410(b)-5 - Average benefit percentage test.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Average benefit percentage test. 1.410(b)-5...) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.410(b)-5 Average benefit percentage test. (a) General rule. A plan satisfies the average benefit percentage test of...

  9. Data of evolutionary structure change: 1B5XA-2G4NF [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1B5XA-2G4NF 1B5X 2G4N A F KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYN...G HHHH -GGGG -- EVID>EVID> 0 2G4N F 2G4NF ELKDL...242798 2.054610013961792 4.014041900634766 ...EVID> 1 2G4N F 2G4NF

  10. Data of evolutionary structure change: 1B5WA-2G4NF [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1B5WA-2G4NF 1B5W 2G4N A F KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYN...G HHHH -GGGG -- EVID>EVID> 0 2G4N F 2G4NF ELKDL...18 2.079693078994751 4.073005199432373 EVID>...EVID> 1 2G4N F 2G4NF

  11. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation

    Energy Technology Data Exchange (ETDEWEB)

    Gábelová, Alena, E-mail: alena.gabelova@savba.sk [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Poláková, Veronika [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Prochazka, Gabriela [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden); Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77 Stockholm (Sweden); Kretová, Miroslava; Poloncová, Katarína; Regendová, Eva; Luciaková, Katarína [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Segerbäck, Dan [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden)

    2013-08-15

    To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts were found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2 h, a reduction in micronuclei frequency was also found. However, after a 24 h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis. - Highlights: • B[a]P:DBC mixtures were less genotoxic in V79MZh1A1 cells than B[a]P and DBC alone. • An antagonism between B[a]P and DBC was determined in rat liver WB-F344 cells. • The inhibition of CYP1a1 expression by B[a]P:DBC mixture

  12. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies.

    Science.gov (United States)

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a

  13. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes.

    Science.gov (United States)

    Misaka, Shingen; Kawabe, Keisuke; Onoue, Satomi; Werba, José Pablo; Giroli, Monica; Tamaki, Sekihiro; Kan, Toshiyuki; Kimura, Junko; Watanabe, Hiroshi; Yamada, Shizuo

    2013-01-01

    The effects of green tea catechins on the main drug-metabolizing enzymatic system, cytochrome P450 (CYP), have not been fully elucidated. The objective of the present study was to evaluate the effects of green tea extract (GTE, total catechins 86.5%, w/w) and (-)-epigallocatechin-3-gallate (EGCG) on the activities of CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A in vitro, using pooled human liver and intestinal microsomes. Bupropion hydroxylation, amodiaquine N-deethylation, (S)-mephenytoin 4'-hydroxylation, dextromethorphan O-demethylation and midazolam 1'-hydroxylation were assessed in the presence or absence of various concentrations of GTE and EGCG to test their effects on CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A activities, respectively. Each metabolite was quantified using UPLC/ESI-MS, and the inhibition kinetics of GTE and EGCG on CYP enzymes was analyzed. In human liver microsomes, IC50 values of GTE were 5.9, 4.5, 48.7, 25.1 and 13.8 µg/mL, for CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A, respectively. ECGC also inhibited these CYP isoforms with properties similar to those of GTE, and produced competitive inhibitions against CYP2B6 and CYP2C8, and noncompetitive inhibition against CYP3A. In human intestinal microsomes, IC50 values of GTE and EGCG for CYP3A were 18.4 µg/mL and 31.1 µM, respectively. EGCG moderately inhibited CYP3A activity in a noncompetitive manner. These results suggest that green tea catechins cause clinically relevant interactions with substrates for CYP2B6 and CYP2C8 in addition to CYP3A.

  14. Induction of digitoxigenin monodigitoxoside UDP-glucuronosyltransferase activity by glucocorticoids and other inducers of cytochrome P-450p in primary monolayer cultures of adult rat hepatocytes and in human liver.

    Science.gov (United States)

    Schuetz, E G; Hazelton, G A; Hall, J; Watkins, P B; Klaassen, C D; Guzelian, P S

    1986-06-25

    We have recently proposed that glucocorticoids induce cytochrome P-450p, a liver microsomal hemoprotein originally isolated from rats treated with the antiglucocorticoid pregnenolone 16 alpha-carbonitrile (PCN), through a mechanism that involves a stereospecific recognition system clearly distinguishable from the classic glucocorticoid receptor (Schuetz, E. G., Wrighton, S. A., Barwick, J. L., and Guzelian, P. S. (1984) J. Biol. Chem. 259, 1999-2012). We now report that digitoxigenin monodigitoxoside UDP-glucuronosyltransferase (DIG UDP-glucuronosyltransferase), a liver microsomal enzyme activity induced by PCN in rats, is also inducible, as is P-450p, in primary monolayer cultures of adult rat hepatocytes. DIG UDP-glucuronosyltransferase activity closely resembled reported characteristics of induction of P-450p in its time course of induction, concentration-response relationships, exclusivity of induction by steroids with glucocorticoid properties, unusual rank order of potency of glucocorticoid agonists, unusually high ED50 for induction by glucocorticoids, enhanced induction rather than inhibition by anti-glucocorticoids in the presence of glucocorticoids, and finally, induction by nonsteroidal inducers of P-450p. DIG UDP-glucuronosyltransferase activity was also readily detected in human liver microsomes and was elevated in two patients who had received inducers of P-450p. We conclude that the liver enzymes controlled by the postulated PCN recognition system include not only P-450p but also one or more UDP-glucuronosyltransferases.

  15. cMyc/miR-125b-5p signalling determines sensitivity to bortezomib in preclinical model of cutaneous T-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Valentina Manfè

    Full Text Available Successful/effective cancer therapy in low grade lymphoma is often hampered by cell resistance to anti-neoplastic agents. The crucial mechanisms responsible for this phenomenon are poorly understood. Overcoming resistance of tumor cells to anticancer agents, such as proteasome inhibitors, could improve their clinical efficacy. Using cutaneous T-cell lymphoma (CTCL as a model of the chemotherapy-resistant peripheral lymphoid malignancy, we demonstrated that resistance to proteasome inhibition involved a signaling between the oncogene cMyc and miR-125b-5p. Bortezomib repressed cMyc and simultaneously induced miR-125b-5p that exerted a cytoprotective effect through the downmodulation of MAD4. Overexpression of cMyc repressed miR-125b-5p transcription and sensitized lymphoma cells to bortezomib. The central role of miR-125b-5p was further confirmed in a mouse model of T-cell lymphoma, where xenotransplantation of human CTCL cells overexpressing miR-125b-5p resulted in enhanced tumor growth and a shorter median survival. Our findings describe a novel mechanism through which miR-125b-5p not only regulates tumor growth in vivo, but also increases cellular resistance to proteasome inhibitors via modulation of MAD4.

  16. Plasmodium yoelii vitamin B5 pantothenate transporter candidate is essential for parasite transmission to the mosquito.

    Science.gov (United States)

    Hart, Robert J; Lawres, Lauren; Fritzen, Emma; Ben Mamoun, Choukri; Aly, Ahmed S I

    2014-07-11

    In nearly all non-photosynthetic cells, pantothenate (vitamin B5) transport and utilization are prerequisites for the synthesis of the universal essential cofactor Coenzyme A (CoA). Early studies showed that human malaria parasites rely on the uptake of pantothenate across the parasite plasma membrane for survival within erythrocytes. Recently, a P. falciparum candidate pantothenate transporter (PAT) was characterized by functional complementation in yeast. These studies revealed that PfPAT mediated survival of yeast cells in low pantothenate concentrations and restored sensitivity of yeast cells lacking pantothenate uptake to fenpropimorph. In addition, PfPAT was refractory to deletion in P. falciparum in vitro, but nothing is known about the in vivo functions of PAT in Plasmodium life cycle stages. Herein, we used gene-targeting techniques to delete PAT in Plasmodium yoelii. Parasites lacking PAT displayed normal asexual and sexual blood stage development compared to wild-type (WT) and WT-like p230p(-) parasites. However, progression from the ookinete to the oocyst stage and sporozoite formation were completely abolished in pat(-) parasites. These studies provide the first evidence for an essential role of a candidate pantothenate transport in malaria transmission to Anopheles mosquitoes. This will set the stage for the development of PAT inhibitors against multiple parasite life cycle stages.

  17. Oxidation of 1-chloropyrene by human CYP1 family and CYP2A subfamily cytochrome P450 enzymes: catalytic roles of two CYP1B1 and five CYP2A13 allelic variants.

    Science.gov (United States)

    Shimada, Tsutomu; Murayama, Norie; Kakimoto, Kensaku; Takenaka, Shigeo; Lim, Young-Ran; Yeom, Sora; Kim, Donghak; Yamazaki, Hiroshi; Guengerich, F Peter; Komori, Masayuki

    2017-07-21

    1. 1-Chloropyrene, one of the major chlorinated polycyclic aromatic hydrocarbon contaminants, was incubated with human cytochrome P450 (P450 or CYP) enzymes including CYP1A1, 1A2, 1B1, 2A6, 2A13, 2B6, 2C9, 2D6, 2E1, 3A4 and 3A5. Catalytic differences in 1-chloropyrene oxidation by polymorphic two CYP1B1 and five CYP2A13 allelic variants were also examined. 2. CYP1A1 oxidized 1-chloropyrene at the 6- and 8-positions more actively than at the 3-position, while both CYP1B1.1 and 1B1.3 preferentially catalyzed 6-hydroxylation. 3. Five CYP2A13 allelic variants oxidized 8-hydroxylation much more than 6- and 3-hydroxylation, and the variant CYP2A13.3 was found to slowly catalyze these reactions with a lower kcat value than other CYP2A13.1 variants. 4. CYP2A6 catalyzed 1-chloropyrene 6-hydroxylation at a higher rate than the CYP2A13 enzymes, but the rate was lower than the CYP1A1 and 1B1 variants. Other human P450 enzymes had low activities towards 1-chloropyrene. 5. Molecular docking analysis suggested differences in the interaction of 1-chloropyrene with active sites of CYP1 and 2 A enzymes. In addition, a naturally occurring Thr134 insertion in CYP2A13.3 was found to affect the orientation of Asn297 in the I-helix in interacting with 1-chloropyrene (and also 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK) and caused changes in the active site of CYP2A13.3 as compared with CYP2A13.1.

  18. Cytochrome P450 (CYP450) Tests

    Science.gov (United States)

    Tests and Procedures Cytochrome P450 (CYP450) tests By Mayo Clinic Staff Your doctor may use cytochrome P450 (CYP450) tests to help determine how your ... find the right antidepressant. Genotyping tests, such as cytochrome P450 tests, may speed up the identification of ...

  19. Roles of Human CYP2A6 and Monkey CYP2A24 and 2A26 Cytochrome P450 Enzymes in the Oxidation of 2,5,2',5'-Tetrachlorobiphenyl.

    Science.gov (United States)

    Shimada, Tsutomu; Kakimoto, Kensaku; Takenaka, Shigeo; Koga, Nobuyuki; Uehara, Shotaro; Murayama, Norie; Yamazaki, Hiroshi; Kim, Donghak; Guengerich, F Peter; Komori, Masayuki

    2016-12-01

    2,5,2',5'-Tetrachlorobiphenyl (TCB) induced type I binding spectra with cytochrome P450 (P450) 2A6 and 2A13, with Ks values of 9.4 and 0.51 µM, respectively. However, CYP2A6 oxidized 2,5,2',5'-TCB to form 4-hydroxylated products at a much higher rate (∼1.0 minute(-1)) than CYP2A13 (∼0.02 minute(-1)) based on analysis by liquid chromatography-tandem mass spectrometry. Formation of 4-hydroxy-2,5,2',5'-TCB by CYP2A6 was greater than that of 3-hydroxy-2,5,2',5'-TCB and three other hydroxylated products. Several human P450 enzymes, including CYP1A1, 1A2, 1B1, 2B6, 2D6, 2E1, 2C9, and 3A4, did not show any detectable activities in oxidizing 2,5,2',5'-TCB. Cynomolgus monkey CYP2A24, which shows 95% amino acid identity to human CYP2A6, catalyzed 4-hydroxylation of 2,5,2',5'-TCB at a higher rate (∼0.3 minute(-1)) than CYP2A26 (93% identity to CYP2A6, ∼0.13 minute(-1)) and CYP2A23 (94% identity to CYP2A13, ∼0.008 minute(-1)). None of these human and monkey CYP2A enzymes were catalytically active in oxidizing other TCB congeners, such as 2,4,3',4'-, 3,4,3',4'-, and 3,5,3',5'-TCB. Molecular docking analysis suggested that there are different orientations of interaction of 2,5,2',5'-TCB with the active sites (over the heme) of human and monkey CYP2A enzymes, and that ligand interaction energies (U values) of bound protein-ligand complexes show structural relationships of interaction of TCBs and other ligands with active sites of CYP2A enzymes. Catalytic differences in human and monkey CYP2A enzymes in the oxidation of 2,5,2',5'-TCB are suggested to be due to amino acid changes at substrate recognition sites, i.e., V110L, I209S, I300F, V365M, S369G, and R372H, based on the comparison of primary sequences. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. New Arabidopsis thaliana cytochrome c partners: a look into the elusive role of cytochrome c in programmed cell death in plants.

    Science.gov (United States)

    Martínez-Fábregas, Jonathan; Díaz-Moreno, Irene; González-Arzola, Katiuska; Janocha, Simon; Navarro, José A; Hervás, Manuel; Bernhardt, Rita; Díaz-Quintana, Antonio; De la Rosa, Miguel Á

    2013-12-01

    Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.

  1. (DOP-PCR) technique to detect and isolate cytochrome P450

    African Journals Online (AJOL)

    Dr Manal Shalaby

    2012-02-07

    Feb 7, 2012 ... exogenous compounds, converting them to more soluble hydrophilic metabolites ... 2E1 metabolizes some endogenous physiological sub- strates; these ..... Approaches to deorphanization of human and microbial cytochrome.

  2. 17 CFR 240.10b5-2 - Duties of trust or confidence in misappropriation insider trading cases.

    Science.gov (United States)

    2010-04-01

    ... in misappropriation insider trading cases. 240.10b5-2 Section 240.10b5-2 Commodity and Securities... Devices and Contrivances § 240.10b5-2 Duties of trust or confidence in misappropriation insider trading... of insider trading under Section 10(b) of the Act and Rule 10b-5. The law of insider trading...

  3. Modulation of rat and human cytochromes P450 involved in PhIP and 4-ABP activation by an aqueous extract of Phyllanthus orbicularis.

    Science.gov (United States)

    Ferrer, Mirle; Cristófol, Carles; Sánchez-Lamar, Angel; Fuentes, Jorge Luís; Barbé, Jordi; Llagostera, Montserrat

    2004-02-01

    Phyllanthus orbicularis HBK (Euphorbiaceae) is a medicinal plant, endemic to Cuba, whose aqueous extract has proven antimutagenic effects against hydrogen peroxide and some promutagenic aromatic amines (AAs), in addition to its antiviral properties. In this paper, antimutagenesis of this extract against two carcinogenic AAs, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 4-aminobiphenyl (4-ABP) has been studied. Liver microsomal fractions from both induced rats and humans were used to metabolise both procarcinogenic compounds in the Salmonella assay. The plant extract was effective in reducing the mutagenesis of these AAs, activated by both kinds of fractions. The optimal antimutagenic effect was obtained when both AAs were metabolised by human enzymes, with an almost total reduction of 4-ABP mutagenesis and a decrease of about 75% of PhIP mutagenicity. Mutagenicity of both AAs, activated by induced rat fraction, was only decreased by about 50%. Inhibition by plant extract of alkoxyresorufin O-dealkylation activities, dependent on CYP1A, of both fractions was determined. In accordance with the results obtained, the inhibition or modulation of CYP1A subfamily activities, and possibly of CYP1A2, is thought to be the main mechanism of antimutagenesis of the aqueous extract of Phyllanthus orbicularis against 4-ABP and PhIP.

  4. Examination of metabolic pathways and identification of human liver cytochrome P450 isozymes responsible for the metabolism of barnidipine, a calcium channel blocker.

    Science.gov (United States)

    Teramura, T; Fukunaga, Y; Van Hoogdalem, E J; Watanabe, T; Higuchi, S

    1997-09-01

    1. In a human liver microsomal system, barnidipine was converted into three primary metabolites, an N-debenzylated product (M-1), a hydrolyzed product of the benzyl-pyrrolidine ester (M-3) and an oxidized product of the dihydropyridine ring (M-8). 2. Involvement of CYP3A in the three primary metabolic pathways was revealed by the following studies: (a) inhibition of CYP3A, (b) a correlation study using 10 individual human liver microsomes and (c) cDNA-expression studies. The secondary metabolites, M-2 and M-4 (pyridine forms of M-1 and M-3), were most likely generated from M-8 but were unlikely from M-1 or M-3. Involvement of CYP3A in the secondary pathways of metabolism is also suggested. 3. The possibility of interactions between barnidipine and coadministered drugs was examined in vitro. The formation rate of the primary metabolites was little affected by warfarin, theophylline, phenytoin, diclofenac and amitriptyline at concentrations of 200 microM, but was inhibited by glibenclamide, simvastatin and cyclosporin A. IC50 for the latter drugs was estimated to be > 200, 200 and 20 microM respectively, which was roughly > 200, 6000 and 50 times higher than their respective therapeutic plasma levels, suggesting that interactions with cyclosporin A, a CYP3A inhibitor, are of possible clinical relevance.

  5. Cytochrome P450 1A1 and 1B1 in human blood lymphocytes are not suitable as biomarkers of exposure to dioxin-like compounds: polymorphisms and interindividual variation in expression and inducibility.

    Science.gov (United States)

    van Duursen, Majorie B M; Sanderson, J Thomas; van den Berg, Martin

    2005-05-01

    Cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1) are phase I enzymes, the expression of which can be affected by many environmental compounds, including dioxins and dioxin-like compounds. Because CYP1A1 and CYP1B1 expression can easily be determined in peripheral blood lymphocytes, it is often suggested as biomarker of exposure to these compounds. In this study we investigated the interindividual differences in constitutive and induced CYP1A1-catalyzed ethoxyresorufin-O-deethylase (EROD) activity and CYP1A1 and CYP1B1 gene expression in human blood lymphocytes in a group of ten non-smoking females. Freshly isolated lymphocytes were cultured in medium containing the mitogen PHA and were exposed to the most potent dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or the less potent dioxin-like polychlorinated biphenyl 126 (PCB126). In addition, we determined the occurrence of the CYP1A1 MspI and CYP1B1 Leu432Val polymorphisms. All individuals showed a concentration-dependent increase of EROD activity by TCDD, which was significantly correlated with an increase in CYP1A1, but not CYP1B1 expression. The maximum induced EROD activity by TCDD was very different among the individuals, but the EC50 values were about the same. PCB126 also caused a concentration-dependent increase of EROD activity, but was a factor 100-1000 less potent than TCDD among the individuals. The allele frequencies for CYP1A1 MspI and CYP1B1 Leu432Val reflected a normal Caucasian population and in this study the polymorphisms had no apparent effect on the expression and activity of these enzymes. Our study shows a large interindividual variability in constitutive and induced EROD activity, and CYP1A1 and CYP1B1 expression in human lymphocytes. In addition, dioxin concentrations at which effects were observed in our in vitro study are about 10-fold higher than the human blood levels found in vivo, indicating that EROD activity and CYP1A1 and CYP1B1 expression in human lymphocytes might not be

  6. Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex.

    Science.gov (United States)

    Vukotic, Milena; Oeljeklaus, Silke; Wiese, Sebastian; Vögtle, F Nora; Meisinger, Chris; Meyer, Helmut E; Zieseniss, Anke; Katschinski, Doerthe M; Jans, Daniel C; Jakobs, Stefan; Warscheid, Bettina; Rehling, Peter; Deckers, Markus

    2012-03-01

    The terminal enzyme of the mitochondrial respiratory chain, cytochrome oxidase, transfers electrons to molecular oxygen, generating water. Within the inner mitochondrial membrane, cytochrome oxidase assembles into supercomplexes, together with other respiratory chain complexes, forming so-called respirasomes. Little is known about how these higher oligomeric structures are attained. Here we report on Rcf1 and Rcf2 as cytochrome oxidase subunits in S. cerevisiae. While Rcf2 is specific to yeast, Rcf1 is a conserved subunit with two human orthologs, RCF1a and RCF1b. Rcf1 is required for growth in hypoxia and complex assembly of subunits Cox13 and Rcf2, as well as for the oligomerization of a subclass of cytochrome oxidase complexes into respirasomes. Our analyses reveal that the cytochrome oxidase of mitochondria displays intrinsic heterogeneity with regard to its subunit composition and that distinct forms of respirasomes can be formed by complex variants.

  7. Simple groups with orders 2a3b5cpd,2a3b7cpd and 2a3b5c7d

    Institute of Scientific and Technical Information of China (English)

    JIANG Youyi; TAN Mingshu; LIU Xuefei

    2004-01-01

    This work deals with the power exponent r1 and r2 respectively of the maximal and second-maximal prime factors of the order of simple K4-group, and the classification for simple {5,7}'- K4-group G (i.e. |G| can not be divided by 5 nor by 7 or |π(G)| = 4 ), simple 5' - K4 -group G (i.e. |G| can not divided by 5 and |π(G)| =4) and simple 7'- K4 -group G (i.e. |G| can not divided by 7 and |π(G)| =4). It is derived that r1 =1, 2 and 4, and r2 is not greater than 4. All the simple K4 -groups with order 2a3b5cpd, 2a3b7cpd and 2a3b5c7d are obtained.

  8. Cytochrome P450-catalyzed binding of 3-methylsulfonyl-DDE and o,p'-DDD in human adrenal zona fasciculata/reticularis.

    Science.gov (United States)

    Lindhe, Orjan; Skogseid, Britt; Brandt, Ingvar

    2002-03-01

    3-Methylsulfonyl-2,2'-bis(4-chlorophenyl)-1,1'-dichloroethene (MeSO(2)-DDE) is a potent, tissue-specific toxicant that induces necrosis of the adrenal zona fasciculata following a local CYP11B1-catalyzed activation to a reactive intermediate in mice. Autoradiography was used to examine CYP11B1-catalyzed binding of MeSO(2)-[(14)C]DDE and the adrenocorticolytic drug 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichlorethane; (o,p'-[(14)C]DDD, Mitotane, Lysodren) in human adrenal tissue slice culture. Both compounds gave rise to a selective binding in the one sample of normal adrenal zona fasciculata/reticularis, leaving zona glomerulosa and the adrenal medulla devoid of binding. Addition of the CYP11B1 selective inhibitor metyrapone (50 microM) reduced MeSO(2)-[(14)C]DDE binding below the detection limit, whereas o,p'-[(14)C]DDD binding was reduced only by 42%. Selective binding of MeSO(2)-[(14)C]DDE and o,p'-[(14)C]DDD was also observed in an aldosterone-producing adrenocortical carcinoma and in a nonfunctional adrenocortical hyperplasia. Exposure of slices from the normal adrenal cortex to MeSO(2)-DDE (25 microM) resulted in an increased accumulation of 11-deoxycorticosterone, 11-deoxycortisol and androstenedione in the medium, and exposure to o,p'-DDD (25 microM) did not alter the steroid secretion pattern. No histological changes were found in either MeSO(2)-DDE- or o,p'-DDD-exposed slices, compared with nonexposed slices. We suggest that MeSO(2)-DDE might act as a potent adrenocorticolytic agent in humans. Further studies are needed to establish the usefulness of MeSO(2)-DDE as a possible alternative for the treatment of adrenocortical hypersecretion and tumor growth.

  9. Isolation and algae-lysing characteristics of the algicidal bacterium B5

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacterium B5 was isolated from activated sludge. On the basis of analysis of its physiological characteristics and 16S rDNA gene sequence, it was identified as Bacillus fusiformis. Its algae-lysing characteristics on Microcystis aeruginosa, Chlorella and Scenedesmus were tested. The results showed that: (1) the algicidal bacterium B5 is a Gram-negative bacterium. The 16S rDNA nucleotide sequence homology of strain B5 with 2 strains of B. fusiformis reached 99.86%, so B5 was identified as B. fusiformis; (2) the algal-lysing effects of the algicidal bacterium B5 on M. aeruginosa, Chlorella and Scenedesmus were pronounced. The initial bacterial and algal cell densities strongly influence the removal rates of chlorophyll-a. The greater the initial bacterial cell density, the faster the degradation of chlorophyll-a. The greater the initial algal cell density, the slower the degradation of chlorophyll-a. When the bacterial cell density was 3.6 × 107 cells/ml, nearly 90% of chlorophyll-a was removed. When the chlorophyll-a concentration was less than 550 μg/L, about 70 % was removed; (3) the strain B5 lysed algae not directly but by secreting metabolites and these metabolites could bear heat treatment.

  10. Photo-initiated crosslinking extends mapping of the protein-protein interface to membrane-embedded portions of cytochromes P450 2B4 and b₅.

    Science.gov (United States)

    Ječmen, Tomáš; Ptáčková, Renata; Černá, Věra; Dračínská, Helena; Hodek, Petr; Stiborová, Marie; Hudeček, Jiří; Šulc, Miroslav

    2015-11-01

    Protein-protein interactions play a central role in the regulation of many biochemical processes (e.g. the system participating in enzyme catalysis). Therefore, a deeper understanding of protein-protein interactions may contribute to the elucidation of many biologically important mechanisms. For this purpose, it is necessary to establish the composition and stoichiometry of supramolecular complexes and to identify the crucial portions of the interacting molecules. This study is devoted to structure-functional relationships in the microsomal Mixed Function Oxidase (MFO) complex, which is responsible for biotransformation of many hydrophobic endogenous compounds and xenobiotics. In particular, the cytochrome b5 interaction with MFO terminal oxygenase cytochrome P-450 (P450) was studied. To create photolabile probes suitable for this purpose, we prepared cytochrome b5 which had a photolabile diazirine analog of methionine (pMet) incorporated into the protein sequence, employing recombinant expression in Escherichia coli. In addition to wild-type cytochrome b5, where three methionines (Met) are located at positions 96, 126, and 131, six mutants containing only one Met in the sequence were designed and expressed (see Table 1). In these mutants, a single Met was engineered into the catalytic domain (at positions 23, 41, or 46), into the linker between the protein domains (at position 96), or into the membrane region (at positions 126 or 131). These mutants should confirm or exclude these portions of cytochrome b5 which are involved in the interaction with P450. After UV irradiation, the pMet group(s) in the photolabile cytochrome b5 probe was(were) activated, producing covalent crosslinks with the interacting parts of P450 2B4 in the close vicinity. The covalent complexes were analyzed by the "bottom up" approach with high-accuracy mass spectrometry. The analysis provided an identification of the contacts in the supramolecular complex with low structural resolution. We

  11. Toxic dark effects of protoporphyrin on the cytochrome P-450 system in rat liver microsomes.

    Science.gov (United States)

    Williams, M; Van der Zee, J; Van Steveninck, J

    1992-01-01

    In erythropoietic protoporphyria, accumulation of protoporphyrin has been found in various tissues and liver cirrhosis occurs frequently in this disease, probably due to toxic dark effects of protoporphyrin. We have studied the effect of porphyrins on various enzymic functions in rat liver microsomes. Incubation of microsomes with protoporphyrin resulted in a concentration-dependent inhibition of the oxidation of 7-ethoxycoumarin and aminopyrine by the cytochrome P-450 system. Kinetic analysis showed a decrease in Vmax., whereas the Km was not affected (non-competitive inhibition). Furthermore, reduction of cytochrome c by the NADPH-cytochrome P-450 reductase and by the NADH-cytochrome b5 reductase was inhibited. However, the activity of the reductases was only affected when the microsomes were pre-incubated with protoporphyrin, and it was found that the inhibition was dependent on the duration of the pre-incubation. Kinetic analysis again revealed non-competitive inhibition. When these experiments were repeated with uroporphyrin, no inhibition could be observed. With Stern-Volmer plots it was demonstrated that this was most likely caused by the localization of the porphyrins: protoporphyrin is localized in the membrane, whereas uroporphyrin remains in solution. From these results it is concluded that accumulation of protoporphyrin in the liver may markedly affect the cytochrome P-450 system and thus its detoxification function. PMID:1332695

  12. Influences of V5-epitope tag on the metabolic activation of AFB1 by human cytochrome P450 2A13

    Institute of Scientific and Technical Information of China (English)

    Shoulin Wang; Xiaoyang He; Xinru Wang; Junyan Hong

    2006-01-01

    Objective: To explore the impact of V5-epitope tag inserted in the commercial pcDNA5/FRT/V5-His TOPO expression vector on the metabolic activation of AFB1 by human CYP2A13. Methods: A C-terminal 6×Histag was first introduced into CYP2A13 cDNA by PCR and subsequently transferred into the expressing vector pcDNA5/FRT. Another commercial pcDNA5/FRT/V5-His TOPO expression vector was used to develop the construct directly via PCR. Both of the constructs were then transfected into Flp-In CHO and allowed for the stable expression of CYP2A13. The mouse CYP2A5 and the vector alone were used as positive and negative control, respectively. The presence of CYP2A5 and CYP2A13 cDNA and their protein expression in the stable transfectant cells were determined by immunoblotting assay using a monoclonal antibody against 6×Histag. The AFB1-induced cytotoxicity in these tranfected CHO cells were conducted by MTS assay and the IC50 of cell viability was used to compare the CYP enzyme metabolic activity in AFB1 metabolism among these cells. Results: In accordance with the Flp-In system working mechanism, all the transfectant cells presented same protein expression level. The CHO cells expressing CYP2A5 was more sensitive to AFB1 treatment than those cells expressing CYP2A13, there was about 30-fold IC50 difference between the two cells (2.1 nmol/L vs 58 nmol/L). Interestingly, CYP2A13 fused with V5-Histag had the lost of metabolic activity to AFB1 than that fused with Histag alone, the IC50 of the viability in CHO-2A13-His-V5 cells was about 20-fold less than CHO-2A13-His (>1 000 nmol/L vs 58 nmol/L). However, there was no change between CYP2A5 fused with V5-Histag and Histag alone (2.4 nmol/L vs 2.1 nmol/L). Conclusion: The results demonstrate that CYP2A13 fused with V5-epitope has a significant impact on its metabolic activation to AFB1, which indicated that it should be careful to select a new expressing vector for evaluating the enzyme activity in carcinogen metabolism.

  13. 细胞色素P450基因多态性与药物代谢%Genetic Polymorphisms of Human Cytochrome P450: Relevance to Drug Metabolism

    Institute of Scientific and Technical Information of China (English)

    盛海辉; 肖华胜

    2008-01-01

    细胞色素P450(cytochrome P450,CYP)在众多外源性和内源性物质的代谢中具有重要作用.CYP家族1-3中编码P450的基因均存在多态性,特别是CYP2C9、CYP2C19、CYP2D6和CYP3A5.超过一半的临床药物是由多态性P450介导代谢,CYP基因的多态性是造成药物反应个体差异的主要原因.近几年,许多与P450酶活性和CYP基因表达相关的等位基因已被鉴定,因此通过分型CYP基因的功能性或标签(Tag)的遗传变异,就可以获得个体的代谢表型,有助于医生及时找到正确的用药方案,有效地提高药物疗效和降低毒副作用,特别是那些治疗指数窄的药物.显然,了解CYP基因的遗传变异对于临床药物治疗和药物开发是必不可少的.基因芯片技术具有高多重水平和高通量的特点,使同时分型大量CYP基因遗传变异成为可能,是实现个性化医疗的重要技术保障.然而,DNA制备制约了预测性CYP基因分型芯片的发展,其在临床上的广泛应用尚需时日.%The human cytochrome P450 (CYP) enzymes play critical roles in the metabolism of numerous exogenous and endogenous molecules. All genes encoding P450 in families 1-3 are polymorphic,particularly CYP2C9,CYP2C19,CYP2D6 and CYP3A5. Polymorphic P450s are involved in the metabolism of more than 50% of clinical drugs. Genetic variation in the CYP genes is he main cause for individual variation in drug response. Over the past several years,Alleles are responsible for the variable enzymatic activity of P450 and the variable expression of CYP genes,have been identified. The phenotype can be determined by genotyping the functional variants or tag variants of the CYP genes. This helps doctors to choose ppropriate medication for patients to enhance the curative effect and to reduce the side effect,especially when drugs with narrow therapeutic index are involved. Knowledge of genetic variants of the CYP genes is necessary for both drug therapy and drug development. With a

  14. [Degradation of halogenated compounds by haloalkane dehalogenase DadA from Alcanivorax dieselolei B-5 ].

    Science.gov (United States)

    Li, Anzhang; Shao, Zongze

    2014-09-04

    [OBJECTIVE] Alcanivorax dieselolei B-5 is an important oil-degrading bacterium. We studied its substrate range and degradation of halogenated compounds. [METHODS] Growth capability of B-5 was examined with different halogenated substrates as sole carbon source. A putative haloalkane dehalogenase (HLD) gene named dadA was found from the genome of strain B-5 and analyzed by sequence alignment, phylogenetic analysis and homologous modeling. After heterologous expression in Escherichia coli and purification, the activity of DadA towards 46 substrates was determined. [RESULTS] Strain B-5 was capable of utilizing various halogenated compounds (C3-C,8) as the sole carbon source. DadA had typical catalytic pentad residues of HLD-II subfamily, but it was independent from other members of this subfamily according to phylogenetic analysis. Activity assay showed that DadA has higher specificity and narrower substrate range than other characterized HLDs and it only showed activity toward 1,2,3-tribromopropane, 1,2-dibromo-3-chloropropane and 2,3-dichloroprop-1-ene among 46 tested substrates. [CONCLUSIONS] Strain B-5 and its HLD DadA can degrade halogenated aliphatic pollutants although.

  15. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Maayah, Zaid H. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Ghebeh, Hazem [Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211 (Saudi Arabia); Alhaider, Abdulqader A. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh 11451 (Saudi Arabia); El-Kadi, Ayman O.S. [Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton (Canada); Soshilov, Anatoly A.; Denison, Michael S. [Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616 (United States); Ansari, Mushtaq Ahmad [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Korashy, Hesham M., E-mail: hkorashy@ksu.edu.sa [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-15

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  16. Augmented oxygen-mediated transcriptional activation of cytochrome P450 (CYP)1A expression and increased susceptibilities to hyperoxic lung injury in transgenic mice carrying the human CYP1A1 or mouse 1A2 promoter in vivo.

    Science.gov (United States)

    Jiang, Weiwu; Couroucli, Xanthi I; Wang, Lihua; Barrios, Roberto; Moorthy, Bhagavatula

    2011-04-01

    Supplemental oxygen administration is frequently administered to pre-term and term infants having pulmonary insufficiency. However, hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Cytochrome P450 (CYP)A enzymes have been implicated in hyperoxic lung injury. In this study, we tested the hypothesis that hyperoxia induces CYP1A1 and 1A2 enzymes by transcriptional activation of the corresponding promoters in vivo, and transgenic mice expressing the human CYP1A1 or the mouse 1A2 promoter would be more susceptible to hyperoxic lung injury than wild type (WT) mice. Adult WT (CD-1) (12week-old) mice, transgenic mice carrying a 10kb human CYP1A1 promoter and the luciferase (luc) reporter gene (CYP1A1-luc), or mice expressing the mouse CYP1A2 promoter (CYP1A2-luc) were maintained in room air or exposed to hyperoxia for 24-72h. Hyperoxia exposure of CYP1A1-luc mice for 24 and 48h resulted in 2.5- and 1.25-fold increases, respectively, in signal intensities, compared to room air controls. By 72h, the induction had declined to control levels. CYP1A2-luc mice also showed enhanced luc expression after 24-48h, albeit to a lesser extent than those expressing the CYP1A1 promoter. Also, these mice showed decreased levels of endogenous CYP1A1 and 1A2 expression after prolonged hyperoxia, and were also more susceptible to lung injury than similarly exposed WT mice, with CYP1A2-luc mice showing the greatest injury. Our results support the hypothesis that hyperoxia induces CYP1A enzymes by transcriptional activation of its corresponding promoters, and that decreased endogenous expression of these enzymes contribute to the increased susceptibilities to hyperoxic lung injury in the transgenic animals. In summary, this is the first report providing direct evidence of hyperoxia-mediated induction of CYP1A1 and CYP1A2 expression in vivo by mechanisms entailing transcriptional activation of the corresponding promoters, a phenomenon that has

  17. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance.

    Directory of Open Access Journals (Sweden)

    Julia Leclerc

    Full Text Available Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.

  18. Expressed and Purified Recombinant Human Cytochrome P450 3A4%重组细胞色素酶P450 3A4表达和鉴定

    Institute of Scientific and Technical Information of China (English)

    柳艾姣; 石磊; 方方; 赵树进

    2012-01-01

    Cytochrome P450 is an important enzyme for metabolism of endogenous substances and exogenous substances, and plays a decisive role in drug treatment, drug development and understanding the metabolism of potential toxic substances and carcinogenic substances. In order to construct the expression vector of cytochrome P450 3A4,expressed and purified CYP3A4 protein in Escherichia coli,reverse transcription-polymerase chain reaction was used to obtain CYP3A4 Cdna from human liver total RNA,and then inserted directly into the Pmd (R) 20-T Vector. The correct sequencing was modified with N-terminal and C-terminal that have been conducive to the expression. After double digestion the CYP3A4 gene was inserted into the expression vector Pet-28a-c ( + ) vectors and transformed into E. coli BL21 ( DE3 ) to express. CYP3A4 mutation subtype of CYP3A4 * 19 was obtained by site-directed mutagenesis. Four factors and two levels of orthogonal experiment designed by SPSS13. 0 to optimize four factors of a-ALA (0.5 mmol/L and 1 mmol/L) ,IPTG (0.5 mmol/L and 1 mmol/L) .kanamycin (50 μg/Ml and 100 μg/Ml) concentration and bacteria inoculation density (inoculation 1% and inoculated with 2%) for portent expression. The results were analyzed using SPSS13. 0 to select a good combination of large-scale induced expression. CYP3A4 protein was induced by IPTG,and verified by Western blot. Membrane protein concentration is around 65 μg/Ml. The level of a-ALA, antibiotics ( kanamycin) , IPTG, inoculation density on the level of expression of membrane proteins was not statistically significant. Expression of membrane proteins was verified by Western blot for recombinant CYP3A4 protein. The cloning of cytochrome P450 3A4 protein was obtained that laid the foundation for drug interaction experiments in vitro.%细胞色素酶P450是代谢内源性物质和外源性物质的重要的酶,在药物治疗和药物开发领域以及了解潜在的毒性物质和致癌性物质的代谢机制起决定

  19. Cytochrome c2-independent respiratory growth of Rhodobacter capsulatus.

    OpenAIRE

    Daldal, F

    1988-01-01

    To assess the role of cytochrome c2 as a respiratory electron carrier, we obtained a double mutant of Rhodobacter capsulatus defective in cytochrome c2 and in the quinol oxidase260. This mutant was able to grow chemoheterotrophically, indicating that an electron pathway independent of cytochrome c2 was functional between the ubiquinol:cytochrome c2 oxidoreductase and the cytochrome oxidase410.

  20. 26 CFR 20.2056(b)-5 - Marital deduction; life estate with power of appointment in surviving spouse.

    Science.gov (United States)

    2010-04-01

    ... appointment in surviving spouse. 20.2056(b)-5 Section 20.2056(b)-5 Internal Revenue INTERNAL REVENUE SERVICE... surviving spouse. (a) In general. Section 2056(b)(5) provides that if an interest in property passes from the decedent to his surviving spouse (whether or not in trust) and the spouse is entitled for life...

  1. Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes.

    Science.gov (United States)

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J; Liu, Yi; Burlingame, A L; Correia, Maria Almira

    2015-02-06

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate

  2. EXPRESSION AND CHARACTERIZATION OF FULL-LENGTH HUMAN HEME OXYGENASE-1: PRESENCE OF INTACT MEMBRANE-BINDING REGION LEADS TO INCREASED BINDING AFFINITY FOR NADPH-CYTOCHROME P450 REDUCTASE

    Science.gov (United States)

    Huber, Warren J.; Backes, Wayne L.

    2009-01-01

    Heme oxygenase (HO) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, this NADPH and cytochrome P450 reductase (CPR)-dependent oxidation of heme also releases free iron and carbon monoxide. Much of the recent research involving heme oxygenase is done using a 30-kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a GST-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30-kDa degradation product that could not be eliminated. Therefore, we attempted to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces lysine with arginine. This mutation allowed the expression and purification of a full length hHO-1 protein. Unlike wild-type HO-1, the K254R mutant could be purified to a single 32-kDa protein capable of degrading heme at the same rate as the wild-type enzyme. The K254R full-length form had a specific activity of ~200–225 nmol bilirubin hr−1nmol−1 HO-1 as compared to ~140–150 nmol bilirubin hr−1nmol−1 for the WT form, which contains the 30-kDa contaminant. This is a 2–3-fold increase from the previously reported soluble 30-kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other ER-resident enzymes. PMID:17915953

  3. Expression and characterization of full-length human heme oxygenase-1: the presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase.

    Science.gov (United States)

    Huber, Warren J; Backes, Wayne L

    2007-10-30

    Heme oxygenase-1 (HO-1) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, HO-1 receives the electrons necessary for catalysis from the flavoprotein NADPH cytochrome P450 reductase (CPR), releasing free iron and carbon monoxide. Much of the recent research involving heme oxygenase has been done using a 30 kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a glutathione-s-transferase (GST)-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30 kDa degradation product that could not be eliminated. Therefore, attempts were made to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces arginine with lysine. This mutation allowed the expression and purification of a full-length hHO-1 protein. Unlike wild type (WT) HO-1, the R254K mutant could be purified to a single 32 kDa protein capable of degrading heme at the same rate as the WT enzyme. The R254K full-length form had a specific activity of approximately 200-225 nmol of bilirubin h-1 nmol-1 HO-1 as compared to approximately 140-150 nmol of bilirubin h-1 nmol-1 for the WT form, which contains the 30 kDa contaminant. This is a 2-3-fold increase from the previously reported soluble 30 kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane-spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other endoplasmic reticulum resident enzymes.

  4. Circular RNA GLI2 promotes osteosarcoma cell proliferation, migration, and invasion by targeting miR-125b-5p.

    Science.gov (United States)

    Li, Ji-Feng; Song, Yu-Ze

    2017-07-01

    Circular RNAs are novel identified type of endogenous non-coding RNAs, which exert vital functions in human and animals. However, the in-depth role of circular RNAs in the progression of tumorigenesis, especially osteosarcoma, is still undefined. Our preliminary study had found that cir-GLI2 was significantly upregulated in osteosarcoma tissues compared to adjacent non-tumor tissue. Moreover, cir-GLI2 silencing could effectively suppress the proliferation, migration, and invasion capacity of osteosarcoma cells, indicating the tumor-promoting role. Besides, bioinformatics analysis and luciferase reporter assay predicted the direct binding to miR-125b-5p, which has been reported to function as a tumor suppressor in osteosarcoma. Furthermore, functional experiments validated that cir-GLI2 exerted the tumor-promoting effects on osteosarcoma cells via negatively targeting miR-125b-5p. In conclusion, our study demonstrated that cir-GLI2 acts as an oncogenic circular RNA in osteosarcoma genesis, providing a novel diagnostic and therapeutic target for osteosarcoma.

  5. 22 CFR 9b.5 - Temporary Department of State press building passes.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Temporary Department of State press building... OF STATE PRESS BUILDING PASSES § 9b.5 Temporary Department of State press building passes. A media... of State may make arrangements with the Office of Press Relations for the issuance of a...

  6. Amphidinolides B4 and B5, Potent Cytotoxic 26-Membered Macrolides from Dinoflagellate Amphidinium Species

    Directory of Open Access Journals (Sweden)

    Jun’ichi Kobayashi

    2005-03-01

    Full Text Available Abstract: Two new cytotoxic 26-membered macrolides, amphidinolides B4 (1 and B5 (2, have been isolated from a marine dinoflagellate Amphidinium sp. (strain Y-100, and the structures were elucidated on the basis of detailed analyses of 2D NMR data including 13C−13C correlations.

  7. 16 CFR 1101.62 - Statutory exceptions to section 6(b)(5) requirements.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Statutory exceptions to section 6(b)(5) requirements. 1101.62 Section 1101.62 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INFORMATION DISCLOSURE UNDER SECTION 6(b) OF THE CONSUMER PRODUCT SAFETY ACT Information Submitted Pursuant to...

  8. Mitochondrial cytochrome c oxidase deficiency.

    Science.gov (United States)

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-03-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.

  9. Amino acid sequences of bacterial cytochromes c' and c-556.

    OpenAIRE

    Ambler, R. P.; Bartsch, R. G.; Daniel, M.; Kamen, M. D.; McLellan, L; Meyer, T. E.; Van Beeumen, J

    1981-01-01

    The cytochrome c' are electron transport proteins widely distributed in photosynthetic and aerobic bacteria. We report the amino acid sequences of the proteins from 12 different bacterial species, and we show by sequences that the cytochromes c-556 from 2 different bacteria are structurally related to the cytochromes c'. Unlike the mitochondrial cytochromes c, the heme binding site in the cytochromes c' and c-556 is near the COOH terminus. The cytochromes c-556 probably have a methionine sixt...

  10. Antioxidant activity of new aramide nanoparticles containing redox-active N-phthaloyl valine moieties in the hepatic cytochrome P450 system in male rats.

    Science.gov (United States)

    Hassan, Hammed H A M; El-Banna, Sabah G; Elhusseiny, Amel F; Mansour, El-Sayed M E

    2012-07-10

    We report the synthesis of aramide nanoparticles containing a chiral N-phthaloyl valine moiety and their antioxidant activities on hepatic contents of cytochrome P₄₅₀, amidopyrene N-demethylase, aniline-4-hyroxylase and induced the hepatic content of cytochrome b5 and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome C-reductase. Polymers were obtained as well-separated spherical nanoparticles while highly aggregated particles via H-bonding organization of the aramide-containing pyridine led to a thin layer formation. The effects of the nanoparticles and CCl₄ on enzyme activities and thiobarbituric acid reactive substances (TBARS) levels of male rat liver were studied. Pretreatments of rats with the polyamides prior to the administration of CCl₄ decreased the hepatic content of the tested enzymes. Doses reduced the toxic effects exerted by (•CCl₃) upon the liver through inhibition of the cytochrome P₄₅₀ system. Inhibition of such metabolizing enzymes could reduce the carcinogenic effects of chemical carcinogens.

  11. Novel Functional Association of Serine Palmitoyltransferase Subunit 1-A Peptide in Sphingolipid Metabolism with Cytochrome P4501A1 Transactivation and Proliferative Capacity of the Human Glioma LN18 Brain Tumor Cell Line

    Directory of Open Access Journals (Sweden)

    J. Stewart

    2006-09-01

    Full Text Available Some chemical modulators of cytochrome P4501A1, Cyp1A1, expression also perturb the activity of serine palmitoyltransferase, SPT, a heterodimeric protein responsible for catalyzing the first reaction in sphingolipid biosynthesis. The effect of altered SPT activity on Cyp1A1 expression has generally been attributed to changes in the composition of bioactive sphingolipids, generated downstream in the SPT metabolic pathway, but the precise mechanism remains poorly defined. A generally accepted model for chemical-induced transactivation of the Cyp1A1 gene involves intracellular signaling mediated by proteins including the arylhydrocarbon receptor, AhR, whose interaction with the 90 kilo Dalton heat shock protein, Hsp90, is essential for maintaining a high affinity ligandbinding receptor conformation. Because ligand-induced Cyp1A1 expression is important in the bioactivation of environmentally relevant compounds to genotoxic derivatives capable of perturbing cellular processes, binding to Hsp90 represents an important regulatory point in the cytotoxicity process. In the present study, based on evidence that indicates subunit 1 of serine palmitoyltransferase, SPT1, interacts with Hsp90, both ligand-induced Cyp1A1 transactivation and capacity for proliferation were evaluated using the wild type Glioma LN18 human brain cancer cell line and its recombinant counterparts expressing green fluorescent SPT1 fusion proteins. Exposure to the prototypical Cyp1A1 inducer, 3-methylcholanthrene, 3-MC, resulted in the translocation of SPT1 from a primarily cytoplasmic domain to sites of focal adhesion complexes. Immunolabel for Hsp90, which was dispersed throughout the cell, became primarily cytoplasmic, while the distribution of AhR remained unaffected. When compared to the wild type, cells transfected with recombinant SPT1-GFP vectors had significantly attenuated levels of 3-MC-induced Cyp1A1 mRNA, as determined by quantitative reverse transcription PCR. Although

  12. Cummins Engine Company B5.9 Propane Engine Development, Certification, and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    The ADEPT Group, Inc. (Los Angeles, California)

    1998-12-18

    The objective of this project was to successfuly develop and certify an LPG-dedicated medium-duty original equipment manufacturer (OEM) engine that could be put into production. The engine was launched into production in 1994, and more than 800 B5.9G engines are now in service in the United States and abroad. This engine is now offered by more than 30 bus and truck OEMs.

  13. 假单胞菌B5生物合成邻苯二酚的研究%Biosynthesis of catechol by Psuedomonas sp.B5

    Institute of Scientific and Technical Information of China (English)

    李江; 陈劲春; 吴卫华; 李军; 邹宝华

    2003-01-01

    以假单胞菌B5菌株(实验室筛选)为实验菌株,完成了游离细胞发酵条件优化和发酵保护剂甘油最适用量的研究.在6g/L的苯甲酸钠和1.1g/L培养基上30℃培养24h,邻苯二酚(catechol)产量达到2.5g/L,分子水平转化率为52.3%;同时进行细胞固定化材料、固定化条件和固定化发酵条件的实验.以1.5%壳聚糖和0.1%的海藻酸钙为固定化介质,0.1%的戊二醛交联制备得到的固定化细胞成球形,直径约为2.5mm,在苯甲酸钠(6g/L)培养基中可连续批次发酵12次,邻苯二酚平均产量约为每批次1.5g/L.

  14. Studies on NADH(NADPH)-cytochrome c reductase (FMN-containing) from yeast: steady-state kinetic properties of the flavoenzyme from top-fermenting ale yeast.

    Science.gov (United States)

    Johnson, M S; Kuby, S A

    1986-02-15

    A study of the steady-state kinetics of NADH(NADPH)-cytochrome c reductase (FMN-containing) from ale yeast (M. S. Johnson and S. A. Kuby (1985) J. Biol. Chem. 260, 12341-12350) has led to a postulated three-substrate random-ordered hybrid mechanism, where NAD(P)H and FMN add randomly and very likely in a steady-state fashion, followed by an ordered addition of cytochrome c. Kinetic parameters have been derived from this mechanism. Arrhenius plots showed large differences between NADH and NADPH, as the substrate-reductant. Menadione accelerated cytochrome c reduction and also O2 uptake, but vitamin K1 and coenzyme Q10 were ineffective as electron mediators, possibly as a result of their insolubility. With NADPH as the substrate-reductant, the order of the rate of reduction of electron acceptors was ferricyanide greater than DCIP greater than cytochrome c greater than oxygen; with menadione, the specificity sequence was cytochrome c greater than ferricyanide greater than DCIP greater than oxygen. With NADH, the order was ferricyanide greater than cytochrome c greater than oxygen greater than DCIP, which changed to cytochrome c greater than ferricyanide greater than oxygen greater than DCIP on addition of menadione. Cytochrome b5 was also reduced in the absence of oxygen. No transhydrogenase activity was observed, but the reduced thionicotinamide analogs of NADH and NADPH acted as substrates. Superoxide dismutase inhibited cytochrome c reduction in air by 50%, but O2-. was not necessary for cytochrome c reduction, as evidenced by the increase in rate in the absence of O2. The product of the reaction with oxygen appeared to be H2O2.

  15. Thiol redox requirements and substrate specificities of recombinant cytochrome c assembly systems II and III.

    Science.gov (United States)

    Richard-Fogal, Cynthia L; San Francisco, Brian; Frawley, Elaine R; Kranz, Robert G

    2012-06-01

    The reconstitution of biosynthetic pathways from heterologous hosts can help define the minimal genetic requirements for pathway function and facilitate detailed mechanistic studies. Each of the three pathways for the assembly of cytochrome c in nature (called systems I, II, and III) has been shown to function recombinantly in Escherichia coli, covalently attaching heme to the cysteine residues of a CXXCH motif of a c-type cytochrome. However, recombinant systems I (CcmABCDEFGH) and II (CcsBA) function in the E. coli periplasm, while recombinant system III (CCHL) attaches heme to its cognate receptor in the cytoplasm of E. coli, which makes direct comparisons between the three systems difficult. Here we show that the human CCHL (with a secretion signal) attaches heme to the human cytochrome c (with a signal sequence) in the E. coli periplasm, which is bioenergetically (p-side) analogous to the mitochondrial intermembrane space. The human CCHL is specific for the human cytochrome c, whereas recombinant system II can attach heme to multiple non-cognate c-type cytochromes (possessing the CXXCH motif.) We also show that the recombinant periplasmic systems II and III use components of the natural E. coli periplasmic DsbC/DsbD thiol-reduction pathway. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.

  16. Maturation of Plastid c-type Cytochromes.

    Science.gov (United States)

    Gabilly, Stéphane T; Hamel, Patrice P

    2017-01-01

    Cytochromes c are hemoproteins, with the prosthetic group covalently linked to the apoprotein, which function as electron carriers. A class of cytochromes c is defined by a CXXCH heme-binding motif where the cysteines form thioether bonds with the vinyl groups of heme. Plastids are known to contain up to three cytochromes c. The membrane-bound cytochrome f and soluble cytochrome c6 operate in photosynthesis while the activity of soluble cytochrome c6A remains unknown. Conversion of apo- to holocytochrome c occurs in the thylakoid lumen and requires the independent transport of apocytochrome and heme across the thylakoid membrane followed by the stereospecific attachment of ferroheme via thioether linkages. Attachment of heme to apoforms of plastid cytochromes c is dependent upon the products of the CCS (for cytochrome csynthesis) genes, first uncovered via genetic analysis of photosynthetic deficient mutants in the green alga Chlamydomonas reinhardtii. The CCS pathway also occurs in cyanobacteria and several bacteria. CcsA and CCS1, the signature components of the CCS pathway are polytopic membrane proteins proposed to operate in the delivery of heme from the stroma to the lumen, and also in the catalysis of the heme ligation reaction. CCDA, CCS4, and CCS5 are components of trans-thylakoid pathways that deliver reducing equivalents in order to maintain the heme-binding cysteines in a reduced form prior to thioether bond formation. While only four CCS components are needed in bacteria, at least eight components are required for plastid cytochrome c assembly, suggesting the biochemistry of thioether formation is more nuanced in the plastid system.

  17. Maturation of Plastid c-type Cytochromes

    Directory of Open Access Journals (Sweden)

    Stéphane T. Gabilly

    2017-07-01

    Full Text Available Cytochromes c are hemoproteins, with the prosthetic group covalently linked to the apoprotein, which function as electron carriers. A class of cytochromes c is defined by a CXXCH heme-binding motif where the cysteines form thioether bonds with the vinyl groups of heme. Plastids are known to contain up to three cytochromes c. The membrane-bound cytochrome f and soluble cytochrome c6 operate in photosynthesis while the activity of soluble cytochrome c6A remains unknown. Conversion of apo- to holocytochrome c occurs in the thylakoid lumen and requires the independent transport of apocytochrome and heme across the thylakoid membrane followed by the stereospecific attachment of ferroheme via thioether linkages. Attachment of heme to apoforms of plastid cytochromes c is dependent upon the products of the CCS (for cytochrome csynthesis genes, first uncovered via genetic analysis of photosynthetic deficient mutants in the green alga Chlamydomonas reinhardtii. The CCS pathway also occurs in cyanobacteria and several bacteria. CcsA and CCS1, the signature components of the CCS pathway are polytopic membrane proteins proposed to operate in the delivery of heme from the stroma to the lumen, and also in the catalysis of the heme ligation reaction. CCDA, CCS4, and CCS5 are components of trans-thylakoid pathways that deliver reducing equivalents in order to maintain the heme-binding cysteines in a reduced form prior to thioether bond formation. While only four CCS components are needed in bacteria, at least eight components are required for plastid cytochrome c assembly, suggesting the biochemistry of thioether formation is more nuanced in the plastid system.

  18. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Offord, E.A.; Brouwer, C.

    2002-01-01

    Human and mouse liver microsomes And membranes isolated from Escherichia coli, which expressed cytochrome P450 (CYP) 1A2, 3A4 2C9 or 2D6, were used to investigate CYP-mediated metabolism of five selected dietary flavonoids. In human and mouse liver microsomes kaempferol, apigenin and naringenin w...

  19. Cytochrome P450-mediated hepatic metabolism of new fluorescent substrates in cats and dogs.

    NARCIS (Netherlands)

    van Beusekom, C.D.; Schipper, L.; Fink-Gremmels, J.

    2010-01-01

    This study aimed to investigate the biotransformation of cat liver microsomes in comparison to dogs and humans using a high throughput method with fluorescent substrates and classical inhibitors specific for certain isozymes of the human cytochrome P450 (CYP) enzyme family. The metabolic activities

  20. Functional ectopic neuritogenesis by retinal rod bipolar cells is regulated by miR-125b-5p during retinal remodeling in RCS rats.

    Science.gov (United States)

    Fu, Yan; Hou, Baoke; Weng, Chuanhuang; Liu, Weiping; Dai, Jiaman; Zhao, Congjian; Yin, Zheng Qin

    2017-04-21

    Following retinal degeneration, retinal remodeling can cause neuronal microcircuits to undergo structural alterations, which particularly affect the dendrites of bipolar cells. However, the mechanisms and functional consequences of such changes remain unclear. Here, we used Royal College of Surgeon (RCS) rats as a model of retinal degeneration, to study structural changes in rod bipolar cells (RBCs) and the underlying mechanisms of these changes. We found that, with retinal degeneration, RBC dendrites extended into the outer nuclear layer (ONL) of the retina, and the ectopic dendrites formed synapses with the remaining photoreceptors. This ectopic neuritogenesis was associated with brain-derived neurotrophic factor (BDNF) - expression of which was negatively regulated by miR-125b-5p. Overexpression of miR-125b-5p in the retinae of RCS rats diminished RBC ectopic dendrites, and compromised the b-wave of the flash electroretinogram (ERG). In contrast, down-regulation of miR-125b-5p (or exogenous BDNF treatment) increased RBC ectopic dendrites, and improved b-wave. Furthermore, we showed that the regulation of ectopic neuritogenesis by BDNF occurred via the downstream modulation of the TrkB-CREB signaling pathway. Based on these findings, we conclude that ectopic dendrites are likely to be providing functional benefits and that, in RCS rats, miR-125b-5p regulates ectopic neuritogenesis by RBCs through modulation of the BDNF-TrkB-CREB pathway. This suggests that therapies that reduce miR-125b-5p expression could be beneficial in human retinal degenerative disease.

  1. miR-487b-5p Regulates Temozolomide Resistance of Lung Cancer Cells Through LAMP2-Medicated Autophagy.

    Science.gov (United States)

    Bao, Liang; Lv, Lei; Feng, Jinping; Chen, Yuyu; Wang, Xinhua; Han, Shuguang; Zhao, Hongqing

    2016-08-01

    Temozolomide (TMZ) is a standard agent used in the treatment of various types of cancers, including lung carcinoma, but TMZ resistance is common and accounts for many treatment failures. We investigated miRNA-487b-5p (miR-487b-5p) was highly expressed in A549 and H1299 cells which acquired TMZ resistance. Suppression of miR-487b-5p had overt effects on cellular proliferation and migration in the presence of TMZ. On the other hand, knockdown of miR-487b-5p resulted in increased survival and moderate tumor growth in vivo. In addition, the decreased cellular proliferation following miR-487b-5p suppression was linked to enhanced autophagy, evident by drastically increased levels of LC3-II, BECLIN1, and LAMP2 when miR-487b-5p was knocked down. Further analysis revealed that LAMP2 might be the target gene of miR-487b-5p. In conclusion, our study suggested that miR-487b-5p may be a potential biomarker of acquired TMZ resistance in lung cancer cells, and miR-487b-5p inhibition can be further explored as a chemotherapy target in the treatment of TMZ-resistant lung carcinoma.

  2. A two-subunit cytochrome c oxidase (cytochrome aa3) from Paracoccus dentrificans.

    OpenAIRE

    Ludwig, B.; Schatz, G

    1980-01-01

    Cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase, EC 1.9.3.1) was purified from the cytoplasmic membrane of the bacterium Paracoccus denitrificans. The enzyme contains two heme groups (a and a3) and two copper atoms per minimal unit, oxidizes mammalian cytochrome c at a high rate, and, when incorporated into liposomes, generates an electrochemical proton gradient during cytochrome c oxidation. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis reveals only two subunits of...

  3. Structure of Physarum polycephalum cytochrome b{sub 5} reductase at 1.56 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangwoo; Suga, Michihiro; Ogasahara, Kyoko [Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka (Japan); Ikegami, Terumi; Minami, Yoshiko; Yubisui, Toshitsugu [Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Tsukihara, Tomitake, E-mail: tsuki@protein.osaka-u.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka (Japan)

    2007-04-01

    The structure of P. polycephalum cytochrome b{sub 5} reductase, an enzyme which catalyzes the reduction of cytochrome b{sub 5} by NADH, was determined at a resolution of 1.56 Å. Physarum polycephalum cytochrome b{sub 5} reductase catalyzes the reduction of cytochrome b{sub 5} by NADH. The structure of P. polycephalum cytochrome b{sub 5} reductase was determined at a resolution of 1.56 Å. The molecular structure was compared with that of human cytochrome b{sub 5} reductase, which had previously been determined at 1.75 Å resolution [Bando et al. (2004 ▶), Acta Cryst. D60, 1929–1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data.

  4. Inactivation of nitric oxide by cytochrome c oxidase under steady-state oxygen conditions.

    Science.gov (United States)

    Unitt, David C; Hollis, Veronica S; Palacios-Callender, Miriam; Frakich, Nanci; Moncada, Salvador

    2010-03-01

    We have developed a respiration chamber that allows intact cells to be studied under controlled oxygen (O(2)) conditions. The system measures the concentrations of O(2) and nitric oxide (NO) in the cell suspension, while the redox state of cytochrome c oxidase is continuously monitored optically. Using human embryonic kidney cells transfected with a tetracycline-inducible NO synthase we show that the inactivation of NO by cytochrome c oxidase is dependent on both O(2) concentration and electron turnover of the enzyme. At a high O(2) concentration (70 microM), and while the enzyme is in turnover, NO generated by the NO synthase upon addition of a given concentration of l-arginine is partially inactivated by cytochrome c oxidase and does not affect the redox state of the enzyme or consumption of O(2). At low O(2) (15 microM), when the cytochrome c oxidase is more reduced, inactivation of NO is decreased. In addition, the NO that is not inactivated inhibits the cytochrome c oxidase, further reducing the enzyme and lowering O(2) consumption. At both high and low O(2) concentrations the inactivation of NO is decreased when sodium azide is used to inhibit cytochrome c oxidase and decrease electron turnover.

  5. Efficient synthesis of tyrosol galactosides by the β-galactosidase from Enterobacter cloacae B5.

    Science.gov (United States)

    Qi, Tingting; Gu, Guofeng; Xu, Li; Xiao, Min; Lu, Lili

    2017-03-30

    In this work, the β-galactosidase from Enterobacter cloacae B5 (BgaB5) exhibited excellent transglycosylation activity toward tyrosol (p-hydroxyphenethyl alcohol) when using lactose as the glycosyl donor, generating a series of tyrosol glycosides with potential pharmacological properties. The effects of substrate concentration, temperature, pH, and reaction time on the transglycosylation reaction catalyzed by the enzyme BgaB5 were studied in detail. Three tyrosol derivatives were produced in a total high yield of 50.0% when incubating the enzyme with 250 mM tyrosol and 1000 mM lactose (pH 7.5) at 50 °C for 5 min. These derivatives were subsequently purified by column chromatography and preparative thin-layer chromatography. MS analysis of the purified compounds suggested one monogalactoside (M r 300) and two digalactoside derivatives (M r 462). The following NMR analysis further identified them to be p-hydroxyphenethyl β-D-galactopyranoside, p-hydroxyphenethyl β-D- galactopyranosyl-(1 → 3')-β-D-galactopyranoside, and p-hydroxyphenethyl β-D- galactopyranosyl-(1 → 6')-β-D-galactopyranoside, respectively. The yield of the tyrosol monogalactoside which was known to possess potent bioactivities reached 39.4%, higher than other enzymatic yields reported so far. The two digalactosides, which were expected to have potential applications for novel drug screening and discovery, were artificially obtained with 10.6% yield for the first time.

  6. Cytochromes P460 and c'-beta; a new family of high-spin cytochromes c.

    Science.gov (United States)

    Elmore, Bradley O; Bergmann, David J; Klotz, Martin G; Hooper, Alan B

    2007-03-01

    Cytochromes-P460 of Nitrosomonas europaea and Methylococcus capsulatus (Bath), and the cytochrome c' of M. capsulatus, believed to be involved in binding or transformation of N-oxides, are shown to represent an evolutionarily related new family of monoheme, approximately 17kDa, cytochromes c found in the genomes of diverse Proteobacteria. All members of this family have a predicted secondary structure predominantly of beta-sheets in contrast to the predominantly alpha-helical cytochromes c' found in photoheterotrophic and denitrifying Proteobacteria.

  7. Migration of epithelial cells in the small intestine of mice perorally infected with coxsackievirus B5.

    Science.gov (United States)

    Shadoff, N; Loria, R M; Kibrick, S; Broitman, S A

    1979-03-01

    The rate of cell migration in the small intestine during enteric viral infections has not been assessed previously. CD-1 mice (33 days old) were infected perorally with 1.0 X 10(8) plague-forming units of coxsackievirus B5 and 12 hr later were injected intraperitoneally with 2 micron Ci of [3H]thymidine/g of body weight. After 2, 12, 24, 48, 60, and 72 hr, mice were killed, and the small intestine was removed. Specimens obtained at each interval were examined by radioautography; similar specimens were titrated for virus by plaque assay in HeLa cells. In mice perorally infected with coxsackievirus B5, epithelial cells migrated from crypt to villus tip in 60 hr, as compared with 48 hr in uninfected control mice and 24 hr previously reported for mice perorally infected with enteric bacteria (e.g., Salmonella typhimurium). Virus was recovered from intestinal tissue, but no inflammatory response in the limina propria was apparent. These observations are consistent with previous report that substrate absorption rates may be altered during viral and bacterial enteric infection.

  8. Cytochrome P450 gene polymorphism and cancer.

    Science.gov (United States)

    Agundez, Jose A G

    2004-06-01

    Human cytochrome P450 (CYP) enzymes play a key role in the metabolism of drugs and environmental chemicals. Several CYP enzymes metabolically activate procarcinogens to genotoxic intermediates. Phenotyping analyses revealed an association between CYP enzyme activity and the risk to develop several forms of cancer. Research carried out in the last decade demonstrated that several CYP enzymes are polymorphic due to single nucleotide polymorphisms, gene duplications and deletions. As genotyping procedures became available for most human CYP, an impressive number of association studies on CYP polymorphisms and cancer risk were conducted. Here we review the findings obtained in these studies regarding CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP8A1 and CYP21 gene polymorphisms. Consistent evidences for association between CYP polymorphisms and lung, head and neck, and liver cancer were reported. Controversial findings suggest that colorectal and prostate cancers may be associated to CYP polymorphisms, whereas no evidences for a relevant association with breast or bladder cancers were reported. We summarize the available information related to the association of CYP polymorphisms with leukaemia, lymphomas and diverse types of cancer that were investigated only for some CYP genes, including brain, esophagus, stomach, pancreas, pituitary, cervical epithelium, melanoma, ovarian, kidney, anal and vulvar cancers. This review discusses on causes of heterogeneity in the proposed associations, controversial findings on cancer risk, and identifies topics that require further investigation. In addition, some recommendations on study design, in order to obtain more conclusive findings in further studies, are provided.

  9. p16(INK4A) induces senescence and inhibits EMT through microRNA-141/microRNA-146b-5p-dependent repression of AUF1.

    Science.gov (United States)

    Al-Khalaf, Huda H; Aboussekhra, Abdelilah

    2017-03-01

    Senescence and epithelial-to-mesenchymal transition (EMT) processes are under the control of common tumor suppressor proteins, EMT transcription factors, and microRNAs. However, the molecular mechanisms that coordinate the functional link between senescence and EMT are still elusive. We have shown here that p16(INK4A) -related induction of senescence is mediated through miR-141 and miR-146b-5p. These two microRNAs are up-regulated in aging human fibroblast and epithelial cells. Furthermore, miR-141 and miR146b-5p trigger cell cycle arrest at G1 phase and induce senescence in primary human fibroblasts and breast cancer cells in the presence and absence of p16(INK4A) . Like p16(INK4A) -induced senescence, miR-141/miR146b-5p-related senescence is not associated with secretory phenotype, and is mediated through the RNA binding protein AUF1. We have further demonstrated that p16(INK4A) and its downstream miRNA targets inhibit EMT through suppressing the EMT inducer ZEB1 in an AUF1-dependent manner. Indeed, AUF1 binds the mRNA of this gene leading to increase in its level. These results indicate that p16(INK4A) controls both senescence and EMT through repressing EMT-related transcription factor via miR-141/miR146b-5p and their target AUF1. This sheds more light on the molecular basis of the tumor suppressive functions of p16(INK4A) , which represses both the proliferative and the migratory/invasive capacities of cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Electronic and vibrational spectroscopy of the cytochrome c:cytochrome c oxidase complexes from bovine and Paracoccus denitrificans.

    OpenAIRE

    Lynch, S. R.; Copeland, R. A.

    1992-01-01

    The 1:1 complex between horse heart cytochrome c and bovine cytochrome c oxidase, and between yeast cytochrome c and Paracoccus denitrificans cytochrome c oxidase have been studied by a combination of second derivative absorption, circular dichroism (CD), and resonance Raman spectroscopy. The second derivative absorption and CD spectra reveal changes in the electronic transitions of cytochrome a upon complex formation. These results could reflect changes in ground state heme structure or chan...

  11. Growth, dielectric and nonlinear optical properties of Li3Cs2B5O10 single crystals

    Science.gov (United States)

    Sukumar, M.; Ramesh Babu, R.; Ramamurthi, K.

    2017-01-01

    Lithium cesium borate (Li3Cs2B5O10), an alkali metal borate, single crystals were grown by Czochralski method. Chemical etching was performed on grown Li3Cs2B5O10 crystal at various regions. The observed dislocation densities are varied at different regions of the grown Li3Cs2B5O10 crystal. Dielectric behavior of Li3Cs2B5O10 crystal at different temperatures is studied. The third-order nonlinear optical parameters of lithium cesium borate crystal are determined by Z-scan technique. The nonlinear refractive index ( n 2) value is estimated to be -7.272 × 10-11 cm2/W, and the corresponding third-order nonlinear susceptibility ( χ 3) is estimated to be 4.19 × 10-9 esu. The measured nonlinear refractive indices reveal the self-defocusing effect of Li3Cs2B5O10 crystal.

  12. Cytochrome c1 exhibits two binding sites for cytochrome c in plants.

    Science.gov (United States)

    Moreno-Beltrán, Blas; Díaz-Quintana, Antonio; González-Arzola, Katiuska; Velázquez-Campoy, Adrián; De la Rosa, Miguel A; Díaz-Moreno, Irene

    2014-10-01

    In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a "floating boat bridge" of cytochrome c molecules (between complexes III and IV) in plant respirasome.

  13. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    Directory of Open Access Journals (Sweden)

    Luis Fernando Hernandez-Zimbron

    Full Text Available Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  14. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    Science.gov (United States)

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  15. Label-free photoacoustic microscopy of cytochromes

    Science.gov (United States)

    Zhang, Chi; Zhang, Yu Shrike; Yao, Da-Kang; Xia, Younan; Wang, Lihong V.

    2013-02-01

    Photoacoustic microscopy (PAM) has achieved submicron lateral resolution in showing subcellular structures; however, relatively few endogenous subcellular contrasts have so far been imaged. Given that the hemeprotein, mostly cytochromes in general cells, is optically absorbing around the Soret peak (˜420 nm), we implemented label-free PAM of cytochromes in cytoplasm for the first time. By measuring the photoacoustic spectra of the oxidized and reduced states of fibroblast lysate and fitting the difference spectrum with three types of cytochromes, we found that the three cytochromes account for more than half the optical absorption in the cell lysate at 420 nm wavelength. Fixed fibroblasts on slides were imaged by PAM at 422 and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard staining histology. PAM was also applied to label-free histology of mouse ear sections by showing cytoplasms and nuclei of various cells. PAM of cytochromes in cytoplasm is expected to be a high-throughput, label-free technique for studying live cell functions, which cannot be accomplished by conventional histology.

  16. Microwave dielectric properties of (A2+(1/3)B5+(2/3))0.5Ti0(0.5)O2 (A2+ = Zn, Mg, B5+ = Nb, Ta) ceramics.

    Science.gov (United States)

    Kim, E S; Kang, D H

    2008-05-01

    Dielectric properties of (A(2+)(1/3)B(5+)(2/3))(0.5)Ti0(0.5)O(2) (A(2+) = Zn, Mg, B(5+) = Nb, Ta) ceramics were investigated at microwave frequencies. A single phase with tetragonal rutile structure was obtained through the entire compositions. Dielectric properties were strongly dependent on the structural characteristics. The specimens with B(5+) = Nb showed a larger dielectric constant than those with B(5+) = Ta due to the decrease of bond valence. Quality factors (Qf) of the specimens with B(5+) = Ta were larger than those with B(5+) = Nb. Temperature coefficient of the resonant frequencies (TCF) of (Zn(1/3)Nb(2/3) )0(0.5)Ti0(0.5)O(2) was larger than that of (Mg(1/3)Ta(2/3))0(0.5)Ti0(0.5)O(2). These results could be attributed to the changes of the temperature coefficient of dielectric constant and the degree of oxygen octahedral distortion.

  17. Cytochrome P450 levels are altered in patients with esophageal squamous-cell carcinoma

    DEFF Research Database (Denmark)

    Bergheim, I.; Wolfgarten, E.; Bollschweiler, E.

    2007-01-01

    AIM: To investigate the role of cytochrome P450 (CYP) in the carcinogenesis of squamous-cell carcinoma (SCC) in human esophagus by determining expression patterns and protein levels of representative CYPs in esophageal tissue of patients with SCC and controls. METHODS: mRNA expression of CYP2E1...

  18. Two-dimensional crystallization of monomeric bovine cytochrome c oxidase with bound cytochrome c in reconstituted lipid membranes.

    Science.gov (United States)

    Osuda, Yukiho; Shinzawa-Itoh, Kyoko; Tani, Kazutoshi; Maeda, Shintaro; Yoshikawa, Shinya; Tsukihara, Tomitake; Gerle, Christoph

    2016-06-01

    Mitochondrial cytochrome c oxidase utilizes electrons provided by cytochrome c for the active vectorial transport of protons across the inner mitochondrial membrane through the reduction of molecular oxygen to water. Direct structural evidence on the transient cytochrome c oxidase-cytochrome c complex thus far, however, remains elusive and its physiological relevant oligomeric form is unclear. Here, we report on the 2D crystallization of monomeric bovine cytochrome c oxidase with tightly bound cytochrome c at a molar ratio of 1:1 in reconstituted lipid membranes at the basic pH of 8.5 and low ionic strength.

  19. miR -181b -5p在人卡波西肉瘤组织中的表达变化及临床意义%miR-181b-5p Expression in Kaposi's Sarcoma and Its Clinical Significance

    Institute of Scientific and Technical Information of China (English)

    丁媛; 吴秀娟; 康晓静; 普雄明

    2015-01-01

    Objective To test the expression of miR - 181b - 5p in Kaposi's sarcoma( KS)and to determine the association between miR - 181b - 5p and the incidence of KS. Methods Quantitative PCR was performed on KS tissue and adjacent normal tissues of 18 patients who were diagnosed as KS in People's Hospital of Xinjiang Uygur Autonomous Region from January 2012 to October 2013 to compare the miR - 181b - 5p expression levels between the two kinds of tissue. The influence factors for miR - 181b - 5p expression were analyzed. Results The miR - 181b - 5p expression level in KS tissue was(0. 73 ± 0. 40),and the miR - 181b - 5p expression level in adjacent normal tissue was(0. 24 ± 0. 16),with significant difference between them(t = 4. 826,P 0. 05);the patients with different pathogenies of tumor tissue were significantly different in miR - 181b - 5p expression level( P < 0. 05). The miR - 181b - 5p expression level of patients in plaque phase and nodular phase was higher than that of the patients in patch phase(P < 0. 05). The miR - 181b - 5p expression level of patients positive with both HIⅤ and HHⅤ - 8 was(0. 32 ± 0. 19), and the miR - 181b - 5p expression level of patients negative with both HIⅤ and HHⅤ - 8 was( 0. 43 ± 0. 17 ),without significant difference between them(t = 1. 615,P = 0. 158). Conclusion miR - 181b - 5p might be involved in tumorigenesis of KS and has the potential to be one of molecular diagnostic indicators.%目的:检测miR -181b -5p在人卡波西肉瘤(KS)组织中的表达,明确miR -181b -5p是否与 KS 的发生发展相关。方法收集2012年1月—2013年10月新疆维吾尔自治区人民医院18例行 HE 染色病理检查明确诊断 KS患者的 KS 组织及癌旁组织,采用实时荧光定量 PCR 检测 KS 组织和癌旁组织中miR -181b -5p表达水平并比较其差异;同时对miR -181b -5p表达的影响因素进行分析。结果 KS 组织中miR -181b -5p表达水平为(0.73±0.40)

  20. Flower colour and cytochromes P450†

    OpenAIRE

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-01-01

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role ...

  1. Nerval influences on liver cytochrome P450.

    Science.gov (United States)

    Klinger, W; Karge, E; Danz, M; Krug, M

    1995-09-01

    In male young adult Wistar rats the influences of nucleus raphe electrocoagulation, spinal cord dissection (cordotomy between C7 and Th1), vagotomy and denervation of liver hilus by phenol on liver cytochrome P450-system (cytochrome P450 concentration, ethylmorphine N-demethylation and ethoxycoumarin O-deethylation activities, hexobarbitone sleeping time) were investigated. In general the influences were small or negligible when compared with sham operated controls, only after vagotomy the depressing effect of sham operation was abolished. In all cases sham operation had a depressing effect until up to five weeks after operation.

  2. HLA-B5/51 GENOTYPE: AN ASSOCIATION WITH THE CLINICAL MANIFESTATIONS OF BEHCET’S DISEASE

    Directory of Open Access Journals (Sweden)

    Z. S. Alekberova

    2015-01-01

    Full Text Available Objective: to estimate the contribution of HLA-B5/51 genotype to the clinical manifestations and risk of Behcet’s disease (BD in two ethnic groups.Subjects and methods. 146 BD patients fulfilling the International Criteria for BD (ICBD were divided into two ethnic groups: 1 86 patients from Dagestan (representatives of 8 ethnic nationalities in this region with mean age 30.7±9.6 years; disease duration – 8.8±10.1 years; 2 60 ethnic Russian patients, nonresidents of Dagestan with mean age 32.9±11.1 years; disease duration – 11.2±10.1 years. All patients were examined at the V.A. Nasonova Research Institute of Rheumatology in 1990 to 2014. HLA class I antigens were typed by a microlymphocytotoxic technique using a Gisans anti-leukocyte sera kit (Saint Petersburg.Results. HLA-B5/51 was detected in 87 (59.6% patients, much more often in men than in women (70 and 38%, respectively; p<0.01. Genital ulcers and erythema nodosum were significantly more common in HLA-B5/51-positive Dagestani (87.3 and 57% than in HLA-B5/51-negative ones (56.5 and 26%; p=0.0019 and р=0.01; respectively. There were no significant differences in these signs in the Russian group of patients with BD depending on the presence of this allele. In HLA-B5/51-positive male Dagestani patients with BD, the risk of erythema nodosum was twice as high as that in HLA-B5/51-negative patients (p=0.054. In HLA-B5/51 female Dagestani carriers, the risk of genital ulcers and generalized uveitis proved to be 3.5 (p=0.057 and 2.7 times higher than that in HLA-B5/51 noncarriers. Frequency of HLA-B5/51 was 73.2% among the Dagestanis and 40% among the Russians. Furthermore, this investigation revealed HLA-B5/51 carriage mainly in the male BD patients. Therefore, in addition to ethnicity, gender should be borne in mind when analyzing the clinical associations with HLA-B5/51.

  3. Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding.

    Science.gov (United States)

    Liko, Idlir; Degiacomi, Matteo T; Mohammed, Shabaz; Yoshikawa, Shinya; Schmidt, Carla; Robinson, Carol V

    2016-07-19

    Bovine cytochrome c oxidase is an integral membrane protein complex comprising 13 protein subunits and associated lipids. Dimerization of the complex has been proposed; however, definitive evidence for the dimer is lacking. We used advanced mass spectrometry methods to investigate the oligomeric state of cytochrome c oxidase and the potential role of lipids and posttranslational modifications in its subunit interfaces. Mass spectrometry of the intact protein complex revealed that both the monomer and the dimer are stabilized by large lipid entities. We identified these lipid species from the purified protein complex, thus implying that they interact specifically with the enzyme. We further identified phosphorylation and acetylation sites of cytochrome c oxidase, located in the peripheral subunits and in the dimer interface, respectively. Comparing our phosphorylation and acetylation sites with those found in previous studies of bovine, mouse, rat, and human cytochrome c oxidase, we found that whereas some acetylation sites within the dimer interface are conserved, suggesting a role for regulation and stabilization of the dimer, phosphorylation sites were less conserved and more transient. Our results therefore provide insights into the locations and interactions of lipids with acetylated residues within the dimer interface of this enzyme, and thereby contribute to a better understanding of its structure in the natural membrane. Moreover dimeric cytochrome c oxidase, comprising 20 transmembrane, six extramembrane subunits, and associated lipids, represents the largest integral membrane protein complex that has been transferred via electrospray intact into the gas phase of a mass spectrometer, representing a significant technological advance.

  4. Genetic characterization of Bagarius species using cytochrome c oxidase I and cytochrome b genes.

    Science.gov (United States)

    Nagarajan, Muniyandi; Raja, Manikam; Vikram, Potnuru

    2016-09-01

    In this study, we first inferred the genetic variability of two Bagarius bagarius populations collected from Ganges and Brahmaputra rivers of India using two mtDNA markers. Sequence analysis of COI gene did not show significant differences between two populations whereas cytochrome b gene showed significant differences between two populations. Followed by, genetic relationship of B. bagarius and B. yarrielli was analyzed using COI and cytochrome b gene and the results showed a higher level genetic variation between two species. The present study provides support for the suitability of COI and cytochrome b genes for the identification of B. bagarius and B. yarrielli.

  5. Role of cytochrome P sub 450 in the control of the production of erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Fandrey, J.; Seydel, F.P.; Siegers, C.P.; Jelkmann, W. (Medical Univ. of Luebeck (West Germany))

    1990-01-01

    Effects of agents affecting cytochrome P{sub 450} were studied on the production of erythropoietin (Epo) in cultures of the human hepatoma cell line HepG2. Epo was measured by radioimmunoassay of the culture media after 24 h of incubation. The addition of phenobarbital or 3-methylcholanthrene, which induce cytochrome P{sub 450}, significantly enhanced the formation of Epo. Likewise, the thyroid hormones T{sub 3} and T{sub 4} stimulated the rate of the production of Epo. On the other hand, the formation of Epo was lowered following the addition of diethyl-dithiocarbamate or cysteamine chloride, which inhibit cytochrome P{sub 450}. These findings support the idea that O{sub 2} sensitive hemoproteins of the microsomal mixed-functional oxidases play a role in the control of the synthesis of Epo.

  6. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Carlo Barnaba

    2017-05-01

    Full Text Available Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts—cytochrome P450-reductase and cytochrome b5—are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.

  7. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5.

    Science.gov (United States)

    Liu, Chenli; Wang, Wanpeng; Wu, Yehui; Zhou, Zhongwen; Lai, Qiliang; Shao, Zongze

    2011-05-01

    Alcanivorax dieselolei strain B-5 is a marine bacterium that can utilize a broad range of n-alkanes (C(5) -C(36) ) as sole carbon source. However, the mechanisms responsible for this trait remain to be established. Here we report on the characterization of four alkane hydroxylases from A. dieselolei, including two homologues of AlkB (AlkB1 and AlkB2), a CYP153 homologue (P450), as well as an AlmA-like (AlmA) alkane hydroxylase. Heterologous expression of alkB1, alkB2, p450 and almA in Pseudomonas putida GPo12 (pGEc47ΔB) or P. fluorescens KOB2Δ1 verified their functions in alkane oxidation. Quantitative real-time RT-PCR analysis showed that these genes could be induced by alkanes ranging from C(8) to C(36) . Notably, the expression of the p450 and almA genes was only upregulated in the presence of medium-chain (C(8) -C(16) ) or long-chain (C(22) -C(36) ) n-alkanes, respectively; while alkB1 and alkB2 responded to both medium- and long-chain n-alkanes (C(12) -C(26) ). Moreover, branched alkanes (pristane and phytane) significantly elevated alkB1 and almA expression levels. Our findings demonstrate that the multiple alkane hydroxylase systems ensure the utilization of substrates of a broad chain length range.

  8. Anisotropic and Mechanical Behavior of 22MnB5 in Hot Stamping Operations

    Science.gov (United States)

    Turetta, A.; Bruschi, S.; Ghiotti, A.

    2007-04-01

    The hot stamping of quenchable High Strength Steels offers the possibility of weight reduction in structural components maintaining the safety requirements together with enhanced accuracy and formability of sheets. The proper design of this technology requires a deep understanding of material behavior during the entire process chain, in terms of microstructural evolution and mechanical properties at elevated temperatures, in order to perform reliable FE simulations and obtain the desired characteristic on final parts. In particular, the analysis of technical-scientific literature shows that accurate data on material rheological behavior are difficult to find; while the lack of knowledge about anisotropic behavior at elevated temperatures is even more evident. To overcome these difficulties, a new experimental set-up was developed to reproduce the thermo-mechanical conditions of the industrial process and evaluate the influence of temperature and strain rate on 22MnB5 flow curves through uniaxial tensile tests; an optical strain measurement system was utilized to evaluate the effective strain after necking. From the same data, plastic anisotropy evolution was determined by means of a specially developed procedure. The influence of different cooling rates was taken into account and the rheological properties were correlated with microstructural changes occurring during deformation, previously evaluated through a dilatometric analysis performed in the same range of temperatures.

  9. HD 35502: a hierarchical triple system with a magnetic B5IVpe primary

    CERN Document Server

    Sikora, James; Bohlender, David; Shultz, Matt; Adelman, Saul; Alecian, Evelyne; Hanes, David; Monin, Dmitry; Neiner, Coralie; MiMeS, the

    2016-01-01

    We present our analysis of HD~35502 based on high- and medium-resolution spectropolarimetric observations. Our results indicate that the magnetic B5IVsnp star is the primary component of a spectroscopic triple system and that it has an effective temperature of $18.4\\pm0.6\\,{\\rm kK}$, a mass of $5.7\\pm0.6\\,M_\\odot$, and a polar radius of $3.0^{+1.1}_{-0.5}\\,R_\\odot$. The two secondary components are found to be essentially identical A-type stars for which we derive effective temperatures ($8.9\\pm0.3\\,{\\rm kK}$), masses ($2.1\\pm0.2\\,M_\\odot$), and radii ($2.1\\pm0.4\\,R_\\odot$). We infer a hierarchical orbital configuration for the system in which the secondary components form a tight binary with an orbital period of $5.66866(6)\\,{\\rm d}$ that orbits the primary component with a period of over $40\\,{\\rm yrs}$. Least-Squares Deconvolution (LSD) profiles reveal Zeeman signatures in Stokes $V$ indicative of a longitudinal magnetic field produced by the B star ranging from approximately $-4$ to $0\\,{\\rm kG}$ with a m...

  10. Affinity chromatography purification of cytochrome c binding enzymes.

    OpenAIRE

    Azzi, A; Bill, K; Broger, C

    1982-01-01

    An efficient affinity chromatography procedure for the isolation of mitochondrial cytochrome c oxidase and reductase is described. Saccharomyces cerevisiae cytochrome c was used as a ligand, bound to a thiol-Sepharose 4B gel through cysteine-107. In this way, the site of interaction of cytochrome c with cytochrome oxidase and reductase remained unmodified and available for binding to a number of partner enzymes. The procedure is adequate for the purification of all those proteins having in co...

  11. Osteomalacia in an HIV-infected man receiving rifabutin, a cytochrome P450 enzyme inducer: a case report

    Directory of Open Access Journals (Sweden)

    Horne Anne M

    2008-01-01

    Full Text Available Abstract Introduction People infected with human immunodeficiency virus are frequently treated with medications that can induce or inhibit cytochrome P450 enzymes. Case presentation A 59 year old man treated with zidovudine, lamivudine, indinavir, and ritonavir for infection with human immunodeficiency virus volunteered to take part in a study of bone loss. He was found to have vitamin D insufficiency with secondary hyperparathyroidism and received vitamin D and calcium supplementation. He suffered a recurrence of infection with Mycobacterium avium intracellulare for which he received treatment with ciprofloxacin, rifabutin, and ethambutol. Subsequently, he developed worsening vitamin D deficiency with hypocalcaemia, secondary hyperparathyroidism and elevated markers of bone turnover culminating in an osteomalacic vertebral fracture. Correction of the vitamin D deficiency required 100,000 IU of cholecalciferol monthly. Rifabutin is a cytochrome P450 inducer, and vitamin D and its metabolites are catabolised by cytochrome P450 enzymes. We therefore propose that treatment with rifabutin led to the induction of cytochrome P450 enzymes catabolising vitamin D, thereby causing vitamin D deficiency and osteomalacia. This process might be mediated through the steroid and xenobiotic receptor (SXR. Conclusion Treatment with rifabutin induces the cytochrome P450 enzymes that metabolise vitamin D and patients treated with rifabutin might be at increased risk of vitamin D deficiency. In complex medication regimens involving agents that induce or inhibit cytochrome P450 enzmyes, consultation with a clinical pharmacist or pharmacologist may be helpful in predicting and/or preventing potentially harmful interactions.

  12. Prediction of cytochrome P450 mediated metabolism

    DEFF Research Database (Denmark)

    Olsen, Lars; Oostenbrink, Chris; Jørgensen, Flemming Steen

    2015-01-01

    Cytochrome P450 enzymes (CYPs) form one of the most important enzyme families involved in the metabolism of xenobiotics. CYPs comprise many isoforms, which catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be formed. However, it is often hard...

  13. Intronic polymorphisms of cytochromes P450

    Directory of Open Access Journals (Sweden)

    Ingelman-Sundberg Magnus

    2010-08-01

    Full Text Available Abstract The cytochrome P450 enzymes active in drug metabolism are highly polymorphic. Most allelic variants have been described for enzymes encoded by the cytochrome P450 family 2 (CYP2 gene family, which has 252 different alleles. The intronic polymorphisms in the cytochrome P450 genes account for only a small number of the important variant alleles; however, the most important ones are CYP2D6*4 and CYP2D6*41, which cause abolished and reduced CYP2D6 activity, respectively, and CYP3A5*3 and CYP3A5*5, common in Caucasian populations, which cause almost null activity. Their discoveries have been based on phenotypic alterations within individuals in a population, and their identification has, in several cases, been difficult and taken a long time. In light of the next-generation sequencing projects, it is anticipated that further alleles with intronic mutations will be identified that can explain the hitherto unidentified genetic basis of inter-individual differences in cytochrome P450-mediated drug and steroid metabolism.

  14. Light-driven cytochrome P450 hydroxylations

    DEFF Research Database (Denmark)

    Jensen, Kenneth; Jensen, Poul Erik; Møller, Birger Lindberg

    2011-01-01

    Plants are light-driven "green" factories able to synthesize more than 200,000 different bioactive natural products, many of which are high-value products used as drugs (e.g., artemisinin, taxol, and thapsigargin). In the formation of natural products, cytochrome P450 (P450) monooxygenases play...

  15. Cytochrome c1 exhibits two binding sites for cytochrome c in plants

    OpenAIRE

    Moreno-Beltrán, Blas; Díaz-Quintana, Antonio; González-Arzola, Katiuska; Velázquez-Campoy, Adrián; Rosa, MIguel A. de la; Díaz-Moreno, Irene

    2014-01-01

    In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-dri...

  16. Vectorially oriented monolayers of the cytochrome c/cytochrome oxidase bimolecular complex.

    OpenAIRE

    Edwards, A M; Blasie, J. K.; Bean, J. C.

    1998-01-01

    Vectorially oriented monolayers of yeast cytochrome c and its bimolecular complex with bovine heart cytochrome c oxidase have been formed by self-assembly from solution. Both quartz and Ge/Si multilayer substrates were chemical vapor deposited with an amine-terminated alkylsiloxane monolayer that was then reacted with a hetero-bifunctional cross-linking reagent, and the resulting maleimide endgroup surface then provided for covalent interactions with the naturally occurring single surface cys...

  17. Purification of the Cytochrome c Reductase/Cytochrome c Oxidase Super Complex of Yeast Mitochondria

    OpenAIRE

    Braun, Hans-Peter; Sunderhaus, Stephanie; Boekema, Egbert J.; Kouřil, Roman

    2009-01-01

    The protein complexes of the respiratory chain interact by forming large protein particles called respiratory supercomplexes or ‘‘respirasomes’’. Biochemical characterization of these particles proved to be difficult because of their instability. Here we describe a strategy to isolate and characterize the cytochrome c reductase/cytochrome c oxidase supercomplex of yeast, also termed the III + IV supercomplex, which is based on lactate cultivation of yeast, gentle isolation of mitochondria, me...

  18. Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance.

    Science.gov (United States)

    Cheung, Siu Tim; Cheung, Phyllis F Y; Cheng, Christine K C; Wong, Nicholas C L; Fan, Sheung Tat

    2011-01-01

    Chemotherapy is used to treat unresectable liver cancer with marginal efficacy; this might result from hepatic cancer cells with stem cell and chemoresistant features. Gene expression profiling studies have shown that hepatic cancer cells express granulin-epithelin precursor (GEP); we investigated its role in hepatic cancer stem cell functions and chemoresistance. The effects of GEP and drug transporter signaling on chemoresistance were investigated in hepatic cancer stem cells. We analyzed the expression patterns of 142 clinical samples from liver tumors, adjacent nontumorous liver tissue, and liver tissue from patients who did not have cancer. GEP regulated the expression of the adenosine triphosphate-dependent binding cassette (ABC)B5 drug transporter in liver cancer cells. Chemoresistant cells that expressed GEP had increased levels of ABCB5; suppression of ABCB5 sensitized the cells to doxorubicin uptake and apoptosis. Most cells that expressed GEP and ABCB5 also expressed the hepatic cancer stem cell markers CD133 and EpCAM; blocking ABCB5 reduced their expression. Expression levels of GEP and ABCB5 were correlated in human liver tumor samples. ABCB5 levels were increased in liver cancer cells compared with nontumor liver tissue from patients with cirrhosis or hepatitis, or normal liver tissue. ABCB5 expression was associated with the recurrence of hepatocellular carcinoma after partial hepatectomy. Expression of GEP and ABCB5 in liver cancer stem cells is associated with chemoresistance and reduced survival times of patients with hepatocellular carcinoma. Reagents designed to target these proteins might be developed as therapeutics and given in combination with chemotherapy to patients with liver cancer. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. PAR1 inhibition suppresses the self-renewal and growth of A2B5-defined glioma progenitor cells and their derived gliomas in vivo

    DEFF Research Database (Denmark)

    Auvergne, R.; Wu, C.; Connell, A.

    2016-01-01

    Glioblastoma (GBM) remains the most common and lethal intracranial tumor. In a comparison of gene expression by A2B5-defined tumor-initiating progenitor cells (TPCs) to glial progenitor cells derived from normal adult human brain, we found that the F2R gene encoding PAR1 was differentially overex...... the importance of PAR1 to the self-renewal and tumorigenicity of A2B5-defined glioma TPCs; as such, the abrogation of PAR1-dependent signaling pathways may prove a promising strategy for gliomas.[on SciFinder (R)]...

  20. Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA.

    Science.gov (United States)

    Vila, M; Levy, R; Herrero, M T; Ruberg, M; Faucheux, B; Obeso, J A; Agid, Y; Hirsch, E C

    1997-01-15

    To examine the consequences of nigrostriatal denervation and chronic levodopa (L-DOPA) treatment on functional activity of the basal ganglia, we analyzed, using in situ hybridization, the cellular expression of the mRNA encoding for cytochrome oxidase subunit I (COI mRNA), a molecular marker for functional neuronal activity, in the basal ganglia. This analysis was performed in monkeys rendered parkinsonian by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Intoxication, some of which had been receiving L-DOPA, and in patients with Parkinson's disease (PD). In MPTP-intoxicated monkeys compared with control animals, COI mRNA expression was increased in the subthalamic nucleus (STN) and in the output nuclei of the basal ganglia, i.e., the internal segment of the globus pallidus and the substantia nigra pars reticulata. This increase was partially reversed by L-DOPA treatment. COI mRNA expression remained unchanged in the external segment of the globus pallidus (GPe). In PD patients, all of whom had been treated chronically by L-DOPA, COI mRNA expression in the analyzed basal ganglia structures was similar to that in control subjects. These results are in agreement with the accepted model of basal ganglia organization, to the extent that the output nuclei of the basal ganglia are considered to be overactive after nigrostriatal denervation, partly because of increased activity of excitatory afferents from the STN. Yet, our results would also seem to contradict this model, because the overactivity of the STN does not seem to be attributable to a hypoactivation of the GPe.

  1. Mutations induced by dacarbazine activated with cytochrome P-450.

    Science.gov (United States)

    Mudipalli, A; Nadadur, S S; Maccubbin, A E; Gurtoo, H L

    1995-03-01

    The mutagenicity of the antitumor drug dacarbazine (DTIC) is due to alkylation of cellular DNA by metabolites resulting from the metabolism of this drug by the mixed function oxidase system. In the present study, we used an in vitro shuttle vector assay to study the base and sequence specificity of mutagenesis by DTIC. The shuttle vector plasmid pSP189 was treated with DTIC (1-2.5 mM) in vitro in a reconstituted cytochrome P-450 system at 37 degrees C for either 30 or 60 min. SupF tRNA gene insert contained in the plasmid was sequenced after replication of the drug-treated plasmid in human Ad 293 cells followed by amplification in indicator bacteria. Mutagenesis of DTIC in this system was dependent upon the presence of the cytochrome P-450 reconstituted system and NADPH. Mutations induced by DTIC included single base substitutions (35%), single base deletions (30.5%), single base insertions (19.4%) and large deletions (13.8%). Among the substitutions, transversions and transitions were in the ratio of 1:0.7. Base pairs 108 and 127 in the SupF tRNA of the pSP189 were identified as mutational hot spots.

  2. The novel antifungal agent PLD-118 is neither metabolized by liver microsomes nor inhibits cytochrome P450 in vitro

    NARCIS (Netherlands)

    Parnham, M.J.; Bogaards, J.J.P.; Schrander, F.; Schut, M.W.; Orešković, K.; Mildner, B.

    2005-01-01

    PLD-118 is a novel, oral antifungal drug, under development for the treatment of Candida infections. Possible metabolism of PLD-118 by rat, dog and human S9 liver homogenates and inhibition of human cytochrome P450 (CYP) enzymes were investigated. PLD-118 (10 and 100 μm) incubated for 0-60 min with

  3. HD 35502: a hierarchical triple system with a magnetic B5IVpe primary

    Science.gov (United States)

    Sikora, J.; Wade, G. A.; Bohlender, D. A.; Shultz, M.; Adelman, S. J.; Alecian, E.; Hanes, D.; Monin, D.; Neiner, C.; MiMeS Collaboration; BinaMIcS Collaboration

    2016-08-01

    We present our analysis of HD 35502 based on high- and medium-resolution spectropolarimetric observations. Our results indicate that the magnetic B5IVsnp star is the primary component of a spectroscopic triple system and that it has an effective temperature of 18.4 ± 0.6 kK, a mass of 5.7 ± 0.6 M⊙, and a polar radius of 3.0^{+1.1}_{-0.5} R_{odot }. The two secondary components are found to be essentially identical A-type stars for which we derive effective temperatures (8.9 ± 0.3 kK), masses (2.1 ± 0.2 M⊙), and radii (2.1 ± 0.4 R⊙). We infer a hierarchical orbital configuration for the system in which the secondary components form a tight binary with an orbital period of 5.668 66(6) d that orbits the primary component with a period of over 40 yr. Least-Squares Deconvolution profiles reveal Zeeman signatures in Stokes V indicative of a longitudinal magnetic field produced by the B star ranging from approximately -4 to 0 kG with a median uncertainty of 0.4 kG. These measurements, along with the line variability produced by strong emission in Hα, are used to derive a rotational period of 0.853 807(3) d. We find that the measured v sin i = 75 ± 5 km s-1 of the B star then implies an inclination angle of the star's rotation axis to the line of sight of 24^{+6}_{-10}{}^circ. Assuming the Oblique Rotator Model, we derive the magnetic field strength of the B star's dipolar component (14^{+9}_{-3} kG) and its obliquity (63± 13deg). Furthermore, we demonstrate that the calculated Alfvén radius (41^{+17}_{-6}R_ast) and Kepler radius (2.1^{+0.4}_{-0.7}R_ast) place HD 35502's central B star well within the regime of centrifugal magnetosphere-hosting stars.

  4. Photodynamic therapy-induced apoptosis in lymphoma cells: translocation of cytochrome c causes inhibition of respiration as well as caspase activation.

    Science.gov (United States)

    Varnes, M E; Chiu, S M; Xue, L Y; Oleinick, N L

    1999-02-24

    L5178Y-R mouse lymphoma (LY-R) cells undergo rapid apoptosis when treated with photodynamic therapy (PDT) sensitized with the silicon phthalocyanine Pc 4. In this study we show that cytochrome c is released into the cytosol within 10 min of an LD99.9 dose of PDT. Cellular respiration is inhibited by 42% at 15 min, and 60% at 30 min after PDT treatment, and caspase 3-like protease activity is elevated by 15 min post-PDT. In digitonin-permeabilized cells addition of cytochrome c to the respiration buffer reverses PDT-induced inhibition of state 3 respiration via Complex I by 40-60%, and via Complex III by 50-90%. In contrast, extramitochondrial cytochrome c does not stimulate respiration in permeabilized control cells, and catalyzes only a low rate of oxygen consumption via electron transfer to cytochrome b5 on the outer mitochondrial membrane. These results demonstrate that PDT-induced inhibition of respiration is primarily due to leakage of cytochrome c into the cytosol rather than to damage to the major enzyme complexes of the electron transport chain. Whether or not inhibition of respiration influences the time course or extent of Pc 4-PDT-induced apoptosis in LY-R cells is not clear at the present time.

  5. Photoinduced electron transfer in the cytochrome c/cytochrome c oxidase complex using thiouredopyrenetrisulfonate-labeled cytochrome c. Optical multichannel detection.

    Science.gov (United States)

    Szundi, I; Cappuccio, J A; Borovok, N; Kotlyar, A B; Einarsdóttir, O

    2001-02-20

    Intramolecular electron transfer in the electrostatic cytochrome c oxidase/cytochrome c complex was investigated using a novel photoactivatable dye. Laser photolysis of thiouredopyrenetrisulfonate (TUPS), covalently linked to cysteine 102 on yeast iso-1-cytochrome c, generates a triplet state of the dye, which donates an electron to cytochrome c, followed by electron transfer to cytochrome c oxidase. Time-resolved optical absorption difference spectra were collected at delay times from 100 ns to 200 ms between 325 and 650 nm. On the basis of singular value decomposition (SVD) and multiexponential fitting, three apparent lifetimes were resolved. A sequential kinetic mechanism is proposed from which the microscopic rate constants and spectra of the intermediates were determined. The triplet state of TUPS donates an electron to cytochrome c with a forward rate constant of approximately 2.0 x 10(4) s(-1). A significant fraction of the triplet returns back to the ground state on a similar time scale. The reduction of cytochrome c is followed by faster electron transfer from cytochrome c to Cu(A), with the equilibrium favoring the reduced cytochrome c. Subsequently, Cu(A) equilibrates with heme a with an apparent rate constant of approximately 1 x 10(4) s(-1). On a millisecond time scale, the oxidized TUPS returns to the ground state and heme a becomes reoxidized. The extracted intermediate spectra are in excellent agreement with model spectra of the postulated intermediates, supporting the proposed mechanism.

  6. Giardia intestinalis incorporates heme into cytosolic cytochrome b₅.

    Science.gov (United States)

    Pyrih, Jan; Harant, Karel; Martincová, Eva; Sutak, Robert; Lesuisse, Emmanuel; Hrdý, Ivan; Tachezy, Jan

    2014-02-01

    The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.

  7. Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin.

    Directory of Open Access Journals (Sweden)

    Maarten Hulsmans

    Full Text Available BACKGROUND: Low adiponectin, a well-recognized antidiabetic adipokine, has been associated with obesity-related inflammation, oxidative stress and insulin resistance. Globular adiponectin is an important regulator of the interleukin-1 receptor-associated kinase (IRAK/NFκB pathway in monocytes of obese subjects. It protects against inflammation and oxidative stress by inducing IRAK3. microRNA (miR-146b-5p inhibits NFκB-mediated inflammation by targeted repression of IRAK1 and TNF receptor-associated factor-6 (TRAF6. Therefore, we measured the expression of miR-146b-5p in monocytes of obese subjects. Because it was low we determined the involvement of this miR in the anti-inflammatory, antioxidative and insulin signaling action of globular adiponectin. METHODS: miR-146b-5p expression in monocytes of obese subjects was determined by qRT-PCR. The effect of miR-146b-5p silencing on molecular markers of inflammation, oxidative stress and insulin signaling and the association with globular adiponectin was assessed in human THP-1 monocytes. RESULTS: miR-146b-5p was downregulated in monocytes of obese persons. Low globular adiponectin decreased miR-146b-5p and IRAK3 in THP-1 monocytes, associated with increased mitochondrial reactive oxygen species (ROS. Intracellular ROS and insulin receptor substrate-1 (IRS1 protein were unchanged. Silencing of miR-146b-5p with an antisense inhibitor resulted in increased expression of IRAK1 and TRAF6 leading to more NFκB p65 DNA binding activity and TNFα. As a response IRAK3 and IRS1 protein increased. Mitochondrial and intracellular ROS production did not increase despite more inflammation. In addition, exposure of miR-146b-5p-depleted THP-1 monocytes to high levels of globular adiponectin resulted in an increased production of TNFα and intracellular ROS. Still, they did not lose their potential to increase IRAK3 and IRS1 protein and to decrease mitochondrial ROS. CONCLUSION: miR-146b-5p, decreased in monocytes

  8. The production of ammonia by multiheme cytochromes C.

    Science.gov (United States)

    Simon, Jörg; Kroneck, Peter M H

    2014-01-01

    The global biogeochemical nitrogen cycle is essential for life on Earth. Many of the underlying biotic reactions are catalyzed by a multitude of prokaryotic and eukaryotic life forms whereas others are exclusively carried out by microorganisms. The last century has seen the rise of a dramatic imbalance in the global nitrogen cycle due to human behavior that was mainly caused by the invention of the Haber-Bosch process. Its main product, ammonia, is a chemically reactive and biotically favorable form of bound nitrogen. The anthropogenic supply of reduced nitrogen to the biosphere in the form of ammonia, for example during environmental fertilization, livestock farming, and industrial processes, is mandatory in feeding an increasing world population. In this chapter, environmental ammonia pollution is linked to the activity of microbial metalloenzymes involved in respiratory energy metabolism and bioenergetics. Ammonia-producing multiheme cytochromes c are discussed as paradigm enzymes.

  9. [Cytochrome P450 activity and its alteration in different diseases].

    Science.gov (United States)

    Orellana, Myriam; Guajardo, Viviana

    2004-01-01

    Cytochrome P450 (CYP) enzymes participate in the metabolism of a variety of naturally occurring and foreign compounds by reactions requiring NADPH and O2. The diversity of reactions catalyzed and its extensive substrate specificity render CYP enzymes as one of the most versatile known catalysts. Individual members of the CYP superfamily are expressed in almost every cell type in the body. As compared to hepatic enzymes, the regulation of human extrahepatic CYPs has not been so well studied. In general, the levels of some hepatic CYP enzymes are depressed by diseases, causing potential and documented impairment of drug clearence and clinical drug toxicity. However, modulation of CYPs is enzyme selective and this selectivity differs in different diseases. This article reviews some basic concepts about CYP and its regulation in some disease states such as hypertension, diabetes, obesity and hepatic, infectious and inflammatory diseases.

  10. 17 CFR 170.3 - Fair and equitable representation of members (section 17(b)(5) of the Act).

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Fair and equitable representation of members (section 17(b)(5) of the Act). 170.3 Section 170.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION REGISTERED FUTURES ASSOCIATIONS Standards Governing Commission Review of Applications for Registration as...

  11. [Expression of HoxB5, SPC and AQP5 in neonatal rats with hyperoxia-induced chronic lung disease].

    Science.gov (United States)

    Xu, Wei; Fu, Jian-Hua; Xue, Xin-Dong

    2009-01-01

    Alveolar epithelium impairment is one of pathological changes associated with chronic lung disease (CLD). Hoxb5 is one of the few homeobox genes strongly expressed in the developing lung. This study investigated the expression of HoxB5, SPC and AQP5 in rats with CLD in order to explore the role of Hoxb-5 in impairment and reparation of alveolar epithelium. Eighty neonatal rats were randomly exposed to hyperoxia (model group) or to room air (control group) (n=40 each). The CLD model was induced by hyperoxia exposure. The expression of HoxB5, SPC and AQP5 protein and mRNA in the lung tissue was detected by immunohistochemistry and RT-PCR 1, 3, 7, 14 and 21 days after exposure. In the model group HoxB5 expression significantly decreased 7, 14 and 21 days after hyperoxia exposure. SPC expression decreased 3 days after hyperoxia exposure but increased significantly 7, 14 and 21 days after hyperoxia exposure as compared to the control group. AQP5 expression was progressively reduced with prolonged hyperoxia exposure. Hyperoxia exposure may lead to alveolar epithelial cell (AEC) damage in neonatal rats. The increased SPC expression and decreased AQP5 expression suggested that the ability of differentiation and transformation of AECII into AECI decreased in neonatal rats with CLD. The decreased HoxB5 expression following hyperoxia exposure might contribute to a decreased ability of differentiation of AECII.

  12. Mammalian Cytochrome P450-Dependent Metabolism of Polychlorinated Dibenzo-p-dioxins and Coplanar Polychlorinated Biphenyls

    OpenAIRE

    Hideyuki Inui; Toshimasa Itoh; Keiko Yamamoto; Shin-Ichi Ikushiro; Toshiyuki Sakaki

    2014-01-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and coplanar polychlorinated biphenyls (PCBs) contribute to dioxin toxicity in humans and wildlife after bioaccumulation through the food chain from the environment. The authors examined human and rat cytochrome P450 (CYP)-dependent metabolism of PCDDs and PCBs. A number of human CYP isoforms belonging to the CYP1 and CYP2 families showed remarkable activities toward low-chlorinated PCDDs. In particular, human CYP1A1, CYP1A2, and CYP1B1 showed high ac...

  13. Multiwavelength analysis of the kinetics of reduction of cytochrome aa3 by cytochrome c.

    Science.gov (United States)

    Hendler, R W; Bose, S K; Shrager, R I

    1993-09-01

    Some new approaches to the kinetic study of the reduction of cytochrome aa3 by cytochrome c are presented. The primary innovations are the use of a spectrometer which can acquire multiwavelength data as fast as every 10 microseconds, and the application of a variety of analytical methods which can utilize simultaneously all of the time-resolved spectral data. These techniques include singular value decomposition (SVD), deconvolutions based on pure Gaussian models for absorption peaks, deconvolutions based on isolated absorption spectra for the pure components, and simulations of SVD-deduced and actual experimental difference spectra. The reduction characteristics of the anaerobic resting enzyme can be distinguished from those of pulsed forms. In the former case, only two electrons can be bound by cytochrome aa3, whereas in the latter case complete reduction of the enzyme is achieved.

  14. Functional coadaptation between cytochrome c and cytochrome c oxidase within allopatric populations of a marine copepod.

    Science.gov (United States)

    Rawson, Paul D; Burton, Ronald S

    2002-10-01

    Geographically isolated populations may accumulate alleles that function well on their own genetic backgrounds but poorly on the genetic backgrounds of other populations. Consequently, interpopulation hybridization may produce offspring of low fitness as a result of incompatibilities arising in allopatry. Genes participating in these epistatic incompatibility systems remain largely unknown. In fact, despite the widely recognized importance of epistatic interactions among gene products, few data directly address the functional consequences of such interactions among natural genetic variants. In the marine copepod, Tigriopus californicus, we found that the cytochrome c variants isolated from two different populations each had significantly higher activity with the cytochrome c oxidase derived from their respective source population. Three amino acid substitutions in the cytochrome c protein appear to be sufficient to confer population specificity. These results suggest that electron transport system (ETS) proteins form coadapted sets of alleles within populations and that disruption of the coadapted ETS gene complex leads to functional incompatibilities that may lower hybrid fitness.

  15. Investigation on Modulation of Human Cytochrome P450 and P-glycoprotein by Herb or Natural Product Using in Vivo Probe Substrate%利用体内探针法考察植物药和天然产物对人体细胞色素P450和P-糖蛋白活性的影响

    Institute of Scientific and Technical Information of China (English)

    叶蓁; 朱玲玲; 周权

    2012-01-01

    OBJECTIVE To promote the in vivo investigation on modulation of human cytochrome P450 and P-glycoprotein by herb or natural product, anticipate clinical drug interaction and improve rational drug use. METHODS Literatures using in vivo probe substrate were reviewed. RESULTS Research in this respect abroad is hot. Cocktail methods are widely used. CONCLIS1ONS In vivo probe substrate phenorying studies should be paid more attention in investigation on modulation of CYP and P-gp by herb and natural products.%目的 促进植物药和天然产物对人体细胞色素P450和P-糖蛋白活性影响的人体研究的深入,预期临床相互作用,提高合理用药水平.方法 综述体内探针法在该领域的国内外的应用.详细介绍应用方法和注意事项.结果 国外利用体内探针法的研究较热.鸡尾酒探针法的应用已成熟.结论 在我国应大力支持和推广体内探针法在新药研发和临床应用中的研究.

  16. The role of cytochrome P450s in polycyclic aromatic hydrocarbon carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Polzer, R.J.

    1993-01-01

    Metabolic activation of polycyclic aromatic hydrocarbons (PAH) to carcinogenic diol epoxides has been determined to be a critical step in tumor initiation by PAH. The key enzyme(s) involved in the metabolic activation are members of the cytochrome P450 superfamily. Two distinct isoforms of cytochrome P450 have been determined to be induced upon treatment of cells in culture with benzo(a)pyrene (B(a)P) by use of Immobilized Artificial Membrane Column High Performance Liquid Chromatography, Western blotting, Northern blotting, and in vitro metabolism studies. Cytochrome P4501A is involved in the metabolism of PAH in the human hepatoma cell line, HepG2; the human mammary carcinoma cell line, MCF-7; and the mouse hepatoma cell line; Hepa-1; whereas cytochrome P450EF is involved in this metabolism in both secondary hamster and mouse embryo cell cultures. Induction of cytochrome P450s by B(a)P generally leads to an increased metabolism of tritiated B(a)P, DMBA, and DB(a,1)P to water-soluble metabolities and to the formation of PAH-DNA adducts, suggesting that induction by B(a)P alters the metabolism of PAH to metabolic activation. DMBA induction of cytochrome P450s leads to various changes in metabolism and PAH-DNA binding and these changes were both cell and PAH specific. These results suggest that DMBA can shift metabolism of certain PAH towards metabolic activation in some cells, while in other cells DMBA or one of its metabolities can compete with other PAH for metabolic activation. UDP-glucuronosyl-transferase and epoxide hydrase do not have significant roles in detoxifying proximate or ultimate carcinogenic PAH metabolites, however, sulfotransferase and glutathione-S-transferase do detoxify proximate and ultimate carcinogenic metabolities in the HepG2 cell line. Finally, attempts to inhibit B(a)P metabolism and DNA-binding in intact cells in culture through conjugation of inhibitory cytochrome P4501A1 antibodies to insulin or folic acid were examined.

  17. A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis.

    Science.gov (United States)

    Sutherland, T D; Unnithan, G C; Andersen, J F; Evans, P H; Murataliev, M B; Szabo, L Z; Mash, E A; Bowers, W S; Feyereisen, R

    1998-10-27

    A cDNA encoding a cytochrome P450 enzyme was isolated from a cDNA library of the corpora allata (CA) from reproductively active Diploptera punctata cockroaches. This P450 from the endocrine glands that produce the insect juvenile hormone (JH) is most closely related to P450 proteins of family 4 and was named CYP4C7. The CYP4C7 gene is expressed selectively in the CA; its message could not be detected in the fat body, corpora cardiaca, or brain, but trace levels of expression were found in the midgut and caeca. The levels of CYP4C7 mRNA in the CA, measured by ribonuclease protection assays, were linked to the activity cycle of the glands. In adult females, CYP4C7 expression increased immediately after the peak of JH synthesis, reaching a maximum on day 7, just before oviposition. mRNA levels then declined after oviposition and during pregnancy. The CYP4C7 protein was produced in Escherichia coli as a C-terminal His-tagged recombinant protein. In a reconstituted system with insect NADPH cytochrome P450 reductase, cytochrome b5, and NADPH, the purified CYP4C7 metabolized (2E,6E)-farnesol to a more polar product that was identified by GC-MS and by NMR as (10E)-12-hydroxyfarnesol. CYP4C7 converted JH III to 12-trans-hydroxy JH III and metabolized other JH-like sesquiterpenoids as well. This omega-hydroxylation of sesquiterpenoids appears to be a metabolic pathway in the corpora allata that may play a role in the suppression of JH biosynthesis at the end of the gonotrophic cycle.

  18. Time-resolved absorption and magnetic circular dichroism spectroscopy of cytochrome c3 from Desulfovibrio.

    Science.gov (United States)

    O'Connor, D B; Goldbeck, R A; Hazzard, J H; Kliger, D S; Cusanovich, M A

    1993-10-01

    The UV-visible absorption and magnetic circular dichroism (MCD) spectra of the ferric, ferrous, CO-ligated forms and kinetic photolysis intermediates of the tetraheme electron-transfer protein cytochrome c3 (Cc3) are reported. Consistent with bis-histidinyl axial coordination of the hemes in this Class III c-type cytochrome, the Soret and visible region MCD spectra of ferric and ferrous Cc3 are very similar to those of other bis-histidine axially coordinated hemeproteins such as cytochrome b5. The MCD spectra indicate low spin state for both the ferric (S = 1/2) and ferrous (S = 0) oxidation states. CO replaces histidine as the axial sixth ligand at each heme site, forming a low-spin complex with an MCD spectrum similar to that of myoglobin-CO. Photodissociation of Cc3-CO (observed photolysis yield = 30%) produces a transient five-coordinate, high-spin (S = 2) species with an MCD spectrum similar to deoxymyoglobin. The recombination kinetics of CO with heme Fe are complex and appear to involve at least five first-order or pseudo first-order rate processes, corresponding to time constants of 5.7 microseconds, 62 microseconds, 425 microseconds, 2.9 ms, and a time constant greater than 1 s. The observed rate constants were insensitive to variation of the actinic photon flux, suggesting noncooperative heme-CO rebinding. The growing in of an MCD signal characteristic of bis-histidine axial ligation within tens of microseconds after photodissociation shows that, although heme-CO binding is thermodynamically favored at 1 atm CO, binding of histidine to the sixth axial site competes kinetically with CO rebinding.

  19. New insight into the mechanism of mitochondrial cytochrome c function

    DEFF Research Database (Denmark)

    Chertkova, Rita V; Brazhe, Nadezda A; Bryantseva, Tatiana V

    2017-01-01

    We investigate functional role of the P76GTKMIFA83 fragment of the primary structure of cytochrome c. Based on the data obtained by the analysis of informational structure (ANIS), we propose a model of functioning of cytochrome c. According to this model, conformational rearrangements of the P76......GTKMIFA83 loop fragment have a significant effect on conformational mobility of the heme. It is suggested that the conformational mobility of cytochrome c heme is responsible for its optimal orientation with respect to electron donor and acceptor within ubiquinol-cytochrome c oxidoreductase (complex III......) and cytochrome c oxidase (complex IV), respectively, thus, ensuring electron transfer from complex III to complex IV. To validate the model, we design several mutant variants of horse cytochrome c with multiple substitutions of amino acid residues in the P76GTKMIFA83 sequence that reduce its ability to undergo...

  20. Biogenesis of cytochrome b6 in photosynthetic membranes.

    Science.gov (United States)

    Saint-Marcoux, Denis; Wollman, Francis-André; de Vitry, Catherine

    2009-06-29

    In chloroplasts, binding of a c'-heme to cytochrome b(6) on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c(6) on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b(6) in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b(6)f complexes even in the absence of c'-heme binding to cytochrome b(6). Finally, we present a sequential model for apo- to holo-cytochrome b(6) maturation integrated within the assembly pathway of b(6)f complexes in the thylakoid membranes.

  1. Deeply branching c6-like cytochromes of cyanobacteria.

    Science.gov (United States)

    Bialek, Wojciech; Nelson, Matthew; Tamiola, Kamil; Kallas, Toivo; Szczepaniak, Andrzej

    2008-05-20

    The cyanobacterium Synechococcus sp. PCC 7002 carries two genes, petJ1 and petJ2, for proteins related to soluble, cytochrome c6 electron transfer proteins. PetJ1 was purified from the cyanobacterium, and both cytochromes were expressed with heme incorporation in Escherichia coli. The expressed PetJ1 displayed spectral and biochemical properties virtually identical to those of PetJ1 from Synechococcus. PetJ1 is a typical cytochrome c6 but contains an unusual KDGSKSL insertion. PetJ2 isolated from E. coli exhibited absorbance spectra characteristic of cytochromes, although the alpha, beta, and gamma bands were red-shifted relative to those of PetJ1. Moreover, the surface electrostatic properties and redox midpoint potential of PetJ2 (pI 9.7; E(m,7) = 148 +/- 1.7 mV) differed substantially from those of PetJ1 (pI 3.8; E(m,7) = 319 +/- 1.6 mV). These data indicate that the PetJ2 cytochrome could not effectively replace PetJ1 as an electron acceptor for the cytochrome bf complex in photosynthesis. Phylogenetic comparisons against plant, algal, bacterial, and cyanobacterial genomes revealed two novel and widely distributed clusters of previously uncharacterized, cyanobacterial c 6-like cytochromes. PetJ2 belongs to a group that is distinct from both c6 cytochromes and the enigmatic chloroplast c 6A cytochromes. We tentatively designate the PetJ2 group as c6C cytochromes and the other new group as c6B cytochromes. Possible functions of these cytochromes are discussed.

  2. The nature of CuA in cytochrome c oxidase

    OpenAIRE

    Stevens, Tom H.; Martin, Craig T.; Wang, Hsin; Brudvig, Gary W.; Scholes, Charles P.; Chan, Sunney I.

    1982-01-01

    The isolation and purification of yeast cytochrome c oxidase is described. Characterization of the purified protein indicates that it is spectroscopically identical with cytochrome c oxidase isolated from beef heart. Preparations of isotopically substituted yeast cytochrome c oxidase are obtained incorporating [1,3-15N2]histidine or [beta,beta- 2H2]cysteine. Electron paramagnetic resonance and electron nuclear double resonance spectra of the isotopically substituted proteins identify unambigu...

  3. Full genome sequence of a novel coxsackievirus B5 strain isolated from neurological hand, foot, and mouth disease patients in China.

    Science.gov (United States)

    Hu, Y F; Zhao, R; Xue, Y; Yang, Fan; Jin, Q

    2012-10-01

    Coxsackievirus B5 (CVB5) belongs to the human enterovirus B species within the family Picornaviridae. We report the complete genome sequence of a novel CVB5 strain, CVB5/SD/09, that is associated with neurological hand, foot, and mouth disease in China. The complete genome consists of 7,399 nucleotides, excluding the 3' poly(A) tail, and has an open reading frame that maps between nucleotide positions 744 and 7301 and encodes a 2,185-amino-acid polyprotein. Phylogenetic analysis based on different genome region regions reveals that CVB5/SD/09 belongs to a novel CVB5 lineage, and similarity plotting and bootscanning analysis based on the whole genome of CVB5 in the present study and those available in GenBank indicate that the genome of CVB5/SD/09 has a mosaic-like structure, suggesting that recombination between different CVB5 strains may occur.

  4. Multi-heme cytochromes--new structures, new chemistry.

    Science.gov (United States)

    Mowat, Christopher G; Chapman, Stephen K

    2005-11-07

    Heme is one of the most pervasive cofactors in nature and the c-type cytochromes represent one of the largest families of heme-containing proteins. Recent progress in bacterial genomic analysis has revealed a vast range of genes encoding novel c-type cytochromes that contain multiple numbers of heme cofactors. The genome sequence of Geobacter sulfurreducens, for example, includes some one hundred genes encoding c-type cytochromes, with around seventy of these containing two, or more, heme groups and with one protein containing an astonishing twenty seven heme groups. This wealth of cytochromes is of great significance in the respiratory flexibility shown by bacteria such as Geobacter. In addition, we are now discovering that many of these multi-heme cytochromes have associated enzymatic activities and in some cases this is revealing new chemistries. The purpose of this perspective is to describe recent progress in the structural and functional analyses of these new multi-heme cytochromes. To illustrate this we have chosen to focus on three of these cytochromes which exhibit catalytic activities; nitrite reductase, hydroxylamine oxidoreductase and tetrathionate reductase. In addition we consider the multi-heme cytochromes from Geobacter and Desulfovibrio species. Finally, we consider and contrast the repeating structural modules found in these multi-heme cytochromes.

  5. Respiratory cytochrome c oxidase can be efficiently reduced by the photosynthetic redox proteins cytochrome c6 and plastocyanin in cyanobacteria.

    Science.gov (United States)

    Navarro, José A; Durán, Raúl V; De la Rosa, Miguel A; Hervás, Manuel

    2005-07-04

    Plastocyanin and cytochrome c6 are two small soluble electron carriers located in the intrathylacoidal space of cyanobacteria. Although their role as electron shuttle between the cytochrome b6f and photosystem I complexes in the photosynthetic pathway is well established, their participation in the respiratory electron transport chain as donors to the terminal oxidase is still under debate. Here, we present the first time-resolved analysis showing that both cytochrome c6 and plastocyanin can be efficiently oxidized by the aa3 type cytochrome c oxidase in Nostoc sp. PCC 7119. The apparent electron transfer rate constants are ca. 250 and 300 s(-1) for cytochrome c6 and plastocyanin, respectively. These constants are 10 times higher than those obtained for the oxidation of horse cytochrome c by the oxidase, in spite of being a reaction thermodynamically more favourable.

  6. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    Science.gov (United States)

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  7. Cytochrome P450c17 (steroid 17. cap alpha. -hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B.; Picado-Leonard, J.; Haniu, M.; Bienkowski, M.; Hall, P.F.; Shively, J.E.; Miller, W.L.

    1987-01-01

    P450c17 is the single enzyme mediating both 17..cap alpha..-hydroxylase (steroid 17..cap alpha..-monooxygenase, EC 1.14.99.9) and 17,20 lyase activities in the synthesis of steroid hormones. It has been suggested that different P450c17 isozymes mediate these activities in the adrenal gland and testis. The authors sequenced 423 of the 509 amino acids (83%) of the porcine adrenal enzyme; based on this partial sequence, a 128-fold degenerate 17-mer was synthesized and used to screen a porcine adrenal cDNA library. This yielded a 380-base cloned cDNA, which in turn was used to isolate several human adrenal cDNAs. The longest of these, lambda hac 17-2, is 1754 base pairs long and includes the full-length coding region, the complete 3'-untranslated region, and 41 bases of the 5'-untranslated region. This cDNA encodes a protein of 508 amino acids having a predicted molecular weight of 57,379.82. High-stringency screening of a human testicular cDNA library yielded a partial clone containing 1303 identical bases. RNA gel blots and nuclease S1-protection experiments confirm that the adrenal and testicular P450c17 mRNAs are indistinguishable. These data indicate that the testis possesses a P450c17 identical to that in the adrenal. The human amino acid sequence is 66.7% homologous to the corresponding regions of the porcine sequence, and the human cDNA and amino acid sequences are 80.1 and 70.3% homologous, respectively, to bovine adrenal P450c17 cDNA. Both comparisons indicate that a central region comprising amino acid residues 160-268 is hypervariable among these species of P450c17.

  8. Identification of a novel laser dye substrate of mammalian cytochromes P450: application in rapid kinetic analysis, inhibitor screening, and directed evolution.

    Science.gov (United States)

    Kumar, Santosh

    2007-08-01

    The author sought to develop a high-throughput activity screening assay to carry out rapid kinetic analysis, inhibitor screening, and directed evolution of cytochrome P450 2C enzymes. Initially, of the 9 fluorescent substrates and 10 P450 2C enzymes tested, several P450 2C enzymes showed > 1 nmol/min/nmol P450 activity in cumene hydroperoxide (CuOOH)-supported reaction with a laser dye, 7-dimethylamino-4-trifluoromethylcoumarin (C152). A high-throughput steady-state kinetic analysis of the human P450 2C8, 2C9, and 2C19 showed 1) k(cat) = 3 to 6 min(-1), 2) K(m, CuOOH) = 100 to 200 microM, and 3) S(50, C152) = 10 to 20 microM in the CuOOH system. In addition, P450 2C9 and 2C19 showed a very high k(ca)t (27 and 38 min(-1), respectively) in the nicotinamide adenine dinucleotide phosphate (NADPH)-supported reaction. Subsequently, when mammalian P450s from the other subfamilies were tested, P450 2B1dH, 2B4dH, 2B5dH, 3A4, and 3A5 exhibited a significant activity in both CuOOH and NADPH systems. Furthermore, a high-throughput activity screening assay using whole-cell suspensions of the human P450 2C8, 2C9, and 2C19 was optimized. Overall, the data suggested that C152 can be used as a model substrate for mammalian P450s in CuOOH-supported reaction to perform rapid kinetic analysis, inhibitor screening, and directed evolution.

  9. Analysis of genomic characteristics of coxsackie virus B5 strains isolated from Henan province%柯萨奇病毒B5河南分离株全基因组序列测定及分析

    Institute of Scientific and Technical Information of China (English)

    黄学勇; 许玉玲; 李幸乐; 晁灵; 陈豪敏; 许汴利

    2011-01-01

    目的:了解柯萨奇病毒B5( CoxB5)河南分离株全基因特征及与其他肠道病毒基因的关系.方法:采用RT-PCR扩增全基因,采用DNAStar中的SeqMan拼接所测序列,BioEdit进行同源性比较,Simplot进行相似度分析.结果:CoxB5/Henan/2010基因组全长7 401 bp.与原型株Faulkner相比,编码区氨基酸同源性为95.6%,核苷酸同源性为79.9%,其中VP4-VP2核苷酸差异为17.8%~20.4%,VP1核苷酸差异为19.5%,P2、P3核苷酸差异分别为19.5%、21.7%.不同型别肠道病毒间VP4-VP2核苷酸差异为14.4% ~ 34.9%,VP1核苷酸差异为18.3%~42.3%,P2、P3核苷酸差异为17.1%~21.0%、15.5% ~ 22.6%.结论:与原型株相比,CoxB5/Henan/2010株编码区发生沉默突变,其核苷酸变异并不影响氨基酸序列的变化;肠道病毒基因组各分区在进化中不同步.%Aim: To reveal the genomic sequence characteristic of coxsackie virus B5 ( CoxBS ) and its relationship with other enterovirus gene. Methods:The whole genome sequence was sequenced by RT-PCR,and BioEdit and Simplot were used to analyze the homology and similarity. Results: The full length of CoxB5/Henan/2010 genome was 7 401 bp. Compared with the prototype strain Faulkner, the entire coding region of amino acid homology was 95.6% ,and VP4-VP2 nucleotide difference was 17.8% -20.4% , VP1 nucleotide difference was 19.5% ,and P2.P3 nucleotide differences were 19.5% ,21.7%. VP4-VP2 displayed 14.4% -34.9% , VP1 displayed 18.3%~42.3% and P2.P3 displayed 17.1% ~ 21.0% , 15.5% ~ 22. 6% in nucleotide difference compared with the other enterovirus, respectively. Conclusion: Compared with the prototype strain, CoxB5/Henan/2010 coding sequence is silent mutation, the nucleotide variation does not affect amino acid sequence changes. The genome evolution is not sync in the district of enterovirus.

  10. Production of recombinant multiheme cytochromes c in Wolinella succinogenes.

    Science.gov (United States)

    Kern, Melanie; Simon, Jörg

    2011-01-01

    Respiratory nitrogen cycle processes like nitrification, nitrate reduction, denitrification, nitrite ammonification, or anammox involve a variety of dissimilatory enzymes and redox-active cofactors. In this context, an intriguing protein class are cytochromes c, that is, enzymes containing one or more covalently bound heme groups that are attached to heme c binding motifs (HBMs) of apo-cytochromes. The key enzyme of the corresponding maturation process is cytochrome c heme lyase (CCHL), an enzyme that catalyzes the formation of two thioether linkages between two vinyl side chains of a heme and two cysteine residues arranged in the HBM. In recent years, many multiheme cytochromes c involved in nitrogen cycle processes, such as hydroxylamine oxidoreductase and cytochrome c nitrite reductase, have attracted particular interest. Structurally, these enzymes exhibit conserved heme packing motifs despite displaying very different enzymic properties and largely unrelated primary structures. The functional and structural characterization of cytochromes c demands their purification in sufficient amounts as well as the feasibility to generate site-directed enzyme variants. For many interesting organisms, however, such systems are not available, mainly hampered by genetic inaccessibility, slow growth rates, insufficient cell yields, and/or a low capacity of cytochrome c formation. Efficient heterologous cytochrome c overproduction systems have been established using the unrelated proteobacterial species Escherichia coli and Wolinella succinogenes. In contrast to E. coli, W. succinogenes uses the cytochrome c biogenesis system II and contains a unique set of three specific CCHL isoenzymes that belong to the unusual CcsBA-type. Here, W. succinogenes is presented as host for cytochrome c overproduction focusing on a recently established gene expression system designed for large-scale production of multiheme cytochromes c. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Subacute effects of the brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on hepatic cytochrome P450 levels in rats.

    NARCIS (Netherlands)

    Germer, Silke; Piersma, Aldert H; Ven, Leo T M van der; Kamyschnikow, Andreas; Fery, Yvonne; Schmitz, Hans-Joachim; Schrenk, Dieter

    2006-01-01

    The brominated flame retardants tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD) are found in the environment, e.g., in sediments and organisms, in food items, human blood samples and mother's milk. In this study, the effects of both compounds on rat hepatic cytochrome P450 (CYP) leve

  12. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    Science.gov (United States)

    2017-08-15

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  13. The bacterial SoxAX cytochromes.

    Science.gov (United States)

    Kappler, Ulrike; Maher, Megan J

    2013-03-01

    SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a family with at least three distinct types of SoxAX protein. The types of SoxAX cytochromes differ in terms of the number of heme groups present in the proteins (there are diheme and triheme versions) as well as in their subunit structure. While two of the SoxAX protein types are heterodimers, the third group contains an additional subunit, SoxK, that stabilizes the complex of the SoxA and SoxX proteins. Crystal structures are available for representatives of the two heterodimeric SoxAX protein types and both of these have shown that the cysteine ligand to the SoxA active site heme carries a modification to a cysteine persulfide that implicates this ligand in catalysis. EPR studies of SoxAX proteins have also revealed a high complexity of heme dependent signals associated with this active site heme; however, the exact mechanism of catalysis is still unclear at present, as is the exact number and types of redox centres involved in the reaction.

  14. Periplasmic c cytochromes and chlorate reduction in Ideonella dechloratans.

    Science.gov (United States)

    Bäcklund, Anna Smedja; Bohlin, Jan; Gustavsson, Niklas; Nilsson, Thomas

    2009-04-01

    The aim of this study was to clarify the pathway of electron transfer between the inner membrane components and the periplasmic chlorate reductase. Several soluble c-type cytochromes were found in the periplasm. The optical difference spectrum of dithionite-reduced periplasmic extract shows that at least one of these components is capable of acting as an electron donor to the enzyme chlorate reductase. The cytochromes were partially separated, and the fractions were analyzed by UV/visible spectroscopy to determine the ability of donating electrons to chlorate reductase. Our results show that one of the c cytochromes (6 kDa) is able to donate electrons, both to chlorate reductase and to the membrane-bound cytochrome c oxidase, whereas the roles of the remaining c cytochromes still remain to be elucidated. Peptide extracts of the c cytochromes were obtained by tryptic in-gel digestion for matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. Peptide sequences obtained indicate that the 6-kDa cytochrome c protein is similar to c cytochromes from the chlorate-reducing bacterium Dechloromonas aromatica.

  15. The SMARTCyp cytochrome P450 metabolism prediction server

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Gloriam, David Erik Immanuel; Olsen, Lars

    2010-01-01

    The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism.......The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism....

  16. The photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Bernal-Bayard, Pilar; Puerto-Galán, Leonor; Yruela, Inmaculada; García-Rubio, Inés; Castell, Carmen; Ortega, José M; Alonso, Pablo J; Roncel, Mercedes; Martínez, Jesús I; Hervás, Manuel; Navarro, José A

    2017-09-01

    The photosynthetic cytochrome c 550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c 550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c 550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c 550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c 550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c 550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c 550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c 550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre.

  17. Cytochrome c as a peroxidase : tuning of heme reactivity

    NARCIS (Netherlands)

    Diederix, Rutger Ernest Michiel

    2003-01-01

    This thesis describes the peroxidase activity of the electron-transfer protein cytochrome c, and how it is controlled by the protein matrix. It is shown that unfolding cytochrome c has the effect to significantly enhance its peroxidase activity of (up to several thousand-fold). This can be achieved

  18. CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles.

    Science.gov (United States)

    Keeling, Christopher I; Henderson, Hannah; Li, Maria; Dullat, Harpreet K; Ohnishi, Toshiyuki; Bohlmann, Jörg

    2013-12-01

    The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) is a significant pest of western North American pine forests. This beetle responds to pheromones and host volatiles in order to mass attack and thus overcome the terpenoid chemical defences of its host. The ability of MPB antennae to rapidly process odorants is necessary to avoid odorant receptor saturation and thus the enzymes responsible for odorant clearance are an important aspect of host colonization. An antenna-specific cytochrome P450, DponCYP345E2, is the most highly expressed transcript in adult MPB antenna. In in vitro assays with recombinant enzyme, DponCYP345E2 used several pine host monoterpenes as substrates, including (+)-(3)-carene, (+)-β-pinene, (-)-β-pinene, (+)-limonene, (-)-limonene, (-)-camphene, (+)-α-pinene, (-)-α-pinene, and terpinolene. The substrates were epoxidized or hydroxylated, depending upon the substrate. To complement DponCYP345E2, we also functionally characterized the NADPH-dependent cytochrome P450 reductase and the cytochrome b5 from MPB. DponCYP345E2 is the first cytochrome P450 to be functionally characterized in insect olfaction and in MPB.

  19. 17 CFR 240.10b5-1 - Trading “on the basis of” material nonpublic information in insider trading cases.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Trading âon the basis ofâ material nonpublic information in insider trading cases. 240.10b5-1 Section 240.10b5-1 Commodity and... Deceptive Devices and Contrivances § 240.10b5-1 Trading “on the basis of” material nonpublic information...

  20. Optimization of Albumin Secretion and Metabolic Activity of Cytochrome P450 1A1 of Human Hepatoblastoma HepG2 Cells in Multicellular Spheroids by Controlling Spheroid Size.

    Science.gov (United States)

    Nishikawa, Tomoko; Tanaka, Yutaro; Nishikawa, Makiya; Ogino, Yuka; Kusamori, Kosuke; Mizuno, Narumi; Mizukami, Yuya; Shimizu, Kazunori; Konishi, Satoshi; Takahashi, Yuki; Takakura, Yoshinobu

    2017-01-01

    Multicellular spheroids are useful as three-dimensional cell culture systems and for cell-based therapies. Their successful application requires an understanding of the consequences of spheroid size for cellular functions. In the present study, we prepared multicellular spheroids of different sizes using the human hepatoblastoma HepG2 cells, as hepatocytes are frequently used for in vitro drug screening and cell-based therapy. Precise polydimethylsiloxane-based microwells with widths of 360, 450, 560, and 770 µm were fabricated using a micromolding technique. Incubation of HepG2 cells in cell culture plates containing the microwells resulted in the formation of HepG2 spheroids with average diameters of 195, 320, 493, and 548 µm. The cell number per spheroid positively correlated with its diameter, and the viability of HepG2 cells was 94% or above for all samples. The smallest HepG2 spheroids showed the highest albumin secretion. On the other hand, the metabolic activity of 7-ethoxyresorufin, a fluorometric substrate for CYP1A1, increased with increasing spheroid size. These results indicate that controlling spheroid size is important when preparing HepG2 spheroids and that the size of HepG2 spheroids greatly influences the cellular function of HepG2 cells in the spheroids.

  1. Improved technique for fluorescence in situ hybridisation analysis of isolated nuclei from archival, B5 or formalin fixed, paraffin wax embedded tissue.

    Science.gov (United States)

    Schurter, M J; LeBrun, D P; Harrison, K J

    2002-04-01

    Fluorescence in situ hybridisation (FISH) is an effective method to detect chromosomal alterations in a variety of tissue types, including archived paraffin wax embedded specimens fixed in B5 or formalin. However, precipitating fixatives such as B5 have been known to produce unsatisfactory results in comparison with formalin when used for FISH. This study describes an effective nuclear isolation and FISH procedure for B5 and formalin fixed tissue, optimising the nuclear isolation step and nuclei pretreatments using tonsil and mantle cell lymphoma specimens. The protocol presented can be used to isolate nuclei and perform FISH on B5 or formalin fixed, paraffin wax embedded samples from a variety of tissue types.

  2. Tumor-specific expression of cytochrome P450 CYP1B1.

    Science.gov (United States)

    Murray, G I; Taylor, M C; McFadyen, M C; McKay, J A; Greenlee, W F; Burke, M D; Melvin, W T

    1997-07-15

    Cytochrome P450 CYP1B1 is a recently cloned dioxin-inducible form of the cytochrome P450 family of xenobiotic metabolizing enzymes. An antibody raised against a peptide specific for CYP1B1 was found to recognize CYP1B1 expressed in human lymphoblastoid cells but not to recognize other forms of cytochrome P450, particularly CYP1A1 and CYP1A2. Using this antibody, the cellular distribution and localization of CYP1B1 were investigated by immunohistochemistry in a range of malignant tumors and corresponding normal tissues. CYP1B1 was found to be expressed at a high frequency in a wide range of human cancers of different histogenetic types, including cancers of the breast, colon, lung, esophagus, skin, lymph node, brain, and testis. There was no detectable immunostaining for CYP1B1 in normal tissues. These results provide the basis for the development of novel methods of cancer diagnosis based on the identification of CYP1B1 in tumor cells and the development of anticancer drugs that are selectively activated in tumors by CYP1B1.

  3. Purification and characterization of an NADPH-cytochrome P450 (cytochrome c) reductase from spearmint (Mentha spicata) glandular trichomes.

    Science.gov (United States)

    Ponnamperuma, K; Croteau, R

    1996-05-01

    Solubilized NADPH-cytochrome c (P450) reductase was purified to homogeneity from an extract of spearmint (Mentha spicata) glandular trichomes by dye-ligand interaction chromatography on Matrex-Gel Red A and affinity chromatography on 2', 5'-adenosine diphosphate agarose. SDS-PAGE of the purified enzyme preparation revealed the presence of two similar proteins with masses of 82 kDa (major) and 77 kDa (minor) that crossreacted on immunoblot analysis with polyclonal antibodies directed against NADPH-cytochrome P450 reductase from Jerusalem artichoke and from mung bean. Complete immunoinhibition of reductase activity was observed with both types of polyclonal antibodies, while only partial inhibition of activity resulted using a family of monoclonal antibodies directed against the Jerusalem artichoke cytochrome P450 reductase. Inhibition of the spearmint oil gland cytochrome c reductase was also observed with the diphenyliodonium ion. The K(m) values for the cosubstrates NADPH and cytochrome c were 6.2 and 3.7 microM, respectively, and the pH optimum for activity was at 8.5. The NADPH-cytochrome c reductase reconstituted NADPH-dependent (-)-4S-limonene-6-hydroxylase activity in the presence of cytochrome P450, purified from the microsomal fraction of spearmint oil gland cells and dilauroyl phosphatidyl choline. These characteristics establish the identity of the purified enzyme as a NADPH-cytochrome P450 reductase.

  4. Assessment of competitive and mechanism-based inhibition by clarithromycin: use of domperidone as a CYP3A probe-drug substrate and various enzymatic sources including a new cell-based assay with freshly isolated human hepatocytes.

    Science.gov (United States)

    Michaud, Veronique; Turgeon, Jacques

    2010-04-01

    Clarithromycin is involved in a large number of clinically relevant drug-drug interactions. Discrepancies are observed between the magnitude of drug interactions predicted from in vitro competitive inhibition studies and changes observed clinically in the plasma levels of affected CYP3A substrates. The formation of metabolic-intermediate complexes has been proposed to explain these differences. The objectives of our study were: 1) to determine the competitive inhibition potency of clarithromycin on the metabolism of domperidone as a CYP3A probe drug using human recombinant CYP3A4 and CYP3A5 isoenzymes, human liver microsomes and cultured human hepatocytes; 2) to establish the modulatory role of cytochrome b5 on the competitive inhibition potency of clarithromycin; 3) to demonstrate the clarithromycin-induced formation of CYP450 metabolic-intermediate complexes in human liver microsomes; and 4) to determine the extent of CYP3A inhibition due to metabolic-intermediate complex formation using human liver microsomes and cultured human hepatocytes. At high concentrations (100 µM), clarithromycin had weak competitive inhibition potency towards CYP3A4 and CYP3A5. Inhibition potency was further decreased by the addition of cytochrome b5 (9-19%). Clarithromycin-induced metabolic-intermediate complexes were revealed by spectrophotometry analysis using human liver microsomes while time- and concentration-dependent mechanism-based inhibitions were quantified using isolated hepatocytes. These results indicate that mechanism-based but not competitive inhibition of CYP3As is the major underlying mechanism of drug-drug interactions observed clinically with clarithromycin. Drug interactions between clarithromycin and several CYP3A substrates are predicted to be insidious; the risk of severe adverse events should increase over time and persist for a few days after cessation of the drug.

  5. Metabolism of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in human hepatocytes: 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid is a major detoxification pathway catalyzed by cytochrome P450 1A2.

    Science.gov (United States)

    Langouët, S; Welti, D H; Kerriguy, N; Fay, L B; Huynh-Ba, T; Markovic, J; Guengerich, F P; Guillouzo, A; Turesky, R J

    2001-02-01

    Metabolic pathways of the mutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) remain incompletely characterized in humans. In this study, the metabolism of MeIQx was investigated in primary human hepatocytes. Six metabolites were characterized by UV and mass spectroscopy. Novel metabolites were additionally characterized by 1H NMR spectroscopy. The carcinogenic metabolite, 2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline, which is formed by cytochrome P450 1A2 (P450 1A2), was found to be transformed into the N(2)-glucuronide conjugate, N(2)-(beta-1-glucosiduronyl)-2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline. The phase II conjugates N(2)-(3,8-dimethylimidazo[4,5-f]quinoxalin-2-yl)sulfamic acid and N(2)-(beta-1-glucosiduronyl)-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, as well as the 7-oxo derivatives of MeIQx and N-desmethyl-MeIQx, 2-amino-3,8-dimethyl-6-hydro-7H-imidazo[4,5-f]quinoxalin-7-one (7-oxo-MeIQx), and 2-amino-6-hydro-8-methyl-7H-imidazo[4,5-f]quinoxalin-7-one (N-desmethyl-7-oxo-MeIQx), thought to be formed exclusively by the intestinal flora, were also identified. A novel metabolite was characterized as 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH), and it was the predominant metabolite formed in hepatocytes exposed to MeIQx at levels approaching human exposure. IQx-8-COOH formation is catalyzed by P450 1A2. This metabolite is a detoxication product and does not induce umuC gene expression in Salmonella typhimurium strain NM2009. IQx-8-COOH is also the principal oxidation product of MeIQx excreted in human urine [Turesky, R., et al. (1998) Chem. Res. Toxicol. 11, 217-225]. Thus, P450 1A2 is involved in both the metabolic activation and detoxication of this procarcinogen in humans. Analogous metabolism experiments were conducted with hepatocytes of untreated rats and rats pretreated with the P450 inducer 3-methylcholanthrene. Unlike human hepatocytes, the rat cell preparations did not produce IQx-8

  6. Spectroscopic studies and molecular docking on the interaction of organotin antitumor compound bis[2,4-difluoro-N-(hydroxy-⟨κ⟩O)benzamidato-⟨κ⟩O]diphenyltin(IV) with human cytochrome P450 3A4 protease

    Science.gov (United States)

    Wei, Ying; Niu, Lin; Liu, Xinxin; Zhou, Hongyan; Dong, Hongzhou; Kong, Depeng; Li, Yunlan; Li, Qingshan

    2016-06-01

    A novel organotin DFDPT was synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn, NMR techniques,etc. In order to investigate profoundly the relationship between DFDPT with human CYP3A4 proteaset and anticancer molecular mechanism of DFDPT, the intercalative mode of binding of DFDPT with CYP3A4 under physiological conditions were comprehensively evaluated using steady state, synchronous, three-dimensional fluorescence spectroscopy,circular dichroism and molecular docking. Fluorescence emission data showed that CYP3A4 fluorescence affected by DFDPT was a static quenching procedure, which implied that DFDPT-CYP3A4 complex had been formed. Apparent binding constants Kb of CYP3A4 with compound at 298 and 310 K were 2.51 × 107 and 3.09 × 105, respectively. The binding sites number n was 1.64 and 1.22, respectively. The thermodynamic parameters ΔH and ΔS of the DFDPT-CYP3A4 complex were negative, which indicated that their interaction was driven mainly by hydrogen bonding and van der Waals force. The binding of DFDPT-CYP3A4 was spontaneous process in which ΔG was negative. The synchronous results showed DFDPT induced conformational changes of CYP3A4 protein. Three-dimensional fluorescence and circular dichroism spectra results also revealed conformation of CYP3A4 protein had been possible changed in the presence of DFDPT. Molecular docking was used to study the interaction orientation between DFDPT and CYP3A4 protease. The results indicated that DFDPT interacted with a panel of amino acids in the active sites of CYP3A4 protein mainly through formation of hydrogen bond. Furthermore, the predicted binding mode of DFDPT into CYP3A4 appeared to adopt an orientation with interactions among Arg105, Ser119 and Thr309.

  7. The expression of HoxB5 and SPC in neonatal rat lung after exposure to fluoxetine.

    Science.gov (United States)

    Taghizadeh, Razieh; Taghipour, Zahra; Karimi, Akbar; Shamsizadeh, Ali; Taghavi, Mohammad Mohsen; Shariati, Mahdi; Shabanizadeh, Ahmad; Jafari Naveh, Hamid Reza; Bidaki, Reza; Aminzadeh, Fariba

    2016-01-01

    Approximately 10% of pregnant women suffer from pregnancy-associated depression. Fluoxetine, as a selective serotonin reuptake inhibitor, is being employed as a therapy for depressive disorders. The present study aimed to determine the effects of fluoxetine on neonatal lung development. Thirty pregnant Wistar rats (weighing 200-250 g) were treated daily with 7 mg/kg fluoxetine from gestation day 0 to gestation day 21, via gavage. The control group received a similar volume of distilled water only. Following delivery, the newborns and their lungs were immediately weighed in both of the groups. The right lung was fixed for histological assessments while the left lung was used for evaluation of the expression of SPC and HoxB5 by the real-time polymerase chain reaction method. Results have indicated that even though the body weight and the number of neonatal rats in both groups were the same, the lung weight of neonates exposed to fluoxetine was significantly different compared to the control group (P<0.05). Expression of both genes was increased, nonetheless, only elevation of HoxB5 was significant (P<0.05). Histological studies demonstrated that lung tissue in the fluoxetine treatment group morphologically appears to be similar to the pseudoglandular phase, whereas the control group lungs experienced more development. According to the upregulated expression of HoxB5 concerning histological findings, results of the present study showed that fluoxetine can influence lung growth and may in turn lead to delay in lung development. So establishment of studies to identify the effects of antidepressant drugs during pregnancy is deserved.

  8. Rule 10b-5 and Reasonable Reliance: Why Courts Should Abandon Focus on Non-Reliance Clauses

    Directory of Open Access Journals (Sweden)

    Jonathan P. Altman

    2007-04-01

    Full Text Available In a typical privately negotiated merger or acquisition, the parties involved will be engaged in months of negotiations prior to the closing of their deal. Over the course of such, many projections, agreements, documents, oral representations and warranties (hereinafter “information” will undoubtedly be exchanged by both sides. In the final purchase agreement, a seller typically lists detailed representations and warranties about its business, and includes a proviso that the buyer is not relying on any other information. Inclusion of this “non-reliance clause” (hereinafter “NRC” is intended to restrict a buyer’s ability to bring a fraud claim under Rule 10b-5.

  9. The expression of HoxB5 and SPC in neonatal rat lung at exposure to fluoxetine

    Directory of Open Access Journals (Sweden)

    Taghizadeh R

    2016-11-01

    Full Text Available Razieh Taghizadeh,1 Zahra Taghipour,2 Akbar Karimi,1 Ali Shamsizadeh,3 Mohammad Mohsen Taghavi,2 Mahdi Shariati,2 Ahmad Shabanizadeh,2 Hamid Reza Jafari Naveh,2 Reza Bidaki,4 Fariba Aminzadeh51Department of Biology, Payame Noor University, Isfahan, Iran; 2Department of Anatomy, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; 3Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; 4Shahid Sadoughi University of Medical Sciences, Yazd, Iran; 5Rafsanjan University of Medical Sciences, Rafsanjan, IranObjective: Approximately 10% of pregnant women suffer from pregnancy-associated depression. Fluoxetine, as a selective serotonin reuptake inhibitor, is being employed as a therapy for depressive disorders. The present study aimed to determine the effects of fluoxetine on neonatal lung development.Methods: Thirty pregnant Wistar rats (weighing 200–250 g were treated daily with 7 mg/kg fluoxetine from gestation day 0 to gestation day 21, via gavage. The control group received a similar volume of distilled water only. Following delivery, the newborns and their lungs were immediately weighed in both of the groups. The right lung was fixed for histological assessments while the left lung was used for evaluation of the expression of SPC and HoxB5 by the real-time polymerase chain reaction method.Results: Results have indicated that even though the body weight and the number of neonatal rats in both groups were the same, the lung weight of neonates exposed to fluoxetine was significantly different compared to the control group (P<0.05. Expression of both genes was increased, nonetheless, only elevation of HoxB5 was significant (P<0.05. Histological studies demonstrated that lung tissue in the fluoxetine treatment group morphologically appears to be similar to the pseudoglandular phase, whereas the control group lungs experienced more development.Conclusion: According to the upregulated expression of HoxB5 concerning

  10. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    Directory of Open Access Journals (Sweden)

    Eugenia Elefterios Venizelos Bezirtzoglou

    2012-09-01

    Full Text Available Cytochromes P450 (CYPs enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80% followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450 cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status.

  11. Chlorophyllin significantly reduces benzo[a]pyrene-DNA adduct formation and alters cytochrome P450 1A1 and 1B1 expression and EROD activity in normal human mammary epithelial cells.

    Science.gov (United States)

    Keshava, Channa; Divi, Rao L; Einem, Tracey L; Richardson, Diana L; Leonard, Sarah L; Keshava, Nagalakshmi; Poirier, Miriam C; Weston, Ainsley

    2009-03-01

    We hypothesized that chlorophyllin (CHLN) would reduce benzo[a]pyrene-DNA (BP-DNA) adduct levels. Using normal human mammary epithelial cells (NHMECs) exposed to 4 microM BP for 24 hr in the presence or absence of 5 microM CHLN, we measured BP-DNA adducts by chemiluminescence immunoassay (CIA). The protocol included the following experimental groups: BP alone, BP given simultaneously with CHLN (BP+CHLN) for 24 hr, CHLN given for 24 hr followed by BP for 24 hr (preCHLN, postBP), and CHLN given for 48 hr with BP added for the last 24 hr (preCHLN, postBP+CHLN). Incubation with CHLN decreased BPdG levels in all groups, with 87% inhibition in the preCHLN, postBP+CHLN group. To examine metabolic mechanisms, we monitored expression by Affymetrix microarray (U133A), and found BP-induced up-regulation of CYP1A1 and CYP1B1 expression, as well as up-regulation of groups of interferon-inducible, inflammation and signal transduction genes. Incubation of cells with CHLN and BP in any combination decreased expression of many of these genes. Using reverse transcription real time PCR (RT-PCR) the maximal inhibition of BP-induced gene expression, >85% for CYP1A1 and >70% for CYP1B1, was observed in the preCHLN, postBP+CHLN group. To explore the relationship between transcription and enzyme activity, the ethoxyresorufin-O-deethylase (EROD) assay was used to measure the combined CYP1A1 and CYP1B1 activities. BP exposure caused the EROD levels to double, when compared with the unexposed controls. The CHLN-exposed groups all showed EROD levels similar to the unexposed controls. Therefore, the addition of CHLN to BP-exposed cells reduced BPdG formation and CYP1A1 and CYP1B1 expression, but EROD activity was not significantly reduced.

  12. Flower colour and cytochromes P450.

    Science.gov (United States)

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  13. Sulfite oxidase activity of cytochrome c: Role of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Murugesan Velayutham

    2016-03-01

    Full Text Available In humans, sulfite is generated endogenously by the metabolism of sulfur containing amino acids such as methionine and cysteine. Sulfite is also formed from exposure to sulfur dioxide, one of the major environmental pollutants. Sulfite is used as an antioxidant and preservative in dried fruits, vegetables, and beverages such as wine. Sulfite is also used as a stabilizer in many drugs. Sulfite toxicity has been associated with allergic reactions characterized by sulfite sensitivity, asthma, and anaphylactic shock. Sulfite is also toxic to neurons and cardiovascular cells. Recent studies suggest that the cytotoxicity of sulfite is mediated by free radicals; however, molecular mechanisms involved in sulfite toxicity are not fully understood. Cytochrome c (cyt c is known to participate in mitochondrial respiration and has antioxidant and peroxidase activities. Studies were performed to understand the related mechanism of oxidation of sulfite and radical generation by ferric cytochrome c (Fe3+cyt c in the absence and presence of H2O2. Electron paramagnetic resonance (EPR spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO were performed with sulfite, Fe3+cyt c, and H2O2. An EPR spectrum corresponding to the sulfite radical adducts of DMPO (DMPO-SO3- was obtained. The amount of DMPO-SO3- formed from the oxidation of sulfite by the Fe3+cyt c increased with sulfite concentration. In addition, the amount of DMPO-SO3- formed by the peroxidase activity of Fe3+cyt c also increased with sulfite and H2O2 concentration. From these results, we propose a mechanism in which the Fe3+cyt c and its peroxidase activity oxidizes sulfite to sulfite radical. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of sulfite in biological systems due to increased production of sulfite radical. It also shows that the increased production of sulfite radical may be responsible for neurotoxicity and some of the injuries which

  14. Characterization of Cytochrome 579, an Unusual Cytochrome Isolated from an Iron-Oxidizing Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Steven [Lawrence Livermore National Laboratory (LLNL); Chan, Clara S [University of California, Berkeley; Zemla, Adam [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Hwang, Mona [Lawrence Livermore National Laboratory (LLNL); Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley; Thelen, Michael P. [University of California, Berkeley

    2008-01-01

    Proteogenomic studies of Fe(II)-oxidizing microbial biofilms collected from an extremely acidic environment have identified a novel, soluble cytochrome as one of the most abundant proteins produced by these communities. This red cytochrome, extracted from biofilms with dilute sulfuric acid and purified by cation exchange chromatography, has an unusual visible spectral signature at 579 nm. Fe(II)-dependent reduction of Cyt579 was thermodynamically favorable at pH>3, raising the possibility that Cyt579 acts as an accessory protein for electron transfer. Transmission electron microscopy of immuno-gold labeled biofilm indicated that the Cyt579 is localized near the bacterial cell surface, consistent with periplasmic localization. Further protein analysis of Cyt579, using preparative chromatofocusing and SDS-PAGE, revealed three forms of the protein that correspond to different N-terminal truncations of the amino acid sequence. Intact protein analysis corroborated the post-translational modifications of these forms and identified a genomically uncharacterized Cyt579 variant. Homology modeling was used to predict the overall cytochrome structure and heme binding site; positions of nine amino acid substitutions found in 3 Cyt579 variants all map to the surface of the protein and away from the heme group. Based on this detailed characterization of Cyt579, we propose that Cyt579 acts an electron transfer protein shuttling electrons derived from Fe(II) oxidation to support critical metabolic functions in the acidophilic microbial community.

  15. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency.

    OpenAIRE

    1998-01-01

    Leigh disease associated with cytochrome c oxidase deficiency (LD[COX-]) is one of the most common disorders of the mitochondrial respiratory chain, in infancy and childhood. No mutations in any of the genes encoding the COX-protein subunits have been identified in LD(COX-) patients. Using complementation assays based on the fusion of LD(COX-) cell lines with several rodent/human rho0 hybrids, we demonstrated that the COX phenotype was rescued by the presence of a normal human chromosome 9. L...

  16. Interaction of modified tail-anchored proteins with liposomes: effect of extensions of hydrophilic segment at the COOH-terminus of holo-cytochromes b₅.

    Science.gov (United States)

    Sakamoto, Yoichi; Miura, Masahiro; Takeuchi, Fusako; Park, Sam-Yong; Tsubaki, Motonari

    2012-03-01

    A group of membrane proteins having a single COOH-terminal hydrophobic domain capable of post-translational insertion into lipid bilayer is known as tail-anchored (TA) proteins. To clarify the insertion mechanism of the TA-domain of human cytochrome b(5) (Hcytb5) into ER membranes, we produced and purified various membrane-bound forms of Hcytb5 with their heme b-bound, in which various truncated forms of NH(2)-terminal bovine opsin sequence were appended at the COOH-terminus of the native form. We analyzed the integration of the TA-domains of these forms onto protein-free liposomes. The integration occurred efficiently even in the presence of a small amount of sodium cholate and, once incorporated, such proteoliposomes were very stable. The mode of the integration was further analyzed by treatment of the proteoliposomes with trypsin either on the extravesicular side or on the luminal side. LC-MS analyses of the trypsin digests obtained from the proteoliposomes indicated that most of the C-terminal hydrophilic segment of the native Hcytb5 were exposed towards the lumen of the vesicles and, further, a significant part of the population of the extended C-terminal hydrophilic segments of the modified Hcytb5 were exposed in the lumen as well, suggesting efficient translocation ability of the TA-domain without any assistance from other protein factors. Present results opened a route for the use of the C-terminal TA-domain as a convenient tool for the transport of proteins as well as short peptides into artificial liposomes.

  17. Effect of Cigarette Smoking Extract on the Activity of Cytochrome C Oxidase and Apoptosis in Human Endothelial Cells%香烟烟雾提取物对人内皮细胞细胞色素C氧化酶活性及细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    刘彩虹; 陈平; 裴艳芳; 蔡珊; 向旭东

    2009-01-01

    目的 探讨香烟烟雾提取物(cigarette smoking extract, CSE)对内皮细胞细胞色素C氧化酶(cytochrome c oxidase, COX)活性及凋亡的影响.方法 体外培养ECV304,分别给予0%、0.5%、1%、5%CSE刺激12 h,及5%CSE刺激0 h、6 h、12 h、24 h后,生化法检测COX活性;投射电镜和流式细胞仪观察细胞凋亡情况.结果 CSE引起COX活性下降,且随着刺激浓度和时间的增加而下降(P<0.05);电镜示CSE干预组细胞出现明显的凋亡形态学改变;流式细胞仪结果 示不同浓度CSE分别作用12 h后凋亡率依次增高,除0%CSE组和0.5%CSE组间比较无统计学意义(P>0.05),余各组间比较均有统计学意义(P<0.05);5%CSE作用不同时间后,随着干预时间的延长细胞凋亡率逐渐升高(P<0.05). 结论 CSE抑制内皮细胞COX活性,呈浓度和时间依赖性;CSE诱导内皮细胞凋亡,呈浓度和时间依赖性;COX活性的下降可能在CSE所致的内皮细胞凋亡中具有重要作用.%Objective To investigate the effect of cigarette smoking extract (CSE) on the activity of cytochrome C oxidase (COX) and apoptosis of human endothelial cells. Methods: After ECV304 were treated with CSE, COX activity was detected by biochemistry; CSE-induced cell apoptosis was observed by Flow Cytometry; Cell morphology of apoptosis was observed under a transmission electron microscope. Results: CSE decreased the value of COX activity (all P<0.05) ,CSE induced apoptosis of the cells. The effects of CSE on ECV304 were all in a doseand-time dependent manner. Morphological observation indicated that CSE induced characteristic apoptotic changes in ECV304. Conclusion:CSE inhibits the activity of COX and induces apoptosis of endothelial cells in time-and concentration-dependent manner. The decrease of COX activity may play an important role in CSE-induced apoptosis of endothelial cells.

  18. Research progress in coxsackievirus B5%柯萨奇病毒B组5型研究进展

    Institute of Scientific and Technical Information of China (English)

    姚昕; 卞莲莲

    2015-01-01

    Coxsackievirus B5 (CVB5) has caused outbreaks of hand, foot and mouth disease and aseptic meningitis in China in recent years.A new lineage of CVB5 is circulating, which brings a new challenge to the control and prevention for disease caused by enterovirus.The paper reviews research on epidemiology, evolution characteristics, animal model and laboratory diagnosis of CVB5.%柯萨奇病毒B组5型(coxsackievirus B5,CVB5)近年在中国引起多起手足口病和无菌性脑膜炎暴发.分子流行病学研究显示出现了新型CVB5传播,从而给防控肠道病毒感染所致疾病带来了新的挑战.此文就CVB5的流行病学、进化特征、动物模型以及实验室诊断等方面的研究进行综述.

  19. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N. [Univ. of Rochester, NY (United States)

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K+ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K+ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  20. EFFECT OF CROSSLINKING ON MITOCHONDRIAL CYTOCHROME c OXIDASE

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Maurice; Packer, Lester

    1979-12-01

    Purified and reconstituted cytochrome {und c} oxidase and mitochondria were crosslinked with biimidates in the presence and absence of cytochrome {und c}. These experiments indicate that oxidase subunit interactions are required for activity and that cytochrome {und c} mobility may be required for electron transport activity. Biimidate treatment of purified and reconstituted oxidase crosslinks all of the oxidase protomers except subunit I when {ge} 20% of the free amines are modified and inhibits steady state oxidase activity. Transient kinetics of ferrocytochrome {und c} oxidation and ferricytochrome {und a} reduction indicates inhibition of electron transfer from heme {und a} to heme {und a}{sub 3}. Crosslinking oxidase molecules to form large aggregates displaying rotational correlation times {ge} 1 ms does not affect oxidase activity. Crosslinking of mitochondria covalently binds the bc{sub 1} and {und aa}{sub 3} complexes to cytochrome {und c}, and inhibits steady-state oxidase activity considerably more than in the case of the purified oxidase. Addition of cytochrome {und c} to the purified oxidase or to {und c}-depleted mitoplasts increases inhibition slightly. Cytochrome {und c} oligomers act as competitive inhibitors of native {und c}, however, crosslinking of cytochrome {und c} to {und c}-depleted mitoplasts or purified oxidase (with dimethyl suberimidate or hetrobifunctional crosslinking reagents) results in a catalytically inactive complex.