WorldWideScience

Sample records for human corneal fibroblasts

  1. Identification of human fibroblast cell lines as a feeder layer for human corneal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Rong Lu

    Full Text Available There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE and cell growth capacity were evaluated on days 5-14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1 × 10(4 in a 35-mm dish (9.6 cm(2 grew to confluence (about 1.87-2.41 × 10(6 cells in 12-14 days, representing 187-241 fold expansion with over 7-8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction.

  2. Nerve regeneration by human corneal stromal keratocytes and stromal fibroblasts

    Science.gov (United States)

    Yam, Gary Hin-Fai; Williams, Geraint P.; Setiawan, Melina; Yusoff, Nur Zahirah Binte M.; Lee, Xiao-wen; Htoon, Hla Myint; Zhou, Lei; Fuest, Matthias; Mehta, Jodhbir S.

    2017-01-01

    Laser refractive surgeries reshape corneal stroma to correct refractive errors, but unavoidably affect corneal nerves. Slow nerve regeneration and atypical neurite morphology cause desensitization and neuro-epitheliopathy. Following injury, surviving corneal stromal keratocytes (CSKs) are activated to stromal fibroblasts (SFs). How these two different cell types influence nerve regeneration is elusive. Our study evaluated the neuro-regulatory effects of human SFs versus CSKs derived from the same corneal stroma using an in vitro chick dorsal root ganglion model. The neurite growth was assessed by a validated concentric circle intersection count method. Serum-free conditioned media (CM) from SFs promoted neurite growth dose-dependently, compared to that from CSKs. We detected neurotrophic and pro-inflammatory factors (interleukin-8, interleukin-15, monocyte chemoattractant protein-1, eotaxin, RANTES) in SFCM by Bio-Plex Human Cytokine assay. More than 130 proteins in SFCM and 49 in CSKCM were identified by nanoLC-MS/MS. Proteins uniquely present in SFCM had reported neuro-regulatory activities and were predicted to regulate neurogenesis, focal adhesion and wound healing. Conclusively, this was the first study showing a physiological relationship between nerve growth and the metabolically active SFs versus quiescent CSKs from the same cornea source. The dose-dependent effect on neurite growth indicated that nerve regeneration could be influenced by SF density. PMID:28349952

  3. Proteomic analysis of the soluble fraction from human corneal fibroblasts with reference to ocular transparency.

    Science.gov (United States)

    Karring, Henrik; Thøgersen, Ida B; Klintworth, Gordon K; Enghild, Jan J; Møller-Pedersen, Torben

    2004-07-01

    The transparent corneal stroma contains a population of corneal fibroblasts termed keratocytes, which are interspersed between the collagen lamellae. Under normal conditions, the keratocytes are quiescent and transparent. However, after corneal injury the keratocytes become activated and transform into backscattering wound-healing fibroblasts resulting in corneal opacification. At present, the most popular hypothesis suggests that particular abundant water-soluble proteins called enzyme-crystallins are involved in maintaining corneal cellular transparency. Specifically, corneal haze development is thought to be related to low levels of cytoplasmic enzyme-crystallins in reflective corneal fibroblasts. To further investigate this hypothesis, we have used a proteomic approach to identify the most abundant water-soluble proteins in serum-cultured human corneal fibroblasts that represent an in vitro model of the reflective wound-healing keratocyte phenotype. Densitometry of one-dimensional gels revealed that no single protein isoform exceeded 5% of the total water-soluble protein fraction, which is the qualifying property of a corneal enzyme-crystallin according to the current definition. This result indicates that wound-healing corneal fibroblasts do not contain enzyme-crystallins. A total of 254 protein identifications from two-dimensional gels were performed representing 118 distinct proteins. Proteins protecting against oxidative stress and protein misfolding were prominent, suggesting that these processes may participate in the generation of cytoplasmic light-scattering from corneal fibroblasts.

  4. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  5. Optimization of Human Corneal Endothelial Cells for Culture: The Removal of Corneal Stromal Fibroblast Contamination Using Magnetic Cell Separation

    Directory of Open Access Journals (Sweden)

    Gary S. L. Peh

    2012-01-01

    Full Text Available The culture of human corneal endothelial cells (CECs is critical for the development of suitable graft alternative on biodegradable material, specifically for endothelial keratoplasty, which can potentially alleviate the global shortage of transplant-grade donor corneas available. However, the propagation of slow proliferative CECs in vitro can be hindered by rapid growing stromal corneal fibroblasts (CSFs that may be coisolated in some cases. The purpose of this study was to evaluate a strategy using magnetic cell separation (MACS technique to deplete the contaminating CSFs from CEC cultures using antifibroblast magnetic microbeads. Separated “labeled” and “flow-through” cell fractions were collected separately, cultured, and morphologically assessed. Cells from the “flow-through” fraction displayed compact polygonal morphology and expressed Na+/K+ATPase indicative of corneal endothelial cells, whilst cells from the “labeled” fraction were mostly elongated and fibroblastic. A separation efficacy of 96.88% was observed. Hence, MACS technique can be useful in the depletion of contaminating CSFs from within a culture of CECs.

  6. Inhibition by rebamipide of cytokine-induced or lipopolysaccharide-induced chemokine synthesis in human corneal fibroblasts.

    Science.gov (United States)

    Fukuda, Ken; Ishida, Waka; Tanaka, Hiroshi; Harada, Yosuke; Fukushima, Atsuki

    2014-12-01

    The dry-eye drug rebamipide has mucin secretagogue activity in and anti-inflammatory effects on corneal epithelial cells. Corneal stromal fibroblasts (transdifferentiated keratocytes) function as immune modulators in the pathogenesis of chronic ocular allergic inflammation and in innate immune responses at the ocular surface. The possible anti-inflammatory effects of rebamipide on human corneal stromal fibroblasts were examined. Serum-deprived cells were incubated for 1 h with rebamipide and then for various times in the additional absence or presence of cytokines or bacterial lipopolysaccharide (LPS). The release of chemokines into culture supernatants was determined with ELISAs. The intracellular abundance of chemokine mRNAs was quantitated by reverse transcription and real-time PCR analysis. Degradation of the nuclear factor κB (NFκB) inhibitor IκBα was detected by immunoblot analysis. Rebamipide suppressed the release of interleukin (IL)-8 and the upregulation of IL-8 mRNA induced by tumour necrosis factor α (TNF-α) or LPS in corneal fibroblasts. It also inhibited eotaxin-1 (CCL-11) expression at the protein and mRNA levels induced by the combination of TNF-α and IL-4. In addition, rebamipide attenuated the degradation of IκBα induced by TNF-α or LPS. Rebamipide inhibited the synthesis of chemokines by corneal fibroblasts in association with suppression of NFκB signalling. Rebamipide may therefore prove effective for the treatment of corneal stromal inflammation associated with allergy or bacterial infection. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Defensin Production by Human Limbo-Corneal Fibroblasts Infected with Mycobacteria

    Directory of Open Access Journals (Sweden)

    Julieta Luna-Herrera

    2013-02-01

    Full Text Available Epithelial cells of the cornea and the conjunctiva constitutively produce antimicrobial peptides; however, the production of defensins by other cell types located around the eye has not been investigated. We analyzed the production of beta-defensins (hBD and cathelicidin LL-37 during the infection of primary limbo-corneal fibroblasts with M. tuberculosis (MTB, M. abscessus (MAB, and M. smegmatis (MSM. The intracellular survival of each mycobacterium, the production of cytokines and the changes on the distribution of the actin filaments during the infection were also analyzed. Fibroblasts produce basal levels of hBD1 and LL-37 and under PMA stimulation they produce hBD2, hBD3 and overexpress hBD1 and LL-37. MAB induced the highest levels of hBD1 and LL-37 and intermediate levels of IL-6; however, MAB was not eliminated. In addition, MAB induced the greatest change to the distribution of the actin filaments. MTB also produced changes in the structure of the cytoskeleton and induced low levels of hBD1 and IL-6, and intermediate levels of LL-37. The balance of these molecules induced by MTB appeared to contribute to the non-replicative state observed in the limbo-corneal cells. MSM induced the lowest levels of hBD1 and LL-37 but the highest levels of IL-6; MSM was eliminated. The results suggest that mycobacterial infections regulate the production of antimicrobial peptides and cytokines, which in conjunction can contribute to the control of the bacilli.

  8. Comparative study of the effects of recombinant human epidermal growth factor and basic fibroblast growth factor on corneal epithelial wound healing and neovascularization in vivo and in vitro.

    Science.gov (United States)

    Yan, Limeng; Wu, Wei; Wang, Zhichong; Li, Chaoyang; Lu, Xiaohe; Duan, Hucheng; Zhou, Jin; Wang, Xiaoran; Wan, Pengxia; Song, Yiyue; Tang, Jing; Han, Yu

    2013-01-01

    This study was undertaken to investigate the effects of recombinant human epidermal growth factor (rhEGF) and basic fibroblast growth factor (bFGF) on corneal wound healing and neovascularization (CNV). The positive effects of 10 ng/ml rhEGF and bFGF on the proliferation of corneal epithelial cells (SD-HCEC1s), rabbit keratocyte cells (RKCs) and human umbilical vein endothelial cells (HUVECs) as well as the effects on the migration capacity on HUVECs were observed. An animal central corneal wound and CNV model was established in rabbits. One eye of each group was chosen randomly for topical administration of rhEGF, bFGF or normal saline, and variability in the area of corneal epithelial wound healing and CNV was observed. The optimal concentration of rhEGF and bFGF for the proliferation of corneal epithelial cells was 10 ng/ml. The promotive effect of 10 ng/ml rhEGF on the proliferation of RKCs and HUVECs was less than that of 10 ng/ml bFGF. In the animal experiment, the healing rate of the corneal epithelium in the rhEGF group was better than in the other groups on day 1. On day 3, the healing rates of the 3 groups were nearly equal. The CNV area in the rhEGF group was less than that of the bFGF group. rhEGF and bFGF both had promotive effects on corneal epithelial wound healing, but rhEGF had a weaker promotive effect on CNV than bFGF. With long-term application of growth factor drugs, rhEGF is suggested for lessening the growth of CNV. Copyright © 2012 S. Karger AG, Basel.

  9. Mechanism of induction of fibroblast to corneal endothelial cell.

    Science.gov (United States)

    Jiang, Yan; Fu, Wei-Cai; Zhang, Lin

    2014-08-01

    To explore mechanism of nduction of fibroblast to corneal endothelial cell. Rabbit conjunctiva fibroblasts were used as feeder cells, rabbit oral mucosa epithelial cells were used as seed cells, and human denuded amniotic membrane was used as carrier to establish tissue engineering corneal endothelium. The transformation effect was observed. As concentration of mitomycin C increased, cell survival rate gradually decreased, cell proliferation was obviously inhibited when concentration≥25 μg/mL; 5 days after being treated by 5 μg/mL mitomycin C, cell body was enlarged and extended without cell fusion, however after being treated by 0.5 μg/mL mitomycin C, cell body was significantly proliferated and gradually fused; after 3 weeks of culture, stratified epithelium appeared on rabbit oral mucosa epithelial cells, differentiation layers were 4-5 and were well differentiated, the morphology was similar to corneal endothelial cells; Under electron microscope, surface layer of cells were polygonal, tightly connected to another with microvilli on the border, there was hemidesmosome between basal cells and human denuded amniotic membrane. Fibroblast cells have the potential of multi-directional differentiation, effective induction can promote emergence of intercellular desmosomes between seed cells and emergence of epithelial surface microvilli, and differentiate to the corneal endothelial cell. However, clinical application still needs more research and safety evaluation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  10. Effect of Different Antibiotic Chemotherapies on Pseudomonas aeruginosa Infection In Vitro of Primary Human Corneal Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Maria del Mar Cendra

    2017-08-01

    Full Text Available Pseudomonas aeruginosa is a major cause of bacterial keratitis (BK worldwide. Inappropriate or non-optimal antibiotic chemotherapy can lead to corneal perforation and rapid sight loss. In this study, we tested the hypothesis that P. aeruginosa strain PAO1 invades primary human corneal fibroblasts (hCFs in vitro and persists intracellularly, despite chemotherapy with antibiotics used commonly to treat BK. In rank order, ciprofloxacin, levofloxacin and polymyxin B showed the highest activity against planktonic PAO1 growth (100% inhibitory concentration ≤10 μg/mL; 50% inhibitory concentration ≤1 μg/mL, followed by gentamicin and ofloxacin (100% inhibitory concentration ≤50 μg/mL; 50% inhibitory concentration ≤10 μg/mL. These bactericidal antibiotics (50–200 μg/mL concentrations all killed PAO1 in the extracellular environment of infected hCF monolayers. By contrast, the bactericidal antibiotic cefuroxime and the bacteriostatic antibiotic chloramphenicol failed to sterilize both PAO1 broth cultures, even at a concentration of ≥200 μg/mL and infected hCF monolayers. Statistically, all antibiotics were able to prevent LDH release from PAO1-infected hCF monolayers at both concentrations tested. Intracellular Pseudomonas were significantly reduced (>99%, P < 0.05 following treatment with ciprofloxacin, levofloxacin and ofloxacin, whereas gentamicin, polymyxin B and cefuroxime failed to clear intracellular bacteria over 24 h. Intracellular Pseudomonas infection was resistant to chloramphenicol, with hCF death observed by 9 h. Eventual growth of remaining intracellular Pseudomonas was observed in hCF after removal of all antibiotics, resulting in re-infection cycles and cell death by 48 h. All of the antibiotics reduced significantly (P < 0.05 IL-1β secretion by hCF infected with a Multiplicity Of Infection (MOI = 1 of PAO1. With higher MOI, no pro-inflammatory effects were observed with antibiotic treatment, expect with polymyxin B and

  11. Human corneal fibroblast migration and ECM synthesis during stromal repair: Role played by PDGF-BB, bFGF, and TGFβ1.

    Science.gov (United States)

    Gallego-Muñoz, Patricia; Ibares-Frías, Lucía; Garrote, José A; Valsero-Blanco, María Cruz; Cantalapiedra-Rodríguez, Roberto; Merayo-Lloves, Jesús; Martínez-García, M Carmen

    2016-11-15

    The development of treatments that modulate corneal wound healing to avoid fibrosis during tissue repair is important for the restoration of corneal transparency after an injury. To date, few studies have studied the influence of growth factors (GFs) on human corneal fibroblast (HCF) expression of extracellular matrix (ECM) proteins such as collagen types I and III, proteoglycans such as perlecan, or proteins implicated in cellular migration such as α5β1-integrin and syndecan-4. Using in vitro HCFs, we developed a mechanical wound model to study the influence of the GFs basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF-BB), and transforming growth factor beta 1 (TGFβ1) on ECM protein production and cellular migration. Our results show that mechanical wounding provokes the autocrine release of bFGF and TGFβ1 at different time points during the wound closure. The HCF response to PDGF-BB was a rapid closure due to fast cellular migration associated with a high focal adhesion replacement and a high expression of collagen and proteoglycans, producing a non-fibrotic healing. bFGF stimulated non-fibrotic ECM production and limited the migration process. Finally, TGFβ1 induced expression of the fibrotic markers collagen type III and α5β1 integrin, and it inhibited cellular migration due to the formation of focal adhesions with a low turnover rate. The novel in vitro HCF mechanical wound model can be used to understand the role played by GFs in human corneal repair. The model can also be used to test the effects of different treatments aimed at improving the healing process.

  12. Synergistic Induction of Eotaxin and VCAM-1 Expression in Human Corneal Fibroblasts by Staphylococcal Peptidoglycan and Either IL-4 or IL-13

    Directory of Open Access Journals (Sweden)

    Ken Fukuda

    2011-01-01

    Conclusions: Interaction of innate and adaptive immunity, as manifested by synergistic stimulation of eotaxin and VCAM-1 expression in corneal fibroblasts by peptidoglycan and Th2 cytokines, may play an important role in tissue eosinophilia associated with ocular allergy.

  13. Molecular mechanism of fluoroquinolones modulation on corneal fibroblast motility.

    Science.gov (United States)

    Chen, Tsan-Chi; Tsai, Tzu-Yun; Chang, Shu-Wen

    2016-04-01

    Topical fluoroquinolones are widely used to prevent ocular infections after ophthalmic surgery. However, they have been shown to affect the corneal cell motility, whose mechanism remains indefinite. The purpose of this study was to investigate how fluoroquinolones affect corneal stromal cell motility. Human corneal fibroblasts (HCFs) were incubated in ciprofloxacin (CIP), levofloxacin (LEV), or moxifloxacin (MOX) at 0, 10, 50, and 100 μg/ml for up to 3 days. Effect of CIP, LEV, or MOX on HCF migration was monitored using migration assay. HCF viability was determined by WST-1 assay. Expression of focal adhesion kinase (FAK), paxillin (PXN), and their phosphorylated forms were analyzed by immunoblotting. Binding affinity between FAK and PXN was determined by co-immunoprecipitation. Our results revealed that CIP and MOX, but not LEV, noticeably retarded HCF migration. HCF proliferation was significantly reduced by CIP (38.2%), LEV (29.5%), and MOX (21.3%), respectively (p = 0.002). CIP and MOX suppressed the phosphorylation of PXN at tyrosines (10.2 ± 4.3%, p MOX diminished the binding affinity between FAK and PXN (8.2 ± 1.8%, p MOX, but not LEV, might delay corneal fibroblast migration via interfering with recruitment of PXN to focal adhesions and dephosphorylation of PXN at the tyrosines.

  14. PDGFRα Is a Key Regulator of T1 and T3's Differential Effect on SMA Expression in Human Corneal Fibroblasts.

    Science.gov (United States)

    Sriram, Sriniwas; Tran, Jennifer A; Guo, Xiaoqing; Hutcheon, Audrey E K; Lei, Hetian; Kazlauskas, Andrius; Zieske, James D

    2017-02-01

    The goal of this study was to examine the mechanism behind the unique differential action of transforming growth factor β3 (TGF-β3) and TGF-β1 on SMA expression. It was our hypothesis that platelet-derived growth factor receptor α (PDGFRα) played a key role in determining TGF-β3's response to wounding. A stable cell line, human corneal fibroblast (HCF)-P, was created from HCFs by knocking down PDGFRα expression using a lentivirus-delivered shRNA sequence. A three-dimensional (3D) in vitro model was constructed by culturing HCF or HCF-P on poly-transwell membranes for 4 weeks in the presence and absence of 0.1 ng/mL TGF-β1 or -β3. At the end of 4 weeks, the constructs were processed for immunofluorescence and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, HCF and HCF-P cell migration was evaluated. In HCF, TGF-β3 treatment resulted in significantly lower α-smooth muscle actin (SMA) mRNA expression and immunolocalization when compared to TGF-β1, while in HCF-P, both TGF-β1 and -β3 treatment increased the SMA mRNA expression and immunolocalization compared to both the untreated HCF-P control and TGF-β3-treated HCF. Human corneal fibroblast-P also had a lower migration rate and construct thickness when compared to HCF. These results show that TGF-β3 decreases SMA in HCF, while remarkably increasing SMA in HCF-P, thus indicating that the presence or absence of PDGFRα elicits contrasting responses to the same TGF-β3 treatment. Understanding the role of PDGFRα in TGF-β3's ability to stimulate SMA may potentially help in understanding the differential functions of TGF-β1 and TGF-β3 in corneal wound healing.

  15. Reconstruction of Rabbit Corneal Layer Composed of Corneal Fibroblasts and Corneal Epithelium on the Lyophilized Amniotic Membrane

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Many researchers have employed the cryopreserved amniotic membrane(CAM) and corneal epithelial cells in the treatment of a severely damaged burned cornea, with corneal epithelial cells cultured on an amniotic membrane (AM). The lyophilized amniotic membrane (LAM) has a higher graft take and a longer shelf life; it is easier to store and safer because of gamma irradiation. Two Teflon rings(Ahn's supporter) were made for culturing the cells on the LAM, and were then used to support the LAM. To reconstruct a corneal layer composed of corneal fibroblasts and epithelium, the corneal fibroblasts were first cultivated on the stromal side of LAM for five days, followed by epithelial cells culture on the epithelial side, by using the air-liquid interface culture. The reconstructed corneal layer composed of corneal fibroblasts and corneal epithelial cells has a much healthier basal layer of corneal epithelium than the reconstructed corneal epithelium, which was got by using only corneal epithelial cells, and resembles the epithelium of normal corneas, without the horny layer. Thus, the reconstruction of the corneal layer by using a LAM is considered to be a good in vitro model, not only for its application in toxicological test kits, but also for transplantation in patients with a severely damaged cornea.

  16. Substratum compliance modulates corneal fibroblast to myofibroblast transformation.

    Science.gov (United States)

    Dreier, Britta; Thomasy, Sara M; Mendonsa, Rima; Raghunathan, Vijay Krishna; Russell, Paul; Murphy, Christopher J

    2013-08-28

    The transformation of fibroblasts to myofibroblasts is critical to corneal wound healing, stromal haze formation, and scarring. It has recently been demonstrated that the provision of biomimetic substratum topographic cues inhibits the progression toward the myofibroblast phenotype under the influence of transforming growth factor β1 (TGF-β1). The objective of this study was to determine the effect of another fundamental biophysical cue, substrate compliance, on TGF-β1-induced myofibroblast transformation of primary corneal cells isolated from human and rabbit corneas. Human and rabbit corneal fibroblasts were cultured on surfaces of varying substrate compliance (4-71 kPa) and tissue culture plastic (TCP) (> 1 gigapascal [GPa]). Cells were cultured in media containing TGF-β1 at concentrations of 0, 1, or 10 ng/mL for 72 hours. RNA and protein were collected from cells cultured on polyacrylamide gels and TCP and were analyzed for the expression of α-smooth muscle actin (α-SMA), a key marker of myofibroblast transformation, using quantitative PCR, immunocytochemistry, and Western blot. Cells grown on more compliant substrates demonstrated significantly reduced amounts of α-SMA mRNA compared with TCP. Immunocytochemistry and Western blot analysis determining the presence of α-SMA corroborated this finding, thus confirming a reduced transformation to the myofibroblast phenotype on more compliant substrates compared with cells on TCP in the presence of TGF-β1. These data indicate that substrate compliance modulates TGF-β1-induced expression of α-SMA and thus influences myofibroblast transformation in the corneal stroma. This provides further evidence that biomimetic biophysical cues inhibit myofibroblast transformation and participate in stabilizing the native cellular phenotype.

  17. In vivo fluorescent labeling of corneal wound healing fibroblasts.

    Science.gov (United States)

    Gatlin, Joel; Melkus, Michael W; Padgett, Angela; Petroll, W Matthew; Cavanagh, H Dwight; Garcia, J Victor; Jester, James V

    2003-03-01

    Numerous studies have shown that fibroblasts play an important role in corneal wound healing, however, the dynamic cellular events underlying wound tissue organization and contraction remain unclear. The purpose of this study was to develop a system to enable live cell imaging of corneal wound healing fibroblasts in situ. To this end, concentrated preparations of an RD114 pseudotyped MLV-based vector expressing the enhanced green fluorescent protein (EGFP) were evaluated in vitro for gene transfer efficiency using cultured rabbit corneal keratocytes. Primary rabbit keratocytes were efficiently labeled in vitro (up to 50% EGFP(+)) at a low multiplicity of infection (MOI=10). To evaluate this gene transfer vector in vivo, rabbit corneal fibroblasts were transduced by direct application of vector supernatant to injured corneas following lamellar keratectomy. Fluorescent fibroblasts were then visualized in situ using epifluorescence microscopy and multiphoton confocal microscopy of excised fresh tissue at multiple time points from 14 days to four months following gene transfer. Fourteen days post-transduction, labeled fibroblasts expressing EGFP were readily detectable by fluorescence microscopy. Detectable fluorescence was noted up to eight weeks post-transduction. Labeled fibroblasts were detected in clusters located predominantly along the margin circumscribing the wound and to a lesser extent within the wound area. Cell growth in clusters was suggestive of the expansion of individual transduced clones. High-resolution imaging showed fluorescent fibroblasts to have a broad, flattened, dendritic morphology, distinct from the spindle shape of cultured fibroblasts. Utilizing multiphoton confocal microscopy, three-dimensional imaging of viable, labeled cells showed wound healing fibroblasts to be extensively interconnected and multi-layered within the corneal wound. These results demonstrate that rabbit corneal fibroblasts can be efficiently transduced in vitro and in

  18. Localization of ZO-1 in the nucleolus of corneal fibroblasts.

    Science.gov (United States)

    Benezra, Miriam; Greenberg, Roseanne S; Masur, Sandra K

    2007-05-01

    Within the multidomain structure of ZO-1 are motifs responsible for ZO-1's localization to intercellular junctions and its newly demonstrated localization to the leading edge of lamellipodia in corneal fibroblasts. Since ZO-1 also has two nuclear localization signals, this study was undertaken to determine whether stimuli associated with wounding would induce nuclear translocation of ZO-1 Immunocytochemistry and immunoblot analysis were used to localize endogenous and exogenous ZO-1 in nuclear and cytoplasmic sites in corneal fibroblasts and 293T fibroblasts, with and without myc-ZO-1 transfection. Cells were serum starved by growth for 48 hours in DMEM/F12 with 0.2% FBS and subsequently were either scrape wounded or treated with 10% FBS, PDGF, or FGF-2 for 6 hours. For immunoblot analysis, after lysis, the nuclear and cytosolic fractions were separated and analyzed by SDS-PAGE. Cells on companion coverslips were fixed with 3% p-formaldehyde and permeabilized with 1% Triton before immunocytochemical detection of ZO-1 and nuclear proteins. ZO-1 was rarely detected in the nucleus of serum-starved corneal fibroblasts. In contrast, it colocalized with nucleolin in the nucleoli of corneal fibroblasts after serum-starved cells were treated with 10% FBS, PDGF, or FGF-2. Immunoblot analysis confirmed the immunocytochemical results: Little ZO-1 was detected in the nuclear fraction of lysates of serum-starved cells, but ZO-1 was found in the nuclear fractions of rabbit corneal and 293T fibroblasts treated with 10% FBS, PDGF, or FGF-2. Furthermore in scrape-wounded corneal fibroblasts, ZO-1 was localized to nucleoli of both serum-starved and serum-treated cells. Localization of ZO-1 to nucleoli of corneal and 293T fibroblasts under proliferative and promigratory conditions suggests a physiologically significant interaction of ZO-1 with proteins in nucleoli during the healing process.

  19. Substratum topography modulates corneal fibroblast to myofibroblast transformation.

    Science.gov (United States)

    Myrna, Kathern E; Mendonsa, Rima; Russell, Paul; Pot, Simon A; Liliensiek, Sara J; Jester, James V; Nealey, Paul F; Brown, Donald; Murphy, Christopher J

    2012-02-01

    The transition of corneal fibroblasts to the myofibroblast phenotype is known to be important in wound healing. The purpose of this study was to determine the effect of topographic cues on TGFβ-induced myofibroblast transformation of corneal cells. Rabbit corneal fibroblasts were cultured on nanopatterned surfaces having topographic features of varying sizes. Cells were cultured in media containing TGFβ at concentrations ranging from 0 to 10 ng/mL. RNA and protein were collected from cells cultured on topographically patterned and planar substrates and analyzed for the myofibroblast marker α-smooth muscle actin (αSMA) and Smad7 expression by quantitative real time PCR. Western blot and immunocytochemistry analysis for αSMA were also performed. Cells grown on patterned surfaces demonstrated significantly reduced levels of αSMA (P fibroblast phenotype while pathologic microenvironmental alterations may be permissive for increased myofibroblast differentiation and the development of fibrosis and corneal haze.

  20. Ceramide-induced apoptosis in rabbit corneal fibroblasts.

    Science.gov (United States)

    Kim, Tae-im; Pak, Jhang Ho; Tchah, Hungwon; Lee, Seung-ah; Kook, Michael S

    2005-01-01

    To evaluate the effect of various ceramides on the apoptosis of corneal fibroblasts and to determine the pathway on which they act. Corneal fibroblasts isolated and cultured from New Zealand white rabbits were exposed to various concentrations of ceramide types II and VI and phytoceramide types II and VI, and their apoptotic response was evaluated using an LDH assay and Hoechst and Annexin V staining. Corneal fibroblasts were preincubated with various concentrations of the CPP32-like protease inhibitor Z-VAD-FMK, the caspase-8 inhibitor IETD-CHO, and the caspase-9 inhibitor Z-LEHD-FMK before treatment with ceramide, and apoptotic response was assayed by LDH assay. In addition, cells treated with ceramide or phytoceramide were stained with an antibody to cytochrome c. At concentrations of 20 microM and higher, all 4 ceramides increased fibroblast apoptotic response significantly after 12 hours. Hoechst staining showed shrinkage of the cytoplasm, formation of apoptotic bodies, and nuclear fragmentation after ceramide exposure, and Annexin V staining showed small vesicles around the cell membrane. The CPP32-like protease inhibitor reduced the apoptotic response to all 4 ceramides. The specific caspase-8 inhibitor reduced the apoptotic response to ceramide type VI and phytoceramide types II and VI, whereas the specific caspase-9 inhibitor significantly reduced the apoptotic response to phytoceramide types II and VI. Following exposure to ceramides, corneal fibroblasts stained positively with antibody to cytochrome c. Ceramide induced apoptosis in cultured corneal fibroblasts. This apoptosis involved the caspase cascade and the mitochondrial pathway.

  1. ZO-1: lamellipodial localization in a corneal fibroblast wound model.

    Science.gov (United States)

    Taliana, Lavinia; Benezra, Miriam; Greenberg, Roseanne S; Masur, Sandra K; Bernstein, Audrey M

    2005-01-01

    To explore the roles of ZO-1 in corneal fibroblasts and myofibroblasts in a model of wounding. Antibodies were used to identify ZO-1 in cultured rabbit corneal fibroblasts by immunocytochemistry, Western blot analysis, and immunoprecipitation. For colocalization studies, antibodies to beta-catenin, cadherins, connexins, integrins, alpha-actinin, and cortactin were used. G- and F-actin were identified by DNase and rhodamine phalloidin, respectively. To study ZO-1 localization during cell migration, confluent corneal fibroblasts were subjected to scrape-wounding and evaluated by immunocytochemistry. As predicted from previous studies, ZO-1 colocalized with cadherins and connexin 43 in intercellular junctions. The study revealed a new finding: ZO-1 was also detected at the leading edge of lamellipodia, especially in motile wounded fibroblasts and in freshly plated fibroblasts, before the formation of cell-cell contacts. In fibroblast lysates, ZO-1 largely partitioned to the detergent-soluble fraction compared with myofibroblast lysates, indicating that much of the fibroblast ZO-1 is not associated with insoluble structural components. Lamellipodial ZO-1 colocalized with G-actin, alpha-actinin, and cortactin, which are proteins involved with actin remodeling and cell migration. Integrins alpha5beta1 and alphavbeta3 also localized to the leading edge of migrating fibroblasts, and the association of ZO-1 with integrin was confirmed by immunoprecipitation. Finally, alkaline phosphatase treatment of fibroblast lysate decreased the molecular mass of ZO-1 in lysates of cells grown in serum, demonstrating that, in activated fibroblasts, ZO-1 is phosphorylated. ZO-1's appearance at the leading edge of migrating fibroblasts makes it a candidate for a role in the initiation and organization of integrin-dependent fibroblast adhesion complexes formed during migration and adhesion. Further, phosphorylation of ZO-1 may regulate its cellular localization.

  2. [Reconstruction of rabbit corneal stroma with skin fibroblasts].

    Science.gov (United States)

    Zhang, Yan-qing; Zhang, Wen-jie; Liu, Wei; Hu, Xiao-jie; Zhou, Guang-dong; Cui, Lei; Cao, Yi-lin

    2009-09-01

    To explore whether skin fibroblasts could be used as a cell source for reconstruction of the corneal stroma. It was an experimental study. Skin fibroblast cells were isolated from newborn rabbits, cultured and expanded in vitro. Cells were labeled with green fluorescence protein (GFP) gene by retro-viral infection. Fibroblasts at passage 3 were seeded on polyglycolic acid (PGA) non-woven fibers to form a cell-scaffold construct. Constructs were then implanted into the adult rabbit corneal stroma layer after being cultured in vitro for 1 week. Engineered stroma were observed continuously and harvested after 8 weeks of transplantation for gross, histological evaluation and Keratocan examination. PGA alone was used as control. The engineered tissue in the cornea became transparent gradually over a period of 8 weeks. Histological analysis showed that engineered stromal lamellar was relatively regular and the orientation of fibers was parallel to the surface of cornea, which is similar to normal cornea. The implanted cells were confirmed by GFP expression under fluorescent microscope, which also express Keratocan. By transmission electron microscopy examination, no significant difference in the diameter of collagen fiber was observed between engineered stroma (33.08 + or - 2.47) nm and normal stroma (t = 1.80, P = 0.0771). Skin fibroblast cells could be used as seed cells for reconstruction of the corneal stroma.

  3. Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels.

    Science.gov (United States)

    Mimura, Tatsuya; Amano, Shiro; Yokoo, Seiichi; Uchida, Saiko; Yamagami, Satoru; Usui, Tomohiko; Kimura, Yu; Tabata, Yasuhiko

    2008-01-01

    To isolate fibroblast precursors from rabbit corneal stroma using a sphere-forming assay, to engineer corneal stroma with the precursors and gelatin, and to establish the therapeutic application of precursors in a rabbit corneal stroma. In the in vitro study, a sphere-forming assay was performed to produce precursors from rabbit corneal stroma. Corneal stroma was engineered by cultivating precursors in porous gelatin for one week. In the in vivo study, the engineered corneal stromal sheet with precursors (precursor/gelatin group) or with fibroblasts (fibroblast /gelatin group) or without cells (gelatin group) was transplanted to a pocket of rabbit corneal stroma. Gene expression and extracellular matrix production were examined immunohistochemically in each group one week and four weeks after surgery. In the in vitro study, cells in the spheres were BrdU-positive, and their progeny were keratocan-positive. The study also showed that the corneas transplanted with a porous gelatin sheet did not show any opacity four weeks after transplantation in any group. In the gelatin sheet of the precursor/gelatin group, a more intense expression of type I collagen was observed relative to the other two groups four weeks after the surgery. Our findings demonstrate that the transplantation of fibroblast precursors combined with gelatin hydrogel into the corneal stroma is a possible treatment strategy for corneal stromal regeneration.

  4. Inhibition by female sex hormones of collagen degradation by corneal fibroblasts.

    Science.gov (United States)

    Zhou, Hongyan; Kimura, Kazuhiro; Orita, Tomoko; Nishida, Teruo; Sonoda, Koh-Hei

    2011-01-01

    Corneal fibroblasts contribute to collagen remodeling in the corneal stroma in part by mediating collagen degradation. Given that corneal structure is influenced by sex hormone status, we examined the effects of sex hormones on collagen degradation by corneal fibroblasts. Rabbit corneal fibroblasts were cultured in three-dimensional collagen gels with or without sex hormones including 17β-estradiol, progesterone, testosterone, and dehydroepiandrosterone (DHEA). Collagen degradation was determined by measurement of hydroxyproline after acid hydrolysis. The expression and activity of matrix metalloproteinases (MMPs) were evaluated by immunoblot analysis and gelatin zymography. The phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear factor-kappa B (NF-κB) inhibitor NF kappa B Inhibitor-alpha (IκB-α) in corneal fibroblasts was examined by immunoblot analysis. Cell proliferation and viability were evaluated by measurement of bromodeoxyuridine incorporation and the release of lactate dehydrogenase, respectively. 17β-Estradiol and progesterone each inhibited interleukin (IL)-1β-induced collagen degradation by corneal fibroblasts in a concentration-dependent manner, whereas testosterone and DHEA had no such effect. MMP expression and activation in corneal fibroblasts exposed to IL-1β were also inhibited by 17β-estradiol and progesterone. These female sex hormones did not affect cell proliferation or viability. Both 17β-estradiol and progesterone inhibited the IL-1β-induced phosphorylation of p38 MAPK without affecting that of the MAPKs extracellular Signal-regulated Kinase (ERK) or c-jun N-terminal kinase (JNK). 17β-Estradiol also inhibited the IL-1β-induced phosphorylation of IκB-α. 17β-Estradiol and progesterone inhibited MMP expression and activity in IL-1β-stimulated corneal fibroblasts and thereby suppressed collagen degradation by these cells.

  5. Inhibition by medroxyprogesterone acetate of interleukin-1β-induced collagen degradation by corneal fibroblasts.

    Science.gov (United States)

    Zhou, Hongyan; Kimura, Kazuhiro; Orita, Tomoko; Nishida, Teruo; Sonoda, Koh-Hei

    2012-06-28

    To examine the effect of medroxyprogesterone 17-acetate (MPA) on interleukin-1β (IL-1β)-induced collagen degradation by corneal fibroblasts. Rabbit corneal fibroblasts were cultured in three-dimensional collagen gels with or without MPA. Collagen degradation was determined by measurement of hydroxyproline after acid hydrolysis. The expression or activity of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) was evaluated by immunoblot analysis or gelatin zymography. The phosphorylation of mitogen-activated protein kinases (MAPKs) in corneal fibroblasts was examined by immunoblot analysis. Cell proliferation and viability were evaluated by measurement of bromodeoxyuridine incorporation and the release of lactate dehydrogenase, respectively. MPA inhibited IL-1β-induced collagen degradation by corneal fibroblasts in a concentration- and time-dependent manner. MMP expression and activation as well as TIMP expression in corneal fibroblasts exposed to IL-1β were also inhibited by MPA. MPA had no effect on cell proliferation or viability. MPA inhibited the IL-1β-induced phosphorylation of p38 MAPK without affecting that of the MAPKs ERK or JNK. IL-1β-induced MMP expression and activation as well as collagen degradation were also blocked by the p38 MAPK inhibitor SB203580. MPA inhibited MMP expression and thereby suppressed collagen degradation by corneal fibroblasts induced by IL-1β. Furthermore, inhibition of p38 MAPK phosphorylation by MPA may contribute to its inhibition of collagen degradation.

  6. Antifibrotic effect by activation of peroxisome proliferator-activated receptor-gamma in corneal fibroblasts.

    Science.gov (United States)

    Pan, Hongwei; Chen, Jiansu; Xu, Jintang; Chen, Miaojiao; Ma, Rong

    2009-11-10

    The transformation of quiescent keratocytes to active phenotypes and the ensuing fibrotic response play important roles in corneal scar formation. This study aims to observe the antifibrotic effect of peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist on corneal fibroblasts cultured in vitro, and to explore the potential application of peroxisome proliferator-activated receptor agonist to the prevention of corneal opacity following wound repair. Rabbit corneal keratocytes were cultured in a medium containing 10% serum to induce their transformation to fibroblasts and myofibroblasts, which are similar to those that repair corneas. After incubation with the PPARgamma agonist pioglitazone at different concentrations, the effect of pioglitazone on the migration, contractility, and viability of corneal fibroblasts was examined. The secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 was determined by gelatin zymography, and the synthesis of collagen I and fibronectin was investigated by western blotting. Treatment with pioglitazone at concentrations ranging from 1 to 10 mum significantly decreased corneal fibroblast migration, as determined by scrape-wound assay, inhibited corneal fibroblast-induced collagen lattice contraction, and reduced MMP-2 and MMP-9 secretion into the supernatant of cell cultures in a dose-dependent manner. The expression of fibronectin was significantly decreased, while the expression of collagen I was only decreased when treated with 10 mum pioglitazone. Cell viability was not evidently changed compared to the control. This in vitro study demonstrated the anti-fibrotic effect of pioglitazone, suggesting that activation of PPARgamma may be a new approach for the treatment of corneal opacity and scar formation in the corneal wound healing process.

  7. Corneal Fibroblasts as Sentinel Cells and Local Immune Modulators in Infectious Keratitis

    Directory of Open Access Journals (Sweden)

    Ken Fukuda

    2017-08-01

    Full Text Available The cornea serves as a barrier to protect the eye against external insults including microbial pathogens and antigens. Bacterial infection of the cornea often results in corneal melting and scarring that can lead to severe visual impairment. Not only live bacteria but also their components such as lipopolysaccharide (LPS of Gram-negative bacteria contribute to the development of inflammation and subsequent corneal damage in infectious keratitis. We describe the important role played by corneal stromal fibroblasts (activated keratocytes as sentinel cells, immune modulators, and effector cells in infectious keratitis. Corneal fibroblasts sense bacterial infection through Toll-like receptor (TLR–mediated detection of a complex of LPS with soluble cluster of differentiation 14 (CD14 and LPS binding protein present in tear fluid. The cells then initiate innate immune responses including the expression of chemokines and adhesion molecules that promote the recruitment of inflammatory cells necessary for elimination of the infecting bacteria. Infiltrated neutrophils are activated by corneal stromal collagen and release mediators that stimulate the production of pro–matrix metalloproteinases by corneal fibroblasts. Elastase produced by Pseudomonas aeruginosa (P. aeruginosa activates these released metalloproteinases, resulting in the degradation of stromal collagen. The modulation of corneal fibroblast activation and of the interaction of these cells with inflammatory cells and bacteria is thus important to minimize corneal scarring during treatment of infectious keratitis. Pharmacological agents that are able to restrain such activities of corneal fibroblasts without allowing bacterial growth represent a potential novel treatment option for prevention of excessive scarring and tissue destruction in the cornea.

  8. Inhibition by all-trans retinoic acid of collagen degradation mediated by corneal fibroblasts.

    Science.gov (United States)

    Kimura, Kazuhiro; Zhou, Hongyan; Orita, Tomoko; Kobayashi, Shinya; Wada, Tomoyuki; Nakamura, Yoshikuni; Nishida, Teruo; Sonoda, Koh-Hei

    2016-08-01

    We examined the effect of all-trans retinoic acid on collagen degradation mediated by corneal fibroblasts. Rabbit corneal fibroblasts were cultured with or without all-trans retinoic acid in a three-dimensional collagen gel, and the extent of collagen degradation was determined by measurement of hydroxyproline in acid hydrolysates of culture supernatants. Matrix metalloproteinase expression was examined by immunoblot analysis and gelatin zymography. The abundance and phosphorylation state of the endogenous nuclear factor-kappaB inhibitor IκB-α were examined by immunoblot analysis. Corneal ulceration was induced by injection of lipopolysaccharide into the central corneal stroma of rabbits and was assessed by observation with a slitlamp microscope. All-trans retinoic acid inhibited interleukin-1β-induced collagen degradation by corneal fibroblasts in a concentration- and time-dependent manner. It also attenuated the release and activation of matrix metalloproteinases as well as the phosphorylation and degradation of IκB-α induced by interleukin-1β in these cells. Topical application of all-trans retinoic acid suppressed corneal ulceration induced by injection of lipopolysaccharide into the corneal stroma. All-trans retinoic acid inhibited collagen degradation mediated by corneal fibroblasts exposed to interleukin-1β, with this effect being accompanied by suppression of nuclear factor-kappaB signalling as well as of matrix metalloproteinase release and activation in these cells. All-trans retinoic acid also attenuated lipopolysaccharide-induced corneal ulceration in vivo. Our results therefore suggest that all-trans retinoic acid might prove effective for the treatment of patients with corneal ulceration. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  9. The cytokine regulation of SPARC production by rabbit corneal epithelial cells and fibroblasts in vitro.

    Science.gov (United States)

    Abe, Kosuke; Hibino, Tsuyoshi; Mishima, Hiroshi; Shimomura, Yoshikazu

    2004-03-01

    SPARC (osteonectin/BM40) is detected in the corneal stroma during the wound-healing process. To understand the metabolism of SPARC in the cornea, we investigated the effects of cytokines and growth factors on SPARC synthesis by rabbit corneal epithelial cells and fibroblasts. Rabbit corneal epithelial cells or fibroblasts were cultured for 3 days with serum-containing minimal essential medium (MEM), then subcultured for 3 days on serum-free MEM with epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta), or interleukin-1beta (IL-1beta). SPARC concentration in the medium was measured by the ELISA method using anti-SPARC monoclonal antibody. The concentration of SPARC in the conditioned medium of the epithelial cells depended on either cell numbers or cultivation periods. When EGF was added to the medium, the amount of SPARC in the medium decreased. The addition of IL-1beta, PDGF, or TGF-beta did not affect SPARC synthesis by the epithelial cells. The production of SPARC by rabbit corneal fibroblasts was low compared with that by epithelial cells. However, the synthesis of SPARC by corneal fibroblasts was significantly enhanced by the addition of TGF-beta. The addition of IL-1beta, PDGF, or EGF slightly increased SPARC synthesis by corneal fibroblasts. Cytokines and growth factors modulate SPARC synthesis by rabbit corneal epithelial cells and fibroblasts. These results suggest that cytokines and growth factors modulate cell-matrix interaction in corneal wound healing, possibly by regulating SPARC synthesis.

  10. Suppression by an RAR-γ Agonist of Collagen Degradation Mediated by Corneal Fibroblasts.

    Science.gov (United States)

    Kimura, Kazuhiro; Zhou, Hongyan; Orita, Tomoko; Kobayashi, Masaaki; Nishida, Teruo; Sonoda, Koh-Hei

    2017-04-01

    To examine the role of retinoic acid receptor (RAR) isoforms in interleukin-1β (IL-1β)-induced collagen degradation by corneal fibroblasts. Primary rabbit corneal fibroblasts embedded in a three-dimensional collagen gel were incubated with or without all-trans retinoic acid (ATRA), the RAR-α agonist Am580, the RAR-β agonist AC55649, or the RAR-γ agonist R667. Collagen degradation was determined by measurement of hydroxyproline produced in acid hydrolysates of culture supernatants. Matrix metalloproteinase (MMP) expression was evaluated by immunoblot analysis and gelatin zymography. The phosphorylation of mitogen-activated protein kinases (MAPKs) and the endogenous nuclear factor (NF)-κB inhibitor IκB-α was examined by immunoblot analysis. Cell proliferation was measured with a bromodeoxyuridine incorporation assay, and cell viability was determined by measurement of the release of lactate dehydrogenase. Interleukin-1β-induced collagen degradation by corneal fibroblasts was inhibited by ATRA, Am580, and R667 in a concentration-dependent manner but was unaffected by AC55649, with the inhibitory effects of ATRA and R667 being markedly greater than that of Am580. The IL-1β-induced production of MMP-1, MMP-2, MMP-3, and MMP-9 by corneal fibroblasts was also inhibited by R667 in a concentration-dependent manner. R667 inhibited the IL-1β-induced phosphorylation of IκB-α but not that of MAPKs. R667 had no effect on the proliferation or viability of corneal fibroblasts. The RAR-γ agonist R667 suppressed MMP production and thereby inhibited collagen degradation by corneal fibroblasts exposed to the proinflammatory cytokine IL-1β. These effects of R667 may be mediated by the NF-κB signaling pathway.

  11. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.

    Science.gov (United States)

    Karamichos, Dimitrios; Funderburgh, Martha L; Hutcheon, Audrey E K; Zieske, James D; Du, Yiqin; Wu, Jian; Funderburgh, James L

    2014-01-01

    Human corneal fibroblasts (HCF) and corneal stromal stem cells (CSSC) each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7). Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200-300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.

  12. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.

    Directory of Open Access Journals (Sweden)

    Dimitrios Karamichos

    Full Text Available Human corneal fibroblasts (HCF and corneal stromal stem cells (CSSC each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7. Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200-300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.

  13. Evaluation for safety of cultured corneal fibroblasts with cotreatment of alcohol and mitomycin C.

    Science.gov (United States)

    Kim, Tae-im; Tchah, Hungwon; Cho, Eun Hee; Kook, Michael S

    2004-01-01

    To investigate the effects of alcohol and mitomycin C (MMC) on cultured corneal fibroblast of the rabbit to determine the safety of this compound for clinical use. Corneal fibroblasts of New Zealand rabbits were cultured. Various concentrations (0%, 10%, 20%, 30%, 40%, and 60%) of ethanol were applied for 10, 20, 30, and 40 seconds to estimate dose- and time-dependent responses of cultured corneal fibroblasts. Cell viability was assessed using the MTT assay. Treated cells were additionally stained with Hoechst and annexin V for the identification of apoptosis. To investigate the coeffects of ethanol and MMC, dose and time dependency were evaluated after treatment with various concentrations of ethanol and MMC at different exposure times, and cell viability was established. To determine the latent effects of ethanol and MMC, cultured corneal fibroblasts were cotreated with various concentrations of ethanol and 0.02% MMC for various periods and washed out, and then one group was incubated for 24 hours and another group was not incubated. Cell viability was estimated, and Hoechst and annexin V staining were performed before and after incubation. To establish the pathway of cell death, caspase-3 activities were measured in cultured corneal fibroblasts treated with ethanol or MMC. Cell viability after ethanol treatment was dose and time dependent. After application of ethanol for 10 seconds, cell viability was significantly reduced with 20% ethanol (P = 0.001). At 20, 30, and 40 seconds of treatment with 10% ethanol, cell viability was significantly reduced (P corneal fibroblasts cotreated with 10% ethanol and 0.02% MMC were stained with Hoechst and annexin V. Results were similar to data obtained with ethanol-treated cells. However, after application of 20% alcohol and MMC, a significant number of cells were not viable and were detached from the well walls. Caspase-3 activity significantly increased after treatment with 30% ethanol only and 30% ethanol in conjunction

  14. Transplantation of reconstructed corneal layer composed of corneal epithelium and fibroblasts on a lyophilized amniotic membrane to severely alkali-burned cornea.

    Science.gov (United States)

    Jang, In-Keun; Ahn, Jae-Il; Shin, Jun-Seop; Kwon, Young-Sam; Ryu, Yang-Hwan; Lee, Jeong-Kyu; Park, Jung-Keug; Song, Kye-Yong; Yang, Eun-Kyung; Kim, Jae-Chan

    2006-06-01

    The purpose of this article was to evaluate the graft efficacy of reconstructed corneal layer, composed of autologous corneal epithelium and fibroblasts on a lyophilized amniotic membrane (LAM), in a severely alkali-burned corneal model. After biopsy specimens were obtained from the left eyes of 24 rabbits, the corneal epithelial cells and fibroblasts were expanded in vitro and the corneal layer was reconstructed on LAM. Thirty-six eyes of rabbits underwent alkali burn (1 N NaOH, 30 s) to create a limbal deficiency and a deeply damaged corneal stroma. Four weeks later, group 1 underwent a graft of the reconstructed corneal layer composed of autologous corneal epithelium and fibroblasts on LAM. Group 2 was transplanted with a graft of the reconstructed autologous corneal epithelium, and group 3 served as a control without surgery. Wound healing and stabilization of the ocular surfaces occurred much faster in group 1 than in groups 2 and 3. The eyes in group 3 revealed typical limbal deficiencies with conjuctivalization and persistent corneal epithelial defects. However, the corneas in group 1 developed only mild peripheral neovascularization. Immunohistochemical staining in group 1 demonstrated that p63, cytokeratin 3, E-cadherin, transforming growth factor (TGF)-beta1, and collagen IV were expressed strongly in the corneal epithelium and basement membrane. On the basis of these results, transplantation of the reconstructed corneal layer, composed of autologous corneal epithelium and fibroblasts on LAM, partially accelerated the recovery of the alkali-injured rabbit ocular surface, and might be useful therapeutically for the treatment of patients with severely damaged cornea.

  15. Tissue engineering of corneal stromal layer with dermal fibroblasts: phenotypic and functional switch of differentiated cells in cornea.

    Science.gov (United States)

    Zhang, Yan Qing; Zhang, Wen Jie; Liu, Wei; Hu, Xiao Jie; Zhou, Guang Dong; Cui, Lei; Cao, Yilin

    2008-02-01

    Previously, we successfully engineered a corneal stromal layer using corneal stromal cells. However, the limited source and proliferation potential of corneal stromal cells has driven us to search for alternative cell sources for corneal stroma engineering. Based on the idea that the tissue-specific environment may alter cell fate, we proposed that dermal fibroblasts could switch their phenotype to that of corneal stromal cells in the corneal environment. Thus, dermal fibroblasts were harvested from newborn rabbits, seeded on biodegradable polyglycolic acid (PGA) scaffolds, cultured in vitro for 1 week, and then implanted into adult rabbit corneas. After 8 weeks of implantation, nearly transparent corneal stroma was formed, with a histological structure similar to that of its native counterpart. The existence of cells that had been retrovirally labeled with green fluorescence protein (GFP) demonstrated the survival of implanted cells. In addition, all GFP-positive cells that survived expressed keratocan, a specific marker for corneal stromal cells, and formed fine collagen fibrils with a highly organized pattern similar to that of native stroma. However, neither dermal fibroblast-PGA construct pre-incubated in vitro for 3 weeks nor chondrocyte-PGA construct could form transparent stroma. The results demonstrated that neonatal dermal fibroblasts could switch their phenotype in the new tissue environment under restricted conditions. The functional restoration of corneal transparency using dermal fibroblasts suggests that they could be an alternative cell source for corneal stroma engineering.

  16. Role of nuclear factor-kappaB in interleukin-1-induced collagen degradation by corneal fibroblasts.

    Science.gov (United States)

    Lu, Ying; Fukuda, Ken; Li, Qin; Kumagai, Naoki; Nishida, Teruo

    2006-09-01

    The proinflammatory cytokine interleukin (IL)-1 is implicated in corneal ulceration. The role of nuclear factor (NF)-kappaB in the IL-1-induced degradation of collagen by corneal fibroblasts that underlies corneal ulceration was investigated. Rabbit corneal fibroblasts were cultured in three-dimensional gels of type I collagen with or without IL-1 and sulfasalazine, an inhibitor of NF-kappaB activation. Collagen degradation was assessed from the amount of hydroxyproline generated by acid-heat hydrolysis of culture supernatants. The release of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) into culture supernatants was examined by immunoblot analysis and gelatin zymography, and the cellular abundance of MMP and TIMP mRNAs was determined by reverse transcription and real-time polymerase chain reaction analysis. The phosphorylation and degradation of the NF-kappaB-inhibitory protein IkappaB-alpha were examined by immunoblot analysis. The subcellular localization and DNA binding activity of the p65 subunit of NF-kappaB were evaluated by immunofluorescence analysis and with a colorimetric assay, respectively. The transactivation activity of NF-kappaB was assessed with a reporter gene assay. Sulfasalazine inhibited IL-1-induced collagen degradation by corneal fibroblasts in a concentration-dependent manner. It also inhibited the stimulatory effects of IL-1 on the synthesis or activation of various MMPs in a concentration-dependent manner. IL-1 induced the phosphorylation and degradation of IkappaB-alpha, the nuclear translocation and up-regulation of the DNA binding activity of the p65 subunit of NF-kappaB, and the activation of NF-kappaB in a manner sensitive to sulfasalazine. These results suggest that NF-kappaB contributes to the IL-1-induced degradation of collagen by corneal fibroblasts and is therefore a potential therapeutic target for treatment of corneal ulcers.

  17. Dexamethasone inhibition of IL-1-induced collagen degradation by corneal fibroblasts in three-dimensional culture.

    Science.gov (United States)

    Lu, Ying; Fukuda, Ken; Liu, Yang; Kumagai, Naoki; Nishida, Teruo

    2004-09-01

    Corticosteroids regulate the functions of inflammatory cells. The purpose of the present study was to investigate the effect of dexamethasone on collagen degradation by corneal fibroblasts, an underlying cause of corneal ulceration. Rabbit corneal fibroblasts were cultured in three-dimensional gels of type I collagen and in the absence or presence of IL-1beta or dexamethasone. The extent of collagen degradation was determined by measurement of the amount of hydroxyproline generated by acid-heat hydrolysis of culture supernatants. The expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) was evaluated by immunoblot analysis, gelatin zymography, and reverse transcription and real-time polymerase chain reaction. The phosphorylation of mitogen-activated protein kinases (MAPKs) in corneal fibroblasts was assessed by immunoblot analysis. Dexamethasone inhibited IL-1beta-induced collagen degradation by corneal fibroblasts in a dose-dependent manner. Both the synthesis and activation of MMPs and the expression of TIMPs were inhibited by dexamethasone, as was the activity of plasmin in culture supernatants. Dexamethasone also inhibited the IL-1beta-induced phosphorylation of the MAPKs extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but not that of p38. Dexamethasone exerted multiple effects on the MMP-TIMP system in corneal fibroblasts and thereby inhibited IL-1beta-induced collagen degradation by these cells. Inhibition of the IL-1beta-induced activation of ERK and JNK may contribute to these effects of dexamethasone. Copyright Association for Research in Vision and Ophthalmology

  18. Morphological evaluation of normal human corneal epithelium

    DEFF Research Database (Denmark)

    Ehlers, Niels; Heegaard, Steffen; Hjortdal, Jesper

    2010-01-01

    PURPOSE: The human corneal epithelium is usually described as a 50-µm-thick layer of regular stratified squamous non-keratinized cells with a thickness of 5-7 cells. The purpose of this study is systemically to revisit the histopathological appearance of 100 corneas. METHODS: 5-µm-thick sections...... in Bowman's membrane. No intraepithelial microcysts, as found in Meesmann corneal dystrophy, were observed. CONCLUSION: The total corneal thickness was higher than reported in in vivo studies and with a wider variation. This may be an effect of uncontrolled swelling and dehydration during preparation...

  19. Nanoscale topography-induced modulation of fundamental cell behaviors of rabbit corneal keratocytes, fibroblasts, and myofibroblasts.

    Science.gov (United States)

    Pot, Simon A; Liliensiek, Sara J; Myrna, Kathern E; Bentley, Ellison; Jester, James V; Nealey, Paul F; Murphy, Christopher J

    2010-03-01

    Keratocyte-to-myofibroblast differentiation is a key factor in corneal wound healing. The purpose of this study was to determine the influence of environmental nanoscale topography on keratocyte, fibroblast, and myofibroblast cell behavior. Primary rabbit corneal keratocytes, fibroblasts, and myofibroblasts were seeded onto planar polyurethane surfaces with six patterned areas, composed of anisotropically ordered grooves and ridges with a 400-, 800-, 1200-, 1600-, 2000-, and 4000-nm pitch (pitch = groove + ridge width). After 24 hours cells were fixed, stained, imaged, and analyzed for cell shape and orientation. For migration studies, cells on each patterned surface were imaged every 10 minutes for 12 hours, and individual cell trajectories and migration rates were calculated. Keratocytes, fibroblasts, and myofibroblasts aligned and elongated to pitch sizes larger than 1000 nm. A lower limit to the topographic feature sizes that the cells responded to was identified for all three phenotypes, with a transition zone around the 800- to 1200-nm pitch size. Fibroblasts and myofibroblasts migrated parallel to surface ridges larger than 1000 nm but lacked directional guidance on submicron and nanoscale topographic features and on planar surfaces. Keratocytes remained essentially immobile. Corneal stromal cells elongated, aligned, and migrated, differentially guided by substratum topographic features. All cell types failed to respond to topographic features approximating the dimensions of individual stromal fibers. These findings contribute to our understanding of corneal stromal cell biology in health and disease and their interaction with biomaterials and their native extracellular matrix.

  20. Effect of the combination of basic fibroblast growth factor and cysteine on corneal epithelial healing after photorefractive keratectomy in patients affected by myopia

    Science.gov (United States)

    Meduri, Alessandro; Scorolli, Lucia; Scalinci, Sergio Zaccaria; Grenga, Pier Luigi; Lupo, Stefano; Rechichi, Miguel; Meduri, Enrico

    2014-01-01

    Background: This study sought to evaluate the effect of basic fibroblast growth factor eye drops and cysteine oral supplements on corneal healing in patients treated with photorefractive keratectomy (PRK). Materials and Methods: One hundred and twenty patients treated bilaterally with PRK for myopia were enrolled at one of two eye centers (Clinica Santa Lucia, Bologna, Italy and Department of Ophthalmology, University of Magna Graecia, Catanzaro, Italy) and were treated at the former center. Sixty patients included in the study group (Group 1) were treated postoperatively with topical basic fibroblast growth factor plus oral L-cysteine supplements, whereas 60 subjects included in the control group (Group 2) received basic fibroblast growth factor eye drops. We recorded the rate of corneal re-epithelialization and patients were followed-up every 30 days for 6 months. Statistical analyses were performed on the collected data. Results: The eyes in Group 1 demonstrated complete re-epithelialization at Day 5, whereas the eyes in Group 2 achieved this status on Day 6. No side-effects were reported. Conclusions: Patients treated with basic fibroblast growth factor eye drops and L-cysteine oral supplements benefit from more rapid corneal re-epithelialization. In human eyes, this combination treatment appeared to be safe and effective in accelerating corneal surfacing after surgery. Financial Disclosure: No author has any financial or proprietary interest in any material or method used in this study. Trial Registration: Current Controlled Trials ISRCTN73824458. PMID:24145571

  1. Effect of the combination of basic fibroblast growth factor and cysteine on corneal epithelial healing after photorefractive keratectomy in patients affected by myopia

    Directory of Open Access Journals (Sweden)

    Alessandro Meduri

    2014-01-01

    Full Text Available Background: This study sought to evaluate the effect of basic fibroblast growth factor eye drops and cysteine oral supplements on corneal healing in patients treated with photorefractive keratectomy (PRK. Materials and Methods: One hundred and twenty patients treated bilaterally with PRK for myopia were enrolled at one of two eye centers (Clinica Santa Lucia, Bologna, Italy and Department of Ophthalmology, University of Magna Graecia, Catanzaro, Italy and were treated at the former center. Sixty patients included in the study group (Group 1 were treated postoperatively with topical basic fibroblast growth factor plus oral L-cysteine supplements, whereas 60 subjects included in the control group (Group 2 received basic fibroblast growth factor eye drops. We recorded the rate of corneal re-epithelialization and patients were followed-up every 30 days for 6 months. Statistical analyses were performed on the collected data. Results: The eyes in Group 1 demonstrated complete re-epithelialization at Day 5, whereas the eyes in Group 2 achieved this status on Day 6. No side-effects were reported. Conclusions : Patients treated with basic fibroblast growth factor eye drops and L-cysteine oral supplements benefit from more rapid corneal re-epithelialization. In human eyes, this combination treatment appeared to be safe and effective in accelerating corneal surfacing after surgery. Financial Disclosure: No author has any financial or proprietary interest in any material or method used in this study. Trial Registration: Current Controlled Trials ISRCTN73824458.

  2. Corneal Fibroblast Migration Patterns During Intrastromal Wound Healing Correlate With ECM Structure and Alignment.

    Science.gov (United States)

    Petroll, W Matthew; Kivanany, Pouriska B; Hagenasr, Daniela; Graham, Eric K

    2015-11-01

    To assess keratocyte backscattering, alignment, morphology, and connectivity in vivo following a full-thickness corneal injury using the Heidelberg Retina Tomograph Rostock Cornea Module (HRT-RCM), and to correlate these findings with en bloc three-dimensional (3-D) confocal fluorescence and second harmonic generation (SHG) imaging. Rabbit corneas were scanned in vivo both before and 3, 7, 14, and 28 days after transcorneal freeze injury (FI), which damages all corneal cell layers. Corneal tissue was also fixed and labeled for f-actin and nuclei en bloc, and imaged using 3-D confocal fluorescence microscopy and SHG imaging. Using the modified HRT-RCM, full-thickness scans of all cell layers were consistently obtained. Following FI, stromal cells repopulating the damaged tissue assumed an elongated fibroblastic morphology, and a significant increase in cellular light scattering was measured. This stromal haze gradually decreased as wound healing progressed. Parallel, interconnected streams of aligned corneal fibroblasts were observed both in vivo (from HRT-RCM reflection images) and ex vivo (from f-actin and nuclear labeling) during wound healing, particularly in the posterior cornea. Second harmonic generation imaging demonstrated that these cells were aligned parallel to the collagen lamellae. The modified HRT-RCM allows in vivo measurements of sublayer thickness, assessment of cell morphology, alignment and connectivity, and estimation of stromal backscatter during wound healing. In this study, these in vivo observations led to the novel finding that the pattern of corneal fibroblast alignment is highly correlated with lamellar organization, suggesting contact guidance of intrastromal migration that may facilitate more rapid wound repopulation.

  3. Caveolin-1 associated adenovirus entry into human corneal cells.

    Directory of Open Access Journals (Sweden)

    Mohammad A Yousuf

    Full Text Available The cellular entry of viruses represents a critical area of study, not only for viral tropism, but also because viral entry dictates the nature of the immune response elicited upon infection. Epidemic keratoconjunctivitis (EKC, caused by viruses within human adenovirus species D (HAdV-D, is a severe, ocular surface infection associated with corneal inflammation. Clathrin-mediated endocytosis has previously been shown to play a critical role in entry of other HAdV species into many host cell types. However, HAdV-D endocytosis into corneal cells has not been extensively studied. Herein, we show an essential role for cholesterol rich, lipid raft microdomains and caveolin-1, in the entry of HAdV-D37 into primary human corneal fibroblasts. Cholesterol depletion using methyl-β-cyclodextrin (MβCD profoundly reduced viral infection. When replenished with soluble cholesterol, the effect of MβCD was reversed, allowing productive viral infection. HAdV-D37 DNA was identified in caveolin-1 rich endosomal fractions after infection. Src kinase activity was also increased in caveolin-1 rich endosomal fractions after infection, and Src phosphorylation and CXCL1 induction were both decreased in caveolin-1-/- mice corneas compared to wild type mice. siRNA knock down of caveolin-1 in corneal cells reduced chemokine induction upon viral infection, and caveolin-1-/- mouse corneas showed reduced cellular entry of HAdV-D37. As a control, HAdV-C2, a non-corneal pathogen, appeared to utilize the caveolar pathway for entry into A549 cells, but failed to infect corneal cells entirely, indicating virus and cell specific tropism. Immuno-electron microscopy confirmed the presence of caveolin-1 in HAdV-D37-containing vesicles during the earliest stages of viral entry. Collectively, these experiments indicate for the first time that HAdV-D37 uses a lipid raft mediated caveolin-1 associated pathway for entry into corneal cells, and connects the processes of viral entry with

  4. Role of protein kinase C signaling in collagen degradation by rabbit corneal fibroblasts cultured in three-dimensional collagen gels.

    Science.gov (United States)

    Nagano, Takashi; Hao, Ji-Long; Nakamura, Masatsugu; Nishida, Teruo

    2002-08-01

    To understand the mechanism of corneal ulceration by characterizing the intracellular signaling pathways that regulate collagen degradation by corneal fibroblasts cultured in three-dimensional type I collagen gels. Specifically, the potential roles of protein kinase C (PKC) and protein kinase A (PKA) in collagen degradation were investigated. Rabbit corneal fibroblasts were cultured in three-dimensional type I collagen gels for 24 hours in the presence of plasminogen and in the absence or presence of activators or inhibitors of PKC or PKA. Degradation of collagen fibrils was then evaluated by measurement of released hydroxyproline, and the production of matrix metalloproteinases (MMPs) was assessed by gelatin zymography and immunoblot analysis. The PKC activator phorbol 12-myristate 13-acetate (PMA) increased the extent of collagen degradation by corneal fibroblasts in a dose-dependent manner, with the maximal effect apparent at a concentration of 0.1 microM. The inactive analog 4alpha-PMA had no effect on collagen degradation. The PKC inhibitor H-7 reduced the extent of collagen degradation by corneal fibroblasts in the absence or presence of PMA. Phorbol 12-myristate 13-acetate also increased the production of proMMP-1, -3, and -9 by corneal fibroblasts, whereas H-7 inhibited this effect. Neither the PKA activators 8-bromo-cAMP, isobutylmethylxanthine, and forskolin nor the PKA inhibitor HA1004 affected collagen degradation by corneal fibroblasts. These results demonstrate that PKC plays an important role in collagen degradation by corneal fibroblasts in three-dimensional type I collagen gels, whereas PKA does not appear to participate in this process.

  5. Polysaccharide coating of human corneal endothelium

    DEFF Research Database (Denmark)

    Schroder, H D; Sperling, S

    1977-01-01

    Electron microscopy revealed the presence of a 600-1500 A thick layer of polysaccharide on the surface of human corneal endothelial cells. The surface layer was visualized by combined fixation and staining in a mixture of ruthenium red and osmium tetroxide. The coating material was stable...

  6. Characterizing the effects of aligned collagen fibers and ascorbic acid derivatives on behavior of rabbit corneal fibroblasts.

    Science.gov (United States)

    Phu, Donna; Orwin, Elizabeth J

    2009-01-01

    The cornea is responsible for functional optical activity of the mammalian eye, as it must remain transparent in order to focus light onto the retina. Corneal disease is the second leading cause worldwide of vision loss [1]. Human donor tissue transplantation in the cornea is associated with problems such as immunorejection and recurring graft failures [1]. Tissue engineering offers a promising alternative to using human donor tissues in treating corneal diseases. A viable tissue-engineered cornea must be mechanically resilient to protect the fragile intraocular components of the eye, and optically transparent to refract light onto the retina. In the native cornea, transparency is maintained by both the cells in the stromal layer and the high organization of the extracellular matrix (ECM). This study aims to combine the effects of aligned collagen fibers and ascorbic acid derivatives to control corneal fibroblast behavior to not only express the appropriate proteins, but also to deposit aligned, small diameter collagen fibers that resemble the highly organized structure of the natural ECM. Results from this study suggest that the combined effect of an aligned scaffolding material and ascorbic acid supplements can create a cell-matrix construct that both downregulates expression of the light scattering protein a-smooth muscle actin (alpha-sma) and supports an increased number of cell layers.

  7. [Representation and mathematical analysis of human corneal surface].

    Science.gov (United States)

    Tălu, Stefan; Tălu, Mihai; Giovanzana, Stefano

    2011-01-01

    In the description and analysis of human corneal surface are used various mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the cornea. Mathematical models are important into the biomechanics of the cornea to model the corneal behavior. Corneal biomechanics also has the potential to improve outcomes in refractive surgery. The objective of this paper is to present the most representative mathematical models currently used for modeling of human corneal in optics and biomechanics fields.

  8. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  9. Fast deposition of hydroxyapatite coating on titanium to modify cell affinity of corneal fibroblast in vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaoping; MA Xiao; WANG Leyun; DU Xuan; HUANG Yifei; CUI Fuzhai

    2007-01-01

    By two step acid-alkali pretreatment and lmmersing into supersaturated calcification solution,hydroxyapatite (HA)coating was deposited on titanium(Ti)discs.The composition,surface morphology and cross-section of the coating were analyzed by X-ray diffraction(XRD)and scanning electron microscopy (SEM).Fibroblasts of rabbit cornea were seeded on HA coated Ti disc,pure Ti disc and glass.Cell adhesion,proliferation and morphology were detected at 24,48 and 72h,respectively.It is shown for the first time that HA coating can significantly enhance the adhesion and proliferation of rabbit corneal fibroblast in comparison with that of pure Ti.

  10. Fibroblastic Transformation of Corneal Keratocytes by Rac Inhibition is Modulated by Extracellular Matrix Structure and Stiffness

    Directory of Open Access Journals (Sweden)

    W. Matthew Petroll

    2015-04-01

    Full Text Available The goal of this study was to investigate how alterations in extracellular matrix (ECM biophysical properties modulate corneal keratocyte phenotypes in response to specific wound healing cytokines and Rho GTPases. Rabbit corneal keratocytes were plated within standard collagen matrices (2.5 mg/mL or compressed collagen matrices (~100 mg/mL and cultured in serum-free media, PDGF BB, IGF, FGF2 or TGFβ1, with or without the Rac1 inhibitor NSC23766 and/or the Rho kinase inhibitor Y-27632. After 1 to 4 days, cells were labeled for F-actin and imaged using confocal microscopy. Keratocytes within standard collagen matrices (which are highly compliant maintained a dendritic phenotype following culture in serum-free media, PDGF, IGF and FGF, but developed stress fibers in TGFβ1. Keratocytes within compressed collagen (which has high stiffness and low porosity maintained a dendritic phenotype following culture in serum-free media, PDGF and IGF, but developed stress fibers in both FGF and TGFβ1. The Rac inhibitor had no significant impact on growth factor responses in compliant matrices. Within compressed collagen matrices however, the Rac inhibitor induced fibroblastic transformation in serum-free media, PDGF and IGF. Fibroblast and myofibroblast transformation was blocked by Rho kinase inhibition. Overall, keratocyte growth factor responses appear to be regulated by both the interplay between Rho and Rac signaling, and the structural and mechanical properties of the ECM.

  11. Bradykinin-mediated cell proliferation depends on transactivation of EGF receptor in corneal fibroblasts.

    Science.gov (United States)

    Cheng, Ching-Yi; Tseng, Hui-Ching; Yang, Chuen-Mao

    2012-04-01

    In previous studies, bradykinin (BK) has been shown to induce cell proliferation through BK B2 receptor (B2R) via p42/p44 MAPK in Statens Seruminstitut Rabbit Corneal Cells (SIRCs). In addition to this pathway, EGFR transactivation pathway has been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we further investigate whether these transactivation mechanisms participating in BK-induced cell proliferation in SIRCs. Using an immunofluorescence staining and RT-PCR, we initially characterize that SIRCs were corneal fibroblasts and predominantly expressed B2R by BK. Inhibition of p42/p44 MAPK by the inhibitors of Src, EGFR, and Akt or transfection with respective siRNAs prevents BK-induced DNA synthesis in SIRCs. The mechanisms underlying these responses were mediated through phosphorylation of Src and EGFR via the formation of Src/EGFR complex which was attenuated by PP1 and AG1478. Moreover, BK-induced p42/p44 MAPK and Akt activation was mediated through EGFR transactivation, which was diminished by the inhibitors of MMP-2/9 and heparin-binding EGF-like factor (HB-EGF). Finally, increased nuclear translocation of Akt and p42/p44 MAPK turns on early gene expression leading to cell proliferation. These results suggest that BK-induced cell proliferation is mediated through c-Src-dependent transactivation of EGFR via MMP2/9-dependent pro-HB-EGF shedding linking to activation of Akt and p42/p44 MAPK in corneal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  12. Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine.

    Directory of Open Access Journals (Sweden)

    Naoki Okumura

    Full Text Available Corneal endothelial dysfunctions occurring in patients with Fuchs' endothelial corneal dystrophy, pseudoexfoliation syndrome, corneal endotheliitis, and surgically induced corneal endothelial damage cause blindness due to the loss of endothelial function that maintains corneal transparency. Transplantation of cultivated corneal endothelial cells (CECs has been researched to repair endothelial dysfunction in animal models, though the in vitro expansion of human CECs (HCECs is a pivotal practical issue. In this study we established an optimum condition for the cultivation of HCECs. When exposed to culture conditions, both primate and human CECs showed two distinct phenotypes: contact-inhibited polygonal monolayer and fibroblastic phenotypes. The use of SB431542, a selective inhibitor of the transforming growth factor-beta (TGF-β receptor, counteracted the fibroblastic phenotypes to the normal contact-inhibited monolayer, and these polygonal cells maintained endothelial physiological functions. Expression of ZO-1 and Na(+/K(+-ATPase maintained their subcellular localization at the plasma membrane. Furthermore, expression of type I collagen and fibronectin was greatly reduced. This present study may prove to be the substantial protocol to provide the efficient in vitro expansion of HCECs with an inhibitor to the TGF-β receptor, and may ultimately provide clinicians with a new therapeutic modality in regenerative medicine for the treatment of corneal endothelial dysfunctions.

  13. Combined effects of interleukin-1β and cyclic stretching on metalloproteinase expression in corneal fibroblasts in vitro.

    Science.gov (United States)

    Feng, Pengfei; Li, Xiaona; Chen, Weiyi; Liu, Chengxing; Rong, Shuo; Wang, Xiaojun; Du, Genlai

    2016-06-10

    Corneal tensile strain increases if the cornea becomes thin or if intraocular pressure increases. However, the effects of mechanical stress on extracellular matrix (ECM) remodelling in the corneal repair process and the corneal anomalies are unknown. In this study, the combined effects of interleukin-1β (IL-1β) on matrix metalloproteinases (MMPs) in corneal fibroblasts under cyclic stretching were investigated in vitro. Cultured rabbit corneal fibroblasts were subjected to 5, 10 or 15 % cyclic equibiaxial stretching at 0.1 Hz for 36 h in the presence of IL-1β. Conditioned medium was harvested for the analysis of MMP2 and MMP9 protein production using the gelatin zymography and western blot techniques. Cyclic equibiaxial stretching changed the cell morphology by increasing the contractility of F-actin fibres. IL-1β alone induced the expression of MMP9 and increased the production of MMP2, and 5 % stretching alone decreased the production of MMP2, which indicates that a low stretching magnitude can reduce ECM degradation. In the presence of IL-1β, 5 and 10 % stretching increased the production of MMP2, whereas 15 % stretching increased the production of MMP9. These results indicate that MMP expression is enhanced by cyclic mechanical stimulation in the presence of IL-1β, which is expected to contribute to corneal ECM degradation, leading to the development of post-refractive surgery keratectasia.

  14. Expression of basic fibroblast growth factor in rabbit corneal alkali wounds in the presence and absence of granulocytes.

    Science.gov (United States)

    Gan, Lisha; Fagerholm, Per; Palmblad, Jan

    2005-06-01

    To study the expression of basic fibroblast growth factor (bFGF) in the early phases of corneal wound healing in the presence or absence of granulocytes. A central penetrating corneal alkali wound was inflicted to one eye in each of 14 rabbits under general anaesthesia. Subsequently, seven of the rabbits were given fucoidin i.v. for 36 hours in order to block the selectins on the vascular endothelium, thus preventing blood granulocytes from entering the tissues. Then, corneas were prepared, stained for bFGF and evaluated by light microscopy. Whereas normal corneal epithelium expressed bFGF weakly, conjunctival epithelium did so strongly, particularly the goblet cells. The corneal endothelium showed medium staining, while keratocytes and vascular endothelial cells did not consistently express bFGF. After 36 hours of wound healing, a marked up-regulation of bFGF expression was observed in the corneal epithelial and endothelial cells, as well as in the keratocytes, that were migrating into the wound. No other changes were noted. None of these features were modulated when granulocyte emigration was prevented by fucoidin administration. The difference in bFGF expression between the corneal and conjunctival epithelium suggests a role for this growth factor in the barrier function at the limbus. Moreover, the specific presence of bFGF in cells migrating into the wound indicates the participation of bFGF in corneal wound healing. Expression of bFGF was independent of granulocytes.

  15. Fibroblast growth factor-2 drives and maintains progressive corneal neovascularization following HSV-1 infection.

    Science.gov (United States)

    Gurung, H R; Carr, M M; Bryant, K; Chucair-Elliott, A J; Carr, D Jj

    2017-04-05

    Herpes simplex virus type 1 (HSV-1) infection of the cornea induces vascular endothelial growth factor A (VEGF-A)-dependent lymphangiogenesis that continues to develop well beyond the resolution of infection. Inflammatory leukocytes infiltrate the cornea and have been implicated to be essential for corneal neovascularization, an important clinically relevant manifestation of stromal keratitis. Here we report that cornea infiltrating leukocytes including neutrophils and T cells do not have a significant role in corneal neovascularization past virus clearance. Antibody-mediated depletion of these cells did not impact lymphatic or blood vessel genesis. Multiple pro-angiogenic factors including IL-6, angiopoietin-2, hepatocyte growth factor, fibroblast growth factor-2 (FGF-2), VEGF-A, and matrix metalloproteinase-9 were expressed within the cornea following virus clearance. A single bolus of dexamethasone at day 10 post infection (pi) resulted in suppression of blood vessel genesis and regression of lymphatic vessels at day 21 pi compared to control-treated mice. Whereas IL-6 neutralization had a modest impact on hemangiogenesis (days 14-21 pi) and lymphangiogenesis (day 21 pi) in a time-dependent fashion, neutralization of FGF-2 had a more pronounced effect on the suppression of neovascularization (blood and lymphatic vessels) in a time-dependent, leukocyte-independent manner. Furthermore, FGF-2 neutralization suppressed the expression of all pro-angiogenic factors measured and preserved visual acuity.Mucosal Immunology advance online publication 5 April 2017; doi:10.1038/mi.2017.26.

  16. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells.

    Directory of Open Access Journals (Sweden)

    Ryohei Numata

    Full Text Available The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na⁺/K⁺-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

  17. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells.

    Science.gov (United States)

    Numata, Ryohei; Okumura, Naoki; Nakahara, Makiko; Ueno, Morio; Kinoshita, Shigeru; Kanematsu, Daisuke; Kanemura, Yonehiro; Sasai, Yoshiki; Koizumi, Noriko

    2014-01-01

    The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs) is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM) as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs) via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na⁺/K⁺-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

  18. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development.

    Science.gov (United States)

    Zhang, Jinglin; Upadhya, Dinesh; Lu, Lin; Reneker, Lixing W

    2015-01-01

    Fibroblast growth factors (FGFs) play important roles in many aspects of embryonic development. During eye development, the lens and corneal epithelium are derived from the same surface ectodermal tissue. FGF receptor (FGFR)-signaling is essential for lens cell differentiation and survival, but its role in corneal development has not been fully investigated. In this study, we examined the corneal defects in Fgfr2 conditional knockout mice in which Cre expression is activated at lens induction stage by Pax6 P0 promoter. The cornea in LeCre, Fgfr2(loxP/loxP) mice (referred as Fgfr2(CKO)) was analyzed to assess changes in cell proliferation, differentiation and survival. We found that Fgfr2(CKO) cornea was much thinner in epithelial and stromal layer when compared to WT cornea. At embryonic day 12.5-13.5 (E12.5-13.5) shortly after the lens vesicle detaches from the overlying surface ectoderm, cell proliferation (judged by labeling indices of Ki-67, BrdU and phospho-histone H3) was significantly reduced in corneal epithelium in Fgfr2(CKO) mice. At later stage, cell differentiation markers for corneal epithelium and underlying stromal mesenchyme, keratin-12 and keratocan respectively, were not expressed in Fgfr2(CKO) cornea. Furthermore, Pax6, a transcription factor essential for eye development, was not present in the Fgfr2(CKO) mutant corneal epithelial at E16.5 but was expressed normally at E12.5, suggesting that FGFR2-signaling is required for maintaining Pax6 expression in this tissue. Interestingly, the role of FGFR2 in corneal epithelial development is independent of ERK1/2-signaling. In contrast to the lens, FGFR2 is not required for cell survival in cornea. This study demonstrates for the first time that FGFR2 plays an essential role in controlling cell proliferation and differentiation, and maintaining Pax6 levels in corneal epithelium via ERK-independent pathways during embryonic development.

  19. Expression of MMP-2, MT1-MMP, and TIMP-2 by cultured rabbit corneal fibroblasts under mechanical stretch.

    Science.gov (United States)

    Liu, Chengxing; Feng, Pengfei; Li, Xiaona; Song, Jie; Chen, Weiyi

    2014-08-01

    Refractive surgery not only leads to tissue injury but also evokes mechanical stress increase of the cornea. How the mechanical stress affects the corneal matrix remodeling, specifically, matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitors of metalloproteinases; TIMPs) is not well understood. In this study, cultured rabbit corneal fibroblasts in vitro were subjected to regimen of 5%, 10%, or 15% equibiaxial stretch at 0.1 Hz for 3 or 24 h. MMP-2 protein level was measured by gelatin zymography and Western blotting. MMP-2, membrane type 1 MMP (MT1-MMP), and TIMP-2 mRNA levels were quantified by real-time quantitative PCR. Extracellular regulated protein kinase (ERK) phosphorylation protein levels were assessed by Western blotting. Our results showed that a 15% stretch resulted in increases in MMP-2 protein, MMP-2 mRNA, and MT1-MMP mRNA levels, but a decrease in TIMP-2 mRNA level. However, a 5% stretch caused decreases in MMP-2 protein and mRNA level, but an increase in TIMP-2 mRNA level, and no change in MT1-MMP mRNA level. A 15% stretch also caused a significant increase in ERK1/2 phosphorylation. Inhibition of the mitogenactivated protein kinase (MEK) pathway with PD98059 attenuated stretch-induced increase in MMP-2 production and ERK activity. These results suggest that small-magnitude stretching may promote corneal matrix synthetic events, whereas large-magnitude stretching promotes corneal matrix degradation by changing the balance between MMPs and TIMPs in corneal fibroblasts. Large-magnitude stretch-induced increase in pro-MMP-2 production was in an ERK-dependent manner. © 2014 by the Society for Experimental Biology and Medicine.

  20. 4-Phenylbutyric acid reduces mutant-TGFBIp levels and ER stress through activation of ERAD pathway in corneal fibroblasts of granular corneal dystrophy type 2.

    Science.gov (United States)

    Choi, Seung-Il; Lee, Eunhee; Jeong, Jang Bin; Akuzum, Begum; Maeng, Yong-Sun; Kim, Tae-Im; Kim, Eung Kweon

    2016-09-02

    Granular corneal dystrophy type 2 (GCD2) is caused by a point mutation (R124H) in the transforming growth factor β-induced (TGFBI) gene. In GCD2 corneal fibroblasts, secretion of the accumulated mutant TGFBI-encoded protein (TGFBIp) is delayed via the endoplasmic reticulum (ER)/Golgi-dependent secretory pathway. However, ER stress as the pathogenic mechanism underlying GCD2 has not been fully characterized. The aim of this study was to confirm whether ER stress is linked to GCD2 pathogenesis and whether the chemical chaperone, 4-phenylbutyric acid (4-PBA), could be exploited as a therapy for GCD2. We found that the ER chaperone binding immunoglobulin protein (BiP) and the protein disulfide isomerase (PDI) were elevated in GCD2. Western bolt analysis also showed a significant increase in both the protein levels and the phosphorylation of the key ER stress kinases, inositol-requiring enzyme 1α (IRE1α) and double stranded RNA activated protein kinase (PKR)-like ER kinase, as well as in levels of their downstream targets, X box-binding protein 1 (XBP1) and activating transcription factor 4, respectively, in GCD2 corneal fibroblasts. GCD2 cells were found to be more susceptible to ER stress-induced cell death than were wild-type corneal fibroblasts. Treatment with 4-PBA considerably reduced the levels of BiP, IRE1α, and XBP1 in GCD2 cells; notably, 4-PBA treatment significantly reduced the levels of TGFBIp without change in TGFBI mRNA levels. In addition, TGFBIp levels were significantly reduced under ER stress and this reduction was considerably suppressed by the ubiquitin proteasome inhibitor MG132, indicating TGFBIp degradation via the ER-associated degradation pathway. Treatment with 4-PBA not only protected against the GCD2 cell death induced by ER stress but also significantly suppressed the MG132-mediated increase in TGFBIp levels under ER stress. Together, these results suggest that ER stress might comprise an important factor in GCD2 pathophysiology and

  1. Inhibition by a selective IkappaB kinase-2 inhibitor of interleukin-1-induced collagen degradation by corneal fibroblasts in three-dimensional culture.

    Science.gov (United States)

    Kondo, Yukiko; Fukuda, Ken; Adachi, Tadafumi; Nishida, Teruo

    2008-11-01

    Corneal ulcer results from excessive collagen degradation in the corneal stroma. Interleukin (IL)-1 promotes this process by activating signaling molecules that include nuclear factor (NF)-kappaB and stimulating the synthesis of matrix metalloproteinases (MMPs) in corneal fibroblasts. NF-kappaB activation is mediated by phosphorylation of the inhibitor IkappaB by IkappaB kinase (IKK)-2 and consequent IkappaB degradation. The authors investigated the effects of the IKK-2 inhibitor [5-(p-fluorophenyl)-2-ureido]thiophene-3-carboxamide (TPCA-1) on collagen degradation by corneal fibroblasts. Rabbit corneal fibroblasts were cultured in three-dimensional collagen gels. Collagen degradation was evaluated by spectrophotometric quantitation of hydroxyproline in culture supernatants subjected to acid-heat hydrolysis. Expression of MMPs was evaluated by immunoblot analysis, gelatin zymography, and real-time reverse transcription polymerase chain reaction analysis. The phosphorylation and degradation of IkappaBalpha and the subcellular localization of NF-kappaB were examined by immunoblot and immunofluorescence analyses, respectively. IL-1beta-induced collagen degradation by corneal fibroblasts was inhibited by TPCA-1 in a concentration- and time-dependent manner. TPCA-1 inhibited the IL-1beta-induced expression of MMP-1, -3, and -9 in these cells at both the mRNA and protein levels and the IL-1beta-induced activation of pro-MMP-2. In contrast to dexamethasone, TPCA-1 inhibited the phosphorylation and degradation of IkappaBalpha and the nuclear translocation of NF-kappaB induced by IL-1beta. An IKK-2 inhibitor blocked IL-1beta-induced collagen degradation by corneal fibroblasts by inhibiting the activation of the NF-kappaB signaling pathway and the upregulation of MMPs. IKK-2 inhibitors are thus potential alternatives to dexamethasone for the treatment of corneal ulcer.

  2. MicroRNA-145 regulates human corneal epithelial differentiation.

    Directory of Open Access Journals (Sweden)

    Sharon Ka-Wai Lee

    Full Text Available BACKGROUND: Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC epithelia containing corneal epithelial progenitor cells (CEPCs and early transit amplifying cells, and their role in corneal epithelium. METHODOLOGY/PRINCIPAL FINDINGS: Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18 microRNAs against central corneal (CC epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia (P = 0.0004, Mann-Whitney U-test. This was validated by quantitative polymerase chain reaction (qPCR. Locked nucleic acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324 genes (containing genes for immune response and down-regulated 277 genes (containing genes for epithelial development and stem cell maintenance. As validated by qPCR and luciferase reporter assay, our results showed miR-145 suppressed integrin β8 (ITGB8 expression in both human corneal epithelial cells

  3. Corneal haze induced by excimer laser photoablation in rabbits is reduced by preserved human amniotic membrane graft

    Science.gov (United States)

    Wang, Ming X.; Gray, Trevor; Prabhasawat, Pinnita; Ma, Xiong; Culbertson, William; Forster, Richard; Hanna, Khalil; Tseng, Scheffer C. G.

    1998-06-01

    We conducted a study to determine if preserved human amniotic membrane can reduce corneal haze induced by excimer laser photoablation. Excimer photoablation was performed bilaterally on 40 New Zealand white rabbits with a 6 mm ablation zone and 120 micrometer depth (PTK) using the VISX Star. One eye was randomly covered with a preserved human amniotic membrane and secured using four interrupted 10 - 0 nylon sutures; the other eye served as control. The amniotic membranes were removed at one week, and the corneal haze was graded with a slit-lamp biomicroscopy by three masked corneal specialists (WC, KH and RF) biweekly for the ensuing 12 weeks. Histology and in situ TUNEL staining (for fragmented DNA as an index for apoptosis) was performed at days 1, 3 and 7 and at 12 weeks. One week after excimer photoablation, the amniotic membrane-covered corneas showed more anterior stromal edema, which resolved at the second week. A consistent grading of organized reticular corneal haze was noted among the three masked observers. Such corneal haze peaked at the seventh week in both groups. The amniotic membrane-covered group showed statistically significant less corneal haze (0.50 plus or minus 0.15) than the control groups (1.25 plus or minus 0.35) (p less than 0.001). The amniotic membrane-covered corneas had less inflammatory response at days 1 and 3, showing nearly nil DNA fragmentation on keratocytes on the ablated anterior stromal and less stromal fibroblast activation. There is less altered epithelial cell morphology and less epithelial hyperplasia at 1 week in these amniotic membrane-treated eyes. We concluded from this study that amniotic membrane matrix is effective in reducing corneal haze induced by excimer photoablation in rabbits and may have clinical applications.

  4. Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Youichi Higuchi

    Full Text Available Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body.Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs and the subperitoneal layer (subperitoneal fibroblasts: SPFs. Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup.In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling.GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract.

  5. Altered chromosome 6 in immortal human fibroblasts.

    Science.gov (United States)

    Hubbard-Smith, K; Patsalis, P; Pardinas, J R; Jha, K K; Henderson, A S; Ozer, H L

    1992-05-01

    Human diploid fibroblasts have a limited life span in vitro, and spontaneous immortalization is an extremely rare event. We have used transformation of human diploid fibroblasts by an origin-defective simian virus 40 genome to develop series of genetically matched immortal cell lines to analyze immortalization. Comparison of a preimmortal transformant (SVtsA/HF-A) with its uncloned and cloned immortalized derivatives (AR5 and HAL) has failed to reveal any major alteration involving the simian virus 40 genome. Karyotypic analysis, however, demonstrated that all of the immortal cell lines in this series have alterations of chromosome 6 involving loss of the portion distal to 6q21. The karyotypic analysis was corroborated by DNA analyses. Southern analysis demonstrated that only one copy of three proto-oncogene loci (ros1, c-myb, and mas1) on 6q was retained in immortal cells. Polymerase chain reaction analysis of the microsatellite polymorphism at 6q22 (D6S87) showed loss of heterozygosity. In addition, elevated expression of c-myb (6q22-23) was observed. We hypothesize that the region at and/or distal to 6q21 plays a role in immortalization, consistent with the presence of a growth suppressor gene.

  6. Altered chromosome 6 in immortal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard-Smith, K.; Pardinas, J.R.; Jha, K.K.; Ozer, H.L. (New Jersey Medical School, Newark, NJ (United States)); Patsalis, P.; Henderson, A.S. (City Univ. of New York, NY (United States))

    1992-05-01

    Human diploid fibroblasts have a limited life span in vitro, and spontaneous immortalization is an extremely rare event. We have used transformation of human diploid fibroblasts by an origin-defective simian virus 40 genome to develop series of genetically matched immortal cell lines to analyze immortalization. Comparison of a preimmortal transformant (SVtsA/HF-A) with its uncloned and cloned immortalized derivatives (AR5 and HAL) has failed to reveal any major alteration involving the simian virus 40 genome. Karyotypic analysis, however, demonstrated that all of the immortal cell lines in this series have alterations of chromosome 6 involving loss of the portion distal to 6q21. The karyotypic analysis was corroborated by DNA analyses. Southern analysis demonstrated that only one copy of three proto-oncogene loci (ros1, c-myb, and mas1) on 6q was retained in immortal cells. Polymerase chain reaction analysis of the microsatellite polymorphism at 6q22 (D6S87) showed loss of heterozygosity. In addition, elevated expression of c-myb (6q22-23) was observed. We hypothesize that the region at and/or distal to 6q21 plays a role in immortalization, consistent with the presence of a growth suppressor gene. 66 refs., 6 figs., 2 tabs.

  7. Experimental Models for Investigating Intra-Stromal Migration of Corneal Keratocytes, Fibroblasts and Myofibroblasts

    Directory of Open Access Journals (Sweden)

    Lisha Ma

    2012-03-01

    Full Text Available Following laser vision correction, corneal keratocytes must repopulate areas of cell loss by migrating through the intact corneal stroma, and this can impact corneal shape and transparency. In this study, we evaluate 3D culture models for simulating this process in vitro. Buttons (8 mm diameter were first punched out of keratocyte populated compressed collagen matrices, exposed to a 3 mm diameter freeze injury, and cultured in serum-free media (basal media or media supplemented with 10% FBS, TGFb1 or PDGF BB. Following freeze injury, a region of cell death was observed in the center of the constructs. Although cells readily migrated on top of the matrices to cover the wound area, a limited amount of cell migration was observed within the constructs. We next developed a novel “sandwich” model, which better mimics the native lamellar architecture of the cornea. Using this model, significant migration was observed under all conditions studied. In both models, cells in TGFb and 10% FBS developed stress fibers; whereas cells in PDGF were more dendritic. PDGF stimulated the most inter-lamellar migration in the sandwich construct. Overall, these models provide insights into the complex interplay between growth factors, cell mechanical phenotypes and the structural properties of the ECM.

  8. Analysis of human transforming growth factor β-induced gene mutation in corneal dystrophy

    Institute of Scientific and Technical Information of China (English)

    李杨; 孙旭光; 任慧媛; 董冰; 王智群; 孙秀英

    2004-01-01

    Background Corneal dystrophy is a group of inherited blinding diseases of the cornea. This study was to identify the mutations of the keratoepithelin (KE) gene for proper diagnosis of corneal dystrophy. Methods Three families with corneal dystrophy were analysed. Thirteen individuals at risk for corneal dystrophy in family A, the proband and her son in family B, and the proband in family C were examined after their blood samples were obtained. Mutation screening of human transforming growth factor β-induced gene (BIGH3 gene) was performed. Results Five individuals in family A were found by clinical evaluation to be affected with granular corneal dystrophy and carried the BIGH3 mutation W555R. However, both probands in families B and C, also diagnosed with granular corneal dystrophy, harboured the BIGH3 mutation R124H. Conclusion Molecular genetic analysis can improve accurate diagnosis of corneal dystrophy.

  9. Aloe vera extract activity on human corneal cells.

    Science.gov (United States)

    Woźniak, Anna; Paduch, Roman

    2012-02-01

    Ocular diseases are currently an important problem in modern societies. Patients suffer from various ophthalmologic ailments namely, conjunctivitis, dry eye, dacryocystitis or degenerative diseases. Therefore, there is a need to introduce new treatment methods, including medicinal plants usage. Aloe vera [Aloe barbadensis Miller (Liliaceae)] possesses wound-healing properties and shows immunomodulatory, anti-inflammatory or antioxidant activities. NR uptake, MTT, DPPH• reduction, Griess reaction, ELISA and rhodamine-phalloidin staining were used to test toxicity, antiproliferative activity, reactive oxygen species (ROS) reduction, nitric oxide (NO) and cytokine level, and distribution of F-actin in cells, respectively. The present study analyzes the effect of Aloe vera extracts obtained with different solvents on in vitro culture of human 10.014 pRSV-T corneal cells. We found no toxicity of ethanol, ethyl acetate and heptane extracts of Aloe vera on human corneal cells. No ROS reducing activity by heptane extract and trace action by ethanol (only at high concentration 125 µg/ml) extract of Aloe vera was observed. Only ethyl acetate extract expressed distinct free radical scavenging effect. Plant extracts decreased NO production by human corneal cells as compared to untreated controls. The cytokine (IL-1β, IL-6, TNF-α and IL-10) production decreased after the addition of Aloe vera extracts to the culture media. Aloe vera contains multiple pharmacologically active substances which are capable of modulating cellular phenotypes and functions. Aloe vera ethanol and ethyl acetate extracts may be used in eye drops to treat inflammations and other ailments of external parts of the eye such as the cornea.

  10. Beryllium induces premature senescence in human fibroblasts.

    Science.gov (United States)

    Coates, Shannon S A; Lehnert, Bruce E; Sharma, Sunil; Kindell, Susan M; Gary, Ronald K

    2007-07-01

    After cells have completed a sufficient number of cell divisions, they exit the cell cycle and enter replicative senescence. Here, we report that beryllium causes proliferation arrest with premature expression of the principal markers of senescence. After young presenescent human fibroblasts were treated with 3 microM BeSO(4) for 24 h, p21 cyclin-dependent kinase inhibitor mRNA increased by >200%. Longer periods of exposure caused mRNA and protein levels to increase for both p21 and p16(Ink4a), a senescence regulator that prevents pRb-mediated cell cycle progression. BeSO(4) also caused dose-dependent induction of senescence-associated beta-galactosidase activity (SA-beta-gal). Untreated cells had 48 relative fluorescence units (RFU)/microg/h of SA-beta-gal, whereas 3 microM BeSO(4) caused activity to increase to 84 RFU/microg/h. In chromatin immunoprecipitation experiments, BeSO(4) caused p53 protein to associate with its DNA binding site in the promoter region of the p21 gene, indicating that p53 transcriptional activity is responsible for the large increase in p21 mRNA elicited by beryllium. Forced expression of human telomerase reverse transcriptase (hTERT) rendered HFL-1 cells incapable of normal replicative senescence. However, there was no difference in the responsiveness of normal HFL-1 fibroblasts (IC(50) = 1.9 microM) and hTERT-immortalized cells (IC(50) = 1.7 microM) to BeSO(4) in a 9-day proliferation assay. The effects of beryllium resemble those of histone deacetylase-inhibiting drugs, which also cause large increases in p21. However, beryllium produced no changes in histone acetylation, suggesting that Be(2+) acts as a novel and potent pharmacological inducer of premature senescence.

  11. Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Altran, Silvana C.; Isaac, Cesar [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Lab. de Microcirurgia Plastica; Esteves-Pedro, Natalia M. [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Ciencias Farmaceuticas. Lab. de Controle Biologico; Herson, Marisa R. [DonorTissue Bank of Victoria (Australia)

    2011-07-01

    Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

  12. Viability of human corneal keratocytes during organ culture

    DEFF Research Database (Denmark)

    Møller-Pedersen, T; Møller, H J

    1996-01-01

    The viability of human corneal keratocytes was assessed during four weeks of 'closed system' organ culture at 31 degrees C. After 28 days of culturing, the entire keratocyte population was still alive and viable because all cells incorporated uridine; a parameter for RNA-synthesis. During the first...... of keratan sulphate proteoglycan suggested that approximately 1% of the total content was lost during the period. In conclusion, our current organ culture technique can maintain a viable keratocyte population for four weeks; a viable stroma can be grafted within this period....

  13. Cell pattern in adult human corneal endothelium.

    Directory of Open Access Journals (Sweden)

    Carlos H Wörner

    Full Text Available A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials. Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries.

  14. Regulation of human corneal epithelial mucins by rebamipide.

    Science.gov (United States)

    Itoh, Shinsaku; Itoh, Kuni; Shinohara, Hisashi

    2014-02-01

    Membrane-associated mucins (MAMs) play important roles in barrier function and tear stability, and their expression on the ocular surface is altered in dry eye disease. Rebamipide is a mucin secretagogue that promotes the production of mucin-like glycoproteins in human corneal epithelial (HCE) cells. However, the expression of MAMs on the corneal epithelia (MUC1, MUC4, MUC16), which is induced by rebamipide, is poorly understood. In this study, we investigated the effect of rebamipide on the regulation of MAM expression in HCE cells. MUC16, Ki67 and PCNA expression levels in HCE cells isolated at confluence and at 24 hours after confluence were examined by Western blotting to assess cell proliferation. HCE cells isolated at 24 hours after confluence were cultured in medium supplemented with 1-10 µM rebamipide or 0.3-30 nM of epidermal growth factor (EGF). Real-time PCR (RT-PCR) and Western blot analysis of MAMs were performed to evaluate the effect of rebamipide. Western blot analysis of cells treated with an EGF receptor inhibitor (AG1478) or MEK1/2 inhibitor (U0126) was performed to reveal the relationship between EGF receptor activation and rebamipide-induced MAM expression. HCE cells isolated at 24 hours after confluence had lower cell proliferation activity and increased MUC16 expression compared with cells isolated at confluence. RT-PCR and Western blot analysis revealed that rebamipide increased MAM gene expression for 2 hours and protein expression for 24 hours in HCE cells. EGF inhibitor treatment led to reduced levels of all three MAMs that are normally induced by rebamipide, whereas EGF induced the expression of all three MAMs. We suggested that rebamipide increased MUC1, MUC4 and MUC16 expression levels through signals involved in EGF receptor activation in the human corneal epithelia. These data suggest that rebamipide may improve subjective symptoms of dry eye disease by upregulating MAM expression.

  15. Respiratory activity and growth of human skin derma fibroblasts.

    Science.gov (United States)

    Papa, F; Scacco, S; Vergari, R; Bucaria, V; Dioguardi, D; Papa, S

    1998-09-01

    A study has been made on the speed of growth and respiratory activity of fibroblast cultures from control derma, cheloid (hypertrophic) scar and stabilized scar taken from human skin. The speed of growth and the efficiency of plaque formation of fibroblasts from cheloid scar were greater in comparison with those of fibroblasts from stabilized scar and were stimulated by the addition to the culture medium of the exudate from post-traumatic ulcer. Measurement of the contents of cytochromes showed a decrease in the content of cytochromes b562 and c + c1 in the fibroblast culture from both cheloid and stabilized scar as compared to the fibroblast culture from control derma. Cytochrome aa3 content did not show significant difference among the three types of fibroblast cultures. The respiratory activities supported by pyruvate plus malate, succinate or ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine did not show, however, significant difference among the three fibroblast cultures. These observations show that the speed of growth of skin fibroblasts does not depend on the overall respiratory capacity. The exudate stimulated the activity of cytochrome c oxidase in fibroblasts from control derma, and cheloid scar. This effect and the accompanying stimulation of fibroblast growth might be correlated with the balance of oxygen free radicals.

  16. Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Naylor, Richard W.; McGhee, Charles N. J.; Cowan, Chad A.; Davidson, Alan J.; Holm, Teresa M.; Sherwin, Trevor

    2016-01-01

    Corneal diseases such as keratoconus represent a relatively common disorder in the human population. However, treatment is restricted to corneal transplantation, which only occurs in the most advanced cases. Cell based therapies may offer an alternative approach given that the eye is amenable to such treatments and corneal diseases like keratoconus have been associated specifically with the death of corneal keratocytes. The ability to generate corneal keratocytes in vitro may enable a cell-based therapy to treat patients with keratoconus. Human induced pluripotent stem cells (hiPSCs) offer an abundant supply of cells from which any cell in the body can be derived. In the present study, hiPSCs were successfully differentiated into neural crest cells (NCCs), the embryonic precursor to keratocytes, and then cultured on cadaveric corneal tissue to promote keratocyte differentiation. The hiPSC-derived NCCs were found to migrate into the corneal stroma where they acquired a keratocyte-like morphology and an expression profile similar to corneal keratocytes in vivo. These results indicate that hiPSCs can be used to generate corneal keratocytes in vitro and lay the foundation for using these cells in cornea cell-based therapies. PMID:27792791

  17. Disrupted cell cycle arrest and reduced proliferation in corneal fibroblasts from GCD2 patients: A potential role for altered autophagy flux

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung-il; Dadakhujaev, Shorafidinkhuja; Maeng, Yong-Sun; Ahn, So-yeon; Kim, Tae-im [Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Eung Kweon, E-mail: eungkkim@yuhs.ac [Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of); BK21 Plus Project for Medical Science and Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-01-02

    Highlights: • Reduced cell proliferation in granular corneal dystrophy type 2. • Abnormal cell cycle arrest by defective autophagy. • Decreased Cyclin A1, B1, and D1 in Atg7 gene knockout cells. • Increase in p16 and p27 expressions were observed in Atg7 gene knockout cells. - Abstract: This study investigates the role of impaired proliferation, altered cell cycle arrest, and defective autophagy flux of corneal fibroblasts in granular corneal dystrophy type 2 (GCD2) pathogenesis. The proliferation rates of homozygous (HO) GCD2 corneal fibroblasts at 72 h, 96 h, and 120 h were significantly lower (1.102 ± 0.027, 1.397 ± 0.039, and 1.527 ± 0.056, respectively) than those observed for the wild-type (WT) controls (1.441 ± 0.029, 1.758 ± 0.043, and 2.003 ± 0.046, respectively). Flow cytometry indicated a decreased G{sub 1} cell cycle progression and the accumulation of cells in the S and G{sub 2}/M phases in GCD2 cells. These accumulations were associated with decreased levels of Cyclin A1, B1, and E1, and increased expression of p16 and p27. p21 and p53 expression was also significantly lower in GCD2 cells compared to the WT. Interestingly, treatment with the autophagy flux inhibitor, bafilomycin A{sub 1}, resulted in similarly decreased Cyclin A1, B1, D1, and p53 expression in WT fibroblasts. Furthermore, similar findings, including a decrease in Cyclin A1, B1, and D1 and an increase in p16 and p27 expression were observed in autophagy-related 7 (Atg7; known to be essential for autophagy) gene knockout cells. These data provide new insight concerning the role of autophagy in cell cycle arrest and cellular proliferation, uncovering a number of novel therapeutic possibilities for GCD2 treatment.

  18. Successful transplantation of in vitro expanded human corneal endothelial precursors to corneal endothelial surface using a nanocomposite sheet

    Directory of Open Access Journals (Sweden)

    Parikumar P

    2011-01-01

    Full Text Available Background: Though the transplantation of in vitro expanded human corneal endothelial precursors in animal models of endothelial damage by injecting into the anterior chamber has been reported, the practical difficulties of accomplishing such procedure in human patients have been a hurdle to clinical translation. Here we report the successful transplantation of in vitro expanded human corneal precursor cells to an animal eye using a transparent Nano-composite sheet and their engraftment.Materials and Methods: Human Corneal endothelial cells (HCEC were isolated from human cadaver eyes with informed consent and expanded in the lab using a sphere forming assay in a novel Thermoreversible Gelation Polymer (TGP for 26 days. HCEC obtained by sphere forming assay were seeded in a novel Nano-composite sheet, which was made of PNIPA-NC gels by in-situ, free-radical polymerization of NIPA monomer in the presence of exfoliated clay (synthetic hectorite “Laponite XLG” uniformly dispersed in aqueous media. After a further seven days in vitro culture of HCEC in the Nano-composite sheet, cells were harvested and transplanted on cadaver-bovine eyes (n=3. The cells were injected between the corneal endothelial layer and the Nano-composite sheet that had been placed prior to the injection in close proximity to the endothelial layer. After three hours, the transplanted Nano-composite sheets were removed from the bovine eyes and subjected to microscopic examination. The corneas were subjected to Histo-pathological studies along with controls. Results: HCEC formed sphere like colonies in TGP which expressed relevant markers as confirmed by RT-PCR. Microscopic studies of the Nanosheets and histopathological studies of the cornea of the Bull’s eye revealed that the HCEC got engrafted to the corneal endothelial layer of the bovine eyes with no remnant cells in the Nanosheet. Conclusion: Transplantation of in vitro expanded donor human corneal endothelial cells

  19. Super-telomeres in transformed human fibroblasts.

    Science.gov (United States)

    Chiodi, Ilaria; Belgiovine, Cristina; Zongaro, Samantha; Ricotti, Roberta; Horard, Beatrice; Lossani, Andrea; Focher, Federico; Gilson, Eric; Giulotto, Elena; Mondello, Chiara

    2013-08-01

    Telomere length maintenance is critical for organisms' long-term survival and cancer cell proliferation. Telomeres are kept within species-specific length ranges by the interplay between telomerase activity and telomeric chromatin organization. In this paper, we exploited telomerase immortalized human fibroblasts (cen3tel) that gradually underwent neoplastic transformation during culture propagation to study telomere composition and length regulation during the transformation process. Just after telomerase catalytic subunit (hTERT) expression, cen3tel telomeres shortened despite the presence of telomerase activity. At a later stage and concomitantly with transformation, cells started elongating telomeres, which reached a mean length greater than 100kb in about 900 population doublings. Super-telomeres were stable and compatible with cell growth and tumorigenesis. Telomere extension was associated with increasing levels of telomerase activity that were linked to the deregulation of endogenous telomerase RNA (hTERC) and exogenous telomerase reverse transcriptase (hTERT) expression. Notably, the increase in hTERC levels paralleled the increase in telomerase activity, suggesting that this subunit plays a role in regulating enzyme activity. Telomeres ranging in length between 10 and more than 100kb were maintained in an extendible state although TRF1 and TRF2 binding increased with telomere length. Super-telomeres neither influenced subtelomeric region global methylation nor the expression of the subtelomeric gene FRG1, attesting the lack of a clear-cut relationship between telomere length, subtelomeric DNA methylation and expression in human cells. The cellular levels of the telomeric proteins hTERT, TRF1, TRF2 and Hsp90 rose with transformation and were independent of telomere length, pointing to a role of these proteins in tumorigenesis.

  20. Hyaluronic acid production by irradiated human synovial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yaron, M.; Yaron, I.; Levita, M.; Herzberg, M.

    1977-03-01

    Radioactive particles as well as x irradiation from an external source has been used in the treatment of rheumatoid arthritis, osteoarthritis, and ankylosing spondylitis. In order to clarify effects of ionizing irradiation on synovial cells, radioactive gold (/sup 198/Au) and yttrium (/sup 90/Y) were added to fibroblast cultures derived from human synovial membranes. Other cultures were irradiated by a Picker x-ray machine. Fibroblast growth and hyaluronic acid production were measured. Radioactive gold and yttrium particles induced a significant increase of hyaluronic acid synthesis rate (pg/cell/day) and inhibited fibroblast growth. Fibroblasts continued to overproduce hyaluronic acid and to show growth inhibition 3 weeks after irradiation with radioactive gold. Hydrocortisone inhibited hyaluronic acid overproduction induced by radioactive gold. Overproduction of hyaluronic acid induced by the x-ray machine was inhibited by hydrocortisone, actinomycin-D, and cycloheximide. Fibroblasts derived from normal and rheumatoid patients responded similarly to ionizing irradiation.

  1. Corneal Neovascularization Suppressed by TIMP2 Released from Human Amniotic Membranes

    Institute of Scientific and Technical Information of China (English)

    Xiang Ma; Jun Li

    2005-01-01

    Purpose: To investigate the effects of culture medium of human amniotic membrane (AM) on corneal neovascularization (CNV) induced by basic fibroblast growth factor (bFGF) in mice.Methods: Culture medium of amniotic membrane was prepared by cultivating AM (with epithelium side up) in EGM basic medium for 3 days, and was collected separately to three groups, e.g. Control (EGM only), AM with epithelium (AM) and AM without epithelium (De-AM). Corneal neovascularization was induced in mice by using micropocket assay with Hydron polymer pellets containing 100 ng bFGF. Migration and proliferation of human umbilical cord vein endothelial cells (HUVEC) were performed in Boyden chambers and by using the CyQUANT fluorescence binding assay respectively.The levels of tissue inhibitors of metalloproteinase 1 and 2 (TIMP1, TIMP2) in culture medium were determined by ELISA assay.Results: CNV induced by bFGF was significantly suppressed by culture medium of amniotic membrane. When the medium was applied as an eyedrop 4 times a day for 7 days,the area of CNV was (2.48±0.76) mm2,(0.64±0.52) mm2 and (1.96±0.65) mm2 incontrol, AM and De-AM group respectively. The migration and proliferation of HUVEC were strongly inhibited by culture medium of AM with epithelium, while the De-AM had no effect on the migration of HUVEC cells. The high level of TIMP2 was found in AM group, but not in De-AM group, while there was no difference in the amount of TIMP1 in medium among three groups.Conclusion: Culture medium of amniotic membrane significantly suppresses the corneal nevovascularization induced by bFGF. The mechanism of which at least in part is that high level of TIMP2 protein secreted or released into the culture medium of AM and inhibition of migration and growth of vascular endothelial cells.

  2. Differential effects of planktonic and biofilm MRSA on human fibroblasts.

    Science.gov (United States)

    Kirker, Kelly R; James, Garth A; Fleckman, Philip; Olerud, John E; Stewart, Philip S

    2012-01-01

    Bacteria colonizing chronic wounds often exist as biofilms, yet their role in chronic wound pathogenesis remains unclear. Staphylococcus aureus biofilms induce apoptosis in dermal keratinocytes, and given that chronic wound biofilms also colonize dermal tissue, it is important to investigate the effects of bacterial biofilms on dermal fibroblasts. The effects of a predominant wound pathogen, methicillin-resistant S. aureus, on normal, human, dermal fibroblasts were examined in vitro. Cell-culture medium was conditioned with equivalent numbers of either planktonic or biofilm methicillin-resistant S. aureus and then fed to fibroblast cultures. Fibroblast response was evaluated using scratch, viability, and apoptosis assays. The results suggested that fibroblasts experience the same fate when exposed to the soluble products of either planktonic or biofilm methicillin-resistant S. aureus, namely limited migration followed by death. Enzyme-linked immunosorbent assays demonstrated that fibroblast production of cytokines, growth factors, and proteases were differentially affected by planktonic and biofilm-conditioned medium. Planktonic-conditioned medium induced more interleukin-6, interleukin-8, vascular endothelial growth factor, transforming growth factor-β1, heparin-bound epidermal growth factor, matrix metalloproteinase-1, and metalloproteinase-3 production in fibroblasts than the biofilm-conditioned medium. Biofilm-conditioned medium induced more tumor necrosis factor-α production in fibroblasts compared with planktonic-conditioned medium, and suppressed metalloproteinase-3 production compared with controls.

  3. Generation and evaluation of a human corneal model cell system for ophthalmologic issues using the HPV16 E6/E7 oncogenes as uniform immortalization platform.

    Science.gov (United States)

    Schulz, Simon; Steinberg, Thorsten; Beck, David; Tomakidi, Pascal; Accardi, Rosita; Tommasino, Massimo; Reinhard, Thomas; Eberwein, Philipp

    2013-01-01

    The present study aimed at employing the human papillomavirus type 16 (HPV16) E6/E7 gene platform, to create a uniform authentic in vitro model cell system of the human cornea for ophthalmologic issues and here especially for prospective biomaterial evaluations for therapeutic regenerative approaches. Therefore, HPV16 E6/E7 genes were employed as uniform platform to immortalize primary human corneal keratinocytes (IHCK), fibroblasts (IHCF), and endothelial (IHCE) cells. qPCR revealed that E6/E7 mRNA transcription persisted at rising passages and FISH detection of the chromosome portfolio 1, 8, 10 and 18 showed fairly the disomic cytogenetic status. Hot spot passages proved oscillation of aneuploidies in the entire passage spectrum under study, while hot spot aneuploidies annotated prevalence for distinct chromosomes. Though IIF revealed general endurance, tissue-innate corneal biomarkers were modulated, i.e. expressed in a temporal-confluence, temporal-spatial or passage-dependent manner. In summary, by the fairly normal chromosomal status, and expression of tissue-innate biomarkers, we created for the first time a uniform authentic in vitro model cell system of the human cornea, by application of the HPV16 E6/E7 immortalization platform only. This system renders a precious tool for prospective iterative in vitro studies on issues such as corneal tissue homeostasis, pharmaceutical generics, and/or evaluation of new biomaterials for clinical corneal applications. Copyright © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  4. Effects of N-acetylcysteine on matrix metalloproteinase-9 secretion and cell migration of human corneal epithelial cells

    OpenAIRE

    Ramaesh, T; Ramaesh, K; Riley, S C; West, J.D.; Dhillon, B

    2012-01-01

    Matrix metalloproteinase-9 (MMP-9) secreted by corneal epithelial cells has a role in the remodelling of extracellular matrix and migration of epithelial cells. Elevated levels of MMP-9 activity in the ocular surface may be involved in the pathogenesis of corneal diseases. N-acetylcysteine (NAC) has been used to treat corneal diseases, including recurrent epithelial erosions. In this study, its effects on the MMP-9 secretion and human corneal epithelial (HCE) cell migration were evaluated in ...

  5. Cultivation of Human Microvascular Endothelial Cells on Topographical Substrates to Mimic the Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jie Shi Chua

    2013-03-01

    Full Text Available Human corneal endothelial cells have a limited ability to replicate in vivo and in vitro. Allograft transplantation becomes necessary when an accident or trauma results in excessive cell loss. The reconstruction of the cornea endothelium using autologous cell sources is a promising alternative option for therapeutic or in vitro drug testing applications. The native corneal endothelium rests on the Descemet’s membrane, which has nanotopographies of fibers and pores. The use of synthetic topographies mimics the native environment, and it is hypothesized that this can direct the behavior and growth of human microvascular endothelial cells (HMVECs to resemble the corneal endothelium. In this study, HMVECs are cultivated on substrates with micron and nano-scaled pillar and well topographies. Closely packed HMVEC monolayers with polygonal cells and well-developed tight junctions were formed on the topographical substrates. Sodium/potassium (Na+/K+ adenine triphosphatase (ATPase expression was enhanced on the microwells substrate, which also promotes microvilli formation, while more hexagonal-like cells are found on the micropillars samples. The data obtained suggests that the use of optimized surface patterning, in particular, the microtopographies, can induce HMVECs to adopt a more corneal endothelium-like morphology with similar barrier and pump functions. The mechanism involved in cell contact guidance by the specific topographical features will be of interest for future studies.

  6. Preclinical safety studies on autologous cultured human skin fibroblast transplantation.

    Science.gov (United States)

    Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming

    2014-01-01

    Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts.

  7. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Keiko Miyoshi

    2015-01-01

    Full Text Available Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs, human dermal fibroblasts (hDFs, and hOF-derived induced pluripotent stem cells (hOF-iPSCs, linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.

  8. SV40-mediated immortalization of human fibroblasts.

    Science.gov (United States)

    Ozer, H L; Banga, S S; Dasgupta, T; Houghton, J; Hubbard, K; Jha, K K; Kim, S H; Lenahan, M; Pang, Z; Pardinas, J R; Patsalis, P C

    1996-01-01

    We have identified a multistep mechanism by which the DNA virus SV40 overcomes cellular senescence. Expression of SV40 T antigen is required for both transient extension of life span and unlimited life span or immortalization. These effects are mediated through inactivation of function of growth suppressors pRB and p53 via complex formation with T antigen. However, immortalization additionally requires inactivation of a novel growth suppressor gene, which has recently been identified to be on the distal portion of the long arm of chromosome 6, designated SEN6. We propose that SEN6 is responsible for cellular senescence in fibroblasts and other cells.

  9. Dipeptides Increase Functional Activity of Human Skin Fibroblasts.

    Science.gov (United States)

    Malinin, V V; Durnova, A O; Polyakova, V O; Kvetnoi, I M

    2015-05-01

    We analyzed the effect of dipeptide Glu-Trp and isovaleroyl-Glu-Trp in concentrations of 0.2, 2 and 20 μg/ml and Actovegin preparation on functional activity of human skin fibroblasts. Dipeptides, especially Glu-Trp, produce a stimulating effect on human skin fibroblasts and their effect is equivalent to that of Actovegin. Dipeptides stimulate cell renewal processes by activating synthesis of Ki-67 and reducing expression of caspase-9 and enhance antioxidant function of the cells by stimulating the expression of Hsp-90 and inducible NO-synthase. These findings suggest that dipeptides are promising candidates for preparations stimulating reparative processes.

  10. IL-8 and MCP Gene Expression and Production by LPS-Stimulated Human Corneal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Roni M. Shtein

    2012-01-01

    Full Text Available Purpose. To determine time course of effect of lipopolysaccharide (LPS on production of interleukin-8 (IL-8 and monocyte chemotactic protein (MCP by cultured human corneal stromal cells. Methods. Human corneal stromal cells were harvested from donor corneal specimens, and fourth to sixth passaged cells were used. Cell cultures were stimulated with LPS for 2, 4, 8, and 24 hours. Northern blot analysis of IL-8 and MCP gene expression and ELISA for IL-8 and MCP secretion were performed. ELISA results were analyzed for statistical significance using two-tailed Student's t-test. Results. Northern blot analysis demonstrated significantly increased IL-8 and MCP gene expression after 4 and 8 hours of exposure to LPS. ELISA for secreted IL-8 and MCP demonstrated statistically significant increases (P<0.05 after corneal stromal cell stimulation with LPS. Conclusions. This paper suggests that human corneal stromal cells may participate in corneal inflammation by secreting potent leukocyte chemotactic and activating proteins in a time-dependent manner when exposed to LPS.

  11. Human epidermal growth factor and the proliferation of human fibroblasts.

    Science.gov (United States)

    Carpenter, G; Cohen, S

    1976-06-01

    The effect of human epidermal growth factor (hEGF), a 5,400 molecular weight polypeptide isolated from human urine, on the growth of human foreskin fibroblasts (HF cells) was studied by measuring cell numbers and the incorporation of labeled thymidine. The addition of hEGF to HF cells growing in a medium containing 10% calf serum resulted in a 4-fold increase in the final density. The presence of hEGF also promoted the growth of HF cells in media containing either 1% calf serum or 10% gamma globulin-free serum. The addition of hEGF to quiescent confluent monolayers of HF cells, maintained in a medium with 1% calf serum for 48 hours, resulted in a 10- to 20-fold increase in the amount of 3H-thymidine incorporation after 20-24 hours. The stimulation of thymidine incorporation was maximal at an hEGF concentration of 2 ng/ml, was dependent on the presence of serum, and was enhanced by the addition of ascorbic acid. In confluent cultures of HF cells, subject to density dependent inhibition of growth, hEGF was able to stimulate DNA synthesis more effectively than fresh calf serum. Human EGF stimulated DNA synthesis in quiescent cultures, however, regardless of cell density. The addition of rabbit anti-hEGF inhibited all effects of this growth factor on HF cells.

  12. Effects of trichostatin A on human Tenon capsule fibroblast

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Li

    2014-11-01

    Full Text Available AIM:To investigate the effect of trichostatin A(TSAon cell proliferation and the expressions of histone deacetylase 1(HDAC1and HDAC2 in cultured human Tenon capsule fibroblast(HTF.METHODS: Human Tenon capsule fibroblasts were cultured in vitro after glaucoma filtration surgery. The third to sixth passage of cell were treated by 600nmol/L TSA or none. Cell viability measured by MTT assay after 1, 2 and 3d respectively. The expressions of HDAC1 and HDAC2 were analyzed by Western blot 2d after TSA treatment.RESULTS: Compared to the control, cell viability decreased significantly after treatment with TSA at 1d(PCONCLUSION: TSA inhibits the proliferation of Tenon capsule fibroblast by inhibiting the expression of HDAC1 and HDAC2, and reduces subconjunctival scar formation.

  13. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells

    Directory of Open Access Journals (Sweden)

    Eva C. Thoma

    2014-10-01

    Full Text Available Direct transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves. Using a multikinase inhibitor, we transdifferentiated fibroblasts into transient neural precursors that were subsequently further differentiated into Schwann cells. The resulting induced Schwann cells (iSCs expressed numerous Schwann cell-specific proteins and displayed neurosupportive and myelination capacity in vitro. Thus, we established a strategy to obtain mature Schwann cells from human postnatal fibroblasts under chemically defined conditions without the introduction of ectopic genes.

  14. DETACHMENT OF HUMAN FIBROBLASTS FROM FEP-TEFLON SURFACES

    NARCIS (Netherlands)

    VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1991-01-01

    In this study a comparison is made between the detachment behavior of human fibroblasts adhered to hydrophobic FEP-Teflon (water contact angle 109 degrees) and to hydrophilic glass (water contact angle smaller than 15 degrees) during exposure to a laminar, incrementally loaded flow. Detachment from

  15. Basic Fibroblast Growth Factor and Fibroblast Growth Factor Receptor-1in Human Meningiomas

    Institute of Scientific and Technical Information of China (English)

    YI Wei; CHEN Jian; Filimon H. Golwa; XUE Delin

    2005-01-01

    The expression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor-1 (FGFR-1) in human meningiomas and the relationships between their expression and the tumors' histological features and angiogenesis were investigated by means of immunohistochemical technique. The expression of bFGF and FGFR-1 was detected by antibody of bFGF or FGFR-1.The tumors' angiogenesis was evaluated by microvascular density (MVD) and, which was observed by use of CD34-antibody immunohistochemically. The results showed that there were varied degrees of the expression of bFGF and FGFR-1 proteins in meningiomas. The expression was correlated with the tumors' histological characters and angiogenesis. It was concluded that bFGF and FGFR-1 might play important roles in meningiomas' angiogenesis and proliferation. The expression positive rate of bFGF and FGFR-1 may provide an indication of evaluating the histological and malignant degree of the tumor.

  16. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  17. Preliminary study on human fibroblasts as feeder layer for human embryonic stem cells culture in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To avoid the direct contact with mouse cells and possible heterogeneous pathogen in future application, we need to replace mouse embryonic fibroblastswith human fibroblasts as the feeder layer to maintain human embryonic stem cells growth in the undifferentiated state. We successfully use human fibroblasts derived from aborted fetus and adult prepuce as feeder layer to maintain human embryonic stem cells growth. During the passage and growth on this feeder layer, the human embryonic stem cells can keep their undifferentiated state.

  18. Rapid, automated mosaicking of the human corneal subbasal nerve plexus.

    Science.gov (United States)

    Vaishnav, Yash J; Rucker, Stuart A; Saharia, Keshav; McNamara, Nancy A

    2017-03-04

    Corneal confocal microscopy (CCM) is an in vivo technique used to study corneal nerve morphology. The largest proportion of nerves innervating the cornea lie within the subbasal nerve plexus, where their morphology is altered by refractive surgery, diabetes and dry eye. The main limitations to clinical use of CCM as a diagnostic tool are the small field of view of CCM images and the lengthy time needed to quantify nerves in collected images. Here, we present a novel, rapid, fully automated technique to mosaic individual CCM images into wide-field maps of corneal nerves. We implemented an OpenCV image stitcher that accounts for corneal deformation and uses feature detection to stitch CCM images into a montage. The method takes 3-5 min to process and stitch 40-100 frames on an Amazon EC2 Micro instance. The speed, automation and ease of use conferred by this technique is the first step toward point of care evaluation of wide-field subbasal plexus (SBP) maps in a clinical setting.

  19. Generation of human induced pluripotent stem cells from dermal fibroblasts

    OpenAIRE

    2008-01-01

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ...

  20. Isolated corneal papilloma-like lesion associated with human papilloma virus type 6.

    Science.gov (United States)

    Park, Choul Yong; Kim, Eo-Jin; Choi, Jong Sun; Chuck, Roy S

    2011-05-01

    To report a case of a corneal papilloma-like lesion associated with human papilloma virus type 6. A 48-year-old woman presented with a 2-year history of ocular discomfort and gradual visual deterioration in her right eye. Ophthalmic examination revealed an elevated, semitranslucent, well-defined vascularized mass approximately 4 × 2.5 mm in size localized to the right cornea. The surface of the mass appeared smooth and many small, shallow, and irregular elevations were noted. An excisional biopsy was performed. The underlying cornea was markedly thinned, and fine ramifying vasculature was also noted on the exposed corneal stroma. Typical koilocytic change was observed on the histopathologic examination. Polymerase chain reaction revealed the existence of human papilloma virus type 6 DNA. Here we describe a case of an isolated corneal papilloma-like lesion. Although the corneal extension of the limbal or the conjunctival papillomas has been commonly observed, an isolated corneal papilloma-like lesion with underlying stromal destruction has only rarely been reported.

  1. Involvement of the mitochondrial compartment in human NCL fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Pezzini, Francesco; Gismondi, Floriana [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Tessa, Alessandra [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Tonin, Paola [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Carrozzo, Rosalba [IRCCS Bambino Gesu Hospital-Molecular Medicine Unit, Roma (Italy); Mole, Sara E. [MRC Laboratory for Molecular Cell Biology, Molecular Medicines Unit, UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London (United Kingdom); Santorelli, Filippo M. [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Simonati, Alessandro, E-mail: alessandro.simonati@univr.it [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. Black-Right-Pointing-Pointer Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. Black-Right-Pointing-Pointer Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  2. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices.

    Science.gov (United States)

    Stafiej, Piotr; Küng, Florian; Thieme, Daniel; Czugala, Marta; Kruse, Friedrich E; Schubert, Dirk W; Fuchsluger, Thomas A

    2017-02-01

    In this work, polycaprolactone (PCL) was used as a basic polymer for electrospinning of random and aligned nanofiber matrices. Our aim was to develop a biocompatible substrate for ophthalmological application to improve wound closure in defects of the cornea as replacement for human amniotic membrane. We investigated whether blending the hydrophobic PCL with poly (glycerol sebacate) (PGS) or chitosan (CHI) improves the biocompatibility of the matrices for cell expansion. Human corneal epithelial cells (HCEp) and human corneal keratocytes (HCK) were used for in vitro biocompatibility studies. After optimization of the electrospinning parameters for all blends, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and water contact angle were used to characterize the different matrices. Fluorescence staining of the F-actin cytoskeleton of the cells was performed to analyze the adherence of the cells to the different matrices. Metabolic activity of the cells was measured by cell counting kit-8 (CCK-8) for 20days to compare the biocompatibility of the materials. Our results show the feasibility of producing uniform nanofiber matrices with and without orientation for the used blends. All materials support adherence and proliferation of human corneal cell lines with oriented growth on aligned matrices. Although hydrophobicity of the materials was lowered by blending PCL, no increase in biocompatibility or proliferation, as was expected, could be measured. All tested matrices supported the expansion of human corneal cells, confirming their potential as substrates for biomedical applications.

  3. Multidrug resistance-associated protein (MRP1, 2, 4 and 5) expression in human corneal cell culture models and animal corneal tissue.

    Science.gov (United States)

    Verstraelen, Jessica; Reichl, Stephan

    2014-07-07

    Preclinical studies addressing the transcorneal absorption of ophthalmic drugs are mainly performed using ex vivo animal corneas and in vitro corneal cell culture models, leaving open the question of transferability to humans in an in vivo situation. While passive drug absorption through corneal tissue is well understood, little is known about the expression of transporter proteins and active drug transport in human and animal corneas as well as corneal cell culture models. Therefore, the aim of this study was to conduct an expression analysis of four multidrug resistance-associated proteins (MRP1, 2, 4 and 5) in various in vitro and ex vivo corneal models, leading to a better understanding of the comparability of different corneal models regarding drug absorption and transferability to humans. Two well-established in vitro human corneal models, the HCE-T epithelial model and the more organotypic Hemicornea construct, both of which are based on the SV40 immortalized human corneal epithelial cell line HCE-T, were analyzed, as were excised rabbit and porcine cornea. Specimens of abraded epithelia from human donor corneas were also tested. MRP mRNA expression was determined via reverse transcriptase polymerase chain reaction. Protein expression was examined using Western blot experiments and immunohistochemistry. The functional activity of the MRP efflux transporter was detected in transport assays using specific marker and inhibitor substances. The functional expression of all of the tested MRP transporters was detected in the HCE-T epithelial model. Hemicornea constructs displayed a similar expression pattern for MRP1, 4 and 5, whereas no MRP2 protein expression or activity was detected. However, excised animal corneas exhibited different expression profiles. In porcine cornea, no functional expression of MRP1, 2, or 5 was observed, and we failed to detect MRP4 expression in rabbit cornea. The results suggest that MRP1, 2, 4, and 5 are expressed in the human corneal

  4. Use of Corneal Confocal Microscopy to Evaluate Small Nerve Fibers in Patients With Human Immunodeficiency Virus.

    Science.gov (United States)

    Kemp, Harriet I; Petropoulos, Ioannis N; Rice, Andrew S C; Vollert, Jan; Maier, Christoph; Sturm, Dietrich; Schargus, Marc; Peto, Tunde; Hau, Scott; Chopra, Reena; Malik, Rayaz A

    2017-07-01

    Objective quantification of small fiber neuropathy in patients with human immunodeficiency virus (HIV)-associated sensory neuropathy (HIV-SN) is difficult but needed for diagnosis and monitoring. In vivo corneal confocal microscopy (IVCCM) can quantify small fiber damage. To establish whether IVCCM can identify an abnormality in corneal nerve fibers and Langerhans cells in patients with and without HIV-SN. This prospective, cross-sectional cohort study was conducted between July 24, 2015, and September 17, 2015. Twenty patients who were HIV positive were recruited from adult outpatient clinics at Chelsea and Westminster Hospital NHS Foundation Trust in England. These patients underwent IVCCM at Moorfields Eye Hospital NHS Foundation Trust in London, England, and the IVCCM images were analyzed at Weill Cornell Medicine-Qatar in Ar-Rayyan, Qatar. Patients were given a structured clinical examination and completed validated symptom questionnaires and the Clinical HIV-Associated Neuropathy Tool. Results from patients with HIV were compared with the results of the age- and sex-matched healthy control participants (n = 20). All participants were classified into 3 groups: controls, patients with HIV but without SN, and patients with HIV-SN. Comparison of corneal nerve fiber density, corneal nerve branch density, corneal nerve fiber length, corneal nerve fiber tortuosity, and corneal Langerhans cell density between healthy controls and patients with HIV with and without SN. All 40 participants were male, and most (≥70%) self-identified as white. Of the 20 patients with HIV, 14 (70%) had HIV-SN. This group was older (mean [SD] age, 57.7 [7.75] years) than the group without HIV-SN (mean [SD] age, 42.3 [7.26] years) and the controls (mean [SD] age, 53.8 [10.5] years). Corneal nerve fiber density was reduced in patients with HIV compared with the controls (26.7/mm2 vs 38.6/mm2; median difference, -10.37; 95.09% CI, -14.27 to -6.25; P < .001) and in patients with HIV

  5. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts.

    Science.gov (United States)

    Lee, Seung-Min; Dho, So Hee; Ju, Sung-Kyu; Maeng, Jin-Soo; Kim, Jeong-Yoon; Kwon, Ki-Sun

    2012-10-01

    Carbohydrate metabolism changes during cellular senescence. Cytosolic malate dehydrogenase (MDH1) catalyzes the reversible reduction of oxaloacetate to malate at the expense of reduced nicotinamide adenine dinucleotide (NADH). Here, we show that MDH1 plays a critical role in the cellular senescence of human fibroblasts. We observed that the activity of MDH1 was reduced in old human dermal fibroblasts (HDFs) [population doublings (PD) 56], suggesting a link between decreased MDH1 protein levels and aging. Knockdown of MDH1 in young HDFs (PD 20) and the IMR90 human fibroblast cell line resulted in the appearance of significant cellular senescence features, including senescence-associated β-galactosidase staining, flattened and enlarged morphology, increased population doubling time, and elevated p16(INK4A) and p21(CIP1) protein levels. Cytosolic NAD/NADH ratios were decreased in old HDFs to the same extent as in MDH1 knockdown HDFs, suggesting that cytosolic NAD depletion is related to cellular senescence. We found that AMP-activated protein kinase, a sensor of cellular energy, was activated in MDH1 knockdown cells. We also found that sirtuin 1 (SIRT1) deacetylase, a controller of cellular senescence, was decreased in MDH1 knockdown cells. These results indicate that the decrease in MDH1 and subsequent reduction in NAD/NADH ratio, which causes SIRT1 inhibition, is a likely carbohydrate metabolism-controlled cellular senescence mechanism.

  6. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Eber, R.M.; Shuler, C.F.; Buchanan, W.; Beck, F.M.; Horton, J.E. (Ohio State Univ. College of Dentistry, Columbus (USA))

    1989-08-01

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measured using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings.

  7. Anterior corneal and internal contributions to peripheral aberrations of human eyes

    Science.gov (United States)

    Atchison, David A.

    2004-03-01

    Anterior corneal and internal component contributions to overall peripheral aberrations of five human eyes were determined, based on corneal topography and overall aberration measurements. Anterior corneal position and orientation (tilt) were referenced to the line of sight. Ray tracing was performed through the anterior cornea for 6-mm-diameter pupils at angles out to 40° in both the temporal and the nasal visual fields. In general, both component and overall Zernike aberrations were greater for the nasal than for the temporal visual field. In general, the anterior corneal aberration components were considerably higher than the overall aberrations across the visual field and were balanced to a considerable degree by the internal ocular aberration components. The component and overall levels of Zernike third-order aberrations showed linear trends away from the fixation axis, and the component levels of Zernike fourth-order aberrations showed quadratic trends away from the fixation axis. The second-order, but not higher-order, aberration components were susceptible to the choice of image radius of curvature, while disregarding corneal position and orientation affected second- and higher-order aberration components.

  8. Inhibition of normal human lung fibroblast growth by beryllium.

    Science.gov (United States)

    Lehnert, N M; Gary, R K; Marrone, B L; Lehnert, B E

    2001-03-07

    Inhalation of particulate beryllium (Be) and its compounds causes chronic Be disease (CBD) in a relatively small subset ( approximately 1-6%) of exposed individuals. Hallmarks of this pulmonary disease include increases in several cell types, including lung fibroblasts, that contribute to the fibrotic component of the disorder. In this regard, enhancements in cell proliferation appear to play a fundamental role in CBD development and progression. Paradoxically, however, some existing evidence suggests that Be actually has antiproliferative effects. In order to gain further information about the effects of Be on cell growth, we: (1) assessed cell proliferation and cell cycle effects of low concentrations of Be in normal human diploid fibroblasts, and (2) investigated the molecular pathway(s) by which the cell cycle disturbing effects of Be may be mediated. Treatment of human lung and skin fibroblasts with Be added in the soluble form of BeSO(4) (0.1-100 microM) caused inhibitions of their growth in culture in a concentration-dependent manner. Such growth inhibition was found to persist, even after cells were further cultured in Be(2+)-free medium. Flow cytometric analyses of cellular DNA labeled with the DNA-binding fluorochrome DAPI revealed that Be causes a G(0)-G(1)/pre-S phase arrest. Western blot analyses indicated that the Be-induced G(0)-G(1)/pre-S phase arrest involves elevations in TP53 (p53) and the cyclin-dependent kinase inhibitor CDKN1A (p21(Waf-1,Cip1)). That Be at low concentrations inhibits the growth of normal human fibroblasts suggests the possibility of the existence of abnormal cell cycle inhibitory responses to Be in individuals who are sensitive to the metal and ultimately develop CBD.

  9. Measurement of the topography of human cadaver lenses using the PAR corneal topography system

    Science.gov (United States)

    Fernandez, Viviana; Manns, Fabrice; Zipper, Stanley; Sandadi, Samith; Hamaoui, Marie; Tahi, Hassan; Ho, Arthur; Parel, Jean-Marie A.

    2001-06-01

    To measure the radius of curvature and asphericity of the anterior and posterior surfaces of crystalline lenses of human Eye-Bank eyes using the PAR Corneal Topography System. The measured values will be used in an optical model of the eye for lens refilling procedures.

  10. Effects of Phthalates on the Human Corneal Endothelial Cell Line B4G12

    DEFF Research Database (Denmark)

    Krüger, Tanja; Cao, Yi; Kjærgaard, Søren K.;

    2012-01-01

    Phthalates are industrial chemicals used in many cosmetics. We evaluated an in vitro model for eye irritancy testing using the human corneal endothelial cell line B4G12. Cell proliferation and toxicity were assessed after exposing to di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2...

  11. In Vitro Effects of Preserved and Unpreserved Anti-Allergic Drugs on Human Corneal Epithelial Cells

    OpenAIRE

    Guzman-Aranguez, Ana; Calvo, Patricia; Ropero, Inés; Pintor, Jesús

    2014-01-01

    Purpose: Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells.

  12. Radiation-Induced Differentiation in Human Lung Fibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sa-Rah; Ahn, Ji-Yeon; Han, Young-Soo; Shim, Jie-Young; Yun, Yeon-Sook; Song, Jie-Young [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-10-15

    One of the most common tumors in many countries is lung cancer and patients with lung cancer may take radiotherapy. Although radiotherapy may have its own advantages, it can also induce serious problems such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of {alpha}-SMA and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-{beta}), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) are related to fibrosis. Among them TGF-{beta} with Smad signaling is known to be the main stream and other signaling molecules such as MAPK, ERK and JNK (3) also participates in the process. In addition to those above factors, it is thought that more diverse and complicate mechanisms may involve in the radiationinduced fibrosis. Therefore, to investigate the underlying mechanisms in radiation induced fibrosis, first of all, we confirmed whether radiation induces trans differentiation in human normal lung fibroblasts. Here, we suggest that not only TGF-{beta} but also radiation can induce trans differentiation in human lung fibroblast WI-38 and IMR-90.

  13. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hou

    Full Text Available PURPOSE: Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. METHODS: Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. RESULTS: Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. CONCLUSION: Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.

  14. Evidence that neomycin inhibits human cytomegalovirus infection of fibroblasts.

    Science.gov (United States)

    Lobert, P E; Hober, D; Delannoy, A S; Wattré, P

    1996-01-01

    The effect of phosphoinositide-binding aminoglycosides, such as neomycin, gentamicin and streptomycin, on human cytomegalovirus (HCMV) infection of human fibroblasts MRC-5 was studied. The inhibition of HCMV infection was obtained with all of these molecules but neomycin was more effective than the others. We showed that the inoculation of the cells with cell-free viral suspension in presence of neomycin concentrations above 5 mM at 37 degrees C, inhibited more than 98% the HCMV infection. However, the preincubation of the fibroblasts with neomycin at 4 degrees C, before the removal of the drug and the inoculation of the cells, induced only a 30% decrease in the number of infected cells. Addition of neomycin after the HCMV-binding at 4 degrees C or the infection of the cells was less efficient to inhibit HCMV infection than the standard incubation of neomycin during inoculation of the fibroblasts. Indeed, 1 hour after the inoculation of the cells at 37 degrees C, neomycin still inhibited HCMV infection, but 4 hours after the inoculation, this drug had no effect on HCMV infection. Our findings demonstrated that neomycin must be present at the time of infection in order to exert a full inhibiting effect. The effect of neomycin on the HCMV infection was almost immediate upon the addition of the drug (binding and/or internalization) and after the virus internalization (inhibition of immediate-early events). We suggest that neomycin and other aminoglycoside antibiotics may interact with HCMV glycoproteins for binding to similar structural features of cell surface heparan sulfate proteoglycans and may inhibit HCMV infection in fibroblasts by disrupting phosphoinositide-mediated events in the cells.

  15. Aggregatibacter actinomycetemcomitans lipopolysaccharide affects human gingival fibroblast cytoskeletal organization.

    Science.gov (United States)

    Gutiérrez-Venegas, Gloria; Contreras-Marmolejo, Luis Arturo; Román-Alvárez, Patricia; Barajas-Torres, Carolina

    2008-04-01

    The cytoskeleton is a dynamic structure that plays a key role in maintaining cell morphology and function. This study investigates the effect of bacterial wall lipopolysaccharide (LPS), a strong inflammatory agent, on the dynamics and organization of actin, tubulin, vimentin, and vinculin proteins in human gingival fibroblasts (HGF). A time-dependent study showed a noticeable change in actin architecture after 1.5 h of incubation with LPS (1 microg/ml) with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 24 h. When 0.01-10 microg/ml of LPS was added to human gingival fibroblast cultures, cells acquired a round, flat shape and gradually developed cytoplasmic ruffling. Lipopolysaccharides extracted from Aggregatibacter actinomycetemcomitans periodontopathogenic bacteria promoted alterations in F-actin stress fibres of human gingival cells. Normally, human gingival cells have F-actin fibres that are organized in linear distribution throughout the cells, extending along the cell's length. LPS-treated cells exhibited changes in cytoskeletal protein organization, and F-actin was reorganized by the formation of bundles underneath and parallel to the cell membrane. We also found the reorganization of the vimentin network into vimentin bundling after 1.5 h of treatment. HGF cells exhibited diffuse and granular gamma-tubulin stain. There was no change in LPS-treated HGF. However, vinculin plaques distributed in the cell body diminished after LPS treatment. We conclude that the dynamic and structured organization of cytoskeletal filaments and actin assembly in human gingival fibroblasts is altered by LPS treatment and is accompanied by a decrease in F-actin pools.

  16. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    Directory of Open Access Journals (Sweden)

    Masahito Yoshihara

    Full Text Available The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.

  17. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    Science.gov (United States)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.

  18. Genomic instability of gold nanoparticle treated human lung fibroblast cells.

    Science.gov (United States)

    Li, Jasmine J; Lo, Soo-Ling; Ng, Cheng-Teng; Gurung, Resham Lal; Hartono, Deny; Hande, Manoor Prakash; Ong, Choon-Nam; Bay, Boon-Huat; Yung, Lin-Yue Lanry

    2011-08-01

    Gold nanoparticles (AuNPs) are one of the most versatile and widely researched materials for novel biomedical applications. However, the current knowledge in their toxicological profile is still incomplete and many on-going investigations aim to understand the potential adverse effects in human body. Here, we employed two dimensional gel electrophoresis to perform a comparative proteomic analysis of AuNP treated MRC-5 lung fibroblast cells. In our findings, we identified 16 proteins that were differentially expressed in MRC-5 lung fibroblasts following exposure to AuNPs. Their expression levels were also verified by western blotting and real time RT-PCR analysis. Of interest was the difference in the oxidative stress related proteins (NADH ubiquinone oxidoreductase (NDUFS1), protein disulfide isomerase associate 3 (PDIA3), heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and thioredoxin-like protein 1 (TXNL1)) as well as proteins associated with cell cycle regulation, cytoskeleton and DNA repair (heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and Secernin-1 (SCN1)). This finding is consistent with the genotoxicity observed in the AuNP treated lung fibroblasts. These results suggest that AuNP treatment can induce oxidative stress-mediated genomic instability.

  19. Transcriptome Alterations In X-Irradiated Human Gingiva Fibroblasts.

    Science.gov (United States)

    Weissmann, Robert; Kacprowski, Tim; Peper, Michel; Esche, Jennifer; Jensen, Lars R; van Diepen, Laura; Port, Matthias; Kuss, Andreas W; Scherthan, Harry

    2016-08-01

    Ionizing radiation is known to induce genomic lesions, such as DNA double strand breaks, whose repair can lead to mutations that can modulate cellular and organismal fate. Soon after radiation exposure, cells induce transcriptional changes and alterations of cell cycle programs to respond to the received DNA damage. Radiation-induced mutations occur through misrepair in a stochastic manner and increase the risk of developing cancers years after the incident, especially after high dose radiation exposures. Here, the authors analyzed the transcriptomic response of primary human gingival fibroblasts exposed to increasing doses of acute high dose-rate x rays. In the dataset obtained after 0.5 and 5 Gy x-ray exposures and two different repair intervals (0.5 h and 16 h), the authors discovered several radiation-induced fusion transcripts in conjunction with dose-dependent gene expression changes involving a total of 3,383 genes. Principal component analysis of repeated experiments revealed that the duration of the post-exposure repair intervals had a stronger impact than irradiation dose. Subsequent overrepresentation analyses showed a number of KEGG gene sets and WikiPathways, including pathways known to relate to radioresistance in fibroblasts (Wnt, integrin signaling). Moreover, a significant radiation-induced modulation of microRNA targets was detected. The data sets on IR-induced transcriptomic alterations in primary gingival fibroblasts will facilitate genomic comparisons in various genotoxic exposure scenarios.

  20. The human corneal endothelium in keratoconus: A specular microscopic study.

    Science.gov (United States)

    Laing, R A; Sandstrom, M M; Berrospi, A R; Leibowitz, H M

    1979-10-01

    The corneal endothelium in 12 cases of keratoconus was examined with the clinical specular microscope. There appeared to be an increase in cellular pleomorphism with many cells considerably smaller than normal distributed throughout the endothelial cell population. There were also many large, elongated cells whose long axis showed a definite tendency to assume a similar directional orientation. The long axis of these cells seemed oriented toward the apex of the cone, and the cells appeared to have been stretched by the ectatic process. Many endothelial cells contained dark intracellular structures. Their significance is unknown. The single cornea in this series with a history of acute hydrops contained a localized area in which the endothelial cells were seven to ten times larger than normal. This suggests that rupture of the endothelium and Descemet's membrane, responsible for the acute edematous process, occurs at this site, and that the adjacent cells enlarged to fill the defect.

  1. Triple combination of siRNAs targeting TGFβ1, TGFβR2, and CTGF enhances reduction of collagen I and smooth muscle actin in corneal fibroblasts.

    Science.gov (United States)

    Sriram, Sriniwas; Robinson, Paulette; Pi, Liya; Lewin, Alfred S; Schultz, Gregory

    2013-12-17

    Transforming growth factor β1 (TGFβ1), TGFβ receptor (TGFβR2), and connective tissue growth factor (CTGF) are key regulators of fibrosis in the cornea and in other tissues, including liver, skin, and kidney. We developed an antifibrotic treatment targeting these three critical scarring genes by using a combination of small interfering RNAs (siRNAs) and assessed its effect on downstream scarring genes, collagen I, and α smooth muscle actin (SMA). Up to six individual siRNAs for each of the three target gene mRNAs were transfected into cultures of rabbit corneal fibroblasts at concentrations from 15 to 90 nM. The knockdown of target gene proteins was measured by ELISA, and the two most effective siRNAs were tested in dual combinations. Knockdown percentages of both individual and dual siRNA combinations were analyzed for synergy by using combination index to predict "effective" and "ineffective" triple siRNA combinations. Effects of both triple siRNA combinations on target and downstream mRNAs were measured by using quantitative RT-PCR, and levels of SMA protein were assessed by immunohistochemistry. Single and dual siRNA combinations produced a wide range of protein knockdown of target genes (5%-80%). The effective triple siRNA combination significantly reduced mRNA levels of target genes (>80%) and downstream scarring genes (>85%), and of SMA protein (>95%), and significantly reduced cell migration without reducing cell viability. Simultaneous targeting of TGFβ1, TGFβR2, and CTGF genes by effective triple siRNA combination produced high knockdown of target and downstream scarring genes without cell toxicity, which may have clinical applications in reducing corneal fibrosis and scarring in other tissues.

  2. Comparative analysis of the expression of surface markers on fibroblasts and fibroblast-like cells isolated from different human tissues.

    Science.gov (United States)

    Lupatov, A Yu; Vdovin, A S; Vakhrushev, I V; Poltavtseva, R A; Yarygin, K N

    2015-02-01

    Expression of 20 surface markers was analyzed in cultures of mesenchymal stromal cells of the umbilical cord, fibroblasts from adult and fetal human skin, and fibroblast-like cells of fetal liver was analyzed by fl ow cytometry. The studied cultures did not express hemopoietic cells markers, but were positive for CD73, CD90, and CD105 markers recommended by the International Society of Cell Therapy for the identification of the multipotent mesenchymal stromal cells. Fetal liver fibroblast-like cells were positive for CD54; this marker was absent in skin fibroblast cultures, but was expressed by umbilical cord mesenchymal stromal cells. Further study of these cells revealed a minor subpopulation of cells co-expressing CD24 and CD90 or CD24 and CD54. We hypothesized that these cells probably participate in epithelial mesenchymal transition.

  3. Effect of microemulsions on cell viability of human dermal fibroblasts

    Science.gov (United States)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  4. Connective tissue growth factor differentially binds to members of the cystine knot superfamily and potentiates platelet-derived growth factor-B signaling in rabbit corneal fibroblast cells.

    Science.gov (United States)

    Pi, Liya; Chung, Pei-Yu; Sriram, Sriniwas; Rahman, Masmudur M; Song, Wen-Yuan; Scott, Edward W; Petersen, Bryon E; Schultz, Gregory S

    2015-11-26

    To study the binding of connective tissue growth factor (CTGF) to cystine knot-containing ligands and how this impacts platelet-derived growth factor (PDGF)-B signaling. The binding strengths of CTGF to cystine knot-containing growth factors including vascular endothelial growth factor (VEGF)-A, PDGF-B, bone morphogenetic protein (BMP)-4, and transforming growth factor (TGF)-β1 were compared using the LexA-based yeast two-hybrid system. EYG48 reporter strain that carried a wild-type LEU2 gene under the control of LexA operators and a lacZ reporter plasmid (p80p-lacZ) containing eight high affinity LexA binding sites were used in the yeast two-hybrid analysis. Interactions between CTGF and the tested growth factors were evaluated based on growth of transformed yeast cells on selective media and colorimetric detection in a liquid β-galactosidase activity assay. Dissociation constants of CTGF to VEGF-A isoform 165 or PDGF-BB homo-dimer were measured in surface plasma resonance (SPR) analysis. CTGF regulation in PDGF-B presentation to the PDGF receptor β (PDGFRβ) was also quantitatively assessed by the SPR analysis. Combinational effects of CTGF protein and PDGF-BB on activation of PDGFRβ and downstream signaling molecules ERK1/2 and AKT were assessed in rabbit corneal fibroblast cells by Western analysis. In the LexA-based yeast two-hybrid system, cystine knot motifs of tested growth factors were fused to the activation domain of the transcriptional factor GAL4 while CTGF was fused to the DNA binding domain of the bacterial repressor protein LexA. Yeast co-transformants containing corresponding fusion proteins for CTGF and all four tested cystine knot motifs survived on selective medium containing galactose and raffinose but lacking histidine, tryptophan, and uracil. In liquid β-galactosidase assays, CTGF expressing cells that were co-transformed with the cystine knot of VEGF-A had the highest activity, at 29.88 ± 0.91 fold above controls (P rabbit corneal

  5. Expression of glutathione transferases in corneal cell lines, corneal tissues and a human cornea construct.

    Science.gov (United States)

    Kölln, Christian; Reichl, Stephan

    2016-06-15

    Glutathione transferase (GST) expression and activity were examined in a three-dimensional human cornea construct and were compared to those of excised animal corneas. The objective of this study was to characterize phase II enzyme expression in the cornea construct with respect to its utility as an alternative to animal cornea models. The expression of the GSTO1-1 and GSTP1-1 enzymes was investigated using immunofluorescence staining and western blotting. The level of total glutathione transferase activity was determined using 1-chloro-2,4- dinitrobenzene as the substrate. Furthermore, the levels of GSTO1-1 and GSTP1-1 activity were examined using S-(4-nitrophenacyl)glutathione and ethacrynic acid, respectively, as the specific substrates. The expression and activity levels of these enzymes were examined in the epithelium, stroma and endothelium, the three main cellular layers of the cornea. In summary, the investigated enzymes were detected at both the protein and functional levels in the cornea construct and the excised animal corneas. However, the enzymatic activity levels of the human cornea construct were lower than those of the animal corneas.

  6. Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts

    DEFF Research Database (Denmark)

    Lepekhin, Eugene; Grøn, Birgitte; Berezin, Vladimir

    2002-01-01

    at these sites can be explained by differences in the motile behavior of their respective fibroblast populations. The migratory characteristics were studied in a two-dimensional culture system. The migration of single cells was time-lapse video recorded at intervals of 15 min for a period of 6 h using a computer...... displacement of periodontal and skin fibroblasts. The decreased cellular displacement of the buccal fibroblasts was found to be due to both lower cellular speed and less persistence in direction. The buccal fibroblasts also displayed smaller areas and longer processes. The differences in cellular morphology...

  7. VISUAL PERCEPTION BASED AUTOMATIC RECOGNITION OF CELL MOSAICS IN HUMAN CORNEAL ENDOTHELIUMMICROSCOPY IMAGES

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2011-05-01

    Full Text Available The human corneal endothelium can be observed with two types of microscopes: classical optical microscope for ex-vivo imaging, and specular optical microscope for in-vivo imaging. The quality of the cornea is correlated to the endothelial cell density and morphometry. Automatic methods to analyze the human corneal endothelium images are still not totally efficient. Image analysis methods that focus only on cell contours do not give good results in presence of noise and of bad conditions of acquisition. More elaborated methods introduce regional informations in order to performthe cell contours completion, thus implementing the duality contour-region. Their good performance can be explained by their connections with several basic principles of human visual perception (Gestalt Theory and Marr's computational theory.

  8. Expression of Phospholipases A2 and C in Human Corneal Epithelial Cells

    Science.gov (United States)

    Landreville, Solange; Coulombe, Stéphanie; Carrier, Patrick; Gelb, Michael H.; Guérin, Sylvain L.; Salesse, Christian

    2008-01-01

    Purpose To achieve a better understanding of the involvement of phospholipases in the inflammation and wound-healing processes in human corneal epithelial cells (HCECs), expression of phospholipase A2s (PLA2s) and phospholipase Cs (PLCs) was examined in the human corneal epithelium. Methods Specific primers were designed for RT-PCR amplification of the known secreted (s)PLA2, cytosolic (c)PLA2, and PLC mRNAs. Corresponding PCR products were cloned and the DNA sequenced. Immunofluorescence of flatmounted corneal sections and Western blot analyses were used to detect the PLA2s and PLCs expressed by HCECs. Results The mRNAs for the following phospholipases were detected by RT-PCR in the HCECs: sPLA2GIII, -GX, and -GXIIA; cPLA2α and -γ; PLCβ1, -β2, -β3, -β4, -γ1, -γ2, -δ1, -δ3, -δ4, and -ε. Immunofluorescence analyses conducted on corneal epithelium cryosections and Western blot on freshly isolated HCECs demonstrated the presence of sPLA2GIII, -GX, and -GXIIA; cPLA2α and -γ; and PLCβ2, -β3, -γ1, -γ2, and -δ3. Conclusions Many phospholipase isoforms are expressed by HCECs and may play a major role in signal transduction (PLCs) as well as in the release of precursors of potent mediators of inflammation, such as leukotrienes and prostaglandins (PLA2s). Moreover, the sPLA2s expressed by the corneal epithelium could be involved in the normal antibacterial activity in the tears and in wound healing. PMID:15505048

  9. Studies on human corneal shape%人眼角膜形态研究进展

    Institute of Scientific and Technical Information of China (English)

    应靖璐; 施明光

    2015-01-01

    角膜是人眼最重要的屈光介质,其屈光力占眼球总屈光力的2/3.近10年来,随着计算机辅助角膜地形图仪器的发展,对角膜形态的认识越来越具体完善,尤其是角膜前表面.非球面Q值是描述角膜形态的一个重要参数,被广泛运用于各种角膜地形图仪器中.现就角膜非球面Q值计算方法的发展,尤其对用轴向曲率半径和用正切曲率半径计算Q值的差别,作一综述.%The cornea is the major refractive element of the human eye,being responsible for 2/3 of the eye's total refractive power.During the past ten years,the development of computerized corneal topography has provided a complete understanding of corneal shape,especially the anterior surface.Asphericity (Q) is an important parameter describing corneal shape,and is widely described in corneal topography.This overview focuses on the development of the calculation method used for Q,especially the difference in the calculation between the sagittal and tangential radii.

  10. [Numerical Simulation of Heat Transfer in the Human Anterior Chamber at Different Corneal Temperatures].

    Science.gov (United States)

    Guo, Jingmin; Zhang, Hong; Wang, Junming

    2015-12-01

    A three-dimensional (3D) model of human anterior chamber is reconstructed to explore the effect of different corneal temperatures on the heat transfer in the chamber. Based on the optical coherence tomography imaging of the volunteers with normal anterior chamber, a 3D anterior chamber model was reconstructed by the method of UG parametric design. Numerical simulation of heat transfer and aqueous humor flow in the whole anterior chamber were analyzed by the finite volume methods at different corneal temperatures. The results showed that different corneal temperatures had obvious influence on the temperature distribution and the aqueous flow in the anterior chamber. The temperature distribution is linear and axial symmetrical around the pupillary axis. As the temperature difference increases, the symmetry becomes poorer. Aqueous floated along the warm side and sank along the cool side which forms a vortexing flow. Its velocity increased with the addition of temperature difference. Heat fluxes of cornea, lens and iris were mainly affected by the aqueous velocity. The higher the velocity, the bigger more absolute value of the above-mentioned heat fluxes became. It is practicable to perform the numerical simulation of anterior chamber by the optical coherence tomography imaging. The results are useful for studying the important effect of corneal temperature on the heat transfer and aqueous humor dynamics in the anterior chamber.

  11. Development of human corneal epithelium on organized fibrillated transparent collagen matrices synthesized at high concentration.

    Science.gov (United States)

    Tidu, Aurélien; Ghoubay-Benallaoua, Djida; Lynch, Barbara; Haye, Bernard; Illoul, Corinne; Allain, Jean-Marc; Borderie, Vincent M; Mosser, Gervaise

    2015-08-01

    Several diseases can lead to opacification of cornea requiring transplantation of donor tissue to restore vision. In this context, transparent collagen I fibrillated matrices have been synthesized at 15, 30, 60 and 90 mg/mL. The matrices were evaluated for fibril organizations, transparency, mechanical properties and ability to support corneal epithelial cell culture. The best results were obtained with 90 mg/mL scaffolds. At this concentration, the fibril organization presented some similarities to that found in corneal stroma. Matrices had a mean Young's modulus of 570 kPa and acellular scaffolds had a transparency of 87% in the 380-780 nm wavelength range. Human corneal epithelial cells successfully colonized the surface of the scaffolds and generated an epithelium with characteristics of corneal epithelial cells (i.e. expression of cytokeratin 3 and presence of desmosomes) and maintenance of stemness during culture (i.e. expression of ΔNp63α and formation of holoclones in colony formation assay). Presence of cultured epithelium on the matrices was associated with increased transparency (89%). Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. The effect of Lamium album extract on cultivated human corneal epithelial cells (10.014 pRSV-T

    Directory of Open Access Journals (Sweden)

    Roman Paduch

    2015-01-01

    Conclusion: Selected Lamium album extracts influence human corneal epithelial cells. Generally, while not toxic, they modulate pro-inflammatory and anti-inflammatory cytokines levels, and decrease NO release by cells; moreover, ethanol and ethyl acetate extracts reduce ROS levels.

  13. Oxidized DNA induces an adaptive response in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V., E-mail: svet.kostyuk@gmail.com [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Tabakov, Viacheslav J.; Chestkov, Valerij V.; Konkova, Marina S.; Glebova, Kristina V.; Baydakova, Galina V.; Ershova, Elizaveta S.; Izhevskaya, Vera L. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha, E-mail: abaranov@gmu.edu [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2013-07-15

    Highlights: • We describe the effects of gDNAOX on human fibroblasts cultivated in serum withdrawal conditions. • gDNAOX evokes an adaptive response in human fibroblasts. • gDNAOX increases the survival rates in serum starving cell populations. • gDNAOX enhances the survival rates in cell populations irradiated at 1.2 Gy dose. • gDNAOX up-regulates NRF2 and inhibits NF-kappaB-signaling. - Abstract: Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA{sup OX}. The levels of cfDNA{sup OX} are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by H{sub 2}O{sub 2}in vitro (gDNA{sup OX}) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA{sup OX} on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA{sup OX} evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2 Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA{sup OX} leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of PSNA, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA{sup OX} and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA{sup OX} inhibits NF-κB signaling. gDNA{sup OX} is a model for oxidized cfDNA{sup OX} that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA

  14. Current status of corneal xenotransplantation.

    Science.gov (United States)

    Kim, Mee Kum; Hara, Hidetaka

    2015-11-01

    Corneal allo-transplantation is a well-established technique to treat corneal blindness. However, the limited availability of human donors demands the exploration of alternative treatments such as corneal xenotransplantation (e.g., pigs as donors) and bioengineered corneas. Since the first attempt of corneal xenotransplantation using a donor pig cornea in 1844, great advances have been made in the development of genetically-engineered pigs, effective immunosuppressive protocols and the establishment of guidelines for the conduction of clinical trials. We highlight immunological and physio-anatomical barriers of corneal xenotransplantation, recent progress of corneal xenotransplantation in non-human-primates studies, and regulatory guidelines to conduct clinical trials for corneal xenotransplantation.

  15. Proliferative Effects of Histamine on Primary Human Pterygium Fibroblasts

    Directory of Open Access Journals (Sweden)

    Zhenwei Qin

    2016-01-01

    Full Text Available Purpose. It has been confirmed that inflammatory cytokines are involved in the progression of pterygium. Histamine can enhance proliferation and migration of many cells. Therefore, we intend to investigate the proliferative and migratory effects of histamine on primary culture of human pterygium fibroblasts (HPFs. Methods. Pterygium and conjunctiva samples were obtained from surgery, and toluidine blue staining was used to identify mast cells. 3-[4, 5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT was performed to evaluate the proliferative rate of HPFs and human conjunctival fibroblasts (HCFs; ki67 expression was also measured by immunofluorescence analysis. Histamine receptor-1 (H1R antagonist (Diphenhydramine Hydrochloride and histamine receptor-2 (H2R antagonist (Nizatidine were added to figure out which receptor was involved. Wound healing model was used to evaluate the migratory ability of HPFs. Results. The numbers of total mast cells and degranulated mast cells were both higher in pterygium than in conjunctiva. Histamine had a proliferative effect on both HPFs and HCFs, the effective concentration (10 μmol/L on HPFs was lower than on HCFs (100 μmol/L, and the effect could be blocked by H1R antagonist. Histamine showed no migratory effect on HPFs. Conclusion. Histamine may play an important role in the proliferation of HPFs and act through H1R.

  16. Cytotoxic effects of nickel nanowires in human fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2016-03-09

    The increasing interest in the use of magnetic nanostructures for biomedical applications necessitates rigorous studies to be carried out in order to determine their potential toxicity. This work attempts to elucidate the cytotoxic effects of nickel nanowires (NWs) in human fibroblasts WI-38 by a colorimetric assay (MTT) under two different parameters: NW concentration and exposure time. This was complemented with TEM and confocal images to assess the NWs internalization and to identify any changes in the cell morphology. Ni NWs were fabricated by electrodeposition using porous alumina templates. Energy dispersive X-Ray analysis, scanning electron microscopy and transmission electron microscopy imaging were used for NW characterization. The results showed decreased cell metabolic activity for incubation times longer than 24 hours and no negative effects for exposure times shorter than that. The cytotoxicity effects for human fibroblasts were then compared with those reported for HCT 116 cells, and the findings point out that it is relevant to consider the cellular size. In addition, the present study compares the toxic effects of equivalent amounts of nickel in the form of its salt to those of NWs and shows that the NWs are more toxic than the salts. Internalized NWs were found in vesicles inside of the cells where their presence induced inflammation of the endoplasmic reticulum.

  17. Comparison of corneal epitheliotrophic capacities among human platelet lysates and other blood derivatives

    Science.gov (United States)

    Huang, Chien-Jung; Sun, Yi-Chen; Christopher, Karen; Pai, Amy Shih-I; Lu, Chia-Ju; Hu, Fung-Rong; Lin, Szu-Yuan; Chen, Wei-Li

    2017-01-01

    Purpose To evaluate the corneal epitheliotropic abilities of two commercialized human platelet lysates (HPLs) and to compare the results with other blood derivatives, including human peripheral serum (HPS) and bovine fetal serum (FBS). Methods In vitro, human corneal epithelial cells were incubated in various concentrations (0%, 3%, 5% and 10%) of blood derivatives. Two commercialized HPLs, including UltraGRO TM (Helios, Atlanta, GA) and PLTMax (Mill Creek, Rochester, MI), were tested and compared with HPS and FBS. Scratch-induced directional wounding assay was performed to evaluate cellular migration. MTS assay was used to evaluate cellular proliferation. Cellular differentiation was examined by scanning electron microscopy, inverted microscopy and transepithelial electrical resistance. Sprague-Dawley rats were used to evaluate the effects of the blood derivatives on corneal epithelial wound healing in vivo. Different blood derivatives were applied topically every 2 hours for 2 days after corneal epithelial debridement. The concentrations of epidermal growth factor (EGF), transforming growth factor -β1 (TGF-β1), fibronectin, platelet-derived growth factor-AB (PDGF-AB), PDGF-BB, and hyaluronic acid in different blood derivatives were evaluated by enzyme-linked immunosorbent assay (ELISA). Results In vitro experiments demonstrated statistically comparable epitheliotropic characteristics in cellular proliferation, migration, and differentiation for the two commercialized HPLs compared to FBS and HPS. Cells cultured without any serum were used as control group. The epitheliotropic capacities were statistically higher in the two commercialized HPLs compared to the control group (p<0.05). Among the different concentrations of blood derivatives, the preparations with 3% yielded better outcomes compared to 5% and 10%. In rats, HPLs also caused improved but not statistically significant wound healing compared to HPS. All the blood derivatives had better wound healing

  18. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction.

    Science.gov (United States)

    Mikhailova, Alexandra; Ilmarinen, Tanja; Ratnayake, Anjula; Petrovski, Goran; Uusitalo, Hannu; Skottman, Heli; Rafat, Mehrdad

    2016-05-01

    Corneal epithelium is renewed by limbal epithelial stem cells (LESCs), a type of tissue-specific stem cells located in the limbal palisades of Vogt at the corneo-scleral junction. Acute trauma or inflammatory disorders of the ocular surface can destroy these stem cells, leading to limbal stem cell deficiency (LSCD) - a painful and vision-threatening condition. Treating these disorders is often challenging and complex, especially in bilateral cases with extensive damage. Human pluripotent stem cells (hPSCs) provide new opportunities for corneal reconstruction using cell-based therapy. Here, we investigated the use of hPSC-derived LESC-like cells on bioengineered collagen matrices in serum-free conditions, aiming for clinical applications to reconstruct the corneal epithelium and partially replace the damaged stroma. Differentiation of hPSCs towards LESC-like cells was directed using small-molecule induction followed by maturation in corneal epithelium culture medium. After four to five weeks of culture, differentiated cells were seeded onto bioengineered matrices fabricated as transparent membranes of uniform thickness, using medical-grade porcine collagen type I and a hybrid cross-linking technology. The bioengineered matrices were fully transparent, with high water content and swelling capacity, and parallel lamellar microstructure. Cell proliferation of hPSC-LESCs was significantly higher on bioengineered matrices than on collagen-coated control wells after two weeks of culture, and LESC markers p63 and cytokeratin 15, along with proliferation marker Ki67 were expressed even after 30 days in culture. Overall, hPSC-LESCs retained their capacity to self-renew and proliferate, but were also able to terminally differentiate upon stimulation, as suggested by protein expression of cytokeratins 3 and 12. We propose the use of bioengineered collagen matrices as carriers for the clinically-relevant hPSC-derived LESC-like cells, as a novel tissue engineering approach for

  19. Expression profiles and function of Toll-like receptors in human corneal epithelia

    Institute of Scientific and Technical Information of China (English)

    WU Xin-yi; GAO Jian-lu; REN Mei-yu

    2007-01-01

    Background Toll-like receptors play an important role in the human immune system. This study was conducted to investigate the expression profiles and function of Toll-like receptor (TLR)1-9 in human corneal epithelium.Methods The expression of TLR1-9 mRNA in 20 human donor corneal epithelia samples abraded during photorefractive keratotomy (PRK) and cultivated telomerase-immortalized human corneal epithelial cells (THCEs) was examined by semi-quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) analysis. Human peripheral blood mononuclear cells (PBMCs) were used as positive controls. The expression of the TLR2 and TLR4 proteins was detected by Western analysis. ELISA was used to detect IL-8 secretion from THCEs challenged with ligands for TLR3 and TLR4 with and without antibody blockade.Results The expression of TLR1-9 at the mRNA level was detected in the epithelia of 20 patients and in THCE.Significant differences among individuals were observed. One patient was found to lack of the expression of TLR3, 4, 6 and 8, whereas another did not express TLR5. The expression of TLR2 and TLR4 protein was detected in human corneal epithelial cells. As THCE cells express TLR1-9, cells were challenged with lipopolysaccharides (LPS) and poly I:C to determine whether TLR4 and TLR3 were functional. The results showed that secretion of IL-8 by cells stimulated with LPS and Poly I:C was 7 to 10 fold greater than secretion by unchallenged cells. Blocking TLR4 with an anti-TLR4 antibody significantly inhibited the LPS-induced IL-8 production by THCE (P<0.05).Conclusion Human corneal epithelial cells express multiple TLRs and are able to recognize LPS and poly I:C. Different expression profiles among individuals suggest that differences in the susceptibilities and sensitivities to bacterial and viral infection in human populations relate to different patterns of TLR expression.

  20. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    Science.gov (United States)

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts.

  1. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    OpenAIRE

    Youn, Hyun-Yi; McCanna, David J.; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated w...

  2. Metallic nanoparticles reduce the migration of human fibroblasts in vitro

    Science.gov (United States)

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma dos Santos

    2017-03-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α2β1 integrin (VLA-2) and the laminin receptor very late antigen 6, α6β1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  3. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Blichfeld, Kristian Aabo

    2017-01-01

    fibroblasts. This SAM-mediated activation of LOS can be stably maintained for over 20 days in fibroblasts cultured in either fibroblasts or stem cell medium. However, when attempting to use the SAM-LOS activation as an approach for induced pluripotent stem cells-reprogramming, no embryonic stem-like colonies...

  4. Differentiation of Human Embryonic Stem Cells on Periodontal Ligament Fibroblasts.

    Science.gov (United States)

    Elçin, Y Murat; İnanç, Bülend; Elçin, A Eser

    2016-01-01

    Human embryonic stem cells' (hESCs) unlimited proliferative potential and differentiation capability to all somatic cell types makes them one of the potential cell sources in cell-based tissue engineering strategies as well as various experimental applications in fields such as developmental biology, pharmacokinetics, toxicology, and genetics. Periodontal tissue engineering is an approach to reconstitute the ectomesenchymally derived alveolar bone, periodontal ligament apparatus, and cementum tissues lost as a result of periodontal diseases. Cell-based therapies may offer potential advantage in overcoming the inherent limitations associated with contemporary regenerative procedures, such as dependency on defect type and size and the pool and capacity of progenitor cells resident in the wound area. Further elucidation of developmental mechanisms associated with tooth formation may also contribute to valuable knowledge based upon which the future therapies can be designed. Protocols for the differentiation of pluripotent hESCs into periodontal ligament fibroblastic cells (PDLF) as common progenitors for ligament, cementum, and alveolar bone tissue represent an initial step in developing hESC-based experimental and tissue engineering strategies. The present protocol describes methods associated with the guided differentiation of hESCs by the use of coculture with adult PDLFs and the resulting change of morphotype and phenotype of the pluripotent embryonic stem cells toward fibroblastic and osteoblastic lineages.

  5. Generation of human induced pluripotent stem cells from dermal fibroblasts.

    Science.gov (United States)

    Lowry, W E; Richter, L; Yachechko, R; Pyle, A D; Tchieu, J; Sridharan, R; Clark, A T; Plath, K

    2008-02-26

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ectopic expression of the defined transcription factors KLF4, OCT4, SOX2, and C-MYC. The resultant cell lines are morphologically indistinguishable from human embryonic stem cells (HESC) generated from the inner cell mass of a human preimplantation embryo. Consistent with these observations, human iPS cells share a nearly identical gene-expression profile with two established HESC lines. Importantly, DNA fingerprinting indicates that the human iPS cells were derived from the donor material and are not a result of contamination. Karyotypic analyses demonstrate that reprogramming of human cells by defined factors does not induce, or require, chromosomal abnormalities. Finally, we provide evidence that human iPS cells can be induced to differentiate along lineages representative of the three embryonic germ layers indicating the pluripotency of these cells. Our findings are an important step toward manipulating somatic human cells to generate an unlimited supply of patient-specific pluripotent stem cells. In the future, the use of defined factors to change cell fate may be the key to routine nuclear reprogramming of human somatic cells.

  6. Curvature sensor for the measurement of the static corneal topography and the dynamic tear film topography in the human eye

    Science.gov (United States)

    Gruppetta, Steve; Koechlin, Laurent; Lacombe, François; Puget, Pascal

    2005-10-01

    A system to measure the topography of the first optical surface of the human eye noninvasively by using a curvature sensor is described. The static corneal topography and the dynamic topography of the tear film can both be measured, and the topographies obtained are presented. The system makes possible the study of the dynamic aberrations introduced by the tear film to determine their contribution to the overall ocular aberrations in healthy eyes, eyes with corneal pathologies, and eyes wearing contact lenses.

  7. Multiscale Investigation of the Depth-Dependent Mechanical Anisotropy of the Human Corneal Stroma

    Science.gov (United States)

    Labate, Cristina; Lombardo, Marco; De Santo, Maria P.; Dias, Janice; Ziebarth, Noel M.; Lombardo, Giuseppe

    2015-01-01

    Purpose. To investigate the depth-dependent mechanical anisotropy of the human corneal stroma at the tissue (stroma) and molecular (collagen) level by using atomic force microscopy (AFM). Methods. Eleven human donor corneas were dissected at different stromal depths by using a microkeratome. Mechanical measurements were performed in 15% dextran on the surface of the exposed stroma of each sample by using a custom-built AFM in force spectroscopy mode using both microspherical (38-μm diameter) and nanoconical (10-nm radius of curvature) indenters at 2-μm/s and 15-μm/s indentation rates. Young's modulus was determined by fitting force curve data using the Hertz and Hertz-Sneddon models for a spherical and a conical indenter, respectively. The depth-dependent anisotropy of stromal elasticity was correlated with images of the corneal stroma acquired by two-photon microscopy. Results. The force curves were obtained at stromal depths ranging from 59 to 218 μm. At the tissue level, Young's modulus (ES) showed a steep decrease at approximately 140-μm stromal depth (from 0.8 MPa to 0.3 MPa; P = 0.03) and then was stable in the posterior stroma. At the molecular level, Young's modulus (EC) was significantly greater than at the tissue level; EC decreased nonlinearly with increasing stromal depth from 3.9 to 2.6 MPa (P = 0.04). The variation of microstructure through the thickness correlated highly with a nonconstant profile of the mechanical properties in the stroma. Conclusions. The corneal stroma exhibits unique anisotropic elastic behavior at the tissue and molecular levels. This knowledge may benefit modeling of corneal behavior and help in the development of biomimetic materials. PMID:26098472

  8. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Anne Grünewald

    Full Text Available BACKGROUND: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD. The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7, as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and

  9. Vorinostat: a potent agent to prevent and treat laser-induced corneal haze.

    Science.gov (United States)

    Tandon, Ashish; Tovey, Jonathan C K; Waggoner, Michael R; Sharma, Ajay; Cowden, John W; Gibson, Daniel J; Liu, Yuanjing; Schultz, Gregory S; Mohan, Rajiv R

    2012-04-01

    This study investigated the efficacy and safety of vorinostat, a deacetylase (HDAC) inhibitor, in the treatment of laser-induced corneal haze following photorefractive keratectomy (PRK) in rabbits in vivo and transforming growth factor beta 1 (TGFβ1) -induced corneal fibrosis in vitro. Corneal haze in rabbits was produced with -9.00 diopters (D) PRK. Fibrosis in cultured human and rabbit corneal fibroblasts was activated with TGFβ1. Vorinostat (25 μm) was topically applied once for 5 minutes on rabbit cornea immediately after PRK for in vivo studies. Vorinostat (0 to 25 μm) was given to human/rabbit corneal fibroblasts for 5 minutes or 48 hours for in vitro studies. Slit-lamp microscopy, TUNEL assay, and trypan blue were used to determined vorinostat toxicity, whereas real-time polymerase chain reaction, immunocytochemistry, and immunoblotting were used to measure its efficacy. Single 5-minute vorinostat (25 μm) topical application on the cornea following PRK significantly reduced corneal haze (Prabbit eyes in vivo screened 4 weeks after PRK. Vorinostat reduced TGFβ1-induced fibrosis in human and rabbit corneas in vitro in a dose-dependent manner without altering cellular viability, phenotype, or proliferation. Vorinostat is non-cytotoxic and safe for the eye and has potential to prevent laser-induced corneal haze in patients undergoing PRK for high myopia. Copyright 2012, SLACK Incorporated.

  10. In vitro evaluation of the interactions between human corneal endothelial cells and extracellular matrix proteins.

    Science.gov (United States)

    Choi, Jin San; Kim, Eun Young; Kim, Min Jeong; Giegengack, Matthew; Khan, Faraaz A; Khang, Gilson; Soker, Shay

    2013-02-01

    The corneal endothelium is the innermost cell layer of the cornea and rests on Descemet's membrane consisting of various extracellular matrix (ECM) proteins which can directly affect the cellular behaviors such as cell adhesion, proliferation, polarity, morphogenesis and function. The objective of this study was to investigate the interactions between the ECM environment and human corneal endothelial cells (HCECs), with the ultimate goal to improve cell proliferation and function in vitro. To evaluate the interaction of HCECs with ECM proteins, cells were seeded on ECM-coated tissue culture dishes, including collagen type I (COL I), collagen type IV (COL IV), fibronectin (FN), FNC coating mix (FNC) and laminin (LM). Cell adhesion and proliferation of HCECs on each substratum and expression of CEC markers were studied. The results showed that HCECs plated on the COL I, COL IV, FN and FNC-coated plates had enhanced cell adhesion initially; the number for COL I, COL IV, FN and FNC was significantly higher than the control (P < 0.05). In addition, cells grown on ECM protein-coated dishes showed more compact cellular morphology and CEC marker expression compared to cells seeded on uncoated dishes. Collectively, our results suggest that an adequate ECM protein combination can provide a long-term culture environment for HCECs for corneal endothelium transplantation.

  11. Connective tissue growth factor differentially binds to members of the cystine knot superfamily and potentiates platelet-derived growth factor-B signaling in rabbit corneal fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    Liya; Pi; Pei-Yu; Chung; Sriniwas; Sriram; Masmudur; M; Rahman; Wen-Yuan; Song; Edward; W; Scott; Bryon; E; Petersen; Gregory; S; Schultz

    2015-01-01

    AIM:To study the binding of connective tissue growth factor(CTGF) to cystine knot-containing ligands and how this impacts platelet-derived growth factor(PDGF)-B signaling. METHODS:The binding strengths of CTGF to cystine knot-containing growth factors including vascular en-dothelial growth factor(VEGF)-A,PDGF-B,bone morphogenetic protein(BMP)-4,and transforming growth factor(TGF)-β1 were compared using the LexA-based yeast two-hybrid system. EYG48 reporter strain that carried a wild-type LEU2 gene under the control of Lex A operators and a lac Z reporter plasmid(p80plac Z) containing eight high affinity Lex A binding sites were used in the yeast two-hybrid analysis. Interactions between CTGF and the tested growth factors were evaluated based on growth of transformed yeast cells on selective media and colorimetric detection in a liquid β-galactosidase activity assay. Dissociation constants of CTGF to VEGF-A isoform 165 or PDGF-BB homo-dimer were measured in surface plasma resonance(SPR) analysis. CTGF regulation in PDGF-B presentation to the PDGF receptor β(PDGFRβ) was also quantitatively assessed by the SPR analysis. Combinational effects of CTGF protein and PDGF-BB on activation of PDGFRβ and downstream signaling molecules ERK1/2 and AKT were assessed in rabbit corneal fibroblast cells by Western analysis. RESULTS:In the LexA-based yeast two-hybrid system,cystine knot motifs of tested growth factors were fused to the activation domain of the transcriptional factor GAL4 while CTGF was fused to the DNA binding domain of the bacterial repressor protein Lex A. Yeast cotransformants containing corresponding fusion proteins for CTGF and all four tested cystine knot motifs survived on selective medium containing galactose and raffinose but lacking histidine,tryptophan,and uracil. In liquid β-galactosidase assays,CTGF expressing cells that were co-transformed with the cystine knot of VEGF-A had the highest activity,at 29.88 ± 0.91 fold above controls(P < 0

  12. Cytotoxic Effects of Nickel Nanowires in Human Fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2014-04-01

    There is an increasing interest for the use of nanostructures as potential tools in areas that include biology and medicine, for applications spanning from cell separation to treatments of diseases. Magnetic nanoparticles (MNPs) have been the most widely studied and utilized nanostructures in biomedical applications. Despite their popularity, the regular shape of MNPs limits their potential for certain applications. Studies have shown that magnetic nanowires (MNWs), due to their high-­‐aspect ratio and specific magnetic properties, might provide improved performance for some biomedical applications. As a consequence, MNWs have received increasing attention from researchers in the last years. However, as with any other nanostructure intended for biomedical applications, rigorous studies must be carried out to determine their potential toxicity and adverse effects before they can be successfully incorporated in clinical applications. This work attempts to elucidate the cytotoxic effects of nickel NWs (Ni NWs) in human fibroblasts by measuring cell viability under different parameters. Ni NWs of three different lengths (0.86 ± 0.02 μm, 1.1 ± 0.1 μm and 6.1 ± 0.6 μm) were fabricated by electrodeposition using porous aluminum oxide (PAO) membranes as templates. Energy dispersive X-­‐Ray analysis (EDAX) and X-­‐Ray diffraction (XRD) were used for the chemical characterization of the Ni NWs. Their physical characterization was done using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging. MTT assays were performed to assess cell viability of human fibroblasts in the presence of Ni NWs. NW length, NW/cell ratio and exposure time were changed throughout the experiments to elucidate their effects on cell viability. The results showed that NWs length has a strong effect on internalization and cytotoxicity. Smaller NWs showed higher toxicity levels at earlier times while longer NWs had stronger effects on cell viability at

  13. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells.

    Science.gov (United States)

    Zhang, Kai; Pang, Kunpeng; Wu, Xinyi

    2014-06-15

    The maintenance of corneal dehydration and transparency depends on barrier and pump functions of corneal endothelial cells (CECs). The human CECs have no proliferation capacity in vivo and the ability to divide in vitro under culture conditions is dramatically limited. Thus, the acquisition of massive cells analogous to normal human CECs is extremely necessary whether from the perspective of cellular basic research or from clinical applications. Here we report the derivation of CEC-like cells from human embryonic stem cells (hESCs) through the periocular mesenchymal precursor (POMP) phase. Using the transwell coculture system of hESCs with differentiated human corneal stromal cells, we induced hESCs to differentiate into POMPs. Then, CEC-like cells were derived from POMPs with lens epithelial cell-conditioned medium. Within 1 week, CEC-like cells that expressed the corneal endothelium (CE) differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2 were detectable. Fluorescence-activated cell sorting (FACS)-based isolation of the N-cadherin/vimentin dual-positive population enriches for CEC-like cells. The isolated CEC-like cells were labeled with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE) and seeded onto posterior acellular porcine corneal matrix lamellae to construct the CEC-like cell sheets. Pump function parameters of the CEC-like cell sheets approximated those of human donor corneas. Importantly, when the CEC-like cell sheets were transplanted into the eyes of rabbit CE dysfunction models, the corneal transparency was restored gradually. In conclusion, CEC-like cells derived from hESCs displayed characteristics of native human CECs. This renewable source of human CECs offers massive cells for further studies of human CEC biological characteristics and potential applications of replacement therapies as substitution for donor CECs in the future.

  14. Human Dermal Stem/Progenitor Cell-Derived Conditioned Medium Improves Senescent Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Ji-Yong Jung

    2015-08-01

    Full Text Available Adult skin stem cells are recognized as potential therapeutics to rejuvenate aged skin. We previously demonstrated that human dermal stem/progenitor cells (hDSPCs with multipotent capacity could be enriched from human dermal fibroblasts using collagen type IV. However, the effects of hDSPCs on cellular senescence remain to be elucidated. In the present study, we investigated whether conditioned medium (CM collected from hDSPC cultures (hDSPC-CM exhibits beneficial effects on senescent fibroblasts. We found that hDSPC-CM promoted proliferation and decreased the expression level of senescence-associated β-galactosidase in senescent fibroblasts. In addition, p53 phosphorylation and p21 expression were significantly reduced in senescent fibroblasts treated with hDSPC-CM. hDSPC-CM restored the expression levels of collagen type I, collagen type III, and tissue inhibitor of metalloproteinase, and antagonized the increase of matrix metalloproteinase 1 expression. Finally, we demonstrated that hDSPC-CM significantly reduced reactive oxygen species levels by specifically up-regulating the expression level of superoxide dismutase 2. Taken together, these data suggest that hDSPC-CM can be applied as a potential therapeutic agent for improving human aged skin.

  15. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  16. Coculture of dorsal root ganglion neurons and differentiated human corneal stromal stem cells on silk-based scaffolds.

    Science.gov (United States)

    Wang, Siran; Ghezzi, Chiara E; White, James D; Kaplan, David L

    2015-10-01

    Corneal tissue displays the highest peripheral nerve density in the human body. Engineering of biomaterials to promote interactions between neurons and corneal tissue could provide tissue models for nerve/cornea development, platforms for drug screening, as well as innovative opportunities to regenerate cornea tissue. The focus of this study was to develop a coculture system for differentiated human corneal stromal stem cells (dhCSSCs) and dorsal root ganglion neurons (DRG) to mimic the human cornea tissue interactions. Axon extension, connectivity, and neuron cell viability were studied. DRG neurons developed longer axons when cocultured with dhCSSCs in comparison to neuron cultures alone. To assess the mechanism involved in the coculture response, nerve growth factors (NGF) secreted by dhCSSCs including NGF, brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and neurotrophin-3 were characterized with greater focus on BDNF secretion. DhCSSCs also secreted collagen type I, an extracellular matrix molecule favorable for neuronal outgrowth. This coculture system provides a slowly degrading silk matrix to study neuronal responses in concert with hCSSCs related to innervation of corneal tissue with utility toward human corneal nerve regeneration and associated diseases. © 2015 Wiley Periodicals, Inc.

  17. Corneal Laceration

    Medline Plus

    Full Text Available ... Laceration? Corneal Laceration Diagnosis Corneal Laceration Treatment What Is Corneal Laceration? Written By: Daniel Porter Reviewed By: ... A Harrison MD Sep. 01, 2016 The cornea is the clear front window of the eye . A ...

  18. Effects of Calendula officinalis on human gingival fibroblasts.

    Science.gov (United States)

    Saini, Pragtipal; Al-Shibani, Nouf; Sun, Jun; Zhang, Weiping; Song, Fengyu; Gregson, Karen S; Windsor, L Jack

    2012-04-01

    Calendula officinalis is commonly called the marigold. It is a staple topical remedy in homeopathic medicine. It is rich in quercetin, carotenoids, lutein, lycopene, rutin, ubiquinone, xanthophylls, and other anti-oxidants. It has anti-inflammatory properties. Quercetin, one of the active components in Calendula, has been shown to inhibit recombinant human matrix metalloproteinase (MMP) activity and decrease the expression of tumor necrosis factor-α, interleukin-1β (IL), IL-6 and IL-8 in phorbol 12-myristate 13-acetate and calcium ionophore-stimulated human mast cells. To examine the effects of Calendula on human gingival fibroblast (HGF) mediated collagen degradation and MMP activity. Lactate dehydrogenate assays were performed to determine the non-toxic concentrations of Calendula, doxycycline and quercetin. Cell-mediated collagen degradation assays were performed to examine the inhibitory effect on cell-mediated collagen degradation. Gelatin zymography was performed to examine their effects on MMP-2 activity. The experiments were repeated three times and ANOVA used for statistical analyses. Calendula at 2-3% completely inhibited the MMP-2 activity in the zymograms. Doxycycline inhibited HGF-mediated collagen degradation at 0.005, 0.01, 0.02 and 0.05%, and MMP-2 activity completely at 0.05%. Quercetin inhibited HGF-mediated collagen degradation at 0.005, 0.01 and 0.02%, and MMP-2 activity in a dose-dependent manner. Calendula inhibited HGF-mediated collagen degradation and MMP-2 activity more than the same correlated concentration of pure quercetin. Calendula inhibits HGF-mediated collagen degradation and MMP-2 activity more than the corresponding concentration of quercetin. This may be attributed to additional components in Calendula other than quercetin. Published by Elsevier Ltd.

  19. Modulating Endogenous Electric Currents in Human Corneal Wounds—A Novel Approach of Bioelectric Stimulation Without Electrodes

    Science.gov (United States)

    Reid, Brian; Graue-Hernandez, Enrique O.; Mannis, Mark J.; Zhao, Min

    2011-01-01

    Purpose To measure electric current in human corneal wounds and test the feasibility of pharmacologically enhancing the current to promote corneal wound healing. Methods Using a noninvasive vibrating probe, corneal electric current was measured before and after wounding of the epithelium of donated postmortem human corneas. The effects of drug aminophylline and chloride-free solution on wound current were also tested. Results Unwounded cornea had small outward currents (0.07 μA/cm2). Wounding increased the current more than 5 fold (0.41 μA/cm2). Monitoring the wound current over time showed that it seemed to be actively regulated and maintained above normal unwounded levels for at least 6 hours. The time course was similar to that previously measured in rat cornea. Drug treatment or chloride-free solution more than doubled the size of wound currents. Conclusions Electric current at human corneal wounds can be significantly increased with aminophylline or chloride-free solution. Because corneal wound current directly correlates with wound healing rate, our results suggest a role for chloride-free and/or aminophylline eyedrops to enhance healing of damaged cornea in patients with reduced wound healing such as the elderly or diabetic patient. This novel approach offers bioelectric stimulation without electrodes and can be readily tested in patients. PMID:21099404

  20. Transcriptional Analysis of Normal Human Fibroblast Responses to Microgravity Stress

    Institute of Scientific and Technical Information of China (English)

    Yongqing Liu; Eugenia Wang

    2008-01-01

    To understand the molecular mechanism (s) of how spaceflight affects cellular signaling pathways, quiescent normal human WI-38 fibroblasts were flown on the STS-93 space shuttle mission. Subsequently, RNA samples from the space flown and ground-control cells were used to construct two cDNA libraries, which were then processed for suppression subtractive hybridization (SSH) to identify spaceflight-specific gene expression. The SSH data show that key genes related to oxidative stress, DNA repair, and fatty acid oxidation are activated by spaceflight, suggesting the induction of cellular oxidative stress. This is further substantiated by the up-regulation of neuregulin 1 and the calcium-binding protein calmodulin 2. Another obvious stress sign is that spaceflight evokes the Ras/mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling pathways, along with up-regulating several G1-phase cell cycle traverse genes. Other genes showing up regulation of expression are involved in protein synthesis and pro-apoptosis, as well as pro-survival. Interactome analysis of functionally related genes shows that c-Myc is the "hub" for those genes showing significant changes. Hence, our results suggest that microgravity travel may impact changes in gene expression mostly associated with cellular stress signaling, directing cells to either apoptotic death or premature senescence.

  1. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    Science.gov (United States)

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  2. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2015-12-01

    Full Text Available BACKGROUND Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. METHODS In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. RESULTS Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1- fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity CONCLUSIONS Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  3. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2014-08-01

    Full Text Available Background Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. Methods In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. Results Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1-fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity Conclusions Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  4. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  5. Discovery of molecular markers to discriminate corneal endothelial cells in the human body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Clevers, J.C.; van de Wetering, M.L.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  6. Discovery of molecular markers to discriminate corneal endothelial cells in the human body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Clevers, J.C.; van de Wetering, M.L.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant nu

  7. [Effects of culture supernatant of human amnion mesenchymal stem cells on biological characteristics of human fibroblasts].

    Science.gov (United States)

    Wu, Qi'er; Lyu, Lu; Xin, Haiming; Luo, Liang; Tong, Yalin; Mo, Yongliang; Yue, Yigang

    2016-06-01

    To investigate the effects of culture supernatant of human amnion mesenchymal stem cells (hAMSCs-CS) on biological characteristics of human fibroblasts. (1) hAMSCs were isolated from deprecated human fresh amnion tissue of placenta and then sub-cultured. The morphology of hAMSCs on culture day 3 and hAMSCs of the third passage were observed with inverted phase contrast microscope. (2) Two batches of hAMSCs of the third passage were obtained, then the expression of vimentin of cells was observed with immunofluorescence method, and the expression of cell surface marker CD90, CD73, CD105, and CD45 was detected by flow cytometer. (3) hAMSCs-CS of the third passage at culture hour 72 were collected, and the content of insulin-like growth factor Ⅰ (IGF-Ⅰ), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF) were detected by enzyme-linked immunosorbent assay. (4) Human fibroblasts were isolated from deprecated human fresh prepuce tissue of circumcision and then sub-cultured. Human fibroblasts of the third passage were used in the following experiments. Cells were divided into blank control group and 10%, 30%, 50%, and 70% hAMSCs-CS groups according to the random number table (the same grouping method below), with 48 wells in each group. Cells in blank control group were cultured with DMEM/F12 medium containing 2% fetal bovine serum (FBS), while cells in the latter 4 groups were cultured with DMEM/F12 medium containing corresponding volume fraction of hAMSCs-CS and 2% FBS. The proliferation activity of cells was detected by cell counting kit 8 and microplate reader at culture hour 12, 24, 48, and 72, respectively, and corresponding volume fraction of hAMSCs-CS which causing the best proliferation activity of human fibroblasts was used in the following experiments. (5) Human fibroblasts were divided into blank control group and 50% hAMSCs-CS group and treated as in (4), with 4 wells in each group, at post

  8. A Human Corneal Epithelial Cell Line Model for Limbal Stem Cell Biology and Limbal Immunobiology.

    Science.gov (United States)

    Shaharuddin, Bakiah; Ahmad, Sajjad; Md Latar, Nani; Ali, Simi; Meeson, Annette

    2016-10-14

    : Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue. Limbal stem cell deficiency is a painful eye condition caused by abnormal maintenance of limbal stem cells. It is treated by transplantation of limbal epithelial cells derived from human tissue. The success of this treatment depends of the quality of the cells transplanted; however, some transplants fail. Understanding more about the immunobiology of these cells within the transplants could

  9. Regeneration and control of human fibroblast cell density by intermittently delivered pulsed electric fields.

    Science.gov (United States)

    Golberg, Alexander; Bei, Marianna; Sheridan, Robert L; Yarmush, Martin L

    2013-06-01

    Proliferative scarring is a human disease with neither available effective treatment nor relevant animal model. One of the hypotheses for scar formation involves deregulation of fibroblast signaling and delayed apoptosis. Here, we introduce a new chemical-free method for fibroblast density control in culture by intermittently delivered pulsed electric fields (IDPEF), which cause irreversible damage to cell membranes. Using 5-100 pulses with electric field strength of 150 V/mm, pulse duration 70 µs, and frequency of 1 Hz, we investigated the effects of PEF application on growth, death, and regeneration of normal human dermal fibroblasts in culture. We found that the fraction of fibroblasts that survive depends on the number of pulses applied and follows a Weibull distribution. We have successfully developed an IDPEF protocol that controls fibroblasts density in culture. Specifically, through application of IDPEF every 72 h for 12 days, we maintain a normal human dermal fibroblast density in the 3.1 ± 0.2 × 10(5) -1.4 ± 0.2 × 10(5)  cell/mL range. Our results suggest that IDPEFs may prove useful as a non-chemical method for fibroblast density control in human wound healing.

  10. Interleukin-19 Downregulates Interleukin-4-Induced Eotaxin Production in Human Nasal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Masaaki Higashino

    2011-01-01

    Conclusions: These results suggest that IL-19 down-regulates IL-4-induced eotaxin production via SOCS-1 in human nasal fibroblasts. In non-hematopoietic cells in AR, IL-19 might be an immunosuppressive factor.

  11. The Preliminary Study of Interferon-γGene Transfection to Human Tenon's Capsule Fibroblasts in Vitro#

    Institute of Scientific and Technical Information of China (English)

    Yuqing Lan; Jian Ge; Mingkai Lin; Jianliang Zheng; Huiyi Chen; Haiquan Liu; Jing Wei; Yanyan Li

    2000-01-01

    Purpose: To investigate the results of the interferon-gamma(IFN-y) gene transfer and transient expression in human Tenon's capsule fibroblast in vitro in order to find a way to gene therapy in vivo. Method: Using LipofectAMINE, IFN-γ gene was transferred in human Tenon's capsule fibroblasts with plasmid pcDNA3 IFN-y. Its mRNA transcription and protein expression were determined by RT-PCR and flow cytometry assay respectively.Result: The human Tenon's capsule fibroblasts transferred the IFN-γgene can express the IFN-γin transcription and protein level transiently.Conclusion: IFN-γ gene can be transferred successfully and expressed efficiently in human tenon's capsule fibroblast in vitro.

  12. MicroRNA signature in wound healing following excimer laser ablation: role of miR-133b on TGFβ1, CTGF, SMA, and COL1A1 expression levels in rabbit corneal fibroblasts.

    Science.gov (United States)

    Robinson, Paulette M; Chuang, Tsai-Der; Sriram, Sriniwas; Pi, Liya; Luo, Xiao Ping; Petersen, Bryon E; Schultz, Gregory S

    2013-10-23

    The role of microRNA (miRNA) regulation in corneal wound healing and scar formation has yet to be elucidated. This study analyzed the miRNA expression pattern involved in corneal wound healing and focused on the effect of miR-133b on expression of several profibrotic genes. Laser-ablated mouse corneas were collected at 0 and 30 minutes and 2 days. Ribonucleic acid was collected from corneas and analyzed using cell differentiation and development miRNA PCR arrays. Luciferase assay was used to determine whether miR-133b targeted the 3' untranslated region (UTR) of transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF) in rabbit corneal fibroblasts (RbCF). Quantitative real-time PCR (qRT-PCR) and Western blots were used to determine the effect of miR-133b on CTGF, smooth muscle actin (SMA), and collagen (COL1A1) in RbCF. Migration assay was used to determine the effect of miR-133b on RbCF migration. At day 2, 37 of 86 miRNAs had substantial expression fold changes. miR-133b had the greatest fold decrease at -14.33. Pre-miR-133b targeted the 3' UTR of CTGF and caused a significant decrease of 38% (P wound healing, suggesting novel miRNA targets to reduce scar formation.

  13. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    OpenAIRE

    2011-01-01

    International audience; This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarifi...

  14. Binding, uptake, and release of nicotine by human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, P.J.; Schuster, G.S.; Lubas, S. (Medical College of Georgia, Augusta (USA))

    1991-02-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4{degree}C using a mixture of {sup 3}H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between {sup 3}H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37{degree}C after treating cells with {sup 3}H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours.

  15. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...... collagen fibrillogenesis similar to that of developing tendon, which implies that the hormonal/mechanical milieu, rather than intrinsic cellular function, inhibits regenerative potential in mature tendon.......Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts...... to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned...

  16. ROS, MAPK/ERK and PKC play distinct roles in EGF-stimulated human corneal cell proliferation and migration.

    Science.gov (United States)

    Huo, Y-N; Chen, W; Zheng, X-X

    2015-11-08

    Cornea is at the outermost surface of eye globe, and it easily receives damage from ultraviolet light exposure, physiology wounding, and infections. It is essential to understand the mechanisms controlling human corneal epithelial (HCE) cell proliferation and wound healing. Epidermal growth factor (EGF) could stimulate cell proliferation and migration in various cell types. Therefore, we investigated the roles and mechanisms of EGF on HCE cell proliferation and migration. CCK-8 kit and wound healing experiment were used to investigate HCE cell proliferation and cell migration, respectively. ROS activity was quantified by DCFDA and flow cytometry. Western blot and Q-PCR were performed to examine protein and RNA levels. EGF could promote HCE cell proliferation and migration in both physiology status and UV irradiation conditions, which is used to mimic the disease condition in human corneal epithelial cells. Interestingly, the promotion effect of EGF on HCE cell proliferation is mainly mediated by activated ROS signaling under disease condition. However, the EGF function is mediated by ROS and MAPK/ERK pathway in EGF-treated corneal epithelial cells in physiology status, in which ROS and MAPK/ERK pathway have no mutual influence on the other signaling pathway in EGF-stimulated corneal epithelial cells. We also revealed that MAPK/ERK pathway instead of ROS mediates EGF-stimulated HCE cell migration. Interestingly, we found that PKC proteins were downregulated by EGF in HCE cells that is partially mediated by ROS signaling, while PKC pathway was not involved in EGF-stimulated corneal cell proliferation and migration. EGF promotes human corneal cell proliferation and migration both in physiology and disease conditions, and ROS, MAPK/ERK and PKC pathways play different roles in these processes.

  17. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  18. Hepatocyte differentiation of human fibroblasts from cirrhotic liver in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Yu-Ling Sun; Sheng-Yong Yin; Lin Zhou; Hai-Yang Xie; Feng Zhang; Li-Ming Wu; Shu-Sen Zheng

    2011-01-01

    BACKGROUND: Mesenchymal stem cells (MSCs) and fibro-blasts have intimate relationships, and the phenotypic homology between fibroblasts and MSCs has been recently described. The aim of this study was to investigate the hepatic differentiating potentialofhumanfibroblastsincirrhoticliver. METHODS: The phenotypes of fibroblasts in cirrhotic liver were labeled by biological methods. After that, the differentiation potential of these fibroblasts in vitro was characterized in terms of liver-specific gene and protein expression. Finally, an animal model of hepatocyte regeneration in severe combined immunodeficient (SCID) mice was created by retrorsine injection and partial hepatectomy, and the expression of human hepatocyte proteins in SCID mouse livers was checked by immunohistochemicalanalysisafterfibroblastadministration. RESULTS: Surface immunophenotyping revealed that a minority of fibroblasts expressed markers of MSCs and hepatic epithelial cytokeratins as well as alpha-smooth muscle actin, but homogeneously expressed vimentin, desmin, prolyl 4-hydroxylase and fibronectin. These fibroblasts presented the characteristics of hepatocytes in vitro and differentiated directly into functional hepatocytes in the liver of hepatecto-mized SCID mice. CONCLUSIONS: This study demonstrated that fibroblasts in cirrhotic liver have the potential to differentiate into hepatocyte-like cells in vitro and in vivo. Our findings infer that hepatic differentiation of fibroblasts may serve as a new target for reversion of liver fibrosis and a cell source for tissue engineering.

  19. Expression of vitamin D receptor and cathelicidin in human corneal epithelium cells during fusarium solani infection.

    Science.gov (United States)

    Cong, Lin; Xia, Yi-Ping; Zhao, Gui-Qiu; Lin, Jing; Xu, Qiang; Hu, Li-Ting; Qu, Jian-Qiu; Peng, Xu-Dong

    2015-01-01

    To observe the expression of vitamin D receptor (VDR) in human specimen and immortalized human corneal epithelium cells (HCEC) when challenged with fusarium solani. Moreover, we decided to discover the pathway of VDR expression. Also, we would like to detect the expression of cathelicidin antimicrobial peptide (CAMP) in the downstream pathway of VDR. Immunohistochemistry was used to examine the VDR expression in HCEC from healthy and fungal keratitis patients. Real time quantitative polymerase chain reaction (qPCR) was performed to observe the messenger ribonucleic acid (mRNA) change of VDR when immortalized HCEC were challenged with fusarium solani for different hours. CAMP was detected at both mRNA and protein levels. We found out that the VDR expression in fusarium solani keratitis patients' specimen was much more than that in healthy people. The mRNA and protein expression of VDR increased when we stimulated HCEC with fusarium solani antigen (Pfusarium solani antigen stimulation (Pfusarium solani antigen.

  20. Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rachel C Williams

    Full Text Available Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts.We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts.We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival

  1. The modelling of the influence of a corneal geometry on the pupil image of the human eye

    Science.gov (United States)

    Szczesna, D. H.; Kasprzak, H. T.

    2006-07-01

    In normal conditions, a pupil of the eye is observed through the optical system of the cornea. The cornea is the anterior surface of the eye and is the major refractive element of the human eye. The influence of the corneal shape should not be neglected in measurements of the pupil size. The purpose of this study was to estimate the influence of the corneal geometry, the diameter of the pupil and its position in the anterior chamber on the magnification and position of the image of the pupil. The numerical calculations presented in the paper assume infinitely thin cornea, and the corneal topography was approximated by the elongated ellipsoid. The ray tracing procedure was used in our numerical modelling. The magnification of the pupil image amounted to about 10% and increases with decrease of radius of curvature and eccentricity of the corneal profile and decreases for the largest pupil. The results show also that the pupil image is placed nearer the corneal apex than the real pupil. The image of the pupil is always blurred, which limits the sharp observation of the pupil.

  2. Normal human fibroblasts produce membrane-bound and soluble isoforms of FGFR-1.

    Science.gov (United States)

    Root, L L; Shipley, G D

    2000-02-01

    Fibroblast growth factors (FGFs) are polypeptide mitogens for a wide variety of cell types and are involved in other processes such as angiogenesis and cell differentiation. FGFs mediate their biological responses by activating high-affinity tyrosine kinase receptors. Currently, there are four human fibroblast growth factor receptor (FGFR) genes. To investigate the mechanisms by which alpha FGF and beta FGF may mediate mitogenic signal transduction in human skin-derived fibroblasts, we analyzed these cells for the presence of high-affinity FGFRs. We show that normal human dermal fibroblasts express a single high-affinity FGFR gene, FGFR-1. Cloning and sequencing of two distinct FGFR-1 cDNAs suggested that normal human dermal fibroblasts express a membrane-bound and a putatively secreted form of FGFR-1. We show that normal human dermal fibroblasts produce two FGFR-1 proteins, one of which exists in conditioned media. The mRNA for the putatively secreted form of FGFR-1 appears to be down-regulated by serum treatment of the cells.

  3. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling.

    Science.gov (United States)

    Bath, Chris

    2013-06-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity. Since the first successful treatment of LSCD by transplantation of ex vivo expanded LESCs in 1997, many attempts have been carried out to optimize culture conditions to improve the outcome of surgery. To date, progress in this field of bioengineering is substantially hindered by both the lack of specific biomarkers of LESCs and the lack of a precise molecular characterization of in situ epithelial subpopulations. The aim of this dissertation was to optimize culture systems with regard to the environmental oxygen concentration for selective ex vivo expansion of LESCs and to analyse in situ subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum-free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes and cytomorphometry. Limbal epithelial cells expanded in 2% O2 exhibited slow growth, low fraction of cells in S/G2 , high CFE, high expression of stem cell markers ABCG2 and p63α, and low fraction of differentiation marker CK3 resembling a LESC phenotype. The effect of hypoxia to maintain LESCs in culture was not dependent on the system used for propagation (Bath et al. 2013a). Laser capture microdissection was used to isolate cellular subpopulations in situ from the spatially defined

  4. Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia.

    Directory of Open Access Journals (Sweden)

    Francisco Cavas-Martínez

    Full Text Available AIM: To establish a new procedure for 3D geometric reconstruction of the human cornea to obtain a solid model that represents a personalized and in vivo morphology of both the anterior and posterior corneal surfaces. This model is later analyzed to obtain geometric variables enabling the characterization of the corneal geometry and establishing a new clinical diagnostic criterion in order to distinguish between healthy corneas and corneas with keratoconus. METHOD: The method for the geometric reconstruction of the cornea consists of the following steps: capture and preprocessing of the spatial point clouds provided by the Sirius topographer that represent both anterior and posterior corneal surfaces, reconstruction of the corneal geometric surfaces and generation of the solid model. Later, geometric variables are extracted from the model obtained and statistically analyzed to detect deformations of the cornea. RESULTS: The variables that achieved the best results in the diagnosis of keratoconus were anterior corneal surface area (ROC area: 0.847, p<0.000, std. error: 0.038, 95% CI: 0.777 to 0.925, posterior corneal surface area (ROC area: 0.807, p<0.000, std. error: 0.042, 95% CI: 0,726 to 0,889, anterior apex deviation (ROC area: 0.735, p<0.000, std. error: 0.053, 95% CI: 0.630 to 0.840 and posterior apex deviation (ROC area: 0.891, p<0.000, std. error: 0.039, 95% CI: 0.8146 to 0.9672. CONCLUSION: Geometric modeling enables accurate characterization of the human cornea. Also, from a clinical point of view, the procedure described has established a new approach for the study of eye-related diseases.

  5. Granulocyte macrophage colony stimulating factor (GM-CSF biological actions on human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    S Montagnani

    2009-12-01

    Full Text Available Fibroblasts are involved in all pathologies characterized by increased ExtraCellularMatrix synthesis, from wound healing to fibrosis. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF is a cytokine isolated as an hemopoietic growth factor but recently indicated as a differentiative agent on endothelial cells. In this work we demonstrated the expression of the receptor for GM-CSF (GMCSFR on human normal skin fibroblasts from healthy subjects (NFPC and on a human normal fibroblast cell line (NHDF and we try to investigate the biological effects of this cytokine. Human normal fibroblasts were cultured with different doses of GM-CSF to study the effects of this factor on GMCSFR expression, on cell proliferation and adhesion structures. In addition we studied the production of some Extra-Cellular Matrix (ECM components such as Fibronectin, Tenascin and Collagen I. The growth rate of fibroblasts from healthy donors (NFPC is not augmented by GM-CSF stimulation in spite of increased expression of the GM-CSFR. On the contrary, the proliferation of normal human dermal fibroblasts (NHDF cell line seems more influenced by high concentration of GM-CSF in the culture medium. The adhesion structures and the ECM components appear variously influenced by GM-CSF treatment as compared to fibroblasts cultured in basal condition, but newly only NHDF cells are really induced to increase their synthesis activity. We suggest that the in vitro treatment with GM-CSF can shift human normal fibroblasts towards a more differentiated state, due or accompanied by an increased expression of GM-CSFR and that such “differentiation” is an important event induced by such cytokine.

  6. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  7. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes

    NARCIS (Netherlands)

    El Ghalbzouri, A; Jonkman, MF; Dijkman, R; Ponec, M

    2005-01-01

    This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence

  8. Regulation of NAMPT in Human Gingival Fibroblasts and Biopsies

    Directory of Open Access Journals (Sweden)

    Anna Damanaki

    2014-01-01

    Full Text Available Adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT, are molecules, which are produced in adipose tissue. Recent studies suggest that NAMPT might also be produced in the tooth-supporting tissues, that is, periodontium, which also includes the gingiva. The aim of this study was to examine if and under what conditions NAMPT is produced in gingival fibroblasts and biopsies from healthy and inflamed gingiva. Gingival fibroblasts produced constitutively NAMPT, and this synthesis was significantly increased by interleukin-1β and the oral bacteria P. gingivalis and F. nucleatum. Inhibition of the MEK1/2 and NFκB pathways abrogated the stimulatory effects of F. nucleatum on NAMPT. Furthermore, the expression and protein levels of NAMPT were significantly enhanced in gingival biopsies from patients with periodontitis, a chronic inflammatory infectious disease of the periodontium, as compared to gingiva from periodontally healthy individuals. In summary, the present study provides original evidence that gingival fibroblasts produce NAMPT and that this synthesis is increased under inflammatory and infectious conditions. Local synthesis of NAMPT in the inflamed gingiva may contribute to the enhanced gingival and serum levels of NAMPT, as observed in periodontitis patients. Moreover, local production of NAMPT by gingival fibroblasts may represent a possible mechanism whereby periodontitis may impact on systemic diseases.

  9. Activation of the innate immune response against DENV in normal non-transformed human fibroblasts.

    Directory of Open Access Journals (Sweden)

    José Bustos-Arriaga

    2011-12-01

    Full Text Available BACKGROUND: When mosquitoes infected with DENV are feeding, the proboscis must traverse the epidermis several times ("probing" before reaching a blood vessel in the dermis. During this process, the salivary glands release the virus, which is likely to interact first with cells of the various epidermal and dermal layers, cells which could be physiologically relevant to DENV infection and replication in humans. However, important questions are whether more abundant non-hematopoietic cells such as fibroblasts become infected, and whether they play any role in antiviral innate immunity in the very early stages of infection, or even if they might be used by DENV as primary replication cells. METHODOLOGY/PRINCIPAL FINDINGS: Fibroblasts freshly released from healthy skin and infected 12 hours after their isolation show a positive signal for DENV. In addition, when primary skin fibroblast cultures were established and subsequently infected, we showed DENV-2 antigen-positive intracellular signal at 24 hours and 48 hours post-infection. Moreover, the fibroblasts showed productive infection in a conventional plaque assay. The skin fibroblasts infected with DENV-2 underwent potent signaling through both TLR3 and RIG- 1, but not Mda5, triggering up-regulation of IFNβ, TNFα, defensin 5 (HB5 and β defensin 2 (HβD2. In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN regulatory factor 3 (IRF3, but not interferon regulatory factor 7 (IRF7, when compared with mock-infected fibroblasts. CONCLUSIONS/SIGNIFICANCE: In this work, we demonstrated the high susceptibility to DENV infection by primary fibroblasts from normal human skin, both in situ and in vitro. Our results suggest that these cells may contribute to the pro-inflammatory and anti-viral microenvironment in the early stages of interaction with DENV-2. Furthermore, the data suggest that fibroblast may also be used as a primary site of DENV replication and

  10. Aminoguanidine delays the replicative senescence of human diploid fibroblasts

    Institute of Scientific and Technical Information of China (English)

    WANG Pei-chang; ZHANG Jian; ZHANG Zong-yu; TONG Tan-jun

    2007-01-01

    advanced glycation end products; comet assayBackground The accumulation of free radicals and advanced glycation end products (AGEs) in cell plays a very important role in replicative senescence. Aminoguanidine (AG) has potential antioxidant effects and decreases AGE levels. This study aimed to investigate its effect on replicative senescence in vitro.Methods The effects of aminoguanidine on morphology, replicative lifespan, cell growth and proliferation, AGEs, DNA damage, DNA repair ability and telomere length were observed in human fetal lung diploid fibroblasts (2BS).Results Aminoguanidine maintained the non-senescent phenotype of 2BS cells even at late population doubling (PD) and increased cumulative population doublings by at least 17-21 PDs. Aminoguanidine also improved the potentials of growth and proliferation of 2BS cells as detected by the MTT assay. The AGE levels of late PD cells grown from early PD in DMEM containing aminiguanidine decreased significantly compared with those of late PD control cells and were similar to those of young control cells. In addition, the cells pretreated with aminoguanidine had a significant reduction in DNA strand breaks when they were exposed to 200 μmol/L H2O2 for 5 minutes which indicated that the compound had a strong potential to protect genomic DNA against oxidative stress. And most of the cells exposed to 100 μmol/L H2O2 had much shorter comet tails and smaller tail areas after incubation with aminoguanidine-supplemented DMEM, which indicated that the compound strongly improved the DNA repair abilities of 2BS cells. Moreover, PD55 cells grown from PD28 in 2 mmol/L or 4 mmol/L aminoguanidine retain telomere lengths of 7.94 kb or 8.12 kb, which was 0.83 kb or 1.11kb longer than that of the control cells.Conclusion Aminoguanidine delays replicative senescence of 2BS cells and the senescence-delaying effect of aminoguanidine appear to be due to its many biological properties including its potential for proliferation

  11. Preferential gene expression in quiescent human lung fibroblasts.

    Science.gov (United States)

    Coppock, D L; Kopman, C; Scandalis, S; Gilleran, S

    1993-06-01

    The exit from the proliferative cell cycle into a reversible quiescence (G0) is an active process that is not yet well understood at the molecular level. Investigation of G0-specific gene expression is an important step in studying the mechanism regulating the entrance to quiescence. Using the human embryo lung fibroblast (WI38) as a model system, we have isolated complementary DNA clones that are expressed at a higher level in quiescent cells than in logarithmically growing cells. We have identified complementary DNAs from eight genes including collagen alpha 1(VI), collagen alpha 1(III), decorin, complement C1r, collagen alpha 1(I), collagen alpha 2(I), and two novel genes, Q6 and Q10. We have named this class of quiescence-inducible genes quiescins. Expression of these genes was induced just as proliferation slowed, as indicated by the level of histone H2B mRNA, [3H]-thymidine incorporation, and cell number. The level of expression of the novel genes, Q6 and Q10, increased at the same time as the other genes. Q6 has two mRNAs of 3 and 4 kb, whereas Q10 mRNA is about 1.0 kb. The expression of the quiescins was not induced by blocking the cell cycle in S phase with aphidicolin or in G1 with lovastatin. However, the genes were highly induced by trypsinization or scraping of the cells during logarithmic growth. This induction was not blocked by inhibitors of RNA synthesis. The expression of decorin and Q6 was very low in SV40-transformed cells (VA13) either in logarithmic growth or at high density, whereas the gene Q10 was expressed more highly in VA13 than in WI38 cells. The finding that expression of some components of the extracellular matrix is induced as cells enter G0 suggests that they may have a role in both the induction and the maintenance of the quiescent state. The quiescins will serve as molecular markers for the investigation of mechanisms that regulate the onset of quiescence.

  12. Particulate matter contamination in the corneal stroma of severe eye burns in humans

    Energy Technology Data Exchange (ETDEWEB)

    Schrage, N.F.; Reim, M.; Burchard, W.G. (Department of Ophthalmology, RWTH-Aachen (Germany))

    1990-01-01

    Corneal buttons obtained from keratoplasty were examined by energy dispersive x-ray analysis (EDXA) combined with scanning electron microscopy (SEM). This method enables to assay the mineral composition of minute parts of tissue samples identified in SEM images. Samples were cut from paraffin embedded corneae, deparaffinized in xylol, dried in aceton, critical-point desiccated, covered by evaporating with a thin layer of carbon and examined by SEM. In healthy human donor eyes, only some iron particles had been found. In the 22 patients samples high amounts of different particles were identified, materials from rubber stoppers, chromesteel, titanium pigments, talcum, barium and glass. Furthermore a lot of different metal particles containing varying amounts of Na, Mg, Al, Si, P, S, Cl, K, Ca, Fe, Cu, Cr, Zn, La and Ce were detected. Some particles may be caused by the initial trauma, others by therapy. Such contaminations might have supported leucocyte and fibrocyte invasion increasing the inflammatory reaction in the burnt cornea.

  13. Technique of cultivating limbal derived corneal epithelium on human amniotic membrane for clinical transplantation

    Directory of Open Access Journals (Sweden)

    Fatima A

    2006-01-01

    Full Text Available Background : The technique of transplantation of cultivated limbal epithelium rather than direct limbal tissue isa novel method of "cell therapy" involved in reconstructing the ocular surface in severe limbal stem celldeficiency [LSCD], caused by chemical burns. Aim : To describe a simple feeder-cell free technique of cultivating limbal epithelium on human amniotic membrane[HAM]. Materials and Methods : The limbal tissues (2 mm were harvested from patients with LSCD. These tissueswere proliferated in vitro on HAM supplemented by human corneal epithelial cell medium and autologousserum. Cultures covering more ?50% area of 2.5x5 cm HAM were considered adequate for clinical use. Thecultured epithelium was characterized by histopathology and immunophenotyping.Results: A total of 542 cultures out of 250 limbal tissues were cultivated in the laboratory from January 2001through July 2005. The culture explants showed that clusters of cells emerging from the edge of the explantsin one-three days formed a complete monolayer within 10-14 days. In 86% of cultures (464 of 542, thegrowth was observed within one-two days. Successful explant cultures were observed in 98.5% (534 of 542cultures with 91% explant cultures showing an area of ?6.25 cm2 (6.25 - 12.5 cm2 range. The cultivatedepithelium was terminated between 10-14 days for clinical transplantation. The problems encountered wereinadequate growth (2 of 542 and contamination (2 of 542. Conclusions : We demonstrate a simple technique of generating a sheet of corneal epithelium from a limbalbiopsy. This new technique could pave the way for a novel form of cell therapy.

  14. Protection of human corneal epithelial cells from TNF-α-induced disruption of barrier function by rebamipide.

    Science.gov (United States)

    Kimura, Kazuhiro; Morita, Yukiko; Orita, Tomoko; Haruta, Junpei; Takeji, Yasuhiro; Sonoda, Koh-Hei

    2013-04-17

    TNF-α disrupts the barrier function of cultured human corneal epithelial (HCE) cells. We investigated the effects of the cytoprotective drug rebamipide on this barrier disruption by TNF-α as well as on corneal epithelial damage in a rat model of dry eye. The barrier function of HCE cells was evaluated by measurement of transepithelial electrical resistance. The distribution of tight-junction (ZO-1, occludin) and adherens-junction (E-cadherin, β-catenin) proteins, and the p65 subunit of nuclear factor-κB (NF-κB) was determined by immunofluorescence microscopy. Expression of junctional proteins as well as phosphorylation of the NF-κB inhibitor IκB-α and myosin light chain (MLC) were examined by immunoblot analysis. A rat model of dry eye was developed by surgical removal of exorbital lacrimal glands. Rebamipide inhibited the disruption of barrier function as well as the downregulation of ZO-1 expression, and the disappearance of ZO-1 from the interfaces of neighboring HCE cells induced by TNF-α. It also inhibited the phosphorylation and downregulation of IκB-α, the translocation of p65 to the nucleus, the formation of actin stress fibers, and the phosphorylation of MLC induced by TNF-α in HCE cells. Treatment with rebamipide eyedrops promoted the healing of corneal epithelial defects as well as attenuated the loss of ZO-1 from the surface of corneal epithelial cells in rats. Rebamipide protects corneal epithelial cells from the TNF-α-induced disruption of barrier function by maintaining the distribution and expression of ZO-1 as well as the organization of the actin cytoskeleton. Rebamipide is, thus, a potential drug for preventing or ameliorating the loss of corneal epithelial barrier function associated with ocular inflammation.

  15. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  16. Comparison of cytotoxicity and wound healing effect of carboxymethylcellulose and hyaluronic acid on human corneal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jong; Soo; Lee; Seung; Uk; Lee; Cheng-Ye; Che; Ji-Eun; Lee

    2015-01-01

    AIM: To investigate the cytotoxic effect on human corneal epithelial cells(HCECs) and the ability to faciliate corneal epithelial wound healing of carboxymethylcellulose(CMC) and hyaluronic acid(HA).METHODS: HCECs were exposed to 0.5% CMC(Refresh plus, Allergan, Irvine, California, USA) and 0.1% and 0.3%HA(Kynex , Alcon, Seoul, Korea, and Hyalein mini,Santen, Osaka, Japan) for the period of 30 min, and 4, 12,and 24 h. Methyl thiazolyl tetrazoiun(MTT)-based calorimetric assay was performed to assess the metabolic activity of cellular proliferation and lactate dehydrogenase(LDH) leakage assay to assess the cytotoxicity. apoptotic response was evaluated with flow cytometric analysis and fluorescence staining with Annexin V and propiodium iodide. Cellular morphology was evaluated by inverted phase-contrast light microscopy and electron microscopy. The wound widths were measured 24 h after confluent HCECs were scratch wounded.RESULTS: The inhibitory effect of human corneal epithelial proliferation and cytotoxicity showed the time-dependent response but no significant effect. Apoptosis developed in flow cytometry and apoptotic cells weredemonstrated in fluorescent micrograph. The damaged HCECs were detached from the bottom of the dish and showed the well-developed vacuole formations. Both CMC and HA stimulated reepithehlialization of HCECs scratched, which were more observed in CMC.CONCLUSION: CMC and HA, used in artificial tear formulation, could be utilized without any significant toxic effect on HCECs. Both significantly stimulated HCEC reepithelialization of corneal wounds.

  17. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors.

    Directory of Open Access Journals (Sweden)

    Hidetatsu Outani

    Full Text Available The repair of large cartilage defects with hyaline cartilage continues to be a challenging clinical issue. We recently reported that the forced expression of two reprogramming factors (c-Myc and Klf4 and one chondrogenic factor (SOX9 can induce chondrogenic cells from mouse dermal fibroblast culture without going through a pluripotent state. We here generated induced chondrogenic (iChon cells from human dermal fibroblast (HDF culture with the same factors. We developed a chondrocyte-specific COL11A2 promoter/enhancer lentiviral reporter vector to select iChon cells. The human iChon cells expressed marker genes for chondrocytes but not fibroblasts, and were derived from non-chondrogenic COL11A2-negative cells. The human iChon cells formed cartilage but not tumors in nude mice. This approach could lead to the preparation of cartilage directly from skin in human, without going through pluripotent stem cells.

  18. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Mona Alibolandi

    2011-01-01

    Full Text Available This work describes the integration of expanded bed adsorption (EBA and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution.

  19. Centrifugal force induces human ligamentum flavum fibroblasts inflammation through activation of JNK and p38 pathways.

    Science.gov (United States)

    Chao, Yuan-Hung; Tsuang, Yang-Hwei; Sun, Jui-Sheng; Sun, Man-Ger; Chen, Ming-Hong

    2012-01-01

    Inflammation has been proposed to be an important causative factor in ligamentum flavum hypertrophy. However, the mechanisms of mechanical load on inflammation of ligamentum flavum remain unclear. In this study, we used an in vitro model of human ligamentum flavum fibroblasts subjected to centrifugal force to elucidate the effects of mechanical load on cultured human ligamentum flavum fibroblasts; we further studied its molecular and biochemical mechanisms. Human ligamentum flavum fibroblasts were obtained from six patients undergoing lumbar spine surgery. Monolayer cultures of human ligamentum flavum fibroblasts were subjected to different magnitudes of centrifugal forces. Cell viability, cell death, biochemical response, and molecular response to centrifugal forces were analyzed. It was found that centrifugal stress significantly suppressed cell viability without inducing cell death. Centrifugal force at 67.1 g/cm(2) for 60 min significantly increases the production of prostaglandin E2 and nitric oxide as well as gene expression of proinflammatory cytokines, including interleukin (IL)-1α, IL-1β and IL-6, showed that centrifugal force-dependent induction of cyclooxygense-2 and inducible NO synthase required JNK and p38 mitogen-activated protein kinase, but not ERK 1/2 activities. This study suggested that centrifugal force does induce inflammatory responses in human ligamentum flavum fibroblasts. The activation of both JNK and p38 mitogen-activated protein kinase mechanotransduction cascades is a crucial intracellular mechanism that mediates cyclooxygense-2/prostaglandin E2 and inducible NO synthase/nitric oxide production.

  20. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Lucia Pagani

    Full Text Available BACKGROUND: Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype ("larks" and "owls", clock properties measured in human fibroblasts correlated with extreme diurnal behavior. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. CONCLUSIONS/SIGNIFICANCE: We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness.

  1. Effect of basic fibroblast growth factor on corneal endothelial cell damage after cataract surgery%bFGF改善白内障手术引发角膜内皮损伤

    Institute of Scientific and Technical Information of China (English)

    孙丹宇; 包赫; 姜仕先

    2016-01-01

    目的:探究碱性成纤维细胞生长因子(bFGF)对白内障手术引发角膜内皮损伤修复的作用。方法采用超声乳化摘除30只兔子(60眼)的晶体,将其分为2组,随机分为bFGF治疗组和对照组。bFGF治疗组滴用bFGF眼用凝胶,对照组滴用相同体积的生理盐水,分别每天滴用3次。观察记录2组眼睛消肿的时间;在手术后不同时间,分别检测2组切口的愈合面积、角膜厚度、角膜内皮细胞密度,分别取各组前房水,检测各组前房水中NO、IL-1、IL-6和TNF-α的含量。结果 bFGF治疗组的眼睛消肿时间较对照组显著减少(P<0.05);bFGF治疗加速了切口愈合速率、角膜厚度和角膜内皮细胞密度的恢复及前房水内NO、IL-1、IL-6和TNF-α的减少。结论 bFGF可改善白内障手术引起的角膜内皮细胞损伤。%Objective To explore the effect of basic fibroblast growth factor (bFGF)on corneal endothelial cell damage after cataract surgery.Methods Thirty rabbits (60 eyes)whose lens extraction were done by phacoemulsification were divided into 2 groups,namely,bF-GF treatment group and control group.bFGF ophthalmic gel was used to treat the eyes 3 times daily in bFGF treatment group,and the saline of the same volume was used to treat the eyes in control group.The time of corneal edema subsidence was recorded;the healing area of inci-sion,corneal thickness,the density of corneal endothelial cells and the NO,IL-1 ,IL-6 and TNF-αcontents of the aqueous sample in anterior chamber were measured.Results The time of corneal edema subsidence of bFGF treatment group decreased significantly compared with con-trol group;bFGF treatment accelerated the healing rate of incision,the recovery of corneal thickness and the density of corneal endothelial cells and the decrease of the NO,IL-1 IL-6 and TNF-αcontents of the aqueous sample in anterior chamber.Conclusion bFGF treatment can accelerate the recovery of the corneal

  2. Preferential attachment of human gingival fibroblasts to the resin ionomer Geristore.

    Science.gov (United States)

    Al-Sabek, Fuwad; Shostad, Sandra; Kirkwood, Keith L

    2005-03-01

    The resin ionomer Geristore has been used extensively for root perforation repairs. The purpose of this study was to evaluate oral in vitro biocompatibility of the resin ionomer Geristore compared to two other dental perforation repair materials, Ketac-Fil and Immediate Restorative Material (IRM). Growth and morphology of human gingival fibroblasts (HGFs) was determined using scanning electron microscopy (SEM) of HGFs cells grown on test materials as well as cytotoxicity assays using eluates from test materials. SEM analysis showed that HGFs attached and spread well over Geristore with relatively normal morphology. SEM showed that fibroblasts did not attach and spread well over Ketac-Fil or IRM as cells appeared much fewer with rounded and different morphology than fibroblasts grown on Geristore. Cytotoxicity assays indicated that HGFs proliferated in the presence of Geristore eluates and not in the presence of Ketac-Fil or IRM eluates. In vitro interpretation indicates that Geristore is less cytotoxic to gingival fibroblasts.

  3. Effects of biophysical and biochemical cues on human corneal epithelial cell behavior

    Science.gov (United States)

    Tocce, Elizabeth J.

    2011-12-01

    Recent advances in the design of biomaterials aim at mimicking the natural biophysical and biochemical components found in a tissue's extracellular environment (ECM). Of particular interest in this work is mimicking the specialized ECM of the human corneal epithelium called the basement membrane (BM) and understanding how corneal epithelial cells (HCECs) respond to biophysical and biochemical cues. To this end, well defined topographic features with dimension of the BM (20 to 200 nm) were fabricated to support controlled cell interactions with biochemical motifs (e.g., adhesive peptide ligands) found in the BM. Here, features of 30 to 70 nm that represent the smallest features found in the BM were used to demonstrate that the smallest features that HCECs can recognize are 30 and 45 nm, depending on the soluble environment. In addition, HCECs demonstrate contact guidance on the smallest BM features (30 to 70 nm) and on the largest BM features (200 nm), but differs from contact guidance on micron-scale features, suggesting that BM scale topography scale is an influential factor in regulating HCEC behavior. To study the simultaneous presentation of biophysical and biochemical cues, topographic features are coated with thin films using a layer-by-layer deposition of covalently reacting polymers, poly(ethylene imine) and poly(2-vinyl-4,4-dimethylazlactone (PEI/PVDMA). The films are functionalized with the bioactive peptide argenine-glycine-aspartic acid (RGD) to control cell-substrate interactions. We demonstrate that PEI/PVDMA films can be functionalized with monotonically increasing densities of ROD to control HCEC attachment and proliferation. In addition PEI/PVDMA films functionalized with RGD were used to demonstrate that HCEC response to topographic cues is dependent on the scale of the topography, the surface chemical composition and the soluble environment. Results from these studies will advance the understanding of how BM-relevant biophysical and biochemical

  4. Corneal Laceration

    Medline Plus

    Full Text Available ... your vision. Privacy Policy Related People with Advanced Keratoconus May Have A Future Alternative to Full Corneal ... 2016 Corneal Collagen Cross-linking Approved to Treat Keratoconus in U.S. Aug 01, 2016 Firework Blinds Teenager, ...

  5. Corneal Laceration

    Medline Plus

    Full Text Available ... lost sight from a corneal scar as a child. Now that I’m older, will a corneal transplant help me? May 15, 2015 Why Do My Eyes Burn After Inserting My Contacts? Feb 27, 2015 Dark ...

  6. Haemophilus ducreyi hemolysin acts as a contact cytotoxin and damages human foreskin fibroblasts in cell culture.

    OpenAIRE

    Alfa, M J; DeGagne, P; Totten, P A

    1996-01-01

    Haemophilus ducreyi, which causes the sexually transmitted disease chancroid, produces several factors that damage human cells. We used isogenic mutants of H. ducreyi 35000 to demonstrate that the hemolytic activity and the cytotoxic effect of H. ducreyi on human foreskin fibroblasts are due to the same toxin.

  7. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Maucksch C

    2012-01-01

    Full Text Available Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP-expressing astrocytes. This study represents a novel virus-free approach for direct reprogramming of human fibroblasts to a neural precursor fate.

  8. Maintenance of telomeres in SV40-transformed pre-immortal and immortal human fibroblasts.

    Science.gov (United States)

    Small, M B; Hubbard, K; Pardinas, J R; Marcus, A M; Dhanaraj, S N; Sethi, K A

    1996-09-01

    Shortening of telomeres has been hypothesized to contribute to cellular senescence and may play a role in carcinogenesis of human cells. Furthermore, activation of telomerase has frequently been demonstrated in tumor-derived and in vitro immortalized cells. In this study, we have assessed these phenomena during the life span of simian virus 40 (SV40)-transformed preimmortal and immortal human fibroblasts. We observed progressive reduction in telomere length in preimmortal transformed cells with extended proliferative capacity, with the most dramatic shortening at late passage. Telomere lengths became stabilized (or increased) in immortal fibroblasts accompanied, in one case, by the activation of telomerase. However, an independent immortal cell line that displayed stable telomeres did not have detectable telomerase activity. Furthermore, we found significant telomerase activity in two preimmortal derivatives. Our results provide further evidence for maintenance of telomeres in immortalized human fibroblasts, but they suggest a lack of causal relationship between telomerase activation and immortalization.

  9. Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.

    Science.gov (United States)

    Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu

    2003-04-01

    A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.

  10. Corneal Abrasions

    Science.gov (United States)

    ... and lead to a serious condition called a corneal ulcer . That's why it's important to see a doctor to get a corneal abrasion checked out. What Causes a Corneal ... and land on your cornea, tears help to wash the particles away. Sometimes, ...

  11. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    Science.gov (United States)

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  12. Protective effect of oat bran extracts on human dermal fibroblast injury induced by hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    Bing FENG; Lai-ji MA; Jin-jing YAO; Yun FANG; Yan-ai MEI; Shao-min WEI

    2013-01-01

    Oat contains different components that possess antioxidant properties;no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level.Therefore,the present study focuses on the investigation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide(H2O2).Kjeldahl determination,phenol-sulfuric acid method,and high-performance liquid chromatography(HPLC)analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%,of which 97.43% are peptides with a molecular range from 438.56 to 1301.01 Da.Assays for 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical scavenging activity indicate that oat peptide-rich extract has a direct and concentration-dependent antioxidant activity.3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling(TUNEL)assay for apoptosis showed that administration of H2O2 in human dermal fibroblasts caused cell damage and apoptosis.Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H2O2,but application oat peptides with H2O2 at same time did not.Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H2O2-induced decrease of superoxide dismutase(SOD)and the inhibition of malondialdehyde(MDA).The results demonstrate that oat peptides possess antioxidant activity and are effective against H2O2-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level.Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury.

  13. Secretome Analysis of Human Primary Fibroblasts Undergoing Senescence

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Micutkova, Lucia; Diener, Thomas

    complementary approaches: 1)  Two-dimensional gel electro-phoresis (2DGE) was used to separate proteins and quantitate their expression; selected proteins were identified using mass spectrometry; 2)  Proteins were digested into peptides and analysed using high performance liquid chromatography (HPLC) and mass...... forms of the same protein. Using the gel free approach we were able to identify over 400 proteins and 29 of them showed significant differences in secretion between young and old fibroblasts. Among them MMP-1 was found up regulated and several ECM proteins were found down regulated: lamin A, collagen...

  14. Secretome Analysis of Human Primary Fibroblasts Undergoing Senescence

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Micutkova, Lucia; Diener, Thomas

    metalloproteinases (MMP1, 2 and 3), secreted protein acidic and rich in cysteine (SPARC) and two isoforms of metalloproteinase inhibitors (TIMP1 and 2). Major proteins decreased in senescent secretome were follistatin-like 1 and nucleobindin-1. Over 800 spots were separated by 2DGE of which many represent modified...... alpha-1(XII) chain and fibulin 3. Results obtained until now are in agreement with the suggested shift from matix - synthesizing to matrix - degrading phenotype in senescent fibroblasts except the increased secretion of metalloproteinase inhibitors. Work is going on to identify the remaining...

  15. LR8 Expression in fibroblasts of healthy and fibrotic human tissues.

    Science.gov (United States)

    Etikala, Anusha; Bruce, Greg; Hudkins, Kelly; Narayanan, A S

    2017-07-01

    LR8 gene was first reported in a subpopulation of cultured human lung fibroblasts expressing the receptor for C1q-globular domain, and it was not detectable in cultured endothelial cells and smooth muscle cells. LR8 mRNA levels were higher in fibrotic lungs. In this study we assessed LR8 production in human tissues and determined if the distribution of fibroblasts producing LR8 is affected in fibrosis. Normal and fibrotic tissue sections from human liver, lung and kidneys were immunostained with antibodies to LR8 and examined for the presence of fibroblasts staining positively and negatively. The cells were also examined for co-expression of α-smooth muscle actin (SMA), a marker for myofibroblasts. The results showed that LR8 was expressed by fibroblasts, smooth muscle cells, endothelial cells, bile duct cells, pulmonary alveolar cells and distal and proximal kidney tubule cells. Connective tissues of normal and fibrotic tissues contained fibroblasts staining positively and negatively with anti- LR8 antibody. The number of LR8-positive cells was higher in fibrotic tissues, but differences were not statistically significant. Fibroblasts producing both LR8 and SMA were present in higher numbers in fibrotic tissues as compared to normal tissues and the differences were statistically significant (phuman tissues, and that in fibrotic tissues cells co-expressing LR8 and SMA are present. Our results indicate that LR8 expressing cells may participate in the early stages of fibrotic diseases and that fibroblasts expressing LR8, not LR8 negative cells, have potential to become myofibroblasts in fibrotic tissues.

  16. Galectin-3 Inhibition by a Small-Molecule Inhibitor Reduces Both Pathological Corneal Neovascularization and Fibrosis

    Science.gov (United States)

    Chen*, Wei-Sheng; Cao, Zhiyi; Leffler, Hakon; Nilsson, Ulf J.; Panjwani, Noorjahan

    2017-01-01

    Purpose Corneal neovascularization and scarring commonly lead to significant vision loss. This study was designed to determine whether a small-molecule inhibitor of galectin-3 can inhibit both corneal angiogenesis and fibrosis in experimental mouse models. Methods Animal models of silver nitrate cautery and alkaline burn were used to induce mouse corneal angiogenesis and fibrosis, respectively. Corneas were treated with the galectin-3 inhibitor, 33DFTG, or vehicle alone and were processed for whole-mount immunofluorescence staining and Western blot analysis to quantify the density of blood vessels and markers of fibrosis. In addition, human umbilical vein endothelial cells (HUVECs) and primary human corneal fibroblasts were used to analyze the role of galectin-3 in the process of angiogenesis and fibrosis in vitro. Results Robust angiogenesis was observed in silver nitrate–cauterized corneas on day 5 post injury, and markedly increased corneal opacification was demonstrated in alkaline burn–injured corneas on days 7 and 14 post injury. Treatment with the inhibitor substantially reduced corneal angiogenesis and opacification with a concomitant decrease in α-smooth muscle actin (α-SMA) expression and distribution. In vitro studies revealed that 33DFTG inhibited VEGF-A–induced HUVEC migration and sprouting without cytotoxic effects. The addition of exogenous galectin-3 to corneal fibroblasts in culture induced the expression of fibrosis-related proteins, including α-SMA and connective tissue growth factor. Conclusions Our data provide proof of concept that targeting galectin-3 by the novel, small-molecule inhibitor, 33DFTG, ameliorates pathological corneal angiogenesis as well as fibrosis. These findings suggest a potential new therapeutic strategy for treating ocular disorders related to pathological angiogenesis and fibrosis. PMID:28055102

  17. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.

    Directory of Open Access Journals (Sweden)

    Howard Y Chang

    2004-02-01

    Full Text Available Cancer invasion and metastasis have been likened to wound healing gone awry. Despite parallels in cellular behavior between cancer progression and wound healing, the molecular relationships between these two processes and their prognostic implications are unclear. In this study, based on gene expression profiles of fibroblasts from ten anatomic sites, we identify a stereotyped gene expression program in response to serum exposure that appears to reflect the multifaceted role of fibroblasts in wound healing. The genes comprising this fibroblast common serum response are coordinately regulated in many human tumors, allowing us to identify tumors with gene expression signatures suggestive of active wounds. Genes induced in the fibroblast serum-response program are expressed in tumors by the tumor cells themselves, by tumor-associated fibroblasts, or both. The molecular features that define this wound-like phenotype are evident at an early clinical stage, persist during treatment, and predict increased risk of metastasis and death in breast, lung, and gastric carcinomas. Thus, the transcriptional signature of the response of fibroblasts to serum provides a possible link between cancer progression and wound healing, as well as a powerful predictor of the clinical course in several common carcinomas.

  18. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro.

    Science.gov (United States)

    Wyganowska-Swiatkowska, Marzena; Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology.

  19. Influence of mechanical stimulation on human dermal fibroblasts derived from different body sites.

    Science.gov (United States)

    Kuang, Ruixia; Wang, Zhiguo; Xu, Quanchen; Liu, Su; Zhang, Weidong

    2015-01-01

    Mechanical stimulation is highly associated with pathogenesis of human hypertrophic scar. Although much work has focused on the influence of mechanical stress on fibroblast populations from various tissues and organs in the human body, their effects on cultured dermal fibroblasts by the area of the body have not been as well studied. In this study, cultures of skin fibroblasts from two different body sites were subjected to cyclic mechanical stimulation with a 10% stretching amplitude at a frequency of 0.1 Hz for 24, 36 and 48 hours, respectively, and thereafter harvested for experimental assays. Fibroblasts from scapular upper back skin, subjected to mechanical loads for 36 and 48 hours, respectively, were observed to proliferate at a higher rate and reach confluent more rapidly during in vitro culturing, had higher expression levels of mRNA and protein production of integrin β1, p130Cas and TGF β1 versus those from medial side of upper arm. These data indicate that skin fibroblasts, with regard to originated body sites studied in the experiments, display a diversity of mechanotransduction properties and biochemical reactions in response to applied mechanical stress, which contributes to the increased susceptibility to hypertrophic scars formation at certain areas of human body characterized by higher skin and muscle tension.

  20. Noggin versus basic fibroblast growth factor on the differentiation of human embryonic stem cells*

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Junmei Zhou; Zhenfu Fang; Manxi Jiang; Xuejin Chen

    2013-01-01

    The difference between Noggin and basic fibroblast growth factor for the neural precursor differen-tiation from human embryonic stem cel s has not been studied. In this study, 100 µg/L Noggin or 20 µg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen-tiate human embryonic stem cel s H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro-scope. Immunofluorescence staining revealed expression levels of Nestin,β-III Tubulin and Sox-1 were higher in the induced cel s and reverse-transcription PCR showed induced cel s expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cel differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in-creases the differentiation of neural precursors.

  1. Effect of glutathione on arecanut treated normal human buccal fibroblast culture.

    Directory of Open Access Journals (Sweden)

    Saraswathi T

    2006-01-01

    Full Text Available BACKGROUND: Experimental studies have shown arecanut to be a cytotoxic substance with mutagenic and carcinogenic potential. OBJECTIVE: The present study was undertaken to evaluate the effect of glutathione on arecanut treated human buccal fibroblast culture and its potential as a chemopreventive agent. MATERIALS AND METHODS: Fibroblast culture was done in Dulbecco′s Modified Eagle′s Medium MEM supplemented with 10% Fetal Calf Serum (FCS and antibiotic at 370C degrees in an atmosphere of 5% carbon di-oxide and 95% air. The fibroblast cells were subjected to different concentrations of aqueous extracts of raw and boiled arecanut. Fibroblasts were plated in two 24-well culture plates and in each plate, cells were dividt,ednto 2 groups; 600gg microml of reduced glutathione was added to the first group of cells; subsequently, aqueous extracts of raw and boiled arecanut at least and highest concentrations i.e., 20j. microml and 100lg microml were added to the first group of cells in the respective plates whereas the second group served as a control. The morphological alterations and cell survival were assayed at 24, 48, 72, and 96 hours. Results Morphologically, the initial (10 hours attached fibroblast cells were converted from spheroidal shape towards hexagonal and finally to a fully extended spindle shaped configuration. The three morphological types of fibroblasts at 48 hours were F-I, F-II and F-III. Aqueous extract of raw arecanut exhibited significant cytotoxicity (p < .0 001 at all time periods studied, when compared against the control values of untreated fibroblasts. Addition of reduced glutathione to cultures showed a significant (p < 0. 001 reduction in cytotoxicity, as indicated by higher optical density values and morphological reversion to the spindle-shaped configuration. CoCONCLUSION:Addition of glutathione reduced the cytotoxic and morphological alterations of the fibroblasts treated with aqueous extracts of both raw and boiled

  2. Human cytomegalovirus induces alteration of (-actin mRNA and microfilaments in human embryo fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    林茂芳; 魏国庆; 黄河; 蔡真

    2004-01-01

    Objective: To investigate the infection of human embryo fibroblast cell line HF cells by CMV as well as the effects of CMV on β-actin mRNA and microfilaments. Methods: HF cells shape was observed after the infection of CMV. RT-PCR assay was used to detect the mRNA expression of CMV immediate early (IE) gene, β-actin and GAPDH genes of HF cells infected by CMV. CMV particles and cell microfilaments were detected with electron microscope. Results: Shape of HF cell changed after the infection by CMV. HF cells infected by CMV could express IE mRNA and the expression of β-actin mRNA decreased in a time- and titer-dependent manner compared with the uninfected HF cells whose expression of GAPDH mRNA did not change much. CMV particles were found with electron microscope in the cells. Microfilaments were ruptured and shortened after the infection of CMV. Conclusion: CMV can not only infect human embryo fibroblast cells line HF cells and replicate in the cells, but can also affect the expression of β-actin mRNA and the microfilaments.

  3. Discoidin domain receptors regulate the migration of primary human lung fibroblasts through collagen matrices

    Directory of Open Access Journals (Sweden)

    Ruiz Pedro A

    2012-02-01

    Full Text Available Abstract Background The two discoidin domain receptors (DDRs, DDR1 and DDR2 are receptor tyrosine kinases (RTKs with the unique ability among RTKs to respond to collagen. We have previously shown that collagen I induces DDR1 and matrix metalloproteinase (MMP-10 expression through DDR2 activation and a Janus kinase (JAK2 and extracellular signal-regulated kinase (ERK1/2-mediated mechanism in primary human lung fibroblasts suggesting that these signaling pathways play a role in fibroblast function. Fibroblasts can traverse basement membrane barriers during development, wound healing and pathological conditions such as cancer and fibrosis by activating tissue-invasive programs, the identity of which remain largely undefined. In the present work, we investigated the role of DDRs and DDR-associated signal transduction in these processes. Results Transwell migration experiments showed that normal human lung fibroblast (NHLF transmigration through collagen I-coated inserts is mediated by DDR2 and the DDR2-associated signaling kinases JAK2 and ERK1/2, but not DDR1. Additionally, experiments with specific small interfering (siRNAs revealed that collagen I-induced expression of MMP-10 and MMP-2 is DDR2 but not DDR1 dependent in NHLFs. Our data showed that collagen I increases NHLF migration through collagen IV, the main component of basement membranes. Furthermore, basal and collagen I-induced NHLF migration through collagen IV-coated inserts was both DDR2 and DDR1 dependent. Finally, DDR2, but not DDR1 was shown to be involved in fibroblast proliferation. Conclusions Our results suggest a mechanism by which the presence of collagen I in situations of excessive matrix deposition could induce fibroblast migration through basement membranes through DDR2 activation and subsequent DDR1 and MMP-2 gene expression. This work provides new insights into the role of DDRs in fibroblast function.

  4. The preservative polyquaternium-1 increases cytoxicity and NF-kappaB linked inflammation in human corneal epithelial cells

    OpenAIRE

    Paimela, Tuomas; Ryhänen, Tuomas; Kauppinen, Anu; Marttila, Liisa; Salminen, Antero; Kaarniranta, Kai

    2012-01-01

    Purpose In numerous clinical and experimental studies, preservatives present in eye drops have had detrimental effects on ocular epithelial cells. The aim of this study was to compare the cytotoxic and inflammatory effects of the preservative polyquaternium-1 (PQ-1) containing Travatan (travoprost 0.004%) and Systane Ultra eye drops with benzalkonium chloride (BAK) alone or BAK-preserved Xalatan (0.005% latanoprost) eye drops in HCE-2 human corneal epithelial cell culture. Methods HCE-2 cells...

  5. Quantitative model of cell cycle arrest and cellular senescence in primary human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sascha Schäuble

    Full Text Available Primary human fibroblasts in tissue culture undergo a limited number of cell divisions before entering a non-replicative "senescent" state. At early population doublings (PD, fibroblasts are proliferation-competent displaying exponential growth. During further cell passaging, an increasing number of cells become cell cycle arrested and finally senescent. This transition from proliferating to senescent cells is driven by a number of endogenous and exogenous stress factors. Here, we have developed a new quantitative model for the stepwise transition from proliferating human fibroblasts (P via reversibly cell cycle arrested (C to irreversibly arrested senescent cells (S. In this model, the transition from P to C and to S is driven by a stress function γ and a cellular stress response function F which describes the time-delayed cellular response to experimentally induced irradiation stress. The application of this model based on senescence marker quantification at the single-cell level allowed to discriminate between the cellular states P, C, and S and delivers the transition rates between the P, C and S states for different human fibroblast cell types. Model-derived quantification unexpectedly revealed significant differences in the stress response of different fibroblast cell lines. Evaluating marker specificity, we found that SA-β-Gal is a good quantitative marker for cellular senescence in WI-38 and BJ cells, however much less so in MRC-5 cells. Furthermore we found that WI-38 cells are more sensitive to stress than BJ and MRC-5 cells. Thus, the explicit separation of stress induction from the cellular stress response, and the differentiation between three cellular states P, C and S allows for the first time to quantitatively assess the response of primary human fibroblasts towards endogenous and exogenous stress during cellular ageing.

  6. Bifunctional Effect of Human IFN-γ on Cultured Human Fibroblasts from Tenon‘s Capsule

    Institute of Scientific and Technical Information of China (English)

    YanGuo; JianGe; 等

    2002-01-01

    Purpose:To study the effect of human IFN-γ on in ivtro cultured human fibroblasts from Tenon's capsule.Materials and methods:The effect of different concentrations of human IFN-γand mitomycin-C (MMC),5-fluorouracil(5-Fu) on cultured human Tenon's capsule fibroblasts(HTCF) was measured using a MTT[3-(4,5-dimethylthiazo-2-yI)]-2,5-diphenylterazolium bromide;Thiazolyl blue) colorimetric assay.The results were analyzed using ANOVA of the statistical package for social sciences (SPSS) 9.0 version.The difference was considered to be significant if P<0.05.Results:The effects of MMC and 5-Fu on the growth of HTCF were negative,while the effects of IFN-γon the growth of HTCF were both negative(102-104 units/ml in two experiments)and positive(106,105,10 units /ml in two experiments).The inhibition rate of MMC ranged from 5.73% to 46.9% ,which was similar to the inhibition rate of 5-Fu ranged from 12.49% to 38.92%(P=0.351).The inhibition rate of IFN-γ in two experiments was smaller than MMC and 5-Fu (P<0.05).Conclusion: IFN-γ has bifunctional effect (both enhancement and inhibition)on proliferation of cultured HTCF.The antiproliferative effect of IFN-γ was weaker than MMC and 5-Fu.Further study has to be carried out to document theinhibition of scar formation of filtration bleb by IFN-γ and the molecular mechanisms of its bifunctional effect on HTCF proliferation.Eye Science 2000;16:43-47.

  7. Bifunctional Effect of Human IFN-γon Cultured Human Fibroblasts from Tenon's Capsule

    Institute of Scientific and Technical Information of China (English)

    Yan Guo; Jian Ge; Haiquan Liu; Yanyan Li; Jianliang Zheng; Xiangkun Huang; Yuqing Lan

    2000-01-01

    Purpose: To study the effect of human IFN-γ on in vitro cultured human fibroblasts from Tenon's capsuleMaterials and methods: The effect of different concentrations of human IFN-γ and mitomycin-C (MMC), 5-fluorouracil (5-Fu) on cultured human Tenon's capsule fibroblasts (HTCF) was measured using a MIT [3-(4, 5-dimethylthiazo-2-yl)] -2,5-diphenyltetrazolium bromide; Thiazolyl blue) colorimetric assay. The results were analyzed using ANOVA of the statistical package for social sciences (SPSS) 9.0version. The difference was considered to be significant if P < 0. 05.Results: The effects of MMC and 5-Fu on the growth of HTCF were negative, while the effects of IFN-γ on the growth of HTCF were both negative (102 ~ l04 units/ml in two experiments) and positive (106, 105, 10 units/ml in two experiments) . The inhibition rate of MMC ranged from 5.73% to 46. 9%, which was similar to the inhibition rate of 5-Fu ranged from 12.49% to 38.92% ( P= 0. 351) . The inhibition rate of IFN-γ in two experiments was smaller than MMC and 5-Fu ( P < 0.05).Conclusion: IFN-γ has bifunctional effect (both enhancement and inhibition) on proliferation of cultured HTCF. The antiproliferative effect of IFN-γ was weaker than MMC and 5-Fu. Further study has to be carried out to document the inhibition of scar formation of filtration bleb by IFN-γ and the molecular mechanisms of its bifunctional effect on HTCF proliferation. Eye Science 2000; 16: 43~ 47.

  8. Prostaglandin E₂ inhibits human lung fibroblast chemotaxis through disparate actions on different E-prostanoid receptors.

    Science.gov (United States)

    Li, Ying-Ji; Wang, Xing-Qi; Sato, Tadashi; Kanaji, Nobuhiro; Nakanishi, Masanori; Kim, Miok; Michalski, Joel; Nelson, Amy J; Sun, Jian-Hong; Farid, Maha; Basma, Hesham; Patil, Amol; Toews, Myron L; Liu, Xiangde; Rennard, Stephen I

    2011-01-01

    The migration of fibroblasts is believed to play a key role in both normal wound repair and abnormal tissue remodeling. Prostaglandin E (PGE)(2), a mediator that can inhibit many fibroblast functions including chemotaxis, was reported to be mediated by the E-prostanoid (EP) receptor EP2. PGE(2), however, can act on four receptors. This study was designed to determine if EP receptors, in addition to EP2, can modulate fibroblast chemotaxis. Using human fetal lung fibroblasts, the expression of all four EP receptors was demonstrated by Western blotting. EP2-selective and EP4-selective agonists inhibited both chemotaxis toward fibronectin in the blindwell assay and migration in a wound-closure assay. In contrast, EP1-selective and EP3-selective agonists stimulated cell migration in both assay systems. These results were confirmed using EP-selective antagonists. The role of both EP2 and EP4 receptors in mediating the PGE(2) inhibition of chemotaxis was also confirmed by small interfering RNA suppression. Furthermore, the role of EP receptors was confirmed by blocking the expected signaling pathways. Taken together, these results demonstrate that PGE(2) can act on multiple EP receptors in human lung fibroblasts, to exert disparate effects. Alterations in EP receptor expression may have the potential to alter PGE(2) action. Targeting specific EP receptors may offer therapeutic opportunities in conditions characterized by abnormal tissue repair and remodeling.

  9. Assessment of human gingival fibroblast interaction with dental implant abutment materials.

    Science.gov (United States)

    Rutkunas, Vygandas; Bukelskiene, Virginija; Sabaliauskas, Vaidotas; Balciunas, Evaldas; Malinauskas, Mangirdas; Baltriukiene, Daiva

    2015-04-01

    The biocompatibility of dental implant abutment materials depends on numerous factors including the nature of the material, its chemical composition, roughness, texture, hydrophilicity and surface charge. The aim of the present study was to compare the viability and adhesion strength of human gingival fibroblasts (HGFs) grown on several dental materials used in implant prosthodontics. Surfaces of the tested materials were assessed using an optical imaging profiler. For material toxicity and cellular adhesion evaluation, primary human gingival fibroblast cells were used. To evaluate the strength of cellular adhesion, gingival fibroblasts were cultured on the tested materials and subjected to lateral shear forces by applying 300 and 500 rpm shaking intensities. Focal adhesion kinase (FAK) expression and phosphorylation in cells grown on the specimens were registered by cell-based ELISA. There was a tendency of fibroblast adhesion strength to decrease in the following order: sandblasted titanium, polished titanium, sandblasted zirconium oxide, polished zirconium oxide, gold-alloy, chrome-cobalt alloy. Higher levels of total as well as phospho-FAK protein were registered in HGFs grown on roughened titanium. Material type and surface processing technique have an impact on gingival fibroblast interaction with dental implant abutment materials.

  10. Cisplatin-induced premature senescence with concomitant reduction of gap junctions in human fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Wei ZHAO; Zhong Xiang LIN; Zhi Qian ZHANG

    2004-01-01

    To examine the role of gap junctions in cell senescence,the changes of gap junctions in cisplatin-induced premature senescence of primary cultured fibroblasts were studied and compared with the replicative senescent human fibroblasts.Dye transfer assay for gap junction function and immunofluorescent staining for connexin 43 protein distribution were done respectively. Furthermore,cytofluorimetry and DAPI fluorescence staining were performed for cell cycle and apoptosis analysis. p53 gene expression level was detected with indirect immunofluorescence. We found that cisplatin (10 mM) treatment could block cell growth cycle at G1 and induced premature senescence. The premature senescence changes included high frequency of apoptosis,elevation of p53 expression,loss of membranous gap junctions and reduction of dye-transfer capacity. These changes were comparable to the changes of replicative senescence of human fibroblasts. It was also concluded that cisplatin could induce premature senescence concomitant with inhibition of gap junctions in the fibroblasts. Loss of functional gap junctions from the cell membrane may account for the reduced intercellular communication in the premature senescent fibroblasts. The cell system we used may provide a model useful for the study of the gap junction thus promoting agents against premature senescence.

  11. Development of human skin equivalents mimicking skin aging : contrast between papillary and reticular fibroblasts as a lead

    NARCIS (Netherlands)

    Janson, D.

    2017-01-01

    This thesis describes the development of human skin equivalents that show characteristics of skin aging. The type of skin equivalent used was a fibroblast derived matrix equivalent, in which the dermal compartment is generated by fibroblasts and thus is fully of human origin. Two strategies are

  12. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  13. Posttranscriptional control of human gamma interferon gene expression in transfected mouse fibroblasts.

    OpenAIRE

    1986-01-01

    Human gamma interferon genomic DNA was introduced into NIH 3T3 fibroblasts by calcium phosphate precipitation and was not expressed in these cells at the cytoplasmic mRNA or protein level. Treatment of the transfected cells with cycloheximide (1 microgram/ml) induced the accumulation of cytoplasmic gamma interferon mRNA and biologically active human gamma interferon. Analysis of the nuclear enriched RNA from untreated cells indicated that human gamma interferon mRNA was present, suggesting th...

  14. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...

  15. ADHESION AND SPREADING OF HUMAN FIBROBLASTS ON SUPERHYDROPHOBIC FEP-TEFLON

    NARCIS (Netherlands)

    BUSSCHER, HJ; STOKROOS, [No Value; GOLVERDINGEN, JG; SCHAKENRAAD, JM

    1991-01-01

    Adhesion and spreading of human fibroblasts was studied on hydrophobized and hydrophilized FEP-Teflon, and compared with adhesion and spreading on untreated FEP-Teflon and Tissue culture polystyrene (TCPS). Superhydrophobic FEP-Teflon was prepared by ion etching followed by oxygen glow-discharge. Hy

  16. Development of a full-thickness human gingiva equivalent constructed from immortalized keratinocytes and fibroblasts

    NARCIS (Netherlands)

    J.K. Buskermolen; C.M.A. Reijnders; S.W. Spiekstra; T. Steinberg; C.J. Kleverlaan; A.J. Feilzer; A.D. Bakker; S. Gibbs

    2016-01-01

    Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines

  17. Assembly of fibronectin into the extracellular matrix of early and late passage human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mann, D.M.

    1987-01-01

    The specific binding of soluble /sup 125/I-human plasma fibronectin (/sup 125/I-HFN-P) to confluent cultures of early and late passage human skin fibroblasts was investigated. Previous studies HFN-P bound to fibroblast cell layers indicated that HNF-P was present in the cultures in two separate pools, distinguishable on the basis of their solubility in 1% deoxycholate. Examination of the kinetics of /sup 125/I-HFN-P binding to Pool I of early and late passage cultures revealed that both cultures required 2-4 h to approach steady-state conditions. Other kinetic studies showed that the rates of low of /sup 125/I-HFN-P from either Pool I or Pool II were similar for both cultures. Further, Scatchard analysis revealed a single class of Pool I binding sites with apparent dissociation constants (K/sub d/) of 5.3 x 10/sup -8/M (early passage) and 4.2 x 10/sup -8/M (late passage). These results indicate that early and late passage cultures of human fibroblasts exhibit differences in the number of cell surface biding sites for soluble fibronectin, and in the extent to which they incorporate soluble fibronectin into the extracellular matrix. Parameters which affect the fibronectin matrix assembly system of human skin fibroblasts were also examined. In addition, several monoclonal anti-fibronectin antibodies were characterized and developed as experimental probes for fibronectin structure and function.

  18. ADHESION AND SPREADING OF HUMAN SKIN FIBROBLASTS ON PHYSICOCHEMICALLY CHARACTERIZED GRADIENT SURFACES

    NARCIS (Netherlands)

    RUARDY, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1995-01-01

    In this study, adhesion and spreading of human skin fibroblasts on gradient surfaces of dichlorodimethylsilane (DDS) coupled to glass was investigated. Gradient surfaces were prepared by the diffusion technique and characterized by the Wilhelmy plate technique for their wettability and by scanning x

  19. SNL fibroblast feeder layers support derivation and maintenance of human induced pluripotent stem cells.

    Science.gov (United States)

    Pan, Chuanying; Hicks, Amy; Guan, Xuan; Chen, Hong; Bishop, Colin E

    2010-04-01

    Induced pluripotent stem (iPS) cells can be derived from human somatic cells by cellular reprogramming. This technology provides a potential source of non-controversial therapeutic cells for tissue repair, drug discovery, and opportunities for studying the molecular basis of human disease. Normally, mouse embryonic fibroblasts (MEFs) are used as feeder layers in the initial derivation of iPS lines. The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentiviral expressed reprogramming factors. In our study, iPS cells expressed common pluripotency markers, displayed human embryonic stem cells (hESCs) morphology and unmethylated promoters of NANOG and OCT4. These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells.

  20. Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan

    Directory of Open Access Journals (Sweden)

    Lucie Germain

    2013-02-01

    Full Text Available A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3 can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes.

  1. Long‐term recovery of the human corneal endothelium after toxic injury by benzalkonium chloride

    Science.gov (United States)

    Hughes, E H; Pretorius, M; Eleftheriadis, H; Liu, C S C

    2007-01-01

    Introduction The inadvertent intra‐ocular administration of benzalkonium chloride‐preserved hydroxypropyl methylcellulose during cataract surgery at another hospital in 1999 resulted in toxic corneal endothelial injury and profound postoperative corneal oedema as a result of endothelial decompensation. The long‐term effect of this adverse event was assessed. Methods All 19 patients were invited to return for examination including corneal endothelial specular microscopy and pachymetry seven years after the incident. Results were compared with data from one year after the incident. Results Five patients attended for examination, one had received a penetrating keratoplasty and was, therefore, excluded. Ten patients had died and four had moved out of the region and were unable to attend. All four study patients were pain free and achieved 6/12 or better. Mean central corneal thickness reduced by 13% from 652.6 μm at one year to 563.4 μm. Mean central corneal endothelial cell density (n  =  3) increased 28% from 663.7 cells/mm2 at one year to 835.7 cells/mm2 (p<0.05). Conclusions After toxic injury, corneal endothelial function may have a remarkable capacity for recovery even after the first postoperative year. The rise in central endothelial cell density may represent cell migration from less affected areas or cellular proliferation. Should this unfortunate event recur, clinicians may expect continued recovery beyond one year. PMID:17504856

  2. Transplantation of genetically engineered cardiac fibroblasts producing recombinant human erythropoietin to repair the infarcted myocardium

    Directory of Open Access Journals (Sweden)

    Ruvinov Emil

    2008-11-01

    Full Text Available Abstract Background Erythropoietin possesses cellular protection properties. The aim of the present study was to test the hypothesis that in situ expression of recombinant human erythropoietin (rhEPO would improve tissue repair in rat after myocardial infarction (MI. Methods and results RhEPO-producing cardiac fibroblasts were generated ex vivo by transduction with retroviral vector. The anti-apoptotic effect of rhEPO-producing fibroblasts was evaluated by co-culture with rat neonatal cardiomyocytes exposed to H2O2-induced oxidative stress. Annexin V/PI assay and DAPI staining showed that compared with control, rhEPO forced expression markedly attenuated apoptosis and improved survival of cultured cardiomyocytes. To test the effect of rhEPO on the infarcted myocardium, Sprague-Dawley rats were subjected to permanent coronary artery occlusion, and rhEPO-producing fibroblasts, non-transduced fibroblasts, or saline, were injected into the scar tissue seven days after infarction. One month later, immunostaining identified rhEPO expression in the implanted engineered cells but not in controls. Compared with non-transduced fibroblasts or saline injection, implanted rhEPO-producing fibroblasts promoted vascularization in the scar, and prevented cell apoptosis. By two-dimensional echocardiography and postmortem morphometry, transplanted EPO-engineered fibroblasts did not prevent left ventricular (LV dysfunction and adverse LV remodeling 5 and 9 weeks after MI. Conclusion In situ expression of rhEPO enhances vascularization and reduces cell apoptosis in the infarcted myocardium. However, local EPO therapy is insufficient for functional improvement after MI in rat.

  3. Impact of Mycotoxins Secreted by Aspergillus Molds on the Inflammatory Response of Human Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yélian Marc Bossou

    2017-06-01

    Full Text Available Exposure to molds and mycotoxins not only contributes to the onset of respiratory disease, it also affects the ocular surface. Very few published studies concern the evaluation of the effect of mycotoxin exposure on ocular cells. The present study investigates the effects of aflatoxin B1 (AFB1 and gliotoxin, two mycotoxins secreted by Aspergillus molds, on the biological activity of the human corneal epithelial (HCE cells. After 24, 48, and 72 h of exposure, cellular viability and inflammatory response were assessed. Both endpoint cell viability colorimetric assays and continuous cell impedance measurements, providing noninvasive real-time assessment of the effect on cells, were performed. Cytokine gene expression and interleukin-8 release were quantified. Gliotoxin appeared more cytotoxic than AFB1 but, at the same time, led to a lower increase of the inflammatory response reflecting its immunosuppressive properties. Real-time cell impedance measurement showed a distinct profile of cytotoxicity for both mycotoxins. HCE cells appeared to be a well-suited in vitro model to study ocular surface reactivity following biological contaminant exposure. Low, but persistent inflammation, caused by environmental factors, such as fungal toxins, leads to irritation and sensitization, and could be responsible for allergic manifestations which, in turn, could lead to mucosal hyper-reactivity.

  4. Sensing inhomogeneous mechanical properties of human corneal Descemet's membrane with AFM nano-indentation.

    Science.gov (United States)

    Di Mundo, Rosa; Recchia, Giuseppina; Parekh, Mohit; Ruzza, Alessandro; Ferrari, Stefano; Carbone, Giuseppe

    2017-10-01

    The paper describes a highly space-resolved characterization of the surface mechanical properties of the posterior human corneal layer (Descemet's membrane). This has been accomplished with Atomic Force Microscopy (AFM) nano-indentation by using a probe with a sharp tip geometry. Results indicate that the contact with this biological tissue in liquid occurs with no (or very low) adhesion. More importantly, under the same operating conditions, a broad distribution of penetration depth can be measured on different x-y positions of the tissue surface, indicating a high inhomogeneity of surface stiffness, not yet clearly reported in the literature. An important contribution to such inhomogeneity should be ascribed to the discontinuous nature of the collagen/proteoglycans fibers matrix tissue, as can be imaged by AFM when the tissue is semi-dry. Using classical contact mechanics calculations adapted to the specific geometry of the tetrahedral tip it has been found that the elastic modulus E of the material in the very proximity of the surface ranges from 0.23 to 2.6 kPa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jing; Wang; Ting-Jun; Fan; Xiu-Xia; Yang; Shi-Min; Chang

    2014-01-01

    AIM:To investigate the morphological altering effect of transforming growth factor-β2(TGF-β2) on untransfected human corneal endothelial cells(HCECs)in vitro.METHODS:After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology,cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy,immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2(9 μg/L) altered HCE cell morphology after treatment for 36 h, increased the mean optical density(P <0.01) and the length of F-actin,reduced the mean optical density(P <0.01) of the collagen type IV in extracellular matrix(ECM) and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72 h.·CONCLUTION: TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  6. RNA and protein synthesis in cultured human fibroblasts derived from donors of various ages.

    Science.gov (United States)

    Chen, J J; Brot, N; Weissbach, H

    1980-07-01

    RNA synthesis in human fibroblasts from donors of various ages was studied in fibroblasts made permeable to nucleoside triphosphates with the nonionic detergent Nonidet P40. Cells from donors of 11 years and older showed a 30-40% decline in total RNA synthesis. The decrease in RNA synthesis was primarily due to a lowering of RNA polymerase II activity (alpha-amanitin sensitive). Studies on the incorporation of leucine into protein also showed a 30-40% decrease in cells from older donors.

  7. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jun [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Xiang, Jun-Jian, E-mail: txjj@jnu.edu.cn [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China); Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Li, Dan [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Deng, Ning; Wang, Hong; Gong, Yi-Ping [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China)

    2010-04-09

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10{sup -9} M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  8. Corneal blindness and xenotransplantation.

    Science.gov (United States)

    Lamm, Vladimir; Hara, Hidetaka; Mammen, Alex; Dhaliwal, Deepinder; Cooper, David K C

    2014-01-01

    Approximately 39 million people are blind worldwide, with an estimated 285 million visually impaired. The developing world shoulders 90% of the world's blindness, with 80% of causative diseases being preventable or treatable. Blindness has a major detrimental impact on the patient, community, and healthcare spending. Corneal diseases are significant causes of blindness, affecting at least 4 million people worldwide. The prevalence of corneal disease varies between parts of the world. Trachoma, for instance, is the second leading cause of blindness in Africa, after cataracts, but is rarely found today in developed nations. When preventive strategies have failed, corneal transplantation is the most effective treatment for advanced corneal disease. The major surgical techniques for corneal transplantation include penetrating keratoplasty (PK), anterior lamellar keratoplasty, and endothelial keratoplasty (EK). Indications for corneal transplantation vary between countries, with Fuchs' dystrophy being the leading indication in the USA and keratoconus in Australia. With the exception of the USA, where EK will soon overtake PK as the most common surgical procedure, PK is the overwhelming procedure of choice. Success using corneal grafts in developing nations, such as Nepal, demonstrates the feasibility of corneal transplantation on a global scale. The number of suitable corneas from deceased human donors that becomes available will never be sufficient, and so research into various alternatives, for example stem cells, amniotic membrane transplantation, synthetic and biosynthetic corneas, and xenotransplantation, is progressing. While each of these has potential, we suggest that xenotransplantation holds the greatest potential for a corneal replacement. With the increasing availability of genetically engineered pigs, pig corneas may alleviate the global shortage of corneas in the near future.

  9. Effect of low-power red light laser irradiation on the viability of human skin fibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, K.; Rozga, B.; Leyko, W.; Bryszewska, M. [Institute of Biophysics, University of Lodz (Poland); Kolodziejczyk, K.; Szosland, D. [Diabetological Clinic, Medical Academy of Lodz (Poland)

    1998-10-01

    Human skin fibroblast monolayers (S-126 cell line) were exposed to laser radiation (wavelength 670 nm, power density 40 mW/cm{sup 2}). The energy densities were 2 J/cm{sup 2} and 12 J/cm{sup 2}, respectively, and the irradiation was carried out at a temperature of 22 C. For fibroblast viability evaluation, the colorimetric assay (conversion of thiazolyl blue to formazan) was used. The experiments were carried out at 37 C, in the presence of 5% CO{sub 2}, and at different time periods of incubation after irradiation (2, 4, 8 h and 1, 2, 3, 4, 5 days). The results indicated that there was a certain stimulating effect on the long-term proliferation of skin fibroblasts and that the stimulation proceeded in two stages, the first one 2 h and the second one 3 days post-irradiation. (orig.) With 4 figs., 2 tabs., 13 refs.

  10. Cytotoxicity evaluation of root repair materials in human-cultured periodontal ligament fibroblasts

    Directory of Open Access Journals (Sweden)

    Voruganti Samyuktha

    2014-01-01

    Full Text Available Aim: To evaluate the cytotoxicity of three root repair materials, mineral trioxide aggregate (MTA, Endosequence Root Repair Material and Biodentine in human periodontal ligament fibroblasts. Materials and Methods: Periodontal ligament fibroblasts were cultured from healthy premolar extracted for orthodontic purpose. Cells in the third passage were used in the study. The cultured fibroblast cells were placed in contact with root repair materials: (a Biodentine, (b MTA, (c Endosequence, (d control. The effects of these three materials on the viability of Periodontal ligament (PDL fibroblasts were determined by trypan blue dye assay after 24 hours and 48-hour time period. Cell viability was determined using inverted phase contrast microscope. Statistical Analysis: Cell viability was compared for all the experimental groups with Wilcoxons matched pair test. Results: At the 24-hour examination period, all the materials showed increased cell viability. At 48-hour time period, there is slight decrease in cell viability. Mineral trioxide aggregate showed statistically significant increase in the cell viability when compared to other root repair materials. Conclusion: Mineral trioxide aggregate was shown to be less toxic to periodontal ligament fibroblasts than Endosequence Root Repair Material and Biodentine.

  11. Cytotoxicity evaluation of root repair materials in human-cultured periodontal ligament fibroblasts

    Science.gov (United States)

    Samyuktha, Voruganti; Ravikumar, Pabbati; Nagesh, Bolla; Ranganathan, K.; Jayaprakash, Thumu; Sayesh, Vemuri

    2014-01-01

    Aim: To evaluate the cytotoxicity of three root repair materials, mineral trioxide aggregate (MTA), Endosequence Root Repair Material and Biodentine in human periodontal ligament fibroblasts. Materials and Methods: Periodontal ligament fibroblasts were cultured from healthy premolar extracted for orthodontic purpose. Cells in the third passage were used in the study. The cultured fibroblast cells were placed in contact with root repair materials: (a) Biodentine, (b) MTA, (c) Endosequence, (d) control. The effects of these three materials on the viability of Periodontal ligament (PDL) fibroblasts were determined by trypan blue dye assay after 24 hours and 48-hour time period. Cell viability was determined using inverted phase contrast microscope. Statistical Analysis: Cell viability was compared for all the experimental groups with Wilcoxons matched pair test. Results: At the 24-hour examination period, all the materials showed increased cell viability. At 48-hour time period, there is slight decrease in cell viability. Mineral trioxide aggregate showed statistically significant increase in the cell viability when compared to other root repair materials. Conclusion: Mineral trioxide aggregate was shown to be less toxic to periodontal ligament fibroblasts than Endosequence Root Repair Material and Biodentine. PMID:25298650

  12. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    NARCIS (Netherlands)

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis

  13. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  14. Imatinib mesylate inhibits proliferation and exerts an antifibrotic effect in human breast stroma fibroblasts.

    Science.gov (United States)

    Gioni, Vassiliki; Karampinas, Theodoros; Voutsinas, Gerassimos; Roussidis, Andreas E; Papadopoulos, Savvas; Karamanos, Nikos K; Kletsas, Dimitris

    2008-05-01

    Tumor stroma plays an important role in cancer development. In a variety of tumors, such as breast carcinomas, a desmoplastic response, characterized by stromal fibroblast and collagen accumulation, is observed having synergistic effects on tumor progression. However, the effect of known anticancer drugs on stromal cells has not been thoroughly investigated. Imatinib mesylate is a selective inhibitor of several protein tyrosine kinases, including the receptor of platelet-derived growth factor, an important mediator of desmoplasia. Recently, we have shown that imatinib inhibits the growth and invasiveness of human epithelial breast cancer cells. Here, we studied the effect of imatinib on the proliferation and collagen accumulation in breast stromal fibroblasts. We have shown that it blocks the activation of the extracellular signal-regulated kinase and Akt signaling pathways and up-regulates cyclin-dependent kinase inhibitor p21(WAF1), leading to the inhibition of fibroblast proliferation, by arresting them at the G(0)/G(1) phase of the cell cycle. Imatinib inhibits more potently the platelet-derived growth factor-mediated stimulation of breast fibroblast proliferation. By using specific inhibitors, we have found that this is due to the inhibition of the Akt pathway. In addition, imatinib inhibits fibroblast-mediated collagen accumulation. Conventional and quantitative PCR analysis, as well as gelatin zymography, indicates that this is due to the down-regulation of mRNA synthesis of collagen I and collagen III-the main collagen types in breast stroma-and not to the up-regulation or activation of collagenases matrix metalloproteinase 2 and matrix metalloproteinase 9. These data indicate that imatinib has an antifibrotic effect on human breast stromal fibroblasts that may inhibit desmoplastic reaction and thus tumor progression.

  15. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  16. Involvement of P38MAPK in human corneal endothelial cell migration induced by TGF-β(2).

    Science.gov (United States)

    Joko, Takeshi; Shiraishi, Atsushi; Akune, Yoko; Tokumaru, Sho; Kobayashi, Takeshi; Miyata, Kazunori; Ohashi, Yuichi

    2013-03-01

    Because human corneal endothelial cells do not proliferate once the endothelial monolayer is formed, corneal wound healing is thought to be mediated by cell enlargement or migration rather than proliferation. However, the cellular mechanisms involved in corneal wound healing have not been fully determined. Because transforming growth factor-β(2) (TGF-β(2)) isoform is present in high concentrations in normal human aqueous humor, it may play a role in human corneal endothelial cell wound healing. The purpose of this study was to determine the effect of TGF-β(2) on the proliferation and migration of cultured human corneal endothelial cells (HCECs). To achieve this, we first examined the effect of TGF-β(2) on the wound closure rate in an in vitro HCEC wound healing model. However, unexpectedly TGF-β(2) had no effect on the wound closure rate in this model. Therefore, a real-time cell electronic sensing (RT-CES) system and the BrdU incorporation assay were used to determine the effect of TGF-β(2) (0.1-10 ng/ml) on cultured HCEC proliferation during in vitro wound healing. The specificity of this effect was confirmed by adding the TGF-β receptor I kinase inhibitor. TGF-β(2) inhibited the proliferation of HCECs in a dose dependent way and was blocked by TGF-β receptor I kinase inhibitor. Next, the Boyden chamber assay was used to determine how TGF-β(2) (10 ng/ml) affect HCEC migration. Exposure to TGF-β(2) increased cell migration, and a synergistic effect was observed when FGF-2 was added. To determine whether the mitogen-activated protein kinase (MAPK) signaling pathway is involved in the migration of HCECs, western blot analysis and Bio-Plex™ suspension array were used to detect phosphorylation of Erk1/2, p38, and JNK in HCECs stimulated by TGF-β(2) and/or FGF-2. The effect of the p38 MAPK inhibitor, SB239063 (10 μM), on TGF-β(2) and/or FGF-2-induced cellular migration was determined by the Boyden chamber assay. Both TGF-β(2) and FGF-2-induced p38

  17. MAOA and GYG2 are submitted to X chromosome inactivation in human fibroblasts.

    Science.gov (United States)

    Stabellini, Raquel; Vasques, Luciana R; de Mello, Joana Carvalho Moreira; Hernandes, Lys Molina; Pereira, Lygia V

    2009-08-16

    X chromosome inactivation (XCI) is a comprehensively studied phenomenon that helped to highlight the heritable nature of epigenetic modifications. Although it consists of the transcriptional inactivation of a whole X chromosome in females, some genes escape this process and present bi-allelic expression. Using human fibroblasts with skewed inactivation, we determined allele-specific expression of two X-linked genes previously described to escape XCI in rodent/human somatic cell hybrids, MAOA and GYG2, and the pattern of DNA methylation of their 5' end. Results from these complementary methodologies let us to conclude that both genes are subjected to X inactivation in normal human fibroblasts, indicating that hybrid cells are not an adequate system for studying epigenotypes. We emphasize the need of an analysis of XCI in normal human cell lines, helping us to determine more precisely which X-linked genes contribute to differences among genders and to the phenotypes associated with sex chromosomes aneuploidies.

  18. Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts.

    Science.gov (United States)

    Zhang, YouEn; Wang, JiaNing; Li, Hua; Yuan, LiangJun; Wang, Lei; Wu, Bing; Ge, JunBo

    2015-11-01

    In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and secrete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (H2S) suppresses TGF-β1-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were serum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL(-1)) for 24 h with or without sodium hydrosulfide (NaHS, 100 µmol L(-1), 30 min pretreatment) treatment. NaHS, an exogenous H2S donor, potently inhibited the proliferation and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NaHS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S suppresses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.

  19. Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System

    OpenAIRE

    Shan-Shan Liu; Hao-Yan Wang; Jun-Ming Tang; Xiu-Mei Zhou

    2013-01-01

    The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II) on collagen synthesis in hypoxic human lung fibroblast (HLF) cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT), angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) expression levels in human ...

  20. Autocrine growth regulation of human glomerular mesangial cells is primarily mediated by basic fibroblast growth factor.

    OpenAIRE

    Francki, A.; Uciechowski, P.; Floege, J; von der Ohe, J.; Resch, K.; Radeke, H. H.

    1995-01-01

    For various forms of human glomerulonephritis a close relationship between inflammatory injury and a local mesangial proliferative response has been described. Herein, we used primary cultures of human glomerular mesangial cells (HMCs) from five different donors to determine the autocrine growth-inducing capacity of their supernatants after stimulation with different cytokines and lipopolysaccharide (LPS) to determine whether this effect is due to basic fibroblast growth factor (bFGF). The ba...

  1. ITF2357 transactivates Id3 and regulate TGFβ/BMP7 signaling pathways to attenuate corneal fibrosis.

    Science.gov (United States)

    Lim, Rayne R; Tan, Alison; Liu, Yu-Chi; Barathi, Veluchamy A; Mohan, Rajiv R; Mehta, Jodhbir S; Chaurasia, Shyam S

    2016-02-11

    Corneal fibrosis is often seen in patients with ocular trauma and infection that compromises corneal transparency resulting in vision loss. Treatment strategies including NSAIDs, steroids, MMC and corneal transplants have shown tremendous success but with several side effects and cellular toxicity. Histone deacetylase inhibitors (HDACi) have been shown to inhibit corneal fibrosis via TGFβ signaling pathway. In this study, we investigated safety, efficacy and mechanism of action of a HDACi, ITF2357 in TGFβ-stimulated in vitro primary human cornea stromal fibroblasts (pHCSFs) and in vivo in a photorefractive keratectomy-treated rabbit model of corneal fibrosis. We found that in vivo ITF2357 decreased collagen I, collagen IV, fibronectin, integrin αVβ3 expression with a reduction in corneal haze. In addition, ITF2357 reduced myofibroblast formation, suppressed phosphorylation of Smad proteins in TGFβ pathway and inhibited key responsive protein, P4HA1 involved in pro-collagen synthesis. Treatment of pHCSFs with ITF2357 activated BMP7 levels and expressed all the members of inhibitor of differentiation proteins (Id1-Id4), however, it failed to rescue TGFβ-driven transdifferentiation of fibroblasts to myofibroblasts in the presence of siRNA specific to Id3. We conclude that ITF2357 is a potential anti-fibrotic drug that exerts its action via activation of Id3, a downstream target of TGFβ/BMP7 signaling pathways.

  2. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study.

    Science.gov (United States)

    Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D

    2016-01-01

    This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.

  3. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Directory of Open Access Journals (Sweden)

    Humidah Alanazi

    2014-01-01

    Full Text Available The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P<0.01 sensitive to oxidation but significantly (P<0.01 resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P<0.01 slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers.

  4. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Science.gov (United States)

    Alanazi, Humidah; Semlali, Abdelhabib; Perraud, Laura; Chmielewski, Witold; Zakrzewski, Andrew

    2014-01-01

    The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC) on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P < 0.01) sensitive to oxidation but significantly (P < 0.01) resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P < 0.01) slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers. PMID:25302312

  5. The effectiveness of potent dental adhesives on the viability of LPS challenged human gingival fibroblasts.

    Science.gov (United States)

    Garner, Angelia D; Tucci, Michelle A; Benghuzzi, Hamed A

    2014-01-01

    Dental adhesives are necessary for the retention of specific dental restorations utilized to repair the anatomy of the tooth after dental decay is removed. Adhesives come into contact with healthy and diseased periodontal tissues. Porphyromonas gingivalis is a gram negative bacterial pathogen, and lipopolysaccharide (LPS-PG) is an endotoxin found in gingival connective tissues of patients who suffer from periodontal disease. The presence of the endotoxin causes inflammation. This study aims to evaluate the effectiveness of potent dental adhesives when human gingival fibroblasts are challenged with LPS-PG. The fibroblasts were exposed to the dental adhesives polymethly methacrylate (PMMA), OptiBond®, and Prime & Bond® which were purchased from Patterson Dental, a national dental materials supplier. The human gingival fibroblasts (HGF-1, ATCC® CRL-2014™) were purchased from American Type Culture Collection (ATCC). The porphyromonas gingival lipopolysaccharide (LPS-PG) was purchased from Fisher Scientific (Pittsburg, PA). No significant differences in metabolic behavior was detected among the groups (padhesives and LPS-PG at 48 hour intervals (p<0.003). No significant changes were noted in cellular morphology at any phases, and all cells demonstrated typical fibroblast spindle shape.

  6. Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media.

    Science.gov (United States)

    Fraser, Sarah A; Ting, Yuk-Hong; Mallon, Kelly S; Wendt, Amy E; Murphy, Christopher J; Nealey, Paul F

    2008-09-01

    Topographic features are generally accepted as being capable of modulating cell alignment. Of particular interest is the potential that topographic feature geometry induces cell alignment indirectly through impacting adsorbed proteins from the cell culture medium on the surface of the substrate. However, it has also been reported that micron-scale feature depth significantly impacts the level of alignment of cellular populations on topography, despite being orders of magnitude larger than the average adsorbed protein layer (nm). In order to better determine the impact of biomimetic length scale topography and adsorbed protein interaction on cellular morphology we have systematically investigated the effect of combinations of sub-micron to nanoscale feature depth and lateral pitch on corneal epithelial cell alignment. In addition we have used the unique properties of a serum-free media alternative in direct comparison to serum-rich medium to investigate the role of culture medium protein composition on cellular alignment to topographically patterned surfaces. Our observation that increasing groove depth elicited larger populations of corneal epithelial cells to align regardless of culture medium composition and of cell orientation with respect to the topography, suggests that these cells can sense changes in topographic feature depths independent of adsorbed proteins localized along ridge edges and tops. However, our data also suggests a strong combinatory effect of topography with culture medium composition, and also a cell type dependency in determining the level of cell elongation and alignment to nanoscale topographic features.

  7. Characteristic Gene Expression Profiles of Human Fibroblasts and Breast Cancer Cells in a Newly Developed Bilateral Coculture System

    Directory of Open Access Journals (Sweden)

    Takayuki Ueno

    2015-01-01

    Full Text Available The microenvironment of cancer cells has been implicated in cancer development and progression. Cancer-associated fibroblast constitutes a major stromal component of the microenvironment. To analyze interaction between cancer cells and fibroblasts, we have developed a new bilateral coculture system using a two-sided microporous collagen membrane. Human normal skin fibroblasts were cocultured with three different human breast cancer cell lines: MCF-7, SK-BR-3, and HCC1937. After coculture, mRNA was extracted separately from cancer cells and fibroblasts and applied to transcriptomic analysis with microarray. Top 500 commonly up- or downregulated genes were characterized by enrichment functional analysis using MetaCore Functional Analysis. Most of the genes upregulated in cancer cells were downregulated in fibroblasts while most of the genes downregulated in cancer cells were upregulated in fibroblasts, indicating that changing patterns of mRNA expression were reciprocal between cancer cells and fibroblasts. In coculture, breast cancer cells commonly increased genes related to mitotic response and TCA pathway while fibroblasts increased genes related to carbohydrate metabolism including glycolysis, glycogenesis, and glucose transport, indicating that fibroblasts support cancer cell proliferation by supplying energy sources. We propose that the bilateral coculture system using collagen membrane is useful to study interactions between cancer cells and stromal cells by mimicking in vivo tumor microenvironment.

  8. The beta(2)-subtype of adrenoceptors mediates inhibition of pro-fibrotic events in human lung fibroblasts

    NARCIS (Netherlands)

    Lamyel, F.; Warnken-Uhlich, M.; Seemann, W. K.; Mohr, K.; Kostenis, E.; Ahmedat, A. S.; Smit, M.; Gosens, R.; Meurs, H.; Miller-Larsson, A.; Racke, Kurt

    2011-01-01

    Fibrosis is part of airway remodelling observed in bronchial asthma and COPD. Pro-fibrotic activity of lung fibroblasts may be suppressed by beta-adrenoceptor activation. We aimed, first, to characterise the expression pattern of beta-adrenoceptor subtypes in human lung fibroblasts and, second, to p

  9. MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts.

    Science.gov (United States)

    Liu, Haijun; Dai, Xiaoniu; Cheng, Yusi; Fang, Shencun; Zhang, Yingming; Wang, Xingang; Zhang, Wei; Liao, Hong; Yao, Honghong; Chao, Jie

    2016-01-15

    Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lungs initiates an inflammatory cascade that results in fibroblast proliferation and migration followed by fibrosis. According to previous data from our laboratory, monocyte chemotactic protein-1 (MCP-1) plays a critical role in fibroblast proliferation and migration in conventional two-dimensional (2D) monolayer cultures. The present study aimed to explore the downstream cascade of MCP-1 in both 2D and three-dimensional (3D) cell culture models of silicosis. Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following: 1) SiO2 treatment induces expression of MCP-1-induced protein (MCPIP1) in a time- and dose-dependent manner in both 2D and 3D cultures; 2) the MAPK and phosphatidylinositol-3-kinase (PI3K)/Akt pathways are involved in SiO2-induced MCPIP1 expression; and 3) MCPIP1 induction mediates the SiO2-induced increase in cell migration in both 2D and 3D cultures. The effect of MCP-1 in silicosis occurs mainly through MCPIP1, which, in turn, mediates the observed SiO2-induced increase in pulmonary fibroblast migration. However, the time frame for MCPIP1 induction differed between 2D and 3D cultures, indicating that, compared with conventional 2D cell culture systems, 3D culture may be useful for analyses of fibroblast physiology under conditions that more closely resemble in vivo environments. Our study determined the link between fibroblast-derived MCPIP1 and SiO2-induced cell migration, and this finding provides novel evidence of the potential of MCPIP1 in the development of novel therapeutic strategies for silicosis.

  10. Effects of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Kegel Magdalena

    2011-10-01

    Full Text Available Abstract Background The kynurenine pathway (KP is the main route of tryptophan degradation in the human body and generates several neuroactive and immunomodulatory metabolites. Altered levels of KP-metabolites have been observed in neuropsychiatric and neurodegenerative disorders as well as in patients with affective disorders. The purpose of the present study was to investigate if skin derived human fibroblasts are useful for studies of expression of enzymes in the KP. Methods Fibroblast cultures were established from cutaneous biopsies taken from the arm of consenting volunteers. Such cultures were subsequently treated with interferon (IFN-γ 200 U/ml and/or tumor necrosis factor (TNF-α, 100 U/ml for 48 hours in serum-free medium. Levels of transcripts encoding different enzymes were determined by real-time PCR and levels of kynurenic acid (KYNA were determined by HPLC. Results At base-line all cultures harbored detectable levels of transcripts encoding KP enzymes, albeit with considerable variation across individuals. Following cytokine treatment, considerable changes in many of the transcripts investigated were observed. For example, increases in the abundance of transcripts encoding indoleamine 2,3-dioxygenase, kynureninase or 3-hydroxyanthranilic acid oxygenase and decreases in the levels of transcripts encoding tryptophan 2,3-dioxygenase, kynurenine aminotransferases or quinolinic acid phosphoribosyltransferase were observed following IFN-γ and TNF-α treatment. Finally, the fibroblast cultures released detectable levels of KYNA in the cell culture medium at base-line conditions, which were increased after IFN-γ, but not TNF-α, treatments. Conclusions All of the investigated genes encoding KP enzymes were expressed in human fibroblasts. Expression of many of these appeared to be regulated in response to cytokine treatment as previously reported for other cell types. Fibroblast cultures, thus, appear to be useful for studies of disease

  11. Effect of three commercial mouth rinses on cultured human gingival fibroblast: An in vitro study

    Directory of Open Access Journals (Sweden)

    Flemingson

    2008-01-01

    Full Text Available Aim: To examine the effect of three commercial mouth rinses (Hexidine 0.2%, Listerine Cool Mint, Betadine 1% upon cultured human gingival fibroblast proliferation. Materials and Methods: Human gingival fibroblasts were cultured and incubated in Dulbecco′s Minimum Eagle′s Medium containing Chlorhexidine, Listerine, Povidone-Iodine at varying concentrations (1%, 2%, 5%, 10%, 20% and 100% of the given solution at 37°C for 1, 5 and 15 min. Control cells received an equal volume of Dulbecco′s Minimum Eagle′s Medium without adding mouth rinses, for similar duration of exposure at 37°C. Following incubation the media were removed, cells were washed twice with medium, supplemented with 10% Fetal Bovine Serum, and fibroblasts in the test and control group were allowed to recover in the same media for 24 h. Results: In all the three groups, the proliferation inhibition was dependent on the concentration of solublized mouth rinses in the cell culture but independent of the duration of exposure to all three mouth rinses. The results showed that all three solutions were toxic to cultured human gingival fibroblasts, Chlorhexidine being the most cytotoxic. It was seen that at dilute concentrations (1% and 2% of given solutions Listerine was more cytotoxic than Chlorhexidine and Povidone-Iodine. Conclusion: These results suggest that Chlorhexidine, Listerine and Povidone-Iodine are capable of inducing a dose-dependent reduction in cellular proliferation of fibroblasts. The results presented are interesting, but to know the clinical significance, further studies are needed.

  12. The period length of fibroblast circadian gene expression varies widely among human individuals.

    Directory of Open Access Journals (Sweden)

    Steven A Brown

    2005-10-01

    Full Text Available Mammalian circadian behavior is governed by a central clock in the suprachiasmatic nucleus of the brain hypothalamus, and its intrinsic period length is believed to affect the phase of daily activities. Measurement of this period length, normally accomplished by prolonged subject observation, is difficult and costly in humans. Because a circadian clock similar to that of the suprachiasmatic nucleus is present in most cell types, we were able to engineer a lentiviral circadian reporter that permits characterization of circadian rhythms in single skin biopsies. Using it, we have determined the period lengths of 19 human individuals. The average value from all subjects, 24.5 h, closely matches average values for human circadian physiology obtained in studies in which circadian period was assessed in the absence of the confounding effects of light input and sleep-wake cycle feedback. Nevertheless, the distribution of period lengths measured from biopsies from different individuals was wider than those reported for circadian physiology. A similar trend was observed when comparing wheel-running behavior with fibroblast period length in mouse strains containing circadian gene disruptions. In mice, inter-individual differences in fibroblast period length correlated with the period of running-wheel activity; in humans, fibroblasts from different individuals showed widely variant circadian periods. Given its robustness, the presented procedure should permit quantitative trait mapping of human period length.

  13. Dimethylarsenic acid damages cellular DNA and inhibits gap junctional intercellular communication between human skin fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    GuoXB; DengFR

    2002-01-01

    Although arsenic is identified as a human carcinogen,there is currently no accepted mechanism for its action or an established animal model for evaluating the carcinogenic activity of arsenic.To elucidate the mechanism of arsenic arcinogenesis,we investigated the effect of dimethylarsenic acid(DMAA),the main metabolite of inorganic arsenic in humans,on the cellular DNA and gap junctional intercellular communication (GJIC) between human skin fibroblast cells.Single-cell gel electrophoresis (SCGE) assay was used to detect the DNA damage in human skin fibroblast cells exposed to DMAA,and the GJIC between cells was detected by the scrape loading/dye transfer assay.DMAA at concentrations of 0.01-1.0 mmol·L-1 induced DNA damage in a dose-dependent manner,and GJIC between human skin fibroblast cells was significantly inhibited by DMAA at 1.0 mmol·L-1.Our results suggest that both genotoxic and nongenotoxic mechanism are involved in the mechanism of DMAA-induced cellular toxicity.

  14. The Toxicity of Nonsteroidal Anti-inflammatory Eye Drops against Human Corneal Epithelial Cells in Vitro.

    Science.gov (United States)

    Lee, Jong Soo; Kim, Young Hi; Park, Young Min

    2015-12-01

    This study investigated the toxicity of commercial non-steroid anti-inflammatory drug (NSAID) eye solutions against corneal epithelial cells in vitro. The biologic effects of 1/100-, 1/50-, and 1/10-diluted bromfenac sodium, pranoprofen, diclofenac sodium, and the fluorometholone on corneal epithelial cells were evaluated after 1-, 4-, 12-, and 24-hr of exposure compared to corneal epithelial cell treated with balanced salt solution as control. Cellular metabolic activity, cellular damage, and morphology were assessed. Corneal epithelial cell migration was quantified by the scratch-wound assay. Compared to bromfenac and pranoprofen, the cellular metabolic activity of diclofenac and fluorometholone significantly decreased after 12-hr exposure, which was maintained for 24-hr compared to control. Especially, at 1/10-diluted eye solution for 24-hr exposure, the LDH titers of fluorometholone and diclofenac sodium markedly increased more than those of bromfenac and pranoprofen. In diclofenac sodium, the Na(+) concentration was lower and amount of preservatives was higher than other NSAIDs eye solutions tested. However, the K(+) and Cl(-) concentration, pH, and osmolarity were similar for all NSAIDs eye solutions. Bromfenac and pranoprofen significantly promoted cell migration, and restored wound gap after 48-hr exposure, compared with that of diclofenac or fluorometholone. At 1/50-diluted eye solution for 48-hr exposure, the corneal epithelial cellular morphology of diclofenac and fluorometholone induced more damage than that of bromfenac or pranoprofen. Overall, the corneal epithelial cells in bromfenac and pranoprofen NSAID eye solutions are less damaged compared to those in diclofenac, included fluorometholone as steroid eye solution.

  15. Dectin-1 agonist curdlan modulates innate immunity to Aspergillus fumigatus in human corneal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Cheng-Cheng; Zhu; Gui-Qiu; Zhao; Jing; Lin; Li-Ting; Hu; Qiang; Xu; Xu-Dong; Peng; Xue; Wang; Sheng; Qiu

    2015-01-01

    · AIM: To explore the immunomodulatory effects of curdlan on innate immune responses against Aspergillus fumigatus(A. fumigatus) in cultured human corneal epithelial cells(HCECs), and whether C-type lectin receptor Dectin-1 mediates the immunomodulatory effects of curdlan.·METHODS: The HCECs were stimulated by curdlan in different concentrations(50, 100, 200, 400 μg/m L) for various time. Then HCECs pretreated with or without laminarin(Dectin-1 blocker, 0.3 mg/m L) and curdlan were stimulated by A. fumigatus hyphae. The m RNA and protein production of tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6) were determined by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The protein level of Dectin-1 was measured by Western blot.· RESULTS: Curdlan stimulated m RNA expression of TNF-α and IL-6 in a dose and time dependent manner in HCECs. Curdlan pretreatment before A. fumigatus hyphae stimulation significantly enhanced the expression of TNF-α and IL-6 at m RNA and protein levels compared with A. fumigatus hyphae stimulation group(P <0.05).Both curdlan and A. fumigatus hyphae up-regulated Dectin-1 protein expression in HCECs, and Dectin-1expression was elevated to 1.5- to 2-fold by curdlan pretreatment followed hyphae stimulation. The Dectin-1blocker laminarin suppressed the m RNA expression and protein production of TNF-α and IL-6 induced by curdlan and hyphae(P <0.05).· CONCLUSION: These findings demonstrated that curdlan pretreatment enhanced the inflammatory response induced by A. fumigatus hyphae in HCECs.Dectin-1 is essential for the immunomodulatory effectsof curdlan. Curdlan may have high clinical application values in fungal keratitis treatment.

  16. The anti-inflammatory effects of asiatic acid in lipopolysaccharide-stimulated human corneal epithelial cells

    Science.gov (United States)

    Chen, Hao; Hua, Xiao-Min; Ze, Bai-Chen; Wang, Bin; Wei, Li

    2017-01-01

    AIM To investigate the anti-inflammatory effects of asiatic acid (AA) on lipopolysaccharide (LPS)-induced inflammatory response in human corneal epithelial cells (HCECs). METHODS Cell viability was measured using a cell counting kit-8 (CCK-8) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the mRNA expression of interleukin-8 (IL-8), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-β (TGF-β) in HCECs. Intracellular reactive oxygen species (ROS) was measured using the ROS assay kit. Glutathione (GSH) concentration was measured using the total GSH assay kit. Akt1 and Akt phosphorylation (p-Akt1) levels were measured by Western blotting and immunofluorescence. RESULTS AA induced toxicity at high concentrations and significantly stimulated the proliferation of HCECs at concentrations of 20 µmol/L for 1h. LPS at concentrations of 300 ng/mL for 1h significantly stimulated the mRNA expression of IL-8, IL-6, IL-1β, TNF-α, and TGF-β in HCECs, while the stimulation effects were significantly inhibited by AA (20 µmol/L). In addition, AA was found to decrease the content of ROS, increase GSH generation, and also inhibit LPS-induced p-Akt in HCECs. CONCLUSION AA decreases the generation of inflammatory factors IL-8, IL-6, IL-1β, TNF-α, and TGF-β in LPS-stimulated HCECs. AA significantly inhibites the intracellular concentrations of ROS and increases GSH generation. AA also inhibites LPS-induced p-Akt in HCECs. These findings reveal that AA has anti-inflammation effects in LPS-stimulated HCECs.

  17. Dectin-1 agonist curdlan modulates innate immunity to Aspergillus fumigatus in human corneal epithelial cells

    Directory of Open Access Journals (Sweden)

    Cheng-Cheng Zhu

    2015-08-01

    Full Text Available AIM: To explore the immunomodulatory effects of curdlan on innate immune responses against Aspergillus fumigatus (A. fumigatus in cultured human corneal epithelial cells (HCECs, and whether C-type lectin receptor Dectin-1 mediates the immunomodulatory effects of curdlan.METHODS:The HCECs were stimulated by curdlan in different concentrations (50, 100, 200, 400 μg/mL for various time. Then HCECs pretreated with or without laminarin (Dectin-1 blocker, 0.3 mg/mL and curdlan were stimulated by A. fumigatus hyphae. The mRNA and protein production of tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 were determined by real-timequantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The protein level of Dectin-1 was measured by Western blot.RESULTS: Curdlan stimulated mRNA expression of TNF-α and IL-6 in a dose and time dependent manner in HCECs. Curdlan pretreatment before A. fumigatus hyphae stimulation significantly enhanced the expression of TNF-α and IL-6 at mRNA and protein levels compared with A. fumigatus hyphae stimulation group (P<0.05. Both curdlan and A. fumigatus hyphae up-regulated Dectin-1 protein expression in HCECs, and Dectin-1 expression was elevated to 1.5- to 2-fold by curdlan pretreatment followed hyphaestimulation. The Dectin-1 blocker laminarin suppressed the mRNA expression and protein production of TNF-α and IL-6 induced by curdlan and hyphae (P<0.05.CONCLUSION:These findings demonstrated that curdlan pretreatment enhanced the inflammatory response induced by A. fumigatus hyphae in HCECs. Dectin-1 is essential for the immunomodulatory effects of curdlan. Curdlan may have high clinical application values in fungal keratitis treatment.

  18. Corneal Laceration

    Science.gov (United States)

    ... drugs. These drugs thin the blood and may increase bleeding. After you have finished protecting the eye, see a physician immediately. Next Corneal Laceration Symptoms Related Ask an Ophthalmologist Answers I lost sight from a corneal scar as a child. Now that I’m older, ...

  19. Corneal Laceration

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration ... Laceration Treatment What Is Corneal Laceration? Leer en Español: ¿Qué Es una Laceración de la Córnea? Written ...

  20. Corneal Laceration

    Medline Plus

    Full Text Available ... Health Find an Ophthalmologist Academy Store Eye Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask ... Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration Sections What Is Corneal Laceration? ...

  1. Corneal Laceration

    Medline Plus

    Full Text Available ... Health Find an Ophthalmologist Academy Store Eye Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask ... Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration Sections What Is Corneal Laceration? ...

  2. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    OpenAIRE

    2013-01-01

    PURPOSE: Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formation and stratification in a humanized animal model. METHODS: Dermo-epidermal skin grafts with either amniocytes or with fibroblasts in the dermis were compared in a rat model. Full-thicknes...

  3. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Commandeur, Suzan; Rietveld, Marion H; Mulder, Aat A; Willemze, Rein

    2009-01-01

    Reconstructed human skin equivalents (HSEs) are representative models of human skin and widely used for research purposes and clinical applications. Traditional methods to generate HSEs are based on the seeding of human keratinocytes onto three-dimensional human fibroblast-populated non-human collagen matrices. Current HSEs have a limited lifespan of approximately 8 weeks, rendering them unsuitable for long-term studies. Here we present a new generation of HSEs being fully composed of human components and which can be cultured up to 20 weeks. This model is generated on a primary human fibroblast-derived dermal matrix. Pro-collagen type I secretion by human fibroblasts stabilized during long-term culture, providing a continuous and functional human dermal matrix. In contrast to rat-tail collagen-based HSEs, the present fibroblast-derived matrix-based HSEs contain more continuity in the number of viable cell layers in long-term cultures. In addition, these new skin models exhibit normal differentiation and proliferation, based on expression of K10/K15, and K16/K17, respectively. Detection of collagen types IV and VII and laminin 332 was confined to the epidermal-dermal junction, as in native skin. The presence of hemidesmosomes and anchoring fibrils was demonstrated by electron microscopy. Finally, we show that the presented HSE contained a higher concentration of the normal moisturizing factor compared to rat-tail collagen-based skin models, providing a further representation of functional normal human skin in vitro. This study, therefore, demonstrates the role of the dermal microenvironment on epidermal regeneration and lifespan in vitro.

  4. An attempt to eliminate fibroblast-like cells from primary cultures of fetal human livers.

    Directory of Open Access Journals (Sweden)

    Tokiwa,Takayoshi

    1986-04-01

    Full Text Available The elimination of fibroblast-like cells from primary cultures of fetal human livers was studied. A fibroblast-like cell line (HuF, which was obtained by subculturing fetal human liver cells 4 or more times, was briefly treated with hydrocortisone (HC or putrescine (PUT. The growth of HuF cells was inhibited by HC at a concentration of 10(-2 M and by PUT at a concentration higher than 10(-3 M. Long-term treatment of HuF cells with 10(-3 M HC inhibited the growth of the cells. Primary cultures of fetal human livers were made in medium containing HC or PUT, and morphological and functional examinations were made. The cultures were predominantly composed of epithelial-like cells, with few fibroblast-like cells, when the HC concentration was 10(-5M to 10(-3 M. A high amount of albumin was secreted at these concentrations of HC. On the other hand, at 10(-3 M PUT, many epithelial-like cells were seen, but albumin was undetectable. The present results indicate that albumin-producing epithelial-like cells can be selectively maintained in medium containing HC, in primary cultures of fetal human livers.

  5. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malpass, Gloria E., E-mail: gloria.malpass@gmail.com [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Arimilli, Subhashini, E-mail: sarimill@wakehealth.edu [Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Prasad, G.L., E-mail: prasadg@rjrt.com [R and D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102 (United States); Howlett, Allyn C., E-mail: ahowlett@wakehealth.edu [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States)

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  6. Chitosan Treatment Delays the Induction of Senescence in Human Foreskin Fibroblast Strains.

    Directory of Open Access Journals (Sweden)

    Ching-Wen Tsai

    Full Text Available Fibroblasts have been extensively used as a model to study cellular senescence. The purpose of this study was to investigate whether the human foreskin fibroblast aging process could be regulated by using the biomaterial chitosan. Fibroblasts cultured on commercial tissue culture polystyrene (TCPS entered senescence after 55-60 population doublings (PDs, and were accompanied by larger cell shape, higher senescence-associated β-galactosidase (SA β-gal activity, lower proliferation capacity, and upregulation of senescence-associated molecular markers p21, p53, retinoblastoma (pRB, and p16. Before senescence was reached, PD48 cells were collected from TCPS and seeded on chitosan for three days (PD48-Cd3 to form multicellular spheroids. The protein expression of senescence-associated secretory phenotypes (SASPs and senescence-associated molecular markers of these cells in PD48-Cd3 spheroids were downregulated significantly. Following chitosan treatment, fibroblasts reseeded on TCPS showed lower SA β-gal activity, increased cellular motility, and a higher proliferation ability of 70-75 PDs. These phenotypic changes were not accompanied by colonies forming in soft agar and a continuous decrease in the senescence-associated proteins p53 and pRB which act as a barrier to tumorigenesis. These results demonstrate that chitosan treatment could delay the induction of senescence which may be useful and safe for future tissue engineering applications.

  7. Enhanced Biological Behavior of In Vitro Human Gingival Fibroblasts on Cold Plasma-Treated Zirconia.

    Directory of Open Access Journals (Sweden)

    Miao Zheng

    Full Text Available To evaluate whether atmospheric-pressure dielectric-barrier-discharge plasma treatment of zirconia enhances its biocompatibility with human gingival fibroblasts.The zirconia disks were divided into four groups and treated using helium atmospheric-pressure dielectric-barrier-discharge plasmas for 30, 60 or 90 s or left untreated. The surface morphology, wettability and chemical elements were analyzed. Fibroblasts density, morphology, morphometry and attachment-related genes expression were measured at different time points from 3 to 72 h.After plasma treatment, the surface morphology and roughness remained the same, while the contact angle decreased from 78.31° to 43.71°, and the surface C/O ratio decreased from 3.17 to 0.89. The surficial areas and perimeters of HGFs were increased two-fold in the treated groups at 3 h. Fibroblasts density increased on treated disks at all time points, especially the ones treated for 60 s. Attachment-related genes in the groups treated for 30 and 60 s were significantly higher at 3 and 24 h.The helium atmospheric-pressure dielectric-barrier-discharge plasma treatment enhances the biological behavior of fibroblasts on zirconia by increasing the expression of attachment-related genes within 24 h and promoting the cell density during longer culture times. Wettability of zirconia, an important physicochemical property, has a vital influence on the cell behaviors.

  8. Protective Effect of Strawberry Extract against Inflammatory Stress Induced in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Massimiliano Gasparrini

    2017-01-01

    Full Text Available A protracted pro-inflammatory state is a major contributing factor in the development, progression and complication of the most common chronic pathologies. Fruit and vegetables represent the main sources of dietary antioxidants and their consumption can be considered an efficient tool to counteract inflammatory states. In this context an evaluation of the protective effects of strawberry extracts on inflammatory stress induced by E. coli LPS on human dermal fibroblast cells was performed in terms of viability assays, ROS and nitrite production and biomarkers of oxidative damage of the main biological macromolecules. The results demonstrated that strawberry extracts exerted an anti-inflammatory effect on LPS-treated cells, through an increase in cell viability, and the reduction of ROS and nitrite levels, and lipid, protein and DNA damage. This work showed for the first time the potential health benefits of strawberry extract against inflammatory and oxidative stress in LPS-treated human dermal fibroblast cells.

  9. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2017-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi......-proteome") during ageing and age-related diseases represent a restricted set of cellular proteins, indicating that certain proteins are more prone to oxidative carbonylation and subsequent intracellular accumulation. The occurrence of specific carbonylated proteins upon oxidative stress induced premature senescence...... of WI-38 human fibroblasts and their follow-up identification have been addressed in this study. Indeed, it was expected that the identification of these proteins would give insights into the mechanisms by which oxidatively damaged proteins could affect cellular function. Among these proteins, some...

  10. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes.

    Directory of Open Access Journals (Sweden)

    Damon Polioudakis

    Full Text Available miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191's regulation of primary human fibroblast proliferation.

  11. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes.

    Science.gov (United States)

    Polioudakis, Damon; Abell, Nathan S; Iyer, Vishwanath R

    2015-01-01

    miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191's regulation of primary human fibroblast proliferation.

  12. EFFECT OF HUMAN AMNIOTIC MEMBRANE ON CORNEAL EPITHELIUM AND YAC-1 CELL

    Institute of Scientific and Technical Information of China (English)

    叶纹; 沈玺; 钟一声

    2003-01-01

    Objective To study the effect of the amniotic membrane on enhancing the proliferation of corneal epithelia and YAC 1 cell.MethodsAfter the primary culture of the rabbits corneal epithelia and YAC 1 cells, they were seeded on the upper surface or stromal matrix side of amniotic membrane respectively. The proliferation results were observed by MTT test.ResultsThe amniotic membrane was found significantly enhancing the proliferation of corneal epithelia on the d1,d3,and d5 after culture. The proliferation rate was 28.93%,23.32%,23.41%(P<0.05)respectively, but the d7 proliferation rate was 20.72%(P>0.05).On the d1,d3,d7 after culture,the YAC 1 cells proliferation rate was 34.87%,36.28%,33.86%(P<0.01)respectively.ConclusionOur results demonstrated that the amniotic membrane could enhance the prolifera tion of both corneal epithelia and YAC 1 cells significantly. Although amniotic membrane has been suggested as an ideal material for reconstruction of ocular surface, special attention should be paid during amniotic membrane transplantation for treating ocular surface lesion resulted from epibulbar tumors.

  13. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.

    Science.gov (United States)

    Zhang, Hui; Sweezey, Neil B; Kaplan, Feige

    2015-02-15

    Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development.

  14. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor

    OpenAIRE

    Hadadian, Shahin; Shamassebi, Dariush Norouzian; Mirzahoseini, Hasan; Shokrgozar, Mohamad Ali; Bouzari, Saeid; Sepahi, Mina

    2015-01-01

    Background: Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. Materials and Methods: In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD pol...

  15. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells

    OpenAIRE

    Patwardhan, Juilee; Bhatt, Purvi

    2015-01-01

    Background: The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. Objective: To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast c...

  16. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach.

    Directory of Open Access Journals (Sweden)

    Jordan R Plews

    Full Text Available BACKGROUND: Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine and cultured in human embryonic stem cell (ES medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days. CONCLUSION/SIGNIFICANCE: Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.

  17. Gelam Honey Protects against Gamma-Irradiation Damage to Antioxidant Enzymes in Human Diploid Fibroblasts

    OpenAIRE

    Suzana Makpol; Tengku Ahbrizal Farizal Tengku Ahmad; Yasmin Anum Mohd Yusof; Nor Fadilah Rajab; Khairuddin Abdul Rahim; Zakiah Jubri

    2013-01-01

    The present study was designed to determine the radioprotective effects of Malaysian Gelam honey on gene expression and enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) of human diploid fibroblasts (HDFs) subjected to gamma-irradiation. Six groups of HDFs were studied: untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/mL of sterilized Gelam ...

  18. DNA damage in human skin fibroblasts exposed to UVA light used in clinical PUVA treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bredberg, A.

    1981-06-01

    Human skin fibroblasts were irradiated with a clinically used UVA light source. The doses (1.1 and 3 J/cm2) were similar to those reaching the dermis during clinical PUVA treatment of psoriasis. DNA strand breaks, as determined by alkaline elution, were formed in a dose-dependent way and disappeared within 1 hr of postincubation at 37 degrees C. These findings have clinical implications since UVA-induced DNA damage may be accompanied by mutagenic and tumor promoting effects.

  19. The Role of Human Adult Peripheral and Umbilical Cord Blood Platelet-Rich Plasma on Proliferation and Migration of Human Skin Fibroblasts.

    Science.gov (United States)

    Hashemi, Seyedeh-Sara; Mahmoodi, Mahdokht; Rafati, Ali Reza; Manafi, Farzad; Mehrabani, Davood

    2017-05-01

    Wound healing is a complex and dynamic process following damage in tissue structures. Due to extensive skin damage caused by burn injuries, this study determined the role of human adult peripheral and umbilical cord blood platelet-rich plasma on proliferation and migration in human skin fibroblasts. Platelet-rich plasma (5, 10, 15, 20 and 50% PRP) from human umbilical cord blood and adult peripheral blood were provided and added to fibroblasts cultured from a human skin sample. Migration and proliferation of fibroblasts were assessed in comparison to 10% FBS and by the fibroblast responses to a concentration gradient. All components of the umbilical cord blood PRP significantly stimulated the growth of fibroblasts when compared to the negative control. Fibroblast growth was enhanced in a dose dependent manner. All fibroblast cultures retained normal morphology. No significant difference was noted between umbilical cord blood and adult peripheral blood PRP preparations regarding cell proliferation and migration, but the difference to 10% FBS was significant. 1% and 50% PRP reduced cellular proliferation. The 20% umbilical cord blood PRP and 10% adult peripheral blood PRP had a significant stimulatory effect on the migration of the skin fibroblast cells in comparison with 10% FBS. As PRP could promote the migration and proliferation of dermal fibroblasts, it can be safely added in cultures when treatment of chronic wounds without triggering the immune response is needed.

  20. Suppression of Human Tenon Fibroblast Cell Proliferation by Lentivirus-Mediated VEGF Small Hairpin RNA

    Directory of Open Access Journals (Sweden)

    Zhongqiu Li

    2017-01-01

    Full Text Available Purpose. The functions of vascular endothelial growth factor (VEGF in scar formation after trabeculectomy were investigated in a human Tenon fibroblast cell line from glaucoma patients using lentivirus-mediated VEGF shRNA. Methods. Human Tenon fibroblast (HTF cells were isolated from scar tissue of glaucoma patients during secondary surgery. Lentivirus-VEGF-shRNA was constructed and transfected into HTF cells. Subsequently, VEGF mRNA and protein expression were analyzed using quantitative RT-PCR and western blotting, respectively, and the effects of VEGF knockdown were analyzed. The inhibition of HTF proliferation was monitored according to total cell numbers using ScanArray. Results. Both mRNA and protein levels of VEGF were reduced by lentivirus-mediated VEGF-shRNA, and proliferation of HTF cells was inhibited. Conclusions. Primary cultures of human Tenon fibroblast (HTF were established, and proliferation was decreased following inhibition of VEGF. VEGF may be a suitable therapeutic target for reducing scar tissue formation in glaucoma patients after filtration surgery.

  1. Suppression of Human Tenon Fibroblast Cell Proliferation by Lentivirus-Mediated VEGF Small Hairpin RNA.

    Science.gov (United States)

    Li, Zhongqiu; Hua, Wen; Li, Xuedong; Wang, Wei

    2017-01-01

    Purpose. The functions of vascular endothelial growth factor (VEGF) in scar formation after trabeculectomy were investigated in a human Tenon fibroblast cell line from glaucoma patients using lentivirus-mediated VEGF shRNA. Methods. Human Tenon fibroblast (HTF) cells were isolated from scar tissue of glaucoma patients during secondary surgery. Lentivirus-VEGF-shRNA was constructed and transfected into HTF cells. Subsequently, VEGF mRNA and protein expression were analyzed using quantitative RT-PCR and western blotting, respectively, and the effects of VEGF knockdown were analyzed. The inhibition of HTF proliferation was monitored according to total cell numbers using ScanArray. Results. Both mRNA and protein levels of VEGF were reduced by lentivirus-mediated VEGF-shRNA, and proliferation of HTF cells was inhibited. Conclusions. Primary cultures of human Tenon fibroblast (HTF) were established, and proliferation was decreased following inhibition of VEGF. VEGF may be a suitable therapeutic target for reducing scar tissue formation in glaucoma patients after filtration surgery.

  2. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts

    Science.gov (United States)

    Saini, Natalie; Chan, Kin; Grimm, Sara A.; Dai, Shuangshuang; Fargo, David C.; Kaufmann, William K.; Taylor, Jack A.; Lee, Eunjung; Cortes-Ciriano, Isidro; Park, Peter J.; Schurman, Shepherd H.; Malc, Ewa P.; Mieczkowski, Piotr A.

    2016-01-01

    Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration ClinicalTrials.gov NCT01087307 PMID:27788131

  3. Resinous perforation-repair materials inhibit the growth, attachment, and proliferation of human gingival fibroblasts.

    Science.gov (United States)

    Huang, Fu-Mei; Tai, Kuo-Wei; Chou, Ming-Yung; Chang, Yu-Chao

    2002-04-01

    The choice of repair material is one of the important factors in the prognosis of the endodontically treated tooth with a perforation defect. The cytotoxicity of perforation-repair materials must be investigated to ensure a safe biological response. The aim of this in vitro study was to evaluate the effect of resin-modified, glass-ionomer cement, compomer, and resin on human-gingival fibroblasts. Human gingival fibroblasts from crown lengthening surgery were cultured by using an explant technique with the consent of the patient. Cytotoxicity was judged by using an assay of tetrazolium bromide reduction. The results showed that resin-modified, glass-ionomer cement Fuji II LC, compomer Compoglass, and resin SpectrumTPH (TPH) were cytotoxic to primary human gingival fibroblast cultures by inhibiting cell growth and proliferation. TPH alone had an effect on cell attachment. It was found that TPH was the most cytotoxic repair material among those tested in all cultures. The toxicity decreased in the order of TPH>FLC>CG.

  4. Antiparasitic and antiproliferative effects of indoleamine 2,3-dioxygenase enzyme expression in human fibroblasts.

    Science.gov (United States)

    Gupta, S L; Carlin, J M; Pyati, P; Dai, W; Pfefferkorn, E R; Murphy, M J

    1994-01-01

    Studies were carried out to evaluate the proposed role of indoleamine 2,3-dioxygenase (INDO) induction in the antimicrobial and antiproliferative effects of gamma interferon (IFN-gamma) in human fibroblasts. The INDO cDNA coding region was cloned in the pMEP4 expression vector, containing the metallothionein (MTII) promoter in the sense (+ve) or the antisense (-ve) orientation. Human fibroblasts (GM637) stably transfected with the sense construct expressed INDO activity after treatment with CdCl2 or ZnSO4, but cells transfected with the antisense construct did not. The growth of Chlamydia psittaci was strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+ or Zn2+. The inhibition correlated with the level of INDO activity induced and could be reversed by the addition of excess tryptophan to the medium. The growth of Toxoplasma gondii was also strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+. Expression of Cd(2+)-induced INDO activity also inhibited thymidine incorporation and led to cytotoxicity in INDO +ve cells but not in INDO -ve cells. Thus, the induction of INDO activity by IFN-gamma may be an important factor in the antimicrobial and antiproliferative effects of IFN-gamma in human fibroblasts. Images PMID:8188349

  5. Treatment of postoperative lower extremity wounds using human fibroblast-derived dermis: a retrospective analysis.

    Science.gov (United States)

    Carlson, Russell M; Smith, Nicholas C; Dux, Katherine; Stuck, Rodney M

    2014-04-01

    Human fibroblast-derived dermis skin substitute is a well-studied treatment for diabetic foot ulcers; however, no case series currently exist for its use in healing postoperative wounds of the lower extremity. A retrospective analysis was conducted on 32 lower extremity postoperative wounds treated weekly with human fibroblast-derived dermis skin substitute. Postoperative wounds were defined as a wound resulting from an open partial foot amputation, surgical wound dehiscence, or nonhealing surgical wound of the lower extremity. Wound surface area was calculated at 4 and 12 weeks or until wound closure if prior to 12 weeks. Postoperative wounds treated with weekly applications showed mean improvement in surface area reduction of 63.6% at 4 weeks and 96.1% at 12 weeks. More than 56% of all wounds healed prior to the 12-week endpoint. Additionally, only one adverse event was noted in this group. This retrospective review supports the use of human fibroblast-derived dermis skin substitute in the treatment of postoperative lower extremity wounds. This advanced wound care therapy aids in decreased total healing time and increased rate of healing for not only diabetic foot wounds but also postoperative wounds of the lower extremity, as demonstrated by this retrospective review.

  6. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie Saini

    2016-10-01

    Full Text Available Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.

  7. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts.

    Science.gov (United States)

    Saini, Natalie; Roberts, Steven A; Klimczak, Leszek J; Chan, Kin; Grimm, Sara A; Dai, Shuangshuang; Fargo, David C; Boyer, Jayne C; Kaufmann, William K; Taylor, Jack A; Lee, Eunjung; Cortes-Ciriano, Isidro; Park, Peter J; Schurman, Shepherd H; Malc, Ewa P; Mieczkowski, Piotr A; Gordenin, Dmitry A

    2016-10-01

    Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.

  8. Expression of human acidic fibroblast growth factor in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    YU Ying; CAI Shaoxi; Harald G. WERIRICH; XIA Yuxian

    2003-01-01

    Pichia pastoris expression system is similar to that of the mammal cell in modification of expressed protein, including refolding and glycosylation. A human aFGF gene was cloned into the intracellular expression vector pPIC9K. The Pichia pastoriS KM71 strain was transformed with the recombined expression plasmid. Transgenic expression was observed after screening the transformants with G418. The expression and secretion of recombinant human aFGF (rhaFGF) into the culture medium were testified by ELISA assay. The yield peaked after two days of induction and was approximately 10 mg.L-1 in shake-flask fermentation medium. The recombinant proteins were purified by the combination of heparin-Sepharose affinity chromatography and gel filtration chromatography. Two proteins with relative molecular masses (Mr) of 17 000 and 35 000 were purified as a single band in SDS-PAGE, whose biological activities were determined by MTT assay. It is found that the protein with Mr of 1 7 000 is nonglycosylated haFGF, and that with Mr of 35 000 is glycosylated haFGF; and the latter has a lower biological activity than the former.

  9. Expression and function of connexin 43 in human gingival wound healing and fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rana Tarzemany

    Full Text Available Connexins (C×s are a family of transmembrane proteins that form hemichannels and gap junctions (GJs on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of

  10. In vitro exposure of human fibroblasts to local anaesthetics impairs cell growth

    Science.gov (United States)

    Fedder, C; Beck-Schimmer, B; Aguirre, J; Hasler, M; Roth-Z'graggen, B; Urner, M; Kalberer, S; Schlicker, A; Votta-Velis, G; Bonvini, J M; Graetz, K; Borgeat, A

    2010-01-01

    Lidocaine, bupivacaine or ropivacaine are used routinely to manage perioperative pain. Sparse data exist evaluating the effects of local anaesthetics (LA) on fibroblasts, which are involved actively in wound healing. Therefore, we investigated the effects of the three LA to assess the survival, viability and proliferation rate of fibroblasts. Human fibroblasts were exposed to 0·3 mg/ml and 0·6 mg/ml of each LA for 2 days, followed by incubation with normal medium for another 1, 4 or 7 days (group 1). Alternatively, cells were incubated permanently with LA for 3, 6 or 9 days (group 2). Live cell count was assessed using trypan blue staining. Viability was measured by the tetrazolium bromide assay. Proliferation tests were performed with the help of the colorimetric bromodeoxyuridine assay. Production of reactive oxygen species (ROS) was determined, measuring the oxidation of non-fluorescent-2,7′-dichlorofluorescin. Treatment of cells with the three LA showed a concentration-dependent decrease of live cells, mitochondrial activity and proliferation rate. Group arrangement played a significant role for cell count and proliferation, while exposure time influenced viability. Among the analysed LA, bupivacaine showed the most severe cytotoxic effects. Increased production of ROS correlated with decreased viability of fibroblasts in lidocaine- and bupivacaine-exposed cells, but not upon stimulation with ropivacaine. This study shows a concentration-dependent cytotoxic effect of lidocaine, bupivacaine and ropivacaine on fibroblasts in vitro, with more pronounced effects after continuous incubation. A possible mechanism of cell impairment could be triggered by production of ROS upon stimulation with lidocaine and bupivacaine. PMID:20819090

  11. HEMA but not TEGDMA induces autophagy in human gingival fibroblasts

    Science.gov (United States)

    Teti, Gabriella; Orsini, Giovanna; Salvatore, Viviana; Focaroli, Stefano; Mazzotti, Maria C.; Ruggeri, Alessandra; Mattioli-Belmonte, Monica; Falconi, Mirella

    2015-01-01

    Polymerized resin-based materials are successfully used in restorative dentistry. Despite their growing popularity, one drawback is the release of monomers from the polymerized matrix due to an incomplete polymerization or degradation processes. Released monomers are responsible for several adverse effects in the surrounding biological tissues, inducing high levels of oxidative stress. Reactive oxygen species are important signaling molecules that regulate many signal-trasduction pathways and play critical roles in cell survival, death, and immune defenses. Reactive oxygen species were recently shown to activate autophagy as a mechanism of cell survival and cell death. Although the toxicity induced by dental resin monomers is widely studied, the cellular mechanisms underlying these phenomena are still unknown. The aim of the study was to investigate the behavior of human gingival cells exposed to 2-hydroxy-ethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) to better elucidate the mechanisms of cell survival and cell death induced by resin monomers. Primary culture of human gingival cells were exposed to 3 mmol/L of HEMA or 3 mmol/L of TEGDMA for 24, 48, and 72 h. Morphological investigations were performed by transmission electron microscopy to analyze the ultrastructure of cells exposed to the monomers. The expression of protein markers for apoptosis (caspase – 3 and PARP) and autophagy (beclin – 1 and LC3B I/II) were analyzed by western blot to investigate the influence of dental resin monomers on mechanisms underlying cell death. Results showed that HEMA treatment clearly induced autophagy followed by apoptosis while the lack of any sign of autophagy activation is observed in HGFs exposed to TEGDMA. These data indicate that cells respond to monomer-induced stress by the differential induction of adaptive mechanisms to maintain cellular homeostasis. PMID:26483703

  12. HEMA but not TEGDMA Induces Autophagy in Human Gingival Fibroblasts.

    Directory of Open Access Journals (Sweden)

    gabriella eteti

    2015-10-01

    Full Text Available Polymerized resin-based materials are successfully used in restorative dentistry. Despite their growing popularity, one drawback is the release of monomers from the polymerized matrix due to an incomplete polymerization or degradation processes. Released monomers are responsible for several adverse effects in the surrounding biological tissues, inducing high levels of oxidative stress. Reactive oxygen species are important signaling molecules that regulate many signal-trasduction pathways and play critical roles in cell survival, death, and immune defenses. Reactive oxygen species were recently shown to activate autophagy as a mechanism of cell survival and cell death. Although the toxicity induced by dental resin monomers is widely studied, the cellular mechanisms underlying these phenomena are still unknown. The aim of the study was to investigate the behavior of human gingival cells exposed to 2-hydroxy-ethyl methacrylate (HEMA and triethylene glycol dimethacrylate (TEGDMA to better elucidate the mechanisms of cell survival and cell death induced by resin monomers. Primary culture of human gingival cells were exposed to 3mmol/L of HEMA or 3mmol/L of TEGDMA for 24 h, 48h, and 72 h. Morphological investigations were performed by transmission electron microscopy to analyze the ultrastructure of cells exposed to the monomers. The expression of protein markers for apoptosis (caspase – 3 and PARP and autophagy (beclin – 1 and LC3B I/II were analyzed by western blot to investigate the influence of dental resin monomers on mechanisms underlying cell death. Results showed that HEMA treatment clearly induced autophagy followed by apoptosis while the lack of any sign of autophagy activation is observed in HGFs exposed to TEGDMA. These data indicate that cells respond to monomer-induced stress by the differential induction of adaptive mechanisms to maintain cellular homeostasis.

  13. Effects of conditioned medium from LL-37 treated adipose stem cells on human fibroblast migration.

    Science.gov (United States)

    Yang, Eun-Jung; Bang, Sa-Ik

    2017-07-01

    Adipose stem cell-conditioned medium may promote human dermal fibroblast (HDF) proliferation and migration by activating paracrine peptides during the re-epithelization phase of wound healing. Human antimicrobial peptide LL-37 is upregulated in the skin epithelium as part of the normal response to injury. The effects of conditioned medium (CM) from LL-37 treated adipose stem cells (ASCs) on cutaneous wound healing, including the mediation of fibroblast migration, remain to be elucidated, therefore the aim of the present study was to determine how ASCs would react to an LL-37-rich microenvironment and if CM from LL-37 treated ASCs may influence the migration of HDFs. The present study conducted migration assays with HDFs treated with CM from LL-37 treated ASCs. Expression of CXC chemokine receptor 4 (CXCR4), which controls the recruitment of HDFs, was analyzed at the mRNA and protein levels. To further characterize the stimulatory effects of LL-37 on ASCs, the expression of stromal cell-derived factor-1α (SDF-1α), a CXC chemokine, was investigated. CM from LL-37-treated ASCs induced migration of HDFs in a time- and dose-dependent manner, with a maximum difference in migration observed 24 h following stimulation with LL-37 at a concentration of 10 µg/ml. The HDF migration and the expression of CXCR4 in fibroblasts was markedly increased upon treatment with CM from LL-37-treated ASCs compared with CM from untreated ASCs. SDF-1α expression was markedly increased in CM from LL-37 treated ASCs. It was additionally observed that SDF-1α blockade significantly reduced HDF migration. These findings suggest the feasibility of CM from LL-37-treated ASCs as a potential therapeutic for human dermal fibroblast migration.

  14. Preventive effects of tamarind seed coat extract on UVA-induced alterations in human skin fibroblasts.

    Science.gov (United States)

    Phetdee, Khemjira; Rakchai, Racharat; Rattanamanee, Kwanchai; Teaktong, Thanasak; Viyoch, Jarupa

    2014-01-01

    One of the most damaging actions on skin is from solar radiation, particularly from its ultraviolet (UV) component, through the formation of oxidative species. Thus, an antioxidant strategy that prevents the formation of these oxidants could form the basis of an efficacious cutaneous protectant. Many herbal materials contain antioxidant polyphenols, and this study assessed the possibility that tamarind seed coat extract could fulfill this role. An alcoholic extract of the tamarind (Tamarindus indica L.) seed coat showed stronger antioxidant activity (2,2-diphenyl-1-picrylhydrazyl inhibition, EC(50) = 12.9 μg/ml) than L-ascorbic acid (EC(50) = 22.9 μg/ml) and α-tocopherol (EC(50) = 29.3 μg/ml). In cultured fibroblasts taken from human skin, hydrogen peroxide (100-1000 μM) damaged 62-92% of the cells compared to only 35-47% when the cells were preincubated in extract (200 μg/ml) for 24 h. UVA (40 J/cm2) irradiation of human fibroblasts damaged 25% of the cells but the death rate was reduced to 10% with extract. UV irradiation increased the proportion of cells arrest in G(0)/G(1) phase (from 59% to 78%) but this was largely prevented by the extract (64%), according to flow cytometry. Intracellular total glutathione of UVA-irradiated cells pretreated with the extract increased to 10-25% compared to the non-pretreated group at 24-72 h after irradiation. Fibroblasts typically increased matrix metalloproteinase-1 secretion after photodamage, and this is prevented by the extract. This is the first report showing that tamarind seed coat extract is an antioxidant and can protect human skin fibroblasts from cellular damage produced by UVA and thus may form the foundation for an antiaging cosmetic.

  15. Combined Proteome and Eicosanoid Profiling Approach for Revealing Implications of Human Fibroblasts in Chronic Inflammation.

    Science.gov (United States)

    Tahir, Ammar; Bileck, Andrea; Muqaku, Besnik; Niederstaetter, Laura; Kreutz, Dominique; Mayer, Rupert L; Wolrab, Denise; Meier, Samuel M; Slany, Astrid; Gerner, Christopher

    2017-02-07

    During inflammation, proteins and lipids act in a concerted fashion, calling for combined analyses. Fibroblasts are powerful mediators of chronic inflammation. However, little is known about eicosanoid formation by human fibroblasts. The aim of this study was to analyze the formation of the most relevant inflammation mediators including proteins and lipids in human fibroblasts upon inflammatory stimulation and subsequent treatment with dexamethasone, a powerful antiphlogistic drug. Label-free quantification was applied for proteome profiling, while an in-house established data-dependent analysis method based on high-resolution mass spectrometry was applied for eicosadomics. Furthermore, a set of 188 metabolites was determined by targeted analysis. The secretion of 40 proteins including cytokines, proteases, and other inflammation agonists as well as 14 proinflammatory and nine anti-inflammatory eicosanoids was found significantly induced, while several acylcarnithins and sphingomyelins were found significantly downregulated upon inflammatory stimulation. Treatment with dexamethasone downregulated most cytokines and proteases, abrogated the formation of pro- but also anti-inflammatory eicosanoids, and restored normal levels of acylcarnithins but not of sphingomyelins. In addition, the chemokines CXCL1, CXCL5, CXCL6, and complement C3, known to contribute to chronic inflammation, were not counter-regulated by dexamethasone. Similar findings were obtained with human mesenchymal stem cells, and results were confirmed by targeted analysis with multiple reaction monitoring. Comparative proteome profiling regarding other cells demonstrated cell-type-specific synthesis of, among others, eicosanoid-forming enzymes as well as relevant transcription factors, allowing us to better understand cell-type-specific regulation of inflammation mediators and shedding new light on the role of fibroblasts in chronic inflammation.

  16. The catalytic and the RNA subunits of human telomerase are required to immortalize equid primary fibroblasts.

    Science.gov (United States)

    Vidale, Pamela; Magnani, Elisa; Nergadze, Solomon G; Santagostino, Marco; Cristofari, Gael; Smirnova, Alexandra; Mondello, Chiara; Giulotto, Elena

    2012-10-01

    Many human primary somatic cells can be immortalized by inducing telomerase activity through the exogenous expression of the human telomerase catalytic subunit (hTERT). This approach has been extended to the immortalization of cell lines from several mammals. Here, we show that hTERT expression is not sufficient to immortalize primary fibroblasts from three equid species, namely donkey, Burchelli's zebra and Grevy's zebra. In vitro analysis of a reconstituted telomerase composed by hTERT and an equid RNA component of telomerase (TERC) revealed a low activity of this enzyme compared to human telomerase, suggesting a low compatibility of equid and human telomerase subunits. This conclusion was also strengthened by comparison of human and equid TERC sequences, which revealed nucleotide differences in key regions for TERC and TERT interaction. We then succeeded in immortalizing equid fibroblasts by expressing hTERT and hTERC concomitantly. Expression of both human telomerase subunits led to telomerase activity and telomere elongation, indicating that human telomerase is compatible with the other equid telomerase subunits and proteins involved in telomere metabolism. The immortalization procedure described herein could be extended to primary cells from other mammals. The availability of immortal cells from endangered species could be particularly useful for obtaining new information on the organization and function of their genomes, which is relevant for their preservation.

  17. Knockdown of CDK2AP1 in primary human fibroblasts induces p53 dependent senescence.

    Directory of Open Access Journals (Sweden)

    Khaled N Alsayegh

    Full Text Available Cyclin Dependent Kinase-2 Associated Protein-1 (CDK2AP1 is known to be a tumor suppressor that plays a role in cell cycle regulation by sequestering monomeric CDK2, and targeting it for proteolysis. A reduction of CDK2AP1 expression is considered to be a negative prognostic indicator in patients with oral squamous cell carcinoma and also associated with increased invasion in human gastric cancer tissue. CDK2AP1 overexpression was shown to inhibit growth, reduce invasion and increase apoptosis in prostate cancer cell lines. In this study, we investigated the effect of CDK2AP1 downregulation in primary human dermal fibroblasts. Using a short-hairpin RNA to reduce its expression, we found that knockdown of CDK2AP1 in primary human fibroblasts resulted in reduced proliferation and in the induction of senescence associated beta-galactosidase activity. CDK2AP1 knockdown also resulted in a significant reduction in the percentage of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Immunocytochemical analysis also revealed that the CDK2AP1 knockdown significantly increased the percentage of cells that exhibited γ-H2AX foci, which could indicate presence of DNA damage. CDK2AP1 knockdown also resulted in increased mRNA levels of p53, p21, BAX and PUMA and p53 protein levels. In primary human fibroblasts in which p53 and CDK2AP1 were simultaneously downregulated, there was: (a no increase in senescence associated beta-galactosidase activity, (b decrease in the number of cells in the G1-phase and increase in number of cells in the S-phase of the cell cycle, and (c decrease in the mRNA levels of p21, BAX and PUMA when compared with CDK2AP1 knockdown only fibroblasts. Taken together, this suggests that the observed phenotype is p53 dependent. We also observed a prominent increase in the levels of ARF protein in the CDK2AP1 knockdown cells, which suggests a possible role of ARF in p53 stabilization following CDK2AP1

  18. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol

    Science.gov (United States)

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    Aim The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Materials and methods Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Results Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. Conclusion This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol. PMID:28293103

  19. Toxicity of antiglaucoma drugs with and without benzalkonium chloride to cultured human corneal endothelial cells

    Directory of Open Access Journals (Sweden)

    Masahiko Ayaki

    2010-10-01

    Full Text Available Masahiko Ayaki1, Atsuo Iwasawa2, Yoichi Inoue31Department of Ophthalmology, Saitama National Hospital, Wako, Japan; 2Life Particle Interaction Engineering Creation, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan; 3Department of Ophthalmology, Olympia Eye Hospital, Tokyo, JapanPurpose: The toxicity of antiglaucoma medications to ocular surface cells has been evaluated extensively; however, the toxicity to corneal endothelial cells (CECs remains elusive. Our aim is to evaluate the toxicity of antiglaucoma medications to CECs using an in vitro toxicity assay.Methods: Primary cultures of human (H CECs derived from eye bank specimens were established. Following exposure of HCECs to test solutions for 10, 30, or 60 minutes, or 48 hours, we measured cell viability using a WST-1 assay. Test solutions were diluted in culture media and included 0.5% Timoptol®, preservative-free 0.5% timolol maleate, 1% Trusopt®, preservative-free 1% dorzolamide, Travatan®, Travatan Z®, Xalatan®, and benzalkonium chloride (BAK. To assess cell viability, the value of the test culture well after treatment was expressed as a percentage of that of the control well. Toxicity of each solution was compared using the cell viability score (CVS.Results: After exposure to 10-fold dilutions of test solutions for 48 hours, HCEC viabilities were 48.5% for 0.5% Timoptol, 80.9% for preservative-free 0.5% timolol maleate, 47.0% for 1% Trusopt, 71.7% for preservative-free 1% dorzolamide, 55.5% for Travatan, 88.5% for Travatan Z, and 52.5% for Xalatan. Exposure to test solutions diluted 100-fold or more resulted in HCEC viabilities > 80%, with the exception of preservative-free 1% dorzolamide, which resulted in a viability of 72.0% at a dilution of 100-fold. Based on CVS, the order of cell viability was Travatan Z ≥ preservative-free timolol maleate = preservative-free dorzolamide > 0.5% Timoptol = 1% Trusopt > Travatan ≥ Xalatan. Assessment of the

  20. Toxicity of antiglaucoma drugs with and without benzalkonium chloride to cultured human corneal endothelial cells

    Science.gov (United States)

    Ayaki, Masahiko; Iwasawa, Atsuo; Inoue, Yoichi

    2010-01-01

    Purpose The toxicity of antiglaucoma medications to ocular surface cells has been evaluated extensively; however, the toxicity to corneal endothelial cells (CECs) remains elusive. Our aim is to evaluate the toxicity of antiglaucoma medications to CECs using an in vitro toxicity assay. Methods Primary cultures of human (H) CECs derived from eye bank specimens were established. Following exposure of HCECs to test solutions for 10, 30, or 60 minutes, or 48 hours, we measured cell viability using a WST-1 assay. Test solutions were diluted in culture media and included 0.5% Timoptol®, preservative-free 0.5% timolol maleate, 1% Trusopt®, preservative-free 1% dorzolamide, Travatan®, Travatan Z®, Xalatan®, and benzalkonium chloride (BAK). To assess cell viability, the value of the test culture well after treatment was expressed as a percentage of that of the control well. Toxicity of each solution was compared using the cell viability score (CVS). Results After exposure to 10-fold dilutions of test solutions for 48 hours, HCEC viabilities were 48.5% for 0.5% Timoptol, 80.9% for preservative-free 0.5% timolol maleate, 47.0% for 1% Trusopt, 71.7% for preservative-free 1% dorzolamide, 55.5% for Travatan, 88.5% for Travatan Z, and 52.5% for Xalatan. Exposure to test solutions diluted 100-fold or more resulted in HCEC viabilities >80%, with the exception of preservative-free 1% dorzolamide, which resulted in a viability of 72.0% at a dilution of 100-fold. Based on CVS, the order of cell viability was Travatan Z ≥ preservative-free timolol maleate = preservative-free dorzolamide > 0.5% Timoptol = 1% Trusopt > Travatan ≥ Xalatan. Assessment of the combined effect of drug and BAK revealed that latanoprost reduced the toxicity of BAK. Conclusion Antiglaucoma eye drops produced HCEC toxicity that appeared to depend on the presence of BAK. Because dilution of the antiglaucoma solutions resulted in markedly lower HCEC toxicity, HCEC damage due to antiglaucoma medication may

  1. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Sivapragasam Gothai

    2016-03-01

    Full Text Available Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for treatment of cuts, wounds and burns. Moringa oleifera is an herb used as traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of M. oleifera leaves extract are completely unknown. Methods: In the current study, ethyl acetate fraction of Moringa oleifera leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 and micro;g/ml, 25 and micro;g/ml, and 50 and micro;g/ml of ethyl acetate fraction of M. oleifera leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: The present study suggested that ethyl acetate fraction of M. oleifera leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. [J Intercult Ethnopharmacol 2016; 5(1.000: 1-6

  2. IFN-Dependent and -Independent Reduction in West Nile Virus Infectivity in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Lisa I. Hoover

    2014-03-01

    Full Text Available Although dermal fibroblasts are one of the first cell types exposed to West Nile virus (WNV during a blood meal by an infected mosquito, little is known about WNV replication within this cell type. Here, we demonstrate that neuroinvasive, WNV-New York (WNV-NY, and nonneuroinvasive, WNV-Australia (WNV-AUS60 strains are able to infect and replicate in primary human dermal fibroblasts (HDFs. However, WNV-AUS60 replication and spread within HDFs was reduced compared to that of WNV-NY due to an interferon (IFN-independent reduction in viral infectivity early in infection. Additionally, replication of both strains was constrained late in infection by an IFN-β-dependent reduction in particle infectivity. Overall, our data indicates that human dermal fibroblasts are capable of supporting WNV replication; however, the low infectivity of particles produced from HDFs late in infection suggests that this cell type likely plays a limited role as a viral reservoir in vivo.

  3. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts

    Science.gov (United States)

    Huh, Christine J; Zhang, Bo; Victor, Matheus B; Dahiya, Sonika; Batista, Luis FZ; Horvath, Steve; Yoo, Andrew S

    2016-01-01

    Aging is a major risk factor in many forms of late-onset neurodegenerative disorders. The ability to recapitulate age-related characteristics of human neurons in culture will offer unprecedented opportunities to study the biological processes underlying neuronal aging. Here, we show that using a recently demonstrated microRNA-based cellular reprogramming approach, human fibroblasts from postnatal to near centenarian donors can be efficiently converted into neurons that maintain multiple age-associated signatures. Application of an epigenetic biomarker of aging (referred to as epigenetic clock) to DNA methylation data revealed that the epigenetic ages of fibroblasts were highly correlated with corresponding age estimates of reprogrammed neurons. Transcriptome and microRNA profiles reveal genes differentially expressed between young and old neurons. Further analyses of oxidative stress, DNA damage and telomere length exhibit the retention of age-associated cellular properties in converted neurons from corresponding fibroblasts. Our results collectively demonstrate the maintenance of age after neuronal conversion. DOI: http://dx.doi.org/10.7554/eLife.18648.001 PMID:27644593

  4. Hexapeptide-11 is a novel modulator of the proteostasis network in human diploid fibroblasts

    Science.gov (United States)

    Sklirou, Aimilia D.; Ralli, Marianna; Dominguez, Maria; Papassideri, Issidora; Skaltsounis, Alexios-Leandros; Trougakos, Ioannis P.

    2015-01-01

    Despite the fact that several natural products (e.g. crude extracts or purified compounds) have been found to activate cell antioxidant responses and/or delay cellular senescence the effect(s) of small peptides on cell viability and/or modulation of protective mechanisms (e.g. the proteostasis network) remain largely elusive. We have thus studied a hexapeptide (Hexapeptide-11) of structure Phe–Val–Ala–Pro–Phe–Pro (FVAPFP) originally isolated from yeast extracts and later synthesized by solid state synthesis to high purity. We show herein that Hexapeptide-11 exhibits no significant toxicity in normal human diploid lung or skin fibroblasts. Exposure of fibroblasts to Hexapeptide-11 promoted dose and time-dependent activation of proteasome, autophagy, chaperones and antioxidant responses related genes. Moreover, it promoted increased nuclear accumulation of Nrf2; higher expression levels of proteasomal protein subunits and increased proteasome peptidase activities. In line with these findings we noted that Hexapeptide-11 conferred significant protection in fibroblasts against oxidative-stress-mediated premature cellular senescence, while at in vivo skin deformation assays in human subjects it improved skin elasticity. Finally, Hexapeptide-11 was found to induce the activity of extracellular MMPs and it also suppressed cell migration. Our presented findings indicate that Hexapeptide-11 is a promising anti-ageing agent. PMID:25974626

  5. Hexapeptide-11 is a novel modulator of the proteostasis network in human diploid fibroblasts

    Directory of Open Access Journals (Sweden)

    Aimilia D. Sklirou

    2015-08-01

    Full Text Available Despite the fact that several natural products (e.g. crude extracts or purified compounds have been found to activate cell antioxidant responses and/or delay cellular senescence the effect(s of small peptides on cell viability and/or modulation of protective mechanisms (e.g. the proteostasis network remain largely elusive. We have thus studied a hexapeptide (Hexapeptide-11 of structure Phe–Val–Ala–Pro–Phe–Pro (FVAPFP originally isolated from yeast extracts and later synthesized by solid state synthesis to high purity. We show herein that Hexapeptide-11 exhibits no significant toxicity in normal human diploid lung or skin fibroblasts. Exposure of fibroblasts to Hexapeptide-11 promoted dose and time-dependent activation of proteasome, autophagy, chaperones and antioxidant responses related genes. Moreover, it promoted increased nuclear accumulation of Nrf2; higher expression levels of proteasomal protein subunits and increased proteasome peptidase activities. In line with these findings we noted that Hexapeptide-11 conferred significant protection in fibroblasts against oxidative-stress-mediated premature cellular senescence, while at in vivo skin deformation assays in human subjects it improved skin elasticity. Finally, Hexapeptide-11 was found to induce the activity of extracellular MMPs and it also suppressed cell migration. Our presented findings indicate that Hexapeptide-11 is a promising anti-ageing agent.

  6. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis.

    Science.gov (United States)

    Lee, Geum-Young; Park, Kang-Gyun; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-03-01

    Current studies of Panax ginseng (or Korean ginseng) have demonstrated that it has various biological effects, including angiogenesis, immunostimulation, antimicrobial and anti-inflammatory effects. Therefore, we hypothesised that P. ginseng may also play an important role in wound healing. However, few studies have been conducted on the wound-healing effects of P. ginseng. Thus, the purpose of this in vitro pilot study was to determine the effects of P. ginseng on the activities of fibroblasts, which are key wound-healing cells. Cultured human dermal fibroblasts were treated with one of six concentrations of P. ginseng: 0, 1, 10 and 100 ng/ml and 1 and 10 µg/ml. Cell proliferation was determined 3 days post-treatment using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, and collagen synthesis was evaluated by the collagen type I carboxy-terminal propeptide method. Cell proliferation levels and collagen synthesis were compared among the groups. The 10 ng/ml to 1 µg/ml P. ginseng treatments significantly increased cell proliferation, and the 1 ng/ml to 1 µg/ml concentrations significantly increased collagen synthesis. The maximum effects for both parameters were observed at 10 ng/ml. P. ginseng stimulated human dermal fibroblast proliferation and collagen synthesis at an optimal concentration of 10 ng/ml. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  7. Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells

    Science.gov (United States)

    Kim, Bona; Yoon, Byung Sun; Moon, Jai-Hee; Kim, Jonggun; Jun, Eun Kyoung; Lee, Jung Han; Kim, Jun Sung; Baik, Cheong Soon; Kim, Aeree; Whang, Kwang Youn

    2012-01-01

    Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin-producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis-derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal-endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic β-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin-induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus. PMID:22020533

  8. Biocompatibility of three bioabsorbable membranes assessed in FGH fibroblasts and human osteoblast like cells culture.

    Science.gov (United States)

    Soares, Michelle Pereira Costa Mundim; Soares, Paulo Vinícius; Pereira, Analice Giovani; Moura, Camilla Christian Gomes; Soares, Priscila Barbosa Ferreira; Naves, Lucas Zago; de Magalhães, Denildo

    2014-08-06

    Specific physical and chemical features of the membranes may influence the healing of periodontal tissues after guided tissue regeneration (GTR). The aim of the present investigation was to analyze the biological effects of three bioabsorbable membranes. The hypothesis is that all tested membranes present similar biological effects. Human osteoblast like-cells (SaOs-2) and gingival fibroblasts FGH (BCRJ -RJ) were cultured in DMEM medium. The viability of the cells cultured on the membranes was assesses using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Quantitative determination of activated human Transforming Growth Factor beta 1 (TGF-β1) on the supernatants of the cell culture was observed. Samples were examined using scanning electron microscope (SEM). SaOs2, in 24 hours, PLA group showed higher values when compared to other groups (P statistical significance values when compared two times. In 4 h and 24 h, for the fibroblasts group, significantly difference was found to PLA membrane, when compared with the other groups (p statistically significant difference (p analysis of culture supernatants of fibroblasts, in 24 hours, only PLA group presented significant difference (p = 0,008). The biomaterials analyzed did not show cytotoxicity, since no membrane presented lower results than the control group. PLA membrane presented the best performance due to its higher cell viability and absorbance levels of proliferation. Both collagen membranes showed similar results either when compared to each other or to the control group.

  9. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    Science.gov (United States)

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  10. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension.

    Science.gov (United States)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E; Qvortrup, Klaus; Baar, Keith; Svensson, René B; Magnusson, S Peter; Krogsgaard, Michael; Koch, Manuel; Kjaer, Michael

    2010-06-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned along the axis of tension. The fibrils had a homogeneous narrow diameter that was similar to collagen fibrils occurring in embryonic tendon. Immunostaining showed colocalization of collagen type I with collagen III, XII and XIV. A fibronectin network was formed in parallel with the collagen, and fibroblasts stained positive for integrin alpha(5). Finally, the presence of cell extensions into the extracellular space with membrane-enclosed fibrils in fibripositors indicated characteristics of embryonic tendon. We conclude that mature human tendon fibroblasts retain an intrinsic capability to perform collagen fibrillogenesis similar to that of developing tendon, which implies that the hormonal/mechanical milieu, rather than intrinsic cellular function, inhibits regenerative potential in mature tendon. (c) 2010 Elsevier Ltd. All rights reserved.

  11. In vitro toxicity of grey MTA in comparison to white MTA on human periodontal ligament fibroblasts.

    Science.gov (United States)

    Al-Haj Ali, S N; Al-Jundi, S H; Ditto, D J

    2014-12-01

    This was to define and compare the in vitro toxicity of grey MTA with that of white MTA on cultured human periodontal ligament (PDL) fibroblasts. PDL cells were obtained from sound first permanent molars and cultured in Dulbecco's Modified Eagle's Medium. Cultures were subjected to different concentrations of grey and white MTA (0.5, 5, 50 and 500 µg/ml) for 24 h at 37 °C. Cells that were not exposed to grey or white MTA served as the negative control. In vitro toxicity was assessed using MTT assay. The results were compared using ANOVA and Tukey statistical tests (p MTA presented higher in vitro toxicity than grey MTA. However, the differences were almost insignificant (p > 0.05). Both colours of MTA are biocompatible since they were both able to preserve PDL fibroblasts for up to 24 h. MTA is as a promising alternative in pulpotomy of primary teeth.

  12. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    Science.gov (United States)

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging.

  13. Non-saponifiable fraction of cocoa shell butter: effect on rat and human skin fibroblasts.

    Science.gov (United States)

    Warocquier-Clerout, R; Sigot, M; Ouraghi, M; Chaveron, H

    1992-02-01

    Synopsis Non-saponifiable lipid fraction (ICSB) extracted from cocoa shell butter was solubilized in dimethylformamide (DMF) and analysed for its biological activity on growth of rat and human fibroblasts. Non-saponifiables (10 mug ml(-1)) partially protected cells from toxicity of DMF (1%) and allowed the growth of fibroblasts cultivated in optimal conditions (10% fetal calf serum-FCS, 37 degrees C) or improved the survival of cells maintained in altered conditions (2.5% FCS, 35 degrees C). At higher concentration (ICSB 50 mug ml(-1), DMF 1%), the protective effect was suppressed. ICSB was fractionated by chromatography into four compounds: sterols, terpenic alcohols, tocopherols and hydrocarbons +/- carotenoids. We found that biological activity of ICSB was mostly due to the major fraction containing sterols.

  14. Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation.

    Science.gov (United States)

    Kruszewski, F H; Walker, T L; DiPasquale, L C

    1997-04-01

    A human corneal epithelial cell line, 10.014 pRSV-T (HCR-T cells), has been used to develop a three-dimensional in vitro model of the human corneal epithelium (HCE-T model). HCE-T cells form a stratified culture when grown at the air-liquid interface on a collagen membrane in serum-free medium. This model served as the basis for assays which supported the ocular irritancy assessment of water-soluble test substances. Cellular alterations in the HCE-T model were measured following 5-min topical exposures to 20 chemicals [listed in the European Center for Ecotoxicology and Toxicology of Chemicals (ECETOC) Reference Chemicals Data Bank] and 25 surfactant-based product formulations [utilized in the Cosmetic, Toiletry, and Fragrance Association (CTFA) Alternatives Program Phase III]. In vitro assays used were transepithelial permeability to sodium fluorescein (TEP) and transepithelial electrical resistance (TER). These measured alterations in the barrier function of this corneal epithelial equivalent. Barrier function is a well-developed property in the HCE-T model that supports the mechanistic relevance of these assays. In vitro data, averaged from replicate assays, were compared to respective Draize rabbit eye irritation data from the publicly available ECETOC and CTFA databases using linear regression with Pearson's correlation analysis. For chemicals, Pearson's correlation coefficients, r, from comparisons of Draize maximum average scores (MAS) to TEP and TER data were 0.71 and 0.55, respectively. For product formulations, Pearson's correlation coefficients from comparisons of Draize MAS to TEP and TER data were 0.86 and 0.80, respectively. Data indicated that barrier function alterations in the HCE-T model correlated with ocular irritancy and corneal toxicity. While the irritancy of the chemicals tested was effectively assessed only by the TEP assay, that for the surfactant-based product formulations was effectively assessed by both the TEP and TER assays. Results

  15. Corneal Laceration

    Medline Plus

    Full Text Available ... from Laundry Packets On the Rise Jun 30, 2017 People with Advanced Keratoconus May Have A Future Alternative to Full Corneal Transplantation Nov 29, 2016 Combating Eye Injuries from Air Guns Aug 30, ...

  16. Corneal transplant

    Science.gov (United States)

    ... lenses to achieve the best vision. Laser vision correction may be an option if you have nearsightedness, ... Editorial team. Related MedlinePlus Health Topics Corneal Disorders Refractive Errors Browse the Encyclopedia A.D.A.M., Inc. ...

  17. Corneal Laceration

    Medline Plus

    Full Text Available ... Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide ... What Is Corneal Laceration? Leer en Español: ¿Qué ...

  18. Corneal Laceration

    Medline Plus

    Full Text Available ... itself. A corneal laceration is a very serious injury and requires immediate medical attention to avoid severe ... Dangerous for Your Eyes Sep 20, 2017 Eye Injuries from Laundry Packets On the Rise Jun 30, ...

  19. Corneal Laceration

    Medline Plus

    Full Text Available ... itself. A corneal laceration is a very serious injury and requires immediate medical attention to avoid severe ... 27, 2015 Dark Spot in Vision After Blunt Trauma Dec 21, 2014 Pain a Year After Eyelid ...

  20. Corneal Laceration

    Medline Plus

    Full Text Available ... itself. A corneal laceration is a very serious injury and requires immediate medical attention to avoid severe ... and preserving your vision. Privacy Policy Related Eye Injuries from Laundry Packets On the Rise Jun 30, ...

  1. Corneal Laceration

    Medline Plus

    Full Text Available ... 2017 People with Advanced Keratoconus May Have A Future Alternative to Full Corneal Transplantation Nov 29, 2016 Combating Eye Injuries from Air Guns Aug 30, ... Public & Patients: Contact Us About ...

  2. Corneal Laceration

    Medline Plus

    Full Text Available ... by something sharp flying into the eye. It can also be caused by something striking the eye ... If the corneal laceration is deep enough it can cause a full thickness laceration. This is when ...

  3. Corneal Laceration

    Medline Plus

    Full Text Available ... Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide ... What Is Corneal Laceration? Written By: Daniel Porter ...

  4. Corneal Laceration

    Medline Plus

    Full Text Available ... By: Devin A Harrison MD Sep. 01, 2017 The cornea is the clear front window of the eye . A corneal laceration is a cut on the cornea. It is usually caused by something sharp ...

  5. Corneal Laceration

    Medline Plus

    Full Text Available ... itself. A corneal laceration is a very serious injury and requires immediate medical attention to avoid severe ... 27, 2015 Dark Spot in Vision After Blunt Trauma Dec 21, 2014 Pain a Year After Eyelid ...

  6. Evidence for a physiological role of intracellularly occurring photolabile nitrogen oxides in human skin fibroblasts.

    Science.gov (United States)

    Opländer, Christian; Wetzel, Wiebke; Cortese, Miriam M; Pallua, Norbert; Suschek, Christoph V

    2008-05-01

    Nitric oxide (NO) plays a pivotal role in human skin biology. Cutaneous NO can be produced enzymatically by NO synthases (NOS) as well as enzyme independently via photodecomposition of photolabile nitrogen oxides (PNOs) such as nitrite or nitroso compounds, both found in human skin tissue in comparably high concentrations. Although the physiological role of NOS-produced NO in human skin is well defined, nothing is known about the biological relevance or the chemical origin of intracellularly occurring PNOs. We here, for the first time, give evidence that in human skin fibroblasts (FB) PNOs represent the oxidation products of NOS-produced NO and that in human skin fibroblasts intracellularly occurring PNOs effectively protect against the injurious effects of UVA radiation by a NO-dependent mechanism. In contrast, in PNO-depleted FB cultures an increased susceptibility to UVA-induced lipid peroxidation and cell death is observed, whereas supplementation of PNO-depleted FB cultures with physiological nitrite concentrations (10 microM) or with exogenously applied NO completely restores UVA-increased injuries. Thus, intracellular PNOs are biologically relevant and represent an important initial shield functioning in human skin physiology against UVA radiation. Consequently, nonphysiological low PNO concentrations might promote known UVA-related skin injuries such as premature aging and carcinogenesis.

  7. Trehalose-Based Eye Drops Preserve Viability and Functionality of Cultured Human Corneal Epithelial Cells during Desiccation

    Directory of Open Access Journals (Sweden)

    Aneta Hill-Bator

    2014-01-01

    Full Text Available This paper presents the evaluation of cytoprotective ability of trehalose-based eye drops in comparison with commercially available preparations during the experimental desiccation of cultured human corneal epithelial cells. Cultured human corneal epithelial cells (hCEC underwent incubation with 7 different, commercially available medicaments used commonly in dry eye syndrome treatment, followed by desiccation trial performed on air under the flow hood for 5, 15, 30, and 45 minutes. Cell viability was quantified by live/dead fluorescent assay, while the presence of apoptotic cells was estimated by immunofluorescent staining for active caspase 3 protein. The preservation of membrane functions was evaluated using neutral red staining, while the preservation of proper morphology and phenotype was determined by fluorescent staining for actin filaments, nuclei, and p63 protein. The trehalose-based eye drops showed the highest efficiency in prevention of cell death from desiccation; moreover, this preparation preserved the normal cellular morphology, functions of cell membrane, and proliferative activity more effectively than other tested medicaments.

  8. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, So Young [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Jang, Hwan-Hee [Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration, Suwon 441-853 (Korea, Republic of); Ryu, Sung Ho [Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, Beom Joon [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Taehoon G., E-mail: taehoon@novacelltech.com [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  9. Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus.

    Science.gov (United States)

    Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A

    2017-04-01

    To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.

  10. Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Wenlin Zhang

    2017-02-01

    Full Text Available Corneal endothelium (CE is among the most metabolically active tissues in the body. This elevated metabolic rate helps the CE maintain corneal transparency by its ion and fluid transport properties, which when disrupted, leads to visual impairment. Here we demonstrate that glutamine catabolism (glutaminolysis through TCA cycle generates a large fraction of the ATP needed to maintain CE function, and this glutaminolysis is severely disrupted in cells deficient in NH3:H+ cotransporter Solute Carrier Family 4 Member 11 (SLC4A11. Considering SLC4A11 mutations leads to corneal endothelial dystrophy and sensorineural deafness, our results indicate that SLC4A11-associated developmental and degenerative disorders result from altered glutamine catabolism. Overall, our results describe an important metabolic mechanism that provides CE cells with the energy required to maintain high level transport activity, reveal a direct link between glutamine metabolism and developmental and degenerative neuronal diseases, and suggest an approach for protecting the CE during ophthalmic surgeries.

  11. Anti-inflammatory effects of budesonide in human lung fibroblasts are independent of histone deacetylase 2

    Directory of Open Access Journals (Sweden)

    Wang X

    2013-08-01

    Full Text Available Xingqi Wang,1 Amy Nelson,1 Zachary M Weiler,1 Amol Patil,1 Tadashi Sato,1 Nobuhiro Kanaji,1 Masanori Nakanishi,1 Joel Michalski,1 Maha Farid,1 Hesham Basma,1 Tricia D LeVan,1 Anna Miller-Larsson,2 Elisabet Wieslander,2 Kai-Christian Muller,3 Olaf Holz,3 Helgo Magnussen,3 Klaus F Rabe,3 Xiangde Liu,1 Stephen I Rennard1 1Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; 2AstraZeneca R&D Molndal, Molndal, Sweden; 3Hospital Grosshansdorf, Center for Pneumology and Thoracic Surgery, Grosshansdorf, Germany Objective and design: Reduced expression of histone deacetylase 2 (HDAC2 in alveolar macrophages and epithelial cells may account for reduced response of chronic obstructive pulmonary disease (COPD patients to glucocorticoids. HDAC2 expression and its role in mediating glucocorticoid effects on fibroblast functions, however, has not been fully studied. This study was designed to investigate whether HDAC2 mediates glucocorticoid effects on release of inflammatory cytokines and matrix metalloproteinases (MMPs from human lung fibroblasts. Methods: Human lung fibroblasts (HFL-1 cells were stimulated with interleukin (IL-1β plus tumor necrosis factor (TNF-α in the presence or absence of the glucocorticoid budesonide. Cytokines (IL-6 and IL-8 were quantified by enzyme linked immunosorbent assay (ELISA and MMPs (MMP-1 and MMP-3 by immunoblotting in culture medium. The role of HDAC2 was investigated using a pharmacologic inhibitor as well as a small interfering ribonucleic acid (siRNA targeting HDAC2. Results: We have demonstrated that budesonide concentration-dependently (10-10–10-7 M inhibited IL-6, IL-8, MMP-1, and MMP-3 release by HFL-1 cells in response to IL-1β plus TNF-a. While an HDAC inhibitor significantly blocked the inhibitory effect of budesonide on human bronchial epithelial cells (HBECs and monocytes (THP-1 cells, it did not block the inhibitory

  12. Optimized human platelet lysate as novel basis for a serum-, xeno- and additive-free corneal endothelial cell and tissue culture.

    Science.gov (United States)

    Thieme, Daniel; Reuland, Lynn; Lindl, Toni; Kruse, Friedrich; Fuchsluger, Thomas

    2017-09-21

    The expansion of donor derived corneal endothelial cells is a promising approach for regenerative therapies in corneal diseases. To achieve the best GMP standard the entire cultivation process should be devoid of non-human components. However, so far there is no suitable xeno-free protocol for clinical applications. We therefore introduce a processed variant of a platelet lysate for the use in corneal cell and tissue culture based on a GMP-grade thrombocyte concentrate. This processed human platelet lysate (phPL), free of any animal components and of anti-coagulants like heparin with a physiological ionic composition, was used to cultivate corneal endothelial cells (EC) in vitro and ex vivo in comparison to standard cultivation with FCS. Human donor corneas were cut in quarters while two quarters of each cornea were incubated with the respective medium supplement. Three fields of view per quarter were taken into account for the analysis. Evaluation of phPL as a medium supplement in cell culture of immortalized EC showed a superior viability compared to fetal calf serum (FCS) control with reduced cell proliferation. Furthermore, the viability during the expansion of primary cells is significantly (3fold+-0.5) increased with phPL compared to FCS standard medium. Quartering donor corneas was traumatic for the endothelium and therefore resulted in increased EC loss. Interestingly, however, cultivation of the quartered pieces for two weeks in 0.1mg/mL pHPL in Biochrome I showed a 21 (+-10) % EC loss compared to 67 (+-12) % EC loss when cultivated in 2% FCS in Biochrome I. The cell culture protocol with pHPL as FCS replacement seems to be superior to the standard FCS protocols with respect to EC survival. It offers a xeno-free and physiological environment for corneal endothelial cells. This alternative cultivation protocol could facilitate the use of EC for human corneal cell therapy. This article is protected by copyright. All rights reserved.

  13. Cloning, Expression and Functional Characterization of In-House Prepared Human Basic Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    Hassan Rassouli

    2013-01-01

    Full Text Available Objective: Human basic fibroblast growth factor (bFGF plays an important role in cellular proliferation, embryonic development, and angiogenesis as well as in several signaling pathways of various cell types. bFGF is an essential growth factor for the maintenance of undifferentiated human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs.Materials and Methods: In this experimental study, we present a straightforward method to produce biologically active recombinant human bFGF protein in E. coli that has long-term storage ability.Results: This procedure provides a rapid, cost effective purification of a soluble human bFGF protein that is biologically active and functional as measured in hESCs and hiPSCs in vitro and in vivo.Conclusion: The results show no significant difference in function between our in-house produced and commercialized bFGF.

  14. Deciphering the differential response of two human fibroblast cell lines following Chikungunya virus infection

    Directory of Open Access Journals (Sweden)

    Thon-Hon Vincent G

    2012-09-01

    Full Text Available Abstract Background Chikungunya virus (CHIKV is an arthritogenic member of the Alphavirus genus (family Togaviridae transmitted by Aedes mosquitoes. CHIKV is now known to target non hematopoietic cells such as epithelial, endothelial cells, fibroblasts and to less extent monocytes/macrophages. The type I interferon (IFN response is an early innate immune mechanism that protects cells against viral infection. Cells express different pattern recognition receptors (including TLR7 and RIG-I to sense viruses and to induce production of type I IFNs which in turn will bind to their receptor. This should result in the phosphorylation and translocation of STAT molecules into the nucleus to promote the transcription of IFN-stimulated antiviral genes (ISGs. We herein tested the capacity of CHIKV clinical isolate to infect two different human fibroblast cell lines HS 633T and HT-1080 and we analyzed the resulting type I IFN innate immune response. Methods Indirect immunofluorescence and quantitative RT-PCR were used to test for the susceptibility of both fibroblast cell lines to CHIKV. Results Interestingly, the two fibroblast cell lines HS 633T and HT-1080 were differently susceptible to CHIKV infection and the former producing at least 30-fold higher viral load at 48 h post-infection (PI. We found that the expression of antiviral genes (RIG-I, IFN-β, ISG54 and ISG56 was more robust in the more susceptible cell line HS 633T at 48 h PI. Moreover, CHIKV was shown to similarly interfere with the nuclear translocation of pSTAT1 in both cell lines. Conclusion Critically, CHIKV can control the IFN response by preventing the nuclear translocation of pSTAT1 in both fibroblast cell lines. Counter-intuitively, the relative resistance of HT-1080 cells to CHIKV infection could not be attributed to more robust innate IFN- and ISG-dependent antiviral responses. These cell lines may prove to be valuable models to screen for novel mechanisms mobilized differentially by

  15. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts.

    Science.gov (United States)

    Onesto, Elisa; Colombrita, Claudia; Gumina, Valentina; Borghi, Maria Orietta; Dusi, Sabrina; Doretti, Alberto; Fagiolari, Gigliola; Invernizzi, Federica; Moggio, Maurizio; Tiranti, Valeria; Silani, Vincenzo; Ratti, Antonia

    2016-05-05

    Dysregulation of RNA metabolism represents an important pathogenetic mechanism in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) due to the involvement of the DNA/RNA-binding proteins TDP-43 and FUS and, more recently, of C9ORF72. A potential link between dysregulation of RNA metabolism and mitochondrial dysfunction is recently emerged in TDP-43 disease models. To further investigate the possible relationship between these two pathogenetic mechanisms in ALS/FTD, we studied mitochondria functionality in human mutant TARDBP(p.A382T) and C9ORF72 fibroblasts grown in galactose medium to induce a switch from a glycolytic to an oxidative metabolism. In this condition we observed significant changes in mitochondria morphology and ultrastructure in both mutant cells with a fragmented mitochondria network particularly evident in TARDBP(p.A382T) fibroblasts. From analysis of the mitochondrial functionality, a decrease of mitochondria membrane potential with no alterations in oxygen consumption rate emerged in TARDBP fibroblasts. Conversely, an increased oxygen consumption and mitochondria hyperpolarization were observed in C9ORF72 fibroblasts in association to increased ROS and ATP content. We found evidence of autophagy/mitophagy in dynamic equilibrium with the biogenesis of novel mitochondria, particularly in mutant C9ORF72 fibroblasts where an increase of mitochondrial DNA content and mass, and of PGC1-α protein was observed. Our imaging and biochemical data show that wild-type and mutant TDP-43 proteins do not localize at mitochondria so that the molecular mechanisms responsible for such mitochondria impairment remain to be further elucidated. For the first time our findings assess a link between C9ORF72 and mitochondria dysfunction and indicate that mitochondria functionality is affected in TARDBP and C9ORF72 fibroblasts with gene-specific features in oxidative conditions. As in neuronal metabolism mitochondria are actively used for ATP

  16. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts.

    Science.gov (United States)

    Buskermolen, Jeroen K; Reijnders, Christianne M A; Spiekstra, Sander W; Steinberg, Thorsten; Kleverlaan, Cornelis J; Feilzer, Albert J; Bakker, Astrid D; Gibbs, Susan

    2016-08-01

    Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and

  17. CYCLOSPORIN A AFFECTS THE PROLIFERATION PROCESS IN NORMAL HUMAN DERMAL FIBROBLASTS.

    Science.gov (United States)

    Janikowska, Grazyna; Janikowsk, Tomasz; Pyka, Alina; Wilczok, Adam; Mazurek, Urszula

    2016-01-01

    Cyclosporin A is an immunosuppressant drug that is used not only in solid transplant rejection, but also in moderate and severe forms of psoriasis, pyoderma, lupus or arthritis. Serious side effects of the drug such as skin cancer or gingival hyperplasia probably start with the latent proliferation process. Little is known about the influence of cyclosporin A on molecular signaling in epidermal tissue. Thus, the aim of this study was to estimate the influence of cyclosporin A on the process of proliferation in normal human dermal fibroblasts. Fibroblasts were cultured in a liquid growth medium in standard conditions. Cyclosporin A was added to the culture after the confluence state. Survival and proliferation tests on human dermal fibroblast cells were performed. Total RNA was extracted from fibroblasts, based on which cDNA and cRNA were synthesized. The obtained cRNA was hybridized with the expression microarray HGU-133A_2.0. Statistical analysis of 2734 mRNAs was performed by the use of GeneSpring 13.0 software and only results with p cyclosporin A) was performed to lower the number of statistically significant results from 679 to 66, and less. Between statistically and biologically significant mRNAs down-regulated were EGRJ, BUBIB, MKI67, CDK1, TTK, E2F8, TPX2, however, the INSIG1, FOSL1, HMOX1 were up-regulated. The experiment data revealed that cyclosporin A up-regulated FOSL1 in the first 24 h, afterwards down-regulating its expression. The HMOX1 gene was up-regulated in the first stage of the experiment (CsA 8 h), however, after the next 16 h of culture time its expression was down-regulated (CsA 24 h), to finally increased in the later time period. The results indicate that cyclosporin A had a significant effect on proliferation in normal human dermal fibroblasts through the changes in the expression of genes related to the cell cycle and transcription regulation process.

  18. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hong [Department of Ophthalmology, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China); The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China); Wu, Xinyi, E-mail: xywu8868@163.com [Department of Ophthalmology, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012 (China)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  19. Amelogenin is phagocytized and induces changes in integrin configuration, gene expression and proliferation of cultured normal human dermal fibroblasts

    DEFF Research Database (Denmark)

    Almqvist, Sofia; Werthén, Maria; Johansson, Anna

    2010-01-01

    or down-regulation of genes, of which most are involved in cellular growth, migration and differentiation. The effect of amelogenin was exemplified by increased proliferation over 7 days. In conclusion, the beneficial effects of amelogenin on wound healing are possibly conducted by stimulating fibroblast......Fibroblasts are central in wound healing by expressing important mediators and producing and remodelling extracellular matrix (ECM) components. This study aimed at elucidating possible mechanisms of action of the ECM protein amelogenin on normal human dermal fibroblasts (NHDF). Amelogenin at 100...... signalling, proliferation and migration via integrin interactions. It is hypothesized that amelogenin stimulates wound healing by providing connective tissue cells with a temporary extracellular matrix....

  20. Data on cytochrome c oxidase assembly in mice and human fibroblasts or tissues induced by SURF1 defect.

    Science.gov (United States)

    Kovářová, Nikola; Pecina, Petr; Nůsková, Hana; Vrbacký, Marek; Zeviani, Massimo; Mráček, Tomáš; Viscomi, Carlo; Houštěk, Josef

    2016-06-01

    This paper describes data related to a research article entitled "Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects" [1]. This paper includes data of the quantitative analysis of individual forms of respiratory chain complexes I, III and IV present in SURF1 knockout (SURF1 (-/-) ) and control (SURF1 (+/+) ) mouse fibroblasts and tissues and in fibroblasts of human control and patients with SURF1 gene mutation. Also it includes data demonstrating response of complex IV, cytochrome c oxidase (COX), to reversible inhibition of mitochondrial translation in SURF1 (-/-) mouse and SURF1 patient fibroblast cell lines.

  1. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    Science.gov (United States)

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID

  2. Asiaticoside induces cell proliferation and collagen synthesis in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Linda Yulianti

    2015-08-01

    Full Text Available Asiatiocoside, a saponin component isolated from Centella asiatica can improve wound healing by promoting the proliferation of human dermal fibroblasts (HDF and synthesis of collagen. The skin-renewing cells and type I and III collagen synthesis decrease with aging, resulting in the reduction of skin elasticity and delayed wound healing. Usage of natural active compounds from plants in wound healing should be evaluated and compared to retinoic acid as an active agent that regulates wound healing. The aim of this study was to compare and evaluate the effect of asiaticoside and retinoic acid to induce greater cell proliferation and type I and III collagen synthesis in human dermal fibroblast. Methods Laboratory experiments were conducted using human dermal fibroblasts (HDF isolated from human foreskin explants. Seven passages of HDF were treated with asiaticoside and retinoic acid at several doses and incubated for 24 and 48 hours. Cell viability in all groups was tested with the MTT assay to assess HDF proliferation. Type I and III collagen synthesis was examined using the respective ELISA kits. Analysis of variance was performed to compare the treatment groups. Results Asiaticoside had significantly stronger effects on HDF proliferation than retinoic acid (p<0.05. The type III collagen production was significantly greater induction with asiaticoside compared to retinoic acid (p<0.05. Conclusion Asiaticoside induces HDF proliferation and type I and III collagen synthesis in a time- and dose-dependent pattern. Asiaticoside has a similar effect as retinoic acid on type I and type III collagen synthesis.

  3. Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts.

    Science.gov (United States)

    Felici, Roberta; Lapucci, Andrea; Cavone, Leonardo; Pratesi, Sara; Berlinguer-Palmini, Rolando; Chiarugi, Alberto

    2015-06-01

    Mitochondrial disorders are devastating genetic diseases for which efficacious therapies are still an unmet need. Recent studies report that increased availability of intracellular NAD obtained by inhibition of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1 or supplementation with the NAD-precursor nicotinamide riboside (NR) ameliorates energetic derangement and symptoms in mouse models of mitochondrial disorders. Whether these pharmacological approaches also improve bioenergetics of human cells harboring mitochondrial defects is unknown. It is also unclear whether the same signaling cascade is prompted by PARP-1 inhibitors and NR supplementation to improve mitochondrial homeostasis. Here, we show that human fibroblasts mutant for the NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1) subunit of respiratory complex I have similar ATP, NAD, and mitochondrial content compared with control cells, but show reduced mitochondrial membrane potential. Interestingly, mutant cells also show increased transcript levels of mitochondrial DNA but not nuclear DNA respiratory complex subunits, suggesting activation of a compensatory response. At variance with prior work in mice, however, NR supplementation, but not PARP-1 inhibition, increased intracellular NAD content in NDUFS1 mutant human fibroblasts. Conversely, PARP-1 inhibitors, but not NR supplementation, increased transcription of mitochondrial transcription factor A and mitochondrial DNA-encoded respiratory complexes constitutively induced in mutant cells. Still, both NR and PARP-1 inhibitors restored mitochondrial membrane potential and increased organelle content as well as oxidative activity of NDUFS1-deficient fibroblasts. Overall, data provide the first evidence that in human cells harboring a mitochondrial respiratory defect exposure to NR or PARP-1, inhibitors activate different signaling pathways that are not invariantly prompted by NAD increases, but equally able to improve energetic

  4. The upregulation of heat shock protein 47 expression in human buccal fibroblasts stimulated with arecoline.

    Science.gov (United States)

    Yang, Shun-Fa; Tsai, Chung-Hung; Chang, Yu-Chao

    2008-04-01

    Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagen. HSP47 is consistently and dramatically upregulated in a variety of fibrotic diseases. The aim of this study was to compare HSP47 expression in normal human buccal mucosa and oral submucous fibrosis (OSF) specimens and further to explore the potential mechanisms that may lead to induce HSP47 expression. The mRNA levels of HSP47 from fibroblasts cultured from 20 OSF and 10 normal buccal mucosal fibroblasts (BMFs) were evaluated by reverse transcription polymerase chain reaction. The effect of arecoline, the major areca nut alkaloid, was added to explore the potential mechanisms that may lead to induce HSP47 expression. Furthermore, mitogen-activated protein kinase kinase (MEK) inhibitor U0126, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, p38 inhibitor SB203580, cyclo-oxygenase-2 (COX-2) inhibitor NS-398, and glutathione precursor N-acetyl-l-cysteine were added to find the possible mechanisms. OSF demonstrated significantly higher HSP47 mRNA expression than BMFs (P Arecoline was also found to elevate HSP47 mRNA expression in a dose-dependent manner (P arecoline when compared with control (P arecoline-induced HSP47 mRNA expression (P arecoline in fibroblasts may be mediated by MEK, PI3K, and COX-2 signal transduction pathways.

  5. Research progress of cultivation and identification of human corneal endothelial cell in vitro%人角膜内皮细胞的体外培养及其鉴定的研究进展

    Institute of Scientific and Technical Information of China (English)

    贺美宁; 刘二华; 谭钢

    2014-01-01

    Corneal transparence and thickness mostly depend on corneal endothelial cells. The shortage of transplant -grade donor corneal tissues and limited in vitro expansion of human corneal endothelial cells prompted further impetus for the development of tissue-engineered human corneal endothelium reconstructed in vitro. The culture method of human corneal endothelial cell has been widely used. The standard used to evaluate and identify the human corneal endothelial cells cultivated in vitro has not been established. The objective of this article is to summarize the further study on identification and cultivation of human corneal endothelial cell in vitro.%角膜内皮细胞对维持角膜的透明性和厚度起着关键性的作用。人体内角膜内皮细胞有限的增殖能力及角膜供体的短缺,使组织工程人角膜内皮的体外重建受到了关注。目前,人角膜内皮细胞的培养方法已基本成熟。但是体外培养的人角膜内皮细胞的功能评价及鉴定标准却尚未建立。本文就人角膜内皮细胞的体外培养及其鉴定的研究进展进行综述。

  6. Ambient fine particulate matters induce cell death and inflammatory response by influencing mitochondria function in human corneal epithelial cells.

    Science.gov (United States)

    Park, Eun-Jung; Chae, Jae-Byoung; Lyu, Jungmook; Yoon, Cheolho; Kim, Sanghwa; Yeom, Changjoo; Kim, Younghun; Chang, Jaerak

    2017-11-01

    Ambient fine particulate matter (AFP) is a main risk factor for the cornea as ultraviolet light. However, the mechanism of corneal damage following exposure to AFP has been poorly understood. In this study, we first confirmed that AFP can penetrate the cornea of mice, considering that two-dimensional cell culture systems are limited in reflecting the situation in vivo. Then, we investigated the toxic mechanism using human corneal epithelial (HCET) cells. At 24h after exposure, AFP located within the autophagosome-like vacuoles, and cell proliferation was clearly inhibited in all the tested concentration. Production of ROS and NO and secretion of pro-inflammatory cytokines were elevated in a dose-dependent manner. Additionally, conversion of LC3B from I-type to II-type and activation of caspase cascade which show autophagic- and apoptotic cell death, respectively, were observed in cells exposed to AFP. Furthermore, AFP decreased mitochondrial volume, inhibited ATP production, and altered the expression of metabolism-related genes. Taken together, we suggest that AFP induces cell death and inflammatory response by influencing mitochondrial function in HCET cells. In addition, we recommend that stringent air quality regulations are needed for eye health. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Dependence of Regulatory Volume Decrease on Transient Receptor Potential Vanilloid 4 (TRPV4) Expression in Human Corneal Epithelial Cells

    Science.gov (United States)

    Pan, Zan; Yang, Hua; Mergler, Stefan; Liu, Hongshan; Tachado, Souvenir D.; Zhang, Fan; Kao, Winston W. Y.; Koziel, Henry; Pleyer, Uwe; Reinach, Peter S.

    2008-01-01

    TRPV4 is a non-selective cation channel with moderate calcium permeability, which is activated by exposure to hypotonicity. Such a stress induces regulatory volume decrease (RVD) behavior in human corneal epithelial cells (HCEC). We hypothesize that TRPV4 channel mediates RVD in HCEC. Immunohistochemistry revealed centrally and superficially concentrated TRPV4 localization in the corneal tissue. Immunocytochemical and Fluorescence Activated Cell Sorter (FACS) analyses identified TRPV4 membrane surface and cytosolic expression. RT-PCR and Western blot analyses identified TRPV4 gene and protein expression in HCEC, respectively. In addition, 4α-PDD or a 50% hypotonic medium induced up to three-fold transient intracellular Ca2+ ([Ca2+]i) increases. Following TRPV4 siRNA HCEC transfection, its protein expression level declined by 64%, which abrogated these [Ca2+]i transients. Similarly, exposure to either ruthenium red or Ca2+-free Ringer's solution also eliminated this response. In these transfected cells, RVD declined by 51% whereas in the non-transfected counterpart, ruthenium red and Ca2+-free solution inhibited RVD by 54% and 64%, respectively. In contrast, capsazepine, a TRPV1 antagonist, failed to suppress [Ca2+]i transients and RVD. TRPV4 activation contributes to RVD since declines in TRPV4 expression and activity are associated with suppression of this response. In conclusion, there is TRPV4 functional expression in HCEC. PMID:18355916

  8. Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans.

    Science.gov (United States)

    Mazzotta, Cosimo; Balestrazzi, Angelo; Traversi, Claudio; Baiocchi, Stefano; Caporossi, Tomaso; Tommasi, Cristina; Caporossi, Aldo

    2007-05-01

    To assess ultrastructural stromal modifications after riboflavin-UVA-induced cross-linking of corneal collagen in patients with progressive keratoconus. This was a second-phase prospective nonrandomized open study in 10 patients with progressive keratoconus treated by riboflavin-UVA-induced cross-linking of corneal collagen and assessed by means of Heidelberg Retinal Tomograph II Rostock Corneal Module (HRT II-RCM) in vivo confocal microscopy. The eye in the worst clinical condition was treated for each patient. Treatment under topical anesthesia included corneal deepithelization (9-mm diameter) and instillation of 0.1% riboflavin phosphate-20% dextran T 500 solution at 5 minutes before UVA irradiation and every 5 minutes for a total of 30 minutes. UVA irradiation was 7 mm in diameter. Patients were assessed by HRT II-RCM confocal microscopy in vivo at 1, 3, and 6 months after treatment. Rarefaction of keratocytes in the anterior and intermediate stroma, associated with stromal edema, was observed immediately after treatment. The observation at 3 months after the operation detected keratocyte repopulation in the central treated area, whereas the edema had disappeared. Cell density increased progressively over the postoperative period. At approximately 6 months, keratocyte repopulation was complete, accompanied by increased density of stromal fibers. No endothelial damage was observed at any time. Reduction in anterior and intermediate stromal keratocytes followed by gradual repopulation has been confirmed directly in vivo in humans by HRT II-RCM confocal microscopy after riboflavin-UVA-induced corneal collagen cross-linking.

  9. Correlations between corneal and total wavefront aberrations

    Science.gov (United States)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  10. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station.

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-02-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37°C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37°C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  11. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-02-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 °C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37 °C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  12. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst, E-mail: e.wolvetang@uq.edu.au

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.

  13. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    Science.gov (United States)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  14. Intraarticular Sprifermin (Recombinant Human Fibroblast Growth Factor 18) in Knee Osteoarthritis

    DEFF Research Database (Denmark)

    Lohmander, L. S.; Hellot, S.; Dreher, D.

    2014-01-01

    Objective. To evaluate the efficacy and safety of intraarticular sprifermin (recombinant human fibroblast growth factor 18) in the treatment of symptomatic knee osteoarthritis (OA). Methods. The study was a randomized, double-blind, placebo-controlled, proof-of-concept trial. Intraarticular...... in joint space width (JSW) seen on radiographs, and pain scores on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Results. One hundred ninety-two patients were randomized and evaluated for safety, 180 completed the trial, and 168 were evaluated for the primary efficacy end...

  15. Comparison of the Efficiency of Viral Transduction and Episomal Transfection in Human Fibroblast Reprogramming.

    Science.gov (United States)

    Vdovin, A S; Lupatov, A Yu; Kholodenko, I V; Yarygin, K N

    2015-11-01

    Induced pluripotent cells were derived from adult human skin fibroblast by using two methods of reprogramming. Episomal transfection with vectors containing oriP/EBNA-1 sequence for delivery of reprogramming genes Oct4, Sox2, Klf4, L-Myc, and Lin28 proved to be more effective than viral transduction with Sendai virus-based vector: ~200 and 8 colonies per 10(5) cells were found on day 21 of culturing, respectively. Colonies of induced pluripotent cells obtained by these two methods expressed pluripotency marker Tra1-60.

  16. Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts.

    OpenAIRE

    Soldatov, N M

    1992-01-01

    The nucleotide sequence of cDNA encoding the human fibroblast Ca2+ channel of L type (HFCC) has been determined. It is highly homologous to L-type channels previously cloned from rabbit lung and heart as well as from rat brain. At least four sites of molecular diversity were identified in the nucleotide sequence of HFCC. Three of these include regions encoding the transmembrane segments IIS6, IIIS2, and IVS3, which are known to be important for channel gating properties. The positions of thes...

  17. Down regulation of epidermal growth factor receptors: direct demonstration of receptor degradation in human fibroblasts

    OpenAIRE

    1984-01-01

    The metabolism of the receptor for epidermal growth factor (EGF) has been measured by labeling the receptor in vivo with radioactive amino acid precursors and then determining, by immunoprecipitation with specific anti-EGF receptor antisera, the rate of degradation of the receptor when the cells are placed in a nonradioactive medium. In human fibroblasts the rate of EGF receptor degradation (t1/2 = 10.1 h) was faster than the rate of degradation of total cell protein. When EGF was added to th...

  18. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  19. STAT6-dependent collagen synthesis in human fibroblasts is induced by bovine milk

    OpenAIRE

    Stefan Kippenberger; Nadja Zöller; Johannes Kleemann; Jutta Müller; Roland Kaufmann; Matthias Hofmann; August Bernd; Markus Meissner; Eva Valesky

    2015-01-01

    Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold,...

  20. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol

    Directory of Open Access Journals (Sweden)

    Donejko M

    2017-03-01

    Full Text Available Magdalena Donejko,1 Edyta Rysiak,2 Elżbieta Galicka,1 Robert Terlikowski,3 Edyta Katarzyna Głażewska,1 Andrzej Przylipiak1 1Department of Esthetic Medicine, 2Department of Medicinal Chemistry, Faculty of Pharmacy, 3Department of Health Restoration, Medical University of Białystok, Białystok, Poland Aim: The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK, and the influence of HA on those processes. Materials and methods: Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Results: Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. Conclusion: This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol. Keywords: apoptosis, skin fibroblast, focal adhesion kinase, hyaluronic acid, ethanol

  1. Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells.

    Science.gov (United States)

    Muhammad, Rizwan; Peh, Gary S L; Adnan, Khadijah; Law, Jaslyn B K; Mehta, Jodhbir S; Yim, Evelyn K F

    2015-06-01

    One of the most common indications for corneal transplantation is corneal endothelium dysfunction, which can lead to corneal blindness. Due to a worldwide donor cornea shortage, alternative treatments are needed, but the development of new treatment strategies relies on the successful in vitro culture of primary human corneal endothelial cells (HCECs) because transformed cell lines and animal-derived corneal endothelial cells are not desirable for therapeutic applications. Primary HCECs are non-proliferative in vivo and challenging to expand in vitro while maintaining their characteristic cell morphology and critical markers. Biochemical cues such as growth factors and small molecules have been investigated to enhance the expansion of HCECs with a limited increase in proliferation. In this study, patterned tissue culture polystyrene (TCPS) was shown to significantly enhance the expansion of HCECs. The proliferation of HCECs increased up to 2.9-fold, and the expression amount and localization of cell-cell tight junction protein Zona Occludens-1 (ZO-1) was significantly enhanced when grown on 1 μm TCPS pillars. 250 nm pillars induced an optimal hexagonal morphology of HCEC cells. Furthermore, we demonstrated that the topographical effect on tight-junction expression and cell morphology could be maintained throughout each passage, and was effectively 'remembered' by the cells. Higher amount of tight-junction protein expression was maintained at cell junctions when topographic cues were removed in the successive seeding. This topographic memory suggested topography-exposed/induced cells would maintain the enhanced functional markers, which would be useful in cell-therapy based approaches to enable the in situ endothelial cell monolayer formation upon delivery. The development of patterned TCPS culture platforms could significantly benefit those researching human corneal endothelial cell cultivation for cell therapy, and tissue engineering applications.

  2. Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3.

    Science.gov (United States)

    Rauchenberger, Robert; Borges, Eric; Thomassen-Wolf, Elisabeth; Rom, Eran; Adar, Rivka; Yaniv, Yael; Malka, Michael; Chumakov, Irina; Kotzer, Sarit; Resnitzky, Dalia; Knappik, Achim; Reiffert, Silke; Prassler, Josef; Jury, Karin; Waldherr, Dirk; Bauer, Susanne; Kretzschmar, Titus; Yayon, Avner; Rothe, Christine

    2003-10-03

    The human combinatorial antibody library Fab 1 (HuCAL-Fab 1) was generated by transferring the heavy and light chain variable regions from the previously constructed single-chain Fv library (Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A., and Virnekäs, B. (2000) J. Mol. Biol. 296, 57-86), diversified in both complementarity-determining regions 3 into a novel Fab display vector, yielding 2.1 x 10(10) different antibody fragments. The modularity has been retained in the Fab display and screening plasmids, ensuring rapid conversion into various antibody formats as well as antibody optimization using prebuilt maturation cassettes. HuCAL-Fab 1 was challenged against the human fibroblast growth factor receptor 3, a potential therapeutic antibody target, against which, to the best of our knowledge, no functional antibodies could be generated so far. A unique screening mode was designed utilizing recombinant functional proteins and cell lines differentially expressing fibroblast growth factor receptor isoforms diversified in expression and receptor dependence. Specific Fab fragments with subnanomolar affinities were isolated by selection without any maturation steps as determined by fluorescence flow cytometry. Some of the selected Fab fragments completely inhibit target-mediated cell proliferation, rendering them the first monoclonal antibodies against fibroblast growth factor receptors having significant function blocking activity. This study validates HuCAL-Fab 1 as a valuable source for the generation of target-specific antibodies for therapeutic applications.

  3. Sodium arsenite induces chromosome endoreduplication and inhibits protein phosphatase activity in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rong-Nan Huang; I-Ching Ho; Ling-Hui Yih [Institute of Biomedical Sciences, Taiwan (China)] [and others

    1995-08-01

    Arsenic, strongly associated with increased risks of human cancers, is a potent clastogen in a variety of mammalian cell systems. The effect of sodium arsenite (a trivalent arsenic compound) on chromatid separation was studied in human skin fibroblasts (HFW). Human fibroblasts were arrested in S phase by the aid of serum starvation and aphidicolin blocking and then these cells were allowed to synchronously progress into G2 phase. Treatment of the G2-enriched HFW cells with sodium arsenite (0-200 {mu}M) resulted in arrest of cells in the G2 phase, interference with mitotic division, inhibition of spindle assembly, and induction of chromosome endoreduplication in their second mitosis. Sodium arsenite treatment also inhibited the activities of serine/threonine protein phosphatases and enhanced phosphorylation levels of a small heat shock protein (HSP27). These results suggest that sodium arsenite may mimic okadaic acid to induce chromosome endoreduplication through its inhibitory effect on protein phosphatase activity. 61 refs., 6 figs., 2 tabs.

  4. Transcriptomic profiles of human foreskin fibroblast cells in response to orf virus.

    Science.gov (United States)

    Chen, Daxiang; Long, Mingjian; Xiao, Bin; Xiong, Yufeng; Chen, Huiqin; Chen, Yu; Kuang, Zhenzhan; Li, Ming; Wu, Yingsong; Rock, Daniel L; Gong, Daoyuan; Wang, Yong; He, Haijian; Liu, Fang; Luo, Shuhong; Hao, Wenbo

    2017-08-29

    Orf virus has been utilized as a safe and efficient viral vector against not only diverse infectious diseases, but also against tumors. However, the nature of the genes triggered by the vector in human cells is poorly characterized. Using RNA sequencing technology, we compared specific changes in the transcriptomic profiles in human foreskin fibroblast cells following infection by the orf virus. The results indicated that orf virus upregulates or downregulates expression of a variety of genes, including genes involved in antiviral immune response, apoptosis, cell cycle and a series of signaling pathways, such as the IFN and p53-signaling pathways. The orf virus stimulates or inhibits immune gene expression such as chemokines, chemokine receptors, cytokines, cytokine receptors, and molecules involved in antigen uptake and processing after infection. Expression of pro-apoptotic genes increased at 8 hours post-infection. The p53 signaling pathway was activated to induce apoptosis at the same time. However, the cell cycle program was promoted after infection, which may be due to the immunomodulatory genes of the orf virus. This presents the first description of transcription profile changes in human foreskin fibroblast cells after orf virus infection and provides an in-depth analysis of the interaction between the host and orf virus. These data offer new insights into the understanding of the mechanisms of infection by orf virus and identify potential targets for future studies.

  5. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    Science.gov (United States)

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated.

  6. Reconstituted human corneal epithelium: a new alternative to the Draize eye test for the assessment of the eye irritation potential of chemicals and cosmetic products.

    Science.gov (United States)

    Doucet, O; Lanvin, M; Thillou, C; Linossier, C; Pupat, C; Merlin, B; Zastrow, L

    2006-06-01

    The aim of this study was to evaluate the interest of a new three-dimensional epithelial model cultivated from human corneal cells to replace animal testing in the assessment of eye tolerance. To this end, 65 formulated cosmetic products and 36 chemicals were tested by means of this in vitro model using a simplified toxicokinetic approach. The chemicals were selected from the ECETOC data bank and the EC/HO International validation study list. Very satisfactory results were obtained in terms of concordance with the Draize test data for the formulated cosmetic products. Moreover, the response of the corneal model appeared predictive of human ocular response clinically observed by ophthalmologists. The in vitro scores for the chemicals tested strongly correlated with their respective scores in vivo. For all the compounds tested, the response of the corneal model to irritants was similar regardless of their chemical structure, suggesting a good robustness of the prediction model proposed. We concluded that this new three-dimensional epithelial model, developed from human corneal cells, could be promising for the prediction of eye irritation induced by chemicals and complex formulated products, and that these two types of materials should be tested using a similar protocol. A simple shortening of the exposure period was required for the chemicals assumed to be more aggressively irritant to the epithelial tissues than the cosmetic formulae.

  7. Effects of mibefradil on intracellular Ca2+ release in cultured rat cardiac fibroblasts and human platelets.

    Science.gov (United States)

    Eberhard, M; Miyagawa, K; Hermsmeyer, K; Erne, P

    1995-12-01

    The Ca2+ antagonist mibefradil at supratherapeutic concentrations induced a sustained increase of cytosolic Ca2+ in cultured rat cardiac fibroblasts and human platelets which lack sensitivity to K+ depolarization and Ca2+ channel block by verapamil or other Ca2+ antagonists. At concentrations above 10 microM, mibefradil elevated substantially cytosolic [Ca2+] without affecting the peak level of agonist-induced Ca2+ transients. These Ca2+-mobilizing actions of 10 or 100 microM mibefradil stand in contrast to the Ca2+ antagonism and relaxation of vascular muscle at 1 microM concentrations. Since a substantial part of mibefradil-induced increase in cytosolic Ca2+ was independent of extracellular Ca2+, and in order to define better the mechanism of Ca2+ increase, we exposed permeabilized cultured rat cardiac fibroblasts and human platelets to mibefradil at concentrations sufficiently high to identify covert effects. In permeabilized fibroblasts or platelets mibefradil at concentrations above 10 microM activated dose-dependent Ca2+ release from intracellular Ca2+ stores. Verapamil had no effect at concentrations of up to 100 microM. Mibefradil-induced Ca2+ release was not affected by ryanodine, thapsigargin, removal of ATP or dithioerythreitol, indicating that neither Ca2+ - nor disulfide reagent-induced Ca2+ release were involved and that mibefradil did not release Ca2+ by inhibition of the Ca2+-ATPase pump of endoplasmic reticulum. The rate, but not the amplitude, of mibefradil-induced Ca2+ release is increased up to fourfold in the presence of pentosan polysulphate or heparin, two potent inhibitors of inositol 1,4,5-trisphosphate-induced Ca2+ release. Depletion of Ca2+ stores of permeabilized cells inositol 1,4,5-trisphosphate in the presence of thapsigargin completely blocked mibefradil-induced Ca2+ release, and depletion of Ca2+ stores by mibefradil prevented further Ca2+ release by inositol 1,4,5-trisphosphate. Mibefradil at supratherapeutic concentrations (> or

  8. Sialidase activities of cultured human fibroblasts and the metabolism of GM3 ganglioside

    Energy Technology Data Exchange (ETDEWEB)

    Usuki, S.; Lyu, S.C.; Sweeley, C.C.

    1988-05-15

    Free sialic acid has been found in the cell-conditioned medium of human foreskin fibroblasts. It is proposed that the accumulation of extracellular sialic acid may result from the hydrolysis of GM3 ganglioside on the cell surface of these fibroblasts. Sialidase activities with GM3 ganglioside and sialyllactitol as substrates were demonstrated in cell-conditioned medium, and the levels of their activities correlated positively with cell density. The GM3 sialidase activity at pH 4.5 was 4.1 and 38 pmol/h/ml of medium at sparse and confluent densities, respectively; the corresponding activities with sialyllactitol as the substrate were 12 and 75 pmol/h/ml of medium (pH 4.5). The pH versus activity profiles with GM3 as the substrate suggested the presence of a second sialidase with an optimal activity at pH 6.5 in the conditioned medium of preconfluent cells. This activity was virtually absent in the medium of contact-inhibited cells and could not be assayed with sialyllactitol as the substrate. The turnover of cell surface GM3 was assessed by pulse labeling human foreskin fibroblasts with a radioactive precursor of sialic acid ((1-14C)N-acetylmannosamine) and a radioactive precursor of ceramide ((3,3-3H2)serine). During a chase period of 24 h turnover of the doubly labeled cellular GM3 was observed; there was a loss of about 35% of the 14C-labeled sialic acid without any measureable loss of 3H-labeled ceramide from GM3. We have speculated that the enzyme-catalyzed removal of sialic acid from the GM3 ganglioside on the extracellular aspect of the plasma membrane may be a necessary event involved in the modulation of cell growth.

  9. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts.

    Science.gov (United States)

    Kim, J-A; Ahn, B-N; Kong, C-S; Kim, S-K

    2013-05-01

    Skin ageing is influenced by environmental factors such as ultraviolet (UV) radiation. The effects of UV radiation on skin functions should be investigated using human in vitro models to understand the mechanisms of skin ageing. Additionally, marine algae provide a valuable source for identifying and extracting biologically active substances. In this study, sargachromanol E was isolated from a marine brown alga, Sargassum horneri, and its inhibitory effect on skin ageing was investigated using UVA-irradiated dermal fibroblasts. Formation of intracellular reactive oxygen species (ROS), lipid peroxidation and protein oxidation induced by UVA irradiation were investigated in UVA-irradiated human dermal fibroblasts. The levels of matrix metalloproteinases (MMPs) were determined by reverse-transcriptase polymerase chain reaction and Western blot analysis. Sargachromanol E did not exhibit any significant cytotoxicity or phototoxicity in UVA-exposed dermal fibroblasts. Additionally, sargachromanol E suppressed intracellular formation of ROS, membrane protein oxidation, lipid peroxidation and expression of collagenases such as MMP-1, MMP-2 and MMP-9, all of which are caused by UVA exposure. It was further found that these inhibitions were related to an increase in the expression of the tissue inhibitor of metalloproteinase (TIMP) genes, TIMP1 and TIMP2. Moreover, we have shown that the transcriptional activation of activator protein 1 (AP-1) signalling caused by UVA irradiation was inhibited by treatment with sargachromanol E. This study suggests that UVA irradiation modulates MMP expression via the transcriptional activation of AP-1 signalling, whereas treatment with sargachromanol E protected cell damage caused by UVA irradiation. © 2013 The Authors. BJD © 2013 British Association of Dermatologists.

  10. Lovastatin inhibits TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts.

    Science.gov (United States)

    Meyer-Ter-Vehn, Tobias; Katzenberger, Barbara; Han, Hong; Grehn, Franz; Schlunck, Günther

    2008-09-01

    The transdifferentiation of Tenon fibroblasts to myofibroblasts is a pivotal step in filtering bleb scarring. It is mediated by the cytokine TGF-beta, Rho-dependent contractility, and cell-matrix interactions in an interdependent fashion. HMG-CoA-reductase inhibitors (statins) have been shown to inhibit Rho-GTPase signaling; therefore, the authors studied the influence of lovastatin on TGF-beta-mediated myofibroblast transdifferentiation to assess the potential use of statins in wound healing modulation. Human Tenon fibroblasts were grown in culture, pretreated with lovastatin, lovastatin and mevalonate, or specific inhibitors of farnesyl transferase or geranylgeranyl transferase and were stimulated with TGF-beta1. alpha-Smooth muscle actin (alpha-SMA) and connective tissue growth factor (CTGF) transcription were assessed by real-time PCR. alpha-SMA protein expression and localization were studied by Western blot and confocal immunofluorescence microscopy. Cell contractility was determined in collagen gel contraction assays. Phosphorylation of the signaling proteins Smad-2/3 and p38 were detected by Western blot, and Smad-2/3 localization was determined by confocal immunofluorescence microscopy. Lovastatin inhibited TGF-beta-induced CTGF transcription, alpha-SMA expression and incorporation into actin stress fibers, and subsequent collagen gel contraction. These effects were reversed by mevalonate. The inhibition of geranylgeranyl transferase but not farnesyl transferase blocked TGF-beta-induced alpha-SMA expression. Lovastatin decreased TGF-beta-induced p38 activation, whereas Smad-2/3 phosphorylation and nuclear translocation were preserved. Lovastatin inhibits TGF-beta-induced myofibroblast transdifferentiation in human Tenon fibroblasts, most likely by interfering with Rho-signaling. Statins may, therefore, serve to inhibit scarring after filtering glaucoma surgery.

  11. Single Exposure of Human Oral Mucosa Fibroblasts to Ultraviolet B Radiation Reduces Proliferation and Induces COX-2 Expression and Activation

    Directory of Open Access Journals (Sweden)

    Y Boza

    2010-12-01

    Full Text Available The lip vermillion constitutes a transition tissue, between oral mucosa and skin, where oral mucosal cells from epithelial and connective tissue compartments are exposed to ultraviolet (UV sunlight. Fibroblasts are abundant resident cells of the connective tissue which are key regulators of extracellular matrix composition, as well as, epithelial and endothelial cell function. UVB light, an inherent component of sunlight, causes several alterations in skin fibroblasts, including premature senescence and increased cyclooxygenase (COX-2 expression. To assess if UVB irradiation had similar effects on fibroblasts derived from human oral mucosa (HOM, primary cultures of HOM fibroblasts were irradiated with a single dose of 30 or 60 mJ/cm²of UVB light or sham-irradiated. Fibroblast proliferation was assessed from 3 to 48 hrs after UVB-irradiation utilizing [³H]-thymidine incorporation and MTT assays. In addition, COX-2 mRNA expression was detected by RT-PCR, and PGE2 production was assessed using enzyme immunoassay from 0.5 to 24 hrs after UVB-irradiation. The results showed a significant decrease in proliferation of UVB-irradiated HOM fibroblasts as compared to controls as measured by both [³H]-thymidine incorporation and MTT assays (p<0.001. HOM fibroblasts had increased COX-2 mRNA expression at 0.5 and 12 hrs after irradiation, and PGE2 production was elevated at 12 and 24 hrs post-irradiation as compared to controls (p<0.05. The results showed an inhibitory effect of a single dose of UVB irradiation on HOM fibroblast proliferation with an increase in COX-2 expression and activation. Therefore, photodamaged fibroblasts may play and important role in the pathogenesis of UV-induced lesions of the lip.

  12. A native-like corneal construct using donor corneal stroma for tissue engineering.

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available Tissue engineering holds great promise for corneal transplantation to treat blinding diseases. This study was to explore the use of natural corneal stroma as an optimal substrate to construct a native like corneal equivalent. Human corneal epithelium was cultivated from donor limbal explants on corneal stromal discs prepared by FDA approved Horizon Epikeratome system. The morphology, phenotype, regenerative capacity and transplantation potential were evaluated by hematoxylin eosin and immunofluorescent staining, a wound healing model, and the xeno-transplantation of the corneal constructs to nude mice. An optically transparent and stratified epithelium was rapidly generated on donor corneal stromal substrate and displayed native-like morphology and structure. The cells were polygonal in the basal layer and became flattened in superficial layers. The epithelium displayed a phenotype similar to human corneal epithelium in vivo. The differentiation markers, keratin 3, involucrin and connexin 43, were expressed in full or superficial layers. Interestingly, certain basal cells were immunopositive to antibodies against limbal stem/progenitor cell markers ABCG2 and p63, which are usually negative in corneal epithelium in vivo. It suggests that this bioengineered corneal epithelium shared some characteristics of human limbal epithelium in vivo. This engineered epithelium was able to regenerate in 4 days following from a 4mm-diameter wound created by a filter paper soaked with 1 N NaOH. This corneal construct survived well after xeno-transplantation to the back of a nude mouse. The transplanted epithelium remained multilayer and became thicker with a phenotype similar to human corneal epithelium. Our findings demonstrate that natural corneal stroma is an optimal substrate for tissue bioengineering, and a native-like corneal construct has been created with epithelium containing limbal stem cells. This construct may have great potential for clinical use in

  13. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging.

    Directory of Open Access Journals (Sweden)

    Solène Mine

    Full Text Available Understanding the contribution of the dermis in skin aging is a key question, since this tissue is particularly important for skin integrity, and because its properties can affect the epidermis. Characteristics of matched pairs of dermal papillary and reticular fibroblasts (Fp and Fr were investigated throughout aging, comparing morphology, secretion of cytokines, MMPs/TIMPs, growth potential, and interaction with epidermal keratinocytes. We observed that Fp populations were characterized by a higher proportion of small cells with low granularity and a higher growth potential than Fr populations. However, these differences became less marked with increasing age of donors. Aging was also associated with changes in the secretion activity of both Fp and Fr. Using a reconstructed skin model, we evidenced that Fp and Fr cells do not possess equivalent capacities to sustain keratinopoiesis. Comparing Fp and Fr from young donors, we noticed that dermal equivalents containing Fp were more potent to promote epidermal morphogenesis than those containing Fr. These data emphasize the complexity of dermal fibroblast biology and document the specific functional properties of Fp and Fr. Our results suggest a new model of skin aging in which marked alterations of Fp may affect the histological characteristics of skin.

  14. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography.

    Science.gov (United States)

    Teixeira, Ana I; McKie, George A; Foley, John D; Bertics, Paul J; Nealey, Paul F; Murphy, Christopher J

    2006-07-01

    We have previously shown that human corneal epithelial cells sense and react to nanoscale substrate topographic stimuli [Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 2003;116(10):1881-92; Karuri NW, Liliensiek S, Teixeira AI, Abrams G, Campbell S, Nealey PF, et al. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J Cell Sci 2004;117(15):3153-64]. Here we demonstrate that cellular responses to nanoscale substrate topographies are modulated by the context in which these stimuli are presented to cells. In Epilife medium, cells aligned preferentially in the direction perpendicular to nanoscale grooves and ridges. This is in contrast to a previous study where cells cultured in DMEM/F12 medium aligned in the direction parallel to nanoscale topographic features [Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 2003;116(10):1881-92]. Additionally, cell alignment in Epilife medium was dependent on pattern pitch. Cells switched from perpendicular to parallel alignment when the pitch was increased from 400 to 4,000 nm. There was a transition region (between 800 and 1,600 nm pitch) where both parallel and perpendicular alignments were favored compared to all other cellular orientations. Cells formed focal adhesions parallel to the substrate topographies in this transition region. On the nano- and microscale patterns, 400 and 4,000 nm pitch, focal adhesions were almost exclusively oriented obliquely to the topographic patterns.

  15. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts.

    Science.gov (United States)

    Ohshima, Susumu; Seyama, Atsushi

    2012-09-01

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4 days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2 weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3 days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells.

  16. Effects of differently polarized microwave radiation on the microscopic structure of the nuclei in human fibroblasts.

    Science.gov (United States)

    Shckorbatov, Yuriy G; Pasiuga, Vladimir N; Goncharuk, Elena I; Petrenko, Tatiana Ph; Grabina, Valentin A; Kolchigin, Nicolay N; Ivanchenko, Dmitry D; Bykov, Victor N; Dumin, Oleksandr M

    2010-10-01

    To investigate the influence of microwave radiation on the human fibroblast nuclei, the effects of three variants of electromagnetic wave polarization, linear and left-handed and right-handed elliptically polarized, were examined. Experimental conditions were: frequency (f) 36.65 GHz, power density (P) at the surface of exposed object 1, 10, 30, and 100 µW/cm(2), exposure time 10 s. Human fibroblasts growing in a monolayer on a cover slide were exposed to microwave electromagnetic radiation. The layer of medium that covered cells during microwave exposure was about 1 mm thick. Cells were stained immediately after irradiation by 2% (w/v) orcein solution in 45% (w/v) acetic acid. Experiments were made at room temperature (25 °C), and control cell samples were processed in the same conditions. We assessed heterochromatin granule quantity (HGQ) at 600× magnification. Microwave irradiation at the intensity of 1 µW/cm(2) produced no effect, and irradiation at the intensities of 10 and 100 µW/cm(2) induced an increase in HGQ. More intense irradiation induced more chromatin condensation. The right-handed elliptically polarized radiation revealed more biological activity than the left-handed polarized one.

  17. Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2010-06-01

    Full Text Available Abstract Background We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells. Results Sixty-one single-cell-derived dermal fibroblast clones were established from human foreskin by limiting dilution culture. Of these, two clones could be differentiated into neuron-, adipocyte- or hepatocyte-like cells under certain culture conditions. In addition, those two clones were able to differentiate into islet-like clusters under pancreatic induction. Insulin, glucagon and somatostatin were detectable at the mRNA and protein levels after induction. Moreover, the islet-like clusters could release insulin in response to glucose in vitro. Conclusions This is the first study to demonstrate that dermal fibroblasts can differentiate into insulin-producing cells without genetic manipulation. This may offer a safer cell source for future stem cell-based therapies.

  18. Persistent Amplification of DNA Damage Signal Involved in Replicative Senescence of Normal Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Masatoshi Suzuki

    2012-01-01

    Full Text Available Foci of phosphorylated histone H2AX and ATM are the surrogate markers of DNA double strand breaks. We previously reported that the residual foci increased their size after irradiation, which amplifies DNA damage signals. Here, we addressed whether amplification of DNA damage signal is involved in replicative senescence of normal human diploid fibroblasts. Large phosphorylated H2AX foci (>1.5 μm diameter were specifically detected in presenescent cells. The frequency of cells with large foci was well correlated with that of cells positive for senescence-associated β-galactosidase staining. Hypoxic cell culture condition extended replicative life span of normal human fibroblast, and we found that the formation of large foci delayed in those cells. Our immuno-FISH analysis revealed that large foci partially localized at telomeres in senescent cells. Importantly, large foci of phosphorylated H2AX were always colocalized with phosphorylated ATM foci. Furthermore, Ser15-phosphorylated p53 showed colocalization with the large foci. Since the treatment of senescent cells with phosphoinositide 3-kinase inhibitor, wortmannin, suppressed p53 phosphorylation, it is suggested that amplification of DNA damage signaling sustains persistent activation of ATM-p53 pathway, which is essential for replicative senescence.

  19. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.

    Science.gov (United States)

    Wirohadidjojo, Yohanes Widodo; Budiyanto, Arief; Soebono, Hardyanto

    2016-09-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm⁻²) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.

  20. Scopoletin has a potential activity for anti-aging via autophagy in human lung fibroblasts.

    Science.gov (United States)

    Nam, Hyang; Kim, Moon-Moo

    2015-03-15

    Autophagy was known to be associated with aging in addition to cancer and neurodegeneration. The effects of scopoletin on autophagy and anti-aging were investigated in human lung fibroblast cell line, IMR 90. Here we show that scopoletin induces autophagy. It is also identified that the modulation of p53 by scopoletin are related to the induction of autophagy. Moreover, the level of SA-β-Gal staining, an aging marker, is reduced by scopoletin. In addition, while the expression levels of histone deacetylases such as HDAC1, SIRT1 and SIRT6 are increased in IMR 90 cells in the presence of scopoletin, the expression levels of histone acetyltransferases are decreased. Furthermore, scopoletin enhances the level of transcription factors such as Nrf-2and p-FoxO1 related to anti-aging. In addition, scopoletin modulates the reprogramming proteins. Therefore, these findings suggest that scopoletin could exert a positive effect on anti-aging related to autophagy through modulation of p53 in human lung fibroblasts. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Biocompatibility of Mineral Trioxide Aggregate with TiO2 Nanoparticles on Human Gingival Fibroblasts

    Science.gov (United States)

    Samiei, Mohammad; Aghazadeh, Marzieh; Divband, Baharak; Akbarzadeh, Farzaneh

    2017-01-01

    Background The New compositions of white mineral trioxide aggregate (WMTA) or use of various additives like nanoparticles might affect MTA’s ideal characteristics This study was performed to evaluate the cytotoxicity of WMTA and WMTA with Titanium dioxide (TiO2) nanoparticles (1% weight ratio) at different storage times after mixing on human gingival fibroblasts (HGFs). Material and Methods HGFs were obtained from the attached gingiva of human premolars. HGFs were cultured in Dulbecco’s Modified Eagle medium, supplemented with 10% fetal calf serum, penicillin and streptomycin. The cells were exposed to WMTA (groups 1 and 2) and WMTA+TiO2 (groups 3 and 4). The fifth and sixth groups served as controls. Each group contained 15 wells. After 24h (groups 1, 3 and 5) and 48 h (groups 2, 4 and 6) of exposure, HGF viability was determined by Mosmann’s tetrazolium toxicity (MTT) assay. Statistical analysis of the data was performed by using one-way analysis of variance and Tukey post hoc test, with significance of p 0.05). Conclusions Under the limitations of the present study, incorporation of TiO2 nanoparticles into MTA at 1 wt% had no negative effect on its biocompatibility. Key words:Cytotoxicity, fibroblast, MTA, MTT assay, nanoparticle, TiO2. PMID:28210432

  2. Arecoline stimulated early growth response-1 production in human buccal fibroblasts: suppression by epigallocatechin-3-gallate.

    Science.gov (United States)

    Hsieh, Yu-Ping; Chen, Hsin-Ming; Chang, Jenny Zwei-Chieng; Chiang, Chun-Pin; Deng, Yi-Ting; Kuo, Mark Yen-Ping

    2015-04-01

    Early growth response-1 (Egr-1) protein plays an important role in many human fibrotic diseases. Areca nut chewing is the most important risk factor of oral submucous fibrosis (OSF). Egr-1 protein expression in OSF was examined using antibody to Egr-1. Arecoline-induced Egr-1 expression and its signaling pathways were assessed by Western blot analyses in human buccal mucosal fibroblasts (BMFs). Elevated Egr-1 staining was observed in epithelial cells, fibroblast, and inflammatory cells in 7 of 10 OSF cases. Arecoline, a main alkaloid found in the areca nut, stimulated Egr-1 synthesis in BMFs. Pretreatment with antioxidant N-acetyl-L-cysteine, c-Jun NH2-terminal kinase inhibitor SP600125, and extracellular signal-regulated kinase inhibitor PD98059 significantly reduced arecoline-induced Egr-1 synthesis. Epigallocatechin-3-gallate (EGCG) inhibited arecoline-induced Egr-1 synthesis and collagen gel contraction in a dose-responsive manner. Constitutive Egr-1 expression during areca nut chewing may play a role in the pathogenesis of OSF. EGCG could be a good candidate for prevention or treatment of OSF. © 2014 Wiley Periodicals, Inc.

  3. Growth inhibitory effects of endotoxins from Bacteroides gingivalis and intermedius on human gingival fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Layman, D.L.; Diedrich, D.L.

    1987-06-01

    Purified endotoxin or lipopolysaccharide from Bacteroides gingivalis and Bacteroides intermedius caused a similar dose-dependent inhibition of growth of cultured human gingival fibroblasts as determined by /sup 3/H-thymidine incorporation and direct cell count. Approximately 200 micrograms/ml endotoxin caused a 50% reduction in /sup 3/H-thymidine uptake of logarithmically growing cells. Inhibition of growth was similar in cultures of fibroblasts derived from either healthy or diseased human gingiva. When examining the change in cell number with time of exposure in culture, the rate of proliferation was significantly suppressed during the logarithmic phase of growth. However, the cells recovered so that the rate of proliferation, although reduced, was sufficient to produce a cell density similar to the control cells with prolonged culture. The endotoxins were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles of the Bacteroides endotoxins were different. B. gingivalis endotoxin showed a wide range of distinct bands indicating a heterogeneous distribution of molecular species. Endotoxin from B. intermedius exhibited a few discrete low molecular weight bands, but the majority of the lipopolysaccharides electrophoresed as a diffuse band of high molecular weight material. The apparent heterogeneity of the two Bacteroides endotoxins and the similarity in growth inhibitory capacity suggest that growth inhibitory effects of these substances cannot be attributed to any polysaccharide species of endotoxin.

  4. In Vitro Cytotoxicity Evaluation of Three Root-End Filling Materials in Human Periodontal Ligament Fibroblasts.

    Science.gov (United States)

    Coaguila-Llerena, Hernán; Vaisberg, Abraham; Velásquez-Huamán, Zulema

    2016-01-01

    The aim of this study was to evaluate in vitro the cytotoxicity on human periodontal ligament fibroblasts of three root-end filling materials: MTA Angelus®, EndoSequence Root Repair Material Putty® and Super EBA®. A primary culture of human periodontal ligament fibroblasts was previously obtained in order to evaluate the cytotoxicity of the three extracts from the root-end filling materials after 2 and 7 days of setting. Serial dilutions of these extracts (1:1, 1:2, 1:4 and 1:8) were evaluated at 1, 3 and 7 days using the methyl-thiazol-tetrazolium (MTT) colorimetric assay. Cell viability was evaluated as percentage of the negative control group, which represented 100% cell viability. Statistical analyses were done with t-test, ANOVA and Kruskal-Wallis test at a significance level of 5%. It was found that the main difference among root-end filling materials was in the higher dilutions (p0.05). Cell viability of MTA Angelus® was superior for 2-day setting (pMaterial Putty®. Super EBA® showed the lowest percentage of cell viability at higher dilutions (pMaterial Putty® were less cytotoxic in the highest dilution (1:1) compared with Super EBA®.

  5. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts

    Science.gov (United States)

    Budiyanto, Arief; Soebono, Hardyanto

    2016-01-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm-2) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined. PMID:27401663

  6. Transmission of HIV-1 by primary human uterine epithelial cells and stromal fibroblasts.

    Science.gov (United States)

    Asin, Susana N; Fanger, Michael W; Wildt-Perinic, Dunja; Ware, Patricia L; Wira, Charles R; Howell, Alexandra L

    2004-07-15

    Women can become infected with human immunodeficiency virus type 1 (HIV-1) after the heterosexual transmission of virus from an infected male partner. To understand the events that result in transmission of HIV-1 across the female reproductive tract, we characterized the life-cycle events of HIV-1 in primary cultures of human uterine epithelial cells and stromal fibroblasts. Epithelial cells and stromal fibroblasts released virus particles after exposure to either X4- or R5-tropic strains of HIV-1. Virus released by these cells was able to infect CD4(+) T cells. When exposed to an X4-tropic strain of HIV-1, these cells supported HIV-1 reverse transcription, integration, and viral DNA transcription. When exposed to an R5-tropic strain, however, these cells released unmodified virus. These data suggest that uterine cells are targets for productive infection with X4-tropic strains and release unmodified R5-tropic viruses that would then be able to infect submucosal target cells, including T cells and macrophages.

  7. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress

    Directory of Open Access Journals (Sweden)

    Bross Peter

    2009-05-01

    Full Text Available Abstract Background Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. Results When fibroblast cultures were exposed to mild metabolic stress – by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. Conclusion The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress.

  8. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts.

    Science.gov (United States)

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure,membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans.

  9. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    NARCIS (Netherlands)

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    2013-01-01

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formati

  10. Development of a full-thickness human skin equivalent in vitro model derived from TERT-immortalized keratinocytes and fibroblasts

    NARCIS (Netherlands)

    C.M.A. Reijnders; A. van Lier; S. Roffel; D. Kramer; R.J. Scheper; S. Gibbs

    2015-01-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve th

  11. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts

    NARCIS (Netherlands)

    Reijnders, Christianne M. A.; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J.; Gibbs, Susan

    2015-01-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve th

  12. Chikungunya virus exploits miR-146a to regulate NF-κB pathway in human synovial fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sakthi Priya Selvamani

    Full Text Available OBJECTIVES: Chikungunya virus causes chronic infection with manifestations of joint pain. Human synovial fibroblasts get infected with CHIKV and could lead to pro-inflammatory responses. MicroRNAs have potentials to regulate the gene expression of various anti-viral and pro-inflammatory genes. The study aims to investigate the role of miR-146a in modulation of inflammatory responses of human synovial fibroblasts by Chikungunya virus. METHODS: To study the role of miR-146a in CHIKV pathogenesis in human synovial cells and underlying inflammatory manifestations, we performed CHIKV infection in primary human synovial fibroblasts. Western blotting, real-time PCR, luciferase reporter assay, overexpression and knockdown of cellular miR-146a strategies have been employed to validate the role of miR-146a in regulation of pro-inflammatory NF-κB pathway. RESULTS: CHIKV infection induced the expression of cellular miR-146a, which resulted into down-regulation of TRAF6, IRAK1, IRAK2 and increased replication of CHIKV in human synovial fibroblasts. Exogenous expression of miR-146a in human synovial fibroblasts led to decreased expression of TRAF6, IRAK1, IRAK2 and decreased replication of CHIKV. Inhibition of cellular miR-146a by anti-miR-146a restored the expression levels of TRAF6, IRAK1 and IRAK2. Downregulation of TRAF6, IRAK1 and IRAK2 led to downstream decreased NF-κB activation through negative feedback loop. CONCLUSION: This study demonstrated the mechanism of exploitation of cellular miR-146a by CHIKV in modulating the host antiviral immune response in primary human synovial fibroblasts.

  13. Characterization of the autocrine/paracrine function of vitamin D in human gingival fibroblasts and periodontal ligament cells.

    Directory of Open Access Journals (Sweden)

    Kaining Liu

    Full Text Available BACKGROUND: We previously demonstrated that 25-hydroxyvitamin D(3, the precursor of 1α,25-dihydroxyvitamin D(3, is abundant around periodontal soft tissues. Here we investigate whether 25-hydroxyvitamin D(3 is converted to 1α,25-dihydroxyvitamin D(3 in periodontal soft tissue cells and explore the possibility of an autocrine/paracrine function of 1α,25-dihydroxyvitamin D(3 in periodontal soft tissue cells. METHODOLOGY/PRINCIPAL FINDINGS: We established primary cultures of human gingival fibroblasts and human periodontal ligament cells from 5 individual donors. We demonstrated that 1α-hydroxylase was expressed in human gingival fibroblasts and periodontal ligament cells, as was cubilin. After incubation with the 1α-hydroxylase substrate 25-hydroxyvitamin D(3, human gingival fibroblasts and periodontal ligament cells generated detectable 1α,25-dihydroxyvitamin D(3 that resulted in an up-regulation of CYP24A1 and RANKL mRNA. A specific knockdown of 1α-hydroxylase in human gingival fibroblasts and periodontal ligament cells using siRNA resulted in a significant reduction in both 1α,25-dihydroxyvitamin D(3 production and mRNA expression of CYP24A1 and RANKL. The classical renal regulators of 1α-hydroxylase (parathyroid hormone, calcium and 1α,25-dihydroxyvitamin D(3 and Porphyromonas gingivalis lipopolysaccharide did not influence 1α-hydroxylase expression significantly, however, interleukin-1β and sodium butyrate strongly induced 1α-hydroxylase expression in human gingival fibroblasts and periodontal ligament cells. CONCLUSIONS/SIGNIFICANCE: In this study, the expression, activity and functionality of 1α-hydroxylase were detected in human gingival fibroblasts and periodontal ligament cells, raising the possibility that vitamin D acts in an autocrine/paracrine manner in these cells.

  14. Role of 5'TG3'-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated Corneal Fibrosis Inhibition.

    Science.gov (United States)

    Sharma, Ajay; Sinha, Nishant R; Siddiqui, Saad; Mohan, Rajiv R

    2015-01-01

    We have previously reported that vorinostat, an FDA-approved, clinically used histone deacetylase (HDAC) inhibitor, attenuates corneal fibrosis in vivo in rabbits by blocking transforming growth factor β (TGFβ). The 5'TG3'-interacting factors (TGIFs) are transcriptional repressors of TGFβ1 signaling via the Smad pathway. The present study was designed to explore the expression of TGIFs in human corneal fibroblasts and to investigate their role in mediating the antifibrotic effect of vorinostat. Human corneal fibroblast cultures were generated from donor corneas. RNA isolation, cDNA preparation, and PCR were performed to detect the presence of TGIF1 and TGIF2 transcripts. The cultures were exposed to vorinostat (2.5 µM) to test its effect on TGIF mRNA and protein levels using qPCR and immunoblotting. Myofibroblast formation was induced with TGFβ1 (5 ng/ml) treatment under serum-free conditions. The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (αSMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Smad2/3/4 and TGIF knockdowns were performed using pre-validated RNAi/siRNAs and a commercially available transfection reagent. Human corneal fibroblasts showed the expression of TGIF1 and TGIF2. Vorinostat (2.5 µM) caused a 2.8-3.3-fold increase in TGIF1 and TGIF2 mRNA levels and a 1.4-1.8-fold increase in TGIF1 and TGIF2 protein levels. Vorinostat treatment also caused a significant increase in acetylhistone H3 and acetylhistone H4. Vorinostat-induced increases in TGIF1 and TGIF2 were accompanied by a concurrent decrease in corneal fibrosis, as indicated by a decrease in αSMA mRNA by 83±7.7% and protein levels by 97±5%. The RNAi-mediated knockdown of Smad2, Smad3, and Smad4 markedly attenuated TGFβ1-evoked transdifferentiation of fibroblasts to myofibroblasts. The siRNA-mediated knockdown of TGIF1 and TGIF2 neutralized vorinostat-evoked decreases in αSMA mRNA by 31%-45% and protein

  15. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    Nina Skolucka; Malgorzata Daczewska; Jolanta Saczko; Agnieszka Chwilkowska; Anna Choromanska; Malgorzata Kotulska; Iwona Kaminska; Julita Kulbacka

    2011-01-01

    Objective:To estimate electroporation (EP) influence on malignant and normal cells.Methods:Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following:250,1000,1750,2500 V/cm;50 μs by5 impulses for every case. The viability of cells after EP was estimated byMTT assay. The ultrastructural analysis was observed by transmission electron microscope (ZeissEM900). Results:In the current study we observed the intracellular effect followingEP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated byEP. Conversely, we showed thatEP in some conditions can stimulate cells to proliferation. Some changes induced byEP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters ofEP (250 and1000 V/cm). After applying higher electric field intensities (2500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications afterEP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters ofEP.Conclusions:We can claim thatEP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude thatEP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.

  16. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells.

    Science.gov (United States)

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-04-01

    To estimate electroporation (EP) influence on malignant and normal cells. Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.

  17. Corneal Transplantation

    DEFF Research Database (Denmark)

    Hjortdal, Jesper Østergaard

    Corneal transplantation has been performed for more than 100 years. Until 15 years ago the state-of-the art type of transplantation was penetrating keratoplasty, but since the start of this millennium, newly designed surgical techniques have developed considerably. Today, the vast majority of ker...

  18. Corneal Laceration

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration ... After Eyelid Scratch Jul 28, 2014 Leer en Español: ¿Qué Es una Laceración de la Córnea? Find ...

  19. Corneal topography

    DEFF Research Database (Denmark)

    Andersen, J.; Koch-Jensen, P.; Østerby, Ole

    1993-01-01

    The central corneal zone is depicted on keratoscope photographs using a small target aperture and a large object distance. Information on the peripheral area is included by employing a hemispherical target with a dense circular and radial pattern. On a 16 mm (R = 8 mm) reference steel sphere...

  20. Corneal chromoblastomycosis.

    Science.gov (United States)

    Barton, K; Miller, D; Pflugfelder, S C

    1997-03-01

    We sought to illustrate the difficulty in managing uncommon, pigmented mold-related corneal ulceration and to highlight the role of itraconazole in treating these patients. We describe the management and clinical course of a patient with a recurring corneal infection caused by Fonsecaea pedrosoi and discuss this experience in the light of existing literature on management of cutaneous chromoblastomycosis. A corneal ulcer caused by this organism healed initially on treatment with topical and systemic antifungal medication, but infection recurred in the deep stroma 4 months after cessation of therapy. After failure to respond to a further period of medical therapy, a small therapeutic penetrating keratoplasty was performed. Culture of a fibrinous membrane from the anterior iris surface demonstrated intraocular fungal infection, and postoperatively, an episode of marked fibrinous uveitis developed, suggesting the presence of viable intraocular fungal elements. A large penetrating keratoplasty was therefore performed with excision of involved iris in combination with extracapsular cataract extraction. F. pedrosoi was again cultured from the fibrinous membrane adherent to the iris and from the anterior lens capsule. Postoperatively the patient received a 5-month course of systemic itraconazole, and no further recurrences have been encountered after a further 2 months. F. pedrosoi is the organism most commonly isolated from the chronic cutaneous mycosis, chromoblastomycosis, and is relatively resistant to medical therapy. As has been reported for cutaneous disease, surgery in combination with systemic itraconazole may provide the best chance of cure in corneal chromoblastomycosis.

  1. Characterization of vitamin C-induced cell sheets formed from primary and immortalized human corneal stromal cells for tissue engineering applications.

    Science.gov (United States)

    Grobe, Gesa Maria; Reichl, Stephan

    2013-01-01

    The purpose of this study was to compare the ability of primary human corneal stromal cells (HuFib cells) and SV40-immortalized human corneal keratocytes (HCK cells) to synthesize their own extracellular matrix induced by vitamin C supplementation. Therefore, the amount of collagen secreted and resulting biomechanical properties based on the culture duration were assessed. Cells were cultivated for several weeks with or without vitamin C. The amount of collagen secreted by the cells was quantified based on the culture duration. Cell viability was simultaneously determined via the MTT assay. Collagen secretion was increased as a result of vitamin C supplementation. The effect was stronger in primary cells. In addition, vitamin C supplementation had a positive effect on HuFib cell viability. Vitamin C supplementation induced the formation of detachable cell sheets in both primary and immortalized cells. The biomechanical properties of the sheets were evaluated using a static material testing machine, and the ultrastructure of the cell sheets was examined using scanning electron microscopy. The cell sheets formed from HuFib cells had a higher percentage of light transmission between 400 and 800 nm and were superior in terms of E-modulus and ultimate strength testing. Indirect immunofluorescence and Western blot confirmed the presence of collagen type I in the HuFib and HCK cell cultures. Stimulating secretion of the extracellular matrix in corneal stromal cells is a promising approach for corneal stroma reconstruction for tissue engineering applications. Copyright © 2013 S. Karger AG, Basel.

  2. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles

    Directory of Open Access Journals (Sweden)

    Tchou Julia

    2012-09-01

    Full Text Available Abstract Background Breast cancer is a heterogeneous disease for which prognosis and treatment strategies are largely governed by the receptor status (estrogen, progesterone and Her2 of the tumor cells. Gene expression profiling of whole breast tumors further stratifies breast cancer into several molecular subtypes which also co-segregate with the receptor status of the tumor cells. We postulated that cancer associated fibroblasts (CAFs within the tumor stroma may exhibit subtype specific gene expression profiles and thus contribute to the biology of the disease in a subtype specific manner. Several studies have reported gene expression profile differences between CAFs and normal breast fibroblasts but in none of these studies were the results stratified based on tumor subtypes. Methods To address whether gene expression in breast cancer associated fibroblasts varies between breast cancer subtypes, we compared the gene expression profiles of early passage primary CAFs isolated from twenty human breast cancer samples representing three main subtypes; seven ER+, seven triple negative (TNBC and six Her2+. Results We observed significant expression differences between CAFs derived from Her2+ breast cancer and CAFs from TNBC and ER + cancers, particularly in pathways associated with cytoskeleton and integrin signaling. In the case of Her2+ breast cancer, the signaling pathways found to be selectively up regulated in CAFs likely contribute to the enhanced migration of breast cancer cells in transwell assays and may contribute to the unfavorable prognosis of Her2+ breast cancer. Conclusions These data demonstrate that in addition to the distinct molecular profiles that characterize the neoplastic cells, CAF gene expression is also differentially regulated in distinct subtypes of breast cancer.

  3. Ontogeny of expression of basic fibroblast growth factor and its receptors in human fetal skin

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; FU Xiao-bing; GE Shi-li; SUN Tong-zhu; SHENG Zhi-yong

    2005-01-01

    Objective : To investigate the expression characteristics of basic fibroblast growth factor (bFGF)and its receptors, flg ( FGFR1 ) and bek ( FGFR2), in fetal skin at different gestational ages underlying the relevance of these 3 proteins to skin development and the mechanisms underlying the phenotypic transition from scarless to scarforming healing.Methods: Eighteen specimens of fetal skin biopsies of human embryo were obtained from spontaneous abortions at different gestational ages of 13-32 weeks. Gene expression of bFGF, bek and flg was examined with reverse transcription-polymerase chain reaction (RT-PCR). The dynamic expression and distribution of these 3 proteins were detected with streptavidin peroxidase ( SP )immunohistochemical staining method.Results: In the early gestational fetal skin, genes of bFGF and flg were strongly expressed and more protein contents of these 2 proteins were found as compared with the genes at late gestation fetal skin (2.446 ± 0.116 and 2.066 ± 0. 152 versus 2.157 ± 0. 101 and 1.818 ± 0.086,respectively, P < 0.05). On the contrary, the levels of gene expression and protein content of bek were not differently expressed in the early gestational fetal skin versus the late ones. Protein particles of bFGF were mainly distributed in the epidermal cells and some fibroblasts. Bek was mainly located in the cell membrane and cytoplasm of epidermal cells while flg protein was principally located in the epidermal cells, endothelial cells and some fibroblasts.Conclusions: The endogenous bFGF and their receptors might be involved in the cutaneous development at fetal stage. The differently expressing levels of bFGF and flg during gestation may be related to scarless or scarforming repair during gestation.

  4. Establishment and identification of fibroblast clones expressing human bone morphogenetic protein 2

    Institute of Scientific and Technical Information of China (English)

    Juan Wang; Weibin Sun; Chun Lu; Guixia Tang

    2005-01-01

    Objective:To establish fibroblasts stably expressing human bone morphogenetic protein 2 (hBMP2). Methods:Eukaryonic expression vector(pcDNA3.1-B2) was transduced into NIH3T3 cells using SofastTM, a new generation cationic polymer gene transfection reagent. The positive cell clones were selected with G418. The stable transfection and expression of BMP2 in the NIH3T3 cells were determined by RT-PCR and immunohistochemical stain. Results: BMP2 mRNA was transcripted and expressed in the transfected NIH3T3 cells. Conclusion: With positive compound transfection, outside human BMP2 gene can be successfully transducted into NIH3T3 cells, which is the key step to induce periodontal cells to osseous phenotypes.

  5. Culture of human limbal epithelial stem cells on tenon's fibroblast feeder-layers: a translational approach.

    Science.gov (United States)

    Scafetta, Gaia; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena

    2015-01-01

    The coculture technique is the standard method to expand ex vivo limbal stem cells (LSCs) by using inactivated embryonic murine feeder layers (3T3). Although alternative techniques such as amniotic membranes or scaffolds have been proposed, feeder layers are still considered to be the best method, due to their ability to preserve some critical properties of LSCs such as cell growth and viability, stemness phenotype, and clonogenic potential. Furthermore, clinical applications of LSCs cultured on 3T3 have taken place. Nevertheless, for an improved Good Manufacturing Practice (GMP) compliance, the use of human feeder-layers as well as a fine standardization of the process is strictly encouraged. Here, we describe a translational approach in accordance with GMP regulations to culture LSCs onto human Tenon's fibroblasts (TFs). In this chapter, based on our experience we identify and analyze issues that often are encountered by researchers and discuss solutions to common problems.

  6. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.; Miller, A.D.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vector containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.

  7. Expression of endogenic lectins and their glycoligands in the tear fluid, human corneal and conjunctival epithelium under physiological and disease conditions

    OpenAIRE

    Hrdličková, Enkela

    2016-01-01

    Purpose: Lectins play an important role in many biological processes. The aim of this work was to analyse mainly the expression of endogenic lectins, such as galectins and plant lectin, e.g. Dolichos biflorus agglutinin (DBA), and their glycoligands in the tear fluid, human corneal and conjunctival epithelium in physiological and disease conditions. Further, we studied the human natural antibody against Galα1,3Gal-R, which is mainly responsible for hyperacute rejection of xenografts transplan...

  8. Live-cell imaging of the early stages of colony development in Fusarium oxysporum in vitro and ex vivo during infection of a human corneal model

    OpenAIRE

    Kurian, Smija Mariam

    2016-01-01

    ABSTRACTThe University of ManchesterName: Smija Mariam KurianDegree title: Doctor of PhilosophyResearch title: Live-cell imaging of the early stages of colony development in Fusarium oxysporum in vitro and ex vivo during infection of a human corneal modelDate: May 2016Abstract: Fusarium oxysporum is a major fungal plant pathogen and emerging human pathogen. It has been hypothesised that conidial anastomosis tube (CAT) fusion may facilitate horizontal gene/chromosome transfer that could result...

  9. Proteoglycan biosynthesis by human corneas from patients with types 1 and 2 macular corneal dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Midura, R.J.; Hascall, V.C.; MacCallum, D.K.; Meyer, R.F.; Thonar, E.J.; Hassell, J.R.; Smith, C.F.; Klintworth, G.K. (National Institute of Dental Research, Bethesda, MD (USA))

    1990-09-15

    Corneal buttons were obtained from patients with types 1 and 2 macular corneal dystrophy (MCD) and from control patients with Fuchs' dystrophy or keratoconus. Buttons were incubated for 20 h in the presence of (3H)glucosamine or (2-3H)mannose. Radiolabeled proteoglycans and lactosaminoglycan-glycoproteins (L-GPs) were purified using chromatography on Q-Sepharose, Superose 6, and octyl-Sepharose. They were identified using chondroitinase ABC, keratanase or endo-beta-galactosidase digestion, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Superose 6 chromatography. This study confirms previous reports that type 1 MCD corneas synthesize a normal dermatan sulfate-proteoglycan (DS-PG) and an abnormal keratan sulfate-proteoglycan (KS-PG). The data indicate that typ 1 MCD corneas synthesize L-GP instead of KS-PG. This L-GP has a core protein of similar hydrophobicity (elution from octyl-Sepharose) and nearly similar mass (42 kDa) as the core protein of the KS-PG. It has identical glycoconjugates as those of the KS-PG except that they lack sulfate. Thus, type 1 MCD fails to synthesize keratan sulfate as a result of a defect in a sulfotransferase specific for sulfating lactosaminoglycans. Further, proteoglycans synthesized by a cornea from a patient with type 2 MCD were studied. This cornea synthesized a normal ratio of KS-PG to DS-PG although net synthesis of proteoglycans was approximately 30% below normal. The KS-PG appeared normal whereas the DS-PG had dermatan sulfate chains that were approximately 40% shorter than normal.

  10. The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts

    Directory of Open Access Journals (Sweden)

    Tan Jenny

    2005-03-01

    Full Text Available Abstract Background Butein (3,4,2',4'-tetrahydroxychalone, a plant polyphenol, is a major biologically active component of the stems of Rhus verniciflua Stokes. It has long been used as a food additive in Korea and as an herbal medicine throughout Asia. Recently, butein has been shown to suppress the functions of fibroblasts. Because fibroblasts are believed to play an important role in promoting the growth of breast cancer cells, we investigated the ability of butein to inhibit the clonogenic growth of small numbers of breast cancer cells co-cultured with fibroblasts in vitro. Methods We first measured the clonogenic growth of small numbers of the UACC-812 human breast cancer cell line co-cultured on monolayers of serum-activated, human fibroblasts in the presence of butein (2 μg/mL or various other modulators of fibroblast function (troglitazone-1 μg/mL; GW9662-1 μM; meloxican-1 μM; and 3,4 dehydroproline-10 μg/mL. In a subsequent experiment, we measured the dose-response effect on the clonogenic growth of UACC-812 breast cancer cells by pre-incubating the fibroblasts with varying concentrations of butein (10 μg/ml-1.25 μg/mL. Finally, we measured the clonogenic growth of primary breast cancer cells obtained from 5 clinical specimens with normal fibroblasts and with fibroblasts that had been pre-treated with a fixed dose of butein (2.5 μg/mL. Results Of the five modulators of fibroblast function that we tested, butein was by far the most potent inhibitor of clonogenic growth of UACC-812 breast cancer cells co-cultured with fibroblasts. Pre-treatment of fibroblasts with concentrations of butein as low as 2.5 μg/mL nearly abolished subsequent clonogenic growth of UACC-812 breast cancer cells co-cultured with the fibroblasts. A similar dose of butein had no effect on the clonogenic growth of breast cancer cells cultured in the absence of fibroblasts. Significantly, clonogenic growth of the primary breast cancer cells was also

  11. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    Directory of Open Access Journals (Sweden)

    Dao Kim-Hien T

    2010-01-01

    Full Text Available Abstract Background The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Methods Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Results Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. Conclusion(s The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas

  12. Ultrastructural visualization of the Mesenchymal-to-Epithelial Transition during reprogramming of human fibroblasts to induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    M.K. Høffding

    2015-01-01

    Here, we integrate a panel of morphological approaches with gene expression analyses to visualize the dynamics of episomal reprogramming of human fibroblasts to iPSCs. We provide the first ultrastructural analysis of human fibroblasts at various stages of episomal iPSC reprogramming, as well as the first real-time live cell visualization of a MET occurring during reprogramming. The results indicate that the MET manifests itself approximately 6–12 days after electroporation, in synchrony with the upregulation of early pluripotency markers, and resembles a reversal of the Epithelial-to-Mesenchymal Transition (EMT which takes place during mammalian gastrulation.

  13. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts

    Directory of Open Access Journals (Sweden)

    María Questa

    2016-03-01

    Full Text Available Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls.

  14. Effect of polysaccharide of dendrobium candidum on proliferation and apoptosis of human corneal epithelial cells in high glucose.

    Science.gov (United States)

    Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua

    2017-08-01

    The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose.

  15. Human adenovirus type 19 infection of corneal cells induces p38 MAPK-dependent interleukin-8 expression

    Directory of Open Access Journals (Sweden)

    Chodosh James

    2008-01-01

    Full Text Available Abstract Background Human adenovirus type 19 (HAdV-19 is a major cause of epidemic keratoconjunctivitis, the only ocular adenoviral infection associated with prolonged corneal inflammation. In this study, we investigated the role of p38 mitogen-activated protein kinase (MAPK in HAdV-19 infection, with particular attention to the role of p38 MAPK in the transcriptional control of interleukin-8 (IL-8, a chemokine previously shown to be central to the initiation of adenovirus keratitis. Results We found that infection of corneal cells with HAdV-19 led to activation of p38 MAPK and its downstream targets, HSP-27 and ATF-2, within 15 to 30 minutes post-infection. Infection also induced phosphorylation of IκB and NFκB in a p38 MAPK-dependent fashion. Furthermore, HAdV-19 induced an interaction between p38 MAPK and NFκB-p65, followed by nuclear translocation of activated NFκB-p65 and its binding to the IL-8 promoter. The interaction between p38 MAPK and NFκB-p65 was inhibited in concentration-dependent fashion by SB203580, a chemical inhibitor of p38 MAPK, but not by SP600125, an inhibitor of JNK – another MAPK implicated in chemokine expression by HAdV-19 infected cells. IL-8 gene expression in HAdV-19 infection was significantly reduced in the presence of sequence-specific p38 MAPK siRNA but not control siRNA. Conclusion These results provide the first direct evidence for transcriptional regulation of IL-8 in HAdV-19 infected cells through the activation of the p38 MAPK signaling pathway. The p38 MAPK pathway may play a biologically important role in regulation of IL-8 gene expression in the adenovirus-infected cornea.

  16. Relocalization of cell adhesion molecules during neoplastic transformation of human fibroblasts.

    Science.gov (United States)

    Belgiovine, Cristina; Chiodi, Ilaria; Mondello, Chiara

    2011-11-01

    Studying neoplastic transformation of telomerase immortalized human fibroblasts (cen3tel), we found that the transition from normal to tumorigenic cells was associated with the loss of growth contact inhibition, the acquisition of an epithelial-like morphology and a change in actin organization, from stress fibers to cortical bundles. We show here that these variations were paralleled by an increase in N-cadherin expression and relocalization of different adhesion molecules, such as N-cadherin, α-catenin, p-120 and β-catenin. These proteins presented a clear membrane localization in tumorigenic cells compared to a more diffuse, cytoplasmic distribution in primary fibroblasts and non-tumorigenic immortalized cells, suggesting that tumorigenic cells could form strong cell-cell contacts and cell contacts did not induce growth inhibition. The epithelial-like appearance of tumorigenic cells did not reflect a mesenchymal-epithelial transition; in fact, cen3tel cells expressed vimentin and did not express cytokeratins at all transformation stages. Moreover, they did not express epithelial proteins such as occluding and claudin-1. In contrast, ZO-1 showed higher levels and a more defined membrane localization in tumorigenic cells compared to non-tumorigenic cells; this confirms its role in adherens junction formation in mesenchymal cells and is in agreement with the strong cell-cell contact formation by neoplastically transformed cells. Finally, we found α-catenin and ZO-1 nuclear localization in non-transformed cells, suggestive of possible additional roles of these proteins besides cell junction formation.

  17. Immunochemistry of a keratinocyte-fibroblast co-culture model for reconstruction of human skin.

    Science.gov (United States)

    Fleischmajer, R; MacDonald, E D; Contard, P; Perlish, J S

    1993-09-01

    Our purpose was to determine differentiation markers of an in vitro co-culture model in which fibroblasts grown in a three-dimensional nylon mesh were recombined with human keratinocytes. The cultures were kept for 5 weeks and then processed for electron microscopy and immunochemistry. The specimens revealed an epidermis, a basal lamina, an anchoring zone, and a dermis. Epidermal differentiation was confirmed by the presence of K10-keratin, trichohyalin, and filaggrin. The basal lamina contained Type IV collagen, laminin, nidogen, and heparan sulfate. Type IV collagen, laminin, and nidogen were also noted in the extracellular matrix. Type VI collagen was present in the anchoring zone and also gave a reticulated pattern in the rest of the dermis. There was a heavy signal for tenascin and fibronectin throughout the dermis. Osteonectin was restricted to the epidermis and dermal fibroblasts. Fibrillin stained at the anchoring zone and dermis but elastin and vitronectin were negative, suggesting early formation of elastic fibrils. Collagen fibrils stained for Types I, III, and V, as well as the amino propeptide of Types I and III procollagen, suggesting newly synthesized collagen. Decorin was present throughout the dermis. The model described appears suitable for in vitro reconstruction of the skin and may be useful to study the development of various supramolecular skin structures.

  18. Donor's age and replicative senescence favour the in-vitro mineralization potential of human fibroblasts.

    Science.gov (United States)

    Boraldi, Federica; Bartolomeo, Angelica; Di Bari, Caterina; Cocconi, Andrea; Quaglino, Daniela

    2015-12-01

    Aberrant mineralization of soft connective tissues (ectopic calcification) may occur as a frequent age-related complication. Still, it remains unclear the role of mesenchymal cell donor's age and of replicative senescence on ectopic calcification. Therefore, the ability of cells to deposit in-vitro hydroxyapatite crystals and the expression of progressive ankylosis protein homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), tissue non specific alkaline phosphatase (TNAP) and osteopontin (OPN) have been evaluated in human dermal fibroblasts derived from neonatal (nHDF) and adult (aHDF) donors (ex-vivo ageing model) or at low and high cumulative population doublings (CPD) up to replicative senescence (in-vitro ageing model). This study demonstrates that: 1) replicative senescence favours hydroxyapatite formation in cultured fibroblasts; 2) donor's age acts as a major modulator of the mineralizing potential of HDF, since nHDF are less prone than aHDF to induce calcification; 3) donor's age and replicative senescence play in concert synergistically increasing the calcification process; 4) the ANKH+ENPP1/TNAP ratio, being crucial for pyrophosphate/inorganic phosphate balance, is greatly influenced by donor's age, as well as by replicative senescence, and regulates mineral deposition; 5) OPN is only modulated by replicative senescence.

  19. The effect of laser-treated titanium surface on human gingival fibroblast behavior.

    Science.gov (United States)

    Baltriukienė, D; Sabaliauskas, V; Balčiūnas, E; Melninkaitis, A; Liutkevičius, E; Bukelskienė, V; Rutkūnas, V

    2014-03-01

    Surface modification, as a means of enhancing soft tissue integration in titanium would have significant advantages including less marginal bone resorption, predictable esthetic outcome, improved soft tissue stability, and seal against bacterial leakage. The aim of this study was to evaluate the effects of laser-roughened titanium surfaces on human gingival fibroblast (HGF) viability, proliferation, and adhesion. Titanium discs were ablated with impulse laser in four different patterns. Polished and sand-blasted titanium discs were used as control groups. Specimen surface properties were determined using optical profilometry and scanning electron microscopy. HGF behavior on modified surfaces was analyzed using cell adhesion, viability, proliferation, and ELISA assays. Results suggested that modified Ti surfaces did not affect the viability of HGFs and improved adhesion was measured in laser treatment groups after 24 h. However, proliferation study showed that the adsorbance of fibroblast cells after 72 h cultured on polished titanium was higher and comparable with that of control cells. As for focal adhesion kinase (FAK), cells grown on laser modified surfaces had higher expression of FAK as compared with polished titanium. In conclusion, tested laser-treated surfaces seem to favor HGF adhesion. There were no significant differences between different laser treatment groups. Copyright © 2013 Society of Plastics Engineers.

  20. Deficient recovery from potentially lethal damage in some gamma-irradiated human fibroblast cell strains

    Energy Technology Data Exchange (ETDEWEB)

    Arlett, C.F.; Priestley, A. (Medical Research Council, Brighton (UK). Cell Mutation Unit)

    1984-01-01

    The repair of potentially lethal damage following treatment with gamma radiation was investigated in human fibroblasts held in a non-cycling state by maintenance in a medium containing 0.5% foetal calf serum. Normal cells were found to be competent in the repair of PLD. Ataxia-telangiectasia cells were deficient as was a heterozygote suggesting that a failure to repair PLD may make it possible to detect such heterozygotes. Fibroblasts from Huntington's disease patients were either slightly or no more sensitive than cells from normal individuals. Cultures from two individuals in the former class showed limited capacity to repair PLD but cells from the latter class were as competent as normals. Thus assays of radiosensitivity where conditions allow for the repair of PLD may maximise small differences in sensitivity. Cells taken from three patients suffering from Basal Cell Naevus Syndrome were also shown to be defective in the repair of PLD. The existence of such a defect may be related to the increased frequency of basal cell cancer observed in exposed fields following irradiation of such individuals.

  1. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Brydone, Alistair S; Dominic Meek, R M [Department of Orthopaedics, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF (United Kingdom); Dalby, Matthew J; Berry, Catherine C; McNamara, Laura E, E-mail: alibrydone@gmail.com [Centre for Cell Engineering, Joseph Black Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2011-06-15

    Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 {mu}m wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.

  2. [Determination of the healing effect of Piper aduncum (spiked pepper or matico) on human fibroblasts].

    Science.gov (United States)

    Paco, Karen; Ponce-Soto, Luis Alberto; Lopez-Ilasaca, Marco; Aguilar, José L

    2016-01-01

    To evaluate the healing effect of a Piper aduncum ethanol-water extract on an adult human dermal fibroblast cell line (hDFa). After obtaining the extract via solid-liquid extraction, concentration, and lyophilization, extract proteins were purified using reverse phase high-performance liquid chromatography, identified using tandem mass spectrometry of tryptic peptides, and analyzed using MALDI-TOF-TOF on an ABSciex4800 mass spectrometer. Half maximum effective concentration values (EC50), half maximum inhibiting concentration (IC50), and percentages of cell proliferation were determined using tetrazolium salt assays. Cell migration was evaluated using a "scratch assay". Growth factor expression in cells was analyzed via quantitative real-time reverse transcription polymerase chain reaction. Against the hDFa cell line, the extract had an IC50 of 200 μg/mL and EC50 of 103.5 µg/mL. In the proliferation assay, protein K2 (obtained from the extract) exhibited increased proliferative activity relative to other treatments (1 µg/mL); this agent also exhibited increased activity (50 µg/mL) in the fibroblast migration assay.Furthermore, the relative expression of platelet-derived growth factor increased by 8.6-fold in the presence of K2 protein relative to the control. The hydroethanolic extract of Piper aduncum and its component proteins increased the proliferation and migration of hDFa and increased the expression of growth factors involved in the healing process.

  3. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pae, Ahran; Kim, Hyeong-Seob; Woo, Yi-Hyung [Department of Prosthodontics, School of Dentistry, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Lee, Heesu [Department of Oral Anatomy, School of Dentistry, Kangnung National University, Gibyun-dong, Kangnung 210-702 (Korea, Republic of); Kwon, Yong-Dae, E-mail: ahranp@hotmail.co, E-mail: nightsu@kangnung.ac.k, E-mail: odontopia@khu.ac.k, E-mail: yongdae.kwon@gmail.co, E-mail: yhwoo@khu.ac.k [Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2009-04-15

    The attachment, growth behaviour and the genetic effect of human gingival fibroblasts (HGF) cultured on titanium and different zirconia surfaces were investigated. HGF cells were cultured on (1) titanium discs with a machined surface, (2) yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) with a smooth surface and (3) Y-TZP with 100{mu}m grooves. The cell proliferation activity was evaluated through a MTT assay at 24 h and 48 h, and the cell morphology was examined by SEM. The mRNA expression of integrin-beta1, type I and III collagen, laminin and fibronectin in HGF were evaluated by RT-PCR after 24 h. From the MTT assay, the mean optical density values for the titanium and grooved zirconia surfaces after 48 h of HGF adhesion were greater than the values obtained for the smooth zirconia surfaces. SEM images showed that more cells were attached to the grooves, and the cells appeared to follow the direction of the grooves. The results of RT-PCR suggest that all groups showed comparable fibroblast-specific gene expression. A zirconia ceramic surface with grooves showed biological responses that were comparable to those obtained with HGF on a titanium surface.

  4. Effects of extremely low frequency electromagnetic fields on human fetal scleral fibroblasts.

    Science.gov (United States)

    Zhu, Huang; Wang, Jie; Cui, Jiefeng; Fan, Xianqun

    2016-06-01

    This study investigated the effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human fetal scleral fibroblasts (HFSFs). HFSFs were subjected to 50 Hz artificial ELF-EMFs generated by Helmholtz coils with 0.1, 0.2, 0.5, and 1.0 mT field intensities for 6 to 48 h. The viability and factors involved in scleral structuring of HFSFs were determined. The growth rate of HFSFs significantly decreased after only 24 h of exposure to ELF-EMFs (0.2 mT). The messenger RNA (mRNA) expression of collagen type I (COL1A1) decreased and expression of matrix metalloproteinase-2 (MMP-2) increased significantly. There was a decrease in tissue inhibitor of MMP-2 mRNA levels between treated and control cells only at the 1.0 mT intensity level. Transforming growth factor beta-2 mRNA increased in exposed cells, and, simultaneously, fibroblast growth factor-2 mRNA levels decreased. The protein expressions of COL1A1 and MMP-2 were also significantly altered subsequent to exposure (p effects on HFSFs and could cause abnormality in scleral collagen.

  5. Regulation of hypoxia-inducible factor-1α in human buccal mucosal fibroblasts stimulated with arecoline

    Directory of Open Access Journals (Sweden)

    Yung-Chuan Ho

    2017-06-01

    Full Text Available Hypoxia-inducible factor (HIF-1α is consistently and dramatically upregulated in a variety of fibrotic diseases. The aim of this study was to compare HIF-1α expression from fibroblasts derived from human normal buccal mucosa and oral submucous fibrosis (OSF specimens and further to explore the potential mechanisms that may lead to induce HIF-1α expression. OSF buccal mucosal fibroblasts (BMFs demonstrated significantly higher HIF-1α mRNA expression than normal BMFs (p<0.005. Arecoline, the major areca nut alkaloid, was also found to elevate HIF-1α mRNA expression in a dose-dependent manner (p<0.05. Moreover, arecoline-induced HIF-1α expression was downregulated by mitogen-activated protein kinase inhibitor U0126, phosphatidylinositol 3-kinase inhibitor LY294002, p38 inhibitor SB203580, cyclooxygenase-2 inhibitor NS-398, and glutathione precursor N-acetyl-L-cysteine (p<0.05. Taken together, hypoxia plays an important role in the pathogenesis of areca quid chewing-associated OSF. These pharmacological agents may be further used as chemoprevention agents for OSF.

  6. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by curcumin.

    Science.gov (United States)

    Deng, Yi-Ting; Chen, Hsin-Ming; Cheng, Shih-Jung; Chiang, Chun-Pin; Kuo, Mark Yen-Ping

    2009-09-01

    Connective tissue growth factor (CTGF) is associated with the onset and progression of fibrosis in many human tissues. Areca nut (AN) chewing is the most important etiological factor in the pathogenesis of oral submucous fibrosis (OSF). We immunohistochemically examined the expression of CTGF protein in 20 cases of OSF and found positive CTGF staining in fibroblasts and endothelial cells in all cases. Western blot analysis showed that arecoline, a main alkaloid found in AN, stimulated CTGF synthesis in a dose- and time-dependent manner in buccal mucosal fibroblasts. Constitutive overexpression of CTGF during AN chewing may enhance the fibrotic activity in OSF and play a role in the pathogenesis of OSF. Pretreatment with NF-kappaB inhibitor Bay 11-7082, JNK inhibitor SP600125, p38 MAPK inhibitor SB203580 and antioxidant N-acetyl-l-cysteine, but not ERK inhibitor PD98059, significantly reduced arecoline-induced CTGF synthesis. Furthermore, curcumin completely inhibited arecoline-induced CTGF synthesis and the inhibition is dose-dependent. These results indicated that arecoline-induced CTGF synthesis was mediated by ROS, NF-kappaB, JNK, P38 MAPK pathways and curcumin could be a useful agent in controlling OSF.

  7. Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide.

    Science.gov (United States)

    Wamer, Wayne G; Yin, Jun-Jie

    2011-01-01

    Titanium dioxide (TiO2) is a pigment widely used in decorative tattoo and permanent makeup inks. However, little is known about the risks associated with its presence in these products. We have developed an in vitro assay to identify inks containing TiO2 that are cytotoxic and/or photocytotoxic. The presence of TiO2 in ten permanent makeup inks was established by X-ray fluorescence. Using X-ray diffraction, we found that seven inks contained predominately TiO2 (anatase), the more photocatalytically active crystalline form of TiO2. The remaining inks contained predominately TiO2 (rutile). To identify cytotoxic and/or photocytotoxic inks, human dermal fibroblasts were incubated for 18 h in media containing inks or pigments isolated from inks. Fibroblasts were then irradiated with 10 J/cm2 UVA radiation combined with 45 J/cm2 visible light for determining photocytotoxicity, or kept in the dark for determining cytotoxicity. Toxicity was assessed as inhibition of colony formation. No inks were cytotoxic. However eight inks, and the pigments isolated from these inks, were photocytotoxic. Using ESR, we found that most pigments from photocytotoxic inks generated hydroxyl radicals when photoexcited with UV radiation. Therefore, the possibility of photocytotoxicity should be considered when evaluating the safety of permanent makeup inks containing TiO2.

  8. Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A

    Science.gov (United States)

    Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectible WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes. PMID:17870066

  9. Effect of Cyclosporin A and Angiotensin II on cytosolic calcium levels in primary human gingival fibroblasts

    Directory of Open Access Journals (Sweden)

    Ajitkumar Supraja

    2016-01-01

    Full Text Available Background: To evaluate the effect of Cyclosporin A (CsA and angiotensin II (Ang II on cytosolic calcium levels in cultured human gingival fibroblasts (HGFs. Materials and Methods: Healthy gingival samples from six volunteers were obtained, and primary HGFs were cultured. Cell viability and proliferation assay were performed to identify the ideal concentrations of CsA and Ang II. Cytosolic calcium levels in cultured gingival fibroblasts treated with CsA and Ang II were studied using colorimetric assay, confocal and fluorescence imaging. Statistical analyses were done using SPSS software and Grap