WorldWideScience

Sample records for human cognitive system

  1. Cognitive Technologies: The Design of Joint Human-Machine Cognitive Systems

    OpenAIRE

    Woods, David D.

    1985-01-01

    This article explores the implications of one type of cognitive technology, techniques and concepts to develop joint human-machine cognitive systems, for the application of computational technology by examining the joint cognitive system implicit in a hypothetical computer consultant that outputs some form of problem solution. This analysis reveals some of the problems can occur in cognitive system design-e.g., machine control of the interaction, the danger of a responsibility-authority doubl...

  2. Active glass-type human augmented cognition system considering attention and intention

    Science.gov (United States)

    Kim, Bumhwi; Ojha, Amitash; Lee, Minho

    2015-10-01

    Human cognition is the result of an interaction of several complex cognitive processes with limited capabilities. Therefore, the primary objective of human cognitive augmentation is to assist and expand these limited human cognitive capabilities independently or together. In this study, we propose a glass-type human augmented cognition system, which attempts to actively assist human memory functions by providing relevant, necessary and intended information by constantly assessing intention of the user. To achieve this, we exploit selective attention and intention processes. Although the system can be used in various real-life scenarios, we test the performance of the system in a person identity scenario. To detect the intended face, the system analyses the gaze points and change in pupil size to determine the intention of the user. An assessment of the gaze points and change in pupil size together indicates that the user intends to know the identity and information about the person in question. Then, the system retrieves several clues through speech recognition system and retrieves relevant information about the face, which is finally displayed through head-mounted display. We present the performance of several components of the system. Our results show that the active and relevant assistance based on users' intention significantly helps the enhancement of memory functions.

  3. Cognitive engineering in the design of human-computer interaction and expert systems

    International Nuclear Information System (INIS)

    Salvendy, G.

    1987-01-01

    The 68 papers contributing to this book cover the following areas: Theories of Interface Design; Methodologies of Interface Design; Applications of Interface Design; Software Design; Human Factors in Speech Technology and Telecommunications; Design of Graphic Dialogues; Knowledge Acquisition for Knowledge-Based Systems; Design, Evaluation and Use of Expert Systems. This demonstrates the dual role of cognitive engineering. On the one hand cognitive engineering is utilized to design computing systems which are compatible with human cognition and can be effectively and be easily utilized by all individuals. On the other hand, cognitive engineering is utilized to transfer human cognition into the computer for the purpose of building expert systems. Two papers are of interest to INIS

  4. Systemic Cognition: Human Artifice in Life and Language

    DEFF Research Database (Denmark)

    Cowley, Stephen; Vallée-Tourangeau, Frédéric

    2013-01-01

    Rather than rely on functionalist or enactivist principles, Cognition Beyond the Brain traces thinking to human artifice. In pursuing this approach, we gradually developed what can be deemed a third position in cognitive science. This is because, like talking, doing things with artefacts draws...... on both biological and cultural principles. On this systemic view, skills embody beliefs, roles and social practices. Since people rely on interactivity or sense-saturated coordination, action also re-enacts cultural history. Bidirectional dynamics connect embodiment to non-local regularities. Thinking...... simulation to manage thought, feeling and action. The systemic nature of cognition connects now, the adjacent possible, implications for others and, potentially, social and environmental change....

  5. Human cognition

    International Nuclear Information System (INIS)

    Norman, D.A.

    1982-01-01

    The study of human cognition encompasses the study of all mental phenomena, from the receipt and interpretation of sensory information to the final control of the motor system in the performance of action. The cognitive scientist examines all intermediary processes, including thought, decision making, and memory and including the effects of motivation, states of arousal and stress, the study of language, and the effects of social factors. The field therefore ranges over an enormous territory, covering all that is known or that should be known about human behavior. It is not possible to summarize the current state of knowledge about cognition with any great confidence that we know the correct answer about any aspect of the work. Nontheless, models provide good characterizations of certain aspects of the data and situations. Even if these models should prove to be incorrect, they do provide good approximate descriptions of people's behavior in some situations, and these approximations will still apply even when the underlying theories have changed. A quick description is provided of models within a number of areas of human cognition and skill and some general theoretical frameworks with which to view human cognition. The frameworks are qualitative descriptions that provide a way to view the development of more detailed, quantitative models and, most important, a way of thinking about human performance and skill

  6. Companion Cognitive Systems: A Step toward Human-Level AI

    OpenAIRE

    Forbus, Kenneth D.; Hinrichs, Thomas R.

    2006-01-01

    We are developing Companion Cognitive Systems, a new kind of software that can be effectively treated as a collaborator. Aside from their potential utility, we believe this effort is important because it focuses on three key problems that must be solved to achieve human-level AI: Robust reasoning and learning, interactivity, and longevity. We describe the ideas we are using to develop the first architecture for Companions: analogical processing, grounded in cognitive science for reasoning and...

  7. Cognitive Human-Machine Interface Applied in Remote Support for Industrial Robot Systems

    Directory of Open Access Journals (Sweden)

    Tomasz Kosicki

    2013-10-01

    Full Text Available An attempt is currently being made to widely introduce industrial robots to Small-Medium Enterprises (SMEs. Since the enterprises usually employ too small number of robot units to afford specialized departments for robot maintenance, they must be provided with inexpensive and immediate support remotely. This paper evaluates whether the support can be provided by means of Cognitive Info-communication – communication in which human cognitive capabilities are extended irrespectively of geographical distances. The evaluations are given with an aid of experimental system that consists of local and remote rooms, which are physically separated – a six-degree-of-freedom NACHI SH133-03 industrial robot is situated in the local room, while the operator, who supervises the robot by means of audio-visual Cognitive Human-Machine Interface, is situated in the remote room. The results of simple experiments show that Cognitive Info-communication is not only efficient mean to provide the support remotely, but is probably also a powerful tool to enhance interaction with any data-rich environment that require good conceptual understanding of system's state and careful attention management. Furthermore, the paper discusses data presentation and reduction methods for data-rich environments, as well as introduces the concepts of Naturally Acquired Data and Cognitive Human-Machine Interfaces.

  8. Human cognitive task distribution model for maintenance support system of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ho

    2007-02-15

    In human factors research, more attention has been devoted to the operation of nuclear power plants (NPPs) than to their maintenance. However, human error related to maintenance is 45% among the total human errors from 1990 to 2005 in Korean nuclear power plants. Therefore, it is necessary to study human factors in the maintenance of an NPP. There is a current trend toward introducing digital technology into both safety and non-safety systems in NPPs. A variety of information about plant conditions can be used digitally. In the future, maintenance support systems will be developed based on an information-oriented NPP. In this context, it is necessary to study the cognitive tasks of the personnel involved in maintenance and the interaction between the personnel and maintenance support systems. The fundamental purpose of this work is how to distribute the cognitive tasks of the personnel involved in the maintenance in order to develop a maintenance support system that considers human factors. The second purpose is to find the causes of errors due to engineers or maintainers and propose system functions that are countermeasures to reduce these errors. In this paper, a cognitive task distribution model of the personnel involved in maintenance is proposed using Rasmussen's decision making model. First, the personnel were divided into three groups: the operators (inspectors), engineers, and maintainers. Second, human cognitive tasks related to maintenance were distributed based on these groups. The operators' cognitive tasks are detection and observation; the engineers' cognitive tasks are identification, evaluation, target state, select target, and procedure: and the maintainers' cognitive task is execution. The case study is an analysis of failure reports related to human error in maintenance over a period of 15years. By using error classification based on the information processing approach, the human errors involved in maintenance were classified

  9. Human cognitive task distribution model for maintenance support system of a nuclear power plant

    International Nuclear Information System (INIS)

    Park, Young Ho

    2007-02-01

    In human factors research, more attention has been devoted to the operation of nuclear power plants (NPPs) than to their maintenance. However, human error related to maintenance is 45% among the total human errors from 1990 to 2005 in Korean nuclear power plants. Therefore, it is necessary to study human factors in the maintenance of an NPP. There is a current trend toward introducing digital technology into both safety and non-safety systems in NPPs. A variety of information about plant conditions can be used digitally. In the future, maintenance support systems will be developed based on an information-oriented NPP. In this context, it is necessary to study the cognitive tasks of the personnel involved in maintenance and the interaction between the personnel and maintenance support systems. The fundamental purpose of this work is how to distribute the cognitive tasks of the personnel involved in the maintenance in order to develop a maintenance support system that considers human factors. The second purpose is to find the causes of errors due to engineers or maintainers and propose system functions that are countermeasures to reduce these errors. In this paper, a cognitive task distribution model of the personnel involved in maintenance is proposed using Rasmussen's decision making model. First, the personnel were divided into three groups: the operators (inspectors), engineers, and maintainers. Second, human cognitive tasks related to maintenance were distributed based on these groups. The operators' cognitive tasks are detection and observation; the engineers' cognitive tasks are identification, evaluation, target state, select target, and procedure: and the maintainers' cognitive task is execution. The case study is an analysis of failure reports related to human error in maintenance over a period of 15years. By using error classification based on the information processing approach, the human errors involved in maintenance were classified

  10. Potential of Cognitive Computing and Cognitive Systems

    Science.gov (United States)

    Noor, Ahmed K.

    2015-01-01

    Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp

  11. Cognitive neuroscience robotics A synthetic approaches to human understanding

    CERN Document Server

    Ishiguro, Hiroshi; Asada, Minoru; Osaka, Mariko; Fujikado, Takashi

    2016-01-01

    Cognitive Neuroscience Robotics is the first introductory book on this new interdisciplinary area. This book consists of two volumes, the first of which, Synthetic Approaches to Human Understanding, advances human understanding from a robotics or engineering point of view. The second, Analytic Approaches to Human Understanding, addresses related subjects in cognitive science and neuroscience. These two volumes are intended to complement each other in order to more comprehensively investigate human cognitive functions, to develop human-friendly information and robot technology (IRT) systems, and to understand what kind of beings we humans are. Volume A describes how human cognitive functions can be replicated in artificial systems such as robots, and investigates how artificial systems could acquire intelligent behaviors through interaction with others and their environment.

  12. Mesocortical dopaminergic function and human cognition

    International Nuclear Information System (INIS)

    Weinberger, D.R.; Berman, K.F.; Chase, T.N.

    1988-01-01

    In summary, we have reviewed rCBF data in humans that suggest that mesoprefrontal dopaminergic activity is involved in human cognition. In patients with Parkinson's disease and possibly in patients with schizophrenia, prefrontal physiological activation during a cognitive task that appears to depend on prefrontal neural systems correlates positively with cognitive performance on the task and with clinical signs of dopaminergic function. It may be possible in the future to examine prefrontal dopamine metabolism directly during prefrontal cognition using positron emission tomography and tracers such as F-18 DOPA. 21 references

  13. Validating cognitive support for operators of complex human-machine systems

    International Nuclear Information System (INIS)

    O'Hara, J.; Wachtel, J.

    1995-01-01

    Modem nuclear power plants (NPPs) are complex systems whose performance is the result of an intricate interaction of human and system control. A complex system may be defined as one which supports a dynamic process involving a large number of elements that interact in many different ways. Safety is addressed through defense-in-depth design and preplanning; i.e., designers consider the types of failures that are most likely to occur and those of high consequence, and design their solutions in advance. However, complex interactions and their failure modes cannot always be anticipated by the designer and may be unfamiliar to plant personnel. These situations may pose cognitive demands on plant personnel, both individually and as a crew. Other factors may contribute to the cognitive challenges of NPP operation as well, including hierarchal processes, dynamic pace, system redundancy and reliability, and conflicting objectives. These factors are discussed in this paper

  14. Cognitive neuroscience robotics B analytic approaches to human understanding

    CERN Document Server

    Ishiguro, Hiroshi; Asada, Minoru; Osaka, Mariko; Fujikado, Takashi

    2016-01-01

    Cognitive Neuroscience Robotics is the first introductory book on this new interdisciplinary area. This book consists of two volumes, the first of which, Synthetic Approaches to Human Understanding, advances human understanding from a robotics or engineering point of view. The second, Analytic Approaches to Human Understanding, addresses related subjects in cognitive science and neuroscience. These two volumes are intended to complement each other in order to more comprehensively investigate human cognitive functions, to develop human-friendly information and robot technology (IRT) systems, and to understand what kind of beings we humans are. Volume B describes to what extent cognitive science and neuroscience have revealed the underlying mechanism of human cognition, and investigates how development of neural engineering and advances in other disciplines could lead to deep understanding of human cognition.

  15. Comparative developmental psychology: how is human cognitive development unique?

    Science.gov (United States)

    Rosati, Alexandra G; Wobber, Victoria; Hughes, Kelly; Santos, Laurie R

    2014-04-29

    The fields of developmental and comparative psychology both seek to illuminate the roots of adult cognitive systems. Developmental studies target the emergence of adult cognitive systems over ontogenetic time, whereas comparative studies investigate the origins of human cognition in our evolutionary history. Despite the long tradition of research in both of these areas, little work has examined the intersection of the two: the study of cognitive development in a comparative perspective. In the current article, we review recent work using this comparative developmental approach to study non-human primate cognition. We argue that comparative data on the pace and pattern of cognitive development across species can address major theoretical questions in both psychology and biology. In particular, such integrative research will allow stronger biological inferences about the function of developmental change, and will be critical in addressing how humans come to acquire species-unique cognitive abilities.

  16. Embodied artificial agents for understanding human social cognition.

    Science.gov (United States)

    Wykowska, Agnieszka; Chaminade, Thierry; Cheng, Gordon

    2016-05-05

    In this paper, we propose that experimental protocols involving artificial agents, in particular the embodied humanoid robots, provide insightful information regarding social cognitive mechanisms in the human brain. Using artificial agents allows for manipulation and control of various parameters of behaviour, appearance and expressiveness in one of the interaction partners (the artificial agent), and for examining effect of these parameters on the other interaction partner (the human). At the same time, using artificial agents means introducing the presence of artificial, yet human-like, systems into the human social sphere. This allows for testing in a controlled, but ecologically valid, manner human fundamental mechanisms of social cognition both at the behavioural and at the neural level. This paper will review existing literature that reports studies in which artificial embodied agents have been used to study social cognition and will address the question of whether various mechanisms of social cognition (ranging from lower- to higher-order cognitive processes) are evoked by artificial agents to the same extent as by natural agents, humans in particular. Increasing the understanding of how behavioural and neural mechanisms of social cognition respond to artificial anthropomorphic agents provides empirical answers to the conundrum 'What is a social agent?' © 2016 The Authors.

  17. Modularity, comparative cognition and human uniqueness.

    Science.gov (United States)

    Shettleworth, Sara J

    2012-10-05

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research.

  18. Human reasoning and cognitive science

    NARCIS (Netherlands)

    Stenning, K.; van Lambalgen, M.

    2008-01-01

    In Human Reasoning and Cognitive Science, Keith Stenning and Michiel van Lambalgen—a cognitive scientist and a logician—argue for the indispensability of modern mathematical logic to the study of human reasoning. Logic and cognition were once closely connected, they write, but were "divorced" in the

  19. Human performance modeling for system of systems analytics.

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kevin R.; Lawton, Craig R.; Basilico, Justin Derrick; Longsine, Dennis E. (INTERA, Inc., Austin, TX); Forsythe, James Chris; Gauthier, John Henry; Le, Hai D.

    2008-10-01

    A Laboratory-Directed Research and Development project was initiated in 2005 to investigate Human Performance Modeling in a System of Systems analytic environment. SAND2006-6569 and SAND2006-7911 document interim results from this effort; this report documents the final results. The problem is difficult because of the number of humans involved in a System of Systems environment and the generally poorly defined nature of the tasks that each human must perform. A two-pronged strategy was followed: one prong was to develop human models using a probability-based method similar to that first developed for relatively well-understood probability based performance modeling; another prong was to investigate more state-of-art human cognition models. The probability-based modeling resulted in a comprehensive addition of human-modeling capability to the existing SoSAT computer program. The cognitive modeling resulted in an increased understanding of what is necessary to incorporate cognition-based models to a System of Systems analytic environment.

  20. Human likeness: cognitive and affective factors affecting adoption of robot-assisted learning systems

    Science.gov (United States)

    Yoo, Hosun; Kwon, Ohbyung; Lee, Namyeon

    2016-07-01

    With advances in robot technology, interest in robotic e-learning systems has increased. In some laboratories, experiments are being conducted with humanoid robots as artificial tutors because of their likeness to humans, the rich possibilities of using this type of media, and the multimodal interaction capabilities of these robots. The robot-assisted learning system, a special type of e-learning system, aims to increase the learner's concentration, pleasure, and learning performance dramatically. However, very few empirical studies have examined the effect on learning performance of incorporating humanoid robot technology into e-learning systems or people's willingness to accept or adopt robot-assisted learning systems. In particular, human likeness, the essential characteristic of humanoid robots as compared with conventional e-learning systems, has not been discussed in a theoretical context. Hence, the purpose of this study is to propose a theoretical model to explain the process of adoption of robot-assisted learning systems. In the proposed model, human likeness is conceptualized as a combination of media richness, multimodal interaction capabilities, and para-social relationships; these factors are considered as possible determinants of the degree to which human cognition and affection are related to the adoption of robot-assisted learning systems.

  1. Enabling Robotic Social Intelligence by Engineering Human Social-Cognitive Mechanisms

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Warta, Samantha F.; Barber, Daniel

    2017-01-01

    for artificial cognitive systems. We discuss a recent integrative perspective of social cognition to provide a systematic theoretical underpinning for computational instantiations of these mechanisms. We highlight several commitments of our approach that we refer to as Engineering Human Social Cognition. We...... then provide a series of recommendations to facilitate the development of the perceptual, motor, and cognitive architecture for this proposed artificial cognitive system in future work. For each recommendation, we highlight their relation to the discussed social-cognitive mechanisms, provide the rationale...

  2. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    Science.gov (United States)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  3. Using Expert Systems To Build Cognitive Simulations.

    Science.gov (United States)

    Jonassen, David H.; Wang, Sherwood

    2003-01-01

    Cognitive simulations are runnable computer programs for modeling human cognitive activities. A case study is reported where expert systems were used as a formalism for modeling metacognitive processes in a seminar. Building cognitive simulations engages intensive introspection, ownership and meaning making in learners who build them. (Author/AEF)

  4. Oxytocin, testosterone, and human social cognition.

    Science.gov (United States)

    Crespi, Bernard J

    2016-05-01

    I describe an integrative social-evolutionary model for the adaptive significance of the human oxytocinergic system. The model is based on a role for this hormone in the generation and maintenance of social familiarity and affiliation across five homologous, functionally similar, and sequentially co-opted contexts: mothers with offspring, female and male mates, kin groups, individuals with reciprocity partners, and individuals within cooperating and competing social groups defined by culture. In each situation, oxytocin motivates, mediates and rewards the cognitive and behavioural processes that underlie the formation and dynamics of a more or less stable social group, and promotes a relationship between two or more individuals. Such relationships may be positive (eliciting neurological reward, reducing anxiety and thus indicating fitness-enhancing effects), or negative (increasing anxiety and distress, and thus motivating attempts to alleviate a problematic, fitness-reducing social situation). I also present evidence that testosterone exhibits opposite effects from oxytocin on diverse aspects of cognition and behaviour, most generally by favouring self-oriented, asocial and antisocial behaviours. I apply this model for effects of oxytocin and testosterone to understanding human psychological disorders centrally involving social behaviour. Reduced oxytocin and higher testosterone levels have been associated with under-developed social cognition, especially in autism. By contrast, some combination of oxytocin increased above normal levels, and lower testosterone, has been reported in a notable number of studies of schizophrenia, bipolar disorder and depression, and, in some cases, higher oxytocin involves maladaptively 'hyper-developed' social cognition in these conditions. This pattern of findings suggests that human social cognition and behaviour are structured, in part, by joint and opposing effects of oxytocin and testosterone, and that extremes of such joint

  5. An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks

    NARCIS (Netherlands)

    G.W.C. Paas (Fred); J. Sweller (John)

    2012-01-01

    textabstractCognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are

  6. Proactive learning for artificial cognitive systems

    Science.gov (United States)

    Lee, Soo-Young

    2010-04-01

    The Artificial Cognitive Systems (ACS) will be developed for human-like functions such as vision, auditory, inference, and behavior. Especially, computational models and artificial HW/SW systems will be devised for Proactive Learning (PL) and Self-Identity (SI). The PL model provides bilateral interactions between robot and unknown environment (people, other robots, cyberspace). For the situation awareness in unknown environment it is required to receive audiovisual signals and to accumulate knowledge. If the knowledge is not enough, the PL should improve by itself though internet and others. For human-oriented decision making it is also required for the robot to have self-identify and emotion. Finally, the developed models and system will be mounted on a robot for the human-robot co-existing society. The developed ACS will be tested against the new Turing Test for the situation awareness. The Test problems will consist of several video clips, and the performance of the ACSs will be compared against those of human with several levels of cognitive ability.

  7. Investigating surety methodologies for cognitive systems.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); Peercy, David Eugene; Mills, Kristy (University of New Mexico, Albuquerque, NM); Caldera, Eva (University of New Mexico, Albuquerque, NM)

    2006-11-01

    Advances in cognitive science provide a foundation for new tools that promise to advance human capabilities with significant positive impacts. As with any new technology breakthrough, associated technical and non-technical risks are involved. Sandia has mitigated both technical and non-technical risks by applying advanced surety methodologies in such areas as nuclear weapons, nuclear reactor safety, nuclear materials transport, and energy systems. In order to apply surety to the development of cognitive systems, we must understand the concepts and principles that characterize the certainty of a system's operation as well as the risk areas of cognitive sciences. This SAND report documents a preliminary spectrum of risks involved with cognitive sciences, and identifies some surety methodologies that can be applied to potentially mitigate such risks. Some potential areas for further study are recommended. In particular, a recommendation is made to develop a cognitive systems epistemology framework for more detailed study of these risk areas and applications of surety methods and techniques.

  8. An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks

    Science.gov (United States)

    Paas, Fred; Sweller, John

    2012-01-01

    Cognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ameliorated by changes in long-term memory associated with…

  9. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis.

    Science.gov (United States)

    Miller, Matthew James; McGuire, Kerry M; Feigh, Karen M

    2017-06-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity . The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design.

  10. A Cognitive System Model for Human/Automation Dynamics in Airspace Management

    Science.gov (United States)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. In order to support that cognitive function definition, we have extended the Man Machine Integrated Design and Analysis System (MIDAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems) operating aircraft, airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The MIDAS operator models have undergone significant development in order to understand the requirements for operator aiding and the impact of that aiding in the complex nondeterminate system of national airspace operations. The operator model's structure has been modified to include attention functions, action priority, and situation assessment. The cognitive function model has been expanded to include working memory operations including retrieval from long-term store, interference, visual-motor and verbal articulatory loop functions, and time-based losses. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. The model's internal

  11. Cognitive Systems

    DEFF Research Database (Denmark)

    The tutorial will discuss the definition of cognitive systems as the possibilities to extend the current systems engineering paradigm in order to perceive, learn, reason and interact robustly in open-ended changing environments. I will also address cognitive systems in a historical perspective...... to be modeled within a limited set of predefined specifications. There will inevitably be a need for robust decisions and behaviors in novel situations that include handling of conflicts and ambiguities based on the capability and knowledge of the artificial cognitive system. Further, there is a need...... in cognitive systems include e.g. personalized information systems, sensor network systems, social dynamics system and Web2.0, and cognitive components analysis. I will use example from our own research and link to other research activities....

  12. Cognitive Systems Engineering: The Next 30 Years

    Science.gov (United States)

    Feary, Michael

    2012-01-01

    This presentation is part of panel discussion on Cognitive Systems Engineering. The purpose of this panel is to discuss the challenges and future directions of Cognitive Systems Engineering for the next 30 years. I intended to present the work we have been doing with the Aviation Safety program and Space Human Factors Engineering project on Work Domain Analysis and some areas of Research Focus. Specifically, I intend to focus on the shift on the need to understand and model attention in mixed-initiative systems, the need for methods which can generate results to be used in trade-off decisions, and the need to account for a range of human behavior in the design.

  13. Psychological biases affecting human cognitive performance in dynamic operational environments

    International Nuclear Information System (INIS)

    Takano, Kenichi; Reason, J.

    1999-01-01

    In order to identify cognitive error mechanisms observed in the dynamic operational environment, the following materials were analyzed giving special attention to psychological biases, together with possible cognitive tasks and these location, and internal and external performance shaping factors: (a) 13 human factors analyses of US nuclear power plant accidents, (b) 14 cases of Japanese nuclear power plant incidents, and (c) 23 cases collected in simulator experiments. In the resulting analysis, the most frequently identified cognitive process associated with error productions was situation assessment, and following varieties were KB processes and response planning, all of that were the higher cognitive activities. Over 70% of human error cases, psychological bias was affecting to cognitive errors, especially those to higher cognitive activities. In addition, several error occurrence patterns, including relations between cognitive process, biases, and PSFs were identified by the multivariate analysis. According to the identified error patterns, functions that an operator support system have to equip were discussed and specified for design base considerations. (author)

  14. A surety engineering framework to reduce cognitive systems risks.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); Peercy, David Eugene; Caldera, Eva O. (University of New Mexico, Albuquerque, NM); Shaneyfelt, Wendy L.

    2008-12-01

    Cognitive science research investigates the advancement of human cognition and neuroscience capabilities. Addressing risks associated with these advancements can counter potential program failures, legal and ethical issues, constraints to scientific research, and product vulnerabilities. Survey results, focus group discussions, cognitive science experts, and surety researchers concur technical risks exist that could impact cognitive science research in areas such as medicine, privacy, human enhancement, law and policy, military applications, and national security (SAND2006-6895). This SAND report documents a surety engineering framework and a process for identifying cognitive system technical, ethical, legal and societal risks and applying appropriate surety methods to reduce such risks. The framework consists of several models: Specification, Design, Evaluation, Risk, and Maturity. Two detailed case studies are included to illustrate the use of the process and framework. Several Appendices provide detailed information on existing cognitive system architectures; ethical, legal, and societal risk research; surety methods and technologies; and educing information research with a case study vignette. The process and framework provide a model for how cognitive systems research and full-scale product development can apply surety engineering to reduce perceived and actual risks.

  15. Cognitive environment simulation: An artificial intelligence system for human performance assessment: Cognitive reliability analysis technique: [Technical report, May 1986-June 1987

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.

    1987-11-01

    This report documents the results of Phase II of a three phase research program to develop and validate improved methods to model the cognitive behavior of nuclear power plant (NPP) personnel. In Phase II a dynamic simulation capability for modeling how people form intentions to act in NPP emergency situations was developed based on techniques from artificial intelligence. This modeling tool, Cognitive Environment Simulation or CES, simulates the cognitive processes that determine situation assessment and intention formation. It can be used to investigate analytically what situations and factors lead to intention failures, what actions follow from intention failures (e.g., errors of omission, errors of commission, common mode errors), the ability to recover from errors or additional machine failures, and the effects of changes in the NPP person-machine system. The Cognitive Reliability Assessment Technique (or CREATE) was also developed in Phase II to specify how CES can be used to enhance the measurement of the human contribution to risk in probabilistic risk assessment (PRA) studies. 34 refs., 7 figs., 1 tab

  16. New thinking: the evolution of human cognition.

    Science.gov (United States)

    Heyes, Cecilia

    2012-08-05

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolutionary processes. New research in this field looks deeper into the evolutionary history of human cognition, and adopts a more multi-disciplinary approach than earlier 'Evolutionary Psychology'. It is informed by comparisons between humans and a range of primate and non-primate species, and integrates findings from anthropology, archaeology, economics, evolutionary biology, neuroscience, philosophy and psychology. Using these methods, recent research reveals profound commonalities, as well striking differences, between human and non-human minds, and suggests that the evolution of human cognition has been much more gradual and incremental than previously assumed. It accords crucial roles to cultural evolution, techno-social co-evolution and gene-culture co-evolution. These have produced domain-general developmental processes with extraordinary power-power that makes human cognition, and human lives, unique.

  17. Development of an integrated decision support system to aid cognitive activities of operators

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Seong, Poong Hyun

    2007-01-01

    As digital and computer technologies have grown, Human-Machine Interfaces (HMIs) have evolved. In safety-critical systems, especially in Nuclear Power Plants (NPPs), HMIs are important for reducing operational costs, the number of necessary operators, and the probability of accident occurrence. Efforts have been made to improve Main Control Room (MCR) interface design and to develop automated or decision support systems to ensure convenient operation and maintenance. In this paper, an integrated decision support system to aid operator cognitive processes is proposed for advanced MCRs of future NPPs. This work suggests the design concept of a decision support system which accounts for an operator's cognitive processes. The proposed system supports not only a particular task, but also the entire operation process based on a human cognitive process model. In this paper, the operator's operation processes are analyzed according to a human cognitive process model and appropriate support systems that support each cognitive process activity are suggested

  18. Cognitive performance modeling based on general systems performance theory.

    Science.gov (United States)

    Kondraske, George V

    2010-01-01

    General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).

  19. Challenges to Cognitive Systems Engineering:Understanding Qualitative Aspects of Control Actions

    DEFF Research Database (Denmark)

    Lind, Morten

    2009-01-01

    The paper discusses the future role of Cognitive Systems Engineering (CSE) in contributing to integrated design of process, automation and human machine systems. Existing concepts and methods of Cognitive Systems Engineering do not integrate well with control theory and industrial automation tools...

  20. On the Interplay between Order Parameter Dynamics and System Parameter Dynamics in Human Perceptual-Cognitive-Behavioral Systems.

    Science.gov (United States)

    Frank, T D

    2015-04-01

    Previous research has demonstrated that perceiving, thinking, and acting are human activities that correspond to self-organized patterns. The emergence of such patterns can be completely described in terms of the dynamics of the pattern amplitudes, which are referred to as order parameters. The patterns emerge at bifurcations points when certain system parameters internal and external to a human agent exceed critical values. At issue is how one might study the order parameter dynamics for sequences of consecutive, emergent perceptual, cognitive, or behavioral activities. In particular, these activities may in turn impact the system parameters that have led to the emergence of the activities in the first place. This interplay between order parameter dynamics and system parameter dynamics is discussed in general and formulated in mathematical terms. Previous work that has made use of this two-tiered framework of order parameter and system parameter dynamics are briefly addressed. As an application, a model for perception under functional fixedness is presented. Finally, it is argued that the phenomena that emerge in this framework and can be observed when human agents perceive, think, and act are just as likely to occur in pattern formation systems of the inanimate world. Consequently, these phenomena do not necessarily have a neurophysiological basis but should instead be understood from the perspective of the theory of self-organization.

  1. Supporting Multiple Cognitive Processing Styles Using Tailored Support Systems

    International Nuclear Information System (INIS)

    Tuan Q. Tran; Karen M. Feigh; Amy R. Pritchett

    2007-01-01

    According to theories of cognitive processing style or cognitive control mode, human performance is more effective when an individual's cognitive state (e.g., intuition/scramble vs. deliberate/strategic) matches his/her ecological constraints or context (e.g., utilize intuition to strive for a 'good-enough' response instead of deliberating for the 'best' response under high time pressure). Ill-mapping between cognitive state and ecological constraints are believed to lead to degraded task performance. Consequently, incorporating support systems which are designed to specifically address multiple cognitive and functional states e.g., high workload, stress, boredom, and initiate appropriate mitigation strategies (e.g., reduce information load) is essential to reduce plant risk. Utilizing the concept of Cognitive Control Models, this paper will discuss the importance of tailoring support systems to match an operator's cognitive state, and will further discuss the importance of these ecological constraints in selecting and implementing mitigation strategies for safe and effective system performance. An example from the nuclear power plant industry illustrating how a support system might be tailored to support different cognitive states is included

  2. Enhancing Human Cognition with Cocoa Flavonoids

    Directory of Open Access Journals (Sweden)

    Valentina Socci

    2017-05-01

    Full Text Available Enhancing cognitive abilities has become a fascinating scientific challenge, recently driven by the interest in preventing age-related cognitive decline and sustaining normal cognitive performance in response to cognitively demanding environments. In recent years, cocoa and cocoa-derived products, as a rich source of flavonoids, mainly the flavanols sub-class, have been clearly shown to exert cardiovascular benefits. More recently, neuromodulation and neuroprotective actions have been also suggested. Here, we discuss human studies specifically aimed at investigating the effects of acute and chronic administration of cocoa flavanols on different cognitive domains, such as executive functions, attention and memory. Through a variety of direct and indirect biological actions, in part still speculative, cocoa and cocoa-derived food have been suggested to possess the potential to counteract cognitive decline and sustain cognitive abilities, particularly among patients at risk. Although still at a preliminary stage, research investigating the relations between cocoa and cognition shows dose-dependent improvements in general cognition, attention, processing speed, and working memory. Moreover, cocoa flavanols administration could also enhance normal cognitive functioning and exert a protective role on cognitive performance and cardiovascular function specifically impaired by sleep loss, in healthy subjects. Together, these findings converge at pointing to cocoa as a new interesting nutraceutical tool to protect human cognition and counteract different types of cognitive decline, thus encouraging further investigations. Future research should include complex experimental designs combining neuroimaging techniques with physiological and behavioral measures to better elucidate cocoa neuromodulatory properties and directly compare immediate versus long-lasting cognitive effects.

  3. Cognitive environment simulation: An artificial intelligence system for human performance assessment: Modeling human intention formation: [Technical report, May 1986-June 1987

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.; Pople, H. Jr.

    1987-11-01

    This report documents the results of Phase II of a three phase research program to develop and validate improved methods to model the cognitive behavior of nuclear power plant (NPP) personnel. In Phase II a dynamic simulation capability for modeling how people form intentions to act in NPP emergency situations was developed based on techniques from artificial intelligence. This modeling tool, Cognitive Environment Simulation or CES, simulates the cognitive processes that determine situation assessment and intention formation. It can be used to investigate analytically what situations and factors lead to intention failures, what actions follow from intention failures (e.g., errors of omission, errors of commission, common mode errors), the ability to recover from errors or additional machine failures, and the effects of changes in the NPP person-machine system. The Cognitive Reliability Assessment Technique (or CREATE) was also developed in Phase II to specify how CES can be used to enhance the measurement of the human contribution to risk in probabilistic risk assessment (PRA) studies. 43 refs., 20 figs., 1 tab

  4. An advanced human reliability analysis methodology: analysis of cognitive errors focused on

    International Nuclear Information System (INIS)

    Kim, J. H.; Jeong, W. D.

    2001-01-01

    The conventional Human Reliability Analysis (HRA) methods such as THERP/ASEP, HCR and SLIM has been criticised for their deficiency in analysing cognitive errors which occurs during operator's decision making process. In order to supplement the limitation of the conventional methods, an advanced HRA method, what is called the 2 nd generation HRA method, including both qualitative analysis and quantitative assessment of cognitive errors has been being developed based on the state-of-the-art theory of cognitive systems engineering and error psychology. The method was developed on the basis of human decision-making model and the relation between the cognitive function and the performance influencing factors. The application of the proposed method to two emergency operation tasks is presented

  5. Fun cube based brain gym cognitive function assessment system.

    Science.gov (United States)

    Zhang, Tao; Lin, Chung-Chih; Yu, Tsang-Chu; Sun, Jing; Hsu, Wen-Chuin; Wong, Alice May-Kuen

    2017-05-01

    The aim of this study is to design and develop a fun cube (FC) based brain gym (BG) cognitive function assessment system using the wireless sensor network and multimedia technologies. The system comprised (1) interaction devices, FCs and a workstation used as interactive tools for collecting and transferring data to the server, (2) a BG information management system responsible for managing the cognitive games and storing test results, and (3) a feedback system used for conducting the analysis of cognitive functions to assist caregivers in screening high risk groups with mild cognitive impairment. Three kinds of experiments were performed to evaluate the developed FC-based BG cognitive function assessment system. The experimental results showed that the Pearson correlation coefficient between the system's evaluation outcomes and the traditional Montreal Cognitive Assessment scores was 0.83. The average Technology Acceptance Model 2 score was close to six for 31 elderly subjects. Most subjects considered that the brain games are interesting and the FC human-machine interface is easy to learn and operate. The control group and the cognitive impairment group had statistically significant difference with respect to the accuracy of and the time taken for the brain cognitive function assessment games, including Animal Naming, Color Search, Trail Making Test, Change Blindness, and Forward / Backward Digit Span. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Human mobility, cognition and GISc

    DEFF Research Database (Denmark)

    Welcome to Human Mobility, Cognition and GISc’ - a conference hosted by the University of Copenhagen on November 9, 2015. The present document encloses the abstracts contributed by five invited speakers and eight submitted as responses to a public call made on June 1st 2015. In GIS and related...... the psychological/cognitive and neurophysiological background of our spatial behavior - including our abilities to perceive, memorize, apply and communicate spatial knowledge. It is the aim of the conference to bring together professionals from cognitive, analytical and geo-technical sciences (including...

  7. Vision Systems with the Human in the Loop

    Science.gov (United States)

    Bauckhage, Christian; Hanheide, Marc; Wrede, Sebastian; Käster, Thomas; Pfeiffer, Michael; Sagerer, Gerhard

    2005-12-01

    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.

  8. Spatial cognition in apes and humans.

    Science.gov (United States)

    Gentner, Dedre

    2007-05-01

    The debate on whether language influences cognition is sometimes seen as a simple dichotomy: cognitive development is governed either by innate predispositions or by influences of language and culture. In two recent papers on spatial cognition, Haun and colleagues break new ground in bringing together a comparative cognition approach with a cross-linguistic framework to arrive at a third position: that humans begin with the same spatial reference frames as our near relatives, the great apes, and diverge later owing to the influence of language and culture.

  9. Dual PECCS: a cognitive system for conceptual representation and categorization

    Science.gov (United States)

    Lieto, Antonio; Radicioni, Daniele P.; Rho, Valentina

    2017-03-01

    In this article we present an advanced version of Dual-PECCS, a cognitively-inspired knowledge representation and reasoning system aimed at extending the capabilities of artificial systems in conceptual categorization tasks. It combines different sorts of common-sense categorization (prototypical and exemplars-based categorization) with standard monotonic categorization procedures. These different types of inferential procedures are reconciled according to the tenets coming from the dual process theory of reasoning. On the other hand, from a representational perspective, the system relies on the hypothesis of conceptual structures represented as heterogeneous proxytypes. Dual-PECCS has been experimentally assessed in a task of conceptual categorization where a target concept illustrated by a simple common-sense linguistic description had to be identified by resorting to a mix of categorization strategies, and its output has been compared to human responses. The obtained results suggest that our approach can be beneficial to improve the representational and reasoning conceptual capabilities of standard cognitive artificial systems, and - in addition - that it may be plausibly applied to different general computational models of cognition. The current version of the system, in fact, extends our previous work, in that Dual- PECCS is now integrated and tested into two cognitive architectures, ACT-R and CLARION, implementing different assumptions on the underlying invariant structures governing human cognition. Such integration allowed us to extend our previous evaluation.

  10. Human Adaptive Mechatronics and Human-System Modelling

    Directory of Open Access Journals (Sweden)

    Satoshi Suzuki

    2013-03-01

    Full Text Available Several topics in projects for mechatronics studies, which are 'Human Adaptive Mechatronics (HAM' and 'Human-System Modelling (HSM', are presented in this paper. The main research theme of the HAM project is a design strategy for a new intelligent mechatronics system, which enhances operators' skills during machine operation. Skill analyses and control system design have been addressed. In the HSM project, human modelling based on hierarchical classification of skills was studied, including the following five types of skills: social, planning, cognitive, motion and sensory-motor skills. This paper includes digests of these research topics and the outcomes concerning each type of skill. Relationships with other research activities, knowledge and information that will be helpful for readers who are trying to study assistive human-mechatronics systems are also mentioned.

  11. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-01-01

    Full Text Available In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  12. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  13. Vision Systems with the Human in the Loop

    Directory of Open Access Journals (Sweden)

    Bauckhage Christian

    2005-01-01

    Full Text Available The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.

  14. Extended sequence diagram for human system interaction

    International Nuclear Information System (INIS)

    Hwang, Jong Rok; Choi, Sun Woo; Ko, Hee Ran; Kim, Jong Hyun

    2012-01-01

    Unified Modeling Language (UML) is a modeling language in the field of object oriented software engineering. The sequence diagram is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a message sequence chart. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. This paper proposes the Extended Sequence Diagram (ESD), which is capable of depicting human system interaction for nuclear power plants, as well as cognitive process of operators analysis. In the conventional sequence diagram, there is a limit to only identify the activities of human and systems interactions. The ESD is extended to describe operators' cognitive process in more detail. The ESD is expected to be used as a task analysis method for describing human system interaction. The ESD can also present key steps causing abnormal operations or failures and diverse human errors based on cognitive condition

  15. Gender Differences in Human Cognition. Counterpoints: Cognition, Memory, and Language Series.

    Science.gov (United States)

    Caplan, Paula J.; Crawford, Mary; Hyde, Janet Shibley; Richardson, John T. E.

    Noting the fascination of both researchers and the general public with possible gender differences in human cognition and whether these differences originate in biology, childhood influences, or cultural stereotypes, this book summarizes research studies on gender differences in cognition. The book examines social and cultural implications of this…

  16. Translating cognition from animals to humans.

    Science.gov (United States)

    Keeler, J F; Robbins, T W

    2011-06-15

    Many clinical disorders, whether neurological (e.g. Alzheimer's disease) or neuropsychiatric (e.g. schizophrenia and depression), exhibit cognitive symptoms that require pharmacological treatment. Cognition is multi-faceted and includes processes of perception, attention, working memory, long-term memory, executive function, language and social cognition. This article reviews how it is feasible to model many aspects of human cognition with the use of appropriate animal models and associated techniques, including the use of computer controlled tests (e.g. touch-screens), for optimising translation of experimental research to the clinic. When investigating clinical disorders, test batteries should aim to profile cognitive function in order to determine which aspects are impaired and which are preserved. In this review we have paid particular attention to the validation of translational methods; this may be done through the application of common theoretical principles, by comparing the effects of psychological manipulations and, wherever feasible, with the demonstration of homologous neural circuitry or equivalent pharmacological actions in the animal and human paradigms. Of particular importance is the use of 'back-translation' to ensure that the animal model has validity, for example, in predicting the effects of therapeutic drugs already found in human studies. It is made clear that the choice of appropriate behavioral tests is an important element of animal models of neuropsychiatric or neurological disorder; however, of course it is also important to select appropriate manipulations, whether genetic, neurodevelopmental, neurotoxic, or pharmacological, for simulating the neural substrates relevant to the disorders that lead to predictable behavioral and cognitive impairments, for optimising the testing of candidate compounds. 2011 Elsevier Inc. All rights reserved.

  17. The cognitive environment simulation as a tool for modeling human performance and reliability

    International Nuclear Information System (INIS)

    Woods, D.D.; Pople, H. Jr.

    1989-01-01

    Various studies have shown that intention errors, or cognitive error, are a major contributor to the risk of disaster. Intention formation refers to the cognitive processes by which an agent decides on what actions are appropriate to carry out (information gathering, situation assessment, diagnosis, response selection). Understanding, measuring, predicting and correcting cognitive errors depends on the answers to the question - what are difficult problems? The answer to this question defines what are risky situations from the point of view of what incidents will the human-technical system manage safely and what incidents will the human-technical system manage poorly and evolve towards negative outcomes. The authors have made progress in the development of such measuring devices through an NRC sponsored research program on cognitive modeling of operator performance. The approach is based on the demand-resource match view of human error. In this approach the difficulty of a problem depends on both the nature of the problem itself and on the resources (e.g., knowledge, plans) available to solve the problem. One can test the difficulty posed by a domain incident, given some set of resources by running the incident through a cognitive simulation that carries out the cognitive activities of a limited resource problem solver in a dynamic, uncertain, risky and highly doctrinal (pre-planned routines and procedures) world. The cognitive simulation that they have developed to do this in NPP accidents is called the Cognitive Environment Simulation (CES). They will illustrate the power of this approach by comparing the behavior of operators in variants on a simulated accident to the behavior of CES in the same accidents

  18. An Investigation of Data Overload in Team-Based Distributed Cognition Systems

    Science.gov (United States)

    Hellar, David Benjamin

    2009-01-01

    The modern military command center is a hybrid system of computer automated surveillance and human oriented decision making. In these distributed cognition systems, data overload refers simultaneously to the glut of raw data processed by information technology systems and the dearth of actionable knowledge useful to human decision makers.…

  19. How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability.

    Science.gov (United States)

    Blair, Clancy

    2006-04-01

    This target article considers the relation of fluid cognitive functioning to general intelligence. A neurobiological model differentiating working memory/executive function cognitive processes of the prefrontal cortex from aspects of psychometrically defined general intelligence is presented. Work examining the rise in mean intelligence-test performance between normative cohorts, the neuropsychology and neuroscience of cognitive function in typically and atypically developing human populations, and stress, brain development, and corticolimbic connectivity in human and nonhuman animal models is reviewed and found to provide evidence of mechanisms through which early experience affects the development of an aspect of cognition closely related to, but distinct from, general intelligence. Particular emphasis is placed on the role of emotion in fluid cognition and on research indicating fluid cognitive deficits associated with early hippocampal pathology and with dysregulation of the hypothalamic-pituitary-adrenal axis stress-response system. Findings are seen to be consistent with the idea of an independent fluid cognitive construct and to assist with the interpretation of findings from the study of early compensatory education for children facing psychosocial adversity and from behavior genetic research on intelligence. It is concluded that ongoing development of neurobiologically grounded measures of fluid cognitive skills appropriate for young children will play a key role in understanding early mental development and the adaptive success to which it is related, particularly for young children facing social and economic disadvantage. Specifically, in the evaluation of the efficacy of compensatory education efforts such as Head Start and the readiness for school of children from diverse backgrounds, it is important to distinguish fluid cognition from psychometrically defined general intelligence.

  20. Exploring Human Cognition Using Large Image Databases.

    Science.gov (United States)

    Griffiths, Thomas L; Abbott, Joshua T; Hsu, Anne S

    2016-07-01

    Most cognitive psychology experiments evaluate models of human cognition using a relatively small, well-controlled set of stimuli. This approach stands in contrast to current work in neuroscience, perception, and computer vision, which have begun to focus on using large databases of natural images. We argue that natural images provide a powerful tool for characterizing the statistical environment in which people operate, for better evaluating psychological theories, and for bringing the insights of cognitive science closer to real applications. We discuss how some of the challenges of using natural images as stimuli in experiments can be addressed through increased sample sizes, using representations from computer vision, and developing new experimental methods. Finally, we illustrate these points by summarizing recent work using large image databases to explore questions about human cognition in four different domains: modeling subjective randomness, defining a quantitative measure of representativeness, identifying prior knowledge used in word learning, and determining the structure of natural categories. Copyright © 2016 Cognitive Science Society, Inc.

  1. Social cognition in humans

    DEFF Research Database (Denmark)

    Frith, Christopher; Frith, Uta

    2007-01-01

    We review a diversity of studies of human social interaction and highlight the importance of social signals. We also discuss recent findings from social cognitive neuroscience that explore the brain basis of the capacity for processing social signals. These signals enable us to learn about...

  2. An automated system for assessing cognitive function in any environment

    Science.gov (United States)

    Wesnes, Keith A.

    2005-05-01

    The Cognitive Drug Research (CDR) computerized assessment system has been in use in worldwide clinical trials for over 20 years. It is a computer based system which assesses core aspects of human cognitive function including attention, information, working memory and long-term memory. It has been extensively validated and can be performed by a wide range of clinical populations including patients with various types of dementia. It is currently in worldwide use in clinical trials to evaluate new medicines, as well as a variety of programs involving the effects of age, stressors illnesses and trauma upon human cognitive function. Besides being highly sensitive to drugs which will impair or improve function, its utility has been maintained over the last two decades by constantly increasing the number of platforms upon which it can operate. Besides notebook versions, the system can be used on a wrist worn device, PDA, via tht telephone and over the internet. It is the most widely used automated cognitive function assessment system in worldwide clinical research. It has dozens of parallel forms and requires little training to use or administer. The basic development of the system wil be identified, and the huge databases (normative, patient population, drug effects) which have been built up from hundreds of clinical trials will be described. The system is available for use in virtually any environment or type of trial.

  3. Design of a Production System for Cognitive Modeling #1. Technical Report 77-2.

    Science.gov (United States)

    Anderson, John R.; Kline, Paul J.

    This report describes several of the design decisions underlying ACT, a production system model of human cognition. ACT can be considered a high level computer programming language as well as a theory of the cognitive mechanisms underlying human information processing. ACT design decisions were based on both psychological and artificial…

  4. Educational Cognitive Technologies as Human Adaptation Strategies

    Directory of Open Access Journals (Sweden)

    Marja Nesterova

    2017-07-01

    Full Text Available Modernity is characterized by profound changes in all spheres of human life caused by the global transformations on macro and micro levels of social reality. These changes allow us to speak about the present as the era of civilizational transition in the mode of uncertainty. Therefore, this situation demands qualitative transformations of human adaptive strategies and educational technologies accordingly. The dominant role in the dynamics of pedagogics and andragogy’s landscape belongs to transformative learning. The transformative learning theory is considered as the relevant approach to education of the individual, which is able to become an autonomous communicative actor of the social complexity. The article considers the cognitive technologies of social cohesion development and perspectives of their implementation in the educational dimension. In addition to implementing the principles of inclusion, equity in education, an important factor for improving social cohesion, stability and unity of society is the development of cognitive educational technologies. The key factors and foundations for the cognitive educational technologies are transversal competencies. They create the conditions for civil, public dialogue, non-violent type of communication. These “21st century skills” are extremely important for better human adaptation. One of the aspects and roots of social adaptation is social cohesion. Mutual determinations and connections between social cohesion development and transversal competences have been shown. The perspective direction of further researches is to find a methodological base for the further development of cognitive education technologies and platform for realization of innovative services for educational programs. New educational paradigm offers the concept of human adaptation as cognitive effectiveness and how to reach it through educational technologies. The article includes topics of creative thinking, teambuilding

  5. The application of cognitive models to the evaluation and prediction of human reliability

    International Nuclear Information System (INIS)

    Embrey, D.E.; Reason, J.T.

    1986-01-01

    The first section of the paper provides a brief overview of a number of important principles relevant to human reliability modeling that have emerged from cognitive models, and presents a synthesis of these approaches in the form of a Generic Error Modeling System (GEMS). The next section illustrates the application of GEMS to some well known nuclear power plant (NPP) incidents in which human error was a major contributor. The way in which design recommendations can emerge from analyses of this type is illustrated. The third section describes the use of cognitive models in the classification of human errors for prediction and data collection purposes. The final section addresses the predictive modeling of human error as part of human reliability assessment in Probabilistic Risk Assessment

  6. New thinking: the evolution of human cognition

    OpenAIRE

    Heyes, Cecilia

    2012-01-01

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolu...

  7. Operator role definition and human-system integration

    International Nuclear Information System (INIS)

    Knee, H.E.; Schryver, J.C.

    1989-01-01

    This paper discusses operator role definition and human-system integration from a perspective of systems engineering and allocation of functions. Current and traditional allocation of tasks/functions can no longer by applied to systems that are significantly more sophisticated and dynamic than current system designs. For such advanced and automated designs, explicit attention must be given to the role of the operator in order to facilitate efficient system performance. Furthermore, such systems will include intelligent automated systems which will support the cognitive activities of the operator. If such systems share responsibility and control with the human operator, these computer-based assistants/associates should be viewed as intelligent team members. As such, factors such as trust, intentions, and expectancies, among team members must be considered by the systems designer. Such design considerations are discussed in this paper. This paper also discusses the area of dynamic allocation of functions, and the need for models of the human operator in support of machine forecast of human performance. The Integrated Reactor Operator/System (INTEROPS) model is discussed as an example of a cognitive model capable of functioning beyond a rule-based behavioral structure

  8. Cognitive maps, spatial abilities and human wayfinding.

    OpenAIRE

    Golledge, Reginald G.; Jacobson, R. Daniel; Kitchin, Rob; Blades, Mark

    2000-01-01

    In this paper we discuss the relations between cognitive maps, spatial abilities and human wayfinding, particularly in the context of traveling without the use of sight. Initially we discuss the nature of cognitive maps and the process of cognitive mapping as mechanisms for developing person to object (egocentric) and object to object (allocentric) internal representations. Imperfections in encoding either relations can introduce imperfections in representations of environments in memory. Thi...

  9. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Ata Khan

    2013-04-01

    Full Text Available Intelligent transportation systems (ITS are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic environment. The operational requirements can be met with cognitive vehicle design features made possible by advances in artificial intelligence-supported methodology, improved understanding of human factors, and advances in communication technology. This paper describes cognitive features and their information system requirements. The architecture of an information system is presented that supports the features of the cognitive connected vehicle. For better focus, information processing capabilities are specified and the role of Bayesian artificial intelligence is defined for data fusion. Example applications illustrate the role of information systems in integrating intelligent technology, Bayesian artificial intelligence, and abstracted human factors. Concluding remarks highlight the role of the information system and Bayesian artificial intelligence in the design of a new generation of cognitive connected vehicle.

  10. Modeling cognition and disease using human glial chimeric mice

    DEFF Research Database (Denmark)

    Goldman, Steven A.; Nedergaard, Maiken; Windrem, Martha S.

    2015-01-01

    , oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human...... for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human...

  11. Cognitive Emotional Regulation Model in Human-Robot Interaction

    OpenAIRE

    Liu, Xin; Xie, Lun; Liu, Anqi; Li, Dan

    2015-01-01

    This paper integrated Gross cognitive process into the HMM (hidden Markov model) emotional regulation method and implemented human-robot emotional interaction with facial expressions and behaviors. Here, energy was the psychological driving force of emotional transition in the cognitive emotional model. The input facial expression was translated into external energy by expression-emotion mapping. Robot’s next emotional state was determined by the cognitive energy (the stimulus after cognition...

  12. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    Science.gov (United States)

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  13. Molecular networks and the evolution of human cognitive specializations.

    Science.gov (United States)

    Fontenot, Miles; Konopka, Genevieve

    2014-12-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Two systems of non-symbolic numerical cognition

    Directory of Open Access Journals (Sweden)

    Daniel C. Hyde

    2011-11-01

    Full Text Available Studies of human adults, infants, and non-human animals demonstrate that non-symbolic numerical cognition is supported by at least two distinct cognitive systems: a ‘parallel individuation system’ that encodes the numerical identity of individual items and an ‘approximate number system’ that encodes the approximate numerical magnitude, or numerosity, of a set. The exact nature of these systems, however, have been debated for over a hundred years. Some argue that the non-symbolic representation of small numbers (< 4 is carried out solely by the parallel individuation system and the non-symbolic representation of large numbers (> 4 is carried out solely by the approximate number system. Others argue that all numbers are represented by the approximate number system. This debate has been fueled largely by some studies showing dissociations in processing and other studies showing similar processing of small and large numbers. Recent work has addressed this debate by showing that the two systems are present and distinct from early infancy, persist despite the acquisition of a symbolic number system, activate distinct cortical networks, and engage differentially based attentional constraints. Based on the recent discoveries, I provide a hypothesis that may explain the puzzling findings and makes testable predictions as to when each system will be engaged. In particular, when items are presented under conditions that allow selection of individuals, they will be represented as distinct mental items through parallel individuation and not as a numerical magnitude. In contrast, when items are presented outside attentional limits (e.g. too many, too close together, under high attentional load, they will be represented as a single mental numerical magnitude and not as distinct mental items. These predictions provide a basis on which researchers can further investigate the role of each system in the development of uniquely human numerical thought.

  15. Cognition and procedure representational requirements for predictive human performance models

    Science.gov (United States)

    Corker, K.

    1992-01-01

    Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods

  16. Cognitive modelling: a basic complement of human reliability analysis

    International Nuclear Information System (INIS)

    Bersini, U.; Cacciabue, P.C.; Mancini, G.

    1988-01-01

    In this paper the issues identified in modelling humans and machines are discussed in the perspective of the consideration of human errors managing complex plants during incidental as well as normal conditions. The dichotomy between the use of a cognitive versus a behaviouristic model approach is discussed and the complementarity aspects rather than the differences of the two methods are identified. A cognitive model based on a hierarchical goal-oriented approach and driven by fuzzy logic methodology is presented as the counterpart to the 'classical' THERP methodology for studying human errors. Such a cognitive model is discussed at length and its fundamental components, i.e. the High Level Decision Making and the Low Level Decision Making models, are reviewed. Finally, the inadequacy of the 'classical' THERP methodology to deal with cognitive errors is discussed on the basis of a simple test case. For the same case the cognitive model is then applied showing the flexibility and adequacy of the model to dynamic configuration with time-dependent failures of components and with consequent need for changing of strategy during the transient itself. (author)

  17. Human cognitive aging: corriger la fortune?

    Science.gov (United States)

    Lindenberger, Ulman

    2014-10-31

    Human cognitive aging differs between and is malleable within individuals. In the absence of a strong genetic program, it is open to a host of hazards, such as vascular conditions, metabolic syndrome, and chronic stress, but also open to protective and enhancing factors, such as experience-dependent cognitive plasticity. Longitudinal studies suggest that leading an intellectually challenging, physically active, and socially engaged life may mitigate losses and consolidate gains. Interventions help to identify contexts and mechanisms of successful cognitive aging and give science and society a hint about what would be possible if conditions were different. Copyright © 2014, American Association for the Advancement of Science.

  18. The human socio-cognitive niche and its evolutionary origins

    Science.gov (United States)

    Whiten, Andrew; Erdal, David

    2012-01-01

    Hominin evolution took a remarkable pathway, as the foraging strategy extended to large mammalian prey already hunted by a guild of specialist carnivores. How was this possible for a moderately sized ape lacking the formidable anatomical adaptations of these competing ‘professional hunters’? The long-standing answer that this was achieved through the elaboration of a new ‘cognitive niche’ reliant on intelligence and technology is compelling, yet insufficient. Here we present evidence from a diversity of sources supporting the hypothesis that a fuller answer lies in the evolution of a new socio-cognitive niche, the principal components of which include forms of cooperation, egalitarianism, mindreading (also known as ‘theory of mind’), language and cultural transmission, that go far beyond the most comparable phenomena in other primates. This cognitive and behavioural complex allows a human hunter–gatherer band to function as a unique and highly competitive predatory organism. Each of these core components of the socio-cognitive niche is distinctive to humans, but primate research has increasingly identified related capacities that permit inferences about significant ancestral cognitive foundations to the five pillars of the human social cognitive niche listed earlier. The principal focus of the present study was to review and integrate this range of recent comparative discoveries. PMID:22734055

  19. The Tractable Cognition thesis

    NARCIS (Netherlands)

    Rooij, I.J.E.I. van

    2008-01-01

    The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the Tractable Cognition thesis: Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by

  20. Modularity, comparative cognition and human uniqueness

    OpenAIRE

    Shettleworth, Sara J.

    2012-01-01

    Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference ...

  1. Culture-sensitive neural substrates of human cognition: a transcultural neuroimaging approach.

    Science.gov (United States)

    Han, Shihui; Northoff, Georg

    2008-08-01

    Our brains and minds are shaped by our experiences, which mainly occur in the context of the culture in which we develop and live. Although psychologists have provided abundant evidence for diversity of human cognition and behaviour across cultures, the question of whether the neural correlates of human cognition are also culture-dependent is often not considered by neuroscientists. However, recent transcultural neuroimaging studies have demonstrated that one's cultural background can influence the neural activity that underlies both high- and low-level cognitive functions. The findings provide a novel approach by which to distinguish culture-sensitive from culture-invariant neural mechanisms of human cognition.

  2. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0491 TITLE: Default, Cognitive, and Affective Brain Networks in Human Tinnitus PRINCIPAL INVESTIGATOR: Jennifer R...SUBTITLE 5a. CONTRACT NUMBER Default, Cognitive and Affective Brain Networks in Human Tinnitus 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tinnitus is a major health problem among those currently and formerly in military

  3. Modeling cognition dynamics and its application to human reliability analysis

    International Nuclear Information System (INIS)

    Mosleh, A.; Smidts, C.; Shen, S.H.

    1996-01-01

    For the past two decades, a number of approaches have been proposed for the identification and estimation of the likelihood of human errors, particularly for use in the risk and reliability studies of nuclear power plants. Despite the wide-spread use of the most popular among these methods, their fundamental weaknesses are widely recognized, and the treatment of human reliability has been considered as one of the soft spots of risk studies of large technological systems. To alleviate the situation, new efforts have focused on the development of human reliability models based on a more fundamental understanding of operator response and its cognitive aspects

  4. Language Networks as Models of Cognition: Understanding Cognition through Language

    Science.gov (United States)

    Beckage, Nicole M.; Colunga, Eliana

    Language is inherently cognitive and distinctly human. Separating the object of language from the human mind that processes and creates language fails to capture the full language system. Linguistics traditionally has focused on the study of language as a static representation, removed from the human mind. Network analysis has traditionally been focused on the properties and structure that emerge from network representations. Both disciplines could gain from looking at language as a cognitive process. In contrast, psycholinguistic research has focused on the process of language without committing to a representation. However, by considering language networks as approximations of the cognitive system we can take the strength of each of these approaches to study human performance and cognition as related to language. This paper reviews research showcasing the contributions of network science to the study of language. Specifically, we focus on the interplay of cognition and language as captured by a network representation. To this end, we review different types of language network representations before considering the influence of global level network features. We continue by considering human performance in relation to network structure and conclude with theoretical network models that offer potential and testable explanations of cognitive and linguistic phenomena.

  5. An intelligent human-machine system based on an ecological interface design concept

    International Nuclear Information System (INIS)

    Naito, N.

    1995-01-01

    It seems both necessary and promising to develop an intelligent human-machine system, considering the objective of the human-machine system and the recent advance in cognitive engineering and artificial intelligence together with the ever-increasing importance of human factor issues in nuclear power plant operation and maintenance. It should support human operators in their knowledge-based behaviour and allow them to cope with unanticipated abnormal events, including recovery from erroneous human actions. A top-down design approach has been adopted based on cognitive work analysis, and (1) an ecological interface, (2) a cognitive model-based advisor and (3) a robust automatic sequence controller have been established. These functions have been integrated into an experimental control room. A validation test was carried out by the participation of experienced operators and engineers. The results showed the usefulness of this system in supporting the operator's supervisory plant control tasks. ((orig.))

  6. The Tractable Cognition Thesis

    Science.gov (United States)

    van Rooij, Iris

    2008-01-01

    The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the "Tractable Cognition thesis": Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by constraining the space of computational-level theories…

  7. Cognition beyond the brain computation, interactivity and human artifice

    CERN Document Server

    Cowley, Stephen J

    2013-01-01

    Arguing that a collective dimension has given cognitive flexibility to human intelligence, this book shows that traditional cognitive psychology underplays the role of bodies, dialogue, diagrams, tools, talk, customs, habits, computers and cultural practices.

  8. Human cognitive ecology: an instructive framework for comparative primatology.

    Science.gov (United States)

    Keller, Janet Dixon

    2004-03-01

    In this review, research on human cognitive ecology is compared with studies of the cognitive ecologies of apes-especially the common chimpanzee. The objective was to assess the feasibility of extending an activity-theory framework developed in studies of humans to an integrated approach for studying the cognitive accomplishments and skills of other primates living in the wild. Six generalizations were abstracted from studies of humans: 1) Social and material environments are arranged to facilitate production. 2) Human activity is shaped by conceptual and cultural principles that provide underlying logic for working knowledge and practice. 3) Schemata (multimodal, mental representations of procedures, strategies, and techniques) govern performance in a domain. 4) Working knowledge, skills, and social identities are co-constructed in communities of practice. 5) Rehearsal improves skilled performances, from which reputations as well as material products are derived. 6) Planning and emergence are in productive tension in human practices. These generalizations are applied to findings in the literature regarding the behavior of chimpanzees and other apes in the wild to assess the potential utility of a situated-activity approach for comparative studies of primate cognition. It is argued in the Discussion that schemata constitute a common core of higher primate intelligence. Planning, emergence, and alterations of the environment to facilitate production further characterize human and chimpanzee or gorilla behaviors to varying degrees. Less apparent in the nonhuman-primate literature is evidence of governing principles, rehearsal, and skill-based reputations or identities entailing theories of mind. Nonetheless, recent observations in the wild suggest that further research is warranted to explore the rudiments of each of these components to enhance our understanding of the ecology of primate cognition and its evolutionary history. Copyright 2004 Wiley-Liss, Inc.

  9. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis.

    Science.gov (United States)

    Herrmann, Esther; Call, Josep; Hernàndez-Lloreda, Maráa Victoria; Hare, Brian; Tomasello, Michael

    2007-09-07

    Humans have many cognitive skills not possessed by their nearest primate relatives. The cultural intelligence hypothesis argues that this is mainly due to a species-specific set of social-cognitive skills, emerging early in ontogeny, for participating and exchanging knowledge in cultural groups. We tested this hypothesis by giving a comprehensive battery of cognitive tests to large numbers of two of humans' closest primate relatives, chimpanzees and orangutans, as well as to 2.5-year-old human children before literacy and schooling. Supporting the cultural intelligence hypothesis and contradicting the hypothesis that humans simply have more "general intelligence," we found that the children and chimpanzees had very similar cognitive skills for dealing with the physical world but that the children had more sophisticated cognitive skills than either of the ape species for dealing with the social world.

  10. Safety Metrics for Human-Computer Controlled Systems

    Science.gov (United States)

    Leveson, Nancy G; Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  11. COGNITIVE SYSTEMS. REDEFINING THE COOPERATION BETWEEN MAN AND SYSTEM

    Directory of Open Access Journals (Sweden)

    Diana-Aderina MOISUC

    2016-12-01

    Full Text Available Cognitive systems appeared as a response to the real challenges brought by the Big Data phenomenon. It was found that the solutions for solving difficult problems caused by this phenomenon could be brought by using artificial intelligence tools. In this context a convergence between Big Data and Artificial Intelligence happened, which determined the start of a new stage in system development, namely the era of cognitive systems. The potential of these systems is given by the characteristics that differentiate them from other systems. The cognitive systems offered solutions and were used with success in complex projects from the medical and financial sectors. The architecture of cognitive systems is complex. These systems are designed so that they use artificial intelligence tools when processing source content, producing analytical solutions which can be used in the decision process. In this paper base concepts, the characteristics and architecture of cognitive systems, the benefits brought by the development and use of them were presented.

  12. Cognitive logical systems with artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Liss, E

    1983-09-01

    The simulation of cognitive processes for the purpose of the technical development of learning systems with intelligent behavior is a basic object of the young interdisciplinary cognition science which is based upon artificial intelligence, cognitive psychology, computer science, linguistics and pedagogics. Cognitive systems may be described as knowledge-based logical systems. Based on structural and functional principles of intelligent automata and elementary information processing systems with structural learning capability the future process, machine and robot controls, advising units and fifth generation computers may be developed.

  13. Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease.

    Science.gov (United States)

    Johnson, Michael R; Shkura, Kirill; Langley, Sarah R; Delahaye-Duriez, Andree; Srivastava, Prashant; Hill, W David; Rackham, Owen J L; Davies, Gail; Harris, Sarah E; Moreno-Moral, Aida; Rotival, Maxime; Speed, Doug; Petrovski, Slavé; Katz, Anaïs; Hayward, Caroline; Porteous, David J; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Starr, John M; Liewald, David C; Visconti, Alessia; Falchi, Mario; Bottolo, Leonardo; Rossetti, Tiziana; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Grote, Alexander; Helmstaedter, Christoph; Becker, Albert J; Kaminski, Rafal M; Deary, Ian J; Petretto, Enrico

    2016-02-01

    Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease-associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease.

  14. Cybernics fusion of human, machine and information systems

    CERN Document Server

    Suzuki, Kenji; Hasegawa, Yasuhisa

    2014-01-01

    Cybernics plays a significant role in coping with an aging society using state-of-the-art technologies from engineering, clinical medicine and humanities. This new interdisciplinary field studies technologies that enhance, strengthen, and support physical and cognitive functions of human beings, based on the fusion of human, machine, and information systems. The design of a seamless interface for interaction between the interior and exterior of the human body is described in this book from diverse aspects such as the physical, neurophysiological, and cognitive levels. It is the first book to cover the many aspects of cybernics, allowing readers to understand the life support robotics technology for the elderly, including remote, in-home, hospital, institutional, community medical welfare, and vital-sensing systems. Serving as a valuable resource, this volume will interest not only graduate students, scientists, and engineers but also newcomers to the field of cybernics.

  15. Fit in the Body: Matching Embodied Cognition with Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Janne I. Hukkinen

    2012-12-01

    Full Text Available Analysis of fit has focused on the macrolevel fit between social institutions and ecosystems, and bypassed the microlevel fit between individual cognition and its socio-material environment. I argue that the conceptualizations we develop about social-ecological systems and our position in them should be understood as ways for a fundamentally cognitive organism to adapt to particular social and ecological situations. Since at issue is our survival as a species, we need to better understand the structure and dynamics of fit between human cognition and its social-ecological environment. I suggest that the embodied cognition perspective opens up possibilities for "nudging" evolution through the conceptual integration of the cognitively attractive but ecologically unrealistic neoclassical economics, and the cognitively less attractive but ecologically more realistic adaptive cycle theory (panarchy. The result is a conceptually integrated model, the Roller Coaster Blend, which expresses in metaphorical terms why competitive individuals are better off cooperating than competing with each other in the face of absolute resource limits. The blend enables the reframing of messages about the limits of the social-ecological system in terms of growth rather than degrowth. This is cognitively appealing, as upward growth fires in our minds the neural connections of "more," "control", and "happy." The blend's potential for nudging behavior arises from its autopoietic characteristic: it can be both an account of the social-ecological system as an emergent structure that is capable of renewing itself, and a cognitive attractor of individuals whose recruitment reinforces the integrity of the social-ecological system.

  16. Human Space Exploration and Human Space Flight: Latency and the Cognitive Scale of the Universe

    Science.gov (United States)

    Lester, Dan; Thronson, Harley

    2011-01-01

    The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.

  17. A framework for cognitive task analysis in systems design

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1985-08-01

    The present rapid development if advanced information technology and its use for support of operators of complex technical systems are changing the content of task analysis towards the analysis of mental activities in decision making. Automation removes the humans from routine tasks, and operators are left with disturbance control and critical diagnostic tasks, for which computers are suitable for support, if it is possible to match the computer strategies and interface formats dynamically to the requirements of the current task by means of an analysis of the cognitive task. Such a cognitive task analysis will not aim at a description of the information processes suited for particular control situations. It will rather aim at an analysis in order to identify the requirements to be considered along various dimensions of the decision tasks, in order to give the user - i.e. a decision maker - the freedom to adapt his performance to system requirements in a way which matches his process resources and subjective preferences. To serve this purpose, a number of analyses at various levels are needed to relate the control requirements of the system to the information processes and to the processing resources offered by computers and humans. The paper discusses the cognitive task analysis in terms of the following domains: The problem domain, which is a representation of the functional properties of the system giving a consistent framework for identification of the control requirements of the system; the decision sequences required for typical situations; the mental strategies and heuristics which are effective and acceptable for the different decision functions; and the cognitive control mechanisms used, depending upon the level of skill which can/will be applied. Finally, the end-users' criteria for choice of mental strategies in the actual situation are considered, and the need for development of criteria for judging the ultimate user acceptance of computer support is

  18. Cognitive systems at the point of care: The CREDO program.

    Science.gov (United States)

    Fox, John

    2017-04-01

    CREDO is a framework for understanding human expertise and for designing and deploying systems that support cognitive tasks like situation and risk assessment, decision-making, therapy planning and workflow management. The framework has evolved through an extensive program of research on human decision-making and clinical practice. It draws on concepts from cognitive science, and has contributed new results to cognitive theory and understanding of human expertise and knowledge-based AI. These results are exploited in a suite of technologies for designing, implementing and deploying clinical services, early versions of which were reported by Das et al. (1997) [9] and Fox and Das (2000) [26]. A practical outcome of the CREDO program is a technology stack, a key element of which is an agent specification language (PROforma: Sutton and Fox (2003) [55]) which has proved to be a versatile tool for designing point of care applications in many clinical specialties and settings. Since software became available for implementing and deploying PROforma applications many kinds of services have been successfully built and trialed, some of which are in large-scale routine use. This retrospective describes the foundations of the CREDO model, summarizes the main theoretical, technical and clinical contributions, and discusses benefits of the cognitive approach. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  19. Multimodality Inferring of Human Cognitive States Based on Integration of Neuro-Fuzzy Network and Information Fusion Techniques

    Directory of Open Access Journals (Sweden)

    P. Bhattacharya

    2007-11-01

    Full Text Available To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i casual or contextual feature, (ii contact feature, (iii contactless feature, and (iv performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA, is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue. We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.

  20. Cognitive Factors Affecting Freeze-like Behavior in Humans.

    Science.gov (United States)

    Alban, Michael W; Pocknell, Victoria

    2017-01-01

    Contemporary research on survival-related defensive behaviors has identified physiological markers of freeze/flight/fight. Our research focused on cognitive factors associated with freeze-like behavior in humans. Study 1 tested if an explicit decision to freeze is associated with the psychophysiological state of freezing. Heart rate deceleration occurred when participants chose to freeze. Study 2 varied the efficacy of freezing relative to other defense options and found "freeze" was responsive to variations in the perceived effectiveness of alternative actions. Study 3 tested if individual differences in motivational orientation affect preference for a "freeze" option when the efficacy of options is held constant. A trend in the predicted direction suggested that naturally occurring cognitions led loss-avoiders to select "freeze" more often than reward-seekers. In combination, our attention to the cognitive factors affecting freeze-like behavior in humans represents a preliminary step in addressing an important but neglected research area.

  1. Cognitive systems engineering in health care

    CERN Document Server

    Bisantz, Ann M; Fairbanks, Rollin J

    2014-01-01

    Cognitive Engineering for Better Health Care Systems, Ann M. Bisantz, Rollin J. Fairbanks, and Catherine M. BurnsThe Role of Cognitive Engineering in Improving Clinical Decision Support, Anne Miller and Laura MilitelloTeam Cognitive Work Analysis as an Approach for Understanding Teamwork in Health Care, Catherine M. BurnsCognitive Engineering Design of an Emergency Department Information System, Theresa K. Guarrera, Nicolette M. McGeorge, Lindsey N. Clark, David T. LaVergne, Zachary A. Hettinger, Rollin J. Fairbanks, and Ann M. BisantzDisplays for Health Care Teams: A Conceptual Framework and Design Methodology, Avi ParushInformation Modeling for Cognitive Work in a Health Care System, Priyadarshini R. PennathurSupport for ICU Clinician Cognitive Work through CSE, Christopher Nemeth, Shilo Anders, Jeffrey Brown, Anna Grome, Beth Crandall, and Jeremy PamplinMatching Cognitive Aids and the "Real Work" of Health Care in Support of Surgical Microsystem Teamwork, Sarah Henrickson Parker and Shawna J. PerryEngageme...

  2. Human care system for heart-rate and human-movement trajectory in home and its application to detect mental disease

    Science.gov (United States)

    Hata, Yutaka; Kanazawa, Seigo; Endo, Maki; Tsuchiya, Naoki; Nakajima, Hiroshi

    2012-06-01

    This paper proposes a heart rate monitoring system for detecting autonomic nervous system by the heart rate variability using an air pressure sensor to diagnose mental disease. Moreover, we propose a human behavior monitoring system for detecting the human trajectory in home by an infrared camera. In day and night times, the human behavior monitoring system detects the human movement in home. The heart rate monitoring system detects the heart rate in bed in night time. The air pressure sensor consists of a rubber tube, cushion cover and pressure sensor, and it detects the heart rate by setting it to bed. It unconstraintly detects the RR-intervals; thereby the autonomic nervous system can be assessed. The autonomic nervous system analysis can examine the mental disease. While, the human behavior monitoring system obtains distance distribution image by an infrared camera. It classifies adult, child and the other object from distance distribution obtained by the camera, and records their trajectories. This behavior, i.e., trajectory in home, strongly corresponds to cognitive disorders. Thus, the total system can detect mental disease and cognitive disorders by uncontacted sensors to human body.

  3. Cognitive Systems Modeling and Analysis of Command and Control Systems

    Science.gov (United States)

    Norlander, Arne

    2012-01-01

    Military operations, counter-terrorism operations and emergency response often oblige operators and commanders to operate within distributed organizations and systems for safe and effective mission accomplishment. Tactical commanders and operators frequently encounter violent threats and critical demands on cognitive capacity and reaction time. In the future they will make decisions in situations where operational and system characteristics are highly dynamic and non-linear, i.e. minor events, decisions or actions may have serious and irreversible consequences for the entire mission. Commanders and other decision makers must manage true real time properties at all levels; individual operators, stand-alone technical systems, higher-order integrated human-machine systems and joint operations forces alike. Coping with these conditions in performance assessment, system development and operational testing is a challenge for both practitioners and researchers. This paper reports on research from which the results led to a breakthrough: An integrated approach to information-centered systems analysis to support future command and control systems research development. This approach integrates several areas of research into a coherent framework, Action Control Theory (ACT). It comprises measurement techniques and methodological advances that facilitate a more accurate and deeper understanding of the operational environment, its agents, actors and effectors, generating new and updated models. This in turn generates theoretical advances. Some good examples of successful approaches are found in the research areas of cognitive systems engineering, systems theory, and psychophysiology, and in the fields of dynamic, distributed decision making and naturalistic decision making.

  4. Energy-Aware Cognitive Radio Systems

    KAUST Repository

    Bedeer, Ebrahim

    2016-01-15

    The concept of energy-aware communications has spurred the interest of the research community in the most recent years due to various environmental and economical reasons. It becomes indispensable for wireless communication systems to shift their resource allocation problems from optimizing traditional metrics, such as throughput and latency, to an environmental-friendly energy metric. Although cognitive radio systems introduce spectrum efficient usage techniques, they employ new complex technologies for spectrum sensing and sharing that consume extra energy to compensate for overhead and feedback costs. Considering an adequate energy efficiency metric—that takes into account the transmit power consumption, circuitry power, and signaling overhead—is of momentous importance such that optimal resource allocations in cognitive radio systems reduce the energy consumption. A literature survey of recent energy-efficient based resource allocations schemes is presented for cognitive radio systems. The energy efficiency performances of these schemes are analyzed and evaluated under power budget, co-channel and adjacent-channel interferences, channel estimation errors, quality-of-service, and/or fairness constraints. Finally, the opportunities and challenges of energy-aware design for cognitive radio systems are discussed.

  5. HUMAN RELIABILITY ANALYSIS DENGAN PENDEKATAN COGNITIVE RELIABILITY AND ERROR ANALYSIS METHOD (CREAM

    Directory of Open Access Journals (Sweden)

    Zahirah Alifia Maulida

    2015-01-01

    Full Text Available Kecelakaan kerja pada bidang grinding dan welding menempati urutan tertinggi selama lima tahun terakhir di PT. X. Kecelakaan ini disebabkan oleh human error. Human error terjadi karena pengaruh lingkungan kerja fisik dan non fisik.Penelitian kali menggunakan skenario untuk memprediksi serta mengurangi kemungkinan terjadinya error pada manusia dengan pendekatan CREAM (Cognitive Reliability and Error Analysis Method. CREAM adalah salah satu metode human reliability analysis yang berfungsi untuk mendapatkan nilai Cognitive Failure Probability (CFP yang dapat dilakukan dengan dua cara yaitu basic method dan extended method. Pada basic method hanya akan didapatkan nilai failure probabailty secara umum, sedangkan untuk extended method akan didapatkan CFP untuk setiap task. Hasil penelitian menunjukkan faktor- faktor yang mempengaruhi timbulnya error pada pekerjaan grinding dan welding adalah kecukupan organisasi, kecukupan dari Man Machine Interface (MMI & dukungan operasional, ketersediaan prosedur/ perencanaan, serta kecukupan pelatihan dan pengalaman. Aspek kognitif pada pekerjaan grinding yang memiliki nilai error paling tinggi adalah planning dengan nilai CFP 0.3 dan pada pekerjaan welding yaitu aspek kognitif execution dengan nilai CFP 0.18. Sebagai upaya untuk mengurangi nilai error kognitif pada pekerjaan grinding dan welding rekomendasi yang diberikan adalah memberikan training secara rutin, work instrucstion yang lebih rinci dan memberikan sosialisasi alat. Kata kunci: CREAM (cognitive reliability and error analysis method, HRA (human reliability analysis, cognitive error Abstract The accidents in grinding and welding sectors were the highest cases over the last five years in PT. X and it caused by human error. Human error occurs due to the influence of working environment both physically and non-physically. This study will implement an approaching scenario called CREAM (Cognitive Reliability and Error Analysis Method. CREAM is one of human

  6. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    OpenAIRE

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive cha...

  7. Toward a visual cognitive system using active top-down saccadic control

    NARCIS (Netherlands)

    LaCroix, J.; Postma, E.; van den Herik, J.; Murre, J.

    2008-01-01

    The saccadic selection of relevant visual input for preferential processing allows the efficient use of computational resources. Based on saccadic active human vision, we aim to develop a plausible saccade-based visual cognitive system for a humanoid robot. This paper presents two initial steps

  8. Embedding Human Expert Cognition Into Autonomous UAS Trajectory Planning.

    Science.gov (United States)

    Narayan, Pritesh; Meyer, Patrick; Campbell, Duncan

    2013-04-01

    This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.

  9. Characterizing Cognitive Aging in Humans with Links to Animal Models

    Directory of Open Access Journals (Sweden)

    Gene E Alexander

    2012-09-01

    Full Text Available With the population of older adults expected to grow rapidly over the next two decades, it has become increasingly important to advance research efforts to elucidate the mechanisms associated with cognitive aging, with the ultimate goal of developing effective interventions and prevention therapies. Although there has been a vast research literature on the use of cognitive tests to evaluate the effects of aging and age-related neurodegenerative disease, the need for a set of standardized measures to characterize the cognitive profiles specific to healthy aging has been widely recognized. Here we present a review of selected methods and approaches that have been applied in human research studies to evaluate the effects of aging on cognition, including executive function, memory, processing speed, language, and visuospatial function. The effects of healthy aging on each of these cognitive domains are discussed with examples from cognitive/experimental and clinical/neuropsychological approaches. Further, we consider those measures that have clear conceptual and methodological links to tasks currently in use for non-human animal studies of aging, as well as those that have the potential for translation to animal aging research. Having a complementary set of measures to assess the cognitive profiles of healthy aging across species provides a unique opportunity to enhance research efforts for cross-sectional, longitudinal, and intervention studies of cognitive aging. Taking a cross-species, translational approach will help to advance cognitive aging research, leading to a greater understanding of associated neurobiological mechanisms with the potential for developing effective interventions and prevention therapies for age-related cognitive decline.

  10. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition

    Science.gov (United States)

    Stutz, Aaron J.

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment. PMID:25136323

  11. Human figure drawing distinguishes Alzheimer's patients: a cognitive screening test study.

    Science.gov (United States)

    Stanzani Maserati, Michelangelo; D'Onofrio, Renato; Matacena, Corrado; Sambati, Luisa; Oppi, Federico; Poda, Roberto; De Matteis, Maddalena; Naldi, Ilaria; Liguori, Rocco; Capellari, Sabina

    2018-05-01

    To study human figure drawing in a group of Alzheimer's disease (AD) patients and compare it with a group of patients with mild cognitive impairment (MCI) and controls. We evaluated consecutive outpatients over a one-year period. Patients were classified as affected by AD or by MCI. All patients and controls underwent a simplified version of the human-figure drawing test and MMSE. A qualitative and quantitative analysis of all human figures was obtained. 112 AD, 100 MCI patients and 104 controls were enrolled. AD patients drew human figures poor in details and globally smaller than MCI patients and controls. Human figures drawn by MCI patients are intermediate in body height between those of the AD patients and the healthy subjects. The head-to-body ratio of human figures drawn by AD patients is greater than controls and MCI patients, while the human figure size-relative-to-page space index is significantly smaller. Body height is an independent predictor of cognitive impairment correlating with its severity and with the number of the figure's details. Human figures drawn by AD patients are different from those drawn by healthy subjects and MCI patients. Human figure drawing test is a useful tool for orienting cognitive impairment's diagnosis.

  12. Analysis of dynamic characteristics of stochastic influences in cognitive systems

    Directory of Open Access Journals (Sweden)

    Alexander A. Solodov

    2017-01-01

    Full Text Available The aim of the study is to provide an analytical description of the dynamics of the processes to form images in the cognitive system and their subsequent processing by the consciousness, as well as the study of the simplest characteristics of the quality of the cognitive system functioning in the form of the signal/noise ratio.In accordance with the ideas of the cognitive theory, it is believed that images (schemes, categories, Gestalt, systems, archetypes, etc. are firstly generated in the human brain and then processed by the consciousness.These images are formed at random in time and are characterized by a random force of effects and subsequently processed by the consciousness.The images are characterized by random numbers, the common interpretation of which is the amount of information corresponding to the appearance of a certain image. The times of appearance are points on the time axis; their number and position are random as well.The work consists of a logically completed model including the following components:• Justification of a statistical model of the appearance of effects during the operation of the cognitive system in the form of the Poisson point process, characterized by the intensity of occurrence of effects and the random values of those effects.• Development of a mathematical model in the consciousness processing of the random effects in the form of reducing response function, which depends on the current time, the time of occurrence of effects and the magnitudes of these effects. To obtain applied results, exponential response function was applied and the analytical results for the mathematical expectations of the processed and not processed information by the consciousness were received.• Introduction for consideration of the signal/noise ratio, characterizing the performance of cognitive systems in the presence of interference and study of its behavior in the situations with the presence of random background noise

  13. Selective cognitive impairments associated with NMDA receptor blockade in humans.

    Science.gov (United States)

    Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A

    2005-03-01

    Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.

  14. Advances in Cognitive Information Systems

    CERN Document Server

    Ogiela, Lidia

    2012-01-01

    The development of computer science is now so rapid that we, the readers, in-creasingly receive technology news about new solutions and applications which very often straddle the border between the real and the virtual worlds. Computer science is also the area in which cognitive science is witnessing a renaissance, be-cause its combination with technical sciences has given birth to a broad scientific discipline called cognitive informatics. And it is this discipline which has become the main theme of this monograph, which is also to serve as a kind of guide to cognitive informatics problems. This book is the result of work on systems for the cognitive analysis and inter-pretation of various data. The purpose of such an analytical approach is to show that for an in-depth analysis of data, the layers of semantics contained in these sets must be taken into account. The interdisciplinary nature of the solutions proposed means that the subject of cognitive systems forming part of cognitive informatics becomes a ne...

  15. Cognitive Neuroscience of Human Counterfactual Reasoning

    Directory of Open Access Journals (Sweden)

    Nicole eVan Hoeck

    2015-07-01

    Full Text Available Counterfactual reasoning is a hallmark of human thought, enabling the capacity to shift from perceiving the immediate environment to an alternative, imagined perspective. Mental representations of counterfactual possibilities (e.g., imagined past events or future outcomes not yet at hand provide the basis for learning from past experience, enable planning and prediction, support creativity and insight, and give rise to emotions and social attributions (e.g., regret and blame. Yet remarkably little is known about the psychological and neural foundations of counterfactual reasoning. In this review, we survey recent findings from psychology and neuroscience indicating that counterfactual thought depends on an integrative network of systems for affective processing, mental simulation, and cognitive control. We review evidence to elucidate how these mechanisms are systematically altered through psychiatric illness and neurological disease. We propose that counterfactual thinking depends on the coordination of multiple information processing systems that together enable adaptive behavior and goal-directed decision making and make recommendations for the study of counterfactual inference in health, aging, and disease.

  16. Human Uniqueness, Cognition by Description, and Procedural Memory

    Directory of Open Access Journals (Sweden)

    John Bolender

    2008-06-01

    Full Text Available Evidence will be reviewed suggesting a fairly direct link between the human ability to think about entities which one has never perceived — here called “cognition by description” — and procedural memory. Cognition by description is a uniquely hominid trait which makes religion, science, and history possible. It is hypothesized that cognition by description (in the manner of Bertrand Russell’s “knowledge by description” requires variable binding, which in turn utilizes quantifier raising. Quantifier raising plausibly depends upon the computational core of language, specifically the element of it which Noam Chomsky calls “internal Merge”. Internal Merge produces hierarchical structures by means of a memory of derivational steps, a process plausibly involving procedural memory. The hypothesis is testable, predicting that procedural memory deficits will be accompanied by impairments in cognition by description. We also discuss neural mechanisms plausibly underlying procedural memory and also, by our hypothesis, cognition by description.

  17. Affordances in activity theory and cognitive systems engineering

    DEFF Research Database (Denmark)

    Albrechtsen, H.; Andersen, H.H.K.; Bødker, S.

    2001-01-01

    on design for low level interaction modalities. To incorporate the concept of affordances in the design of human computer interaction it is necessary to systematically unravel affordances that supporthuman action possibilities. Furthermore, it is a necessity that Gibson's theory of affordances...... is supplemented by careful analyses of other human modalities and activities than visual perception. Within HMI two well established perspectives on HMI,Activity Theory (AT) and Cognitive Systems Engineering (CSE), have discussed such analyses and design of action possibilities focusing on providing computer...... to cover deeper semantic and pragmatic aspects of the ecology of work, as compared with the previous applications of Gibson's theory in HMI....

  18. Face cognition in humans: Psychophysiological, developmental, and cross-cultural aspects

    OpenAIRE

    Chernorizov A. M.; Zhong-qing J.; Petrakova A. V.; Zinchenko Yu. P.

    2016-01-01

    Investigators are finding increasing evidence for cross-cultural specificity in face cognition along with individual characteristics. The functions on which face cognition is based not only are types of general cognitive functions (perception, memory) but are elements of specific mental processes. Face perception, memorization, correct recognition of faces, and understanding the information that faces provide are essential skills for humans as a social species and can be considered as facets ...

  19. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  20. Combining cognitive engineering and information fusion architectures to build effective joint systems

    Science.gov (United States)

    Sliva, Amy L.; Gorman, Joe; Voshell, Martin; Tittle, James; Bowman, Christopher

    2016-05-01

    The Dual Node Decision Wheels (DNDW) architecture concept was previously described as a novel approach toward integrating analytic and decision-making processes in joint human/automation systems in highly complex sociotechnical settings. In this paper, we extend the DNDW construct with a description of components in this framework, combining structures of the Dual Node Network (DNN) for Information Fusion and Resource Management with extensions on Rasmussen's Decision Ladder (DL) to provide guidance on constructing information systems that better serve decision-making support requirements. The DNN takes a component-centered approach to system design, decomposing each asset in terms of data inputs and outputs according to their roles and interactions in a fusion network. However, to ensure relevancy to and organizational fitment within command and control (C2) processes, principles from cognitive systems engineering emphasize that system design must take a human-centered systems view, integrating information needs and decision making requirements to drive the architecture design and capabilities of network assets. In the current work, we present an approach for structuring and assessing DNDW systems that uses a unique hybrid DNN top-down system design with a human-centered process design, combining DNN node decomposition with artifacts from cognitive analysis (i.e., system abstraction decomposition models, decision ladders) to provide work domain and task-level insights at different levels in an example intelligence, surveillance, and reconnaissance (ISR) system setting. This DNDW structure will ensure not only that the information fusion technologies and processes are structured effectively, but that the resulting information products will align with the requirements of human decision makers and be adaptable to different work settings .

  1. Hybrid-augmented intelligence:collaboration and cognition

    Institute of Scientific and Technical Information of China (English)

    Nan-ning ZHENG; Zi-yi LIU; Peng-ju REN; Yong-qiang MA; Shi-tao CHEN; Si-yu YU; Jian-ru XUE

    2017-01-01

    The long-term goal of artificial intelligence (AI) is to make machines learn and think like human beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems that humans are facing, no matter how intelligent machines are, they are unable to completely replace humans. Therefore, it is necessary to introduce human cognitive capabilities or human-like cognitive models into AI systems to develop a new form of AI, that is, hybrid-augmented intelligence. This form of AI or machine intelligence is a feasible and important developing model. Hybrid-augmented intelligence can be divided into two basic models:one is human-in-the-loop augmented intelligence with human-computer collaboration, and the other is cognitive computing based augmented intelligence, in which a cognitive model is embedded in the machine learning system. This survey describes a basic framework for human-computer collaborative hybrid-augmented intelligence, and the basic elements of hybrid-augmented intelligence based on cognitive computing. These elements include intuitive reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based on memory and reasoning. Several typical applications of hybrid-augmented intelligence in related fields are given.

  2. [Human interaction, social cognition, and the superior temporal sulcus].

    Science.gov (United States)

    Brunelle, Francis; Saitovitch, Anna; Boddaert, Nathalie; Grevent, David; Cambier, Jean; Lelord, Gilbert; Samson, Yves; Zilbovicius, Monica

    2013-01-01

    Human beings are social animals. This ability to live together is ensured by cognitive functions, the neuroanatomical bases of which are starting to be unraveled by MRI-based studies. The regions and network engaged in this process are known as the "social brain ". The core of this network is the superior temporal sulcus (STS), which integrates sensory and emotional inputs. Modeling studies of healthy volunteers have shown the role of the STS.in recognizing others as biological beings, as well as facial and eye-gaze recognition, intentionality and emotions. This cognitive capacity has been described as the "theory of mind ". Pathological models such as autism, in which the main clinical abnormality is altered social abilities and communication, have confirmed the role of the STS in the social brain. Conceptualisation of this empathic capacity has been described as "meta cognition ", which forms the basis of human social organizationand culture.

  3. Face cognition in humans: Psychophysiological, developmental, and cross-cultural aspects

    Directory of Open Access Journals (Sweden)

    Chernorizov A. M.

    2016-12-01

    Full Text Available Investigators are finding increasing evidence for cross-cultural specificity in face cognition along with individual characteristics. The functions on which face cognition is based not only are types of general cognitive functions (perception, memory but are elements of specific mental processes. Face perception, memorization, correct recognition of faces, and understanding the information that faces provide are essential skills for humans as a social species and can be considered as facets of social (cultural intelligence. Face cognition is a difficult, multifaceted set of processes. The systems and processes involved in perceiving and recognizing faces are captured by several models focusing on the pertinent functions or including the presumably underlying neuroanatomical substrates. Thus, the study of face-cognition mechanisms is a cross-disciplinary topic. In Russia, Germany, and China there are plans to organize an interdisciplinary crosscultural study of face cognition. The first step of this scientific interaction is conducting psychological and psychophysiological studies of face cognition in multinational Russia within the frame of a grant supported by the Russian Science Foundation and devoted to “cross-cultural tolerance”. For that reason and in the presence of the huge diversity of data concerning face cognition, we suggest for discussion, specifically within the psychological scientific community, three aspects of face cognition: (1 psychophysiological (quantitative data, (2 developmental (qualitative data from developmental psychology, and (3 cross-cultural (qualitative data from cross-cultural studies. These three aspects reflect the different levels of investigations and constitute a comprehensive, multilateral approach to the problem. Unfortunately, as a rule, neuropsychological and psychological investigations are carried out independently of each other. However, for the purposes of our overview here, we assume that the

  4. The importance of motivation and emotion for explaining human cognition.

    Science.gov (United States)

    Güss, C Dominik; Dörner, Dietrich

    2017-01-01

    Lake et al. discuss building blocks of human intelligence that are quite different from those of artificial intelligence. We argue that a theory of human intelligence has to incorporate human motivations and emotions. The interaction of motivation, emotion, and cognition is the real strength of human intelligence and distinguishes it from artificial intelligence.

  5. The behavioural immune system and the psychology of human sociality.

    Science.gov (United States)

    Schaller, Mark

    2011-12-12

    Because immunological defence against pathogens is costly and merely reactive, human anti-pathogen defence is also characterized by proactive behavioural mechanisms that inhibit contact with pathogens in the first place. This behavioural immune system comprises psychological processes that infer infection risk from perceptual cues, and that respond to these perceptual cues through the activation of aversive emotions, cognitions and behavioural impulses. These processes are engaged flexibly, producing context-contingent variation in the nature and magnitude of aversive responses. These processes have important implications for human social cognition and social behaviour-including implications for social gregariousness, person perception, intergroup prejudice, mate preferences, sexual behaviour and conformity. Empirical evidence bearing on these many implications is reviewed and discussed. This review also identifies important directions for future research on the human behavioural immune system--including the need for enquiry into underlying mechanisms, additional behavioural consequences and implications for human health and well-being.

  6. Embodied Niche Construction in the Hominin Lineage: Semiotic Structure and Sustained Attention in Human Embodied Cognition

    Directory of Open Access Journals (Sweden)

    Aaron Jonas Stutz

    2014-08-01

    Full Text Available Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment.

  7. Bridging Human Reliability Analysis and Psychology, Part 2: A Cognitive Framework to Support HRA

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Stacey M. L. Hendrickson; Ronald L. Boring; Jing Xing

    2012-06-01

    This is the second of two papers that discuss the literature review conducted as part of the U.S. Nuclear Regulatory Commission (NRC) effort to develop a hybrid human reliability analysis (HRA) method in response to Staff Requirements Memorandum (SRM) SRM-M061020. This review was conducted with the goal of strengthening the technical basis within psychology, cognitive science and human factors for the hybrid HRA method being proposed. An overview of the literature review approach and high-level structure is provided in the first paper, whereas this paper presents the results of the review. The psychological literature review encompassed research spanning the entirety of human cognition and performance, and consequently produced an extensive list of psychological processes, mechanisms, and factors that contribute to human performance. To make sense of this large amount of information, the results of the literature review were organized into a cognitive framework that identifies causes of failure of macrocognition in humans, and connects those proximate causes to psychological mechanisms and performance influencing factors (PIFs) that can lead to the failure. This cognitive framework can serve as a tool to inform HRA. Beyond this, however, the cognitive framework has the potential to also support addressing human performance issues identified in Human Factors applications.

  8. Glutamate synapses in human cognitive disorders.

    Science.gov (United States)

    Volk, Lenora; Chiu, Shu-Ling; Sharma, Kamal; Huganir, Richard L

    2015-07-08

    Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.

  9. The tractable cognition thesis.

    Science.gov (United States)

    Van Rooij, Iris

    2008-09-01

    The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the Tractable Cognition thesis: Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by constraining the space of computational-level theories of cognition. To utilize this constraint, a precise and workable definition of "computational tractability" is needed. Following computer science tradition, many cognitive scientists and psychologists define computational tractability as polynomial-time computability, leading to the P-Cognition thesis. This article explains how and why the P-Cognition thesis may be overly restrictive, risking the exclusion of veridical computational-level theories from scientific investigation. An argument is made to replace the P-Cognition thesis by the FPT-Cognition thesis as an alternative formalization of the Tractable Cognition thesis (here, FPT stands for fixed-parameter tractable). Possible objections to the Tractable Cognition thesis, and its proposed formalization, are discussed, and existing misconceptions are clarified. 2008 Cognitive Science Society, Inc.

  10. Enhancing Human-Machine System Performance by Introducing Artificial Cognition in Vehicle Guidance Work Systems

    Science.gov (United States)

    2009-10-01

    evaluated after each mission using the NASA - TLX method [21]. Moreover, they were interviewed to be able to state problems and suggest system...France, 3 rd -4 th September 2008. [21] Sandra G. Hart & Lowell E. Staveland (1988). Development of NASA - TLX (Task Load Index): Results of...o b s e rv a b le b e h a v io u r o f C P = A C U b e h a v io u r Interpretation Figure 11: The Cognitive Process for generating knowledge

  11. Naturalistic Cognition: A Research Paradigm for Human-Centered Design

    Directory of Open Access Journals (Sweden)

    Peter Storkerson

    2010-01-01

    Full Text Available Naturalistic thinking and knowing, the tacit, experiential, and intuitive reasoning of everyday interaction, have long been regarded as inferior to formal reason and labeled primitive, fallible, subjective, superstitious, and in some cases ineffable. But, naturalistic thinking is more rational and definable than it appears. It is also relevant to design. Inquiry into the mechanisms of naturalistic thinking and knowledge can bring its resources into focus and enable designers to create better, human-centered designs for use in real-world settings. This article makes a case for the explicit, formal study of implicit, naturalistic thinking within the fields of design. It develops a framework for defining and studying naturalistic thinking and knowledge, for integrating them into design research and practice, and for developing a more integrated, consistent theory of knowledge in design. It will (a outline historical definitions of knowledge, attitudes toward formal and naturalistic thinking, and the difficulties presented by the co-presence of formal and naturalistic thinking in design, (b define and contrast formal and naturalistic thinking as two distinct human cognitive systems, (c demonstrate the importance of naturalistic cognition in formal thinking and real-world judgment, (d demonstrate methods for researching naturalistic thinking that can be of use in design, and (e briefly discuss the impact on design theory of admitting naturalistic thinking as valid, systematic, and knowable.

  12. Extended Cognitive System and Epistemic Subject

    Directory of Open Access Journals (Sweden)

    Trybulec Barbara

    2015-03-01

    Full Text Available The concept of an extended cognitive system is central to contemporary studies of cognition. In the paper I analyze the place of the epistemic subject within the extended cognitive system. Is it extended as well? In answering this question I focus on the differences between the first and the second wave of arguments for the extended mind thesis. I argue that the position of Cognitive Integration represented by Richard Menary is much more intuitive and fruitful in analyses of cognition and knowledge than the early argument formulated by Andy Clark and David Chalmers. Cognitive Integration is compatible with virtue epistemology of John Greco’s agent reliabilism. The epistemic subject is constituted by its cognitive character composed of an integrated set of cognitive abilities and processes. Some of these processes are extended, they are a manipulation of external informational structures and, as such, they constitute epistemic practices. Epistemic practices are normative; to conduct them correctly the epistemic subject needs to obey epistemic norms embedded in the cultural context. The epistemic subject is not extended because of the casual coupling with external informational artifacts which extend his mind from inside the head and into the world. Rather, cognitive practices constitute the subject’s mind, they transform his cognitive abilities, and this is what makes the mind and epistemic subject “extended”.

  13. The impact of human-technology cooperation and distributed cognition in forensic science: biasing effects of AFIS contextual information on human experts*

    OpenAIRE

    Dror, Itiel E.; Wertheim, Kasey; Fraser-Mackenzie, Peter; Walajtys, Jeff

    2012-01-01

    Experts play a critical role in forensic decision making, even when cognition is offloaded and distributed between human and machine. In this paper, we investigated the impact of using Automated Fingerprint Identification Systems (AFIS) on human decision makers. We provided 3680 AFIS lists (a total of 55,200 comparisons) to 23 latent fingerprint examiners as part of their normal casework. We manipulated the position of the matching print in the AFIS list. The data showed that latent fingerpri...

  14. Human as the chief controller in the complex system

    International Nuclear Information System (INIS)

    Jung, Yeonsub

    2012-01-01

    Due to accuracy of measurement and improvement of control logic, human beings are freed from time consuming and repeated task. When there are situations where the control logic cannot calculate the next state of system, human beings interrupt the system and steer the system manually. The most scope of human factors is focused on this interruption, and economists are concern how to present information cognitively and reliably. Fukushima nuclear accident has considered the role of human beings again. Human beings are forced to do something without proper knowledge, procedure, and process information. Thus post Fukushima actions should include how for human beings to be trained and how to get real time information. Finally because safety culture can determine behaviors of human beings, the method to cultivate safety culture should be considered

  15. Human friendly man-machine system with advanced media technology

    International Nuclear Information System (INIS)

    Ogino, Takamichi; Sasaki, Kazunori

    1993-01-01

    This paper deals with the methodology to implement the man-machine system (MMS) with enhanced human friendliness for nuclear power plants. The relevant technologies are investigated from the two view points: One is integrated multi-media usage for user-computer interface and the other cognitive engineering for user-task interaction. Promising MMS design methodologies, concepts, and their limitations are discussed. To overcome uncertain factors found in human behaviors or individual differences in performance and preference of operators, a design appproach to natural and flexible man-computer interactive environment is proposed by intergrated use of not only cognitive and psychological knowledge but also advanced media technology. Multi-media operator support system under development is shown as an example to evaluate the effectiveness of the new approach and future advancement is prospected. (orig.)

  16. The Cognitive Advantages of Counting Specifically: A Representational Analysis of Verbal Numeration Systems in Oceanic Languages.

    Science.gov (United States)

    Bender, Andrea; Schlimm, Dirk; Beller, Sieghard

    2015-10-01

    The domain of numbers provides a paradigmatic case for investigating interactions of culture, language, and cognition: Numerical competencies are considered a core domain of knowledge, and yet the development of specifically human abilities presupposes cultural and linguistic input by way of counting sequences. These sequences constitute systems with distinct structural properties, the cross-linguistic variability of which has implications for number representation and processing. Such representational effects are scrutinized for two types of verbal numeration systems-general and object-specific ones-that were in parallel use in several Oceanic languages (English with its general system is included for comparison). The analysis indicates that the object-specific systems outperform the general systems with respect to counting and mental arithmetic, largely due to their regular and more compact representation. What these findings reveal on cognitive diversity, how the conjectures involved speak to more general issues in cognitive science, and how the approach taken here might help to bridge the gap between anthropology and other cognitive sciences is discussed in the conclusion. Copyright © 2015 Cognitive Science Society, Inc.

  17. Estrogen-cholinergic interactions: Implications for cognitive aging.

    Science.gov (United States)

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. Published by Elsevier Inc.

  18. Supervised cognitive system: A new vision for cognitive engine design in wireless networks

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2018-01-01

    Cognitive radio attracts researchers' attention recently in radio resource management due to its ability to exploit environment awareness in configuring radio system parameters. Cognitive engine (CE) is the structure known for deciding system

  19. Classification of cognitive systems dedicated to data sharing

    Science.gov (United States)

    Ogiela, Lidia; Ogiela, Marek R.

    2017-08-01

    In this paper will be presented classification of new cognitive information systems dedicated to cryptographic data splitting and sharing processes. Cognitive processes of semantic data analysis and interpretation, will be used to describe new classes of intelligent information and vision systems. In addition, cryptographic data splitting algorithms and cryptographic threshold schemes will be used to improve processes of secure and efficient information management with application of such cognitive systems. The utility of the proposed cognitive sharing procedures and distributed data sharing algorithms will be also presented. A few possible application of cognitive approaches for visual information management and encryption will be also described.

  20. Nonlinear Dynamics of Emotion-Cognition Interaction: When Emotion Does not Destroy Cognition?

    OpenAIRE

    Afraimovich, Valentin; Young, Todd; Muezzinoglu, Mehmet K.; Rabinovich, Mikhail I.

    2010-01-01

    Emotion (i.e., spontaneous motivation and subsequent implementation of a behavior) and cognition (i.e., problem solving by information processing) are essential to how we, as humans, respond to changes in our environment. Recent studies in cognitive science suggest that emotion and cognition are subserved by different, although heavily integrated, neural systems. Understanding the time-varying relationship of emotion and cognition is a challenging goal with important implications for neurosci...

  1. Cognitive aspects of human motor activity: Contribution of right hemisphere and cerebellum

    Directory of Open Access Journals (Sweden)

    Sedov A. S.

    2017-09-01

    Full Text Available Background. Concepts of movement and action are not completely synonymous, but what distinguishes one from the other? Movement may be defined as stimulus- driven motor acts, while action implies realization of a specific motor goal, essential for cognitively driven behavior. Although recent clinical and neuroimaging studies have revealed some areas of the brain that mediate cognitive aspects of human motor behavior, the identification of the basic neural circuit underlying the interaction between cognitive and motor functions remains a challenge for neurophysiology and psychology. Objective. In the current study, we used functional magnetic resonance imaging (fMRI to investigate elementary cognitive aspects of human motor behavior. Design. Twenty healthy right-handed volunteers were asked to perform stimulus-driven and goal-directed movements by clenching the right hand into a fist (7 times. The cognitive component lay in anticipation of simple stimuli signals. In order to disentangle the purely motor component of stimulus-driven movements, we used the event-related (ER paradigm. FMRI was performed on a 3 Tesla Siemens Magnetom Verio MR-scanner with 32-channel head coil. Results. We have shown differences in the localization of brain activity depending on the involvement of cognitive functions. These differences testify to the role of the cerebellum and the right hemisphere in motor cognition. In particular, our results suggest that right associative cortical areas, together with the right posterolateral cerebellum (Crus I and lobule VI and basal ganglia, de ne cognitive control of motor activity, promoting a shift from a stimulus-driven to a goal-directed mode. Conclusion. These results, along with recent data from research on cerebro-cerebellar circuitry, redefine the scope of tasks for exploring the contribution of the cerebellum to diverse aspects of human motor behavior and cognition.

  2. Action and language integration: from humans to cognitive robots.

    Science.gov (United States)

    Borghi, Anna M; Cangelosi, Angelo

    2014-07-01

    The topic is characterized by a highly interdisciplinary approach to the issue of action and language integration. Such an approach, combining computational models and cognitive robotics experiments with neuroscience, psychology, philosophy, and linguistic approaches, can be a powerful means that can help researchers disentangle ambiguous issues, provide better and clearer definitions, and formulate clearer predictions on the links between action and language. In the introduction we briefly describe the papers and discuss the challenges they pose to future research. We identify four important phenomena the papers address and discuss in light of empirical and computational evidence: (a) the role played not only by sensorimotor and emotional information but also of natural language in conceptual representation; (b) the contextual dependency and high flexibility of the interaction between action, concepts, and language; (c) the involvement of the mirror neuron system in action and language processing; (d) the way in which the integration between action and language can be addressed by developmental robotics and Human-Robot Interaction. Copyright © 2014 Cognitive Science Society, Inc.

  3. COGNITIVE SYSTEMS. REDEFINING THE COOPERATION BETWEEN MAN AND SYSTEM

    OpenAIRE

    Diana-Aderina MOISUC; Mihai-Constantin AVORNICULUI; Melinda Timea FÜLÖP

    2016-01-01

    Cognitive systems appeared as a response to the real challenges brought by the Big Data phenomenon. It was found that the solutions for solving difficult problems caused by this phenomenon could be brought by using artificial intelligence tools. In this context a convergence between Big Data and Artificial Intelligence happened, which determined the start of a new stage in system development, namely the era of cognitive systems. The potential of these systems is given by the characteristics t...

  4. The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging

    Directory of Open Access Journals (Sweden)

    Daniel A Sternberg

    2013-06-01

    Full Text Available Making new breakthroughs in understanding the processes underlying human cognition may depend on the availability of very large datasets that have not historically existed in psychology and neuroscience. Lumosity is a web-based cognitive training platform that has grown to include over 600 million cognitive training task results from over 35 million individuals, comprising the largest existing dataset of human cognitive performance. As part of the Human Cognition Project, Lumosity’s collaborative research program to understand the human mind, Lumos Labs researchers and external research collaborators have begun to explore this dataset in order uncover novel insights about the correlates of cognitive performance. This paper presents two preliminary demonstrations of some of the kinds of questions that can be examined with the dataset. The first example focuses on replicating known findings relating lifestyle factors to baseline cognitive performance in a demographically diverse, healthy population at a much larger scale than has previously been available. The second example examines a question that would likely be very difficult to study in laboratory-based and existing online experimental research approaches: specifically, how learning ability for different types of cognitive tasks changes with age. We hope that these examples will provoke the imagination of researchers who are interested in collaborating to answer fundamental questions about human cognitive performance.

  5. THE HUMAN ACTIVITY AS AFFECTIVE-COGNITIVE UNIT: A HISTORIC-CULTURAL APPROACH

    Directory of Open Access Journals (Sweden)

    Lígia Márcia Martins

    2017-01-01

    Full Text Available This article puts in question the affectional-cognitive unit which sustains the human activity, with the purpose to light incorrectness of approaches which dichotomize reason and emotion. It asserts that such dissociations are founded in theorical-methodological principles which set bounds for explanations about the human psychism, so that the overcoming of referred dualisms puts on as a method matter. For making explicit that assertion, it resorted to Historic-Cultural Psychology, based on that it explains about the psychism as subjective image of objective reality, of Vygotskyan criticisms to Cartesian dualism and the need of a historic-cultural approach on emotion studies, intend to analyzing the human activity as a affective-cognitive unit and the imbricated relations that are waged, within it, among affections, emotions, feelings and thoughts. Once presented the interrelations between emotions and cognitions this exhibition argues that the concepts are necessary as a minimum unit of analysis both of thought and feelings.

  6. Cognitive memory.

    Science.gov (United States)

    Widrow, Bernard; Aragon, Juan Carlos

    2013-05-01

    Regarding the workings of the human mind, memory and pattern recognition seem to be intertwined. You generally do not have one without the other. Taking inspiration from life experience, a new form of computer memory has been devised. Certain conjectures about human memory are keys to the central idea. The design of a practical and useful "cognitive" memory system is contemplated, a memory system that may also serve as a model for many aspects of human memory. The new memory does not function like a computer memory where specific data is stored in specific numbered registers and retrieval is done by reading the contents of the specified memory register, or done by matching key words as with a document search. Incoming sensory data would be stored at the next available empty memory location, and indeed could be stored redundantly at several empty locations. The stored sensory data would neither have key words nor would it be located in known or specified memory locations. Sensory inputs concerning a single object or subject are stored together as patterns in a single "file folder" or "memory folder". When the contents of the folder are retrieved, sights, sounds, tactile feel, smell, etc., are obtained all at the same time. Retrieval would be initiated by a query or a prompt signal from a current set of sensory inputs or patterns. A search through the memory would be made to locate stored data that correlates with or relates to the prompt input. The search would be done by a retrieval system whose first stage makes use of autoassociative artificial neural networks and whose second stage relies on exhaustive search. Applications of cognitive memory systems have been made to visual aircraft identification, aircraft navigation, and human facial recognition. Concerning human memory, reasons are given why it is unlikely that long-term memory is stored in the synapses of the brain's neural networks. Reasons are given suggesting that long-term memory is stored in DNA or RNA

  7. Effects of low-dose recombinant human erythropoietin treatment on cognitive performance

    DEFF Research Database (Denmark)

    Viuff, Søren Lundgaard; Plenge, Ulla; Belhage, Bo

    2017-01-01

    , NUFI or self-reported results between the groups. CONCLUSIONS: In this small study, we found no significant effect of low-dose or micro-dose rhEpo on visual attention, cognitive performance in complex cognitive tasks or self-experienced cognitive performance compared with placebo. FUNDING: The Aase......INTRODUCTION: High-dose recombinant human erythropoietin (rhEpo) has been shown to improve cognitive performance in both healthy volunteers and in patients suffering from diseases affecting the brain. The aim of this study was to examine whether administration of low-dose and even micro-dose rh...

  8. Effects of low-dose recombinant human erythropoietin treatment on cognitive performance

    DEFF Research Database (Denmark)

    Viuff, Søren Lundgaard; Plenge, Ulla; Belhage, Bo

    2017-01-01

    -reported results between the groups. Conclusions: In this small study, we found no significant effect of low-dose or micro-dose rhEpo on visual attention, cognitive performance in complex cognitive tasks or self-experienced cognitive performance compared with placebo. Funding: The Aase and Ejnar Danielsen......Introduction: High-dose recombinant human erythropoietin (rhEpo) has been shown to improve cognitive performance in both healthy volunteers and in patients suffering from diseases affecting the brain. The aim of this study was to examine whether administration of low-dose and even micro-dose rh...

  9. The impacts of nature experience on human cognitive function and mental health.

    Science.gov (United States)

    Bratman, Gregory N; Hamilton, J Paul; Daily, Gretchen C

    2012-02-01

    Scholars spanning a variety of disciplines have studied the ways in which contact with natural environments may impact human well-being. We review the effects of such nature experience on human cognitive function and mental health, synthesizing work from environmental psychology, urban planning, the medical literature, and landscape aesthetics. We provide an overview of the prevailing explanatory theories of these effects, the ways in which exposure to nature has been considered, and the role that individuals' preferences for nature may play in the impact of the environment on psychological functioning. Drawing from the highly productive but disparate programs of research in this area, we conclude by proposing a system of categorization for different types of nature experience. We also outline key questions for future work, including further inquiry into which elements of the natural environment may have impacts on cognitive function and mental health; what the most effective type, duration, and frequency of contact may be; and what the possible neural mechanisms are that could be responsible for the documented effects. © 2012 New York Academy of Sciences.

  10. Cognitive Virtualization: Combining Cognitive Models and Virtual Environments

    International Nuclear Information System (INIS)

    Tuan Q. Tran; David I. Gertman; Donald D. Dudenhoeffer; Ronald L. Boring; Alan R. Mecham

    2007-01-01

    3D manikins are often used in visualizations to model human activity in complex settings. Manikins assist in developing understanding of human actions, movements and routines in a variety of different environments representing new conceptual designs. One such environment is a nuclear power plant control room, here they have the potential to be used to simulate more precise ergonomic assessments of human work stations. Next generation control rooms will pose numerous challenges for system designers. The manikin modeling approach by itself, however, may be insufficient for dealing with the desired technical advancements and challenges of next generation automated systems. Uncertainty regarding effective staffing levels; and the potential for negative human performance consequences in the presence of advanced automated systems (e.g., reduced vigilance, poor situation awareness, mistrust or blind faith in automation, higher information load and increased complexity) call for further research. Baseline assessment of novel control room equipment(s) and configurations needs to be conducted. These design uncertainties can be reduced through complementary analysis that merges ergonomic manikin models with models of higher cognitive functions, such as attention, memory, decision-making, and problem-solving. This paper will discuss recent advancements in merging a theoretical-driven cognitive modeling framework within a 3D visualization modeling tool to evaluate of next generation control room human factors and ergonomic assessment. Though this discussion primary focuses on control room design, the application for such a merger between 3D visualization and cognitive modeling can be extended to various areas of focus such as training and scenario planning

  11. Information Technology and the Cognitive Sciences

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    -computer interaction' studies have been focused on analysis of interface communication. These approaches have, quite naturally, resulted in a rather technology driven, bottom-up research strategy. Application of advanced information technology in large scale installation, however, also calls for a more system oriented......Different approaches to the study of cognitive systems can be identified. The AI related'cognitive science' is based on the information processing metaphor of human cognition in an attempt to reach 'computational' models for behaviour in well-formed micro worlds. Within the field of 'human...

  12. Optimization of automation: I. Estimation method of cognitive automation rates reflecting the effects of automation on human operators in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Min; Kim, Jong Hyun; Seong, Poong Hyun

    2014-01-01

    Highlights: • We propose an estimation method of the automation rate by taking the advantages of automation as the estimation measures. • We conduct the experiments to examine the validity of the suggested method. • The higher the cognitive automation rate is, the greater the decreased rate of the working time will be. • The usefulness of the suggested estimation method is proved by statistical analyses. - Abstract: Since automation was introduced in various industrial fields, the concept of the automation rate has been used to indicate the inclusion proportion of automation among all work processes or facilities. Expressions of the inclusion proportion of automation are predictable, as is the ability to express the degree of the enhancement of human performance. However, many researchers have found that a high automation rate does not guarantee high performance. Therefore, to reflect the effects of automation on human performance, this paper proposes a new estimation method of the automation rate that considers the effects of automation on human operators in nuclear power plants (NPPs). Automation in NPPs can be divided into two types: system automation and cognitive automation. Some general descriptions and characteristics of each type of automation are provided, and the advantages of automation are investigated. The advantages of each type of automation are used as measures of the estimation method of the automation rate. One advantage was found to be a reduction in the number of tasks, and another was a reduction in human cognitive task loads. The system and the cognitive automation rate were proposed as quantitative measures by taking advantage of the aforementioned benefits. To quantify the required human cognitive task loads and thus suggest the cognitive automation rate, Conant’s information-theory-based model was applied. The validity of the suggested method, especially as regards the cognitive automation rate, was proven by conducting

  13. Effect of cognitive biases on human-robot interaction: a case study of robot's misattribution

    OpenAIRE

    Biswas, Mriganka; Murray, John

    2014-01-01

    This paper presents a model for developing long-term human-robot interactions and social relationships based on the principle of 'human' cognitive biases applied to a robot. The aim of this work is to study how a robot influenced with human ‘misattribution’ helps to build better human-robot interactions than unbiased robots. The results presented in this paper suggest that it is important to know the effect of cognitive biases in human characteristics and interactions in order to better u...

  14. Psychosocial and Cultural Modeling in Human Computation Systems: A Gamification Approach

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Riensche, Roderick M.; Haack, Jereme N.; Butner, R. Scott

    2013-11-20

    “Gamification”, the application of gameplay to real-world problems, enables the development of human computation systems that support decision-making through the integration of social and machine intelligence. One of gamification’s major benefits includes the creation of a problem solving environment where the influence of cognitive and cultural biases on human judgment can be curtailed through collaborative and competitive reasoning. By reducing biases on human judgment, gamification allows human computation systems to exploit human creativity relatively unhindered by human error. Operationally, gamification uses simulation to harvest human behavioral data that provide valuable insights for the solution of real-world problems.

  15. System structure and cognitive ability as predictors of performance in dynamic system control tasks

    Directory of Open Access Journals (Sweden)

    Jan Hundertmark

    2015-12-01

    Full Text Available In dynamic system control, cognitive mechanisms and abilities underlying performance may vary depending on the nature of the task. We therefore investigated the effects of system structure and its interaction with cognitive abilities on system control performance. A sample of 127 university students completed a series of different system control tasks that were manipulated in terms of system size and recurrent feedback, either with or without a cognitive load manipulation. Cognitive abilities assessed included reasoning ability, working memory capacity, and cognitive reflection. System size and recurrent feedback affected overall performance as expected. Overall, the results support that cognitive ability is a good predictor of performance in dynamic system control tasks but predictiveness is reduced when the system structure contains recurrent feedback. We discuss this finding from a cognitive processing perspective as well as its implications for individual differences research in dynamic systems.

  16. Assessment of the human factor in the quantification of technical system reliability taking into consideration cognitive-causal aspects. Partial project 2. Modeling of the human behavior for reliability considerations. Final report

    International Nuclear Information System (INIS)

    Jennerich, Marco; Imbsweiler, Jonas; Straeter, Oliver; Arenius, Marcus

    2015-03-01

    This report presents the findings of the project for the consideration of human factor in the quantification of the reliability of technical systems, taking into account cognitive-causal aspects concerning the modeling of human behavior of reliability issues (funded by the Federal Ministry of Economics and Technology; grant number 15014328). This project is part of a joint project with the University of Applied Sciences Zittau / Goerlitz for assessing the human factor in the quantification of the reliability of technical systems. The concern of the University of Applied Sciences Zittau / Goerlitz is the mathematical modeling of human reliability by means of a fuzzy set approach (grant number 1501432A). The part of the project presented here provides the necessary data basis for the evaluation of the mathematical modeling using fuzzy set approach. At the appropriate places in this report, the interfaces and data bases between the two projects are outlined accordingly. HRA-methods (Human Reliability Analysis) are an essential component to analyze the reliability of socio-technical systems. Various methods have been established and are used in different areas of application. The established HRA methods have been checked on their congruence. In particular the underlying models and their parameters such as performance-influencing factors and situational influences have been investigated. The elaborated parameters were combined into a hierarchical class structure. Cross-domain incidents were studied. The specific performance-influencing factors have been worked out and have been integrated into a cross-domain database. The dominant (critical) situational factors and their interactions within the event data were identified using the CAHR method (connectionism Assessment of Human Reliability). Task dependent cognitive load profiles have been defined. Within these profiles qualitative and quantitative data of the possibility of emergence of errors have been acquired. This

  17. A model for assessing human cognitive reliability in PRA studies

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Spurgin, A.J.; Lukic, Y.

    1985-01-01

    This paper summarizes the status of a research project sponsored by EPRI as part of the Probabilistic Risk Assessment (PRA) technology improvement program and conducted by NUS Corporation to develop a model of Human Cognitive Reliability (HCR). The model was synthesized from features identified in a review of existing models. The model development was based on the hypothesis that the key factors affecting crew response times are separable. The inputs to the model consist of key parameters the values of which can be determined by PRA analysts for each accident situation being assessed. The output is a set of curves which represent the probability of control room crew non-response as a function of time for different conditions affecting their performance. The non-response probability is then a contributor to the overall non-success of operating crews to achieve a functional objective identified in the PRA study. Simulator data and some small scale tests were utilized to illustrate the calibration of interim HCR model coefficients for different types of cognitive processing since the data were sparse. The model can potentially help PRA analysts make human reliability assessments more explicit. The model incorporates concepts from psychological models of human cognitive behavior, information from current collections of human reliability data sources and crew response time data from simulator training exercises

  18. Music cognition and the cognitive sciences.

    Science.gov (United States)

    Pearce, Marcus; Rohrmeier, Martin

    2012-10-01

    Why should music be of interest to cognitive scientists, and what role does it play in human cognition? We review three factors that make music an important topic for cognitive scientific research. First, music is a universal human trait fulfilling crucial roles in everyday life. Second, music has an important part to play in ontogenetic development and human evolution. Third, appreciating and producing music simultaneously engage many complex perceptual, cognitive, and emotional processes, rendering music an ideal object for studying the mind. We propose an integrated status for music cognition in the Cognitive Sciences and conclude by reviewing challenges and big questions in the field and the way in which these reflect recent developments. Copyright © 2012 Cognitive Science Society, Inc.

  19. Research on cognitive reliability model for main control room considering human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Jiang Jianjun; Zhang Li; Wang Yiqun; Zhang Kun; Peng Yuyuan; Zhou Cheng

    2012-01-01

    Facing the shortcomings of the traditional cognitive factors and cognitive model, this paper presents a Bayesian networks cognitive reliability model by taking the main control room as a reference background and human factors as the key points. The model mainly analyzes the cognitive reliability affected by the human factors, and for the cognitive node and influence factors corresponding to cognitive node, a series of methods and function formulas to compute the node cognitive reliability is proposed. The model and corresponding methods can be applied to the evaluation of cognitive process for the nuclear power plant operators and have a certain significance for the prevention of safety accidents in nuclear power plants. (authors)

  20. [Cognitive abnormalities and cannabis use].

    Science.gov (United States)

    Solowij, Nadia; Pesa, Nicole

    2010-05-01

    Evidence that cannabis use impairs cognitive function in humans has been accumulating in recent decades. The purpose of this overview is to update knowledge in this area with new findings from the most recent literature. Literature searches were conducted using the Web of Science database up to February 2010. The terms searched were: "cannabi*" or "marijuana", and "cogniti*" or "memory" or "attention" or "executive function", and human studies were reviewed preferentially over the animal literature. Cannabis use impairs memory, attention, inhibitory control, executive functions and decision making, both during the period of acute intoxication and beyond, persisting for hours, days, weeks or more after the last use of cannabis. Pharmacological challenge studies in humans are elucidating the nature and neural substrates of cognitive changes associated with various cannabinoids. Long-term or heavy cannabis use appears to result in longer-lasting cognitive abnormalities and possibly structural brain alterations. Greater adverse cognitive effects are associated with cannabis use commencing in early adolescence. The endogenous cannabinoid system is involved in regulatory neural mechanisms that modulate processes underlying a range of cognitive functions that are impaired by cannabis. Deficits in human users most likely therefore reflect neuroadaptations and altered functioning of the endogenous cannabinoid system.

  1. Evaluation technology of human behavior cognition; Ningen kodo ninchi hyoka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For human engineering and improvement of the living environment, the evaluation technology of human behavior cognition was studied. For the future reformation and creation of economic structure, the following are required: establishment of safe and affluent communities, further improvement of the safety and harmonious balance of people, lives and society, and R & D close to people and social needs. Introduction of Product Liability law and a fail-safe concept are examples of such efforts. However, since many accidents are found in the human society, the relation between human errors and human characteristics should be studied in detail. The cognitive science of human behavior is an objective evaluation technology from the viewpoint of human being, object, environment and society. Based on these social and technological background, the feasibility of the evaluation technology is studied, and the future trend and skeleton of this project are clarified. The domestic and foreign trends of technologies concerned are thus surveyed, and the important points, features, skeleton and ripple effect of the technology are summarized. 500 refs., 70 figs., 5 tabs.

  2. Radio frequency integrated circuit design for cognitive radio systems

    CERN Document Server

    Fahim, Amr

    2015-01-01

    This book fills a disconnect in the literature between Cognitive Radio systems and a detailed account of the circuit implementation and architectures required to implement such systems.  Throughout the book, requirements and constraints imposed by cognitive radio systems are emphasized when discussing the circuit implementation details.  In addition, this book details several novel concepts that advance state-of-the-art cognitive radio systems.  This is a valuable reference for anybody with background in analog and radio frequency (RF) integrated circuit design, needing to learn more about integrated circuits requirements and implementation for cognitive radio systems. ·         Describes in detail cognitive radio systems, as well as the circuit implementation and architectures required to implement them; ·         Serves as an excellent reference to state-of-the-art wideband transceiver design; ·         Emphasizes practical requirements and constraints imposed by cognitive radi...

  3. The Cogs Are Coming: The Cognitive Augmentation Revolution

    Science.gov (United States)

    Fulbright, Ron

    2016-01-01

    We are at the beginning of a new era in human history--the cognitive augmentation era. Until now, humans have had to do all of the thinking. The future will make it possible for humans to partner with cognitive systems doing some of the thinking themselves and in many ways thinking that is superior to humans. Together, humans and "cogs"…

  4. Technological Augmentation of Human Cognition: An Interdisciplinary Review.

    Science.gov (United States)

    Smithsonian Institution, Washington, DC.

    A series of five interdisciplinary conferences held over a two-year period explored new teaching and training concepts and methodologies which offer powerful, symbiotic means of augmenting human cognition. The basic discussion points of the conferences are summarized. It was felt that the conferences were significant in that they brought together…

  5. 1st International Conference on Cognitive Systems and Information Processing

    CERN Document Server

    Hu, Dewen; Liu, Huaping

    2014-01-01

    "Foundations and Practical Applications of Cognitive Systems and Information Processing" presents selected papers from the First International Conference on Cognitive Systems and Information Processing, held in Beijing, China on December 15-17, 2012 (CSIP2012). The aim of this conference is to bring together experts from different fields of expertise to discuss the state-of-the-art in artificial cognitive systems and advanced information processing, and to present new findings and perspectives on future development. This book introduces multidisciplinary perspectives on the subject areas of Cognitive Systems and Information Processing, including cognitive sciences and technology, autonomous vehicles, cognitive psychology, cognitive metrics, information fusion, image/video understanding, brain-computer interfaces, visual cognitive processing, neural computation, bioinformatics, etc. The book will be beneficial for both researchers and practitioners in the fields of Cognitive Science, Computer Science and Cogni...

  6. Categorial Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition

    OpenAIRE

    Phillips, Steven; Wilson, William H.

    2010-01-01

    Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By analogy with the P...

  7. Foundations for Reasoning in Cognition-Based Computational Representations of Human Decision Making; TOPICAL

    International Nuclear Information System (INIS)

    SENGLAUB, MICHAEL E.; HARRIS, DAVID L.; RAYBOURN, ELAINE M.

    2001-01-01

    In exploring the question of how humans reason in ambiguous situations or in the absence of complete information, we stumbled onto a body of knowledge that addresses issues beyond the original scope of our effort. We have begun to understand the importance that philosophy, in particular the work of C. S. Peirce, plays in developing models of human cognition and of information theory in general. We have a foundation that can serve as a basis for further studies in cognition and decision making. Peircean philosophy provides a foundation for understanding human reasoning and capturing behavioral characteristics of decision makers due to cultural, physiological, and psychological effects. The present paper describes this philosophical approach to understanding the underpinnings of human reasoning. We present the work of C. S. Peirce, and define sets of fundamental reasoning behavior that would be captured in the mathematical constructs of these newer technologies and would be able to interact in an agent type framework. Further, we propose the adoption of a hybrid reasoning model based on his work for future computational representations or emulations of human cognition

  8. Constructive anthropomorphism: a functional evolutionary approach to the study of human-like cognitive mechanisms in animals.

    Science.gov (United States)

    Arbilly, Michal; Lotem, Arnon

    2017-10-25

    Anthropomorphism, the attribution of human cognitive processes and emotional states to animals, is commonly viewed as non-scientific and potentially misleading. This is mainly because apparent similarity to humans can usually be explained by alternative, simpler mechanisms in animals, and because there is no explanatory power in analogies to human phenomena when these phenomena are not well understood. Yet, because it is also difficult to preclude real similarity and continuity in the evolution of humans' and animals' cognitive abilities, it may not be productive to completely ignore our understanding of human behaviour when thinking about animals. Here we propose that in applying a functional approach to the evolution of cognitive mechanisms, human cognition may be used to broaden our theoretical thinking and to generate testable hypotheses. Our goal is not to 'elevate' animals, but rather to find the minimal set of mechanistic principles that may explain 'advanced' cognitive abilities in humans, and consider under what conditions these mechanisms were likely to enhance fitness and to evolve in animals. We illustrate this approach, from relatively simple emotional states, to more advanced mechanisms, involved in planning and decision-making, episodic memory, metacognition, theory of mind, and consciousness. © 2017 The Author(s).

  9. Cognition in Space Workshop. 1; Metrics and Models

    Science.gov (United States)

    Woolford, Barbara; Fielder, Edna

    2005-01-01

    "Cognition in Space Workshop I: Metrics and Models" was the first in a series of workshops sponsored by NASA to develop an integrated research and development plan supporting human cognition in space exploration. The workshop was held in Chandler, Arizona, October 25-27, 2004. The participants represented academia, government agencies, and medical centers. This workshop addressed the following goal of the NASA Human System Integration Program for Exploration: to develop a program to manage risks due to human performance and human error, specifically ones tied to cognition. Risks range from catastrophic error to degradation of efficiency and failure to accomplish mission goals. Cognition itself includes memory, decision making, initiation of motor responses, sensation, and perception. Four subgoals were also defined at the workshop as follows: (1) NASA needs to develop a human-centered design process that incorporates standards for human cognition, human performance, and assessment of human interfaces; (2) NASA needs to identify and assess factors that increase risks associated with cognition; (3) NASA needs to predict risks associated with cognition; and (4) NASA needs to mitigate risk, both prior to actual missions and in real time. This report develops the material relating to these four subgoals.

  10. Development and quantitative effect estimation of an integrated decision support system to aid operator's cognitive activities for NPP advanced main control rooms

    International Nuclear Information System (INIS)

    Lee, Seung Jun

    2007-02-01

    As digital and computer technologies have grown, human-machine interfaces (HMIs) have evolved. In safety critical systems, especially in nuclear power plants (NPPs), HMIs are important for reducing operational costs, for reducing the number of necessary operators, and for reducing the probability of accident occurrence. Efforts have been made to improve main control room (MCR) interface design and to develop automation or support systems to ensure convenient operation and maintenance. In this paper, an integrated decision support system to aid the cognitive activities of operators is proposed for advanced MCRs in future NPPs. The proposed system supports not merely a particular task, but also the entire operation process based on a human cognitive process model. It supports the operator's entire cognitive process by integrating decision support systems that support each cognitive activity. In this paper, the operator's operation processes are analyzed based on a human cognitive process model and appropriate support systems that support each activity of the human cognitive process are suggested. Two decision support systems were developed in this paper. The first one is the fault diagnosis advisory system (FDAS) which detects faults and diagnoses them. The FDAS provides a list of possible faults and expected causes to operators. It was implemented using two kinds of neural networks for more reliable diagnosis results. The second system is the multifunctional operator support system for operation guidance, which includes the FDAS and the operation guidance system. The operation guidance system is to prevent operator's commission errors and omission errors. Furthermore, the effect of the proposed system was estimated because to evaluate decision support systems in order to validate their efficiency is as important as to design highly reliable decision support systems. The effect estimations were performed theoretically and experimentally. The Bayesian

  11. Behavioral data requirements for translating cognitive theories into computer software algorithms

    International Nuclear Information System (INIS)

    Meister, D.

    1992-01-01

    This paper reviews the characteristics of cognitive theories and their links to behavioral science and advanced intelligent systems. Cognitive theories model human cognition, perception, and communication. They suggest the human functions the system should have, serve as a philosophical basis for system development, and provide abstract design guidelines. The underlying assumption behind this paper is that if the cognitive theories are to have any value at all, they must be translated into usable systems. A process for testing a cognitive theory in terms of conceptual criteria, behavioral predictions and tests, and software development and tests, is suggested. Criteria for measuring the problem solving success of the advanced system are described. A theory of the system as an intelligent problem solver is presented. (author)

  12. Status of human factors engineering system design in Europe

    International Nuclear Information System (INIS)

    Ives, G.

    1990-01-01

    A review of the European status of human factors engineering has been carried out covering a wide scope of activities which includes psychology, cognitive science, ergonomics, design, training, procedure writing, operating, artificial intelligence and expert systems. There is an increasing awareness of the part that human factors play in major nuclear power plant accidents. The emphasis of attention in human factors is changing. In some areas there are encouraging signs of progress and development, but in other areas there is still scope for improvement

  13. Neuromorphic cognitive systems a learning and memory centered approach

    CERN Document Server

    Yu, Qiang; Hu, Jun; Tan Chen, Kay

    2017-01-01

    This book presents neuromorphic cognitive systems from a learning and memory-centered perspective. It illustrates how to build a system network of neurons to perform spike-based information processing, computing, and high-level cognitive tasks. It is beneficial to a wide spectrum of readers, including undergraduate and postgraduate students and researchers who are interested in neuromorphic computing and neuromorphic engineering, as well as engineers and professionals in industry who are involved in the design and applications of neuromorphic cognitive systems, neuromorphic sensors and processors, and cognitive robotics. The book formulates a systematic framework, from the basic mathematical and computational methods in spike-based neural encoding, learning in both single and multi-layered networks, to a near cognitive level composed of memory and cognition. Since the mechanisms for integrating spiking neurons integrate to formulate cognitive functions as in the brain are little understood, studies of neuromo...

  14. [Cognitive function in patients with systemic sclerosis].

    Science.gov (United States)

    Straszecka, J; Jonderko, G; Kucharz, E J; Brzezińska-Wcisło, L; Kotulska, A; Bogdanowski, T

    1997-09-01

    Central nervous system involvement is seldom reported in patients with systemic sclerosis (SSc). Cognitive functions were determined in 21 patients with definite SSc and 42 healthy controls. Thyroid function was also measured in order to eliminate the effect of hypothyroidism on cognitive functioning. It was found that the SSc patients with normal thyroid function showed defective long-term and recent memory, learning ability, criticism, perception and visuo-perceptual skills, their simple reaction time was prolonged. Similar but less advanced cognitive defects were shown in the SSc patients with overt or latent hypothyroidism. The obtained results indicate that the central nervous system involvement is more common in patients with SSc than it has been reported earlier.

  15. Extending network approach to language dynamics and human cognition. Comment on "Approaching human language with complex networks" by Cong and Liu

    Science.gov (United States)

    Gong, Tao; Shuai, Lan; Wu, Yicheng

    2014-12-01

    By analyzing complex networks constructed from authentic language data, Cong and Liu [1] advance linguistics research into the big data era. The network approach has revealed many intrinsic generalities and crucial differences at both the macro and micro scales between human languages. The axiom behind this research is that language is a complex adaptive system [2]. Although many lexical, semantic, or syntactic features have been discovered by means of analyzing the static and dynamic linguistic networks of world languages, available network-based language studies have not explicitly addressed the evolutionary dynamics of language systems and the correlations between language and human cognition. This commentary aims to provide some insights on how to use the network approach to study these issues.

  16. On Logical Characterisation of Human Concept Learning based on Terminological Systems

    DEFF Research Database (Denmark)

    Badie, Farshad

    2018-01-01

    The central focus of this article is the epistemological assumption that knowledge could be generated based on human beings' experiences and over their conceptions of the world. Logical characterisation of human inductive learning over their produced conceptions within terminological systems and ...... and analysis of actual human inductive reasoning (and learning). This research connects with the topics 'logic & learning', 'cognitive modelling' and 'terminological knowledge representation'.......The central focus of this article is the epistemological assumption that knowledge could be generated based on human beings' experiences and over their conceptions of the world. Logical characterisation of human inductive learning over their produced conceptions within terminological systems...

  17. Multimodal neural correlates of cognitive control in the Human Connectome Project.

    Science.gov (United States)

    Lerman-Sinkoff, Dov B; Sui, Jing; Rachakonda, Srinivas; Kandala, Sridhar; Calhoun, Vince D; Barch, Deanna M

    2017-12-01

    Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions

  18. Collective cognition in humans: groups outperform their best members in a sentence reconstruction task.

    Directory of Open Access Journals (Sweden)

    Romain J G Clément

    Full Text Available Group-living is widespread among animals and one of the major advantages of group-living is the ability of groups to solve cognitive problems that exceed individual ability. Humans also make use of collective cognition and have simultaneously developed a highly complex language to exchange information. Here we investigated collective cognition of human groups regarding language use in a realistic situation. Individuals listened to a public announcement and had to reconstruct the sentence alone or in groups. This situation is often encountered by humans, for instance at train stations or airports. Using recent developments in machine speech recognition, we analysed how well individuals and groups reconstructed the sentences from a syntactic (i.e., the number of errors and semantic (i.e., the quality of the retrieved information perspective. We show that groups perform better both on a syntactic and semantic level than even their best members. Groups made fewer errors and were able to retrieve more information when reconstructing the sentences, outcompeting even their best group members. Our study takes collective cognition studies to the more complex level of language use in humans.

  19. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  20. Geo-spatial Cognition on Human's Social Activity Space Based on Multi-scale Grids

    Directory of Open Access Journals (Sweden)

    ZHAI Weixin

    2016-12-01

    Full Text Available Widely applied location aware devices, including mobile phones and GPS receivers, have provided great convenience for collecting large volume individuals' geographical information. The researches on the human's society behavior space has attracts an increasingly number of researchers. In our research, based on location-based Flickr data From 2004 to May, 2014 in China, we choose five levels of spatial grids to form the multi-scale frame for investigate the correlation between the scale and the geo-spatial cognition on human's social activity space. The HT-index is selected as the fractal inspired by Alexander to estimate the maturity of the society activity on different scales. The results indicate that that the scale characteristics are related to the spatial cognition to a certain extent. It is favorable to use the spatial grid as a tool to control scales for geo-spatial cognition on human's social activity space.

  1. Extended Cognition: Feedback Loops and Coupled Systems

    Directory of Open Access Journals (Sweden)

    Olga Markic

    2017-12-01

    Full Text Available The article explores two waves of active externalism. I first introduce the distinction between passive and active externalism and analyse a proposal of active externalism based on the principle of parity proposed by Clark and Chalmers. There are two main obstacles, causal-constitution fallacy and cognitive bloat, that threaten the extended cognition hypothesis. The second wave of discussions based on the complementarity principle deals with cognitive systems with feedback loops between internal and external elements and is a more radical departure from functionalism and traditional thinking about cognition. I conclude with some remarks on potential ethical considerations of extended cognition.

  2. Functional relations and cognitive psychology: Lessons from human performance and animal research.

    Science.gov (United States)

    Proctor, Robert W; Urcuioli, Peter J

    2016-02-01

    We consider requirements for effective interdisciplinary communication and explore alternative interpretations of "building bridges between functional and cognitive psychology." If the bridges are intended to connect radical behaviourism and cognitive psychology, or functional contextualism and cognitive psychology, the efforts are unlikely to be successful. But if the bridges are intended to connect functional relationships and cognitive theory, no construction is needed because the bridges already exist within cognitive psychology. We use human performance and animal research to illustrate the latter point and to counter the claim that the functional approach is unique in offering a close relationship between science and practice. Effective communication will be enhanced and, indeed, may only occur if the goal of functional contextualism extends beyond just "the advancement of functional contextual cognitive and behavioral science and practice" to "the advancement of cognitive and behavioral science and practice" without restriction. © 2015 International Union of Psychological Science.

  3. An Unobtrusive System to Measure, Assess, and Predict Cognitive Workload in Real-World Environments

    Science.gov (United States)

    Bracken, Bethany K.; Palmon, Noa; Elkin-Frankston, Seth; Irvin, Scott; Jenkins, Michael; Farry, Mike

    2017-01-01

    Across many careers, individuals face alternating periods of high and low attention and cognitive workload, which can result in impaired cognitive functioning and can be detrimental to job performance. For example, some professions (e.g., fire fighters, emergency medical personnel, doctors and nurses working in an emergency room, pilots) require long periods of low workload (boredom), followed by sudden, high-tempo operations during which they may be required to respond to an emergency and perform at peak cognitive levels. Conversely, other professions (e.g., air traffic controllers, market investors in financial industries, analysts) require long periods of high workload and multitasking during which the addition of just one more task results in cognitive overload resulting in mistakes. An unobtrusive system to measure, assess, and predict cognitive workload could warn individuals, their teammates, or their supervisors when steps should be taken to augment cognitive readiness. In this talk I will describe an approach to this problem that we have found to be successful across work domains including: (1) a suite of unobtrusive, field-ready neurophysiological, physiological, and behavioral sensors that are chosen to best suit the target environment; (2) custom algorithms and statistical techniques to process and time-align raw data originating from the sensor suite; (3) probabilistic and statistical models designed to interpret the data into the human state of interest (e.g., cognitive workload, attention, fatigue); (4) and machine-learning techniques to predict upcoming performance based on the current pattern of events, and (5) display of each piece of information depending on the needs of the target user who may or may not want to drill down into the functioning of the system to determine how conclusions about human state and performance are determined. I will then focus in on our experimental results from our custom functional near-infrared spectroscopy sensor

  4. Do subjective cognitive complaints correlate with cognitive impairment in systemic lupus erythematosus? A Danish outpatient study

    DEFF Research Database (Denmark)

    Vogel, A; Bhattacharya, S; Larsen, J L

    2011-01-01

    This study examined the prevalence of cognitive impairment and its association with depressive symptoms and self-reported cognitive complaints in Danish outpatients with systemic lupus erythematosus (SLE). Fifty-seven consecutive female SLE-outpatients were examined with a comprehensive neuropsyc......This study examined the prevalence of cognitive impairment and its association with depressive symptoms and self-reported cognitive complaints in Danish outpatients with systemic lupus erythematosus (SLE). Fifty-seven consecutive female SLE-outpatients were examined with a comprehensive...

  5. Cognitive impairments, HCI and daily living

    DEFF Research Database (Denmark)

    Keates, Simeon; Kozloski, James; Varker, Philip

    2009-01-01

    As computer systems become increasingly more pervasive in everyday life, it is simultaneously becoming ever more important that the concept of universal access is accepted as a design mantra. While many physical impairments and their implications for human-computer interaction are well understood......, cognitive impairments have received comparatively little attention. One of the reasons for this is the general lack of sufficiently detailed cognitive models. This paper examines how cognitive impairments can affect human-computer interaction in everyday life and the issues involved in trying to make...

  6. A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems

    Science.gov (United States)

    Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  7. An autonomous, automated and mobile device to concurrently assess several cognitive functions in group-living non-human primates.

    Science.gov (United States)

    Fizet, Jonas; Rimele, Adam; Pebayle, Thierry; Cassel, Jean-Christophe; Kelche, Christian; Meunier, Hélène

    2017-11-01

    Research methods in cognitive neuroscience using non-human primates have undergone notable changes over the last decades. Recently, several research groups have described freely accessible devices equipped with a touchscreen interface. Two characteristics of such systems are of particular interest: some apparatuses include automated identification of subjects, while others are mobile. Here, we designed, tested and validated an experimental system that, for the first time, combine automatization and mobility. Moreover, our system allows autonomous learning and testing of cognitive performance in group-living subjects, including follow-up assessments. The mobile apparatus is designed to be available 24h a day, 7days a week, in a typical confined primate breeding and housing facility. Here we present as proof of concept, the results of two pilot studies. We report that rhesus macaques (Macaca mulatta) learned the tasks rapidly and achieved high-level of stable performance. Approaches of this kind should be developed for future pharmacological and biomedical studies in non-human primates. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Psychedelics and cognitive liberty: Reimagining drug policy through the prism of human rights.

    Science.gov (United States)

    Walsh, Charlotte

    2016-03-01

    This paper reimagines drug policy--specifically psychedelic drug policy--through the prism of human rights. Challenges to the incumbent prohibitionist paradigm that have been brought from this perspective to date--namely by calling for exemptions from criminalisation on therapeutic or religious grounds--are considered, before the assertion is made that there is a need to go beyond such reified constructs, calling for an end to psychedelic drug prohibitions on the basis of the more fundamental right to cognitive liberty. This central concept is explicated, asserted as being a crucial component of freedom of thought, as enshrined within Article 9 of the European Convention on Human Rights (ECHR). It is argued that the right to cognitive liberty is routinely breached by the existence of the system of drug prohibition in the United Kingdom (UK), as encoded within the Misuse of Drugs Act 1971 (MDA). On this basis, it is proposed that Article 9 could be wielded to challenge the prohibitive system in the courts. This legal argument is supported by a parallel and entwined argument grounded in the political philosophy of classical liberalism: namely, that the state should only deploy the criminal law where an individual's actions demonstrably run a high risk of causing harm to others. Beyond the courts, it is recommended that this liberal, rights-based approach also inform psychedelic drug policy activism, moving past the current predominant focus on harm reduction, towards a prioritization of benefit maximization. How this might translate in to a different regulatory model for psychedelic drugs, a third way, distinct from the traditional criminal and medical systems of control, is tentatively considered. However, given the dominant political climate in the UK--with its move away from rights and towards a more authoritarian drug policy--the possibility that it is only through underground movements that cognitive liberty will be assured in the foreseeable future is

  9. The serotonergic system and cognitive function

    Directory of Open Access Journals (Sweden)

    Švob Štrac Dubravka

    2016-01-01

    Full Text Available Symptoms of cognitive dysfunction like memory loss, poor concentration, impaired learning and executive functions are characteristic features of both schizophrenia and Alzheimer’s disease (AD. The neurobiological mechanisms underlying cognition in healthy subjects and neuropsychiatric patients are not completely understood. Studies have focused on serotonin (5-hydroxytryptamine, 5-HT as one of the possible cognitionrelated biomarkers. The aim of this review is to provide a summary of the current literature on the role of the serotonergic (5-HTergic system in cognitive function, particularly in AD and schizophrenia.

  10. Humanity in the Digital Age: Cognitive, Social, Emotional, and Ethical Implications

    Science.gov (United States)

    Yamamoto, Junko; Ananou, Simeon

    2015-01-01

    Even though technology has brought great benefits to current society, there are also indications that the manner in which people use technology has undermined their humanity in some respects. In this article the authors frame human nature in terms of four dimensions: cognition, social interaction, emotion, and ethics. We argue that while basic…

  11. Inverted-U shaped dopamine actions on human working memory and cognitive control

    Science.gov (United States)

    Cools, R; D’Esposito, M

    2011-01-01

    Brain dopamine has long been implicated in cognitive control processes, including working memory. However, the precise role of dopamine in cognition is not well understood, partly because there is large variability in the response to dopaminergic drugs both across different behaviors and across different individuals. We review evidence from a series of studies with experimental animals, healthy humans and patients with Parkinson’s disease, which highlight two important factors that contribute to this large variability. First, the existence of an optimum dopamine level for cognitive function implicates the need to take into account baseline levels of dopamine when isolating dopamine’s effects. Second, cognitive control is a multi-factorial phenomenon, requiring a dynamic balance between cognitive stability and cognitive flexibility. These distinct components might implicate the prefrontal cortex and the striatum respectively. Manipulating dopamine will thus have paradoxical consequences for distinct cognitive control processes depending on distinct basal or optimal levels of dopamine in different brain regions. PMID:21531388

  12. Cognitive Bias in Systems Verification

    Science.gov (United States)

    Larson, Steve

    2012-01-01

    Working definition of cognitive bias: Patterns by which information is sought and interpreted that can lead to systematic errors in decisions. Cognitive bias is used in diverse fields: Economics, Politics, Intelligence, Marketing, to name a few. Attempts to ground cognitive science in physical characteristics of the cognitive apparatus exceed our knowledge. Studies based on correlations; strict cause and effect is difficult to pinpoint. Effects cited in the paper and discussed here have been replicated many times over, and appear sound. Many biases have been described, but it is still unclear whether they are all distinct. There may only be a handful of fundamental biases, which manifest in various ways. Bias can effect system verification in many ways . Overconfidence -> Questionable decisions to deploy. Availability -> Inability to conceive critical tests. Representativeness -> Overinterpretation of results. Positive Test Strategies -> Confirmation bias. Debiasing at individual level very difficult. The potential effect of bias on the verification process can be managed, but not eliminated. Worth considering at key points in the process.

  13. A case for human systems neuroscience.

    Science.gov (United States)

    Gardner, J L

    2015-06-18

    Can the human brain itself serve as a model for a systems neuroscience approach to understanding the human brain? After all, how the brain is able to create the richness and complexity of human behavior is still largely mysterious. What better choice to study that complexity than to study it in humans? However, measurements of brain activity typically need to be made non-invasively which puts severe constraints on what can be learned about the internal workings of the brain. Our approach has been to use a combination of psychophysics in which we can use human behavioral flexibility to make quantitative measurements of behavior and link those through computational models to measurements of cortical activity through magnetic resonance imaging. In particular, we have tested various computational hypotheses about what neural mechanisms could account for behavioral enhancement with spatial attention (Pestilli et al., 2011). Resting both on quantitative measurements and considerations of what is known through animal models, we concluded that weighting of sensory signals by the magnitude of their response is a neural mechanism for efficient selection of sensory signals and consequent improvements in behavioral performance with attention. While animal models have many technical advantages over studying the brain in humans, we believe that human systems neuroscience should endeavor to validate, replicate and extend basic knowledge learned from animal model systems and thus form a bridge to understanding how the brain creates the complex and rich cognitive capacities of humans. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Cognitive Bias in the Verification and Validation of Space Flight Systems

    Science.gov (United States)

    Larson, Steve

    2012-01-01

    Cognitive bias is generally recognized as playing a significant role in virtually all domains of human decision making. Insight into this role is informally built into many of the system engineering practices employed in the aerospace industry. The review process, for example, typically has features that help to counteract the effect of bias. This paper presents a discussion of how commonly recognized biases may affect the verification and validation process. Verifying and validating a system is arguably more challenging than development, both technically and cognitively. Whereas there may be a relatively limited number of options available for the design of a particular aspect of a system, there is a virtually unlimited number of potential verification scenarios that may be explored. The probability of any particular scenario occurring in operations is typically very difficult to estimate, which increases reliance on judgment that may be affected by bias. Implementing a verification activity often presents technical challenges that, if they can be overcome at all, often result in a departure from actual flight conditions (e.g., 1-g testing, simulation, time compression, artificial fault injection) that may raise additional questions about the meaningfulness of the results, and create opportunities for the introduction of additional biases. In addition to mitigating the biases it can introduce directly, the verification and validation process must also overcome the cumulative effect of biases introduced during all previous stages of development. A variety of cognitive biases will be described, with research results for illustration. A handful of case studies will be presented that show how cognitive bias may have affected the verification and validation process on recent JPL flight projects, identify areas of strength and weakness, and identify potential changes or additions to commonly used techniques that could provide a more robust verification and validation of

  15. Cognitive genomics: Linking genes to behavior in the human brain

    Directory of Open Access Journals (Sweden)

    Genevieve Konopka

    2017-02-01

    Full Text Available Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic localization as well as tissue-specific epigenetics and expression. The use of brain-derived expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts.

  16. Linking human factors to corporate strategy with cognitive mapping techniques.

    Science.gov (United States)

    Village, Judy; Greig, Michael; Salustri, Filippo A; Neumann, W Patrick

    2012-01-01

    For human factors (HF) to avoid being considered of "side-car" status, it needs to be positioned within the organization in such a way that it affects business strategies and their implementation. Tools are needed to support this effort. This paper explores the feasibility of applying a technique from operational research called cognitive mapping to link HF to corporate strategy. Using a single case study, a cognitive map is drawn to reveal the complex relationships between human factors and achieving an organization's strategic goals. Analysis of the map for central concepts and reinforcing loops enhances understanding that can lead to discrete initiatives to facilitate integration of HF. It is recommended that this technique be used with senior managers to understand the organizations` strategic goals and enhance understanding of the potential for HF to contribute to the strategic goals.

  17. Anticipatory Cognitive Systems: a Theoretical Model

    Science.gov (United States)

    Terenzi, Graziano

    This paper deals with the problem of understanding anticipation in biological and cognitive systems. It is argued that a physical theory can be considered as biologically plausible only if it incorporates the ability to describe systems which exhibit anticipatory behaviors. The paper introduces a cognitive level description of anticipation and provides a simple theoretical characterization of anticipatory systems on this level. Specifically, a simple model of a formal anticipatory neuron and a model (i.e. the τ-mirror architecture) of an anticipatory neural network which is based on the former are introduced and discussed. The basic feature of this architecture is that a part of the network learns to represent the behavior of the other part over time, thus constructing an implicit model of its own functioning. As a consequence, the network is capable of self-representation; anticipation, on a oscopic level, is nothing but a consequence of anticipation on a microscopic level. Some learning algorithms are also discussed together with related experimental tasks and possible integrations. The outcome of the paper is a formal characterization of anticipation in cognitive systems which aims at being incorporated in a comprehensive and more general physical theory.

  18. Applying Cognitive Psychology to User Interfaces

    Science.gov (United States)

    Durrani, Sabeen; Durrani, Qaiser S.

    This paper explores some key aspects of cognitive psychology that may be mapped onto user interfaces. Major focus in existing user interface guidelines is on consistency, simplicity, feedback, system messages, display issues, navigation, colors, graphics, visibility and error prevention [8-10]. These guidelines are effective indesigning user interfaces. However, these guidelines do not handle the issues that may arise due to the innate structure of human brain and human limitations. For example, where to place graphics on the screen so that user can easily process them and what kind of background should be given on the screen according to the limitation of human motor system. In this paper we have collected some available guidelines from the area of cognitive psychology [1, 5, 7]. In addition, we have extracted few guidelines from theories and studies of cognitive psychology [3, 11] which may be mapped to user interfaces.

  19. A Layered Active Memory Architecture for Cognitive Vision Systems

    OpenAIRE

    Kolonias, Ilias; Christmas, William; Kittler, Josef

    2007-01-01

    Recognising actions and objects from video material has attracted growing research attention and given rise to important applications. However, injecting cognitive capabilities into computer vision systems requires an architecture more elaborate than the traditional signal processing paradigm for information processing. Inspired by biological cognitive systems, we present a memory architecture enabling cognitive processes (such as selecting the processes required for scene understanding, laye...

  20. Supervised cognitive system: A new vision for cognitive engine design in wireless networks

    KAUST Repository

    Alqerm, Ismail

    2018-03-19

    Cognitive radio attracts researchers\\' attention recently in radio resource management due to its ability to exploit environment awareness in configuring radio system parameters. Cognitive engine (CE) is the structure known for deciding system parameters\\' adaptation using optimization and machine learning techniques. However, these techniques have strengths and weaknesses depending on the experienced network scenario that make one more appropriate than others. In this paper, we propose a novel design for the cognitive system called supervised cognitive system (SCS), which aims to perform radio parameters adaptation with the most appropriate CE learning technique for the encountered network scenario. To realize SCS, it is required to evaluate the performance of different CEs in different network scenarios and according to certain performance objectives. In addition, the ability to select the most appropriate CE learning technique for adaptation in the current network scenario is also a priority in our design. Therefore, SCS investigates the relationship between learning and performance improvement and it employs online learning to classify scenarios and select the most appropriate CE learning technique. The testbed implementation and evaluation results in terms of goodput, packet error rate, and spectral efficiency show that the proposed SCS achieves more than 50% in performance gain compared to the best standalone CE.

  1. The future of future-oriented cognition in non-humans: theory and the empirical case of the great apes.

    Science.gov (United States)

    Osvath, Mathias; Martin-Ordas, Gema

    2014-11-05

    One of the most contested areas in the field of animal cognition is non-human future-oriented cognition. We critically examine key underlying assumptions in the debate, which is mainly preoccupied with certain dichotomous positions, the most prevalent being whether or not 'real' future orientation is uniquely human. We argue that future orientation is a theoretical construct threatening to lead research astray. Cognitive operations occur in the present moment and can be influenced only by prior causation and the environment, at the same time that most appear directed towards future outcomes. Regarding the current debate, future orientation becomes a question of where on various continua cognition becomes 'truly' future-oriented. We question both the assumption that episodic cognition is the most important process in future-oriented cognition and the assumption that future-oriented cognition is uniquely human. We review the studies on future-oriented cognition in the great apes to find little doubt that our closest relatives possess such ability. We conclude by urging that future-oriented cognition not be viewed as expression of some select set of skills. Instead, research into future-oriented cognition should be approached more like research into social and physical cognition. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2006-09-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  3. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2008-11-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  4. System ergonomics as an approach to improve human reliability

    International Nuclear Information System (INIS)

    Bubb, H.

    1988-01-01

    The application of system technics on ergonomical problems is called system ergonomics. This enables improvements of human reliability by design measures. The precondition for this is the knowledge of how information processing is performed by man and machine. By a separate consideration of sensory processing, cognitive processing, and motory processing it is possible to have a more exact idea of the system element 'man'. The system element 'machine' is well described by differential equations which allow an ergonomical assessment of the manouverability. The knowledge of information processing of man and machine enables a task analysis. This makes appear on one hand the human boundaries depending on the different properties of the task and on the other hand suitable ergonomical solution proposals which improve the reliability of the total system. It is a disadvantage, however, that the change of human reliability by such measures may not be quoted numerically at the moment. (orig.)

  5. The structure of creative cognition in the human brain

    Directory of Open Access Journals (Sweden)

    Rex Eugene Jung

    2013-07-01

    Full Text Available Creativity is a vast construct, seemingly intractable to scientific inquiry – perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR. Behaviorally, one can limit the blind variation component to idea generation tests as manifested by measures of divergent thinking. The selective retention component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI, Diffusion Tensor Imaging (DTI, and proton magnetic resonance imaging (1H-MRS. We also review lesion studies, considered to be the gold standard of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981. We provide a perspective, involving aspects of the default mode network, which might provide a first approximation regarding how creative cognition might map on to the human brain.

  6. How Do Humans Perceive Emotion?

    Institute of Scientific and Technical Information of China (English)

    LI Wen

    2017-01-01

    Emotion carries crucial qualities of the human condition, representing one of the major challenges in artificial intelligence. Re-search in psychology and neuroscience in the past two to three decades has generated rich insights into the processes underlying human emotion. Cognition and emotion represent the two main pillars of the human psyche and human intelligence. While the hu-man cognitive system and cognitive brain has inspired and informed computer science and artificial intelligence, the future is ripe for the human emotion system to be integrated into artificial intelligence and robotic systems. Here, we review behavioral and neu-ral findings in human emotion perception, including facial emotion perception, olfactory emotion perception, multimodal emotion perception, and the time course of emotion perception. It is our hope that knowledge of how humans perceive emotion will help bring artificial intelligence strides closer to human intelligence.

  7. The Effect of the Human Peptide GHK on Gene Expression Relevant to Nervous System Function and Cognitive Decline

    Directory of Open Access Journals (Sweden)

    Loren Pickart

    2017-02-01

    Full Text Available Neurodegeneration, the progressive death of neurons, loss of brain function, and cognitive decline is an increasing problem for senior populations. Its causes are poorly understood and therapies are largely ineffective. Neurons, with high energy and oxygen requirements, are especially vulnerable to detrimental factors, including age-related dysregulation of biochemical pathways caused by altered expression of multiple genes. GHK (glycyl-l-histidyl-l-lysine is a human copper-binding peptide with biological actions that appear to counter aging-associated diseases and conditions. GHK, which declines with age, has health promoting effects on many tissues such as chondrocytes, liver cells and human fibroblasts, improves wound healing and tissue regeneration (skin, hair follicles, stomach and intestinal linings, boney tissue, increases collagen, decorin, angiogenesis, and nerve outgrowth, possesses anti-oxidant, anti-inflammatory, anti-pain and anti-anxiety effects, increases cellular stemness and the secretion of trophic factors by mesenchymal stem cells. Studies using the Broad Institute Connectivity Map show that GHK peptide modulates expression of multiple genes, resetting pathological gene expression patterns back to health. GHK has been recommended as a treatment for metastatic cancer, Chronic Obstructive Lung Disease, inflammation, acute lung injury, activating stem cells, pain, and anxiety. Here, we present GHK’s effects on gene expression relevant to the nervous system health and function.

  8. Adaptive OFDM System Design For Cognitive Radio

    NARCIS (Netherlands)

    Zhang, Q.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2006-01-01

    Recently, Cognitive Radio has been proposed as a promising technology to improve spectrum utilization. A highly flexible OFDM system is considered to be a good candidate for the Cognitive Radio baseband processing where individual carriers can be switched off for frequencies occupied by a licensed

  9. HUMAN DEVELOPMENT, COGNITION AND SCHOOL EDUCATION: REFLECTIONS BELOW THE HISTORICAL-CULTURAL APPROACH

    Directory of Open Access Journals (Sweden)

    Solange Maria Alves

    2016-07-01

    Full Text Available This text is fruit of studies, reflections and dialogues developed with graduate and post-graduate students inteaching and research coordinated by me, allocated in the research group: Human Development, Culture and Education, in rows : Language, Learning and Development and Imaginary Production and Creative Education. Over several years, the task of educational coordinating processes of teaching and research, allowed the construction of synthesis (always provisional, presented here. Having as a foundation the historic-cultural theory of Vygotsky and collaborators, the text reflects about human development, cognition and school education, pursuing the thesis that cognition is human development. To do this, search, in theoretical foundations of historical-cultural conception, the key elements that explain the process by which the biological becomes socio-historical, it takes up more carefully in the explicit about Vygotsky translates as plans or genetic fields of human development, increase the reflection articulating the categories: labor and language.

  10. Cognitive Network Modeling as a Basis for Characterizing Human Communication Dynamics and Belief Contagion in Technology Adoption

    Science.gov (United States)

    Hutto, Clayton; Briscoe, Erica; Trewhitt, Ethan

    2012-01-01

    Societal level macro models of social behavior do not sufficiently capture nuances needed to adequately represent the dynamics of person-to-person interactions. Likewise, individual agent level micro models have limited scalability - even minute parameter changes can drastically affect a model's response characteristics. This work presents an approach that uses agent-based modeling to represent detailed intra- and inter-personal interactions, as well as a system dynamics model to integrate societal-level influences via reciprocating functions. A Cognitive Network Model (CNM) is proposed as a method of quantitatively characterizing cognitive mechanisms at the intra-individual level. To capture the rich dynamics of interpersonal communication for the propagation of beliefs and attitudes, a Socio-Cognitive Network Model (SCNM) is presented. The SCNM uses socio-cognitive tie strength to regulate how agents influence--and are influenced by--one another's beliefs during social interactions. We then present experimental results which support the use of this network analytical approach, and we discuss its applicability towards characterizing and understanding human information processing.

  11. A Framework for the Cognitive Task Analysis in Systems Design

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    he present rapid development of advanced information technology and its use for support of operators of complex technical systems are changing the content of task analysis towards the analysis of mental activities in decision making. Automation removes the humans from routine tasks, and operators...... are left with disturbance control and critical diagnostic tasks, for which computers are suitable for support, if it is possible to match the computer strategies and interface formats dynamically to the requirements of the current task by means of an analysis of the cognitive task....

  12. Operational Roles, Aircrew Systems and Human Factors in Future High Performance Aircraft

    Science.gov (United States)

    1980-03-01

    sensory, muscular , and cognitive capacities in responding to all of the mission stresses. To ensure accomplishment of operational missions, the...no more effective than its human operators: in that sense the system is merely an extension of the operator’s sensory, muscular and cognitive...autoriser la. res- -piration on surpres ot A fort Sradient d’une part, assurer un rapport de prossioar. - tant In distension pulnonairo lors d’uno

  13. No Effect of TETRA Hand Portable Transmission Signals on Human Cognitive Function and Symptoms

    DEFF Research Database (Denmark)

    Riddervold, Ingunn Skogstad; Kjærgaard, Søren K.; Pedersen, Gert F.

    2010-01-01

    Current radio frequency radiation exposure guidelines rest on well-established thermal effects. However, recent research into analogue and digital transmission fields at levels covered by the exposure guidelines has indicated possible detrimental effects on human cognitive performance. To investi......Current radio frequency radiation exposure guidelines rest on well-established thermal effects. However, recent research into analogue and digital transmission fields at levels covered by the exposure guidelines has indicated possible detrimental effects on human cognitive performance....... To investigate this, we conducted a controlled climate chamber study of possible changes in cognitive performance in healthy volunteers exposed to transmission signals from TETRA hand portables (TETRA handsets). The trial deployed a balanced, randomized, double-blinded cross-over design. Performance on different...... paper-and-pencil, auditory and computer-based cognitive tasks was monitored in 53 male volunteers (mean age 36.41 years, SD 8.35) during 45-min exposure to a TETRA handset and sham control signals remotely controlled from a laboratory more than 100 km away. The main cognitive outcome was the Trail...

  14. A mid-layer model for human reliability analysis: understanding the cognitive causes of human failure events

    International Nuclear Information System (INIS)

    Shen, Song-Hua; Chang, James Y.H.; Boring, Ronald L.; Whaley, April M.; Lois, Erasmia; Langfitt Hendrickson, Stacey M.; Oxstrand, Johanna H.; Forester, John Alan; Kelly, Dana L.; Mosleh, Ali

    2010-01-01

    The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  15. A Mid-Layer Model for Human Reliability Analysis: Understanding the Cognitive Causes of Human Failure Events

    Energy Technology Data Exchange (ETDEWEB)

    Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring; James Y. H. Chang; Song-Hua Shen; Ali Mosleh; Johanna H. Oxstrand; John A. Forester; Dana L. Kelly; Erasmia L. Lois

    2010-06-01

    The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  16. An intelligent multi-media human-computer dialogue system

    Science.gov (United States)

    Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.

    1988-01-01

    Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.

  17. Imagination in human social cognition, autism, and psychotic-affective conditions.

    Science.gov (United States)

    Crespi, Bernard; Leach, Emma; Dinsdale, Natalie; Mokkonen, Mikael; Hurd, Peter

    2016-05-01

    Complex human social cognition has evolved in concert with risks for psychiatric disorders. Recently, autism and psychotic-affective conditions (mainly schizophrenia, bipolar disorder, and depression) have been posited as psychological 'opposites' with regard to social-cognitive phenotypes. Imagination, considered as 'forming new ideas, mental images, or concepts', represents a central facet of human social evolution and cognition. Previous studies have documented reduced imagination in autism, and increased imagination in association with psychotic-affective conditions, yet these sets of findings have yet to be considered together, or evaluated in the context of the diametric model. We first review studies of the components, manifestations, and neural correlates of imagination in autism and psychotic-affective conditions. Next, we use data on dimensional autism in healthy populations to test the hypotheses that: (1) imagination represents the facet of autism that best accounts for its strongly male-biased sex ratio, and (2) higher genetic risk of schizophrenia is associated with higher imagination, in accordance with the predictions of the diametric model. The first hypothesis was supported by a systematic review and meta-analysis showing that Imagination exhibits the strongest male bias of all Autism Quotient (AQ) subscales, in non-clinical populations. The second hypothesis was supported, for males, by associations between schizophrenia genetic risk scores, derived from a set of single-nucleotide polymorphisms, and the AQ Imagination subscale. Considered together, these findings indicate that imagination, especially social imagination as embodied in the default mode human brain network, mediates risk and diametric dimensional phenotypes of autism and psychotic-affective conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Selective neuronal lapses precede human cognitive lapses following sleep deprivation.

    Science.gov (United States)

    Nir, Yuval; Andrillon, Thomas; Marmelshtein, Amit; Suthana, Nanthia; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2017-12-01

    Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke. Moreover, sleep deprivation brings about vehicle accidents and medical errors and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits, but the underlying mechanisms remain unclear. Recently, through study of electroencephalograms (EEGs) in humans and local field potentials (LFPs) in nonhuman primates and rodents it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT) over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results show that cognitive lapses involve local state-dependent changes in neuronal activity already present in the MTL.

  19. Framework for man-machine interface design evaluation system considering cognitive factor

    International Nuclear Information System (INIS)

    Itoh, Toru; Sasaki, Kazunori; Yoshikawa, Hidekazu; Takahashi, Makoto; Furuta, Tomihiko.

    1994-01-01

    It is necessary to improve human reliability in order to gain a higher reliability of the total plant system taking an account of development of plant automation and improvement of machine reliability. Therefore, the role of the man-machine system will come to be important. Accordingly, the evaluation of the man-machine system design information is desired in order to solve the mismatch problem between plant information presented by the man-machine system and information required by the operator comprehensively. This paper discusses required functions and software framework for the man-machine interface design evaluation system. The man-machine interface design evaluation system has features to extract the potential matters which are inherent on the design information of man-machine system by simulating the operator behavior, the plant system and the man-machine system, considering the operator's cognitive performance and time dependency. (author)

  20. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.

    Science.gov (United States)

    Hocraffer, Amy; Nam, Chang S

    2017-01-01

    A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Expanding perspectives on cognition in humans, animals, and machines.

    Science.gov (United States)

    Gomez-Marin, Alex; Mainen, Zachary F

    2016-04-01

    Over the past decade neuroscience has been attacking the problem of cognition with increasing vigor. Yet, what exactly is cognition, beyond a general signifier of anything seemingly complex the brain does? Here, we briefly review attempts to define, describe, explain, build, enhance and experience cognition. We highlight perspectives including psychology, molecular biology, computation, dynamical systems, machine learning, behavior and phenomenology. This survey of the landscape reveals not a clear target for explanation but a pluralistic and evolving scene with diverse opportunities for grounding future research. We argue that rather than getting to the bottom of it, over the next century, by deconstructing and redefining cognition, neuroscience will and should expand rather than merely reduce our concept of the mind. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A mobile, high-throughput semi-automated system for testing cognition in large non-primate animal models of Huntington disease.

    Science.gov (United States)

    McBride, Sebastian D; Perentos, Nicholas; Morton, A Jennifer

    2016-05-30

    For reasons of cost and ethical concerns, models of neurodegenerative disorders such as Huntington disease (HD) are currently being developed in farm animals, as an alternative to non-human primates. Developing reliable methods of testing cognitive function is essential to determining the usefulness of such models. Nevertheless, cognitive testing of farm animal species presents a unique set of challenges. The primary aims of this study were to develop and validate a mobile operant system suitable for high throughput cognitive testing of sheep. We designed a semi-automated testing system with the capability of presenting stimuli (visual, auditory) and reward at six spatial locations. Fourteen normal sheep were used to validate the system using a two-choice visual discrimination task. Four stages of training devised to acclimatise animals to the system are also presented. All sheep progressed rapidly through the training stages, over eight sessions. All sheep learned the 2CVDT and performed at least one reversal stage. The mean number of trials the sheep took to reach criterion in the first acquisition learning was 13.9±1.5 and for the reversal learning was 19.1±1.8. This is the first mobile semi-automated operant system developed for testing cognitive function in sheep. We have designed and validated an automated operant behavioural testing system suitable for high throughput cognitive testing in sheep and other medium-sized quadrupeds, such as pigs and dogs. Sheep performance in the two-choice visual discrimination task was very similar to that reported for non-human primates and strongly supports the use of farm animals as pre-clinical models for the study of neurodegenerative diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Oxytocin modulates human communication by enhancing cognitive exploration.

    Science.gov (United States)

    de Boer, Miriam; Kokal, Idil; Blokpoel, Mark; Liu, Rui; Stolk, Arjen; Roelofs, Karin; van Rooij, Iris; Toni, Ivan

    2017-12-01

    Oxytocin is a neuropeptide known to influence how humans share material resources. Here we explore whether oxytocin influences how we share knowledge. We focus on two distinguishing features of human communication, namely the ability to select communicative signals that disambiguate the many-to-many mappings that exist between a signal's form and meaning, and adjustments of those signals to the presumed cognitive characteristics of the addressee ("audience design"). Fifty-five males participated in a randomized, double-blind, placebo controlled experiment involving the intranasal administration of oxytocin. The participants produced novel non-verbal communicative signals towards two different addressees, an adult or a child, in an experimentally-controlled live interactive setting. We found that oxytocin administration drives participants to generate signals of higher referential quality, i.e. signals that disambiguate more communicative problems; and to rapidly adjust those communicative signals to what the addressee understands. The combined effects of oxytocin on referential quality and audience design fit with the notion that oxytocin administration leads participants to explore more pervasively behaviors that can convey their intention, and diverse models of the addressees. These findings suggest that, besides affecting prosocial drive and salience of social cues, oxytocin influences how we share knowledge by promoting cognitive exploration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. Copyright © 2016 the American Physiological Society.

  5. The Effects of Split-Attention and Redundancy on Cognitive Load When Learning Cognitive and Psychomotor Tasks

    Science.gov (United States)

    Pociask, Fredrick D.; Morrison, Gary

    2004-01-01

    Human working memory can be defined as a component system responsible for the temporary storage and manipulation of information related to higher level cognitive behaviors, such as understanding and reasoning (Baddeley, 1992; Becker & Morris, 1999). Working memory, while able to manage a complex array of cognitive activities, presents with an…

  6. Pyramid algorithms as models of human cognition

    Science.gov (United States)

    Pizlo, Zygmunt; Li, Zheng

    2003-06-01

    There is growing body of experimental evidence showing that human perception and cognition involves mechanisms that can be adequately modeled by pyramid algorithms. The main aspect of those mechanisms is hierarchical clustering of information: visual images, spatial relations, and states as well as transformations of a problem. In this paper we review prior psychophysical and simulation results on visual size transformation, size discrimination, speed-accuracy tradeoff, figure-ground segregation, and the traveling salesman problem. We also present our new results on graph search and on the 15-puzzle.

  7. Visual momentum: an example of cognitive models applied to interface design

    International Nuclear Information System (INIS)

    Woods, D.D.

    1982-01-01

    The growth of computer applications has radically changed the nature of the man-machine interface. Through increased automation, the nature of the human's task has shifted from an emphasis on perceptual-motor skills to an emphasis on cognitive activities (e.g., problem solving and decision making). The result is a need to improve the cognitive coupling of person and machine. The goal of this paper is to describe how knowledge from cognitive psychology can be used to provide guidance to display system designers and to solve human performance problems in person-machine systems. The mechanism is to explore one example of a principle of man-machine interaction - visual momentum - that was developed on the basis of a general model of human front-end cognitive processing

  8. Consciousness, plasticity, and connectomics: the role of intersubjectivity in human cognition

    DEFF Research Database (Denmark)

    Allen, Micah Galen; Williams, Gary

    2011-01-01

    motivates philosophical and empirical hypotheses regarding the appropriate time-scale and function of neuroplastic adaptation, the relation of high and low-frequency neural activity to consciousness and cognitive plasticity, and the role of ritual social practices in neural development and cognitive...... take up our account of consciousness from the observation of radical cortical neuroplasticity in human development. Accordingly, we draw upon recent research on macroscopic neural networks, including the “default mode,” to illustrate cases in which an individual’s particular “connectome” is shaped...

  9. How to bootstrap a human communication system.

    Science.gov (United States)

    Fay, Nicolas; Arbib, Michael; Garrod, Simon

    2013-01-01

    How might a human communication system be bootstrapped in the absence of conventional language? We argue that motivated signs play an important role (i.e., signs that are linked to meaning by structural resemblance or by natural association). An experimental study is then reported in which participants try to communicate a range of pre-specified items to a partner using repeated non-linguistic vocalization, repeated gesture, or repeated non-linguistic vocalization plus gesture (but without using their existing language system). Gesture proved more effective (measured by communication success) and more efficient (measured by the time taken to communicate) than non-linguistic vocalization across a range of item categories (emotion, object, and action). Combining gesture and vocalization did not improve performance beyond gesture alone. We experimentally demonstrate that gesture is a more effective means of bootstrapping a human communication system. We argue that gesture outperforms non-linguistic vocalization because it lends itself more naturally to the production of motivated signs. © 2013 Cognitive Science Society, Inc.

  10. A cognitive robotics system: the symbolic and sub-symbolic robotic intelligence control system (SS-RICS)

    Science.gov (United States)

    Kelley, Troy D.; Avery, Eric

    2010-04-01

    This paper will detail the progress on the development of the Symbolic and Subsymbolic Robotics Intelligence Control System (SS-RICS). The system is a goal oriented production system, based loosely on the cognitive architecture, the Adaptive Control of Thought-Rational (ACT-R) some additions and changes. We have found that in order to simulate complex cognition on a robot, many aspects of cognition (long term memory (LTM), perception) needed to be in place before any generalized intelligent behavior can be produced. In working with ACT-R, we found that it was a good instantiation of working memory, but that we needed to add other aspects of cognition including LTM and perception to have a complete cognitive system. Our progress to date will be noted and the challenges that remain will be addressed.

  11. Location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Nam, Haewoon

    2010-01-01

    In cognitive radio systems, in order for the secondary users to opportunistically share the spectrum without interfering the primary users, an accurate spectrum measurement and a precise estimation of the interference at the primary users are necessary but are challenging tasks. Since it is impractical in cognitive radio systems to assume that the channel state information of the interference link is available at the cognitive transmitter, the interference at the primary users is hard to be estimated accurately. This paper introduces a resource allocation algorithm for OFDMA-based cognitive radio systems, which utilizes location information of the primary and secondary users instead of the channel state information of the interference link. Simulation results show that it is indeed effective to incorporate location information into resource allocation so that a near-optimal capacity is achieved.

  12. A machine learning model with human cognitive biases capable of learning from small and biased datasets.

    Science.gov (United States)

    Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro

    2018-05-09

    Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.

  13. Distributed Cognition and Distributed Morality: Agency, Artifacts and Systems.

    Science.gov (United States)

    Heersmink, Richard

    2017-04-01

    There are various philosophical approaches and theories describing the intimate relation people have to artifacts. In this paper, I explore the relation between two such theories, namely distributed cognition and distributed morality theory. I point out a number of similarities and differences in these views regarding the ontological status they attribute to artifacts and the larger systems they are part of. Having evaluated and compared these views, I continue by focussing on the way cognitive artifacts are used in moral practice. I specifically conceptualise how such artifacts (a) scaffold and extend moral reasoning and decision-making processes, (b) have a certain moral status which is contingent on their cognitive status, and (c) whether responsibility can be attributed to distributed systems. This paper is primarily written for those interested in the intersection of cognitive and moral theory as it relates to artifacts, but also for those independently interested in philosophical debates in extended and distributed cognition and ethics of (cognitive) technology.

  14. Working Memory: A Cognitive Limit to Non-Human Primate Recursive Thinking Prior to Hominid Evolution

    Directory of Open Access Journals (Sweden)

    Dwight W. Read

    2008-10-01

    Full Text Available In this paper I explore the possibility that recursion is not part of the cognitive repertoire of non-human primates such as chimpanzees due to limited working memory capacity. Multiple lines of data, from nut cracking to the velocity and duration of cognitive development, imply that chimpanzees have a short-term memory size that limits working memory to dealing with two, or at most three, concepts at a time. If so, as a species they lack the cognitive capacity for recursive thinking to be integrated into systems of social organization and communication. If this limited working memory capacity is projected back to a common ancestor for Pan and Homo, it follows that early hominid ancestors would have had limited working memory capacity. Hence we should find evidence for expansion of working memory capacity during hominid evolution reflected in changes in the products of conceptually framed activities such as stone tool production. Data on the artifacts made by our hominid ancestors support this expansion hypothesis for hominid working memory, thereby leading to qualitative differences between Pan and Homo.

  15. DARPA Improving Warfighter Information Intake Under Stress -- Augmented Cognition. Volume 1. Phase 2: Concept Validation Experiment

    National Research Council Canada - National Science Library

    Morrison, J. G; Kobus, D. A; Brown, C. M

    2006-01-01

    ...) systems that demonstrate how the limitations of human cognition can be addressed by augmenting cognition with advanced cognitive state sensors that provide input to complex computational systems...

  16. Non-visual biological effects of light on human cognition, alertness, and mood

    Science.gov (United States)

    Li, Huaye; Wang, Huihui; Shen, Junfei; Sun, Peng; Xie, Ting; Zhang, Siman; Zheng, Zhenrong

    2017-09-01

    Light exerts non-visual effects on a wide range of biological functions and behavior apart from the visual effect. Light can regulate human circadian rhythms, like the secretion of melatonin and cortisol. Light also has influence on body's physiological parameters, such as blood pressure, heart rate and body temperature. However, human cognitive performance, alertness and mood under different lighting conditions have not been considered thoroughly especially for the complicated visual task like surgical operating procedure. In this paper, an experiment was conducted to investigate the cognition, alertness and mood of healthy participants in a simulated operating room (OR) in the hospital. A LED surgical lamp was used as the light source, which is mixed by three color LEDs (amber, green and blue). The surgical lamp is flexible on both spectrum and intensity. Exposed to different light settings, which are varied from color temperature and luminance, participants were asked to take psychomotor vigilance task (PVT) for alertness measurement, alphabet test for cognitive performance measurement, positive and negative affect schedule (PANAS) for mood measurement. The result showed the participants' cognitive performance, alertness and mood are related to the color temperature and luminance of the LED light. This research will have a guidance for the surgical lighting environment, which can not only enhance doctors' efficiency during the operations, but also create a positive and peaceful surgical lighting environment.

  17. Associationism and cognition: human contingency learning at 25.

    Science.gov (United States)

    Shanks, David R

    2007-03-01

    A major topic within human learning, the field of contingency judgement, began to emerge about 25 years ago following publication of an article on depressive realism by Alloy and Abramson (1979). Subsequently, associationism has been the dominant theoretical framework for understanding contingency learning but this has been challenged in recent years by an alternative cognitive or inferential approach. This article outlines the key conceptual differences between these approaches and summarizes some of the main methods that have been employed to distinguish between them.

  18. Cognitive modelling with Coloured Petri Nets for the analysis of human behaviour; Kognitive Modellierung mit farbigen Petrinetzen zur Analyse menschlichen Verhaltens

    Energy Technology Data Exchange (ETDEWEB)

    Werther, B.

    2006-07-01

    The thesis presents a model based approach for a holistic consideration of human-machine systems. The model supports the design and formation of the operator's work sequences. In scope of the thesis a Formal Cognitive Resource (FCR)-Model is developed which treats limitation of the human operators processing capability as a main property. From this limitation stems the need to integrate and organize different action sequences into a balanced working process. The model is implemented as a Coloured Petri Net. Typical characteristics of net components find inherent consideration in the FCR-Model. In a first validation example behaviour of the FCR-Model is analyzed and compared with empirical results obtained in an experimental study performed on the operation of a micro world. Reasons for a specific behaviour of human operators in a working environment are being identified depending on cognitive parameters of the FCR-Model. It is shown how these parameters correspond to psychological performance properties. The FCR-Model is its current version serves for analysis of human information processing and discloses critical situations and faults in human behaviour. (Orig.)

  19. Generalized location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2010-01-01

    Cognitive radio is one of the hot topics for emerging and future wireless communication. Cognitive users can share channels with primary users under the condition of non interference. In order to compute this interference, the cognitive system

  20. Review: Optimising cognitive load and usability to improve the ...

    African Journals Online (AJOL)

    Cognitive load theory views learning as involving active processing of information by working memory via separate visual and auditory channels. This system is of ... The fields of cognitive load theory and human-computer interaction share a common goal in striving to reduce extraneous cognitive load. The load induced by ...

  1. Development of a Human Performance Evaluation Support System for Human Factors Validation of MCR MMI Design in APR-1400

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2005-01-01

    As CRT-based display and advanced information technology were applied to advanced reactors such as APR-1400 (Advanced Power Reactor-1400), human operators' tasks became more cognitive works. As a results, Human Factors Engineering (HFE) became more important in designing the MCR (Main Control Room) MMI (Man-Machine Interface) of an advanced reactor. According to the Human Factors Engineering Program Review Model, human factors validation of MCR MMI design should be performed through performance-based tests to determine whether it acceptably supports safe operation of the plant. In order to support the evaluation of the performance, a HUman Performance Evaluation Support System (HUPESS) is in development

  2. Human performance modeling for system of systems analytics: combat performance-shaping factors.

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R.; Miller, Dwight Peter

    2006-01-01

    The US military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives. To support this goal, Sandia National Laboratories (SNL) has undertaken a program of HPM as an integral augmentation to its system-of-system (SoS) analytics capabilities. The previous effort, reported in SAND2005-6569, evaluated the effects of soldier cognitive fatigue on SoS performance. The current effort began with a very broad survey of any performance-shaping factors (PSFs) that also might affect soldiers performance in combat situations. The work included consideration of three different approaches to cognition modeling and how appropriate they would be for application to SoS analytics. This bulk of this report categorizes 47 PSFs into three groups (internal, external, and task-related) and provides brief descriptions of how each affects combat performance, according to the literature. The PSFs were then assembled into a matrix with 22 representative military tasks and assigned one of four levels of estimated negative impact on task performance, based on the literature. Blank versions of the matrix were then sent to two ex-military subject-matter experts to be filled out based on their personal experiences. Data analysis was performed to identify the consensus most influential PSFs. Results indicate that combat-related injury, cognitive fatigue, inadequate training, physical fatigue, thirst, stress, poor perceptual processing, and presence of chemical agents are among the PSFs with the most negative impact on combat performance.

  3. Mobile Phones as Cognitive Systems

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz

    the importance of the proposed approach and deployed implementation. The second part of the thesis deals with expanding our capabilities to sense the cognitive and emotional state of the users through development of a system for mobile brain imaging—the Smartphone Brain Scanner. A developed framework allows...

  4. Structurally-constrained relationships between cognitive states in the human brain.

    Directory of Open Access Journals (Sweden)

    Ann M Hermundstad

    2014-05-01

    Full Text Available The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.

  5. Collection of human reaction times and supporting health related data for analysis of cognitive and physical performance

    Directory of Open Access Journals (Sweden)

    Petr Brůha

    2018-04-01

    Full Text Available Smoking, excessive drinking, overeating and physical inactivity are well-established risk factors decreasing human physical performance. Moreover, epidemiological work has identified modifiable lifestyle factors, such as poor diet and physical and cognitive inactivity that are associated with the risk of reduced cognitive performance. Definition, collection and annotation of human reaction times and suitable health related data and metadata provides researchers with a necessary source for further analysis of human physical and cognitive performance. The collection of human reaction times and supporting health related data was obtained from two groups comprising together 349 people of all ages - the visitors of the Days of Science and Technology 2016 held on the Pilsen central square and members of the Mensa Czech Republic visiting the neuroinformatics lab at the University of West Bohemia. Each provided dataset contains a complete or partial set of data obtained from the following measurements: hands and legs reaction times, color vision, spirometry, electrocardiography, blood pressure, blood glucose, body proportions and flexibility. It also provides a sufficient set of metadata (age, gender and summary of the participant's current life style and health to allow researchers to perform further analysis. This article has two main aims. The first aim is to provide a well annotated collection of human reaction times and health related data that is suitable for further analysis of lifestyle and human cognitive and physical performance. This data collection is complemented with a preliminarily statistical evaluation. The second aim is to present a procedure of efficient acquisition of human reaction times and supporting health related data in non-lab and lab conditions. Keywords: Reaction time, Health related data, Cognitive and physical performance, Chronic disease, Data acquisition, Data collection, Software for data collection

  6. Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network

    Directory of Open Access Journals (Sweden)

    Sundermann Benedikt

    2012-10-01

    Full Text Available Abstract Background The human inferior frontal junction area (IFJ is critically involved in three main component processes of cognitive control (working memory, task switching and inhibitory control. As it overlaps with several areas in established anatomical labeling schemes, it is considered to be underreported as a functionally distinct location in the neuroimaging literature. While recent studies explicitly focused on the IFJ's anatomical organization and functional role as a single brain area, it is usually not explicitly denominated in studies on cognitive networks. However based on few analyses in small datasets constrained by specific a priori assumptions on its functional specialization, the IFJ has been postulated to be part of a cognitive control network. Goal of this meta-analysis was to establish the IFJ’s connectivity profile on a high formal level of evidence by aggregating published implicit knowledge about its co-activations. We applied meta-analytical connectivity modeling (MACM based on the activation likelihood estimation (ALE method without specific assumptions regarding functional specialization on 180 (reporting left IFJ activity and 131 (right IFJ published functional neuroimaging experiments derived from the BrainMap database. This method is based on coordinates in stereotaxic space, not on anatomical descriptors. Results The IFJ is significantly co-activated with areas in the dorsolateral and ventrolateral prefrontal cortex, anterior insula, medial frontal gyrus / pre-SMA, posterior parietal cortex, occipitotemporal junction / cerebellum, thalamus and putamen as well as language and motor areas. Results are corroborated by an independent resting-state fMRI analysis. Conclusions These results support the assumption that the IFJ is part of a previously described cognitive control network. They also highlight the involvement of subcortical structures in this system. A direct line is drawn from works on the functional

  7. Personality from a cognitive-biological perspective

    Science.gov (United States)

    Neuman, Yair

    2014-12-01

    The term "personality" is used to describe a distinctive and relatively stable set of mental traits that aim to explain the organism's behavior. The concept of personality that emerged in human psychology has been also applied to the study of non-human organisms from birds to horses. In this paper, I critically review the concept of personality from an interdisciplinary perspective, and point to some ideas that may be used for developing a cognitive-biological theory of personality. Integrating theories and research findings from various fields such as cognitive ethnology, clinical psychology, and neuroscience, I argue that the common denominator of various personality theories are neural systems of threat/trust management and their emotional, cognitive, and behavioral dimensions. In this context, personality may be also conceived as a meta-heuristics both human and non-human organisms apply to model and predict the behavior of others. The paper concludes by suggesting a minimal computational model of personality that may guide future research.

  8. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; David Gertman

    2014-04-01

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.

  9. Cognitive Awareness Prototype Development on User Interface Design

    Science.gov (United States)

    Rosli, D'oria Islamiah

    2015-01-01

    Human error is a crucial problem in manufacturing industries. Due to the misinterpretation of information on interface system design, accidents or death may occur at workplace. Lack of human cognition criteria in interface system design is also one of the contributions to the failure in using the system effectively. Therefore, this paper describes…

  10. City rats: insight from rat spatial behavior into human cognition in urban environments.

    Science.gov (United States)

    Yaski, Osnat; Portugali, Juval; Eilam, David

    2011-09-01

    The structure and shape of the urban environment influence our ability to find our way about in the city. Understanding how the physical properties of the environment affect spatial behavior and cognition is therefore a necessity. However, there are inherent difficulties in empirically studying complex and large-scale urban environments. These include the need to isolate the impact of specific urban features and to acquire data on the physical activity of individuals. In the present study, we attempted to overcome the above obstacles and examine the relation between urban environments and spatial cognition by testing the spatial behavior of rats. This idea originated from the resemblance in the operative brain functions and in the mechanisms and strategies employed by humans and other animals when acquiring spatial information and establishing an internal representation, as revealed in past studies. Accordingly, we tested rats in arenas that simulated a grid urban layout (e.g. Manhattan streets) and an irregular urban layout (e.g. Jerusalem streets). We found that in the grid layout, rat movement was more structured and extended over a greater area compared with their restricted movement in the irregular layout. These movement patterns recall those of humans in respective urban environments, illustrating that the structure and shape of the environment affect spatial behavior similarly in humans and rats. Overall, testing rats in environments that simulate facets of urban environments can provide new insights into human spatial cognition in urban environments.

  11. A basic experimental study on mental workload for human cognitive work at man-machine interface

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Shimoda, Hiroshi; Wakamori, Osamu; Nagai, Yoshinori

    1995-01-01

    The nature and measurement methods of mental workload (MWL) for human cognitive activity at man-machine interface (MMI) were firstly discussed from the viewpoint of human information process model. Then, a model VDT experiment which simplifies the actual human-computer-interaction situation at MMI, was conducted for several subjects, where two subjects participated in experiment series and tried to solve the same cognitive task in competition. Adopted experimental parameters were (i)different kinds of cognitive task, and (ii)cycle time of information display, to see the influence on MWL characteristics from psycho-physiological viewpoint. A special processing unit for eye camera was developed and used for measuring subjects' eye movement characteristics. Concerning data analysis, total number of display presentation until problem solving (ie., total information needed for problem solving) was assumed as anchoring objective measure for MWL, and the investigations were conducted from two aspects; (i)global interpretation on MWL characteristics seen in the subjects' behavior from viewpoint of human information process model, and (ii)applicability of MWL by means of biocybernetic method. As regards to applicability of biocybernetic method, the nature of MWL characteristics was first divided into two aspects : (i)efficiency of visual information acquisition, and (ii)difficulty of inner cognitive process to solve problem, both in time pressure situation. Then, the data analysis results for eye movement characteristics were correlated to (i), while for heart rate characteristics, (ii). (author)

  12. Simulating motivated cognition

    Science.gov (United States)

    Gevarter, William B.

    1991-01-01

    A research effort to develop a sophisticated computer model of human behavior is described. A computer framework of motivated cognition was developed. Motivated cognition focuses on the motivations or affects that provide the context and drive in human cognition and decision making. A conceptual architecture of the human decision-making approach from the perspective of information processing in the human brain is developed in diagrammatic form. A preliminary version of such a diagram is presented. This architecture is then used as a vehicle for successfully constructing a computer program simulation Dweck and Leggett's findings that relate how an individual's implicit theories orient them toward particular goals, with resultant cognitions, affects, and behavior.

  13. The application of two recently developed human reliability techniques to cognitive error analysis

    International Nuclear Information System (INIS)

    Gall, W.

    1990-01-01

    Cognitive error can lead to catastrophic consequences for manned systems, including those whose design renders them immune to the effects of physical slips made by operators. Four such events, pressurized water and boiling water reactor accidents which occurred recently, were analysed. The analysis identifies the factors which contributed to the errors and suggests practical strategies for error recovery or prevention. Two types of analysis were conducted: an unstructured analysis based on the analyst's knowledge of psychological theory, and a structured analysis using two recently-developed human reliability analysis techniques. In general, the structured techniques required less effort to produce results and these were comparable to those of the unstructured analysis. (author)

  14. Neurodynamics of Cognition and Consciousness

    CERN Document Server

    Perlovsky, Leonid I

    2007-01-01

    This book addresses dynamical aspects of brain functions and cognition. Experimental evidence in humans and other mammalians indicates that complex neurodynamics is crucial for the emergence of higher-level cognition and consciousness. Dynamical neural systems with encoding in limit cycle and non-convergent attractors have gained increasing popularity in the past decade. The role of synchronization, desynchronization, and intermittent synchronization on cognition has been studied extensively by various authors, in particular by authors contributing to the present volume. This volume gives an overview of recent advances in this interdisciplinary field of cognitive and computer science related to dynamics of cognition, including experimental studies, dynamical modelling and interpretation of cognitive experiments, and theoretical approaches. The following topics are covered in this book: spatio-temporal dynamics of neural correlates of higher-level cognition; dynamical neural memories, including continuous and ...

  15. Rhythmic Cognition in Humans and Animals: Distinguishing Meter and Pulse Perception

    Directory of Open Access Journals (Sweden)

    W Tecumseh eFitch

    2013-10-01

    Full Text Available This paper outlines a cognitive and comparative perspective on human rhythmic cognition that emphasizes a key distinction between pulse perception and meter perception. Pulse perception involves the extraction of a regular pulse or 'tactus' from a stream of events. Meter perception involves grouping of events into hierarchical trees with differing levels of 'strength', or perceptual prominence. I argue that metrically-structured rhythms are required to either perform or move appropriately to music (e.g. to dance. Rhythms, from this metrical perspective, constitute 'trees in time'. Rhythmic syntax represents a neglected form of musical syntax, and warrants more thorough neuroscientific investigation. The recent literature on animal entrainment clearly demonstrates the capacity to extract the pulse from rhythmic music, and to entrain periodic movements to this pulse, in several parrot species and a California sea lion, and a more limited ability to do so in one chimpanzee. However, the ability of these or other species to infer hierarchical rhythmic trees remains, for the most part, unexplored (with some apparent negative results from macaques. The results from this new animal comparative research, combined with new methods to explore rhythmic cognition neurally, provide exciting new routes for understanding not just rhythmic cognition, but hierarchical cognition more generally, from a biological and neural perspective.

  16. A Role of the Parasympathetic Nervous System in Cognitive Training.

    Science.gov (United States)

    Lin, Feng; Heffner, Kathi L; Ren, Ping; Tadin, Duje

    2017-01-01

    Vision-based speed of processing (VSOP) training can result in broad cognitive improvements in older adults with amnestic mild cognitive impairment (aMCI). What remains unknown, however, is what neurophysiological mechanisms account for the observed training effect. Much of the work in this area has focused on the central nervous system, neglecting the fact that the peripheral system can contributes to changes of the central nervous system and vice versa. We examined the prospective relationship between an adaptive parasympathetic nervous system response to cognitive stimuli and VSOP training-induced plasticity. Twenty-one participants with aMCI (10 for VSOP training, and 11 for mental leisure activities (MLA) control) were enrolled. We assessed high-frequency heart rate variability (HF-HRV) during training sessions, and striatum-related neural networks and cognition at baseline and post-training. Compared to MLA, the VSOP group showed a significant U-shaped pattern of HF-HRV response during training, as well as decreases in connectivity strength between bilateral striatal and prefrontal regions. These two effects were associated with training-induced improvements in both the trained (attention and processing speed) and transferred (working memory) cognitive domains. This work provides novel support for interactions between the central and the peripheral nervous systems in relation to cognitive training, and motivates further studies to elucidate the causality of the observed link. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. The Human Stain: Why Cognitivism Can't Tell Us What Cognition Is & What It Does

    NARCIS (Netherlands)

    Keijzer, F.; Lyon, P.; B. Wallace,

    2007-01-01

    What is cognition? It is now common knowledge that, so far, no one has a ready answer. It is much less generally acknowledged that this is a matter of strong concern when it comes to the further development of the cognitive sciences. We discuss how cognitivism provided a strongly human orientation

  18. Robonaut 2 and Watson: Cognitive Dexterity for Future Exploration

    Science.gov (United States)

    Badger, Julia M.; Strawser, Philip; Farrell, Logan; Goza, S. Michael; Claunch, Charles A.; Chancey, Raphael; Potapinski, Russell

    2018-01-01

    Future exploration missions will dictate a level of autonomy never before experienced in human spaceflight. Mission plans involving the uncrewed phases of complex human spacecraft in deep space will require a coordinated autonomous capability to be able to maintain the spacecraft when ground control is not available. One promising direction involves embedding intelligence into the system design both through the employment of state-of-the-art system engineering principles as well as through the creation of a cognitive network between a smart spacecraft or habitat and embodiments of cognitive agents. The work described here details efforts to integrate IBM's Watson and other cognitive computing services into NASA Johnson Space Center (JSC)'s Robonaut 2 (R2) anthropomorphic robot. This paper also discusses future directions this work will take. A cognitive spacecraft management system that is able to seamlessly collect data from subsystems, determine corrective actions, and provide commands to enable those actions is the end goal. These commands could be to embedded spacecraft systems or to a set of robotic assets that are tied into the cognitive system. An exciting collaboration with Woodside provides a promising Earth-bound testing analog, as controlling and maintaining not normally manned off-shore platforms have similar constraints to the space missions described.

  19. Cognitive engineering in aerospace applications

    Science.gov (United States)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  20. Principles of minimal cognition : Casting cognition as sensorimotor coordination

    NARCIS (Netherlands)

    Duijn, Marc van; Keijzer, F.A.; Franken, Daan

    2006-01-01

    Within the cognitive sciences, cognition tends to be interpreted from an anthropocentric perspective, involving a stringent set of human capabilities. Instead, we suggest that cognition is better explicated as a much more general biological phenomenon, allowing the lower bound of cognition to extend

  1. Cognitive human reliability analysis for an assessment of the safety significance of complex transients

    International Nuclear Information System (INIS)

    Amico, P.J.; Hsu, C.J.; Youngblood, R.W.; Fitzpatrick, R.G.

    1989-01-01

    This paper reports that as part of a probabilistic assessment of the safety significance of complex transients at certain PWR power plants, it was necessary to perform a cognitive human reliability analysis. To increase the confidence in the results, it was desirable to make use of actual observations of operator response which were available for the assessment. An approach was developed which incorporated these observations into the human cognitive reliability (HCR) modeling approach. The results obtained provided additional insights over what would have been found using other approaches. These insights were supported by the observations, and it is suggested that this approach be considered for use in future probabilistic safety assessments

  2. The impact of human-technology cooperation and distributed cognition in forensic science: biasing effects of AFIS contextual information on human experts.

    Science.gov (United States)

    Dror, Itiel E; Wertheim, Kasey; Fraser-Mackenzie, Peter; Walajtys, Jeff

    2012-03-01

    Experts play a critical role in forensic decision making, even when cognition is offloaded and distributed between human and machine. In this paper, we investigated the impact of using Automated Fingerprint Identification Systems (AFIS) on human decision makers. We provided 3680 AFIS lists (a total of 55,200 comparisons) to 23 latent fingerprint examiners as part of their normal casework. We manipulated the position of the matching print in the AFIS list. The data showed that latent fingerprint examiners were affected by the position of the matching print in terms of false exclusions and false inconclusives. Furthermore, the data showed that false identification errors were more likely at the top of the list and that such errors occurred even when the correct match was present further down the list. These effects need to be studied and considered carefully, so as to optimize human decision making when using technologies such as AFIS. © 2011 American Academy of Forensic Sciences.

  3. Cognitive radio networks medium access control for coexistence of wireless systems

    CERN Document Server

    Bian, Kaigui; Gao, Bo

    2014-01-01

    This book gives a comprehensive overview of the medium access control (MAC) principles in cognitive radio networks, with a specific focus on how such MAC principles enable different wireless systems to coexist in the same spectrum band and carry out spectrum sharing.  From algorithm design to the latest developments in the standards and spectrum policy, readers will benefit from leading-edge knowledge of how cognitive radio systems coexist and share spectrum resources.  Coverage includes cognitive radio rendezvous, spectrum sharing, channel allocation, coexistence in TV white space, and coexistence of heterogeneous wireless systems.   • Provides a comprehensive reference on medium access control (MAC)-related problems in the design of cognitive radio systems and networks; • Includes detailed analysis of various coexistence problems related to medium access control in cognitive radio networks; • Reveals novel techniques for addressing the challenges of coexistence protocol design at a higher level ...

  4. Categorial compositionality: a category theory explanation for the systematicity of human cognition.

    Directory of Open Access Journals (Sweden)

    Steven Phillips

    Full Text Available Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks that do not account for systematicity. By analogy with the Ptolemaic (i.e. geocentric theory of planetary motion, although either theory can be made to be consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called functors. A functor generalizes the notion of a map between representational states to include a map between state transformations (or processes. In a formal sense, systematicity is a necessary consequence of a higher-order theory of cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where representational states are no longer the center of the cognitive universe--replaced by the relationships between the maps that transform them.

  5. Categorial compositionality: a category theory explanation for the systematicity of human cognition.

    Science.gov (United States)

    Phillips, Steven; Wilson, William H

    2010-07-22

    Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By analogy with the Ptolemaic (i.e. geocentric) theory of planetary motion, although either theory can be made to be consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called functors. A functor generalizes the notion of a map between representational states to include a map between state transformations (or processes). In a formal sense, systematicity is a necessary consequence of a higher-order theory of cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where representational states are no longer the center of the cognitive universe--replaced by the relationships between the maps that transform them.

  6. Nonlinear dynamics of emotion-cognition interaction: when emotion does not destroy cognition?

    Science.gov (United States)

    Afraimovich, Valentin; Young, Todd; Muezzinoglu, Mehmet K; Rabinovich, Mikhail I

    2011-02-01

    Emotion (i.e., spontaneous motivation and subsequent implementation of a behavior) and cognition (i.e., problem solving by information processing) are essential to how we, as humans, respond to changes in our environment. Recent studies in cognitive science suggest that emotion and cognition are subserved by different, although heavily integrated, neural systems. Understanding the time-varying relationship of emotion and cognition is a challenging goal with important implications for neuroscience. We formulate here the dynamical model of emotion-cognition interaction that is based on the following principles: (1) the temporal evolution of cognitive and emotion modes are captured by the incoming stimuli and competition within and among themselves (competition principle); (2) metastable states exist in the unified emotion-cognition phase space; and (3) the brain processes information with robust and reproducible transients through the sequence of metastable states. Such a model can take advantage of the often ignored temporal structure of the emotion-cognition interaction to provide a robust and generalizable method for understanding the relationship between brain activation and complex human behavior. The mathematical image of the robust and reproducible transient dynamics is a Stable Heteroclinic Sequence (SHS), and the Stable Heteroclinic Channels (SHCs). These have been hypothesized to be possible mechanisms that lead to the sequential transient behavior observed in networks. We investigate the modularity of SHCs, i.e., given a SHS and a SHC that is supported in one part of a network, we study conditions under which the SHC pertaining to the cognition will continue to function in the presence of interfering activity with other parts of the network, i.e., emotion.

  7. Cooperative Cognitive Radio Systems over Nakagami-m Fading Channels

    KAUST Repository

    Hyadi, Amal

    2013-05-08

    This thesis aims to investigate the incorporation of cooperative techniques in cognitive radio networks over Nakagami-m fading channels. These last years, spectrum sharing mechanisms has gained a lot of interest in the wireless communication domain. Using cooperation in a cognitive set up make the use of spectrum much more efficient. Moreover, it helps to extend the coverage area of the cognitive network and also to reduce the transmitting power and, thus, the generated interference. In this work, we consider two particular scenarios for cooperative cognitive radio systems. The first scenario consider multihop regenerative relaying in an underlay cognitive set up. The cooperation is performed in the secondary system, in the presence of multiple primary users. Both interference power and peak power constraints are taking into account. Closed-form expressions for the statistical characteristics and multiple end- to-end performance metrics are derived. Different scenarios are presented to illustrate the obtained results and Monte Carlo simulations confirm the accuracy of our analytical derivations. In the second part of this work, we consider an overlay cognitive network with the spectrally efficient two-phase two-way relaying protocol. Two relay selection techniques, optimizing both the primary and the secondary communication, are presented. The overall outage performance is investigated and an optimal power allocation scheme, that ameliorate the outage performance of the system, is proposed. Numerical simulations are presented to illustrate and compare the obtained results.

  8. Didactic aspects of cognition of human as a bio-psycho-socio-cultural personality.

    Science.gov (United States)

    Palamar, Borys I; Vaskivska, Halyna O; Palamar, Svitlana P

    Modern education, according to leading Ukrainian scientists, requires the development of a new paradigm, which will consider the phenomenon of man holistically. The article describes didactic aspects of cognition of human as a bio-psycho-socio-cultural personality, as social fact, as a phenomenon. For the actualization of the didactic aspects of the problem, the authors used the methods of scientific literature analysis, systemic analysis and generalizations, analysis own practice of didactic and methodological character. Reforming the systems of education and medicine should occur in the context of providing active, creative, productive human life. Practice of system analysis proved that man as a subject of study should be considered as a biological entity, a social being, the bearer of consciousness and culture. A holistic approach to the study of man, viewing him as creatures of the natural (bodily) and social individual (society, culture) and the subject of mental and spiritual (creative and deliberate) activity can reveal its unique originality. The uniqueness of the phenomenon of man as the subject and object of research lies in its indivisibility, which is based on the unity of the laws of nature and society. Therefore, when studying the person should take into account the interests of social and natural Sciences. This once again confirms the idea of the necessity of human studies with the help of a systematic approach, which generates true and holistic view of the person, that involves the development of meta-perception of world and ourselves.

  9. Cognitive Comparisons of Students' Systems Modeling in Ecology

    Science.gov (United States)

    Hogan, Kathleen; Thomas, David

    2001-12-01

    This study examined the cognition of five pairs of high school students over time as they built quantitative ecological models using STELLA software. One pair of students emerged as being particularly proficient at learning to model, and was able to use models productively to explore and explain ecological system behaviors. We present detailed contrasts between this and the other pairs of students' cognitive behaviors while modeling, in three areas that were crucial to their modeling productivity: (a) focusing on model output and net interactions versus on model input and individual relationships when building and revising models, (b) exploring the nature and implications of dependencies and feedbacks versus just creating these as properties of complex systems, and (c) using variables versus constants to represent continuous and periodic functions. We then apply theories of the multifaceted nature of cognition to describe object-level, metalevel, and emotional dimensions of cognitive performance that help to explain the observed differences among students' approaches to STELLA modeling. Finally, we suggest pedagogical strategies for supporting all types of students in learning the central scientific practice of model-based quantitative thinking.

  10. Functional and cognitive grammars

    Institute of Scientific and Technical Information of China (English)

    Anna Siewierska

    2011-01-01

    This paper presents a comprehensive review of the functional approach and cognitive approach to the nature of language and its relation to other aspects of human cognition. The paper starts with a brief discussion of the origins and the core tenets of the two approaches in Section 1. Section 2 discusses the similarities and differences between the three full-fledged structural functional grammars subsumed in the functional approach: Halliday's Systemic Functional Grammar (SFG), Dik's Functional Grammar (FG), and Van Valin's Role and Reference Grammar (RRG). Section 3 deals with the major features of the three cognitive frameworks: Langacker's Cognitive Grammar (CG), Goldberg's Cognitive Construction Grammar (CCG), and Croft's Radical Construction Grammar (RCG). Section 4 compares the two approaches and attempts to provide a unified functional-cognitive grammar. In the last section, the author concludes the paper with remarks on the unidirectional shift from functional grammar to cognitive grammar that may indicate a reinterpretation of the traditional relationship between functional and cognitive models of grammar.

  11. Contribution Towards Practical Cognitive Radios Systems

    KAUST Repository

    Ben Ghorbel, Mahdi

    2013-01-01

    to cognitive radio systems while taking into account practical constraints. Cogni- tive radios requires a capability to detect spectrum holes (spectrum sensing) and a scheduling flexibility to avoid the occupied spectrum and selectively use the empty spectrum

  12. Deciphering CAPTCHAs: what a Turing test reveals about human cognition.

    Directory of Open Access Journals (Sweden)

    Thomas Hannagan

    Full Text Available Turning Turing's logic on its head, we used widespread letter-based Turing Tests found on the internet (CAPTCHAs to shed light on human cognition. We examined the basis of the human ability to solve CAPTCHAs, where machines fail. We asked whether this is due to our use of slow-acting inferential processes that would not be available to machines, or whether fast-acting automatic orthographic processing in humans has superior robustness to shape variations. A masked priming lexical decision experiment revealed efficient processing of CAPTCHA words in conditions that rule out the use of slow inferential processing. This shows that the human superiority in solving CAPTCHAs builds on a high degree of invariance to location and continuous transforms, which is achieved during the very early stages of visual word recognition in skilled readers.

  13. Structured cognition and neural systems: from rats to language.

    NARCIS (Netherlands)

    Battaglia, F.P.; Borensztajn, G.; Bod, R.

    2012-01-01

    Much of animal and human cognition is compositional in nature: higher order, complex representations are formed by (rule-governed) combination of more primitive representations. We review here some of the evidence for compositionality in perception and memory, motivating an approach that takes ideas

  14. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail

    2017-07-20

    Network efficiency and proper utilization of its resources are essential requirements to operate wireless networks in an optimal fashion. Cognitive radio aims to fulfill these requirements by exploiting artificial intelligence techniques to create an entity called cognitive engine. Cognitive engine exploits awareness about the surrounding radio environment to optimize the use of radio resources and adapt relevant transmission parameters. In this paper, we propose a hybrid cognitive engine that employs Case Based Reasoning (CBR) and Decision Trees (DTs) to perform radio adaptation in multi-carriers wireless networks. The engine complexity is reduced by employing DTs to improve the indexing methodology used in CBR cases retrieval. The performance of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes in different scenarios.

  15. An Oversampled Filter Bank Multicarrier System for cognitive Radio

    NARCIS (Netherlands)

    Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria; Zhang, Q; Zhang, Q.

    2008-01-01

    Due to small sideband power leakage, filter bank multicarrier techniques are considered as interesting alternatives to traditional OFDMs for spectrum pooling Cognitive Radio. In this paper, we propose an oversampled filter bank multicarrier system for Cognitive Radio. The increased spacing between

  16. Ethical principles and guidelines for the development of cognitive systems.

    Energy Technology Data Exchange (ETDEWEB)

    Shaneyfelt, Wendy

    2006-05-01

    As cognitive systems technologies emerge, so too do the ethical issues surrounding their development and use. To develop cognitive systems technologies responsibly, Sandia National Laboratories is establishing a framework to proactively address both real and potential ethical issues. This report contains the principles and guidelines developers can use to guide them as they are confronted with ethical issues related to developing cognitive systems technologies as they apply to U.S. national security. A process to apply these principles offers a practical way to transfer these principles from paper to a working strategy. Case studies are presented to reflect upon potential scenarios and to consider resolution strategies.

  17. The human hippocampus: cognitive maps or relational memory?

    Science.gov (United States)

    Kumaran, Dharshan; Maguire, Eleanor A

    2005-08-03

    The hippocampus is widely accepted to play a pivotal role in memory. Two influential theories offer competing accounts of its fundamental operating mechanism. The cognitive map theory posits a special role in mapping large-scale space, whereas the relational theory argues it supports amodal relational processing. Here, we pit the two theories against each other using a novel paradigm in which the relational processing involved in navigating in a city was matched with similar navigational and relational processing demands in a nonspatial (social) domain. During functional magnetic resonance imaging, participants determined the optimal route either between friends' homes or between the friends themselves using social connections. Separate brain networks were engaged preferentially during the two tasks, with hippocampal activation driven only by spatial relational processing. We conclude that the human hippocampus appears to have a bias toward the processing of spatial relationships, in accordance with the cognitive map theory. Our results both advance our understanding of the nature of the hippocampal contribution to memory and provide insights into how social networks are instantiated at the neural level.

  18. Cognitive process modelling of controllers in en route air traffic control.

    Science.gov (United States)

    Inoue, Satoru; Furuta, Kazuo; Nakata, Keiichi; Kanno, Taro; Aoyama, Hisae; Brown, Mark

    2012-01-01

    In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes. This research focuses on an experimental study to gain a better understanding of controllers' cognitive processes in air traffic control. We conducted ethnographic observations and then analysed the data to develop a model of controllers' cognitive process. This analysis revealed that strategic routines are applicable to decision making.

  19. The cognitive environment simulation as a tool for modeling human performance and reliability

    International Nuclear Information System (INIS)

    Woods, D.D.; Pople, H. Jr.; Roth, E.M.

    1990-01-01

    The US Nuclear Regulatory Commission is sponsoring a research program to develop improved methods to model the cognitive behavior of nuclear power plant (NPP) personnel. Under this program, a tool for simulating how people form intentions to act in NPP emergency situations was developed using artificial intelligence (AI) techniques. This tool is called Cognitive Environment Simulation (CES). The Cognitive Reliability Assessment Technique (or CREATE) was also developed to specify how CBS can be used to enhance the measurement of the human contribution to risk in probabilistic risk assessment (PRA) studies. The next step in the research program was to evaluate the modeling tool and the method for using the tool for Human Reliability Analysis (HRA) in PRAs. Three evaluation activities were conducted. First, a panel of highly distinguished experts in cognitive modeling, AI, PRA and HRA provided a technical review of the simulation development work. Second, based on panel recommendations, CES was exercised on a family of steam generator tube rupture incidents where empirical data on operator performance already existed. Third, a workshop with HRA practitioners was held to analyze a worked example of the CREATE method to evaluate the role of CES/CREATE in HRA. The results of all three evaluations indicate that CES/CREATE represents a promising approach to modeling operator intention formation during emergency operations

  20. Human modeling in nuclear engineering

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Furuta, Kazuo.

    1994-01-01

    Review on progress of research and development on human modeling methods is made from the viewpoint of its importance on total man-machine system reliability surrounding nuclear power plant operation. Basic notions on three different approaches of human modeling (behavioristics, cognitives and sociologistics) are firstly introduced, followed by the explanation of fundamental scheme to understand human cognitives at man-machine interface and the mechanisms of human error and its classification. Then, general methodologies on human cognitive model by AI are explained with the brief summary of various R and D activities now prevailing in the human modeling communities around the world. A new method of dealing with group human reliability is also introduced which is based on sociologistic mathematical model. Lastly, problems on human model validation are discussed, followed by the introduction of new experimental method to estimate human cognitive state by psycho-physiological measurement, which is a new methodology plausible for human model validation. (author)

  1. Cognitive structure, flexibility, and plasticity in human multitasking-An integrative review of dual-task and task-switching research.

    Science.gov (United States)

    Koch, Iring; Poljac, Edita; Müller, Hermann; Kiesel, Andrea

    2018-06-01

    Numerous studies showed decreased performance in situations that require multiple tasks or actions relative to appropriate control conditions. Because humans often engage in such multitasking activities, it is important to understand how multitasking affects performance. In the present article, we argue that research on dual-task interference and sequential task switching has proceeded largely separately using different experimental paradigms and methodology. In our article we aim at organizing this complex set of research in terms of three complementary research perspectives on human multitasking. One perspective refers to structural accounts in terms of cognitive bottlenecks (i.e., critical processing stages). A second perspective refers to cognitive flexibility in terms of the underlying cognitive control processes. A third perspective emphasizes cognitive plasticity in terms of the influence of practice on human multitasking abilities. With our review article we aimed at highlighting the value of an integrative position that goes beyond isolated consideration of a single theoretical research perspective and that broadens the focus from single experimental paradigms (dual task and task switching) to favor instead a view that emphasizes the fundamental similarity of the underlying cognitive mechanisms across multitasking paradigms. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Investigations of the human visual system using functional magnetic resonance imaging (FMRI)

    International Nuclear Information System (INIS)

    Kollias, Spyros S.

    2004-01-01

    The application of functional magnetic resonance imaging (fMRI) in studies of the visual system provided significant advancement in our understanding of the organization and functional properties of visual areas in the human cortex. Recent technological and methodological improvements allowed studies to correlate neuronal activity with visual perception and demonstrated the ability of fMRI to observe distributed neural systems and to explore modulation of neural activity during higher cognitive processes. Preliminary applications in patients with visual impairments suggest that this method provides a powerful tool for the assessment and management of brain pathologies. Recent research focuses on obtaining new information about the spatial localization, organization, functional specialization and participation in higher cognitive functions of visual cortical areas in the living human brain and in further establishment of the method as a useful clinical tool of diagnostic and prognostic significance for various pathologic processes affecting the integrity of the visual system. It is anticipated that the combined neuroimaging approach in patients with lesions and healthy controls will provide new insight on the topography and functional specialization of cortical visual areas and will further establish the clinical value of the method for improving diagnostic accuracy and treatment planning

  3. Cosimo: a cognitive simulation model of human decision making and behaviour in complex work environments

    International Nuclear Information System (INIS)

    Cacciabue, P.C.; Decortis, F.; Nordvik, J.P.; Drozdowicz, B.; Masson, M.

    1992-01-01

    In this paper the Cognitive Simulation Model (COSIMO), currently implemented at the Ispra JRC, is described, with particular emphasis on its theoretical foundations, on its computational implementation and on a number of simulations cases of man-machine system interactions. COSIMO runs on a lisp machine and it interacts with the simulation of the physical system implemented on a Sun computer. In our case the physical system is a typical Nuclear Power Plant subsystem - the Auxiliary Feed-Water System (AFWS). One basic application is to explore human behaviour in simulated accident situations in order to identify suitable safety recommendations. To be more specific, COSIMO can be used to: - analyse how operators are likely to act given a particular context, - identify difficult problem solving situations, given problem solving resources and constraints (operator knowledge, man-machine interfaces, procedures), - identify situations that can lead to human errors and evaluate their consequences, - identify and test conditions for error recovery, - investigate the effects of changes in the man-machine system. Since the modelling of the AFWS, its control system and procedures have also been the object of a detailed description (Cacciabue et al., 1990a), the objective of this paper is the presentation of the state of the art of the COSIMO simulation

  4. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    2014-05-01

    Full Text Available Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.

  5. Personality from a cognitive-biological perspective.

    Science.gov (United States)

    Neuman, Yair

    2014-12-01

    The term "personality" is used to describe a distinctive and relatively stable set of mental traits that aim to explain the organism's behavior. The concept of personality that emerged in human psychology has been also applied to the study of non-human organisms from birds to horses. In this paper, I critically review the concept of personality from an interdisciplinary perspective, and point to some ideas that may be used for developing a cognitive-biological theory of personality. Integrating theories and research findings from various fields such as cognitive ethnology, clinical psychology, and neuroscience, I argue that the common denominator of various personality theories are neural systems of threat/trust management and their emotional, cognitive, and behavioral dimensions. In this context, personality may be also conceived as a meta-heuristics both human and non-human organisms apply to model and predict the behavior of others. The paper concludes by suggesting a minimal computational model of personality that may guide future research. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A Cognition-based View of Decision Processes in Complex Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Kathi K. Beratan

    2007-06-01

    Full Text Available This synthesis paper is intended to provide an overview of individual and collective decision-making processes that might serve as a theoretical foundation for a complexity-based approach to environmental policy design and natural resource management planning. Human activities are the primary drivers of change in the Earth's biosphere today, so efforts to shift the trajectory of social-ecological systems must focus on changes in individual and collective human behavior. Recent advances in understanding the biological basis of thought and memory offer insights of use in designing management and planning processes. The human brain has evolved ways of dealing with complexity and uncertainty, and is particularly attuned to social information. Changes in an individual's schemas, reflecting changes in the patterns of neural connections that are activated by particular stimuli, occur primarily through nonconsious processes in response to experiential learning during repeated exposure to novel situations, ideas, and relationships. Discourse is an important mechanism for schema modification, and thus for behavior change. Through discourse, groups of people construct a shared story - a collective model - that is useful for predicting likely outcomes of actions and events. In effect, good stories are models that filter and organize distributed knowledge about complex situations and relationships in ways that are readily absorbed by human cognitive processes. The importance of discourse supports the view that collaborative approaches are needed to effectively deal with environmental problems and natural resource management challenges. Methods derived from the field of mediation and dispute resolution can help us take advantage of the distinctly human ability to deal with complexity and uncertainty. This cognitive view of decision making supports fundamental elements of resilience management and adaptive co-management, including fostering social learning

  7. Androgen responsiveness to competition in humans: the role of cognitive variables

    Directory of Open Access Journals (Sweden)

    Oliveira GA

    2014-02-01

    Full Text Available Gonçalo A Oliveira,1 Rui F Oliveira1,2 1Unidade de Investigação em Eco-Etologia, ISPA – Instituto Universitário, Lisbon, Portugal; 2Champalimaud Neuroscience Program, Instituto Gulbenkian de Ciência, Oeiras, Portugal Abstract: Although androgens are commonly seen as male sex hormones, it has been established over the years that in both sexes, androgens also respond to social challenges. To explain the socially driven changes in androgens, two theoretical models have been proposed: the biosocial model and the challenge hypothesis. These models are typically seen as partly overlapping; however, they generate different predictions that are clarified here. In humans, sports competition and nonmetabolic competitive tasks have been used in the laboratory setting, as a proxy for agonistic interactions in animals. The results reviewed here show that the testosterone (T response to competition in humans is highly variable – the studies present postcompetition T levels and changes in T that depend on the contest outcome and that cannot be predicted by the current theoretical models. These conflicting results bring to the foreground the importance of considering cognitive factors that could moderate the androgen response to competition. Among these variables, we elect cognitive appraisal and its components as a key candidate modulating factor. It is known that T also modulates the cognitive processes that are relevant to performance in competition. In this article, we reviewed the evidence arising from studies investigating the effect of administering exogenous T and compare those results with the findings from studies that measured endogenous T levels. Finally, we summarized the importance of also considering the interaction between androgens and other hormones, such as cortisol, when investigating the social modulation of T, as proposed by the dual-hormone hypothesis. Keywords: testosterone, challenge hypothesis, biosocial model, cognitive

  8. Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations

    Directory of Open Access Journals (Sweden)

    Jörn M. Horschig

    2014-06-01

    Full Text Available Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g. communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works.

  9. I Feel, Therefore, I am: The Insula and Its Role in Human Emotion, Cognition and the Sensory-Motor System

    Directory of Open Access Journals (Sweden)

    Mani Pavuluri

    2015-02-01

    Full Text Available Background: The insula is instrumental in integrating the emotional, cognitive, and sensory-motor systems. This manuscript lays a foundational framework for understanding the insula’s mechanistic role in moderating brain networks in illness and wellness. Methods: Reviewed here is the select literature on the brain anatomy and function relevant to the insula’s role in psychiatrically ill and normative populations. Results: The insula is a hub for moderating social cognition, empathy, reward-driven decision-making, arousal, reactivity to emotional stimuli, and somatic pain processing. Findings indicate a spectrum of increasing complexity in insular function – from receiving and interpreting sensorimotor sensations in the posterior insula to subjective perception of emotions in the anterior insula. The insula plays a key role at the interface of cognitive and emotional domains, functioning in concert with other brain regions that share common cytoarchitecture, such as the ventrolateral prefrontal cortex and the anterior cingulate cortex. Pharmacotherapy and mindfulness-based interventions can alter insular activation. Conclusion: The insula serves as a receiver and interpreter of emotions in the context of cognitive and sensory-motor information. Therefore, insular function and connectivity may potentially be utilized as a biomarker for treatment selection and outcome.

  10. Angiotensin-converting enzyme activity and cognitive impairment during hypoglycaemia in healthy humans

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, Ulrik; Thomsen, Carsten E; Høgenhaven, Hans

    2008-01-01

    INTRODUCTION: In type 1 diabetes increased risk of severe hypoglycaemia is associated with high angiotensin-converting enzyme (ACE) activity. We tested in healthy humans the hypothesis that this association is explained by the reduced ability of subjects with high ACE activity to maintain normal...... cognitive function during hypoglycaemia. METHODS: Sixteen healthy volunteers selected by either particularly high or low serum ACE activity were subjected to hypoglycaemia (plasma glucose 2.7 mmol/L). Cognitive function was assessed by choice reaction tests. RESULTS: Despite a similar hypoglycaemic stimulus...... in the two groups, only the group with high ACE activity showed significant deterioration in cognitive performance during hypoglycaemia. In the high ACE group mean reaction time (MRT) in the most complex choice reaction task was prolonged and error rate (ER) was increased in contrast to the low ACE group...

  11. A functional MiR-124 binding-site polymorphism in IQGAP1 affects human cognitive performance.

    Directory of Open Access Journals (Sweden)

    Lixin Yang

    Full Text Available As a product of the unique evolution of the human brain, human cognitive performance is largely a collection of heritable traits. Rather surprisingly, to date there have been no reported cases to highlight genes that underwent adaptive evolution in humans and which carry polymorphisms that have a marked effect on cognitive performance. IQ motif containing GTPase activating protein 1 (IQGAP1, a scaffold protein, affects learning and memory in a dose-dependent manner. Its expression is regulated by miR-124 through the binding sites in the 3'UTR, where a SNP (rs1042538 exists in the core-binding motif. Here we showed that this SNP can influence the miR-target interaction both in vitro and in vivo. Individuals carrying the derived T alleles have higher IQGAP1 expression in the brain as compared to the ancestral A allele carriers. We observed a significant and male-specific association between rs1042538 and tactile performances in two independent cohorts. Males with the derived allele displayed higher tactual performances as compared to those with the ancestral allele. Furthermore, we found a highly diverged allele-frequency distribution of rs1042538 among world human populations, likely caused by natural selection and/or recent population expansion. These results suggest that current human populations still carry sequence variations that affect cognitive performances and that these genetic variants may likely have been subject to comparatively recent natural selection.

  12. Religiousness and cognitive emotion regulation strategies in adolescence

    Directory of Open Access Journals (Sweden)

    Oleś Maria

    2015-12-01

    Full Text Available Human religiousness is a complex and multidimensional reality embedded in basic human needs and connected with people’s desires, anxieties, and hopes. The aim of the paper is to assess religiousness, considered in terms of meaning and cognitive emotion regulation strategies, in adolescents. The religious meaning system is a multidimensional construct encompassing convictions, beliefs, emotional connotations, and the rules of worship. In situations of negative events or unpleasant experiences, young people resort to various coping strategies. Cognitive emotion regulation strategies concern relatively stable conscious ways of regulating emotions, which consist in mentally handling the incoming information that evoke emotions. The study concerned young people aged 13 to 16 years (N = 130. Religiousness was assessed using D. Krok’s Religious Meaning System Questionnaire (RMSQ and cognitive coping strategies were measured using the Cognitive Emotion Regulation Questionnaire (CERQ by N. Garnefski and V. Kraaij. The results show that there are relations between religiousness, understood in terms of the young participants’ meaning system, and adaptive as well as maladaptive emotion regulation strategies. The results of the study are discussed in the light of theory and research.

  13. Categorial Ontology of Complex Systems, Meta-Systems and Levels: The Emergence of Life, Human Consciousness and Society

    Directory of Open Access Journals (Sweden)

    James F. Glazebrook

    2010-06-01

    Full Text Available Relational structures of organisms and the human mind are naturally represented in terms of novel variable topology concepts, non-Abelian categories and Higher Dimensional Algebra{ relatively new concepts that would be defined in
    this tutorial paper. A unifying theme of local-to-global approaches to organismic development, evolution and human consciousness leads to novel patterns of relations that emerge in super- and ultra- complex systems in terms of compositions of local procedures [1]. The claim is defended in this paper that human consciousness is unique and should be viewed as an ultra-complex, global process of processes, at a meta-level not sub{summed by, but compatible with, human brain dynamics [2]-[5]. The emergence of consciousness and its existence
    are considered to be dependent upon an extremely complex structural and functional unit with an asymmetric network topology and connectivities{the human brain. However, the appearance of human consciousness is shown to be critically dependent upon societal co-evolution, elaborate language-symbolic communication and `virtual', higher dimensional, non{commutative processes involving separate space and time perceptions. Theories of the mind are approached from the theory of levels and ultra-complexity viewpoints that throw
    new light on previous semantic models in cognitive science. Anticipatory systems and complex causality at the top levels of reality are discussed in the context of psychology, sociology and ecology. A paradigm shift towards non-commutative, or more generally, non-Abelian theories of highly complex dynamics [6] is suggested to unfold now in physics, mathematics, life and cognitive sciences, thus leading to the realizations of higher dimensional algebras in neurosciences and psychology, as well as in human genomics, bioinformatics and interactomics. The presence of strange attractors in modern society dynamics gives rise to very serious concerns for the future

  14. THE IMPACT OF ANXIETY UPON COGNITION: PERSPECTIVES FROM HUMAN THREAT OF SHOCK STUDIES

    Directory of Open Access Journals (Sweden)

    Oliver Joe Robinson

    2013-05-01

    Full Text Available Anxiety disorders constitute a sizeable worldwide health burden with profound social and economic consequences. The symptoms are wide-ranging; from hyperarousal to difficulties with concentrating. This latter effect falls under the broad category of altered cognitive performance; in this review we examine studies quantifying such impacts of anxiety on cognition. Specifically, we focus on the translational threat of unpredictable shock paradigm, a method previously used to characterize emotional responses and defensive mechanisms that is now emerging as valuable tool for examining the interaction between anxiety and cognition. In particular, we compare the impact of threat of shock on cognition in humans to that of pathological anxiety disorders. We highlight that both threat of shock and anxiety disorders promote mechanisms associated with harm avoidance across multiple levels of cognition (from perception to attention to learning and executive function – a ‘hot’ cognitive function which can be both adaptive and maladaptive depending upon the circumstances. This mechanism comes at a cost to other functions such as working memory, but leaves some functions, such as planning, unperturbed. We also highlight a number of cognitive effects that differ across anxiety disorders and threat of shock. These discrepant effects are largely seen in ‘cold’ cognitive functions involving control mechanisms and may reveal boundaries between adaptive (e.g. response to threat and maladaptive (e.g. pathological anxiety. We conclude by raising a number of unresolved questions regarding the role of anxiety in cognition that may provide fruitful avenues for future research.

  15. Strategic Cognitive Sequencing: A Computational Cognitive Neuroscience Approach

    Directory of Open Access Journals (Sweden)

    Seth A. Herd

    2013-01-01

    Full Text Available We address strategic cognitive sequencing, the “outer loop” of human cognition: how the brain decides what cognitive process to apply at a given moment to solve complex, multistep cognitive tasks. We argue that this topic has been neglected relative to its importance for systematic reasons but that recent work on how individual brain systems accomplish their computations has set the stage for productively addressing how brain regions coordinate over time to accomplish our most impressive thinking. We present four preliminary neural network models. The first addresses how the prefrontal cortex (PFC and basal ganglia (BG cooperate to perform trial-and-error learning of short sequences; the next, how several areas of PFC learn to make predictions of likely reward, and how this contributes to the BG making decisions at the level of strategies. The third models address how PFC, BG, parietal cortex, and hippocampus can work together to memorize sequences of cognitive actions from instruction (or “self-instruction”. The last shows how a constraint satisfaction process can find useful plans. The PFC maintains current and goal states and associates from both of these to find a “bridging” state, an abstract plan. We discuss how these processes could work together to produce strategic cognitive sequencing and discuss future directions in this area.

  16. Generalized location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Ben Ghorbel, Mahdi

    2010-09-01

    Cognitive radio is one of the hot topics for emerging and future wireless communication. Cognitive users can share channels with primary users under the condition of non interference. In order to compute this interference, the cognitive system usually use the channel state information of the primary user which is often impractical to obtain. However, using location information, we can estimate this interference by pathloss computation. In this paper, we introduce a low-complexity resource allocation algorithm for orthogonal frequency division multiple access (OFDMA) based cognitive radio systems, which uses relative location information between primary and secondary users to estimate the interference. This algorithm considers interference with multiple primary users having different thresholds. The simulation results show the efficiency of the proposed algorithm by comparing it with an optimal exhaustive search method. © 2010 IEEE.

  17. THE PROBLEM OF THE VALUES SUPPORTING REASONING IN THE HUMANITIES: A COGNITIVE-PRAGMATIC APPROACH

    Directory of Open Access Journals (Sweden)

    Tatiana Savtchouk

    2017-04-01

    Full Text Available The main cognitive models of the values supporting reasoning in the discourse of the humanities are identified, the typology of selected schemes is made, their modifications are characterised, the pragmatic differences of the models are determined. Particular attention is paid to the “cause to aim” justification of the value judgments that prevails in the humanities. The regularities of verbal representation of cognitive structures are ascertained, pragmatic properties of argumentative markers are explicated. The author’s typology of tactics that implements rational and emotional value-study strategies is proposed. A number of fallacies in the justification of normative value judgments are revealed, such as “semantic-pragmatic dissonance”, “simulation of reasoning”, “pseudoauthority”, “superfluity of argumentative resource”. The sources of such shortcomings are exemplified by the facts from the evidence base. The conclusion is that the author of the article chooses the cognitive model of argumentation in support of the values, the ways of its verbal presentation and the tactics of reasoning on the basis of pragmatic factors.

  18. Humans, Intentionality, Experience And Tools For Learning: Some Contributions From Post-cognitive Theories To The Use Of Technology In Physics Education

    Science.gov (United States)

    Bernhard, Jonte

    2007-11-01

    Human cognition cannot be properly understood if we do not take the use of tools into account. The English word cognition stems from the Latin "cognoscere," meaning "to become acquainted with" or "to come to know." Following the original Latin meaning we should not only study "what happens in the head" if we want to study cognition. Experientially based perspectives, such as pragmatism, phenomenology, phenomenography, and activity theory, stress that we should study person-world relationships. Technologies actively shape the character of human-world relationships. An emergent understanding in modern cognitive research is the co-evolution of the human brain and human use of tools and the active character of perception. Thus, I argue that we must analyze the role of technologies in physics education in order to realize their full potential as tools for learning, and I will provide selected examples from physics learning environments to support this assertion.

  19. Models of human operators: Their need and usefulness for improvement of advanced control systems and control rooms

    International Nuclear Information System (INIS)

    Knee, H.E.; Schryver, J.C.

    1991-01-01

    Models of human behavior and cognition (HB ampersand C) are necessary for understanding the total response of complex systems. Many such model have come available over the past thirty years for various applications. Many potential model users remain skeptical about their practically, acceptability, and usefulness. Such hesitancy stems in part from disbelief in the ability to model complex cognitive processes, and a belief that relevant human behavior can be adequately accounted for through the use of common-sense heuristics. This paper will highlight several models of HB ampersand C and identify existing and potential applications in attempt to dispel such notions. 26 refs

  20. Meaning of cognitive processes for creating artificial intelligence

    OpenAIRE

    Pangrác, Vojtěch

    2011-01-01

    This diploma thesis brings an integral view at cognitive processes connected with artificial intelligence systems, and makes a comparison with the processes observed in nature, including human being. A historical background helps us to look at the whole issue from a certain point of view. The main axis of interest comes after the historical overview and includes the following: environment -- stimulations -- processing -- reflection in the cognitive system -- reaction to stimulation; I balance...

  1. Resource-adaptive cognitive processes

    CERN Document Server

    Crocker, Matthew W

    2010-01-01

    This book investigates the adaptation of cognitive processes to limited resources. The central topics of this book are heuristics considered as results of the adaptation to resource limitations, through natural evolution in the case of humans, or through artificial construction in the case of computational systems; the construction and analysis of resource control in cognitive processes; and an analysis of resource-adaptivity within the paradigm of concurrent computation. The editors integrated the results of a collaborative 5-year research project that involved over 50 scientists. After a mot

  2. Acute Post-Prandial Cognitive Effects of Brown Seaweed Extract in Humans

    Directory of Open Access Journals (Sweden)

    Crystal F. Haskell-Ramsay

    2018-01-01

    Full Text Available (Polyphenols and, specifically, phlorotannins present in brown seaweeds have previously been shown to inhibit α-amylase and α-glucosidase, key enzymes involved in the breakdown and intestinal absorption of carbohydrates. Related to this are observations of modulation of post-prandial glycemic response in mice and increased insulin sensitivity in humans when supplemented with seaweed extract. However, no studies to date have explored the effect of seaweed extract on cognition. The current randomized, placebo-controlled, double-blind, parallel groups study examined the impact of a brown seaweed extract on cognitive function post-prandially in 60 healthy adults (N = 30 per group. Computerized measures of episodic memory, attention and subjective state were completed at baseline and 5 times at 40 min intervals over a 3 h period following lunch, with either seaweed or placebo consumed 30 min prior to lunch. Analysis was conducted with linear mixed models controlling for baseline. Seaweed led to significant improvements to accuracy on digit vigilance (p = 0.035 and choice reaction time (p = 0.043 tasks. These findings provide the first evidence for modulation of cognition with seaweed extract. In order to explore the mechanism underlying these effects, future research should examine effects on cognition in parallel with blood glucose and insulin responses.

  3. Human preferences for symmetry: subjective experience, cognitive conflict and cortical brain activity.

    Directory of Open Access Journals (Sweden)

    David W Evans

    Full Text Available This study examines the links between human perceptions, cognitive biases and neural processing of symmetrical stimuli. While preferences for symmetry have largely been examined in the context of disorders such as obsessive-compulsive disorder and autism spectrum disorders, we examine various these phenomena in non-clinical subjects and suggest that such preferences are distributed throughout the typical population as part of our cognitive and neural architecture. In Experiment 1, 82 young adults reported on the frequency of their obsessive-compulsive spectrum behaviors. Subjects also performed an emotional Stroop or variant of an Implicit Association Task (the OC-CIT developed to assess cognitive biases for symmetry. Data not only reveal that subjects evidence a cognitive conflict when asked to match images of positive affect with asymmetrical stimuli, and disgust with symmetry, but also that their slowed reaction times when asked to do so were predicted by reports of OC behavior, particularly checking behavior. In Experiment 2, 26 participants were administered an oddball Event-Related Potential task specifically designed to assess sensitivity to symmetry as well as the OC-CIT. These data revealed that reaction times on the OC-CIT were strongly predicted by frontal electrode sites indicating faster processing of an asymmetrical stimulus (unparallel lines relative to a symmetrical stimulus (parallel lines. The results point to an overall cognitive bias linking disgust with asymmetry and suggest that such cognitive biases are reflected in neural responses to symmetrical/asymmetrical stimuli.

  4. Error analysis of nuclear power plant operator cognitive behavior

    International Nuclear Information System (INIS)

    He Xuhong; Zhao Bingquan; Chen Yulong

    2001-01-01

    Nuclear power plant is a complex human-machine system integrated with many advanced machines, electron devices and automatic controls. It demands operators to have high cognitive ability and correct analysis skill. The author divides operator's cognitive process into five stages to analysis. With this cognitive model, operator's cognitive error is analysed to get the root causes and stages that error happens. The results of the analysis serve as a basis in design of control rooms and training and evaluation of operators

  5. CAPTCHA Based on Human Cognitive Factor

    OpenAIRE

    Chowdhury, Mohammad Jabed Morshed; Chakraborty, Narayan Ranjan

    2013-01-01

    A CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is an automatic security mechanism used to determine whether the user is a human or a malicious computer program. It is a program that generates and grades tests that are human solvable, but intends to be beyond the capabilities of current computer programs. CAPTCHA should be designed to be very easy for humans but very hard for machines. Unfortunately, the existing CAPTCHA systems while trying to maximize ...

  6. Conceptions of cognition for cognitive engineering

    DEFF Research Database (Denmark)

    Blomberg, Olle

    2011-01-01

    Cognitive processes, cognitive psychology tells us, unfold in our heads. In contrast, several approaches in cognitive engineering argue for a shift of unit of analysis from what is going on in the heads of operators to the workings of whole socio-technical systems. This shift is sometimes presented...... as part of the development of a new understanding of what cognition is and where the boundaries of cognitive systems are. Cognition, it is claimed, is not just situated or embedded, but extended and distributed in the world. My main question in this article is what the practical significance...... is of this framing of an expanded unit of analysis in a cognitive vocabulary. I focus on possible consequences for how cognitive engineering practitioners think about function allocation in system design, and on what the relative benefits and costs are of having a common framework and vocabulary for talking about...

  7. Cognitive penetrability and emotion recognition in human facial expressions

    Directory of Open Access Journals (Sweden)

    Francesco eMarchi

    2015-06-01

    Full Text Available Do our background beliefs, desires, and mental images influence our perceptual experience of the emotions of others? In this paper, we will address the possibility of cognitive penetration of perceptual experience in the domain of social cognition. In particular, we focus on emotion recognition based on the visual experience of facial expressions. After introducing the current debate on cognitive penetration, we review examples of perceptual adaptation for facial expressions of emotion. This evidence supports the idea that facial expressions are perceptually processed as wholes. That is, the perceptual system integrates lower-level facial features, such as eyebrow orientation, mouth angle etc., into facial compounds. We then present additional experimental evidence showing that in some cases, emotion recognition on the basis of facial expression is sensitive to and modified by the background knowledge of the subject. We argue that such sensitivity is best explained as a difference in the visual experience of the facial expression, not just as a modification of the judgment based on this experience. The difference in experience is characterized as the result of the interference of background knowledge with the perceptual integration process for faces. Thus, according to the best explanation, we have to accept cognitive penetration in some cases of emotion recognition. Finally, we highlight a recent model of social vision in order to propose a mechanism for cognitive penetration used in the face-based recognition of emotion.

  8. Development of realtime cognitive state estimator

    International Nuclear Information System (INIS)

    Takahashi, Makoto; Kitamura, Masashi; Yoshikaea, Hidekazu

    2004-01-01

    The realtime cognitive state estimator based on the set of physiological measures has been developed in order to provide valuable information on the human behavior during the interaction through the Man-Machine Interface. The artificial neural network has been adopted to categorize the cognitive states by using the qualitative physiological data pattern as the inputs. The laboratory experiments, in which the subjects' cognitive states were intentionally controlled by the task presented, were performed to obtain training data sets for the neural network. The developed system has been shown to be capable of estimating cognitive state with higher accuracy and realtime estimation capability has also been confirmed through the data processing experiments. (author)

  9. Toward cognitive robotics

    Science.gov (United States)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  10. The interactive evolution of human communication systems.

    Science.gov (United States)

    Fay, Nicolas; Garrod, Simon; Roberts, Leo; Swoboda, Nik

    2010-04-01

    This paper compares two explanations of the process by which human communication systems evolve: iterated learning and social collaboration. It then reports an experiment testing the social collaboration account. Participants engaged in a graphical communication task either as a member of a community, where they interacted with seven different partners drawn from the same pool, or as a member of an isolated pair, where they interacted with the same partner across the same number of games. Participants' horizontal, pair-wise interactions led "bottom up" to the creation of an effective and efficient shared sign system in the community condition. Furthermore, the community-evolved sign systems were as effective and efficient as the local sign systems developed by isolated pairs. Finally, and as predicted by a social collaboration account, and not by an iterated learning account, interaction was critical to the creation of shared sign systems, with different isolated pairs establishing different local sign systems and different communities establishing different global sign systems. Copyright © 2010 Cognitive Science Society, Inc.

  11. Use of eye tracking equipment for human reliability analysis applied to complex system operations

    International Nuclear Information System (INIS)

    Pinheiro, Andre Ricardo Mendonça; Prado, Eugenio Anselmo Pessoa do; Martins, Marcelo Ramos

    2017-01-01

    This article will discuss the preliminary results of an evaluation methodology for the analysis and quantification of manual character errors (human), by monitoring cognitive parameters and skill levels in the operation of a complex control system based on parameters provided by a eye monitoring equipment (Eye Tracker). The research was conducted using a simulator (game) that plays concepts of operation of a nuclear reactor with a split sample for evaluation of aspects of learning, knowledge and standard operating within the context addressed. bridge operators were monitored using the EYE TRACKING, eliminating the presence of the analyst in the evaluation of the operation, allowing the analysis of the results by means of multivariate statistical techniques within the scope of system reliability. The experiments aim to observe state change situations such as stops and scheduled departures, incidents assumptions and common operating characteristics. Preliminary results of this research object indicate that technical and cognitive aspects can contribute to improving the reliability of the available techniques in human reliability, making them more realistic both in the context of quantitative approaches to regulatory and training purposes, as well as reduced incidence of human error. (author)

  12. Use of eye tracking equipment for human reliability analysis applied to complex system operations

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Andre Ricardo Mendonça; Prado, Eugenio Anselmo Pessoa do; Martins, Marcelo Ramos, E-mail: andrericardopinheiro@usp.br, E-mail: eugenio.prado@labrisco.usp.br, E-mail: mrmatins@usp.br [Universidade de Sao Paulo (LABRISCO/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco

    2017-07-01

    This article will discuss the preliminary results of an evaluation methodology for the analysis and quantification of manual character errors (human), by monitoring cognitive parameters and skill levels in the operation of a complex control system based on parameters provided by a eye monitoring equipment (Eye Tracker). The research was conducted using a simulator (game) that plays concepts of operation of a nuclear reactor with a split sample for evaluation of aspects of learning, knowledge and standard operating within the context addressed. bridge operators were monitored using the EYE TRACKING, eliminating the presence of the analyst in the evaluation of the operation, allowing the analysis of the results by means of multivariate statistical techniques within the scope of system reliability. The experiments aim to observe state change situations such as stops and scheduled departures, incidents assumptions and common operating characteristics. Preliminary results of this research object indicate that technical and cognitive aspects can contribute to improving the reliability of the available techniques in human reliability, making them more realistic both in the context of quantitative approaches to regulatory and training purposes, as well as reduced incidence of human error. (author)

  13. Using the Cognitive Apprenticeship Web-Based Argumentation System to Improve Argumentation Instruction

    Science.gov (United States)

    Tsai, Chun-Yen; Jack, Brady Michael; Huang, Tai-Chu; Yang, Jin-Tan

    2012-01-01

    This study investigated how the instruction of argumentation skills could be promoted by using an online argumentation system. This system entitled "Cognitive Apprenticeship Web-based Argumentation" (CAWA) system was based on cognitive apprenticeship model. One hundred eighty-nine fifth grade students took part in this study. A quasi-experimental…

  14. Increasing cognitive load attenuates right arm swing in healthy human walking

    Science.gov (United States)

    Killeen, Tim; Easthope, Christopher S.; Filli, Linard; Lőrincz, Lilla; Schrafl-Altermatt, Miriam; Brugger, Peter; Linnebank, Michael; Curt, Armin; Zörner, Björn; Bolliger, Marc

    2017-01-01

    Human arm swing looks and feels highly automated, yet it is increasingly apparent that higher centres, including the cortex, are involved in many aspects of locomotor control. The addition of a cognitive task increases arm swing asymmetry during walking, but the characteristics and mechanism of this asymmetry are unclear. We hypothesized that this effect is lateralized and a Stroop word-colour naming task-primarily involving left hemisphere structures-would reduce right arm swing only. We recorded gait in 83 healthy subjects aged 18-80 walking normally on a treadmill and while performing a congruent and incongruent Stroop task. The primary measure of arm swing asymmetry-an index based on both three-dimensional wrist trajectories in which positive values indicate proportionally smaller movements on the right-increased significantly under dual-task conditions in those aged 40-59 and further still in the over-60s, driven by reduced right arm flexion. Right arm swing attenuation appears to be the norm in humans performing a locomotor-cognitive dual-task, confirming a prominent role of the brain in locomotor behaviour. Women under 60 are surprisingly resistant to this effect, revealing unexpected gender differences atop the hierarchical chain of locomotor control.

  15. Normative Cognition in Culture and Religion

    DEFF Research Database (Denmark)

    Jensen, Jeppe Sinding

    2013-01-01

    "Normative Cognition" is a theoretical model of human cognition as driven, modulated and governed by symbolically mediated inter-subjective norms and conventions......"Normative Cognition" is a theoretical model of human cognition as driven, modulated and governed by symbolically mediated inter-subjective norms and conventions...

  16. Engagement with the auditory processing system during targeted auditory cognitive training mediates changes in cognitive outcomes in individuals with schizophrenia.

    Science.gov (United States)

    Biagianti, Bruno; Fisher, Melissa; Neilands, Torsten B; Loewy, Rachel; Vinogradov, Sophia

    2016-11-01

    Individuals with schizophrenia who engage in targeted cognitive training (TCT) of the auditory system show generalized cognitive improvements. The high degree of variability in cognitive gains maybe due to individual differences in the level of engagement of the underlying neural system target. 131 individuals with schizophrenia underwent 40 hours of TCT. We identified target engagement of auditory system processing efficiency by modeling subject-specific trajectories of auditory processing speed (APS) over time. Lowess analysis, mixed models repeated measures analysis, and latent growth curve modeling were used to examine whether APS trajectories were moderated by age and illness duration, and mediated improvements in cognitive outcome measures. We observed significant improvements in APS from baseline to 20 hours of training (initial change), followed by a flat APS trajectory (plateau) at subsequent time-points. Participants showed interindividual variability in the steepness of the initial APS change and in the APS plateau achieved and sustained between 20 and 40 hours. We found that participants who achieved the fastest APS plateau, showed the greatest transfer effects to untrained cognitive domains. There is a significant association between an individual's ability to generate and sustain auditory processing efficiency and their degree of cognitive improvement after TCT, independent of baseline neurocognition. APS plateau may therefore represent a behavioral measure of target engagement mediating treatment response. Future studies should examine the optimal plateau of auditory processing efficiency required to induce significant cognitive improvements, in the context of interindividual differences in neural plasticity and sensory system efficiency that characterize schizophrenia. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Human Cognitive Limitations. Broad, Consistent, Clinical Application of Physiological Principles Will Require Decision Support.

    Science.gov (United States)

    Morris, Alan H

    2018-02-01

    Our education system seems to fail to enable clinicians to broadly understand core physiological principles. The emphasis on reductionist science, including "omics" branches of research, has likely contributed to this decrease in understanding. Consequently, clinicians cannot be expected to consistently make clinical decisions linked to best physiological evidence. This is a large-scale problem with multiple determinants, within an even larger clinical decision problem: the failure of clinicians to consistently link their decisions to best evidence. Clinicians, like all human decision-makers, suffer from significant cognitive limitations. Detailed context-sensitive computer protocols can generate personalized medicine instructions that are well matched to individual patient needs over time and can partially resolve this problem.

  18. Exploring human error in military aviation flight safety events using post-incident classification systems.

    Science.gov (United States)

    Hooper, Brionny J; O'Hare, David P A

    2013-08-01

    Human error classification systems theoretically allow researchers to analyze postaccident data in an objective and consistent manner. The Human Factors Analysis and Classification System (HFACS) framework is one such practical analysis tool that has been widely used to classify human error in aviation. The Cognitive Error Taxonomy (CET) is another. It has been postulated that the focus on interrelationships within HFACS can facilitate the identification of the underlying causes of pilot error. The CET provides increased granularity at the level of unsafe acts. The aim was to analyze the influence of factors at higher organizational levels on the unsafe acts of front-line operators and to compare the errors of fixed-wing and rotary-wing operations. This study analyzed 288 aircraft incidents involving human error from an Australasian military organization occurring between 2001 and 2008. Action errors accounted for almost twice (44%) the proportion of rotary wing compared to fixed wing (23%) incidents. Both classificatory systems showed significant relationships between precursor factors such as the physical environment, mental and physiological states, crew resource management, training and personal readiness, and skill-based, but not decision-based, acts. The CET analysis showed different predisposing factors for different aspects of skill-based behaviors. Skill-based errors in military operations are more prevalent in rotary wing incidents and are related to higher level supervisory processes in the organization. The Cognitive Error Taxonomy provides increased granularity to HFACS analyses of unsafe acts.

  19. A preclinical cognitive test battery to parallel the National Institute of Health Toolbox in humans: bridging the translational gap.

    Science.gov (United States)

    Snigdha, Shikha; Milgram, Norton W; Willis, Sherry L; Albert, Marylin; Weintraub, S; Fortin, Norbert J; Cotman, Carl W

    2013-07-01

    A major goal of animal research is to identify interventions that can promote successful aging and delay or reverse age-related cognitive decline in humans. Recent advances in standardizing cognitive assessment tools for humans have the potential to bring preclinical work closer to human research in aging and Alzheimer's disease. The National Institute of Health (NIH) has led an initiative to develop a comprehensive Toolbox for Neurologic Behavioral Function (NIH Toolbox) to evaluate cognitive, motor, sensory and emotional function for use in epidemiologic and clinical studies spanning 3 to 85 years of age. This paper aims to analyze the strengths and limitations of animal behavioral tests that can be used to parallel those in the NIH Toolbox. We conclude that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery for assessment of cognitive function in animal models of aging and Alzheimer's disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Revolutions and shifting paradigms in human factors & ergonomics.

    Science.gov (United States)

    Boff, Kenneth R

    2006-07-01

    The "Revolution in Information Technology" has spawned a series of transformational revolutions in the nature and practice of human factors and ergonomics (HFE). "Generation 1" HFE evolved with a focus on adapting equipment, workplace and tasks to human capabilities and limitations. Generation 2, focused on cognitive systems integration, arose in response to the need to manage automation and dynamic function allocation. Generation 3 is focused on symbiotic technologies that can amplify human physical and cognitive capabilities. Generation 4 is emergent and is focused on biological enhancement of physical or cognitive capabilities. The shift from HFE Generations 1 and 2 to Generations 3 and 4 profoundly alters accepted boundary constraints on the adaptability of humans in complex systems design. Furthermore, it has opened an ethical divide between those that see cognitive and physical enhancement as a great benefit to society and those who perceive this as tampering with the fundamentals of human nature.

  1. On the specificity of face cognition compared with general cognitive functioning across adult age.

    Science.gov (United States)

    Hildebrandt, Andrea; Wilhelm, Oliver; Schmiedek, Florian; Herzmann, Grit; Sommer, Werner

    2011-09-01

    Face cognition is considered a specific human ability, clearly differentiable from general cognitive functioning. Its specificity is primarily supported by cognitive-experimental and neuroimaging research, but recently also from an individual differences perspective. However, no comprehensive behavioral data are available, which would allow estimating lifespan changes of the covariance structure of face-cognition abilities and general cognitive functioning as well as age-differences in face cognition after accounting for interindividual variability in general cognition. The present study aimed to fill this gap. In an age-heterogeneous (18-82 years) sample of 448 adults, we found no factorial dedifferentiation between face cognition and general cognition. Age-related differences in face memory were still salient after taking into account changes in general cognitive functioning. Face cognition thus remains a specific human ability compared with general cognition, even until old age. We discuss implications for models of cognitive aging and suggest that it is necessary to include more explicitly special social abilities in those models.

  2. Current advances in the cognitive neuroscience of music.

    Science.gov (United States)

    Levitin, Daniel J; Tirovolas, Anna K

    2009-03-01

    The study of music perception and cognition is one of the oldest topics in experimental psychology. The last 20 years have seen an increased interest in understanding the functional neuroanatomy of music processing in humans, using a variety of technologies including fMRI, PET, ERP, MEG, and lesion studies. We review current findings in the context of a rich intellectual history of research, organized by the cognitive systems underlying different aspects of human musical behavior. We pay special attention to the perception of components of musical processing, musical structure, laterality effects, cultural issues, links between music and movement, emotional processing, expertise, and the amusias. Current trends are noted, such as the increased interest in evolutionary origins of music and comparisons of music and language. The review serves to demonstrate the important role that music can play in informing broad theories of higher order cognitive processes such as music in humans.

  3. Interaction vs. observation: distinctive modes of social cognition in human brain and behavior? A combined fMRI and eye-tracking study.

    Science.gov (United States)

    Tylén, Kristian; Allen, Micah; Hunter, Bjørk K; Roepstorff, Andreas

    2012-01-01

    Human cognition has usually been approached on the level of individual minds and brains, but social interaction is a challenging case. Is it best thought of as a self-contained individual cognitive process aiming at an "understanding of the other," or should it rather be approached as an collective, inter-personal process where individual cognitive components interact on a moment-to-moment basis to form coupled dynamics? In a combined fMRI and eye-tracking study we directly contrasted these models of social cognition. We found that the perception of situations affording social contingent responsiveness (e.g., someone offering or showing you an object) elicited activations in regions of the right posterior temporal sulcus and yielded greater pupil dilation corresponding to a model of coupled dynamics (joint action). In contrast, the social-cognitive perception of someone "privately" manipulating an object elicited activation in medial prefrontal cortex, the right inferior frontal gyrus and right inferior parietal lobus, regions normally associated with Theory of Mind and with the mirror neuron system. Our findings support a distinction in social cognition between social observation and social interaction, and demonstrate that simple ostensive cues may shift participants' experience, behavior, and brain activity between these modes. The identification of a distinct, interactive mode has implications for research on social cognition, both in everyday life and in clinical conditions.

  4. Interaction versus Observation: distinctive modes of social cognition in human brain and behavior? A combined fMRI and eye-tracking study.

    Directory of Open Access Journals (Sweden)

    Kristian eTylen

    2012-12-01

    Full Text Available Human cognition has usually been approached on the level of individual minds and brains, but social interaction is a challenging case. Is it best thought of as a self-contained individual cognitive process aiming at an ‘understanding of the other’, or should it rather be approached as an collective, inter-personal process where individual cognitive components interact on a moment-to-moment basis to form coupled dynamics? In a combined fMRI and eye tracking study we directly contrasted these models of social cognition. We found that the perception of situations affording social contingent responsiveness (e.g. someone offering or showing you an object elicited activations in regions of the right posterior temporal sulcus and yielded greater pupil dilation corresponding to a model of coupled dynamics (joint action. In contrast, the social-cognitive perception of someone ‘privately’ manipulating an object elicited activation in medial prefrontal cortex, the right inferior frontal gyrus and right inferior parietal lobus, regions normally associated with Theory of Mind and with the mirror neuron system. Our findings support a distinction in social cognition between social observation and social interaction, and demonstrate that simple ostensive cues may shift participants’ experience, behavior and brain activity between these modes. The identification of a distinct, interactive mode has implications for research on social cognition, both in everyday life and in clinical conditions.

  5. The influence of the glutamatergic system on cognition in schizophrenia: A systematic review.

    Science.gov (United States)

    Thomas, Elizabeth H X; Bozaoglu, Kiymet; Rossell, Susan L; Gurvich, Caroline

    2017-06-01

    Previous literature showing the role of the glutamatergic system on cognition in schizophrenia has been inconclusive. 44 relevant pharmacological, candidate gene and neuroimaging studies were identified through systematic search following PRISMA guidelines. To be included, studies must have observed at least one objective measure of cognitive performance in patients with schizophrenia and either manipulated or measured the glutamatergic system. Of the cognitive domains observed, memory, working memory and executive functions appear to be most influenced by the glutamatergic pathway. In addition, evidence from the literature suggests that presynaptic components synthesis and uptake of glutamate is involved in memory, while postsynaptic signalling appears to be involved in working memory. In addition, it appears that the glutamatergic pathway is particularly involved in cognitive flexibility and learning potential in regards to executive functioning. The glutamatergic system appears to contribute to the cognitive deficits in schizophrenia, whereby different parts of the pathway are associated with different cognitive domains. This review demonstrates the necessity for cognition to be examined by domain as opposed to globally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Acquiring neural signals for developing a perception and cognition model

    Science.gov (United States)

    Li, Wei; Li, Yunyi; Chen, Genshe; Shen, Dan; Blasch, Erik; Pham, Khanh; Lynch, Robert

    2012-06-01

    The understanding of how humans process information, determine salience, and combine seemingly unrelated information is essential to automated processing of large amounts of information that is partially relevant, or of unknown relevance. Recent neurological science research in human perception, and in information science regarding contextbased modeling, provides us with a theoretical basis for using a bottom-up approach for automating the management of large amounts of information in ways directly useful for human operators. However, integration of human intelligence into a game theoretic framework for dynamic and adaptive decision support needs a perception and cognition model. For the purpose of cognitive modeling, we present a brain-computer-interface (BCI) based humanoid robot system to acquire brainwaves during human mental activities of imagining a humanoid robot-walking behavior. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model. The BCI system consists of a data acquisition unit with an electroencephalograph (EEG), a humanoid robot, and a charge couple CCD camera. An EEG electrode cup acquires brainwaves from the skin surface on scalp. The humanoid robot has 20 degrees of freedom (DOFs); 12 DOFs located on hips, knees, and ankles for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, and 2 DOFs for head yaw and pitch motion. The CCD camera takes video clips of the human subject's hand postures to identify mental activities that are correlated to the robot-walking behaviors. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model.

  7. Biological simplexity and cognitive heteronomy

    DEFF Research Database (Denmark)

    Gahrn-Andersen, Rasmus

    2018-01-01

    Heteronomy informs parts of human sense-making including perceptual and linguistic activities. This article explores Berthoz's (2012) notion of simplexity in relation to heteronomous aspects of human cognition while it criticises proponents of Active Externalism for presuming that cognitive...... activity is based in strong autonomy. Specifically, its negative target is the problematic aspects of Varelian Enactivism and Extended Cognitive Functionalism which are linked to the assumption that cognition is conditioned by the cogniser's strong autonomy. Since active externalists presume that cognition...... has a clear agent-to-world directionality, they prove unable to account for cases where cognition is informed by novel sensuous inputs. The article presents a positive argument that acknowledges the embodied basis of human sense-making as well as the weak autonomy of the cogniser. It argues...

  8. Neurotransmitter-based strategies for the treatment of cognitive dysfunction in Down syndrome.

    Science.gov (United States)

    Das, Devsmita; Phillips, Cristy; Hsieh, Wayne; Sumanth, Krithika; Dang, Van; Salehi, Ahmad

    2014-10-03

    Down syndrome (DS) is a multisystem disorder affecting the cardiovascular, respiratory, gastrointestinal, neurological, hematopoietic, and musculoskeletal systems and is characterized by significant cognitive disability and a possible common pathogenic mechanism with Alzheimer's disease. During the last decade, numerous studies have supported the notion that the triplication of specific genes on human chromosome 21 plays a significant role in cognitive dysfunction in DS. Here we reviewed studies in trisomic mouse models and humans, including children and adults with DS. In order to identify groups of genes that contribute to cognitive disability in DS, multiple mouse models of DS with segmental trisomy have been generated. Over-expression of these particular genes in DS can lead to dysfunction of several neurotransmitter systems. Therapeutic strategies for DS have either focused on normalizing the expression of triplicated genes with important roles in DS or restoring the function of these systems. Indeed, our extensive review of studies on the pathogenesis of DS suggests that one plausible strategy for the treatment of cognitive dysfunction is to target the cholinergic, serotonergic, GABA-ergic, glutamatergic, and norepinephrinergic system. However, a fundamental strategy for treatment of cognitive dysfunction in DS would include reducing to normal levels the expression of specific triplicated genes in affected systems before the onset of neurodegeneration. Published by Elsevier Inc.

  9. Stress, Cognition, and Human Performance: A Literature Review and Conceptual Framework

    Science.gov (United States)

    Staal, Mark A.

    2004-01-01

    The following literature review addresses the effects of various stressors on cognition. While attempting to be as inclusive as possible, the review focuses its examination on the relationships between cognitive appraisal, attention, memory, and stress as they relate to information processing and human performance. The review begins with an overview of constructs and theoretical perspectives followed by an examination of effects across attention, memory, perceptual-motor functions, judgment and decision making, putative stressors such as workload, thermals, noise, and fatigue and closes with a discussion of moderating variables and related topics. In summation of the review, a conceptual framework for cognitive process under stress has been assembled. As one might imagine, the research literature that addresses stress, theories governing its effects on human performance, and experimental evidence that supports these notions is large and diverse. In attempting to organize and synthesize this body of work, I was guided by several earlier efforts (Bourne & Yaroush, 2003; Driskell, Mullen, Johnson, Hughes, & Batchelor, 1992; Driskell & Salas, 1996; Haridcock & Desmond, 2001; Stokes & Kite, 1994). These authors should be credited with accomplishing the monumental task of providing focused reviews in this area and their collective efforts laid the foundation for this present review. Similarly, the format of this review has been designed in accordance with these previous exemplars. However, each of these previous efforts either simply reported general findings, without sufficient experimental illustration, or narrowed their scope of investigation to the extent that the breadth of such findings remained hidden from the reader. Moreover, none of these examinations yielded an architecture that adequately describes or explains the inter-relations between information processing elements under stress conditions.

  10. Towards a New Kind of Cognition

    OpenAIRE

    Slipper, Callan

    2013-01-01

    To explore Chiara’s cognitive proposal, this article takes a phenomenological and interdisciplinary approach in an attempt to give insight into the experience of cognition and offer a basis for understanding it within the context of human development. The article outlines three modes of cognition that can be seen in human being using a schematic understanding of childhood development as a basis. These modes of cognition are then looked at from an evolutionary perspective seeing how human cogn...

  11. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    Science.gov (United States)

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  12. Mathematical Approaches to Cognitive Linguistics

    Directory of Open Access Journals (Sweden)

    Chuluundorj Begz

    2013-05-01

    Full Text Available Cognitive linguistics, neuro-cognitive and psychological analysis of human verbal cognition present important area of multidisciplinary research. Mathematical methods and models have been introduced in number of publications with increasing attention to these theories. In this paper we have described some possible applications of mathematical methods to cognitive linguistics. Human verbal perception and verbal mapping deal with dissipative mental structures and symmetric/asymmetric relationships between objects of perception and deep (also surface structures of language. In that’s way methods of tensor analysis are ambitious candidate to be applied to analysis of human verbal thinking and mental space.

  13. Cognitive and tactile factors affecting human haptic performance in later life.

    Directory of Open Access Journals (Sweden)

    Tobias Kalisch

    Full Text Available BACKGROUND: Vision and haptics are the key modalities by which humans perceive objects and interact with their environment in a target-oriented manner. Both modalities share higher-order neural resources and the mechanisms required for object exploration. Compared to vision, the understanding of haptic information processing is still rudimentary. Although it is known that haptic performance, similar to many other skills, decreases in old age, the underlying mechanisms are not clear. It is yet to be determined to what extent this decrease is related to the age-related loss of tactile acuity or cognitive capacity. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the haptic performance of 81 older adults by means of a cross-modal object recognition test. Additionally, we assessed the subjects' tactile acuity with an apparatus-based two-point discrimination paradigm, and their cognitive performance by means of the non-verbal Raven-Standard-Progressive matrices test. As expected, there was a significant age-related decline in performance on all 3 tests. With the exception of tactile acuity, this decline was found to be more distinct in female subjects. Correlation analyses revealed a strong relationship between haptic and cognitive performance for all subjects. Tactile performance, on the contrary, was only significantly correlated with male subjects' haptic performance. CONCLUSIONS: Haptic object recognition is a demanding task in old age, especially when it comes to the exploration of complex, unfamiliar objects. Our data support a disproportionately higher impact of cognition on haptic performance as compared to the impact of tactile acuity. Our findings are in agreement with studies reporting an increase in co-variation between individual sensory performance and general cognitive functioning in old age.

  14. From Augustine of Hippo’s Memory Systems to Our Modern Taxonomy in Cognitive Psychology and Neuroscience of Memory: A 16-Century Nap of Intuition before Light of Evidence

    OpenAIRE

    Cassel, Jean-Christophe; Cassel, Daniel; Manning, Lilianne

    2012-01-01

    Over the last half century, neuropsychologists, cognitive psychologists and cognitive neuroscientists interested in human memory have accumulated evidence showing that there is not one general memory function but a variety of memory systems deserving distinct (but for an organism, complementary) functional entities. The first attempts to organize memory systems within a taxonomic construct are often traced back to the French philosopher Maine de Biran (1766–1824), who, in his book f...

  15. Representing cognitive activities and errors in HRA trees

    International Nuclear Information System (INIS)

    Gertman, D.I.

    1992-01-01

    A graphic representation method is presented herein for adapting an existing technology--human reliability analysis (HRA) event trees, used to support event sequence logic structures and calculations--to include a representation of the underlying cognitive activity and corresponding errors associated with human performance. The analyst is presented with three potential means of representing human activity: the NUREG/CR-1278 HRA event tree approach; the skill-, rule- and knowledge-based paradigm; and the slips, lapses, and mistakes paradigm. The above approaches for representing human activity are integrated in order to produce an enriched HRA event tree -- the cognitive event tree system (COGENT)-- which, in turn, can be used to increase the analyst's understanding of the basic behavioral mechanisms underlying human error and the representation of that error in probabilistic risk assessment. Issues pertaining to the implementation of COGENT are also discussed

  16. Do Human-Figure Drawings of Children and Adolescents Mirror Their Cognitive Style and Self-Esteem?

    Science.gov (United States)

    Dey, Anindita; Ghosh, Paromita

    2016-01-01

    The investigation probed relationships among human-figure drawing, field-dependent-independent cognitive style and self-esteem of 10-15 year olds. It also attempted to predict human-figure drawing scores of participants based on their field-dependence-independence and self-esteem. Area, stratified and multi-stage random sampling were used to…

  17. Cognitive Models for Learning to Control Dynamic Systems

    National Research Council Canada - National Science Library

    Eberhart, Russ; Hu, Xiaohui; Chen, Yaobin

    2008-01-01

    Report developed under STTR contract for topic "Cognitive models for learning to control dynamic systems" demonstrated a swarm intelligence learning algorithm and its application in unmanned aerial vehicle (UAV) mission planning...

  18. Cognitive Analysis of Chinese-English Metaphors of Animal and Human Body Part Words

    Science.gov (United States)

    Song, Meiying

    2009-01-01

    Metaphorical cognition arises from the mapping of two conceptual domains onto each other. According to the "Anthropocentrism", people tend to know the world first by learning about their bodies including Apparatuses. Based on that, people begin to know the material world, and the human body part metaphorization emerges as the times…

  19. Development and evaluation of a hypermedia system that integrates basic concepts of mechanics, biomechanics and human anatomy

    Directory of Open Access Journals (Sweden)

    Flavia Rezende

    2006-08-01

    Full Text Available This work describes the modeling of a hypermedia learning system (called “Biomec” that integrates physical, biomechanical and anatomical concepts involved in the human motion and a study carried out with undergraduate students who interacted with the system. The instructional design of the “Biomec” hypermedia system was developed on the basis of a theoretical framework which articulates the Cognitive Flexibility Theory and the interdisciplinary approach to knowledge. The system was evaluated based on its use by students of Biomechanics I and Kinesiology in a Pre Service Teachers Training Course of Physical Education aiming to discuss the following questions: (i what is its impact on the students’ attitude related to Physics? (ii in what extent does the hypertextual approach to the content favor the interdisciplinary conception of human motion? (iii in what extent do the students’ navigation profiles adapt to conceptual needs of the different disciplines of the course? The students answered instruments that assessed affective and cognitive aspects before and after the interaction with the system, and had their navigation registered and analyzed. The set of data obtained allowed to conclude that the “Biomec” system is a relevant instructional material, capable of positively influence the students’ attitude related to Physics, to favor the interdisciplinary approach of human motion and to attend the students enrolled in Biomechanics I better than the students enrolled in Kinesiology.

  20. Rule-based approach to cognitive modeling of real-time decision making

    International Nuclear Information System (INIS)

    Thorndyke, P.W.

    1982-01-01

    Recent developments in the fields of cognitive science and artificial intelligence have made possible the creation of a new class of models of complex human behavior. These models, referred to as either expert or knowledge-based systems, describe the high-level cognitive processing undertaken by a skilled human to perform a complex, largely mental, task. Expert systems have been developed to provide simulations of skilled performance of a variety of tasks. These include problems of data interpretation, system monitoring and fault isolation, prediction, planning, diagnosis, and design. In general, such systems strive to produce prescriptive (error-free) behavior, rather than model descriptively the typical human's errorful behavior. However, some research has sought to develop descriptive models of human behavior using the same theoretical frameworks adopted by expert systems builders. This paper presents an overview of this theoretical framework and modeling approach, and indicates the applicability of such models to the development of a model of control room operators in a nuclear power plant. Such a model could serve several beneficial functions in plant design, licensing, and operation

  1. Cognitive Theory within the Framework of an Information Processing Model and Learning Hierarchy: Viable Alternative to the Bloom-Mager System.

    Science.gov (United States)

    Stahl, Robert J.

    This review of the current status of the human information processing model presents the Stahl Perceptual Information Processing and Operations Model (SPInPrOM) as a model of how thinking, memory, and the processing of information take place within the individual learner. A related system, the Domain of Cognition, is presented as an alternative to…

  2. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease.

    Science.gov (United States)

    Mostafavi, Sara; Gaiteri, Chris; Sullivan, Sarah E; White, Charles C; Tasaki, Shinya; Xu, Jishu; Taga, Mariko; Klein, Hans-Ulrich; Patrick, Ellis; Komashko, Vitalina; McCabe, Cristin; Smith, Robert; Bradshaw, Elizabeth M; Root, David E; Regev, Aviv; Yu, Lei; Chibnik, Lori B; Schneider, Julie A; Young-Pearse, Tracy L; Bennett, David A; De Jager, Philip L

    2018-06-01

    There is a need for new therapeutic targets with which to prevent Alzheimer's disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases.

  3. Grasping Unknown Objects in an Early Cognitive Vision System

    DEFF Research Database (Denmark)

    Popovic, Mila

    2011-01-01

    Grasping of unknown objects presents an important and challenging part of robot manipulation. The growing area of service robotics depends upon the ability of robots to autonomously grasp and manipulate a wide range of objects in everyday environments. Simple, non task-specific grasps of unknown ...... and comparing vision-based grasping methods, and the creation of algorithms for bootstrapping a process of acquiring world understanding for artificial cognitive agents....... presents a system for robotic grasping of unknown objects us- ing stereo vision. Grasps are defined based on contour and surface information provided by the Early Cognitive Vision System, that organizes visual informa- tion into a biologically motivated hierarchical representation. The contributions...... of the thesis are: the extension of the Early Cognitive Vision representation with a new type of feature hierarchy in the texture domain, the definition and evaluation of contour based grasping methods, the definition and evaluation of surface based grasping methods, the definition of a benchmark for testing...

  4. Gender differences in the mu rhythm of the human mirror-neuron system.

    Science.gov (United States)

    Cheng, Yawei; Lee, Po-Lei; Yang, Chia-Yen; Lin, Ching-Po; Hung, Daisy; Decety, Jean

    2008-05-07

    Psychologically, females are usually thought to be superior in interpersonal sensitivity than males. The human mirror-neuron system is considered to provide the basic mechanism for social cognition. However, whether the human mirror-neuron system exhibits gender differences is not yet clear. We measured the electroencephalographic mu rhythm, as a reliable indicator of the human mirror-neuron system activity, when female (N = 20) and male (N = 20) participants watched either hand actions or a moving dot. The display of the hand actions included androgynous, male, and female characteristics. The results demonstrate that females displayed significantly stronger mu suppression than males when watching hand actions. Instead, mu suppression was similar across genders when participants observed the moving dot and between the perceived sex differences (same-sex vs. opposite-sex). In addition, the mu suppressions during the observation of hand actions positively correlated with the personal distress subscale of the interpersonal reactivity index and negatively correlated with the systemizing quotient. The present findings indirectly lend support to the extreme male brain theory put forward by Baron-Cohen (2005), and may cast some light on the mirror-neuron dysfunction in autism spectrum disorders. The mu rhythm in the human mirror-neuron system can be a potential biomarker of empathic mimicry.

  5. Information Is Not a Virus, and Other Consequences of Human Cognitive Limits

    Directory of Open Access Journals (Sweden)

    Kristina Lerman

    2016-05-01

    Full Text Available The many decisions that people make about what to pay attention to online shape the spread of information in online social networks. Due to the constraints of available time and cognitive resources, the ease of discovery strongly impacts how people allocate their attention to social media content. As a consequence, the position of information in an individual’s social feed, as well as explicit social signals about its popularity, determine whether it will be seen, and the likelihood that it will be shared with followers. Accounting for these cognitive limits simplifies mechanics of information diffusion in online social networks and explains puzzling empirical observations: (i information generally fails to spread in social media and (ii highly connected people are less likely to re-share information. Studies of information diffusion on different social media platforms reviewed here suggest that the interplay between human cognitive limits and network structure differentiates the spread of information from other social contagions, such as the spread of a virus through a population.

  6. Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions.

    Science.gov (United States)

    Iriki, Atsushi; Taoka, Miki

    2012-01-12

    Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language--the site of such integration seems to be the parietal and extending opercular cortices.

  7. The impact of cognitive load on reward evaluation.

    Science.gov (United States)

    Krigolson, Olave E; Hassall, Cameron D; Satel, Jason; Klein, Raymond M

    2015-11-19

    The neural systems that afford our ability to evaluate rewards and punishments are impacted by a variety of external factors. Here, we demonstrate that increased cognitive load reduces the functional efficacy of a reward processing system within the human medial-frontal cortex. In our paradigm, two groups of participants used performance feedback to estimate the exact duration of one second while electroencephalographic (EEG) data was recorded. Prior to performing the time estimation task, both groups were instructed to keep their eyes still and avoid blinking in line with well established EEG protocol. However, during performance of the time-estimation task, one of the two groups was provided with trial-to-trial-feedback about their performance on the time-estimation task and their eye movements to induce a higher level of cognitive load relative to participants in the other group who were solely provided with feedback about the accuracy of their temporal estimates. In line with previous work, we found that the higher level of cognitive load reduced the amplitude of the feedback-related negativity, a component of the human event-related brain potential associated with reward evaluation within the medial-frontal cortex. Importantly, our results provide further support that increased cognitive load reduces the functional efficacy of a neural system associated with reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Cognitive Success: Instrumental Justifications of Normative Systems of Reasoning

    Directory of Open Access Journals (Sweden)

    Gerhard eSchurz

    2014-07-01

    Full Text Available In the first part of the paper (sec. 1-4, I argue that Elqayam and Evan's (2011 distinction between normative and instrumental conceptions of cognitive rationality corresponds to deontological versus teleological accounts in meta-ethics. I suggest that Elqayam and Evans' distinction be replaced by the distinction between a-priori intuition-based versus a-posteriori success-based accounts of cognitive rationality. The value of cognitive success lies in its instrumental rationality for almost-all practical purposes. In the second part (sec. 5-7, I point out that the Elqayam and Evans's distinction between normative and instrumental rationality is coupled with a second distinction: between logically general versus locally adaptive accounts of rationality. I argue that these are two independent distinctions should be treated as independent dimensions. I also demonstrate that logically general systems of reasoning can be instrumentally justified. However, such systems can only be cognitively successful if they are paired with successful inductive reasoning, which is the area where the program of adaptive (ecological rationality emerged, because there are no generally optimal inductive reasoning methods. I argue that the practical necessity of reasoning under changing environments constitutes a dilemma for ecological rationality, which I attempt to solve a dual account of rationality.

  9. Cognitive success: instrumental justifications of normative systems of reasoning

    Science.gov (United States)

    Schurz, Gerhard

    2014-01-01

    In the first part of the paper (sec. 1–4), I argue that Elqayam and Evan's (2011) distinction between normative and instrumental conceptions of cognitive rationality corresponds to deontological vs. teleological accounts in meta-ethics. I suggest that Elqayam and Evans' distinction be replaced by the distinction between a-priori intuition-based vs. a-posteriori success-based accounts of cognitive rationality. The value of cognitive success lies in its instrumental rationality for almost-all practical purposes. In the second part (sec. 5–7), I point out that the Elqayam and Evans's distinction between normative and instrumental rationality is coupled with a second distinction: between logically general vs. locally adaptive accounts of rationality. I argue that these are two independent distinctions that should be treated as independent dimensions. I also demonstrate that logically general systems of reasoning can be instrumentally justified. However, such systems can only be cognitively successful if they are paired with successful inductive reasoning, which is the area where the program of adaptive (ecological) rationality emerged, because there are no generally optimal inductive reasoning methods. I argue that the practical necessity of reasoning under changing environments constitutes a dilemma for ecological rationality, which I attempt to solve within a dual account of rationality. PMID:25071624

  10. Cognitive success: instrumental justifications of normative systems of reasoning.

    Science.gov (United States)

    Schurz, Gerhard

    2014-01-01

    In the first part of the paper (sec. 1-4), I argue that Elqayam and Evan's (2011) distinction between normative and instrumental conceptions of cognitive rationality corresponds to deontological vs. teleological accounts in meta-ethics. I suggest that Elqayam and Evans' distinction be replaced by the distinction between a-priori intuition-based vs. a-posteriori success-based accounts of cognitive rationality. The value of cognitive success lies in its instrumental rationality for almost-all practical purposes. In the second part (sec. 5-7), I point out that the Elqayam and Evans's distinction between normative and instrumental rationality is coupled with a second distinction: between logically general vs. locally adaptive accounts of rationality. I argue that these are two independent distinctions that should be treated as independent dimensions. I also demonstrate that logically general systems of reasoning can be instrumentally justified. However, such systems can only be cognitively successful if they are paired with successful inductive reasoning, which is the area where the program of adaptive (ecological) rationality emerged, because there are no generally optimal inductive reasoning methods. I argue that the practical necessity of reasoning under changing environments constitutes a dilemma for ecological rationality, which I attempt to solve within a dual account of rationality.

  11. Une approche pragmatique cognitive de l'interaction personne/système informatisé A Cognitive Pragmatic Approach of Human/Computer Interaction

    Directory of Open Access Journals (Sweden)

    Madeleine Saint-Pierre

    1998-06-01

    Full Text Available Dans cet article, nous proposons une approche inférentielle de l'interaction humain/ordinateur. C'est par la prise en compte de l'activité cognitive de l'utilisateur pendant son travail avec un système que nous voulons comprendre ce type d'interaction. Ceci mènera à une véritable évaluation des interfaces/utilisateurs et pourra servir de guide pour des interfaces en développement. Nos analyses décrivent le processus inférentiel impliqué dans le contexte dynamique d'exécution de tâche, grâce à une catégorisation de l'activité cognitive issue des verbalisations recueillies auprès d'utilisateurs qui " pensent à haute voix " en travaillant. Nous présentons des instruments méthodologiques mis au point dans notre recherche pour l'analyses et la catégorisation des protocoles. Les résultats sont interprétés dans le cadre de la théorie de la pertinence de Sperber et Wilson (1995 en termes d'effort cognitif dans le traitement des objets (linguistique, iconique, graphique... apparaissant à l'écran et d'effet cognitif de ces derniers. Cette approche est généralisable à tout autre contexte d'interaction humain/ordinateur comme, par exemple, le télé-apprentissage.This article proposes an inferential approach for the study of human/computer interaction. It is by taking into account the user's cognitive activity while working at a computer that we propose to understand this interaction. This approach leads to a real user/interface evaluation and, hopefully, will serve as guidelines for the design of new interfaces. Our analysis describe the inferential process involved in the dynamics of task performance. The cognitive activity of the user is grasped by the mean of a " thinking aloud " method through which the user is asked to verbalize while working at the computer. Tools developped by our research team for the categorization of the verbal protocols are presented. The results are interpreted within the relevance theory

  12. Impaired cognition and attention in adults: pharmacological management strategies.

    Science.gov (United States)

    Allain, Hervé; Akwa, Yvette; Lacomblez, Lucette; Lieury, Alain; Bentué-Ferrer, Danièle

    2007-02-01

    Cognitive psychology has provided clinicians with specific tools for analyzing the processes of cognition (memory, language) and executive functions (attention-concentration, abstract reasoning, planning). Neuropsychology, coupled with the neurosciences (including neuroimaging techniques), has authenticated the existence of early disorders affecting the "superior or intellectual" functions of the human brain. The prevalence of cognitive and attention disorders is high in adults because all the diseases implicating the central nervous system are associated with cognitive correlates of variable intensity depending on the disease process and the age of the patient. In some pathologies, cognitive impairment can be a leading symptom such as in schizophrenia, posttraumatic stress disorder or an emblematic stigmata as in dementia including Alzheimer's disease. Paradoxically, public health authorities have only recognized as medications for improving cognitive symptoms those with proven efficacy in the symptomatic treatment of patients with Alzheimer's disease; the other cognitive impairments are relegated to the orphanage of syndromes and symptoms dispossessed of medication. The purpose of this review is to promote a true "pharmacology of cognition" based on the recent knowledge in neurosciences. Data from adult human beings, mainly concerning memory, language, and attention processes, will be reported. "Drug therapeutic strategies" for improving cognition (except for memory function) are currently rather scarce, but promising perspectives for a new neurobiological approach to cognitive pharmacology will be highlighted.

  13. Human failure and industrial safety. The human factor in technology and organisation

    International Nuclear Information System (INIS)

    Semmer, N.

    1999-01-01

    Human failure is not the opposite of successful human action gut follows the same principles. The manner in which humans acquire and process information is influenced by cognitive, social and motivational aspects. Further, human failure generally means a failure of the whole system man/technology/organisation. If serious consequences are to be avoided, the logic of failures must be analyzed in the context of this system, and human staff should be trained in managing failures and not just avoiding them [de

  14. Multidimensional human capital formation in a developing country: Health, cognition and locus of control in the Philippines.

    Science.gov (United States)

    Villa, Kira M

    2017-11-01

    Economic success depends on multiple human capital stocks whose production is interrelated and occurs over many life stages. Yet, much empirical work fails to account for human capital's multidimensional nature and limits its focus to specific childhood stages. Using longitudinal data from the Philippines, I estimate a model of multidimensional human capital formation from birth through adulthood where health, cognitive, and noncognitive dimensions are jointly produced. I examine during which developmental stages parental investment is most influential and address the endogeneity of investment using a policy function where investment depends on child characteristics, exogenous conditions at birth and local prices. Findings imply that not only will early human capital disparities persist into adulthood without early remediation but also that cognitive gains yielded from early remediation will be lost without complementary investment in adolescence. Findings further suggest that interventions will be undervalued if their multidimensional effects are not accounted for. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cognitive Hacking and Digital Government: Digital Identity

    Directory of Open Access Journals (Sweden)

    Paul Thompson

    2004-04-01

    Full Text Available Recently the National Center for Digital Government held a workshop on "The Virtual Citizen: Identity, Autonomy, and Accountability: A Civic Scenario Exploration of the Role of Identity in On-Line. Discussions at the workshop focused on five scenarios for future authentication policies with respect to digital identity. The underlying technologies considered for authentication were: biometrics: cryptography, with a focus on digital signatures; secure processing/computation; and reputation systems. Most discussion at the workshop focused on issues related to authentication of users of digital government, but, as implied by the inclusion of a scenario related to ubiquitous identity theft, there was also discussion of problems related to misinformation, including cognitive hacking. Cognitive hacking refers to a computer or information system attack that relies on changing human users' perceptions and corresponding behaviors in order to succeed. This paper describes cognitive hacking, suggests countermeasures, and discusses the implications of cognitive hacking for identity in digital government. In particular, spoofing of government websites and insider misuse are considered.

  16. Cognitive capacities for cooking in chimpanzees

    OpenAIRE

    Warneken, Felix; Rosati, Alexandra G.

    2015-01-01

    The transition to a cooked diet represents an important shift in human ecology and evolution. Cooking requires a set of sophisticated cognitive abilities, including causal reasoning, self-control and anticipatory planning. Do humans uniquely possess the cognitive capacities needed to cook food? We address whether one of humans' closest relatives, chimpanzees (Pan troglodytes), possess the domain-general cognitive skills needed to cook. Across nine studies, we show that chimpanzees: (i) prefer...

  17. Cognitive biases can affect moral intuitions about cognitive enhancement

    NARCIS (Netherlands)

    Caviola, L.; Mannino, A.; Savulescu, J.; Faulmüller, N.

    2014-01-01

    Research into cognitive biases that impair human judgment has mostly been applied to the area of economic decision-making. Ethical decision-making has been comparatively neglected. Since ethical decisions often involve very high individual as well as collective stakes, analyzing how cognitive biases

  18. A framework for the analysis of cognitive reliability in complex systems: a recovery centred approach

    International Nuclear Information System (INIS)

    Kontogiannis, Tom

    1997-01-01

    Managing complex industrial systems requires reliable performance of cognitive tasks undertaken by operating crews. The infrequent practice of cognitive skills and the reliance on operator performance for novel situations raised cognitive reliability into an urgent and essential aspect in system design and risk analysis. The aim of this article is to contribute to the development of methods for the analysis of cognitive tasks in complex man-machine interactions. A practical framework is proposed for analysing cognitive errors and enhancing error recovery through interface design. Cognitive errors are viewed as failures in problem solving which are difficult to recover under the task constrains imposed by complex systems. In this sense, the interaction between context and cognition, on the one hand, and the process of error recovery, on the other hand, become the focal points of the proposed framework which is illustrated in an analysis of a simulated emergency

  19. Development of an Experimental Measurement System for Human Error Characteristics and a Pilot Test

    International Nuclear Information System (INIS)

    Jang, Tong-Il; Lee, Hyun-Chul; Moon, Kwangsu

    2017-01-01

    Some items out of individual and team characteristics were partially selected, and a pilot test was performed to measure and evaluate them using the experimental measurement system of human error characteristics. It is one of the processes to produce input data to the Eco-DBMS. And also, through the pilot test, it was tried to take methods to measure and acquire the physiological data, and to develop data format and quantification methods for the database. In this study, a pilot test to measure the stress and the tension level, and team cognitive characteristics out of human error characteristics was performed using the human error characteristics measurement and experimental evaluation system. In an experiment measuring the stress level, physiological characteristics using EEG was measured in a simulated unexpected situation. As shown in results, although this experiment was pilot, it was validated that relevant results for evaluating human error coping effects of workers’ FFD management guidelines and unexpected situation against guidelines can be obtained. In following researches, additional experiments including other human error characteristics will be conducted. Furthermore, the human error characteristics measurement and experimental evaluation system will be utilized to validate various human error coping solutions such as human factors criteria, design, and guidelines as well as supplement the human error characteristics database.

  20. Utilizing the ISS Mission as a Testbed to Develop Cognitive Communications Systems

    Science.gov (United States)

    Jackson, Dan

    2016-01-01

    The ISS provides an excellent opportunity for pioneering artificial intelligence software to meet the challenges of real-time communications (comm) link management. This opportunity empowers the ISS Program to forge a testbed for developing cognitive communications systems for the benefit of the ISS mission, manned Low Earth Orbit (LEO) science programs and future planetary exploration programs. In November, 1998, the Flight Operations Directorate (FOD) started the ISS Antenna Manager (IAM) project to develop a single processor supporting multiple comm satellite tracking for two different antenna systems. Further, the processor was developed to be highly adaptable as it supported the ISS mission through all assembly stages. The ISS mission mandated communications specialists with complete knowledge of when the ISS was about to lose or gain comm link service. The current specialty mandated cognizance of large sun-tracking solar arrays and thermal management panels in addition to the highly-dynamic satellite service schedules and rise/set tables. This mission requirement makes the ISS the ideal communications management analogue for future LEO space station and long-duration planetary exploration missions. Future missions, with their precision-pointed, dynamic, laser-based comm links, require complete autonomy for managing high-data rate communications systems. Development of cognitive communications management systems that permit any crew member or payload science specialist, regardless of experience level, to control communications is one of the greater benefits the ISS can offer new space exploration programs. The IAM project met a new mission requirement never previously levied against US space-born communications systems management: process and display the orientation of large solar arrays and thermal control panels based on real-time joint angle telemetry. However, IAM leaves the actual communications availability assessment to human judgement, which introduces

  1. Stress modulation of cognitive and affective processes

    Science.gov (United States)

    CAMPEAU, SERGE; LIBERZON, ISRAEL; MORILAK, DAVID; RESSLER, KERRY

    2012-01-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects. PMID:21790481

  2. Information Behavior: A Socio-Cognitive Ability

    Directory of Open Access Journals (Sweden)

    Amanda Spink

    2007-04-01

    Full Text Available How has human information behavior evolved? Our paper explores this question in the form of notions, models and theories about the relationship between information behavior and human evolution. Alexander's Ecological Dominance and Social Competition/Cooperation (EDSC model currently provides the most comprehensive overview of human traits in the development of a theory of human evolution and sociality. His model provides a basis for explaining the evolution of human socio-cognitive abilities, including ecological dominance, and social competition/cooperation. Our paper examines the human trait of information behavior as a socio-cognitive ability related to ecological dominance, and social competition/cooperation. The paper first outlines what is meant by information behavior from various interdisciplinary perspectives. We propose that information behavior is a socio-cognitive ability that is related to and enables other socio-cognitive abilities such as human ecological dominance, and social competition/cooperation. The paper reviews the current state of evolutionary approaches to information behavior and future directions for this research

  3. Impact of cognitive stimulation on ripples within human epileptic and non-epileptic hippocampus

    Czech Academy of Sciences Publication Activity Database

    Brázdil, M.; Cimbálník, J.; Roman, R.; Shaw, D. J.; Stead, M.; Daniel, P.; Jurák, Pavel; Halámek, Josef

    2015-01-01

    Roč. 16, JULY 25 (2015), 47:1-9 ISSN 1471-2202 R&D Projects: GA ČR GAP103/11/0933; GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : high-frequency oscillations * hippocampal ripples * epilepsy * human cognition Subject RIV: FH - Neurology Impact factor: 2.304, year: 2015

  4. Early Cognitive Vision as a Frontend for Cognitive Systems

    DEFF Research Database (Denmark)

    Krüger, Norbert; Pugeault, Nicolas; Baseski, Emre

    We discuss the need of an elaborated in-between stage bridging early vision and cognitive vision which we call `Early Cognitive Vision' (ECV). This stage provides semantically rich, disambiguated and largely task independent scene representations which can be used in many contexts. In addition...

  5. Cognitive Component Analysis

    DEFF Research Database (Denmark)

    Feng, Ling

    2008-01-01

    This dissertation concerns the investigation of the consistency of statistical regularities in a signaling ecology and human cognition, while inferring appropriate actions for a speech-based perceptual task. It is based on unsupervised Independent Component Analysis providing a rich spectrum...... of audio contexts along with pattern recognition methods to map components to known contexts. It also involves looking for the right representations for auditory inputs, i.e. the data analytic processing pipelines invoked by human brains. The main ideas refer to Cognitive Component Analysis, defined...... as the process of unsupervised grouping of generic data such that the ensuing group structure is well-aligned with that resulting from human cognitive activity. Its hypothesis runs ecologically: features which are essentially independent in a context defined ensemble, can be efficiently coded as sparse...

  6. Data Mining and Knowledge Discover - IBM Cognitive Alternatives for NASA KSC

    Science.gov (United States)

    Velez, Victor Hugo

    2016-01-01

    Skillful tools in cognitive computing to transform industries have been found favorable and profitable for different Directorates at NASA KSC. In this study is shown how cognitive computing systems can be useful for NASA when computers are trained in the same way as humans are to gain knowledge over time. Increasing knowledge through senses, learning and a summation of events is how the applications created by the firm IBM empower the artificial intelligence in a cognitive computing system. NASA has explored and applied for the last decades the artificial intelligence approach specifically with cognitive computing in few projects adopting similar models proposed by IBM Watson. However, the usage of semantic technologies by the dedicated business unit developed by IBM leads these cognitive computing applications to outperform the functionality of the inner tools and present outstanding analysis to facilitate the decision making for managers and leads in a management information system.

  7. Plasticity of Human Spatial Cognition: Spatial Language and Cognition Covary across Cultures

    Science.gov (United States)

    Haun, Daniel B. M.; Rapold, Christian J.; Janzen, Gabriele; Levinson, Stephen C.

    2011-01-01

    The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate cognitive strategy preferences across different levels of…

  8. Cognitive cladistics and cultural override in Hominid spatial cognition

    OpenAIRE

    Haun, D.; Rapold, C.; Call, J.; Janzen, G.; Levinson, S.

    2006-01-01

    Current approaches to human cognition often take a strong nativist stance based on Western adult performance, backed up where possible by neonate and infant research and almost never by comparative research across the Hominidae. Recent research suggests considerable cross-cultural differences in cognitive strategies, including relational thinking, a domain where infant research is impossible because of lack of cognitive maturation. Here, we apply the same paradigm across children and adults o...

  9. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  10. Omega-3 PUFA supplementation differentially affects behavior and cognition in the young and aged non-human primate Grey mouse lemur (Microcebus murinus

    Directory of Open Access Journals (Sweden)

    Pifferi Fabien

    2014-01-01

    Full Text Available Data are divergent about the ability of dietary ω3 fatty acids to prevent age-associated cognitive decline. Most of the clinical trials failed to demonstrate a protective effect of ω3 fatty acids against cognitive decline and methodological issues are still under debate. Conversely to human studies, experiments performed in adult rodents clearly indicate that long chain ω3 fatty acids play a beneficial role in behavioral and cognitive functions. Inconsistent observations between human and rodent studies highlight the importance of the use of non-human primate models. We recently started a series of experiments on Grey mouse lemurs, an emerging non-human primate model of aging in order to assess the impact of ω3 fatty acids dietary supplementation on several brain functions. These experiments started with the determination of the fatty acids composition of target organs (brain, adipose tissue, liver, plasma of animals fed under control diet. We then explored the impact of ω3 polyunsaturated fatty acids (PUFA supplementation on cognition and behavior in young and aged grey mouse lemurs. The aim of the present review is to compare the observations made in young and aged grey mouse lemurs and to explore the possibilities of new experiments in order to bridge the gap between rodents and Humans.

  11. Children's and Adolescents' Thoughts on Pollution: Cognitive Abilities Required to Understand Environmental Systems

    Science.gov (United States)

    Rodríguez, Manuel; Kohen, Raquel; Delval, Juan

    2015-01-01

    Pollution phenomena are complex systems in which different parts are integrated by means of causal and temporal relationships. To understand pollution, children must develop some cognitive abilities related to system thinking and temporal and causal inferential reasoning. These cognitive abilities constrain and guide how children understand…

  12. NHL and RCGA Based Multi-Relational Fuzzy Cognitive Map Modeling for Complex Systems

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2015-11-01

    Full Text Available In order to model multi-dimensions and multi-granularities oriented complex systems, this paper firstly proposes a kind of multi-relational Fuzzy Cognitive Map (FCM to simulate the multi-relational system and its auto construct algorithm integrating Nonlinear Hebbian Learning (NHL and Real Code Genetic Algorithm (RCGA. The multi-relational FCM fits to model the complex system with multi-dimensions and multi-granularities. The auto construct algorithm can learn the multi-relational FCM from multi-relational data resources to eliminate human intervention. The Multi-Relational Data Mining (MRDM algorithm integrates multi-instance oriented NHL and RCGA of FCM. NHL is extended to mine the causal relationships between coarse-granularity concept and its fined-granularity concepts driven by multi-instances in the multi-relational system. RCGA is used to establish high-quality high-level FCM driven by data. The multi-relational FCM and the integrating algorithm have been applied in complex system of Mutagenesis. The experiment demonstrates not only that they get better classification accuracy, but it also shows the causal relationships among the concepts of the system.

  13. Cognitive learning is associated with gray matter changes in healthy human individuals: a tensor-based morphometry study.

    Science.gov (United States)

    Ceccarelli, Antonia; Rocca, Maria Assunta; Pagani, Elisabetta; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2009-11-15

    Longitudinal voxel-based morphometry studies have demonstrated morphological changes in cortical structures following motor and cognitive learning. In this study, we applied, for the first time, tensor-based morphometry (TBM) to assess the short-term structural brain gray matter (GM) changes associated with cognitive learning in healthy subjects. Using a 3 T scanner, a 3D T1-weighted sequence was acquired from 32 students at baseline and after two weeks. Students were separated into two groups: 13 defined as "students in cognitive training", who underwent a two-week cognitive learning period, and 19 "students not in cognitive training", who were not involved in any teaching activity. GM changes were assessed using TBM and statistical parametric mapping. Baseline regional GM volume did not differ between the two groups. At follow up, compared to "students not in cognitive training", the "students in cognitive training" had a significant GM volume increase in the dorsomedial frontal cortex, the orbitofrontal cortex, and the precuneus (p<0.001). These results suggest that cognitive learning results in short-term structural GM changes of neuronal networks of the human brain, which are known to be involved in cognition. This may have important implications for the development of rehabilitation strategies in patients with neurological diseases.

  14. An Introduction to Cognitive Musicology

    DEFF Research Database (Denmark)

    Haumann, Niels Trusbak

    2015-01-01

    This historical-scientific introduction to Cognitive Musicology introduces the 150 years of research and discoveries in the psychology of music that partly presuppose the more recent discipline of Cognitive Musicology. Atomistic, Gestalt, functionalist, testing, behaviorist, cognitive......, and neuroscience approaches to the psychological mechanisms underlying music are presented. Thus, it is argued that Cognitive Musicology is partly based on firm historical traditions in the psychology of music. Also discussed is the way in which the combination of interdisciplinary methods from the humanities...... and the natural sciences, which is integrated in Cognitive Musicology, may minimize the limitations of the separate humanities-based or natural science methods....

  15. Linguistic embodiment and verbal constraints: human cognition and the scales of time

    DEFF Research Database (Denmark)

    Cowley, Stephen

    2014-01-01

    Using radical embodied cognitive science, the paper offers the hypothesis that language is symbiotic: its agent-environment dynamics arise as linguistic embodiment is managed under verbal constraints. As a result, co-action grants human agents the ability to use a unique form of phenomenal......, linguistic symbiosis grants access to diachronic resources. On this distributed-ecological view, language can thus be redefined as: “activity in which wordings play a part.”...

  16. Directional dominance on stature and cognition in diverse human populations

    DEFF Research Database (Denmark)

    Joshi, Peter K; Esko, Tonu; Mattsson, Hannele

    2015-01-01

    is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been....... confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance...

  17. Medical education and cognitive continuum theory: an alternative perspective on medical problem solving and clinical reasoning.

    Science.gov (United States)

    Custers, Eugène J F M

    2013-08-01

    Recently, human reasoning, problem solving, and decision making have been viewed as products of two separate systems: "System 1," the unconscious, intuitive, or nonanalytic system, and "System 2," the conscious, analytic, or reflective system. This view has penetrated the medical education literature, yet the idea of two independent dichotomous cognitive systems is not entirely without problems.This article outlines the difficulties of this "two-system view" and presents an alternative, developed by K.R. Hammond and colleagues, called cognitive continuum theory (CCT). CCT is featured by three key assumptions. First, human reasoning, problem solving, and decision making can be arranged on a cognitive continuum, with pure intuition at one end, pure analysis at the other, and a large middle ground called "quasirationality." Second, the nature and requirements of the cognitive task, as perceived by the person performing the task, determine to a large extent whether a task will be approached more intuitively or more analytically. Third, for optimal task performance, this approach needs to match the cognitive properties and requirements of the task. Finally, the author makes a case that CCT is better able than a two-system view to describe medical problem solving and clinical reasoning and that it provides clear clues for how to organize training in clinical reasoning.

  18. System for supporting operator's cognitive activity in the decision-making process

    International Nuclear Information System (INIS)

    Gieci, A.

    1992-01-01

    New views upon the formation of a system of means for an efficient support of the operator are presented. The development of a system to promote cognitive activities at the Nuclear Power Plants Research Institute is outlined. As the major issues, changes in the operator's working environment and the starting model of the working situation during stress are briefly described. The fundamental elements of the supporting system under development, which constitute its didactical and engineering-cognitive basis, are explained. The suitability of using expert system technology in this supporting system is substantiated. A particular example of expert counselling of the NPPO-TINA type (Nuclear Power Plant Operation - Transparent Inference Architecture) is reported. (Z.S.). 5 figs., 6 refs

  19. A cognitive operating system (COGNOSYS) for JPL's robot, phase 1 report

    Science.gov (United States)

    Mathur, F. P.

    1972-01-01

    The most important software requirement for any robot development is the COGNitive Operating SYStem (COGNOSYS). This report describes the Stanford University Artificial Intelligence Laboratory's hand eye software system from the point of view of developing a cognitive operating system for JPL's robot. In this, the Phase 1 of the JPL robot COGNOSYS task the installation of a SAIL compiler and a FAIL assembler on Caltech's PDP-10 have been accomplished and guidelines have been prepared for the implementation of a Stanford University type hand eye software system on JPL-Caltech's computing facility. The alternatives offered by using RAND-USC's PDP-10 Tenex operating sytem are also considered.

  20. Cognitive Cybernetics vs. Captology

    Directory of Open Access Journals (Sweden)

    Zdenko Balaž

    2017-11-01

    Full Text Available In acronym Captology – Computers as Persuasive Technology, a persuasive component (lat. persuasibilibus – enticing refers to the persuasive stimulation by intelligent technologies. Latter being transitive and interactive as intelligent systems, they have imposed, by their persuasivity, a ‘cult of information’, after which information has become a type of goods that as a utilitarian resource must be exploited quickly and efficiently. Such a widely accepted fact resulted as hype, presenting a perspective that the approach to a large amount of information and faster ‘digestion’ of their content will enable users to quickly get desired knowledge. Recent investigations about persuasion processes have shown its dependence on intelligent technology factors (design, interactive computer products, web, desktop and others. Such technologies are also used to influence people’s attitudes, beliefs, learning, and behaviour. Development strategies for global computer production and sales head in that direction and confirm latter statement with the promoted 3-P model: persuasive, permissive and pervasive components. Cognitive level of human integrated development is increasingly overshadowed by the contribution of artificial intelligence through its products, i.e. ‘smart’ creations, and by the array of shortcomings and problems that the same interactive technology brings. This paper presents a parallel between captological component of intelligent and interactive technologies on one side and illustrates examples of captological influences proved by confirmed trials within cognitive science through computer simulations of human thinking on the other side. Many studies have shown that the success of persuasion depends on the factors which have been exposed by cognitive cybernetics. Next to it, people’s behavior system is transforming through the very development of society. Therefore, the influence of latter can be either positive or negative

  1. Advances in the development of a cognitive user interface

    Directory of Open Access Journals (Sweden)

    Jokisch Oliver

    2018-01-01

    Full Text Available In this contribution, we want to summarize recent development steps of the embedded cognitive user interface UCUI, which enables a user-adaptive scenario in human-machine or even human-robot interactions by considering sophisticated cognitive and semantic modelling. The interface prototype is developed by different German institutes and companies with their steering teams at Fraunhofer IKTS and Brandenburg University of Technology. The interface prototype is able to communicate with users via speech and gesture recognition, speech synthesis and a touch display. The device includes an autarkic semantic processing and beyond a cognitive behavior control, which supports an intuitive interaction to control different kinds of electronic devices, e. g. in a smart home environment or in interactive respectively collaborative robotics. Contrary to available speech assistance systems such as Amazon Echo or Google Home, the introduced cognitive user interface UCUI ensures the user privacy by processing all necessary information without any network access of the interface device.

  2. Cognitive neuroscience in forensic science: understanding and utilizing the human element

    Science.gov (United States)

    Dror, Itiel E.

    2015-01-01

    The human element plays a critical role in forensic science. It is not limited only to issues relating to forensic decision-making, such as bias, but also relates to most aspects of forensic work (some of which even take place before a crime is ever committed or long after the verification of the forensic conclusion). In this paper, I explicate many aspects of forensic work that involve the human element and therefore show the relevance (and potential contribution) of cognitive neuroscience to forensic science. The 10 aspects covered in this paper are proactive forensic science, selection during recruitment, training, crime scene investigation, forensic decision-making, verification and conflict resolution, reporting, the role of the forensic examiner, presentation in court and judicial decisions. As the forensic community is taking on the challenges introduced by the realization that the human element is critical for forensic work, new opportunities emerge that allow for considerable improvement and enhancement of the forensic science endeavour. PMID:26101281

  3. Developmental Social Cognitive Neuroscience: Insights from Deafness

    Science.gov (United States)

    Corina, David; Singleton, Jenny

    2009-01-01

    The condition of deafness presents a developmental context that provides insight into the biological, cultural, and linguistic factors underlying the development of neural systems that impact social cognition. Studies of visual attention, behavioral regulation, language development, and face and human action perception are discussed. Visually…

  4. An Integrative Introduction to Human Augmentation Science

    OpenAIRE

    Alicea, Bradly

    2018-01-01

    Human Augmentation (HA) spans several technical fields and methodological approaches, including Experimental Psychology, Human-Computer Interaction, Psychophysiology, and Artificial Intelligence. Augmentation involves various strategies for optimizing and controlling cognitive states, which requires an understanding of biological plasticity, dynamic cognitive processes, and models of adaptive systems. As an instructive lesson, we will explore a few HA-related concepts and outstanding issues. ...

  5. Surgical Technology Integration with Tools for Cognitive Human Factors (STITCH)

    Science.gov (United States)

    2010-10-01

    Measurement Tool We conducted another round of data collection using the daVinci Surgical System at the University of Kentucky Hospital in May. In this...9 3. Tools and Display Technology...considering cognitive and environmental factors such as mental workload, stress, situation awareness, and level of comfort with complex tools . To

  6. On a Cognitive Model of Semiosis

    Directory of Open Access Journals (Sweden)

    Konderak Piotr

    2015-03-01

    Full Text Available What is the class of possible semiotic systems? What kinds of systems could count as such systems? The human mind is naturally considered the prototypical semiotic system. During years of research in semiotics the class has been broadened to include i.e. living systems (Zlatev, 2002 like animals, or even plants (Krampen, 1992. It is suggested in the literature on artificial intelligence that artificial agents are typical examples of symbol-processing entities. It also seems that (at least some semiotic processes are in fact cognitive processes. In consequence, it is natural to ask the question about the relation between semiotic studies and research on artificial cognitive systems within cognitive science. Consequently, my main question concerns the problem of inclusion or exclusion from the semiotic spectrum at least some artificial (computational systems. I would like to consider some arguments against the possibility of artificial semiotic systems and I will try to repeal them. Then I will present an existing natural-language using agent of the SNePS system and interpret it in terms of Peircean theory of signs. I would like also to show that some properties of semiotic systems in Peircean sense could be also found in a discussed artificial system. Finally, I will have some remarks on the status of semiotics in general.

  7. Integrated Cognition - A Proposed Definition of Ingredients, A Survey of Systems, and Example Architecture

    National Research Council Canada - National Science Library

    Rolfe, Robert M; Haugh, Brian A

    2004-01-01

    Numerous cognitive scientists believe that a human-level thinking machine must be composed of potentially hundreds of distinct subsystems with different structures, reasoning, and learning mechanisms...

  8. SYSTEM-COGNITIVE MODEL OF FORECASTING THE DEVELOPMENT OF DIVERSIFIED AGRO-INDUSTRIAL CORPORATIONS. PART I. COGNITIVE STRUCTURING AND FORMALIZATION OF THE SUBJECT AREA

    OpenAIRE

    Lutsenko Y. V.; Loyko V. I.; Baranovskaya T. P.; Makarevich O. A.

    2015-01-01

    In this article, in accordance with the methodology of the Automated system-cognitive analysis (ASCanalysis), we examine the implementation of the 1st and 2nd stages of ASC-analysis: cognitive structuring and formalization of the subject area. At the stage of cognitive structurization of subject area, researchers decide what to consider as the object of modeling, the factors affecting it and the results of their actions. In accordance with the results of the cognitive structurization, we prep...

  9. Cognitive dysfunction and functional magnetic resonance imaging in systemic lupus erythematosus.

    Science.gov (United States)

    Barraclough, M; Elliott, R; McKie, S; Parker, B; Bruce, I N

    2015-10-01

    Cognitive dysfunction is a common aspect of systemic lupus erythematosus (SLE) and is increasingly reported as a problem by patients. In many cases the exact cause is unclear. Limited correlations between specific autoantibodies or structural brain abnormalities and cognitive dysfunction in SLE have been reported. It may be that the most appropriate biomarkers have yet to be found. Functional magnetic resonance imaging (fMRI) is a technique used in many other conditions and provides sensitive measures of brain functionality during cognitive tasks. It is now beginning to be employed in SLE studies. These studies have shown that patients with SLE often perform similarly to healthy controls in terms of behavioural measures on cognitive tasks. However, SLE patients appear to employ compensatory brain mechanisms, such as increased response in fronto-parietal regions, to maintain adequate cognitive performance. As there have been only a few studies using fMRI in SLE to investigate cognitive dysfunction, many questions remain unanswered. Further research could, however, help to identify biomarkers for cognitive dysfunction in SLE. © The Author(s) 2015.

  10. Assessing Cognitive Distraction in the Automobile.

    Science.gov (United States)

    Strayer, David L; Turrill, Jonna; Cooper, Joel M; Coleman, James R; Medeiros-Ward, Nathan; Biondi, Francesco

    2015-12-01

    The objective was to establish a systematic framework for measuring and understanding cognitive distraction in the automobile. Driver distraction from secondary in-vehicle activities is increasingly recognized as a significant source of injuries and fatalities on the roadway. Across three studies, participants completed eight in-vehicle tasks commonly performed by the driver of an automobile. Primary, secondary, subjective, and physiological measures were collected and integrated into a cognitive distraction scale. In-vehicle activities, such as listening to the radio or an audio book, were associated with a low level of cognitive workload; the conversation activities of talking to a passenger in the vehicle or conversing with a friend on a handheld or hands-free cell phone were associated with a moderate level of cognitive workload; and using a speech-to-text interfaced e-mail system involved a high level of cognitive workload. The research established that there are significant impairments to driving that stem from the diversion of attention from the task of operating a motor vehicle and that the impairments to driving are directly related to the cognitive workload of these in-vehicle activities. Moreover, the adoption of voice-based systems in the vehicle may have unintended consequences that adversely affect traffic safety. These findings can be used to help inform scientifically based policies on driver distraction, particularly as they relate to cognitive distraction stemming from the diversion of attention to other concurrent activities in the vehicle. © 2015, Human Factors and Ergonomics Society.

  11. [Cognitive functions, their development and modern diagnostic methods].

    Science.gov (United States)

    Klasik, Adam; Janas-Kozik, Małgorzata; Krupka-Matuszczyk, Irena; Augustyniak, Ewa

    2006-01-01

    provided a theory. The psychometric approach concentrates on studying the differences in intelligence. The aim of this approach is to test intelligence by means of standardized tests (e.g. WISC-R, WAIS-R) used to show the individual differences among humans. Human cognitive functions determine individuals' adaptation capabilities and disturbances in this area indicate a number of psychopathological changes and are a symptom enabling to differentiate or diagnose one with a disorder. That is why the psychological assessment of cognitive functions is an important part of patients' diagnosis. Contemporary neuropsychological studies are to a great extent based computer tests. The use of computer methods has a number of measurement-related advantages. It allows for standardized testing environment, increasing therefore its reliability and standardizes the patient assessment process. Special attention should be paid to the neuropsychological tests included in the Vienna Test System (Cognitron, SIGNAL, RT, VIGIL, DAUF), which are used to assess the operational memory span, learning processes, reaction time, attention selective function, attention continuity as well as attention interference resistance. It also seems justified to present the CPT id test (Continuous Performance Test) as well as Free Recall. CPT is a diagnostic tool used to assess the attention selective function, attention continuity of attention, attention interference resistance as well as attention alertness. The Free Recall test is used in the memory processes diagnostics to assess patients' operational memory as well as the information organization degree in operational memory. The above mentioned neuropsychological tests are tools used in clinical assessment of cognitive function disorders.

  12. Missing focus on Human Factors - organizational and cognitive ergonomics - in the safety management for the petroleum industry.

    Science.gov (United States)

    Johnsen, Stig O; Kilskar, Stine Skaufel; Fossum, Knut Robert

    2017-08-01

    More attention has recently been given to Human Factors in petroleum accident investigations. The Human Factors areas examined in this article are organizational, cognitive and physical ergonomics. A key question to be explored is as follows: To what degree are the petroleum industry and safety authorities in Norway focusing on these Human Factors areas from the design phase? To investigate this, we conducted an innovative exploratory study of the development of four control centres in Norwegian oil and gas industry in collaboration between users, management and Human Factors experts. We also performed a literature survey and discussion with the professional Human Factors network in Norway. We investigated the Human Factors focus, reasons for not considering Human Factors and consequences of missing Human Factors in safety management. The results revealed an immature focus and organization of Human Factors. Expertise on organizational ergonomics and cognitive ergonomics are missing from companies and safety authorities and are poorly prioritized during the development. The easy observable part of Human Factors (i.e. physical ergonomics) is often in focus. Poor focus on Human Factors in the design process creates demanding conditions for human operators and impact safety and resilience. There is lack of non-technical skills such as communication and decision-making. New technical equipment such as Closed Circuit Television is implemented without appropriate use of Human Factors standards. Human Factors expertise should be involved as early as possible in the responsible organizations. Verification and validation of Human Factors should be improved and performed from the start, by certified Human Factors experts in collaboration with the workforce. The authorities should check-back that the regulatory framework of Human Factors is communicated, understood and followed.

  13. Architecture of cognitive flexibility revealed by lesion mapping

    Science.gov (United States)

    Barbey, Aron K.; Colom, Roberto; Grafman, Jordan

    2013-01-01

    Neuroscience has made remarkable progress in understanding the architecture of human intelligence, identifying a distributed network of brain structures that support goal-directed, intelligent behavior. However, the neural foundations of cognitive flexibility and adaptive aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 149) that investigates the neural bases of key competencies of cognitive flexibility (i.e., mental flexibility and the fluent generation of new ideas) and systematically examine their contributions to a broad spectrum of cognitive and social processes, including psychometric intelligence (Wechsler Adult Intelligence Scale), emotional intelligence (Mayer, Salovey, Caruso Emotional Intelligence Test), and personality (Neuroticism–Extraversion–Openness Personality Inventory). Latent variable modeling was applied to obtain error-free indices of each factor, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. Regression analyses revealed that latent scores for psychometric intelligence reliably predict latent scores for cognitive flexibility (adjusted R2 = 0.94). Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal, and parietal regions, including white matter association tracts, which bind these areas into an integrated system. A targeted analysis of the unique variance explained by cognitive flexibility further revealed selective damage within the right superior temporal gyrus, a region known to support insight and the recognition of novel semantic relations. The observed findings motivate an integrative framework for understanding the neural foundations of adaptive behavior, suggesting that core elements of cognitive flexibility emerge from a distributed network of brain regions that support specific competencies for human intelligence. PMID:23721727

  14. Development and evaluation of a computer-aided system for analyzing human error in railway operations

    International Nuclear Information System (INIS)

    Kim, Dong San; Baek, Dong Hyun; Yoon, Wan Chul

    2010-01-01

    As human error has been recognized as one of the major contributors to accidents in safety-critical systems, there has been a strong need for techniques that can analyze human error effectively. Although many techniques have been developed so far, much room for improvement remains. As human error analysis is a cognitively demanding and time-consuming task, it is particularly necessary to develop a computerized system supporting this task. This paper presents a computer-aided system for analyzing human error in railway operations, called Computer-Aided System for Human Error Analysis and Reduction (CAS-HEAR). It supports analysts to find multiple levels of error causes and their causal relations by using predefined links between contextual factors and causal factors as well as links between causal factors. In addition, it is based on a complete accident model; hence, it helps analysts to conduct a thorough analysis without missing any important part of human error analysis. A prototype of CAS-HEAR was evaluated by nine field investigators from six railway organizations in Korea. Its overall usefulness in human error analysis was confirmed, although development of its simplified version and some modification of the contextual factors and causal factors are required in order to ensure its practical use.

  15. Cultural Change, Human Activity, and Cognitive Development

    Science.gov (United States)

    Gauvain, Mary; Munroe, Robert L.

    2012-01-01

    Differential cognitive performance across cultural contexts has been a standard result in comparative research. Here we discuss how societal changes occurring when a small-scale traditional community incorporates elements from industrialized society may contribute to cognitive development, and we illustrate this with an analysis of the cognitive…

  16. Reducing the Cognitive Workload While Operating in Complex Sensory Environments

    National Research Council Canada - National Science Library

    Cooper, Leon

    2004-01-01

    .... The major goal of our research within this project was to construct a functioning recognition system, based upon fundamental principles of human perception and cognition that exhibits the following properties...

  17. Effect of a human-type communication robot on cognitive function in elderly women living alone.

    Science.gov (United States)

    Tanaka, Masaaki; Ishii, Akira; Yamano, Emi; Ogikubo, Hiroki; Okazaki, Masatsugu; Kamimura, Kazuro; Konishi, Yasuharu; Emoto, Shigeru; Watanabe, Yasuyoshi

    2012-09-01

    Considering the high prevalence of dementia, it would be of great value to develop effective tools to improve cognitive function. We examined the effects of a human-type communication robot on cognitive function in elderly women living alone. In this study, 34 healthy elderly female volunteers living alone were randomized to living with either a communication robot or a control robot at home for 8 weeks. The shape, voice, and motion features of the communication robot resemble those of a 3-year-old boy, while the control robot was not designed to talk or nod. Before living with the robot and 4 and 8 weeks after living with the robot, experiments were conducted to evaluate a variety of cognitive functions as well as saliva cortisol, sleep, and subjective fatigue, motivation, and healing. The Mini-Mental State Examination score, judgement, and verbal memory function were improved after living with the communication robot; those functions were not altered with the control robot. In addition, the saliva cortisol level was decreased, nocturnal sleeping hours tended to increase, and difficulty in maintaining sleep tended to decrease with the communication robot, although alterations were not shown with the control. The proportions of the participants in whom effects on attenuation of fatigue, enhancement of motivation, and healing could be recognized were higher in the communication robot group relative to the control group. This study demonstrates that living with a human-type communication robot may be effective for improving cognitive functions in elderly women living alone.

  18. The importance of human cognitive models in the safety analysis report of nuclear power plants - a comparative review

    International Nuclear Information System (INIS)

    Alvarenga, Marco A.B.; Araujo Goes, Alexandre G. de

    1997-01-01

    The chapter 18 of the Brazilian NPPs Safety Analysis Report (SAR) deals with Human Factor Engineering (HFE). The chapter evaluation is distributed among ten topics. One of them, the HRA (Human Reliability Analysis) becomes the central subject of the whole analysis, generating information to the other topics, as for example, high risk operational critical sequences. The HRA methods used in the past concerned the approach of modeling the human being as a component (hardware), based in a failure or success bivalent logic. In the last ten years, several human cognitive models were developed to be used in the nuclear field as well as in the conventional industry, mainly in the military aviation. In this paper, we describe their main features, comparing some models to each other, with the main purpose of determining the minimal characteristics acceptable for NPPs licensing, being part of these cognitive models, to be used mainly in the evaluation of HRAs from SARs in the NPPs. (author). 10 refs

  19. Cognitive Model of Trust Dynamics Predicts Human Behavior within and between Two Games of Strategic Interaction with Computerized Confederate Agents.

    Science.gov (United States)

    Collins, Michael G; Juvina, Ion; Gluck, Kevin A

    2016-01-01

    When playing games of strategic interaction, such as iterated Prisoner's Dilemma and iterated Chicken Game, people exhibit specific within-game learning (e.g., learning a game's optimal outcome) as well as transfer of learning between games (e.g., a game's optimal outcome occurring at a higher proportion when played after another game). The reciprocal trust players develop during the first game is thought to mediate transfer of learning effects. Recently, a computational cognitive model using a novel trust mechanism has been shown to account for human behavior in both games, including the transfer between games. We present the results of a study in which we evaluate the model's a priori predictions of human learning and transfer in 16 different conditions. The model's predictive validity is compared against five model variants that lacked a trust mechanism. The results suggest that a trust mechanism is necessary to explain human behavior across multiple conditions, even when a human plays against a non-human agent. The addition of a trust mechanism to the other learning mechanisms within the cognitive architecture, such as sequence learning, instance-based learning, and utility learning, leads to better prediction of the empirical data. It is argued that computational cognitive modeling is a useful tool for studying trust development, calibration, and repair.

  20. Channel Selection and Feature Projection for Cognitive Load Estimation Using Ambulatory EEG

    Directory of Open Access Journals (Sweden)

    Tian Lan

    2007-01-01

    Full Text Available We present an ambulatory cognitive state classification system to assess the subject's mental load based on EEG measurements. The ambulatory cognitive state estimator is utilized in the context of a real-time augmented cognition (AugCog system that aims to enhance the cognitive performance of a human user through computer-mediated assistance based on assessments of cognitive states using physiological signals including, but not limited to, EEG. This paper focuses particularly on the offline channel selection and feature projection phases of the design and aims to present mutual-information-based techniques that use a simple sample estimator for this quantity. Analyses conducted on data collected from 3 subjects performing 2 tasks (n-back/Larson at 2 difficulty levels (low/high demonstrate that the proposed mutual-information-based dimensionality reduction scheme can achieve up to 94% cognitive load estimation accuracy.

  1. Banknote recognition: investigating processing and cognition framework using competitive neural network.

    Science.gov (United States)

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-02-01

    Humans are apt at recognizing patterns and discovering even abstract features which are sometimes embedded therein. Our ability to use the banknotes in circulation for business transactions lies in the effortlessness with which we can recognize the different banknote denominations after seeing them over a period of time. More significant is that we can usually recognize these banknote denominations irrespective of what parts of the banknotes are exposed to us visually. Furthermore, our recognition ability is largely unaffected even when these banknotes are partially occluded. In a similar analogy, the robustness of intelligent systems to perform the task of banknote recognition should not collapse under some minimum level of partial occlusion. Artificial neural networks are intelligent systems which from inception have taken many important cues related to structure and learning rules from the human nervous/cognition processing system. Likewise, it has been shown that advances in artificial neural network simulations can help us understand the human nervous/cognition system even furthermore. In this paper, we investigate three cognition hypothetical frameworks to vision-based recognition of banknote denominations using competitive neural networks. In order to make the task more challenging and stress-test the investigated hypotheses, we also consider the recognition of occluded banknotes. The implemented hypothetical systems are tasked to perform fast recognition of banknotes with up to 75 % occlusion. The investigated hypothetical systems are trained on Nigeria's Naira banknotes and several experiments are performed to demonstrate the findings presented within this work.

  2. Key Performance Indicators for the Impact of Cognitive Assembly Planning on Ramp-Up Process

    Directory of Open Access Journals (Sweden)

    Christian Buescher

    2012-01-01

    Full Text Available Within the ramp-up phase of highly automated assembly systems, the planning effort forms a large part of production costs. Due to shortening product lifecycles, changing customer demands, and therefore an increasing number of ramp-up processes, these costs even rise. So assembly systems should reduce these efforts and simultaneously be flexible for quick adaption to changes in products and their variants. A cognitive interaction system in the field of assembly planning systems is developed within the Cluster of Excellence “Integrative production technology for high-wage countries” at RWTH Aachen University which integrates several cognitive capabilities according to human cognition. This approach combines the advantages of automation with the flexibility of humans. In this paper the main principles of the system's core component—the cognitive control unit—are presented to underline its advantages with respect to traditional assembly systems. Based on this, the actual innovation of this paper is the development of key performance indicators. These refer to the ramp-up process as a main objective of such a system is to minimize the planning effort during ramp-up. The KPIs are also designed to show the impact on the main idea of the Cluster of Excellence in resolving the so-called Polylemma of Production.

  3. "Minding the gap": imagination, creativity and human cognition.

    Science.gov (United States)

    Pelaprat, Etienne; Cole, Michael

    2011-12-01

    Inquiry into the nature of mental images is a major topic in psychology where research is focused on the psychological faculties of imagination and creativity. In this paper, we draw on the work of L.S. Vygotsky to develop a cultural-historical approach to the study of imagination as central to human cognitive processes. We characterize imagination as a process of image making that resolves "gaps" arising from biological and cultural-historical constraints, and that enables ongoing time-space coordination necessary for thought and action. After presenting some basic theoretical considerations, we offer a series of examples to illustrate for the reader the diversity of processes of imagination as image making. Applying our arguments to contemporary digital media, we argue that a cultural-historical approach to image formation is important for understanding how imagination and creativity are distinct, yet inter-penetrating processes.

  4. Human error risk management for engineering systems: a methodology for design, safety assessment, accident investigation and training

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    2004-01-01

    The objective of this paper is to tackle methodological issues associated with the inclusion of cognitive and dynamic considerations into Human Reliability methods. A methodology called Human Error Risk Management for Engineering Systems is presented that offers a 'roadmap' for selecting and consistently applying Human Factors approaches in different areas of application and contains also a 'body' of possible methods and techniques of its own. Two types of possible application are discussed to demonstrate practical applications of the methodology. Specific attention is dedicated to the issue of data collection and definition from specific field assessment

  5. Electrodermal Activity Is Sensitive to Cognitive Stress under Water.

    Science.gov (United States)

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Alvaro D; Chon, Ki H

    2017-01-01

    When divers are at depth in water, the high pressure and low temperature alone can cause severe stress, challenging the human physiological control systems. The addition of cognitive stress, for example during a military mission, exacerbates the challenge. In these conditions, humans are more susceptible to autonomic imbalance. Reliable tools for the assessment of the autonomic nervous system (ANS) could be used as indicators of the relative degree of stress a diver is experiencing, which could reveal heightened risk during a mission. Electrodermal activity (EDA), a measure of the changes in conductance at the skin surface due to sweat production, is considered a promising alternative for the non-invasive assessment of sympathetic control of the ANS. EDA is sensitive to stress of many kinds. Therefore, as a first step, we tested the sensitivity of EDA, in the time and frequency domains, specifically to cognitive stress during water immersion of the subject (albeit with their measurement finger dry for safety). The data from 14 volunteer subjects were used from the experiment. After a 4-min adjustment and baseline period after being immersed in water, subjects underwent the Stroop task, which is known to induce cognitive stress. The time-domain indices of EDA, skin conductance level (SCL) and non-specific skin conductance responses (NS.SCRs), did not change during cognitive stress, compared to baseline measurements. Frequency-domain indices of EDA, EDASymp (based on power spectral analysis) and TVSymp (based on time-frequency analysis), did significantly change during cognitive stress. This leads to the conclusion that EDA, assessed by spectral analysis, is sensitive to cognitive stress in water-immersed subjects, and can potentially be used to detect cognitive stress in divers.

  6. Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies.

    Science.gov (United States)

    Schröder, Nadja; Figueiredo, Luciana Silva; de Lima, Maria Noêmia Martins

    2013-01-01

    Over the last decades, studies from our laboratory and other groups using animal models have shown that iron overload, resulting in iron accumulation in the brain, produces significant cognitive deficits. Iron accumulation in the hippocampus and the basal ganglia has been related to impairments in spatial memory, aversive memory, and recognition memory in rodents. These results are corroborated by studies showing that the administration of iron chelators attenuates cognitive deficits in a variety of animal models of cognitive dysfunction, including aging and Alzheimer's disease models. Remarkably, recent human studies using magnetic resonance image techniques have also shown a consistent correlation between cognitive dysfunction and iron deposition, mostly in the hippocampus, cortical areas, and basal ganglia. These findings may have relevant implications in the light of the knowledge that iron accumulates in brain regions of patients suffering from neurodegenerative diseases. A better understanding of the functional consequences of iron dysregulation in aging and neurological diseases may help to identify novel targets for treating memory problems that afflict a growing aging population.

  7. Convergent dysregulation of frontal cortical cognitive and reward systems in eating disorders.

    Science.gov (United States)

    Stefano, George B; Ptáček, Radek; Kuželová, Hana; Mantione, Kirk J; Raboch, Jiří; Papezova, Hana; Kream, Richard M

    2013-05-10

    A substantive literature has drawn a compelling case for the functional involvement of mesolimbic/prefrontal cortical neural reward systems in normative control of eating and in the etiology and persistence of severe eating disorders that affect diverse human populations. Presently, we provide a short review that develops an equally compelling case for the importance of dysregulated frontal cortical cognitive neural networks acting in concert with regional reward systems in the regulation of complex eating behaviors and in the presentation of complex pathophysiological symptoms associated with major eating disorders. Our goal is to highlight working models of major eating disorders that incorporate complementary approaches to elucidate functionally interactive neural circuits defined by their regulatory neurochemical phenotypes. Importantly, we also review evidence-based linkages between widely studied psychiatric and neurodegenerative syndromes (e.g., autism spectrum disorders and Parkinson's disease) and co-morbid eating disorders to elucidate basic mechanisms involving dopaminergic transmission and its regulation by endogenously expressed morphine in these same cortical regions.

  8. 50-60 Hz electric and magnetic field effects on cognitive function in humans: A review

    International Nuclear Information System (INIS)

    Crasson, M.

    2003-01-01

    This paper reviews the effect of 50-60 Hz weak electric, magnetic and combined electric and magnetic field exposure on cognitive functions such as memory, attention, information processing and time perception, as determined by electroencephalographic methods and performance measures. Overall, laboratory studies, which have investigated the acute effects of power frequency fields on cognitive functioning in humans are heterogeneous, in terms of both electric and magnetic field (EMF) exposure and the experimental design and measures used. Results are inconsistent and difficult to interpret with regard to functional relevance for possible health risks. Statistically significant differences between field and control exposure, when they are found, are small, subtle, transitory, without any clear dose-response relationship and difficult to reproduce. The human performance or event related potentials (ERPs) measures that might specifically be affected by EMF exposure, as well as a possible cerebral structure or function that could be more sensitive to EMF, cannot be better determined. (author)

  9. The cognitive-behavioral system of leadership: cognitive antecedents of active and passive leadership behaviors

    Science.gov (United States)

    Dóci, Edina; Stouten, Jeroen; Hofmans, Joeri

    2015-01-01

    In the present paper, we propose a cognitive-behavioral understanding of active and passive leadership. Building on core evaluations theory, we offer a model that explains the emergence of leaders’ active and passive behaviors, thereby predicting stable, inter-individual, as well as variable, intra-individual differences in both types of leadership behavior. We explain leaders’ stable behavioral tendencies by their fundamental beliefs about themselves, others, and the world (core evaluations), while their variable, momentary behaviors are explained by the leaders’ momentary appraisals of themselves, others, and the world (specific evaluations). By introducing interactions between the situation the leader enters, the leader’s beliefs, appraisals, and behavior, we propose a comprehensive system of cognitive mechanisms that underlie active and passive leadership behavior. PMID:26441721

  10. Design considerations to improve cognitive ergonomic issues of unmanned vehicle interfaces utilizing video game controllers.

    Science.gov (United States)

    Oppold, P; Rupp, M; Mouloua, M; Hancock, P A; Martin, J

    2012-01-01

    Unmanned (UAVs, UCAVs, and UGVs) systems still have major human factors and ergonomic challenges related to the effective design of their control interface systems, crucial to their efficient operation, maintenance, and safety. Unmanned system interfaces with a human centered approach promote intuitive interfaces that are easier to learn, and reduce human errors and other cognitive ergonomic issues with interface design. Automation has shifted workload from physical to cognitive, thus control interfaces for unmanned systems need to reduce mental workload on the operators and facilitate the interaction between vehicle and operator. Two-handed video game controllers provide wide usability within the overall population, prior exposure for new operators, and a variety of interface complexity levels to match the complexity level of the task and reduce cognitive load. This paper categorizes and provides taxonomy for 121 haptic interfaces from the entertainment industry that can be utilized as control interfaces for unmanned systems. Five categories of controllers were based on the complexity of the buttons, control pads, joysticks, and switches on the controller. This allows the selection of the level of complexity needed for a specific task without creating an entirely new design or utilizing an overly complex design.

  11. Cognitive mechanisms for the evolution of religious thought.

    Science.gov (United States)

    Fondevila, Sabela; Martín-Loeches, Manuel

    2013-09-01

    The reasons behind the cultural persistence of religious beliefs throughout human history and prehistory still generate unanswered questions requiring scientific explanations. Within the framework of the cognitive science of religion, this article reviews experimental evidence supporting human predisposition for religious thinking and focuses on the hypothesis that a reason why religious beliefs are successful is their minimal counterintuitiveness. According to this hypothesis, religious concepts or stories would be characterized by containing only a small number of world-knowledge violations, which attracts attention while improving memorizability. We conclude this review by summarizing recent findings from our group using brain electrical activity and delving further into these questions. Our research suggests parallels between the natural tendency of the human cognitive system to use metaphors and the minimal counterintuitiveness of religious beliefs. © 2013 New York Academy of Sciences.

  12. A network engineering perspective on probing and perturbing cognition with neurofeedback.

    Science.gov (United States)

    Bassett, Danielle S; Khambhati, Ankit N

    2017-05-01

    Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  13. Location-based resource allocation for OFDMA cognitive radio systems

    KAUST Repository

    Nam, Haewoon; Ben Ghorbel, Mahdi; Alouini, Mohamed-Slim

    2010-01-01

    In cognitive radio systems, in order for the secondary users to opportunistically share the spectrum without interfering the primary users, an accurate spectrum measurement and a precise estimation of the interference at the primary users

  14. Reduced activation in the mirror neuron system during a virtual social cognition task in euthymic bipolar disorder.

    Science.gov (United States)

    Kim, Eosu; Jung, Young-Chul; Ku, Jeonghun; Kim, Jae-Jin; Lee, Hyeongrae; Kim, So Young; Kim, Sun I; Cho, Hyun-Sang

    2009-11-13

    Social cognition entails both cognitive and affective processing, and impairments in both have accounted for residual symptoms of bipolar disorder (BD). However, there has been a lack of studies identifying neural substrates responsible for social cognitive difficulties in BD patients. Fourteen euthymic BD patients and 14 healthy normal controls underwent functional MRI while performing a virtual reality social cognition task, which incorporated both cognitive and emotional dimensions, simulating real-world social situations. During the scanning, subjects tried to guess (attribute) possible reasons for expressed emotion of virtual humans (avatars) while viewing their facial expressions, just after observing their verbal and nonverbal (facial) expressions which were emotionally valenced (happy, angry and neutral). BD patients compared to normal controls showed delayed reaction times in emotional conditions, with comparable response accuracy. Healthy normal controls activated the right anterior cingulate cortex, inferior frontal, and insular cortex in emotional conditions contrasted with neutral control conditions, that is, the regions that have been related to empathic processes during viewing others' emotional expression. Relative to normal controls, BD patients showed reduced activations in the 'mirror neuron system', including the right inferior frontal cortex, premotor cortex, and insula, mainly in angry or happy condition. These results may suggest that, even during euthymic state, BD patients have difficulties in recruiting brain regions for the utilization of emotional cues as a means for understanding others. Clinical attention should be paid to emotion-related residual symptoms to help improve social outcomes in these patients.

  15. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    Science.gov (United States)

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  16. Manganese Neurotoxicity: New Perspectives from Behavioral, Neuroimaging, and Neuropathological Studies in Humans and Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Tomas R Guilarte

    2013-06-01

    Full Text Available Manganese (Mn is an essential metal and has important physiological functions for human health. However, exposure to excess levels of Mn in occupational settings or from environmental sources has been associated with a neurological syndrome comprising cognitive deficits, neuropsychological abnormalities and parkinsonism. Historically, studies on the effects of Mn in humans and experimental animals have been concerned with effects on the basal ganglia and the dopaminergic system as it relates to movement abnormalities. However, emerging studies are beginning to provide significant evidence of Mn effects on cortical structures and cognitive function at lower levels than previously recognized. This review advances new knowledge of putative mechanisms by which exposure to excess levels of Mn alters neurobiological systems and produces neurological deficits not only in the basal ganglia but also in the cerebral cortex. The emerging evidence suggests that working memory is significantly affected by chronic Mn exposure and this may be mediated by alterations in brain structures associated with the working memory network including the caudate nucleus in the striatum, frontal cortex and parietal cortex. Dysregulation of the dopaminergic system may play an important role in both the movement abnormalities as well as the neuropsychiatric and cognitive function deficits that have been described in humans and non-human primates exposed to Mn.

  17. Cognitive models embedded in system simulation models

    International Nuclear Information System (INIS)

    Siegel, A.I.; Wolf, J.J.

    1982-01-01

    If we are to discuss and consider cognitive models, we must first come to grips with two questions: (1) What is cognition; (2) What is a model. Presumably, the answers to these questions can provide a basis for defining a cognitive model. Accordingly, this paper first places these two questions into perspective. Then, cognitive models are set within the context of computer simulation models and a number of computer simulations of cognitive processes are described. Finally, pervasive issues are discussed vis-a-vis cognitive modeling in the computer simulation context

  18. Effects of digital human-machine interface characteristics on human error in nuclear power plants

    International Nuclear Information System (INIS)

    Li Pengcheng; Zhang Li; Dai Licao; Huang Weigang

    2011-01-01

    In order to identify the effects of digital human-machine interface characteristics on human error in nuclear power plants, the new characteristics of digital human-machine interface are identified by comparing with the traditional analog control systems in the aspects of the information display, user interface interaction and management, control systems, alarm systems and procedures system, and the negative effects of digital human-machine interface characteristics on human error are identified by field research and interviewing with operators such as increased cognitive load and workload, mode confusion, loss of situation awareness. As to the adverse effects related above, the corresponding prevention and control measures of human errors are provided to support the prevention and minimization of human errors and the optimization of human-machine interface design. (authors)

  19. How system designers think: a study of design thinking in human factors engineering.

    Science.gov (United States)

    Papantonopoulos, Sotiris

    2004-11-01

    The paper presents a descriptive study of design thinking in human factors engineering. The objective of the study is to analyse the role of interpretation in design thinking and the role of design practice in guiding interpretation. The study involved 10 system designers undertaking the allocation of cognitive functions in three production planning and control task scenarios. Allocation decisions were recorded and verbal protocols of the design process were collected to elicit the subjects' thought processes. Verbal protocol analysis showed that subjects carried out the design of cognitive task allocation as a problem of applying a selected automation technology from their initial design deliberations. This design strategy stands in contrast to the predominant view of system design that stipulates that user requirements should be thoroughly analysed prior to making any decisions about technology. Theoretical frameworks from design research and ontological design showed that the system design process may be better understood by recognizing the role of design hypotheses in system design, as well as the diverse interactions between interpretation and practice, means and ends, and design practice and the designer's pre-understanding which shape the design process. Ways to balance the bias exerted on the design process were discussed.

  20. Space Flight Human System Standards (SFHSS). Volume 2; Human Factors, Habitability and Environmental Factors" and Human Integration Design Handbook (HIDH)

    Science.gov (United States)

    Davis, Jeffrey R.; Fitts, David J.

    2009-01-01

    This viewgraph presentation reviews the standards for space flight hardware based on human capabilities and limitations. The contents include: 1) Scope; 2) Applicable documents; 3) General; 4) Human Physical Characteristics and Capabilities; 5) Human Performance and Cognition; 6) Natural and Induced Environments; 7) Habitability Functions; 8) Architecture; 9) Hardware and Equipment; 10) Crew Interfaces; 11) Spacesuits; 12) Operatons: Reserved; 13) Ground Maintenance and Assembly: Reserved; 14) Appendix A-Reference Documents; 15) Appendix N-Acronyms and 16) Appendix C-Definition. Volume 2 is supported by the Human Integration Design Handbook (HIDH)s.

  1. An Estimation of Human Error Probability of Filtered Containment Venting System Using Dynamic HRA Method

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seunghyun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The human failure events (HFEs) are considered in the development of system fault trees as well as accident sequence event trees in part of Probabilistic Safety Assessment (PSA). As a method for analyzing the human error, several methods, such as Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR), and Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) are used and new methods for human reliability analysis (HRA) are under developing at this time. This paper presents a dynamic HRA method for assessing the human failure events and estimation of human error probability for filtered containment venting system (FCVS) is performed. The action associated with implementation of the containment venting during a station blackout sequence is used as an example. In this report, dynamic HRA method was used to analyze FCVS-related operator action. The distributions of the required time and the available time were developed by MAAP code and LHS sampling. Though the numerical calculations given here are only for illustrative purpose, the dynamic HRA method can be useful tools to estimate the human error estimation and it can be applied to any kind of the operator actions, including the severe accident management strategy.

  2. Performance analysis of underlay cognitive multihop regenerative relaying systems with multiple primary receivers

    KAUST Repository

    Hyadi, Amal; Benjillali, Mustapha; Alouini, Mohamed-Slim; Da Costa, Daniel Benevides Da

    2013-01-01

    Multihop relaying is an efficient strategy to improve the connectivity and extend the coverage area of secondary networks in underlay cognitive systems. In this work, we provide a comprehensive performance study of cognitive multihop regenerative

  3. Chewing Maintains Hippocampus-Dependent Cognitive Function.

    Science.gov (United States)

    Chen, Huayue; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2015-01-01

    Mastication (chewing) is important not only for food intake, but also for preserving and promoting the general health. Recent studies have showed that mastication helps to maintain cognitive functions in the hippocampus, a central nervous system region vital for spatial memory and learning. The purpose of this paper is to review the recent progress of the association between mastication and the hippocampus-dependent cognitive function. There are multiple neural circuits connecting the masticatory organs and the hippocampus. Both animal and human studies indicated that cognitive functioning is influenced by mastication. Masticatory dysfunction is associated with the hippocampal morphological impairments and the hippocampus-dependent spatial memory deficits, especially in elderly. Mastication is an effective behavior for maintaining the hippocampus-dependent cognitive performance, which deteriorates with aging. Therefore, chewing may represent a useful approach in preserving and promoting the hippocampus-dependent cognitive function in older people. We also discussed several possible mechanisms involved in the interaction between mastication and the hippocampal neurogenesis and the future directions for this unique fascinating research.

  4. Epistemology – the Theory of Knowledge or Knowing? Appreciating Gregory Bateson’s Contribution to the Cartography of Human Cognition

    Directory of Open Access Journals (Sweden)

    Zdzislaw Wasik

    2017-01-01

    Full Text Available This article aims at a confrontation of two approaches to epistemology in order to answer the question posed in its title whether the theory of knowledge should focus on static or dynamic aspects of human cognition. In the first part, the author presents a metascientific understanding of epistemology defined in his own works as an ordered set of investigative perspectives, which practicing researchers have at their disposal when they are interested to attain a specific state of knowledge, or to support their beliefs about the nature of investigative domains with regard to the existence forms and accessibility of investigated objects. And, in the second, the subject matter of a more detailed presentation constitutes a psychophysiological approach to epistemology pertaining to the human organism preoccupied with sensorial and mental activities as a cognizing subject who aims at achieving a certain kind of information about reality. Common for both approaches to epistemology is the attainment of experiential knowledge. However, when the metascientific epistemology refers to a dispositional-perspectivistic state of knowledge acquired in cognition, the attention of the psychophysiological epistemology is paid to cognitive-constructivists activities of human organisms as subject acquiring their knowledge through personal experiences.

  5. Functional Mobility Testing: A Novel Method to Establish Human System Interface Design Requirements

    Science.gov (United States)

    England, Scott A.; Benson, Elizabeth A.; Rajulu, Sudhakar

    2008-01-01

    Across all fields of human-system interface design it is vital to posses a sound methodology dictating the constraints on the system based on the capabilities of the human user. These limitations may be based on strength, mobility, dexterity, cognitive ability, etc. and combinations thereof. Data collected in an isolated environment to determine, for example, maximal strength or maximal range of motion would indeed be adequate for establishing not-to-exceed type design limitations, however these restraints on the system may be excessive over what is basally needed. Resources may potentially be saved by having a technique to determine the minimum measurements a system must accommodate. This paper specifically deals with the creation of a novel methodology for establishing mobility requirements for a new generation of space suit design concepts. Historically, the Space Shuttle and the International Space Station vehicle and space hardware design requirements documents such as the Man-Systems Integration Standards and International Space Station Flight Crew Integration Standard explicitly stated that the designers should strive to provide the maximum joint range of motion capabilities exhibited by a minimally clothed human subject. In the course of developing the Human-Systems Integration Requirements (HSIR) for the new space exploration initiative (Constellation), an effort was made to redefine the mobility requirements in the interest of safety and cost. Systems designed for manned space exploration can receive compounded gains from simplified designs that are both initially less expensive to produce and lighter, thereby, cheaper to launch.

  6. Culture shapes the evolution of cognition

    OpenAIRE

    Thompson, Bill; Kirby, Simon; Smith, Kenny

    2016-01-01

    A central debate in cognitive science concerns the nativist hypothesis: the proposal that universal human behaviors are underpinned by strong, domain-specific, innate constraints on cognition. We use a general model of the processes that shape human behavior—learning, culture, and biological evolution—to test the evolutionary plausibility of this hypothesis. A series of analyses shows that culture radically alters the relationship between natural selection and cognition. Culture facilitates r...

  7. Cognitive neuroscience in forensic science: understanding and utilizing the human element.

    Science.gov (United States)

    Dror, Itiel E

    2015-08-05

    The human element plays a critical role in forensic science. It is not limited only to issues relating to forensic decision-making, such as bias, but also relates to most aspects of forensic work (some of which even take place before a crime is ever committed or long after the verification of the forensic conclusion). In this paper, I explicate many aspects of forensic work that involve the human element and therefore show the relevance (and potential contribution) of cognitive neuroscience to forensic science. The 10 aspects covered in this paper are proactive forensic science, selection during recruitment, training, crime scene investigation, forensic decision-making, verification and conflict resolution, reporting, the role of the forensic examiner, presentation in court and judicial decisions. As the forensic community is taking on the challenges introduced by the realization that the human element is critical for forensic work, new opportunities emerge that allow for considerable improvement and enhancement of the forensic science endeavour. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar.

    Science.gov (United States)

    Lomp, Oliver; Richter, Mathis; Zibner, Stephan K U; Schöner, Gregor

    2016-01-01

    Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar , which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.

  9. Human-inspired sound environment recognition system for assistive vehicles

    Science.gov (United States)

    González Vidal, Eduardo; Fredes Zarricueta, Ernesto; Auat Cheein, Fernando

    2015-02-01

    Objective. The human auditory system acquires environmental information under sound stimuli faster than visual or touch systems, which in turn, allows for faster human responses to such stimuli. It also complements senses such as sight, where direct line-of-view is necessary to identify objects, in the environment recognition process. This work focuses on implementing human reaction to sound stimuli and environment recognition on assistive robotic devices, such as robotic wheelchairs or robotized cars. These vehicles need environment information to ensure safe navigation. Approach. In the field of environment recognition, range sensors (such as LiDAR and ultrasonic systems) and artificial vision devices are widely used; however, these sensors depend on environment constraints (such as lighting variability or color of objects), and sound can provide important information for the characterization of an environment. In this work, we propose a sound-based approach to enhance the environment recognition process, mainly for cases that compromise human integrity, according to the International Classification of Functioning (ICF). Our proposal is based on a neural network implementation that is able to classify up to 15 different environments, each selected according to the ICF considerations on environment factors in the community-based physical activities of people with disabilities. Main results. The accuracy rates in environment classification ranges from 84% to 93%. This classification is later used to constrain assistive vehicle navigation in order to protect the user during daily activities. This work also includes real-time outdoor experimentation (performed on an assistive vehicle) by seven volunteers with different disabilities (but without cognitive impairment and experienced in the use of wheelchairs), statistical validation, comparison with previously published work, and a discussion section where the pros and cons of our system are evaluated. Significance

  10. Position Paper: Designing Complex Systems to Support Interdisciplinary Cognitive Work

    Science.gov (United States)

    Greene, Melissa T.; Papalambros, Panos Y.; Mcgowan, Anna-Maria R.

    2016-01-01

    The paper argues that the field we can call cognitive science of interdisciplinary collaboration is an important area of study for improving design of Large-Scale Complex Systems (LaCES) and supporting cognitive work. The paper mostly raised questions that have been documented in earlier qualitative analysis studies, and provided possible avenues of exploration for addressing them. There are likely further contributions from additional disciplines beyond those mentioned in this paper that should be considered and integrated into such a cognitive science framework. Knowledge and awareness of various perspectives will help to inform the types of interventions available for improving LaCES design and functionality. For example, a cognitive interpretation of interdisciplinary collaborations in LaCES elucidated the need for a "translator" or "mediator" in helping subject matter experts to transcend language boundaries, mitigate single discipline bias, support integrative activities, and correct misaligned objectives. Additional research in this direction is likely to uncover similar gaps and opportunities for improvements in practice.

  11. Normal people working in normal organizations with normal equipment: system safety and cognition in a mid-air collision.

    Science.gov (United States)

    de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar

    2009-05-01

    A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.

  12. Systems (CSS) for nuclear power plants (1993-1995): Evaluation of CSS using simulated human model

    International Nuclear Information System (INIS)

    Yushi Fujita; Kazushige Gotoh

    1996-01-01

    A simulated human model called Cognitive and Action Modelling of Erring Operator (CAMEO) has been developed. CAMEO is designed to be utilized as a platform for evaluating human-machine interfaces including CSS. Based on experimental studies and computer simulation summarized in this paper, it may be possible to conclude that CAMEO is reasonably valid for predicting some typical cognitive difficulties that human operators might experience in supervisory control environments. (author). 6 refs

  13. Cognitive-Developmental Learning for a Humanoid Robot: A Caregiver's Gift

    National Research Council Canada - National Science Library

    Arsenio, Artur M

    2004-01-01

    The goal of this work is to build a cognitive system for the humanoid robot, Cog, that exploits human caregivers as catalysts to perceive and learn about actions, objects, scenes, people, and the robot itself...

  14. A Secured Cognitive Agent based Multi-strategic Intelligent Search System

    Directory of Open Access Journals (Sweden)

    Neha Gulati

    2018-04-01

    Full Text Available Search Engine (SE is the most preferred information retrieval tool ubiquitously used. In spite of vast scale involvement of users in SE’s, their limited capabilities to understand the user/searcher context and emotions places high cognitive, perceptual and learning load on the user to maintain the search momentum. In this regard, the present work discusses a Cognitive Agent (CA based approach to support the user in Web-based search process. The work suggests a framework called Secured Cognitive Agent based Multi-strategic Intelligent Search System (CAbMsISS to assist the user in search process. It helps to reduce the contextual and emotional mismatch between the SE’s and user. After implementation of the proposed framework, performance analysis shows that CAbMsISS framework improves Query Retrieval Time (QRT and effectiveness for retrieving relevant results as compared to Present Search Engine (PSE. Supplementary to this, it also provides search suggestions when user accesses a resource previously tagged with negative emotions. Overall, the goal of the system is to enhance the search experience for keeping the user motivated. The framework provides suggestions through the search log that tracks the queries searched, resources accessed and emotions experienced during the search. The implemented framework also considers user security. Keywords: BDI model, Cognitive Agent, Emotion, Information retrieval, Intelligent search, Search Engine

  15. COGNITIVE SCIENCE: FROM MULTIDISCIPLINARITY TO INTERDISCIPLINARITY

    OpenAIRE

    Marina Bogdanova

    2017-01-01

    Cognitive science is a network of interrelated scientific disciplines engaged in researching human cognition and its brain mechanisms. The birth of cognitive science has been the result of numerous integrated processes. Cognitive science is made up of experimental psychology cognition, philosophy consciousness, neuroscience, cognitive anthropology, linguistics, computer science and artificial intelligence. In recent years, a number of other research areas have been added to the body of cognit...

  16. Association between academic performance and cognitive dysfunction in patients with juvenile systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Renan Bazuco Frittoli

    2016-06-01

    Full Text Available Abstract Objective To determine whether there is an association between the profile of cognitive dysfunction and academic outcomes in patients with juvenile systemic lupus erythematosus (JSLE. Methods Patients aged ≤18 years at the onset of the disease and education level at or above the fifth grade of elementary school were selected. Cognitive evaluation was performed according to the American College of Rheumatology (ACR recommendations. Symptoms of anxiety and depression were assessed by Beck scales; disease activity was assessed by Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; and cumulative damage was assessed by Systemic Lupus International Collaborating Clinics (SLICC. The presence of autoantibodies and medication use were also assessed. A significance level of 5% (p < 0.05 was adopted. Results 41 patients with a mean age of 14.5 ± 2.84 years were included. Cognitive dysfunction was noted in 17 (41.46% patients. There was a significant worsening in mathematical performance in patients with cognitive dysfunction (p = 0.039. Anxiety symptoms were observed in 8 patients (19.51% and were associated with visual perception (p = 0.037 and symptoms of depression were observed in 1 patient (2.43%. Conclusion Patients with JSLE concomitantly with cognitive dysfunction showed worse academic performance in mathematics compared to patients without cognitive impairment.

  17. Human-machine interactions

    Science.gov (United States)

    Forsythe, J Chris [Sandia Park, NM; Xavier, Patrick G [Albuquerque, NM; Abbott, Robert G [Albuquerque, NM; Brannon, Nathan G [Albuquerque, NM; Bernard, Michael L [Tijeras, NM; Speed, Ann E [Albuquerque, NM

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  18. Combining human and machine processes (CHAMP)

    Science.gov (United States)

    Sudit, Moises; Sudit, David; Hirsch, Michael

    2015-05-01

    Machine Reasoning and Intelligence is usually done in a vacuum, without consultation of the ultimate decision-maker. The late consideration of the human cognitive process causes some major problems in the use of automated systems to provide reliable and actionable information that users can trust and depend to make the best Course-of-Action (COA). On the other hand, if automated systems are created exclusively based on human cognition, then there is a danger of developing systems that don't push the barrier of technology and are mainly done for the comfort level of selected subject matter experts (SMEs). Our approach to combining human and machine processes (CHAMP) is based on the notion of developing optimal strategies for where, when, how, and which human intelligence should be injected within a machine reasoning and intelligence process. This combination is based on the criteria of improving the quality of the output of the automated process while maintaining the required computational efficiency for a COA to be actuated in timely fashion. This research addresses the following problem areas: • Providing consistency within a mission: Injection of human reasoning and intelligence within the reliability and temporal needs of a mission to attain situational awareness, impact assessment, and COA development. • Supporting the incorporation of data that is uncertain, incomplete, imprecise and contradictory (UIIC): Development of mathematical models to suggest the insertion of a cognitive process within a machine reasoning and intelligent system so as to minimize UIIC concerns. • Developing systems that include humans in the loop whose performance can be analyzed and understood to provide feedback to the sensors.

  19. Worsening Cognitive Impairment and Neurodegenerative Pathology Progressively Increase Risk for Delirium

    Science.gov (United States)

    Davis, Daniel H.J.; Skelly, Donal T.; Murray, Carol; Hennessy, Edel; Bowen, Jordan; Norton, Samuel; Brayne, Carol; Rahkonen, Terhi; Sulkava, Raimo; Sanderson, David J.; Rawlins, J. Nicholas; Bannerman, David M.; MacLullich, Alasdair M.J.; Cunningham, Colm

    2015-01-01

    Background Delirium is a profound neuropsychiatric disturbance precipitated by acute illness. Although dementia is the major risk factor this has typically been considered a binary quantity (i.e., cognitively impaired versus cognitively normal) with respect to delirium risk. We used humans and mice to address the hypothesis that the severity of underlying neurodegenerative changes and/or cognitive impairment progressively alters delirium risk. Methods Humans in a population-based longitudinal study, Vantaa 85+, were followed for incident delirium. Odds for reporting delirium at follow-up (outcome) were modeled using random-effects logistic regression, where prior cognitive impairment measured by Mini-Mental State Exam (MMSE) (exposure) was considered. To address whether underlying neurodegenerative pathology increased susceptibility to acute cognitive change, mice at three stages of neurodegenerative disease progression (ME7 model of neurodegeneration: controls, 12 weeks, and 16 weeks) were assessed for acute cognitive dysfunction upon systemic inflammation induced by bacterial lipopolysaccharide (LPS; 100 μg/kg). Synaptic and axonal correlates of susceptibility to acute dysfunction were assessed using immunohistochemistry. Results In the Vantaa cohort, 465 persons (88.4 ± 2.8 years) completed MMSE at baseline. For every MMSE point lost, risk of incident delirium increased by 5% (p = 0.02). LPS precipitated severe and fluctuating cognitive deficits in 16-week ME7 mice but lower incidence or no deficits in 12-week ME7 and controls, respectively. This was associated with progressive thalamic synaptic loss and axonal pathology. Conclusion A human population-based cohort with graded severity of existing cognitive impairment and a mouse model with progressing neurodegeneration both indicate that the risk of delirium increases with greater severity of pre-existing cognitive impairment and neuropathology. PMID:25239680

  20. Electrodermal Activity Is Sensitive to Cognitive Stress under Water

    Directory of Open Access Journals (Sweden)

    Hugo F. Posada-Quintero

    2018-01-01

    Full Text Available When divers are at depth in water, the high pressure and low temperature alone can cause severe stress, challenging the human physiological control systems. The addition of cognitive stress, for example during a military mission, exacerbates the challenge. In these conditions, humans are more susceptible to autonomic imbalance. Reliable tools for the assessment of the autonomic nervous system (ANS could be used as indicators of the relative degree of stress a diver is experiencing, which could reveal heightened risk during a mission. Electrodermal activity (EDA, a measure of the changes in conductance at the skin surface due to sweat production, is considered a promising alternative for the non-invasive assessment of sympathetic control of the ANS. EDA is sensitive to stress of many kinds. Therefore, as a first step, we tested the sensitivity of EDA, in the time and frequency domains, specifically to cognitive stress during water immersion of the subject (albeit with their measurement finger dry for safety. The data from 14 volunteer subjects were used from the experiment. After a 4-min adjustment and baseline period after being immersed in water, subjects underwent the Stroop task, which is known to induce cognitive stress. The time-domain indices of EDA, skin conductance level (SCL and non-specific skin conductance responses (NS.SCRs, did not change during cognitive stress, compared to baseline measurements. Frequency-domain indices of EDA, EDASymp (based on power spectral analysis and TVSymp (based on time-frequency analysis, did significantly change during cognitive stress. This leads to the conclusion that EDA, assessed by spectral analysis, is sensitive to cognitive stress in water-immersed subjects, and can potentially be used to detect cognitive stress in divers.

  1. Mind and body: concepts of human cognition, physiology and false belief in children with autism or typical development.

    Science.gov (United States)

    Peterson, Candida C

    2005-08-01

    This study examined theory of mind (ToM) and concepts of human biology (eyes, heart, brain, lungs and mind) in a sample of 67 children, including 25 high functioning children with autism (age 6-13), plus age-matched and preschool comparison groups. Contrary to Baron-Cohen [1989, Journal of Autism and Developmental Disorders, 19(4), 579-600], most children with autism correctly understood the functions of the brain (84%) and the mind (64%). Their explanations were predominantly mentalistic. They outperformed typically developing preschoolers in understanding inner physiological (heart, lungs) and cognitive (brain, mind) systems, and scored as high as age-matched typical children. Yet, in line with much previous ToM research, most children with autism (60%) failed false belief, and their ToM performance was unrelated to their understanding of. human biology. Results were discussed in relation to neurobiological and social-experiential accounts of the ToM deficit in autism.

  2. Designing an Adaptive Web-Based Learning System Based on Students' Cognitive Styles Identified Online

    Science.gov (United States)

    Lo, Jia-Jiunn; Chan, Ya-Chen; Yeh, Shiou-Wen

    2012-01-01

    This study developed an adaptive web-based learning system focusing on students' cognitive styles. The system is composed of a student model and an adaptation model. It collected students' browsing behaviors to update the student model for unobtrusively identifying student cognitive styles through a multi-layer feed-forward neural network (MLFF).…

  3. VIRTUAL COGNITIVE CENTERS AS INTELLIGENT SYSTEMS FOR MANAGEMENT INFORMATION SUPPORT OF REGIONAL SECURITY

    Directory of Open Access Journals (Sweden)

    A. V. Masloboev

    2014-03-01

    Full Text Available The paper deals with engineering problems and application perspectives of virtual cognitive centers as intelligent systems for information support of interagency activities in the field of complex security management of regional development. A research prototype of virtual cognitive center for regional security management in crisis situations, implemented as hybrid cloud service based on IaaS architectural framework with the usage of multi-agent and web-service technologies has been developed. Virtual cognitive center is a training simulator software system and is intended for solving on the basis of distributed simulation such problems as: strategic planning and forecasting of risk-sustainable development of regional socioeconomic systems, agents of management interaction specification synthesis for regional components security in different crisis situations within the planning stage of joint anti-crisis actions.

  4. Extended spider cognition.

    Science.gov (United States)

    Japyassú, Hilton F; Laland, Kevin N

    2017-05-01

    There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.

  5. When paradigms collide at the road rail interface: evaluation of a sociotechnical systems theory design toolkit for cognitive work analysis.

    Science.gov (United States)

    Read, Gemma J M; Salmon, Paul M; Lenné, Michael G

    2016-09-01

    The Cognitive Work Analysis Design Toolkit (CWA-DT) is a recently developed approach that provides guidance and tools to assist in applying the outputs of CWA to design processes to incorporate the values and principles of sociotechnical systems theory. In this paper, the CWA-DT is evaluated based on an application to improve safety at rail level crossings. The evaluation considered the extent to which the CWA-DT met pre-defined methodological criteria and aligned with sociotechnical values and principles. Both process and outcome measures were taken based on the ratings of workshop participants and human factors experts. Overall, workshop participants were positive about the process and indicated that it met the methodological criteria and sociotechnical values. However, expert ratings suggested that the CWA-DT achieved only limited success in producing RLX designs that fully aligned with the sociotechnical approach. Discussion about the appropriateness of the sociotechnical approach in a public safety context is provided. Practitioner Summary: Human factors and ergonomics practitioners need evidence of the effectiveness of methods. A design toolkit for cognitive work analysis, incorporating values and principles from sociotechnical systems theory, was applied to create innovative designs for rail level crossings. Evaluation results based on the application are provided and discussed.

  6. Bandwidth and power allocation for two-way relaying in overlay cognitive radio systems

    KAUST Repository

    Alsharoa, Ahmad M.; Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, the problem of both bandwidth and power allocation for two-way multiple relay systems in overlay cognitive radio (CR) setup is investigated. In the CR overlay mode, primary users (PUs) cooperate with cognitive users (CUs) for mutual

  7. Supporting Clinical Cognition: A Human-Centered Approach to a Novel ICU Information Visualization Dashboard.

    Science.gov (United States)

    Faiola, Anthony; Srinivas, Preethi; Duke, Jon

    2015-01-01

    Advances in intensive care unit bedside displays/interfaces and electronic medical record (EMR) technology have not adequately addressed the topic of visual clarity of patient data/information to further reduce cognitive load during clinical decision-making. We responded to these challenges with a human-centered approach to designing and testing a decision-support tool: MIVA 2.0 (Medical Information Visualization Assistant, v.2). Envisioned as an EMR visualization dashboard to support rapid analysis of real-time clinical data-trends, our primary goal originated from a clinical requirement to reduce cognitive overload. In the study, a convenience sample of 12 participants were recruited, in which quantitative and qualitative measures were used to compare MIVA 2.0 with ICU paper medical-charts, using time-on-task, post-test questionnaires, and interviews. Findings demonstrated a significant difference in speed and accuracy with the use of MIVA 2.0. Qualitative outcomes concurred, with participants acknowledging the potential impact of MIVA 2.0 for reducing cognitive load and enabling more accurate and quicker decision-making.

  8. Role of cognitive models of operators in the design, operation and licensing of nuclear power plants

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1982-01-01

    Cognitive models of the behavior of nuclear power plant operators - that is, models developed in terms of human properties rather than external task characteristics - are assuming increasingly important roles in plant design, operation and licensing. This is partly due to an increased concern for human decision making during unfamiliar plant conditions, and partly due to problems that arise when modern information technology is used to support operators in complex situations. Some of the problems identified during work on interface design and risk analysis are described. First, the question of categories of models is raised. Next, the use of cognitive models for system design is discussed. The use of the available cognitive models for more effective operator training is also advocated. The need for using cognitive models in risk analysis is also emphasized. Finally, the sources of human performance data, that is, event reports, incident analysis, experiments, and training simulators are mentioned, and the need for a consistent framework for data analysis based on cognitive models is discussed

  9. Cognitive models and computer aids for nuclear plant control room operators

    International Nuclear Information System (INIS)

    Sheridan, T.B.

    1982-01-01

    This paper reviews what is usually meant by a cognitive model of a control room operator in a nuclear power plant. It emphasizes the idea of internal (that is, mental) representation of external events and the use of such representation for the cognitive steps of attending, recognizing or learning, assessing and deciding. As computers play an increasingly important role in nuclear power plants, especially as cognitive aids to human supervisors of highly automated control systems, it is important that the software and computer interface characteristics be compatible with the operator's internal model. Specific examples discussed in this paper are in the monitoring and prediction of the plant state and in the detection and diagnosis of failures. Current trends in SPDS (safety parameter display system) and failure detection/location systems will be discussed in this regard

  10. Models of cognitive behavior in nuclear power plant personnel. A feasibility study: main report. Volume 2

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.; Hanes, L.F.

    1986-07-01

    This report contains the results of a feasibility study to determine if the current state of models human cognitive activities can serve as the basis for improved techniques for predicting human error in nuclear power plants emergency operations. Based on the answer to this questions, two subsequent phases of research are planned. Phase II is to develop a model of cognitive activities, and Phase III is to test the model. The feasibility study included an analysis of the cognitive activities that occur in emergency operations and an assessment of the modeling concepts/tools available to capture these cognitive activities. The results indicated that a symbolic processing (or artificial intelligence) model of cognitive activities in nuclear power plants is both desirable and feasible. This cognitive model can be built upon the computational framework provided by an existing artificial intelligence system for medical problem solving called Caduceus. The resulting cognitive model will increase the capability to capture the human contribution to risk in probabilistic risk assessments studies. Volume I summarizes the major findings and conclusions of the study. Volume II provides a complete description of the methods and results, including a synthesis of the cognitive activities that occur during emergency operations, and a literature review on cognitive modeling relevant to nuclear power plants. 112 refs., 10 figs

  11. Models of human operators

    International Nuclear Information System (INIS)

    Knee, H.E.; Schryver, J.C.

    1991-01-01

    Models of human behavior and cognition (HB and C) are necessary for understanding the total response of complex systems. Many such models have come available over the past thirty years for various applications. Unfortunately, many potential model users remain skeptical about their practicality, acceptability, and usefulness. Such hesitancy stems in part to disbelief in the ability to model complex cognitive processes, and a belief that relevant human behavior can be adequately accounted for through the use of commonsense heuristics. This paper will highlight several models of HB and C and identify existing and potential applications in attempt to dispel such notions. (author)

  12. Developing dynamic field theory architectures for embodied cognitive systems with cedar

    Directory of Open Access Journals (Sweden)

    Oliver Lomp

    2016-11-01

    Full Text Available Embodied artificial cognitive systems such as autonomous robots or intelligent observers connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT, a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real-time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.

  13. A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction.

    Science.gov (United States)

    Kiehl, Kent A

    2006-06-15

    Psychopathy is a complex personality disorder that includes interpersonal and affective traits such as glibness, lack of empathy, guilt or remorse, shallow affect, and irresponsibility, and behavioral characteristics such as impulsivity, poor behavioral control, and promiscuity. Much is known about the assessment of psychopathy; however, relatively little is understood about the relevant brain disturbances. The present review integrates data from studies of behavioral and cognitive changes associated with focal brain lesions or insults and results from psychophysiology, cognitive psychology and cognitive and affective neuroscience in health and psychopathy. The review illustrates that the brain regions implicated in psychopathy include the orbital frontal cortex, insula, anterior and posterior cingulate, amygdala, parahippocampal gyrus, and anterior superior temporal gyrus. The relevant functional neuroanatomy of psychopathy thus includes limbic and paralimbic structures that may be collectively termed 'the paralimbic system'. The paralimbic system dysfunction model of psychopathy is discussed as it relates to the extant literature on psychopathy.

  14. Cognitive Process as a Basis for Intelligent Retrieval Systems Design.

    Science.gov (United States)

    Chen, Hsinchun; Dhar, Vasant

    1991-01-01

    Two studies of the cognitive processes involved in online document-based information retrieval were conducted. These studies led to the development of five computational models of online document retrieval which were incorporated into the design of an "intelligent" document-based retrieval system. Both the system and the broader implications of…

  15. Multilevel flow models studio: human-centralized development for operation support system

    International Nuclear Information System (INIS)

    Zhou Yangping; Hidekazu Yoshikawa; Liu Jingquan; Yang Ming; Ouyang Jun

    2005-01-01

    Computerized Operation Support Systems (COSS), integrating Artificial Intelligence, Multimedia and Network Technology, are now being proposed for reducing operator's cognitive load for process operation. This study proposed a Human-Centralized Development (HCD) that COSS can be developed and maintained independently, conveniently and flexibly by operator and expert of industry system with little expertise on software development. A graphical interface system for HCD, Multilevel Flow Models Studio (MFMS), is proposed for development assistance of COSS. An Extensible Markup Language based file structure is designed to represent the Multilevel Flow Models (MFM) model for the target system. With a friendly graphical interface, MFMS mainly consists of two components: 1) an editor to intelligently assist user establish and maintain the MFM model; 2) an executor to implement the application for monitoring, diagnosis and operational instruction in terms of the established MFM model. A prototype MFMS system has been developed and applied to construct a trial operation support system for a Nuclear Power Plant simulated by RELAP5/MOD2. (authors)

  16. A Cognitive Neuroscience Perspective on Embodied Language for Human-Robot Cooperation

    Science.gov (United States)

    Madden, Carol; Hoen, Michel; Dominey, Peter Ford

    2010-01-01

    This article addresses issues in embodied sentence processing from a "cognitive neural systems" approach that combines analysis of the behavior in question, analysis of the known neurophysiological bases of this behavior, and the synthesis of a neuro-computational model of embodied sentence processing that can be applied to and tested in the…

  17. Encoding and Decoding Models in Cognitive Electrophysiology

    Directory of Open Access Journals (Sweden)

    Christopher R. Holdgraf

    2017-09-01

    Full Text Available Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of “Encoding” models, in which stimulus features are used to model brain activity, and “Decoding” models, in which neural features are used to generated a stimulus output. Here we review the current state of encoding and decoding models in cognitive electrophysiology and provide a practical guide toward conducting experiments and analyses in this emerging field. Our examples focus on using linear models in the study of human language and audition. We show how to calculate auditory receptive fields from natural sounds as well as how to decode neural recordings to predict speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction to using machine learning and applied statistics to build models of neural activity. The data analytic approaches we discuss may also be applied to other sensory modalities, motor systems, and cognitive systems, and we cover some examples in these areas. In addition, a collection of Jupyter notebooks is publicly available as a complement to the material covered in this paper, providing code examples and tutorials for predictive modeling in python. The aim is to provide a practical understanding of predictive modeling of human brain data and to propose best-practices in conducting these analyses.

  18. Big-Data Based Decision-Support Systems to Improve Clinicians' Cognition.

    Science.gov (United States)

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians' cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems.

  19. The development of human behavior analysis techniques

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Lee, Yong Hee; Park, Geun Ok; Cheon, Se Woo; Suh, Sang Moon; Oh, In Suk; Lee, Hyun Chul; Park, Jae Chang.

    1997-07-01

    In this project, which is to study on man-machine interaction in Korean nuclear power plants, we developed SACOM (Simulation Analyzer with a Cognitive Operator Model), a tool for the assessment of task performance in the control rooms using software simulation, and also develop human error analysis and application techniques. SACOM was developed to assess operator's physical workload, workload in information navigation at VDU workstations, and cognitive workload in procedural tasks. We developed trip analysis system including a procedure based on man-machine interaction analysis system including a procedure based on man-machine interaction analysis and a classification system. We analyzed a total of 277 trips occurred from 1978 to 1994 to produce trip summary information, and for 79 cases induced by human errors time-lined man-machine interactions. The INSTEC, a database system of our analysis results, was developed. The MARSTEC, a multimedia authoring and representation system for trip information, was also developed, and techniques for human error detection in human factors experiments were established. (author). 121 refs., 38 tabs., 52 figs

  20. The development of human behavior analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Lee, Yong Hee; Park, Geun Ok; Cheon, Se Woo; Suh, Sang Moon; Oh, In Suk; Lee, Hyun Chul; Park, Jae Chang

    1997-07-01

    In this project, which is to study on man-machine interaction in Korean nuclear power plants, we developed SACOM (Simulation Analyzer with a Cognitive Operator Model), a tool for the assessment of task performance in the control rooms using software simulation, and also develop human error analysis and application techniques. SACOM was developed to assess operator`s physical workload, workload in information navigation at VDU workstations, and cognitive workload in procedural tasks. We developed trip analysis system including a procedure based on man-machine interaction analysis system including a procedure based on man-machine interaction analysis and a classification system. We analyzed a total of 277 trips occurred from 1978 to 1994 to produce trip summary information, and for 79 cases induced by human errors time-lined man-machine interactions. The INSTEC, a database system of our analysis results, was developed. The MARSTEC, a multimedia authoring and representation system for trip information, was also developed, and techniques for human error detection in human factors experiments were established. (author). 121 refs., 38 tabs., 52 figs.

  1. Uncovering cognitive processes: Different techniques that can contribute to cognitive load research and instruction

    NARCIS (Netherlands)

    Van Gog, Tamara; Kester, Liesbeth; Nievelstein, Fleurie; Giesbers, Bas; Fred, Paas

    2009-01-01

    Van Gog, T., Kester, L., Nievelstein, F., Giesbers, B., & Paas, F. (2009). Uncovering cognitive processes: Different techniques that can contribute to cognitive load research and instruction. Computers in Human Behavior, 25, 325-331.

  2. The construct of cognition in language teacher education and development

    OpenAIRE

    Bartels, Nathaniel

    2006-01-01

    Chapter 1: Central issues in the field of second language teacher education (SLTE) rest on conceptions of human cognition: what knowledge is, how it is acquired, and how it is used. However, human cognition is not a focus of the academic disciplines which usually are in charge of SLTE programs; research and theory on the nature of human cognition is usually not included in debates on SLTE. The purpose of this dissertation is to use a wide range of work on human cognition to address and evalua...

  3. Contagious yawning, social cognition, and arousal: an investigation of the processes underlying shelter dogs' responses to human yawns.

    Science.gov (United States)

    Buttner, Alicia Phillips; Strasser, Rosemary

    2014-01-01

    Studies of contagious yawning have reported inconsistent findings regarding whether dogs exhibit this behavior and whether it is mediated by social-cognitive processes or the result of physiological arousal. We investigated why some dogs yawn in response to human yawns; particularly, whether these dogs are exceptional in their ability to understand human social cues or whether they were more physiologically aroused. Sixty shelter dogs were exposed to yawning and nonyawning control stimuli demonstrated by an unfamiliar human. We took salivary cortisol samples before and after testing to determine the role of arousal in yawn contagion. Dogs were tested on the object-choice task to assess their sensitivity for interpreting human social cues. We found that 12 dogs yawned only in response to human yawns (i.e., appeared to exhibit yawn contagion), though contagious yawning at the population level was not observed. Dogs that exhibited yawn contagion did not perform better on the object-choice task than other dogs, but their cortisol levels remained elevated after exposure to human yawning, whereas other dogs had reduced cortisol levels following yawning stimuli relative to their baseline levels. We interpret these findings as showing that human yawning, when presented in a stressful context, can further influence arousal in dogs, which then causes some to yawn. Although the precise social-cognitive mechanisms that underlie contagious yawning in dogs are still unclear, yawning between humans and dogs may involve some communicative function that is modulated by context and arousal.

  4. Effects of age and mild cognitive impairment on the pain response system.

    Science.gov (United States)

    Kunz, Miriam; Mylius, Veit; Schepelmann, Karsten; Lautenbacher, Stefan

    2009-01-01

    Both age and dementia have been shown to have an effect on nociception and pain processing. The question arises whether mild cognitive impairment (MCI), which is thought to be a transitional stage between normal ageing and dementia, is also associated with alterations in pain processing. The aim of the present study was to answer this question by investigating the impact of age and MCI on the pain response system. Forty young subjects, 45 cognitively unimpaired elderly subjects and 42 subjects with MCI were investigated by use of an experimental multi-method approach. The subjects were tested for their subjective (pain ratings), motor (RIII reflex), facial (Facial Action Coding System) and their autonomic (sympathetic skin response and evoked heart rate response) responses to noxious electrical stimulation of the nervus suralis. We found significant group differences in the autonomic responses to noxious stimulation. The sympathetic skin response amplitude was significantly reduced in the cognitively unimpaired elderly subjects compared to younger subjects and to an even greater degree in subjects with MCI. The evoked heart rate response was reduced to a similar degree in both groups of aged subjects. Regression analyses within the two groups of the elderly subjects revealed that age and, in the MCI group, cognitive status were significant predictors of the decrease in autonomic responsiveness to noxious stimulation. Except for the autonomic parameters, no other pain parameter differed between the three groups. The pain response system appeared to be quite unaltered in MCI patients compared to cognitively unimpaired individuals of the same age. Only the sympathetic responsiveness qualified as an indicator of early aging effects as well as of pathophysiology associated with MCI, which both seemed to affect the pain system independently from each other.

  5. Cortico-hippocampal systems involved in memory and cognition: the PMAT framework.

    Science.gov (United States)

    Ritchey, Maureen; Libby, Laura A; Ranganath, Charan

    2015-01-01

    In this chapter, we review evidence that the cortical pathways to the hippocampus appear to extend from two large-scale cortical systems: a posterior medial (PM) system that includes the parahippocampal cortex and retrosplenial cortex, and an anterior temporal (AT) system that includes the perirhinal cortex. This "PMAT" framework accounts for differences in the anatomical and functional connectivity of the medial temporal lobes, which may underpin differences in cognitive function between the systems. The PM and AT systems make distinct contributions to memory and to other cognitive domains, and convergent findings suggest that they are involved in processing information about contexts and items, respectively. In order to support the full complement of memory-guided behavior, the two systems must interact, and the hippocampal and ventromedial prefrontal cortex may serve as sites of integration between the two systems. We conclude that when considering the "connected hippocampus," inquiry should extend beyond the medial temporal lobes to include the large-scale cortical systems of which they are a part. © 2015 Elsevier B.V. All rights reserved.

  6. Temporal dimension in cognitive models

    International Nuclear Information System (INIS)

    Decortis, F.; Cacciabue, P.C.

    1988-01-01

    Increased attention has been given to the role of humans in nuclear power plant safety, but one aspect seldom considered is the temporal dimension of human reasoning. Time is recognized as crucial in human reasoning and has been the subject of empirical studies where cognitive mechanisms and strategies to face the temporal dimension have been studied. The present study shows why temporal reasoning is essential in Human Reliability Analysis and how it could be introduced in a human model. Accounting for the time dimension in human behaviour is discussed first, with reference to proven field studies. Then, theoretical modelling of the temporal dimension in human reasoning and its relevance in simulation of cognitive activities of plant operator is discussed. Finally a Time Experience Model is presented

  7. The development of human behavior analysis techniques - A study on knowledge representation methods for operator cognitive model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Park, Young Tack [Soongsil University, Seoul (Korea, Republic of)

    1996-07-01

    The main objective of this project is modeling of human operator in a main control room of Nuclear Power Plant. For this purpose, we carried out research on knowledge representation and inference method based on Rasmussen`s decision ladder structure. And we have developed SACOM(Simulation= Analyzer with a Cognitive Operator Model) using G2 shell on Sun workstations. SACOM consists of Operator Model, Interaction Analyzer, Situation Generator. Cognitive model aims to build a more detailed model of human operators in an effective way. SACOM is designed to model knowledge-based behavior of human operators more easily. The followings are main research topics carried out this year. First, in order to model knowledge-based behavior of human operators, more detailed scenarios are constructed. And, knowledge representation and inference methods are developed to support the scenarios. Second, meta knowledge structures are studied to support human operators 4 types of diagnoses. This work includes a study on meta and scheduler knowledge structures for generate-and-test, topographic, decision tree and case-based approaches. Third, domain knowledge structure are improved to support meta knowledge. Especially, domain knowledge structures are developed to model topographic diagnosis model. Fourth, more applicable interaction analyzer and situation generator are designed and implemented. The new version is implemented in G2 on Sun workstations. 35 refs., 49 figs. (author)

  8. From humans to computers cognition through visual perception

    CERN Document Server

    Alexandrov, Viktor Vasilievitch

    1991-01-01

    This book considers computer vision to be an integral part of the artificial intelligence system. The core of the book is an analysis of possible approaches to the creation of artificial vision systems, which simulate human visual perception. Much attention is paid to the latest achievements in visual psychology and physiology, the description of the functional and structural organization of the human perception mechanism, the peculiarities of artistic perception and the expression of reality. Computer vision models based on these data are investigated. They include the processes of external d

  9. Emotion, Cognition, and Behavior

    Science.gov (United States)

    Dolan, R. J.

    2002-11-01

    Emotion is central to the quality and range of everyday human experience. The neurobiological substrates of human emotion are now attracting increasing interest within the neurosciences motivated, to a considerable extent, by advances in functional neuroimaging techniques. An emerging theme is the question of how emotion interacts with and influences other domains of cognition, in particular attention, memory, and reasoning. The psychological consequences and mechanisms underlying the emotional modulation of cognition provide the focus of this article.

  10. Cognitive Spectrum Efficient Multiple Access Technique using Relay Systems

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee

    2007-01-01

    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context will be presented and discussed in this paper. Ideas to increase the coverage of cellular systems by relay channels, relay stations and collaborate...

  11. Cognitive Impairments in Multiple System Atrophy of the Cerebellar Type

    Directory of Open Access Journals (Sweden)

    Hyun J. Hong

    2011-05-01

    Full Text Available Background and Purpose We investigated the cognitive profiles in a large sample of patients with multiple system atrophy-cerebellar ataxia (MSA-C and compared directly them in patients with clinical diagnosis of probable MSA-C without dementia and control subjects with intact cognition. Methods We prospectively enrolled 26 patients with clinical diagnosis of probable MSA-C. All patients underwent a standardized neuropsychological test of the Seoul Neuropsychological Screening Battery. Results The score of Korean version of the Mini- Mental State Examination was significantly lower in patients with MSA-C (27.2 ± 2.5 than in control subjects (28.9 ± 1.0, p = 0.003. Patients with MSA-C showed a significantly worse performance in visuospatial function, 3 words recall, verbal immediate, delayed and recognition memory, visual delayed memory, phonemic and sementic Controlled Oral Word Association Test, and ideomotor praxis (p < 0.05. Conclusions Patients with MSA-C show more severe and more widespread cognitive dysfunctions than controls. Our results also indicate that cognitive dysfunction in patients with MCA-C is suggestive of disruption of the cerebellocortical circuits.

  12. How Do Clinical Information Systems Affect the Cognitive Demands of General Practitioners?: Usability Study with a Focus on Cognitive Workload

    Directory of Open Access Journals (Sweden)

    Ferran Ariza

    2015-11-01

    Full Text Available Background Clinical information systems in the National Health Service do not need to conform to any explicit usability requirements. Poor usability can increase the mental workload experienced by clinicians and cause fatigue, increase error rates and impact the overall patient safety. Mental workload can be used as a measure of usability.Objective To assess the subjective cognitive workload experienced by general practitioners (GPs with their systems. To raise awareness of the importance of usability in system design among users, designers, developers and policymakers.Methods We used a modified version of the NASA Task Load Index, adapted for web. We developed a set of common clinical scenarios and computer tasks on an online survey. We emailed the study link to 199 clinical commissioning groups and 1,646 GP practices in England. Results Sixty-seven responders completed the survey. The respondents had spent an average of 17 years in general practice, had experience of using a mean of 1.5 GP computer systems and had used their current system for a mean time of 6.7 years. The mental workload score was not different among systems. There were significant differences among the task scores, but these differences were not specific to particular systems. The overall score and task scores were related to the length of experience with their present system. Conclusion Four tasks imposed a higher mental workload on GPs: ‘repeat prescribing’, ‘find episode’, ‘drug management’ and ‘overview records’. Further usability studies on GP systems should focus on these tasks. Users, policymakers, designers and developers should remain aware of the importance of usability in system design.What does this study add?• Current GP systems in England do not need to conform to explicit usability requirements. Poor usability can increase the mental workload of clinicians and lead to errors.• Some clinical computer tasks incur more cognitive workload

  13. Do Online Voting Patterns Reflect Evolved Features of Human Cognition? An Exploratory Empirical Investigation.

    Directory of Open Access Journals (Sweden)

    Maria Priestley

    Full Text Available Online votes or ratings can assist internet users in evaluating the credibility and appeal of the information which they encounter. For example, aggregator websites such as Reddit allow users to up-vote submitted content to make it more prominent, and down-vote content to make it less prominent. Here we argue that decisions over what to up- or down-vote may be guided by evolved features of human cognition. We predict that internet users should be more likely to up-vote content that others have also up-voted (social influence, content that has been submitted by particularly liked or respected users (model-based bias, content that constitutes evolutionarily salient or relevant information (content bias, and content that follows group norms and, in particular, prosocial norms. 489 respondents from the online social voting community Reddit rated the extent to which they felt different traits influenced their voting. Statistical analyses confirmed that norm-following and prosociality, as well as various content biases such as emotional content and originality, were rated as important motivators of voting. Social influence had a smaller effect than expected, while attitudes towards the submitter had little effect. This exploratory empirical investigation suggests that online voting communities can provide an important test-bed for evolutionary theories of human social information use, and that evolved features of human cognition may guide online behaviour just as it guides behaviour in the offline world.

  14. Do Online Voting Patterns Reflect Evolved Features of Human Cognition? An Exploratory Empirical Investigation.

    Science.gov (United States)

    Priestley, Maria; Mesoudi, Alex

    2015-01-01

    Online votes or ratings can assist internet users in evaluating the credibility and appeal of the information which they encounter. For example, aggregator websites such as Reddit allow users to up-vote submitted content to make it more prominent, and down-vote content to make it less prominent. Here we argue that decisions over what to up- or down-vote may be guided by evolved features of human cognition. We predict that internet users should be more likely to up-vote content that others have also up-voted (social influence), content that has been submitted by particularly liked or respected users (model-based bias), content that constitutes evolutionarily salient or relevant information (content bias), and content that follows group norms and, in particular, prosocial norms. 489 respondents from the online social voting community Reddit rated the extent to which they felt different traits influenced their voting. Statistical analyses confirmed that norm-following and prosociality, as well as various content biases such as emotional content and originality, were rated as important motivators of voting. Social influence had a smaller effect than expected, while attitudes towards the submitter had little effect. This exploratory empirical investigation suggests that online voting communities can provide an important test-bed for evolutionary theories of human social information use, and that evolved features of human cognition may guide online behaviour just as it guides behaviour in the offline world.

  15. Omega-3 fatty acids from fish oil lower anxiety, improve cognitive functions and reduce spontaneous locomotor activity in a non-human primate.

    Directory of Open Access Journals (Sweden)

    Nina Vinot

    Full Text Available Omega-3 (ω3 polyunsaturated fatty acids (PUFA are major components of brain cells membranes. ω3 PUFA-deficient rodents exhibit severe cognitive impairments (learning, memory that have been linked to alteration of brain glucose utilization or to changes in neurotransmission processes. ω3 PUFA supplementation has been shown to lower anxiety and to improve several cognitive parameters in rodents, while very few data are available in primates. In humans, little is known about the association between anxiety and ω3 fatty acids supplementation and data are divergent about their impact on cognitive functions. Therefore, the development of nutritional studies in non-human primates is needed to disclose whether a long-term supplementation with long-chain ω3 PUFA has an impact on behavioural and cognitive parameters, differently or not from rodents. We address the hypothesis that ω3 PUFA supplementation could lower anxiety and improve cognitive performances of the Grey Mouse Lemur (Microcebus murinus, a nocturnal Malagasy prosimian primate. Adult male mouse lemurs were fed for 5 months on a control diet or on a diet supplemented with long-chain ω3 PUFA (n = 6 per group. Behavioural, cognitive and motor performances were measured using an open field test to evaluate anxiety, a circular platform test to evaluate reference spatial memory, a spontaneous locomotor activity monitoring and a sensory-motor test. ω3-supplemented animals exhibited lower anxiety level compared to control animals, what was accompanied by better performances in a reference spatial memory task (80% of successful trials vs 35% in controls, p<0.05, while the spontaneous locomotor activity was reduced by 31% in ω3-supplemented animals (p<0.001, a parameter that can be linked with lowered anxiety. The long-term dietary ω3 PUFA supplementation positively impacts on anxiety and cognitive performances in the adult mouse lemur. The supplementation of human food with ω3 fatty

  16. Cognitive Neuroscience and the "Mind-Body problem"

    Directory of Open Access Journals (Sweden)

    Grega Repovš

    2004-08-01

    Full Text Available In recent years we have witnessed an upsurge of interest in the study of the human mind and how it relates to the material body, the brain. Cognitive neuroscience is a multidisciplinary science that tries to explain how the mind arises from the structure and workings of the brain. Can we equate the study of mind-body relationship with cognitive neuroscience? Are there aspects of mind-body relationship that are not covered by cognitive neuroscience? Is cognitive neuroscience able to explain human behaviour and experience? These are the questions that are addressed in this "Beginner's Guide to Cognitive neuroscience and it's relation to the Body-Mind question".

  17. Disassembly automation automated systems with cognitive abilities

    CERN Document Server

    Vongbunyong, Supachai

    2015-01-01

    This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  18. Sign use and cognition in automated scientific discovery: are computers only special kinds of signs?

    Science.gov (United States)

    Giza, Piotr

    2018-04-01

    James Fetzer criticizes the computational paradigm, prevailing in cognitive science by questioning, what he takes to be, its most elementary ingredient: that cognition is computation across representations. He argues that if cognition is taken to be a purposive, meaningful, algorithmic problem solving activity, then computers are incapable of cognition. Instead, they appear to be signs of a special kind, that can facilitate computation. He proposes the conception of minds as semiotic systems as an alternative paradigm for understanding mental phenomena, one that seems to overcome the difficulties of computationalism. Now, I argue, that with computer systems dealing with scientific discovery, the matter is not so simple as that. The alleged superiority of humans using signs to stand for something other over computers being merely "physical symbol systems" or "automatic formal systems" is only easy to establish in everyday life, but becomes far from obvious when scientific discovery is at stake. In science, as opposed to everyday life, the meaning of symbols is, apart from very low-level experimental investigations, defined implicitly by the way the symbols are used in explanatory theories or experimental laws relevant to the field, and in consequence, human and machine discoverers are much more on a par. Moreover, the great practical success of the genetic programming method and recent attempts to apply it to automatic generation of cognitive theories seem to show, that computer systems are capable of very efficient problem solving activity in science, which is neither purposive nor meaningful, nor algorithmic. This, I think, undermines Fetzer's argument that computer systems are incapable of cognition because computation across representations is bound to be a purposive, meaningful, algorithmic problem solving activity.

  19. Motor-auditory-visual integration: The role of the human mirror neuron system in communication and communication disorders.

    Science.gov (United States)

    Le Bel, Ronald M; Pineda, Jaime A; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an integration of motor-auditory-visual information processing related to aspects of language learning including action understanding and recognition. Such integration may also form the basis for language-related constructs such as theory of mind. In this article, we review the MNS system as it relates to the cognitive development of language in typically developing children and in children at-risk for communication disorders, such as children with autism spectrum disorder (ASD) or hearing impairment. Studying MNS development in these children may help illuminate an important role of the MNS in children with communication disorders. Studies with deaf children are especially important because they offer potential insights into how the MNS is reorganized when one modality, such as audition, is deprived during early cognitive development, and this may have long-term consequences on language maturation and theory of mind abilities. Readers will be able to (1) understand the concept of mirror neurons, (2) identify cortical areas associated with the MNS in animal and human studies, (3) discuss the use of mu suppression in the EEG for measuring the MNS in humans, and (4) discuss MNS dysfunction in children with (ASD).

  20. Cognitive Load Measurement in a Virtual Reality-based Driving System for Autism Intervention.

    Science.gov (United States)

    Zhang, Lian; Wade, Joshua; Bian, Dayi; Fan, Jing; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan

    2017-01-01

    Autism Spectrum Disorder (ASD) is a highly prevalent neurodevelopmental disorder with enormous individual and social cost. In this paper, a novel virtual reality (VR)-based driving system was introduced to teach driving skills to adolescents with ASD. This driving system is capable of gathering eye gaze, electroencephalography, and peripheral physiology data in addition to driving performance data. The objective of this paper is to fuse multimodal information to measure cognitive load during driving such that driving tasks can be individualized for optimal skill learning. Individualization of ASD intervention is an important criterion due to the spectrum nature of the disorder. Twenty adolescents with ASD participated in our study and the data collected were used for systematic feature extraction and classification of cognitive loads based on five well-known machine learning methods. Subsequently, three information fusion schemes-feature level fusion, decision level fusion and hybrid level fusion-were explored. Results indicate that multimodal information fusion can be used to measure cognitive load with high accuracy. Such a mechanism is essential since it will allow individualization of driving skill training based on cognitive load, which will facilitate acceptance of this driving system for clinical use and eventual commercialization.

  1. Cognitive Load Measurement in a Virtual Reality-based Driving System for Autism Intervention

    Science.gov (United States)

    Zhang, Lian; Wade, Joshua; Bian, Dayi; Fan, Jing; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan

    2016-01-01

    Autism Spectrum Disorder (ASD) is a highly prevalent neurodevelopmental disorder with enormous individual and social cost. In this paper, a novel virtual reality (VR)-based driving system was introduced to teach driving skills to adolescents with ASD. This driving system is capable of gathering eye gaze, electroencephalography, and peripheral physiology data in addition to driving performance data. The objective of this paper is to fuse multimodal information to measure cognitive load during driving such that driving tasks can be individualized for optimal skill learning. Individualization of ASD intervention is an important criterion due to the spectrum nature of the disorder. Twenty adolescents with ASD participated in our study and the data collected were used for systematic feature extraction and classification of cognitive loads based on five well-known machine learning methods. Subsequently, three information fusion schemes—feature level fusion, decision level fusion and hybrid level fusion—were explored. Results indicate that multimodal information fusion can be used to measure cognitive load with high accuracy. Such a mechanism is essential since it will allow individualization of driving skill training based on cognitive load, which will facilitate acceptance of this driving system for clinical use and eventual commercialization. PMID:28966730

  2. Towards Cognitive Component Analysis

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Ahrendt, Peter; Larsen, Jan

    2005-01-01

    Cognitive component analysis (COCA) is here defined as the process of unsupervised grouping of data such that the ensuing group structure is well-aligned with that resulting from human cognitive activity. We have earlier demonstrated that independent components analysis is relevant for representing...

  3. Sailing: Cognition, action, communication

    Directory of Open Access Journals (Sweden)

    Thora Tenbrink

    2017-12-01

    Full Text Available How do humans perceive and think about space, and how can this be represented adequately? For everyday activities such as locating objects or places, route planning, and the like, many insights have been gained over the past few decades, feeding into theories of spatial cognition and frameworks for spatial information science. In this paper, we explore sailing as a more specialized domain that has not yet been considered in this way, but has a lot to offer precisely because of its peculiarities. Sailing involves ways of thinking about space that are not normally required (or even acquired in everyday life. Movement in this domain is based on a combination of external forces and internal (human intentions that impose various kinds of directionality, affecting local action as well as global planning. Sailing terminology is spatial to a high extent, and involves a range of concepts that have received little attention in the spatial cognition community. We explore the area by focusing on the core features of cognition, action, and communication, and suggest a range of promising future areas of research in this domain as a showcase of the fascinating flexibility of human spatial cognition.

  4. Effective Team Support: From Task and Cognitive Modeling to Software Agents for Time-Critical Complex Work Environments

    Science.gov (United States)

    Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia

    2005-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.

  5. Representation of cognitive reappraisal goals in frontal gamma oscillations.

    Science.gov (United States)

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals

  6. Geo-localization system for people with cognitive disabilities

    OpenAIRE

    Ramos, João Ricardo Martins; Ricardo, Anacleto; Novais, Paulo; Figueiredo, Lino; Almeida, Ana; Neves, José

    2013-01-01

    Technology is present in almost every simple aspect of the people’s daily life. As an instance, let us refer to the smartphone. This device is usually equipped with a GPS module which may be used as an orientation system, if it carries the right functionalities. The problem is that these applications may be complex to operate and may not be within the bounds of everybody. Therefore, the main goal here is to develop an orientation system that may help people with cognitive di...

  7. Precursors to language: Social cognition and pragmatic inference in primates.

    Science.gov (United States)

    Seyfarth, Robert M; Cheney, Dorothy L

    2017-02-01

    Despite their differences, human language and the vocal communication of nonhuman primates share many features. Both constitute forms of coordinated activity, rely on many shared neural mechanisms, and involve discrete, combinatorial cognition that includes rich pragmatic inference. These common features suggest that during evolution the ancestors of all modern primates faced similar social problems and responded with similar systems of communication and cognition. When language later evolved from this common foundation, many of its distinctive features were already present.

  8. Bandwidth and power allocation for two-way relaying in overlay cognitive radio systems

    KAUST Repository

    Alsharoa, Ahmad M.

    2014-12-01

    In this paper, the problem of both bandwidth and power allocation for two-way multiple relay systems in overlay cognitive radio (CR) setup is investigated. In the CR overlay mode, primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In our framework, we propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as an amplify-and-forward two-way relays, they are used to support PUs to achieve their target data rates over the remaining bandwidth. More specifically, CUs acts as relays for the PUs and gain some spectrum as long as they respect a specific power budget and primary quality-of-service constraints. In this context, we first derive closed-form expressions for optimal transmit power allocated to PUs and CUs in order to maximize the cognitive objective. Then, we employ a strong optimization tool based on particle swarm optimization algorithm to find the optimal relay amplification gains and optimal cognitive released bandwidths as well. Our numerical results illustrate the performance of our proposed algorithm for different utility metrics and analyze the impact of some system parameters on the achieved performance.

  9. Application of human error theory in case analysis of wrong procedures.

    Science.gov (United States)

    Duthie, Elizabeth A

    2010-06-01

    The goal of this study was to contribute to the emerging body of literature about the role of human behaviors and cognitive processes in the commission of wrong procedures. Case analysis of 5 wrong procedures in operative and nonoperative settings using James Reason's human error theory was performed. The case analysis showed that cognitive underspecification, cognitive flips, automode processing, and skill-based errors were contributory to wrong procedures. Wrong-site procedures accounted for the preponderance of the cases. Front-line supervisory staff used corrective actions that focused on the performance of the individual without taking into account cognitive factors. System fixes using human cognition concepts have a greater chance of achieving sustainable safety outcomes than those that are based on the traditional approach of counseling, education, and disciplinary action for staff.

  10. Models of cognitive behavior in nuclear power plant personnel. A feasibility study: summary of results. Volume 1

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.; Hanes, L.F.

    1986-07-01

    This report summarizes the results of a feasibility study to determine if the current state of models of human cognitive activities can serve as the basis for improved techniques for predicting human error in nuclear power plants emergency operations. Based on the answer to this question, two subsequent phases of research are planned. Phase II is to develop a model of cognitive activities, and Phase III is to test the model. The feasibility study included an analysis of the cognitive activities that occur in emergency operations and an assessment of the modeling concepts/tools available to capture these cognitive activities. The results indicated that a symbolic processing (or artificial intelligence) model of cognitive activities in nuclear power plants is both desirable and feasible. This cognitive model can be built upon the computational framework provided by an existing artificial intelligence system for medical problem solving, called Caduceus. The resulting cognitive model will increase the capability to capture the human contribution to risk in probabilistic risk assessment studies. Volume 1 summarizes the major findings and conclusions of the study. Volume 2 provides a complete description of the methods and results, including a synthesis of the cognitive activities that occur during emergency operations, and a literature review on cognitive modeling relevant to nuclear power plants. 19 refs

  11. Cognitive architectures, rationality, and next-generation AI: a prolegomenon

    Science.gov (United States)

    Bello, Paul; Bringsjord, Selmer; Yang, Yingrui

    2004-08-01

    Computational models that give us insight into the behavior of individuals and the organizations to which they belong will be invaluable assets in our nation's war against terrorists, and state sponsorship of terror organizations. Reasoning and decision-making are essential ingredients in the formula for human cognition, yet the two have almost exclusively been studied in isolation from one another. While we have witnessed the emergence of strong traditions in both symbolic logic, and decision theory, we have yet to describe an acceptable interface between the two. Mathematical formulations of decision-making and reasoning have been developed extensively, but both fields make assumptions concerning human rationality that are untenable at best. True to this tradition, artificial intelligence has developed architectures for intelligent agents under these same assumptions. While these digital models of "cognition" tend to perform superbly, given their tremendous capacity for calculation, it is hardly reasonable to develop simulacra of human performance using these techniques. We will discuss some the challenges associated with the problem of developing integrated cognitive systems for use in modelling, simulation, and analysis, along with some ideas for the future.

  12. Cognitive object recognition system (CORS)

    Science.gov (United States)

    Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy

    2010-04-01

    We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.

  13. Simulations in Cyber-Security: A Review of Cognitive Modeling of Network Attackers, Defenders, and Users.

    Science.gov (United States)

    Veksler, Vladislav D; Buchler, Norbou; Hoffman, Blaine E; Cassenti, Daniel N; Sample, Char; Sugrim, Shridat

    2018-01-01

    Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting.

  14. Effects of HIV-1 on Cognition in Humanized NSG Mice

    Science.gov (United States)

    Akhter, Sidra Pervez

    Host species specificity of human immunodeficiency virus (HIV) creates a challenge to study the pathology, diagnostic tools, and therapeutic agents. The closely related simian immunodeficiency virus and studies of neurocognitive impairments on transgenic animals expressing partial viral genome have significant limitations. The humanized mice model provides a small animal system in which a human immune system can be engrafted and immunopathobiology of HIV-1 infection can be studied. However, features of HIV-associated neurocognitive disorders (HAND) were not evaluated in this model. Open field activity test was selected to characterize behavior of original strain NOD/scid-IL-2Rgammac null (NSG) mice, effects of engraftment of human CD34+ hematopoietic stem cells (HSCs) and functional human immune system (huNSG), and finally, investigate the behavior changes induced by chronic HIV-1 infection. Long-term infected HuNSG mice showed the loss of working memory and increased anxiety in the open field. Additionally, these animals were utilized for evaluation of central nervous system metabolic and structural changes. Detected behavioral abnormalities are correlated with obtained neuroimaging and histological abnormalities published.

  15. Computer-based cognitive rehabilitation: the CoRe system.

    Science.gov (United States)

    Alloni, Anna; Sinforiani, Elena; Zucchella, Chiara; Sandrini, Giorgio; Bernini, Sara; Cattani, Barbara; Pardell, Daniela Tost; Quaglini, Silvana; Pistarini, Caterina

    2017-02-01

    This work aims at providing a tool for supporting cognitive rehabilitation. This is a wide field, that includes a variety of diseases and related clinical pictures; for this reason the need arises to have a tool available that overcomes the difficulties entailed by what currently is the most common approach, that is, the so-called pen and paper rehabilitation. We first organized a big number of stimuli in an ontology that represents concepts, attributes and a set of relationships among concepts. Stimuli may be words, sounds, 2D and 3D images. Then, we developed an engine that automatically generates exercises by exploiting that ontology. The design of exercises has been carried on in synergy with neuropsychologists and speech therapists. Solutions have been devised aimed at personalizing the exercises according to both patients' preferences and performance. Exercises addressed to rehabilitation of executive functions and aphasia-related diseases have been implemented. The system has been tested on both healthy volunteers (n = 38) and patients (n = 9), obtaining a favourable rating and suggestions for improvements. We created a tool able to automate the execution of cognitive rehabilitation tasks. We hope the variety and personalization of exercises will allow to increase compliance, particularly from elderly people, usually neither familiar with technology nor particularly willing to rely on it. The next step involves the creation of a telerehabilitation tool, to allow therapy sessions to be undergone from home, thus guaranteeing continuity of care and advantages in terms of time and costs for the patients and the National Healthcare System (NHS). Implications for rehabilitation Cognitive impairments can greatly impact an individual's existence, appreciably reducing his abilities and autonomy, as well as sensibly lowering his quality of life. Cognitive rehabilitation can be used to restore lost brain function or slow down degenerative diseases

  16. Representing distributed cognition in complex systems: how a submarine returns to periscope depth.

    Science.gov (United States)

    Stanton, Neville A

    2014-01-01

    This paper presents the Event Analysis of Systemic Teamwork (EAST) method as a means of modelling distributed cognition in systems. The method comprises three network models (i.e. task, social and information) and their combination. This method was applied to the interactions between the sound room and control room in a submarine, following the activities of returning the submarine to periscope depth. This paper demonstrates three main developments in EAST. First, building the network models directly, without reference to the intervening methods. Second, the application of analysis metrics to all three networks. Third, the combination of the aforementioned networks in different ways to gain a broader understanding of the distributed cognition. Analyses have shown that EAST can be used to gain both qualitative and quantitative insights into distributed cognition. Future research should focus on the analyses of network resilience and modelling alternative versions of a system.

  17. Big-Data Based Decision-Support Systems to Improve Clinicians’ Cognition

    Science.gov (United States)

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians’ cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems. PMID:27990498

  18. Embodied social cognition

    CERN Document Server

    Lindblom, Jessica

    2015-01-01

    This book clarifies the role and relevance of the body in social interaction and cognition from an embodied cognitive science perspective. Theories of embodied cognition have during the last decades offered a radical shift in explanations of the human mind, from traditional computationalism, to emphasizing the way cognition is shaped by the body and its sensorimotor interaction with the surrounding social and material world. This book presents a theoretical framework for the relational nature of embodied social cognition, which is based on an interdisciplinary approach that ranges historically in time and across different disciplines. It includes work in cognitive science, artificial intelligence, phenomenology, ethology, developmental psychology, neuroscience, social psychology, linguistics, communication, and gesture studies. The theoretical framework is illustrated by empirical work that provides some detailed observational fieldwork on embodied actions captured in three different episodes of spontaneous s...

  19. Documentary and Cognitive Theory

    DEFF Research Database (Denmark)

    Bondebjerg, Ib

    2014-01-01

    This article deals with the benefits of using cognitive theory in documentary film studies. The article outlines general aspects of cognitive theory in humanities and social science, however the main focus is on the role of narrative, visual style and emotional dimensions of different types...

  20. The role of the artificial intelligence within the context of the human factors in the nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Bayout Alvarenga, M A [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    1994-12-31

    The effective evaluation of a human-machine system depends heavily on a cognitive model of the human behaviour. The basic question is: How can we model the human cognition? The response should be found in the five disciplines that form the Cognitive Sciences: Artificial Intelligence, Cognitive Psychology, Neurophysiology, Linguistic, and Philosophy. Among them, the Artificial Intelligence appears as the catalyzer of the contributions and discoveries in the other four, trying to realize that cognitive model with the tools of the Computer Science. Sometimes, it seems as if these disciplines spoke different languages to describe the same ideas. It is necessary a holistic treatment of such questions that include the human cognition and its modelling. This becomes more clear when we observe that there are nowadays different methodologies that must be integrated in some way. This is the case of the symbolic approach (artificial intelligence), connectionist approach (neural networks) and the fuzzy logic. This paper makes a review of the available methodologies, showing the problems and the current solutions to answer the following question. How is possible to develop a human-machine system and an intelligent interface based on the Artificial Intelligence that fulfills the following characteristics: human-centered design, cognitive simulation of the human behaviour, and dynamic function allocation. This paper concludes with proposals of national projects to be applied to the Brazilian situation. (author). 28 refs.