WorldWideScience

Sample records for human carcinogenesis involvement

  1. In vitro studies of human lung carcinogenesis.

    Science.gov (United States)

    Harris, C C; Lechner, J F; Yoakum, G H; Amstad, P; Korba, B E; Gabrielson, E; Grafstrom, R; Shamsuddin, A; Trump, B F

    1985-01-01

    Advances in the methodology to culture normal human lung cells have provided opportunities to investigate fundamental problems in biomedical research, including the mechanism(s) of carcinogenesis. Using the strategy schematically shown in Figure 1, we have initiated studies of the effects of carcinogens on the normal progenitor cells of the human cancers caused by these carcinogens. Extended lifespans and aneuploidy were found after exposure of mesothelial cells to asbestos and bronchial epithelial cells to nickel sulfate. These abnormal cells may be considered to be preneoplastic and at an intermediate position in the multistage process of carcinogenesis. Human bronchial epithelial cells can also be employed to investigate the role of specific oncogenes in carcinogenesis and tumor progression. Using the protoplast fusion method for high frequency gene transfection, vHa-ras oncogene initiates a cascade of events in the normal human bronchial cells leading to their apparent immortality, aneuploidy, and tumorigenicity in athymic nude mice. These results suggest that oncogenes may play an important role in human carcinogenesis.

  2. Initiator of carcinogenesis selectively and stably inhibits stem cell differentiation: a concept that initiation of carcinogenesis involves multiple phases

    International Nuclear Information System (INIS)

    Scott, R.E.; Maercklein, P.B.

    1985-01-01

    A concept of carcinogenesis was recently devised in our laboratory that suggests the development of defects in the control of cell differentiation is associated with an early phase of carcinogenesis. To test this proposal directly, the effects of an initiator of carcinogenesis (i.e., UV irradiation) on proadipocyte stem cell differentiation and proliferation was assayed. In this regard, 3T3 T proadipocytes represent a nontransformed mesenchymal stem cell line that possesses the ability to regulate its differentiation at a distinct state in the G 1 phase of the cell cycle as well as the ability to regulate its proliferation at two additional G 1 states. The results establish that a slow dosage of 254 nm UV irradiation selectivity and stably inhibits the differentiation of a high percentage of proadipocyte stem cells without significantly altering their ability to regulate cellular proliferation in growth factor-deficient or nutrient-deficient culture conditions. Differentiation-defect proadipocyte stem cells are demonstrated not to be completely transformed but to show an increased spontaneous transformation rate, as evidenced by the formation of type III foci in high density cell cultures. These data support the role of defects in the control of differentiation in the inhibition of carcinogenesis. These observations support a concept that the initiation of carcinogenesis involves multiple phases

  3. Radiation carcinogenesis

    International Nuclear Information System (INIS)

    1978-01-01

    The Cancergram deals with all aspects of radiation carcinogenesis. The term radiation here includes U-V radiation and the entire electromagnetic spectrum, electron and other charged particle beams, neutrons, and alpha and beta radiation from radioactive substances. Abstracts included concern relationships between radiation and carcinogenesis in humans, experimental induction of tumors in animals by irradiation, studies on the mechanism of radiation carcinogenesis at the cellular level, studies of RBE, dose response or dose threshold in relation to radiation carcinogenesis, and methods and policies for control of radiation exposure in the general population. In general, this Cancergram excludes abstracts on radio-therapy, radiologic diagnosis, radiation pathology, and radiation biology, where these articles have no bearing on radiation carcinogenesis

  4. Experimental studies on lung carcinogenesis and their relationship to future research on radiation-induced lung cancer in humans

    International Nuclear Information System (INIS)

    Cross, F.T.

    1991-03-01

    The usefulness of experimental systems for studying human lung carcinogenesis lies in the ease of studying components of a total problem. As an example, the main thrust of attack on possible synergistic interactions between radiation, cigarette smoke, and other irritants must be by means of research on animals. Because animals can be serially sacrificed, a systematic search can be made for progressive lung changes, thereby improving our understanding of carcinogenesis. The mechanisms of radiation-induced carcinogenesis have not yet been delineated, but modern concepts of molecular and cellular biology and of radiation dosimetry are being increasingly applied to both in vivo and in vitro exposure to determine the mechanisms of radiation-induced carcinogenesis, to elucidate human data, and to aid in extrapolating experimental animal data to human exposures. In addition, biologically based mathematical models of carcinogenesis are being developed to describe the nature of the events leading to malignancy; they are also an essential part of a rational approach to quantitative cancer risk assessment. This paper summarizes recent experimental and modeling data on radon-induced lung cancer and includes the confounding effects of cigarette-smoke exposures. The applicability of these data to understanding human exposures is emphasized, and areas of future research on human radiation-induced carcinogenesis are discussed. 7 refs., 2 figs., 3 tabs

  5. Altered DNA methylation: a secondary mechanism involved in carcinogenesis.

    Science.gov (United States)

    Goodman, Jay I; Watson, Rebecca E

    2002-01-01

    This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?

  6. Role of bacteria in oral carcinogenesis

    Directory of Open Access Journals (Sweden)

    R Rajeev

    2012-01-01

    Full Text Available Oral cancer is the most common cancer diagnosed in Indian men and is the leading cause of cancer deaths. It is considered as a multistep and multifactorial disease. Besides accumulation of genetic mutations, numerous other carcinogens are involved. In this category, viral and chemical carcinogens are well studied and documented. However, in the oral cavity, the role of microbiota in carcinogenesis is not known. Microbial populations on mouth mucosa differ between healthy and malignant sites, and certain oral bacterial species have been linked with malignancies, but the evidence is still weak in this respect. Nevertheless, oral microorganisms inevitably up-regulate cytokines and other inflammatory mediators that affect the complex metabolic pathways, and may thus be involved in carcinogenesis. Poor oral health associates statistically with prevalence of many types of cancer such as pancreatic and gastrointestinal cancer. This review presents possible carcinogenesis pathway involved in bacterial carcinogenesis, commonly implicated bacteria in oral carcinogenesis, and their role in cancer therapeutics as well.

  7. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Yolanda Stypula-Cyrus

    Full Text Available Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC. However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  8. The PTEN/NRF2 Axis Promotes Human Carcinogenesis

    DEFF Research Database (Denmark)

    Rojo, Ana I; Rada, Patricia; Mendiola, Marta

    2014-01-01

    and tumorigenic advantage. Tissue microarrays from endometrioid carcinomas showed that 80% of PTEN-negative tumors expressed high levels of NRF2 or its target heme oxygenase-1 (HO-1). INNOVATION: These results uncover a new mechanism of oncogenic activation of NRF2 by loss of its negative regulation by PTEN/GSK-3....../β-TrCP that may be relevant to a large number of tumors, including endometrioid carcinomas. CONCLUSION: Increased activity of NRF2 due to loss of PTEN is instrumental in human carcinogenesis and represents a novel therapeutic target. Antioxid. Redox Signal. 21, 2498-2514....

  9. In vivo and in vitro studies suggest a possible involvement of HPV infection in the early stage of breast carcinogenesis via APOBEC3B induction.

    Directory of Open Access Journals (Sweden)

    Kenji Ohba

    Full Text Available High prevalence of infection with high-risk human papilloma virus (HPV ranging from 25 to 100% (average 31% was observed in breast cancer (BC patients in Singapore using novel DNA chip technology. Early stage of BC demonstrated higher HPV positivity, and BC positive for estrogen receptor (ER showed significantly higher HPV infection rate. This unique association of HPV with BC in vivo prompted us to investigate a possible involvement of HPV in early stages of breast carcinogenesis. Using normal breast epithelial cells stably transfected with HPV-18, we showed apparent upregulation of mRNA for the cytidine deaminase, APOBEC3B (A3B which is reported to be a source of mutations in BC. HPV-induced A3B overexpression caused significant γH2AX focus formation, and DNA breaks which were cancelled by shRNA to HPV18 E6, E7 and A3B. These results strongly suggest an active involvement of HPV in the early stage of BC carcinogenesis via A3B induction.

  10. Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Sood, Shilpa; Choudhary, Shambhunath; Wang, Hwa-Chain Robert, E-mail: hcrwang@utk.edu

    2013-09-06

    Highlights: •Triclocarban exposure induces breast epithelial cell carcinogenesis. •Triclocarban induces the Erk–Nox pathway, ROS elevation, and DNA damage. •Physiological doses of triclocarban induce cellular carcinogenesis. •Non-cytotoxic curcumin blocks triclocarban-induced carcinogenesis and pathways. -- Abstract: More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis of human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk–Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk–Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive

  11. Parasite Infection, Carcinogenesis and Human Malignancy

    Directory of Open Access Journals (Sweden)

    Hoang van Tong

    2017-02-01

    Full Text Available Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity.

  12. Parasite Infection, Carcinogenesis and Human Malignancy.

    Science.gov (United States)

    van Tong, Hoang; Brindley, Paul J; Meyer, Christian G; Velavan, Thirumalaisamy P

    2017-02-01

    Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis

    Science.gov (United States)

    Lazennec, Gwendal

    2006-01-01

    Ovarian cancer is one of the leading cause of death from gynecological tumors in women. Several lines of evidence suggest that estrogens may play an important role in ovarian carcinogenesis, through their receptors, ERα and ERβ. Interestingly, malignant ovarian tumors originating from epithelial surface constitute about 90% of ovarian cancers and expressed low levels of ERβ, compared to normal tissues. In addition, restoration of ERβ in ovarian cancer cells, leads to strong inhibition of their proliferation and invasion, while apoptosis is enhanced. In this manuscript, recent data suggesting a possible tumor-suppressor role for ERβ in ovarian carcinogenesis are discussed. PMID:16399219

  14. Mutiple simultaneous event model for radiation carcinogenesis

    International Nuclear Information System (INIS)

    Baum, J.W.

    1979-01-01

    Theoretical Radiobiology and Risk Estimates includes reports on: Multiple Simultaneous Event Model for Radiation Carcinogenesis; Cancer Risk Estimates and Neutron RBE Based on Human Exposures; A Rationale for Nonlinear Dose Response Functions of Power Greater or Less Than One; and Rationale for One Double Event in Model for Radiation Carcinogenesis

  15. Understanding Carcinogenesis for Fighting Oral Cancer

    OpenAIRE

    Tanaka, Takuji; Ishigamori, Rikako

    2011-01-01

    Oral cancer is one of the major global threats to public health. Oral cancer development is a tobacco-related multistep and multifocal process involving field cancerization and carcinogenesis. The rationale for molecular-targeted prevention of oral cancer is promising. Biomarkers of genomic instability, including aneuploidy and allelic imbalance, are able to measure the cancer risk of oral premalignancies. Understanding of the biology of oral carcinogenesis will give us important advances for...

  16. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans

    Science.gov (United States)

    Ochi, Atsuo; Graffeo, Christopher S.; Zambirinis, Constantinos P.; Rehman, Adeel; Hackman, Michael; Fallon, Nina; Barilla, Rocky M.; Henning, Justin R.; Jamal, Mohsin; Rao, Raghavendra; Greco, Stephanie; Deutsch, Michael; Medina-Zea, Marco V.; Saeed, Usama Bin; Ego-Osuala, Melvin O.; Hajdu, Cristina; Miller, George

    2012-01-01

    Pancreatic ductal adenocarcinoma is an aggressive cancer that interacts with stromal cells to produce a highly inflammatory tumor microenvironment that promotes tumor growth and invasiveness. The precise interplay between tumor and stroma remains poorly understood. TLRs mediate interactions between environmental stimuli and innate immunity and trigger proinflammatory signaling cascades. Our finding that TLR7 expression is upregulated in both epithelial and stromal compartments in human and murine pancreatic cancer led us to postulate that carcinogenesis is dependent on TLR7 signaling. In a mouse model of pancreatic cancer, TLR7 ligation vigorously accelerated tumor progression and induced loss of expression of PTEN, p16, and cyclin D1 and upregulation of p21, p27, p53, c-Myc, SHPTP1, TGF-β, PPARγ, and cyclin B1. Furthermore, TLR7 ligation induced STAT3 activation and interfaced with Notch as well as canonical NF-κB and MAP kinase pathways, but downregulated expression of Notch target genes. Moreover, blockade of TLR7 protected against carcinogenesis. Since pancreatic tumorigenesis requires stromal expansion, we proposed that TLR7 ligation modulates pancreatic cancer by driving stromal inflammation. Accordingly, we found that mice lacking TLR7 exclusively within their inflammatory cells were protected from neoplasia. These data suggest that targeting TLR7 holds promise for treatment of human pancreatic cancer. PMID:23023703

  17. Diet, lifestyle, and molecular alterations that drive colorectal carcinogenesis

    NARCIS (Netherlands)

    Diergaarde, B.

    2004-01-01

    Environmental factors have been repeatedly implicated in the etiology of colorectal cancer, and much is known about the molecular events involved in colorectal carcinogenesis. The relationships between environmental risk factors and the molecular alterations that drive colorectal carcinogenesis are

  18. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  19. Cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waalkes, Michael P.

    2003-01-01

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis

  20. Cadmium carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, Michael P

    2003-12-10

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis.

  1. Radiation-induced mammary carcinogenesis in rodent models. What's different from chemical carcinogenesis?

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Iizuka, Daisuke; Daino, Kazuhiro; Takabatake, Takashi; Okamoto, Mieko; Kakinuma, Shizuko; Shimada, Yoshiya

    2009-01-01

    Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation. In this review, we first list some experimental rodent models of breast cancer induction. We then focus on several topics that are important in understanding the mechanisms and risk modification of breast cancer development, and compare radiation and chemical carcinogenesis models. We will focus on the pathology and natural history of cancer development in these models, genetic changes observed in induced cancers, indirect effects of carcinogens, and finally risk modification by reproductive factors and age at exposure to the carcinogens. In addition, we summarize the knowledge available on mammary stem/progenitor cells as a potential target of carcinogens. Comparison of chemical and radiation carcinogenesis models on these topics indicates certain similarities, but it also indicates clear differences in several important aspects, such as genetic alterations of induced cancers and modification of susceptibility by age and reproductive factors. Identification of the target cell type and relevant translational research for human risk management may be among the important issues that are addressed by radiation carcinogenesis models. (author)

  2. Role of human papilloma virus in the oral carcinogenesis: An Indian perspective

    Directory of Open Access Journals (Sweden)

    Chocolatewala Noureen

    2009-01-01

    Full Text Available Oral squamous cell carcinoma (OSCC is one of the most common cancers in the Indian subcontinent. Although tobacco and alcohol are the main etiologic factors for nearly three-fourth of these cancers, no definite etiologic factor can be identified in one-fourth of the cases. There is growing evidence that human papilloma virus (HPV may act as a cocarcinogen, along with tobacco, in the causation of oral cancers. The role of HPV in the etiology of anogenital cancers has been firmly established, and infection with this virus has also been shown to have prognostic significance. However, there is no clear evidence to support its involvement in oral carcinogenesis. We searched the PubMed database for all literature published from 1985 to 2008 and performed a systemic review in order to understand the relationship of HPV with oral cancers and its prevalence in various sub-sites in the oral cavity. Association of HPV is strongest for oropharyngeal cancers, especially cancers of the tonsils, followed by those of the base of tongue. High-risk HPV-16 is the predominant type; it commonly affects the younger age-groups, with males appearing to have a predisposition for infection with this strain. Its prevalence increases from normal to dysplasia and finally to cancer. HPV prevalence has been reported to be twice as high in premalignant lesions as in normal mucosa and is nearly five times higher in OSCC. The overall prevalence of HPV in OSCC ranges between 20-50%. OSCCs associated with HPV have been found to have better outcomes, being more responsive to radiotherapy and showing higher survival rates. In view of the association of HPV with OSCC, it should be worthwhile to conduct further experimental studies to elucidate its role in oral carcinogenesis.

  3. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures

  4. contribution to carcinogenesis

    Directory of Open Access Journals (Sweden)

    Aneta Białkowska

    2014-01-01

    Full Text Available The centrosomes are subcellular organelles composed of two centrioles surrounded by a pericentriolar material. In animal cells they are responsible for the organization of the interphase microtubule cytoskeleton including microtubule nucleation and elongation, their attachment and release. The centrosomes are also involved in the construction of the mitotic spindle and chromosome segregation. More than a century ago it was suggested that these structures might be involved in human diseases, including cancer. Cancer cells show a high frequency of centrosome aberrations, especially amplification. Centrosome defects may increase the incidence of multipolar mitoses that lead to chromosomal segregation abnormalities and aneuploidy, which is the predominant type of genomic instability found in human solid tumors. The number of these organelles in cells is strictly controlled and is dependent on the proper process of centrosome duplication. Multiple genes that are frequently found mutated in cancers encode proteins which participate in the regulation of centrosome duplication and the numeral integrity of centrosomes. In recent years there has been growing interest in the potential participation of centrosomes in the process of carcinogenesis, especially because centrosome abnormalities are observed in premalignant stages of cancer development. The common presence of abnormal centrosomes in cancer cells and the role these organelles play in the cells suggest that the factors controlling the number of centrosomes may be potential targets for cancer therapy.

  5. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    Directory of Open Access Journals (Sweden)

    Hitoshi Nakagama

    2011-02-01

    Full Text Available Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropylamine (BOP into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5’ CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention.

  6. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Mami, E-mail: mtakahas@ncc.go.jp; Hori, Mika; Mutoh, Michihiro [Division of Cancer Development System, Carcinogenesis Research Group, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan); Wakabayashi, Keiji [Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526 (Japan); Nakagama, Hitoshi [Division of Cancer Development System, Carcinogenesis Research Group, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan)

    2011-02-09

    Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropyl)amine (BOP) into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5′ CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention.

  7. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    International Nuclear Information System (INIS)

    Takahashi, Mami; Hori, Mika; Mutoh, Michihiro; Wakabayashi, Keiji; Nakagama, Hitoshi

    2011-01-01

    Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropyl)amine (BOP) into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5′ CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention

  8. Ultraviolet radiation-induced carcinogenesis: mechanisms and experimental models

    International Nuclear Information System (INIS)

    Ramasamy, Karthikeyan; Shanmugam, Mohana; Balupillai, Agilan; Govindhasamy, Kanimozhi; Gunaseelan, Srithar; Muthusamy, Ganesan; Robert, Beualah Mary; Nagarajan, Rajendra Prasad

    2017-01-01

    Ultraviolet radiation (UVR) is a very prominent environmental toxic agent. UVR has been implicated in the initiation and progression of photocarcinogenesis. UVR exposure elicits numerous cellular and molecular events which include the generation of inflammatory mediators, DNA damage, epigenetic modifications, and oxidative damages mediated activation of signaling pathways. UVR-initiated signal transduction pathways are believed to be responsible for tumor promotion effects. UVR-induced carcinogenic mechanism has been well studied using various animal and cellular models. Human skin-derived dermal fibroblasts, epidermal keratinocytes, and melanocytes served as excellent cellular model systems for the understanding of UVR-mediated carcinogenic events. Apart from this, scientists developed reconstituted three-dimensional normal human skin equivalent models for the study of UVR signaling pathways. Moreover, hairless mice such as SKH-1, devoid of Hr gene, served as a valuable model for experimental carcinogenesis. Scientists have also used transgenic mice and dorsal portion shaved Swiss albino mice for UVR carcinogenesis studies. In this review, we have discussed the current progress in the study on ultraviolet B (UVB)-mediated carcinogenesis and outlined appropriate experimental models for both ultraviolet A- and UVB-mediated carcinogenesis. (author)

  9. Oral Carcinogenesis and Oral Cancer Chemoprevention: A Review

    OpenAIRE

    Tanaka, Takuji; Tanaka, Mayu; Tanaka, Takahiro

    2011-01-01

    Oral cancer is one of the major global threats to public health. The development of oral cancer is a tobacco-related multistep and multifocal process involving field cancerization and carcinogenesis. The rationale for molecular-targeted prevention of oral cancer is promising. Biomarkers of genomic instability, including aneuploidy and allelic imbalance, are possible to measure the cancer risk of oral premalignancies. Understanding of the biology of oral carcinogenesis will yield important adv...

  10. Preclinical Cancer Chemoprevention Studies Using Animal Model of Inflammation-Associated Colorectal Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takuji [Cytopatholgy Division, Tohkai Cytopathology Institute, Cancer Research and Prevention (TCI-CaRP), 5-1-2 Minami-uzura, Gifu 500-8285 (Japan); Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan)

    2012-07-16

    Inflammation is involved in all stages of carcinogenesis. Inflammatory bowel disease, such as ulcerative colitis and Crohn’s disease is a longstanding inflammatory disease of intestine with increased risk for colorectal cancer (CRC). Several molecular events involved in chronic inflammatory process are reported to contribute to multi-step carcinogenesis of CRC in the inflamed colon. They include over-production of free radicals, reactive oxygen and nitrogen species, up-regulation of inflammatory enzymes in arachidonic acid biosynthesis pathway, up-regulation of certain cytokines, and intestinal immune system dysfunction. In this article, firstly I briefly introduce our experimental animal models where colorectal neoplasms rapidly develop in the inflamed colorectum. Secondary, data on preclinical cancer chemoprevention studies of inflammation-associated colon carcinogenesis by morin, bezafibrate, and valproic acid, using this novel inflammation-related colorectal carcinogenesis model is described.

  11. Radiation and multistage carcinogenesis

    International Nuclear Information System (INIS)

    Day, N.E.

    1984-01-01

    Epidemiological data are insufficient at present to define with much precision the shape of the dose-response curve for radiation carcinogenesis at low or moderate dose levels, for different organs. The available data have to be supplemented with theoretical models for the mode of action. These models, however, often seem not to take into account the complex nature of the process of carcinogenesis. They relate more to mutational events, rather than the long process of cancer induction. In addition, they ignore the fact that in the human situation radiation is one among a large number of exposures, and even the basic form of the dose response may be dependent on the presence or absence of other factors. Information on modes of action usually comes from experimental results, where the requisite combination of exposures can be chosen in advance. Epidemiology, however, also provides information on mechanisms. The purpose of this paper is to consider some of the information that epidemiology provides on the role of radiation in increasing cancer risk in humans

  12. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants.

    Science.gov (United States)

    Carini, Francesco; Mazzola, Margherita; Rappa, Francesca; Jurjus, Abdo; Geagea, Alice Gerges; Al Kattar, Sahar; Bou-Assi, Tarek; Jurjus, Rosalyn; Damiani, Provvidenza; Leone, Angelo; Tomasello, Giovanni

    2017-09-01

    One of the contributory causes of colon cancer is the negative effect of reactive oxygen species on DNA repair mechanisms. Currently, there is a growing support for the concept that oxidative stress may be an important etiological factor for carcinogenesis. The purpose of this review is to elucidate the role of oxidative stress in promoting colorectal carcinogenesis and to highlight the potential protective role of antioxidants. Several studies have documented the importance of antioxidants in countering oxidative stress and preventing colorectal carcinogenesis. However, there are conflicting data in the literature concerning its proper use in humans, since these studies did not yield definitive results and were performed mostly in vitro on cell populations, or in vivo in experimental animal models. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Epigenome remodelling in breast cancer: insights from an early in vitro model of carcinogenesis.

    Science.gov (United States)

    Locke, Warwick J; Clark, Susan J

    2012-11-15

    Epigenetic gene regulation has influence over a diverse range of cellular functions, including the maintenance of pluripotency, differentiation, and cellular identity, and is deregulated in many diseases, including cancer. Whereas the involvement of epigenetic dysregulation in cancer is well documented, much of the mechanistic detail involved in triggering these changes remains unclear. In the current age of genomics, the development of new sequencing technologies has seen an influx of genomic and epigenomic data and drastic improvements in both resolution and coverage. Studies in cancer cell lines and clinical samples using next-generation sequencing are rapidly delivering spectacular insights into the nature of the cancer genome and epigenome. Despite these improvements in technology, the timing and relationship between genetic and epigenetic changes that occur during the process of carcinogenesis are still unclear. In particular, what changes to the epigenome are playing a driving role during carcinogenesis and what influence the temporal nature of these changes has on cancer progression are not known. Understanding the early epigenetic changes driving breast cancer has the exciting potential to provide a novel set of therapeutic targets or early-disease biomarkers or both. Therefore, it is important to find novel systems that permit the study of initial epigenetic events that potentially occur during the first stages of breast cancer. Non-malignant human mammary epithelial cells (HMECs) provide an exciting in vitro model of very early breast carcinogenesis. When grown in culture, HMECs are able to temporarily escape senescence and acquire a pre-malignant breast cancer-like phenotype (variant HMECs, or vHMECs). Cultured HMECs are composed mainly of cells from the basal breast epithelial layer. Therefore, vHMECs are considered to represent the basal-like subtype of breast cancer. The transition from HMECs to vHMECs in culture recapitulates the epigenomic

  14. Radiation carcinogenesis, laboratory studies

    International Nuclear Information System (INIS)

    Shellabarger, C.J.

    1974-01-01

    Laboratory studies on radioinduced carcinogenesis are reviewed. Some topics discussed are: radioinduced neoplasia in relation to life shortening; dose-response relationships; induction of skin tumors in rats by alpha particles and electrons; effects of hormones on tumor response; effects of low LET radiations delivered at low dose-rates; effects of fractionated neutron radiation; interaction of RBE and dose rate effects; and estimates of risks for humans from animal data. (U.S.)

  15. Iron and thiols as two major players in carcinogenesis: friends or foes?

    Science.gov (United States)

    Toyokuni, Shinya

    2014-01-01

    Iron is the most abundant metal in the human body and mainly works as a cofactor for proteins such as hemoglobin and various enzymes. No independent life forms on earth can survive without iron. However, excess iron is intimately associated with carcinogenesis by increasing oxidative stress via its catalytic activity to generate hydroxyl radicals. Biomolecules with redox-active sulfhydryl function(s) (thiol compounds) are necessary for the maintenance of mildly reductive cellular environments to counteract oxidative stress, and for the execution of redox reactions for metabolism and detoxification. Involvement of glutathione S-transferase and thioredoxin has long attracted the attention of cancer researchers. Here, I update recent findings on the involvement of iron and thiol compounds during carcinogenesis and in cancer cells. It is now recognized that the cystine/glutamate transporter (antiporter) is intimately associated with ferroptosis, an iron-dependent, non-apoptotic form of cell death, observed in cancer cells, and also with cancer stem cells; the former with transporter blockage but the latter with its stabilization. Excess iron in the presence of oxygen appears the most common known mutagen. Ironically, the persistent activation of antioxidant systems via genetic alterations in Nrf2 and Keap1 also contributes to carcinogenesis. Therefore, it is difficult to conclude the role of iron and thiol compounds as friends or foes, which depends on the quantity/distribution and induction/flexibility, respectively. Avoiding further mutation would be the most helpful strategy for cancer prevention, and myriad of efforts are being made to sort out the weaknesses of cancer cells.

  16. The chemopreventive activity of the histone deacetylase inhibitor tributyrin in colon carcinogenesis involves the induction of apoptosis and reduction of DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Heidor, Renato [Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Advanced Research Center in Food Science and Nutrition (NAPAN) and Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Furtado, Kelly Silva; Ortega, Juliana Festa [Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Oliveira, Tiago Franco de [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Tavares, Paulo Eduardo Latorre Martins; Vieira, Alessandra; Miranda, Mayara Lilian Paulino [Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Purgatto, Eduardo [Laboratory of Food Chemistry and Biochemistry, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Advanced Research Center in Food Science and Nutrition (NAPAN) and Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Moreno, Fernando Salvador, E-mail: rmoreno@usp.br [Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Advanced Research Center in Food Science and Nutrition (NAPAN) and Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil)

    2014-04-15

    The chemopreventive activity of the histone deacetylase inhibitor (HDACi) tributyrin (TB), a prodrug of butyric acid (BA), was evaluated in a rat model of colon carcinogenesis. The animals were treated with TB (TB group: 200 mg/100 g of body weight, b.w.) or maltodextrin (MD isocaloric control group: 300 mg/100 g b.w.) daily for 9 consecutive weeks. In the 3rd and 4th weeks of treatment, the rats in the TB and MD groups were given DMH (40 mg/kg b.w.) twice a week. After 9 weeks, the animals were euthanized, and the distal colon was examined. Compared with the control group (MD group), TB treatment reduced the total number of aberrant crypt foci (ACF; p < 0.05) as well as the ACF with ≥ 4 crypts (p < 0.05), which are considered more aggressive, but not inhibited the formation of DMH-induced O6-methyldeoxyguanosine DNA adducts. The TB group also showed a higher apoptotic index (p < 0.05) and reduced DNA damage (p < 0.05) compared with MD group. TB acted as a HDACi, as rats treated with the prodrug of BA had higher levels of histone H3K9 acetylation compared with the MD group (p < 0.05). TB administration resulted in increased colonic tissue concentrations of BA (p < 0.05) compared with the control animals. These results suggest that TB can be considered a promising chemopreventive agent for colon carcinogenesis because it reduced the number of ACF, including those that were more aggressive. Induction of apoptosis and reduction of DNA damage are cellular mechanisms that appear to be involved in the chemopreventive activity of TB. - Highlights: • Tributyrin is a chemopreventive agent for rat colon aberrant crypt foci. • Tributyrin increased apoptosis in an experimental rat colon carcinogenesis model. • Tributyrin treatment in a rat colon carcinogenesis model decreased DNA damage. • Tributyrin treatment induced H3K9 acetylation in a rat colon carcinogenesis model.

  17. The chemopreventive activity of the histone deacetylase inhibitor tributyrin in colon carcinogenesis involves the induction of apoptosis and reduction of DNA damage

    International Nuclear Information System (INIS)

    Heidor, Renato; Furtado, Kelly Silva; Ortega, Juliana Festa; Oliveira, Tiago Franco de; Tavares, Paulo Eduardo Latorre Martins; Vieira, Alessandra; Miranda, Mayara Lilian Paulino; Purgatto, Eduardo; Moreno, Fernando Salvador

    2014-01-01

    The chemopreventive activity of the histone deacetylase inhibitor (HDACi) tributyrin (TB), a prodrug of butyric acid (BA), was evaluated in a rat model of colon carcinogenesis. The animals were treated with TB (TB group: 200 mg/100 g of body weight, b.w.) or maltodextrin (MD isocaloric control group: 300 mg/100 g b.w.) daily for 9 consecutive weeks. In the 3rd and 4th weeks of treatment, the rats in the TB and MD groups were given DMH (40 mg/kg b.w.) twice a week. After 9 weeks, the animals were euthanized, and the distal colon was examined. Compared with the control group (MD group), TB treatment reduced the total number of aberrant crypt foci (ACF; p < 0.05) as well as the ACF with ≥ 4 crypts (p < 0.05), which are considered more aggressive, but not inhibited the formation of DMH-induced O6-methyldeoxyguanosine DNA adducts. The TB group also showed a higher apoptotic index (p < 0.05) and reduced DNA damage (p < 0.05) compared with MD group. TB acted as a HDACi, as rats treated with the prodrug of BA had higher levels of histone H3K9 acetylation compared with the MD group (p < 0.05). TB administration resulted in increased colonic tissue concentrations of BA (p < 0.05) compared with the control animals. These results suggest that TB can be considered a promising chemopreventive agent for colon carcinogenesis because it reduced the number of ACF, including those that were more aggressive. Induction of apoptosis and reduction of DNA damage are cellular mechanisms that appear to be involved in the chemopreventive activity of TB. - Highlights: • Tributyrin is a chemopreventive agent for rat colon aberrant crypt foci. • Tributyrin increased apoptosis in an experimental rat colon carcinogenesis model. • Tributyrin treatment in a rat colon carcinogenesis model decreased DNA damage. • Tributyrin treatment induced H3K9 acetylation in a rat colon carcinogenesis model

  18. The relevance of cell transformation to carcinogenesis in vivo

    International Nuclear Information System (INIS)

    Little, J.B.

    1989-01-01

    Despite the caveats concerning rodent as opposed to human cell transformation systems, the author concludes there are several areas in which cell transformation studies with rodent cells have shown clear relevance to carcinogenesis in vivo, especially studies of carcinogenic effects of high LET radiation, particularly dependence on dose rate. In vitro studies firmly established the generality of promotion by phorbol esters tumour promotors. Initial studies on suppression of transformation, notably by protease inhibitors, has led to the confirmation of this phenomenon in in vivo carcinogenesis; development of inhibitor preparations from natural sources suitable for long-term supplementation in human diet, is under investigation. The potential importance of these modifiers is further emphasized by mechanistic studies suggesting that radiation may initiate a large fraction of exposed cell population, and expression of transformation may be controlled to a large extent by environmental conditions including the presence of promoting or suppressing agents. Finally, cell transformation systems offer the opportunity for mechanistic studies of the initial stages of carcinogenesis. Provocative results have arisen in several areas consistent with findings in experimental animals. (author)

  19. Genetic alterations during radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Kodama, Seiji

    1995-01-01

    This paper reviews radiation-induced genetic alterations and its carcinogenesis, focusing on the previous in vitro assay outcome. A colony formation assay using Syrian hamster fetal cells and focus formation assay using mouse C3H10T1/2 cells are currently available to find malignant transformation of cells. Such in vitro assays has proposed the hypothesis that radiation-induced carcinogenesis arises from at least two-stage processes; i.e., that an early step induced by irradiation plays an important role in promoting the potential to cause the subsequent mutation. A type of genetic instability induced by radiation results in a persistently elevated frequency of spontaneous mutations, so-called the phenomenon of delayed reproductive death. One possible mechanism by which genetic instability arises has been shown to be due to the development of abnormality in the gene group involved in the maintenance mechanism of genome stability. Another possibility has also been shown to stem from the loss of telomere (the extremities of a chromosome). The importance of search for radiation-induced genetic instability is emphasized in view of the elucidation of carcinogenesis. (N.K.)

  20. Downregulation of keratin 76 expression during oral carcinogenesis of human, hamster and mouse.

    Directory of Open Access Journals (Sweden)

    Srikant Ambatipudi

    Full Text Available Keratins are structural marker proteins with tissue specific expression; however, recent reports indicate their involvement in cancer progression. Previous study from our lab revealed deregulation of many genes related to structural molecular integrity including KRT76. Here we evaluate the role of KRT76 downregulation in oral precancer and cancer development.We evaluated KRT76 expression by qRT-PCR in normal and tumor tissues of the oral cavity. We also analyzed K76 expression by immunohistochemistry in normal, oral precancerous lesion (OPL, oral squamous cell carcinoma (OSCC and in hamster model of oral carcinogenesis. Further, functional implication of KRT76 loss was confirmed using KRT76-knockout (KO mice.We observed a strong association of reduced K76 expression with increased risk of OPL and OSCC development. The buccal epithelium of DMBA treated hamsters showed a similar trend. Oral cavity of KRT76-KO mice showed preneoplastic changes in the gingivobuccal epithelium while no pathological changes were observed in KRT76 negative tissues such as tongue.The present study demonstrates loss of KRT76 in oral carcinogenesis. The KRT76-KO mice data underlines the potential of KRT76 being an early event although this loss is not sufficient to drive the development of oral cancers. Thus, future studies to investigate the contributing role of KRT76 in light of other tumor driving events are warranted.

  1. Carcinogenesis

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on studies at the molecular, biochemical, and immunological level of carcinogenesis induced in mice by viruses, radiation, or environmental chemicals alone or in combinations. Emphasis was placed on the identification and assessments of cocarcinogens and studies on their mechanisms of action. Data are included on mechanisms of carcinogenesis in the liver, thyroid, Harderian glands, skin, and lungs. The effects of the food additive butylated hydroxytoluene (BHT), phenobarbitol, DDT, uv irradiation, the herbicide 3-amino-1,2,4-triazole(AT), the pituitary hormone prolactin, topically applied 8-methoxypsoralen (8-MOP), and benzo(a) pyrene(BaP) on tumor induction or enhancement were studied

  2. Carcinogenesis. Genetics and circumstances

    International Nuclear Information System (INIS)

    Hino, Okio

    2005-01-01

    Described are the author's study and aspect concerning carcinogenesis and radiation carcinogenesis, where he thinks cancer is not automatic, has a process and takes time. For radiation carcinogenic studies, he has used a model of the rat with genetically determined kidney cancer which is highly radiosensitive. That is, mutation by the so-called 2nd-hit of the causal gene (tumor suppressing gene Tsc2) is studied in the animal where the 1st-hit has been done by retrotransposon insertion, with and without exposure to radiations (X-ray, heavy particle beam and cosmic ray) for elucidating the mutation spectrum of the causal gene, the carcinogenic target, for the ultimate aim to prevent human cancer. He discusses the drama-type molecular mechanisms leading to cancer, gene abnormality and disease crisis, discontinuity in continuity in cancer formation, and importance of the timely diagnosis and appropriate therapy, and concludes the present age is becoming such one as that the nature of cancer even if genetic can be controlled by circumstances like timely and appropriate intervention. (S.I.)

  3. Radiogenic cell transformation and carcinogenesis

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic

  4. Monitoring Autophagy Immunohistochemically and Ultrastructurally during Human Head and Neck Carcinogenesis. Relationship with the DNA Damage Response Pathway †

    Science.gov (United States)

    Havaki, Sophia; Vlachou, Vassiliki; Zampetidis, Christos P.; Selemenakis, Platonas; Kotsinas, Athanassios; Mavrogonatou, Eleni; Rizou, Sophia V.; Kyrodimos, Euthymios; Evangelou, Konstantinos; Kletsas, Dimitris; Giatromanolaki, Alexandra; Gorgoulis, Vassilis G.

    2017-01-01

    Autophagy is a catabolic process that preserves cellular homeostasis. Its exact role during carcinogenesis is not completely defined. Specifically in head and neck cancer, such information from clinical settings that comprise the whole spectrum of human carcinogenesis is very limited. Towards this direction, we examined the in situ status of the autophagy-related factors, Beclin-1, microtubule-associated protein 1 light chain 3, member B (LC3B) and sequestosome 1/p62 (p62) in clinical material covering all histopathological stages of human head and neck carcinogenesis. This material is unique as each panel of lesions is derived from the same patient and moreover we have previously assessed it for the DNA damage response (DDR) activation status. Since Beclin-1, LC3B and p62 reflect the nucleation, elongation and degradation stages of autophagy, respectively, their combined immunohistochemical (IHC) expression profiles could grossly mirror the autophagic flux. This experimental approach was further corroborated by ultrastructural analysis, applying transmission electron microscopy (TEM). The observed Beclin-1/LC3B/p62 IHC patterns, obtained from serial sections analysis, along with TEM findings are suggestive of a declined authophagic activity in preneoplastic lesions that was restored in full blown cancers. Correlating these findings with DDR status in the same pathological stages are indicative of: (i) an antitumor function of autophagy in support to that of DDR, possibly through energy deprivation in preneoplastic stages, thus preventing incipient cancer cells from evolving; and (ii) a tumor-supporting role in the cancerous stage. PMID:28880214

  5. Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co-60 gamma rays were transformed into tumorigenic cells with Ha-ras oncogenes.

    Science.gov (United States)

    Namba, M; Nishitani, K; Fukushima, F; Kimoto, T

    1988-01-01

    Two normal mortal human fibroblast cell strains were transformed into immortal cell lines, SUSM-1 and KMST-6, by treatment with 4-nitroquinoline 1-oxide (4NQO) and Co-60 gamma rays, respectively. These immortalized cell lines showed morphological changes of cells and remarkable chromosome aberrations, but neither of them grew in soft agar or formed tumors in nude mice. The immortal cell line, KMST-6, was then converted into neoplastic cells by treatment with Harvey murine sarcoma virus (Ha-MSV) or the c-Ha-ras oncogene derived from a human lung carcinoma. These neoplastically transformed cells acquired anchorage-independent growth potential and developed tumors when transplanted into nude mice. All the tumors grew progressively without regression until the animals died of tumors. In addition, the tumors were transplantable into other nude mice. Normal human fibroblasts, on the other hand, were not transformed into either immortal or tumorigenic cells by treatment with Ha-MSV or c-Ha-ras alone. Our present data indicate that (1) the chemical carcinogen, 4NQO, or gamma rays worked as an initiator of carcinogenesis in normal human cells, giving rise to immortality, and (2) the ras gene played a role in the progression of the immortally transformed cells to more malignant cells showing anchorage-independent growth and tumorigenicity. In other words, the immortalization process of human cells seems to be a pivotal or rate-limiting step in the carcinogenesis of human cells.

  6. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); School of Dentistry and Institute of Oral Biosciences (BK21 program), Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States)

    2012-10-15

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  7. Predictive values of traditional animal bioassay studies for human perinatal carcinogenesis risk determination

    International Nuclear Information System (INIS)

    Anderson, Lucy M.

    2004-01-01

    The many physiological, biochemical, and structure differences between rodents and humans, especially with regard to gestation and fetal development, invite questions as to the utility of rodent models for the prediction of risk of perinatal carcinogenesis in humans and for extrapolation of mechanistic studies. Here, the relevance of basic generalities, derived from rodent perinatal studies, to human contexts is considered. The cross-species usefulness of these generalities was upheld by the example of carcinogen activation and detoxification as determining factors. These have been established in rodent studies and recently indicted in humans by investigations of genetic polymorphisms in cytochromes P450, N-acetyltransferase, myeloperoxidase, quinone reductase, and glutathione S-transferase. Also, published data have been analyzed comparatively for diethylstilbestrol and irradiation, the two known human transplacental carcinogenic agents. At similar doses to those experienced by humans, both diethylstilbestrol and X- and gamma-irradiation in rodents and dogs yielded increased tumors at rates similar to those for humans. In rodents, there was a clearly negative relationship between total diethylstilbestrol dose and tumors per dose unit, and a similar pattern was suggested for radiation. Diethylstilbestrol had transgenerational effects that did not diminish over three generations. Overall, this analysis of the published literature indicates that there are basic qualitative and quantitative similarities in the responsiveness of human and rodent fetuses to carcinogens, and that dose effects may be complex and in need of further investigation

  8. Radiation carcinogenesis and related radiobiology. Special listing

    International Nuclear Information System (INIS)

    1980-01-01

    The special listing of Current Cancer Research Projects is a publication of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute. Each Listing contains descriptions of ongoing projects in one selected cancer research area. The research areas include: Human cancer and exposure to radiation; Experimental radiation carcinogenesis and radiation biology

  9. Introduction to Genetic Mechanisms of Carcinogenesis

    International Nuclear Information System (INIS)

    Yang, W.K.

    1983-01-01

    Recent technical advances in nucleic acid research and molecular biology have made it possible to explore the complicated genetic systems of eukaryotic cells. One of the fields showing rapid progress concerns genes and gene regulatory functions related to neoplastic processes. Thus, the 35th Annual Conference of the Biology Division of Oak Ridge National Laboratory, held at Gatlinburg, April 12-15, 1982, was organized with the intention to bring together investigators working on seemingly diverse fields of cancer research to discuss and exchange their views on the genetic mechanisms of carcinogenesis. The meeting was attended by workers from chemical, physical as well as biological carcinogenesis fields, by classical geneticists as well as by molecular biologists, and by researchers interested in experimental as well as in human cancers. Included in this volume are papers by the invited speakers of the symposium as well as by those presenting poster papers at the meeting

  10. Nucleophosmin in the pathogenesis of arsenic-related bladder carcinogenesis revealed by quantitative proteomics

    International Nuclear Information System (INIS)

    Chen Shuhui; Wang Yiwen; Hsu Jueliang; Chang Hongyi; Wang Chiyun; Shen Potsun; Chiang Chiwu; Chuang Jingjing; Tsai Hungwen; Gu Powen; Chang Fangchih; Liu Hsiaosheng; Chow Nanhaw

    2010-01-01

    To investigate the molecular mechanisms of arsenic (As)-associated carcinogenesis, we performed proteomic analysis on E7 immortalized human uroepithelial cells after treatment with As in vitro. Quantitative proteomics was performed using stable isotope dimethyl labeling coupled with two-dimensional liquid chromatography peptide separation and mass spectrometry (MS)/MS analysis. Among 285 proteins, a total of 26 proteins were upregulated (ratio > 2.0) and 18 proteins were downregulated (ratio < 0.65) by As treatment, which are related to nucleotide binding, lipid metabolism, protein folding, protein biosynthesis, transcription, DNA repair, cell cycle control, and signal transduction. This study reports the potential significance of nucleophosmin (NPM) in the As-related bladder carcinogenesis. NPM was universally expressed in all of uroepithelial cell lines examined, implying that NPM may play a role in human bladder carcinogenesis. Upregulation of NPM tends to be dose- and time-dependent after As treatment. Expression of NPM was associated with cell proliferation, migration and anti-apoptosis. On the contrary, soy isoflavones inhibited the expression of NPM in vitro. The results suggest that NPM may play a role in the As-related bladder carcinogenesis, and soybean-based foods may have potential in the suppression of As/NPM-related tumorigenesis.

  11. Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling

    International Nuclear Information System (INIS)

    Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Wang, Xin; Fan, Jia; Kim, Dong-Hern; Lee, Ju-Yeon; Zhang, Zhuo; Lee, Jeong-Chae; Shi, Xianglin

    2013-01-01

    Cr(VI) compounds are known human carcinogens that primarily target the lungs. Cr(VI) produces reactive oxygen species (ROS), but the exact effects of ROS on the signaling molecules involved in Cr(VI)-induced carcinogenesis have not been extensively studied. Chronic exposure of human bronchial epithelial cells to Cr(VI) at nanomolar concentrations (10–100 nM) for 3 months not only induced cell transformation, but also increased the potential of these cells to invade and migrate. Injection of Cr(VI)-stimulated cells into nude mice resulted in the formation of tumors. Chronic exposure to Cr(VI) increased levels of intracellular ROS and antiapoptotic proteins. Transfection with catalase or superoxide dismutase (SOD) prevented Cr(VI)-mediated increases in colony formation, cell invasion, migration, and xenograft tumors. While chronic Cr(VI) exposure led to activation of signaling cascades involving PI3K/AKT/GSK-3β/β-catenin and PI3K/AKT/mTOR, transfection with catalase or SOD markedly inhibited Cr(VI)-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the Cr(VI)-mediated increase in total and active β-catenin proteins and colony formation. In particular, Cr(VI) suppressed autophagy of epithelial cells under nutrition deprivation. Furthermore, there was a marked induction of AKT, GSK-3β, β-catenin, mTOR, and carcinogenic markers in tumor tissues formed in mice after injection with Cr(VI)-stimulated cells. Collectively, our findings suggest that ROS is a key mediator of Cr(VI)-induced carcinogenesis through the activation of PI3K/AKT-dependent GSK-3β/β-catenin signaling and the promotion of cell survival mechanisms via the inhibition of apoptosis and autophagy. - Highlights: • Chronic exposure to Cr(VI) induces carcinogenic properties in BEAS-2B cells. • ROS play an important role in Cr(VI)-induced tumorigenicity of BEAS-2B cells. • PI3K/AKT/GSK-3β/β-catenin signaling involved in Cr

  12. Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Wang, Xin; Fan, Jia; Kim, Dong-Hern; Lee, Ju-Yeon; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); School of Dentistry and Institute of Oral Biosciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States)

    2013-09-01

    Cr(VI) compounds are known human carcinogens that primarily target the lungs. Cr(VI) produces reactive oxygen species (ROS), but the exact effects of ROS on the signaling molecules involved in Cr(VI)-induced carcinogenesis have not been extensively studied. Chronic exposure of human bronchial epithelial cells to Cr(VI) at nanomolar concentrations (10–100 nM) for 3 months not only induced cell transformation, but also increased the potential of these cells to invade and migrate. Injection of Cr(VI)-stimulated cells into nude mice resulted in the formation of tumors. Chronic exposure to Cr(VI) increased levels of intracellular ROS and antiapoptotic proteins. Transfection with catalase or superoxide dismutase (SOD) prevented Cr(VI)-mediated increases in colony formation, cell invasion, migration, and xenograft tumors. While chronic Cr(VI) exposure led to activation of signaling cascades involving PI3K/AKT/GSK-3β/β-catenin and PI3K/AKT/mTOR, transfection with catalase or SOD markedly inhibited Cr(VI)-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the Cr(VI)-mediated increase in total and active β-catenin proteins and colony formation. In particular, Cr(VI) suppressed autophagy of epithelial cells under nutrition deprivation. Furthermore, there was a marked induction of AKT, GSK-3β, β-catenin, mTOR, and carcinogenic markers in tumor tissues formed in mice after injection with Cr(VI)-stimulated cells. Collectively, our findings suggest that ROS is a key mediator of Cr(VI)-induced carcinogenesis through the activation of PI3K/AKT-dependent GSK-3β/β-catenin signaling and the promotion of cell survival mechanisms via the inhibition of apoptosis and autophagy. - Highlights: • Chronic exposure to Cr(VI) induces carcinogenic properties in BEAS-2B cells. • ROS play an important role in Cr(VI)-induced tumorigenicity of BEAS-2B cells. • PI3K/AKT/GSK-3β/β-catenin signaling involved in Cr

  13. Carcinogenesis and Inflammatory Effects of Plutonium-Nitrate Retention in an Exposed Nuclear Worker and Beagle Dogs

    International Nuclear Information System (INIS)

    Nielsen, Christopher E.; Wang, Xihai; Robinson, Robert J.; Brooks, Antone L.; Lovaglio, Jamie A.; Patton, Kristin M.; McComish, Stacey; Tolmachev, Sergei Y.; Morgan, William F.

    2014-01-01

    The genetic and inflammatory response pathways elicited following plutonium exposure in archival lung tissue of an occupationally exposed human and experimentally exposed beagle dogs were investigated. These pathways include: tissue injury, apoptosis and gene expression modifications related to carcinogenesis and inflammation. In order to determine which pathways are involved, multiple lung samples from a plutonium exposed worker (Case 0269), a human control (Case 0385), and plutonium exposed beagle dogs were examined using histological staining and immunohistochemistry. Examinations were performed to identify target tissues at risk of radiation-induced fibrosis, inflammation, and carcinogenesis. Case 0269 showed interstitial fibrosis in peripheral and subpleural regions of the lung, but no pulmonary tumors. In contrast, the dogs with similar and higher doses showed pulmonary tumors primarily in brochiolo-alveolar, peripheral and subpleural alveolar regions. The TUNEL assay showed slight elevation of apoptosis in tracheal mucosa, tumor cells, and nuclear debris was present in the inflammatory regions of alveoli and lymph nodes of both the human and the dogs. The expression of apoptosis and a number of chemokine/cytokine genes was slightly but not significantly elevated in protein or gene levels compared to that of the control samples. In the beagles, mucous production was increased in the airway epithelial goblet cells and glands of trachea, and a number of chemokine/cytokine genes showed positive immunoreactivity. This analysis of archival tissue from an accidentally exposed worker and in a large animal model provides valuable information on the effects of long-term retention of plutonium in the respiratory tract and the histological evaluation study may impact mechanistic studies of radiation carcinogenesis

  14. Environmental carcinogenesis and genetic variability

    International Nuclear Information System (INIS)

    Knudsen, A.G. Jr

    1977-01-01

    It was found that carcinogenesis in man may involve the interaction of genetic and environmental forces, and that mutation, whether germinal or somatic, seems to be involved in the origin of many, perhaps all cancers. The cancers of man may be visualized as occurring in four groups of individuals according to whether (1) neither genetic nor environmental factors are dominant, i.e. 'background' or 'spontaneous' cancer, (2) heredity alone is dominant, (3) environment alone is important, or (4) both are operating (Knudsen, 1977). The last two groups together are widely thought to contribute 70-80% of cancer cases in the United States; the relative contribution of each group is a major question to be answered

  15. Liver Development, Regeneration, and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Janet W. C. Kung

    2010-01-01

    Full Text Available The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.

  16. Radiation carcinogenesis

    International Nuclear Information System (INIS)

    Adams, G.E.

    1987-01-01

    In this contribution about carcinogenesis induced by ionizing radiation some radiation dose-response relationships are discussed. Curves are shown of the relation between cell survival and resp. low and high LET radiation. The difference between both curves can be ascribed to endogenous repair mechanisms in the cell. The relation between single-gen mutation frequency and the surviving fractions of irradiated cells indicates that these repairing mechanisms are not error free. Some examples of reverse dose-response relationships are presented in which decreasing values of dose-rate (LET) correspond with increasing radiation induced cell transformation. Finally some molecular aspects of radiation carcinogenesis are discussed. (H.W.). 22 refs.; 4 figs

  17. CHL1 is involved in human breast tumorigenesis and progression

    Energy Technology Data Exchange (ETDEWEB)

    He, Li-Hong [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ma, Qin [Department of Oncology, The General Hospital of Tianjin Medical University, Tianjin (China); Shi, Ye-Hui [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ge, Jie; Zhao, Hong-Meng [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Li, Shu-Fen [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Tong, Zhong-Sheng, E-mail: 83352162@qq.com [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

    2013-08-23

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression.

  18. CHL1 is involved in human breast tumorigenesis and progression

    International Nuclear Information System (INIS)

    He, Li-Hong; Ma, Qin; Shi, Ye-Hui; Ge, Jie; Zhao, Hong-Meng; Li, Shu-Fen; Tong, Zhong-Sheng

    2013-01-01

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression

  19. Multistage models of carcinogenesis and their implications for dose-response models and risk projections

    International Nuclear Information System (INIS)

    Hoel, D.G.

    1992-01-01

    Multistage models are used to both describe the biological steps in developing a cancer and as a mathematical description of the relationship of exposure to tumor incidence. With the rapid development of molecular biology the stages of tumor development are becoming understood. Specifically, the effect and role of proto-oncogenes and suppressor genes are exciting developments in the field of carcinogenesis. Mathematically the field has moved from the original Armitage-Doll multistage model to the more current cell kinetic models. These latter models attempt to describe both the rate of cell mutation and the birth-death process involved in clonal expansion. This then allows modeling of both initiation and promotion or cellular proliferation. The field of radiation carcinogenesis has a considerable body of data and knowledge. Unfortunately, relatively little work has been done with the cell kinetic models as to estimation of tumor incidence. This may be due to the newness of kinetic models in general. The field holds promise and it is essential if we are to develop better human risk estimates from exposure to ionizing radiation. (author)

  20. Mechanisms of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Bekkum, D.W. van

    1975-01-01

    This speculative review on radiation carcinogenesis deals mainly with its immunological aspects. It need not be emphasized that the role of immunology in carcinogenesis is not yet well understood. Immunological aspects of radiation carcinogenesis comprise a large number of different parameters on the part of the host as well as on the part of the tumor itself. Only two aspects, both related to radiation, will be discussed here. One is the way in which the carcinogenic exposure to ionizing radiation may affect the immune reactivity of the irradiated organism, thereby perhaps changing its responses against the malignant cells. The second aspect is the immunological properties of cells transformed by ionizing irradiation, which may provide the targets for a host-anti-tumor reaction

  1. High mobility group box associated with cell proliferation appears to play an important role in hepatocellular carcinogenesis in rats and humans.

    Science.gov (United States)

    Suzuki, Shugo; Takeshita, Kentaro; Asamoto, Makoto; Takahashi, Satoru; Kandori, Hitoshi; Tsujimura, Kazunari; Saito, Fumiyo; Masuko, Kazuo; Shirai, Tomoyuki

    2009-01-31

    To identify genes important in hepatocellular carcinogenesis, especially processes involved in malignant transformation, we focused on differences in gene expression between adenomas and carcinomas by DNA microarray. Eighty-one genes for which expression was specific in carcinomas were analyzed using Ingenuity Pathway Analysis software and Gene Ontology, and found to be associated with TP53 and regulators of cell proliferation. In the genes associated with TP53, we selected high mobility group box (HMGB) for detailed analysis. Immunohistochemistry revealed expression of HMGBs in carcinomas to be significantly higher than in other lesions among both human and rat liver, and a positive correlation between HMGBs and TP53 was detected in rat carcinomas. Knock-down of HMGB 2 expression in a rat hepatocellular carcinoma cell line by RNAi resulted in inhibition of cell growth, although no effects on invasion were evident in vitro. These results suggest that acquisition of malignant potential in the liver requires specific signaling pathways related to high cell proliferation associated with TP53. In particular, HMGBs appear to have an important role for progression and cell proliferation associated with loss of TP53 function in rat and in human hepatocarcinogenesis.

  2. High mobility group box associated with cell proliferation appears to play an important role in hepatocellular carcinogenesis in rats and humans

    International Nuclear Information System (INIS)

    Suzuki, Shugo; Takeshita, Kentaro; Asamoto, Makoto; Takahashi, Satoru; Kandori, Hitoshi; Tsujimura, Kazunari; Saito, Fumiyo; Masuko, Kazuo; Shirai, Tomoyuki

    2009-01-01

    To identify genes important in hepatocellular carcinogenesis, especially processes involved in malignant transformation, we focused on differences in gene expression between adenomas and carcinomas by DNA microarray. Eighty-one genes for which expression was specific in carcinomas were analyzed using Ingenuity Pathway Analysis software and Gene Ontology, and found to be associated with TP53 and regulators of cell proliferation. In the genes associated with TP53, we selected high mobility group box (HMGB) for detailed analysis. Immunohistochemistry revealed expression of HMGBs in carcinomas to be significantly higher than in other lesions among both human and rat liver, and a positive correlation between HMGBs and TP53 was detected in rat carcinomas. Knock-down of HMGB 2 expression in a rat hepatocellular carcinoma cell line by RNAi resulted in inhibition of cell growth, although no effects on invasion were evident in vitro. These results suggest that acquisition of malignant potential in the liver requires specific signaling pathways related to high cell proliferation associated with TP53. In particular, HMGBs appear to have an important role for progression and cell proliferation associated with loss of TP53 function in rat and in human hepatocarcinogenesis

  3. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Gokhan Yildiz

    Full Text Available Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal" by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15

  4. Inflammatory and redox reactions in colorectal carcinogenesis.

    Science.gov (United States)

    Guina, Tina; Biasi, Fiorella; Calfapietra, Simone; Nano, Mario; Poli, Giuseppe

    2015-03-01

    It has been established that there is a relationship between chronic inflammation and cancer development. The constant colonic inflammation typical of inflammatory bowel diseases is now considered a risk factor for colorectal carcinoma (CRC) development. The inflammatory network of signaling molecules is also required during the late phases of carcinogenesis, to enable cancer cells to survive and to metastasize. Oxidative reactions are an integral part of the inflammatory response, and are generally associated with CRC development. However, when the malignant phenotype is acquired, increased oxidative status induces antioxidant defenses in cancer cells, favoring their aggressiveness. This contradictory behavior of cancer cells toward redox status is of great significance for potential anticancer therapies. This paper summarizes the essential background information relating to the molecules involved in regulating oxidative stress and inflammation during carcinogenesis. Understanding more of their function in CRC stages might provide the foundation for future developments in CRC treatment. © 2015 New York Academy of Sciences.

  5. Radiation carcinogenesis and related radiobiology. Special listing

    International Nuclear Information System (INIS)

    1978-01-01

    This Special Listing of Current Cancer Research Projects is a service of the International Cancer Research Data Bank (ICRDB) program of the National Cancer Institute. Each listing contains descriptions of ongoing projects in one selected cancer research area. The descriptions are provided by cancer scientists in about 50 different countries. Research areas covered in this listing are: Human cancer and exposure to radiation; experimental radiation carcinogenesis and radiation biology

  6. Epigenetic mechanism of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Niwa, Ohtsura

    1995-01-01

    Carcinogenic action of radiations has long been thought to be due to its mutagenic activity. Since DNA damage is induced and distributes in a stochastic fashion, radiation induction of cancers was also assumed to follow a stochastic kinetics. However, recent progress in radiation research has revealed that some features of radiation carcinogenesis are not explainable by the simple action of radiation as a DNA damaging and mutagenic agent. Firstly, frequencies of radiation-induced transformation in vitro and radiation-induced mammary cancers in rats are too high to be accounted for by the frequency of radiation-induced mutation. Secondly, trans-generation carcinogenesis among F1 mice born to irradiated parents occurs also much more frequently than to be predicted by the frequency of radiation induced germline mutation. Thirdly, multistage carcinogenesis theory predicts that carcinogens give hits to the target cells so as to shorten the latency of cancers. However, latencies of radiation induced solid cancers among atomic bomb survivors are similar to those of the control population. Fourthly, although radiation elevates the frequency of cancers, the induced cancers seem to share the same spectrum of cancer types as in the unirradiated control populations. This suggests that radiation induces cancer by enhancement of the spontaneous carcinogenesis process. These data suggest that the first step of radiation carcinogenesis may not be the direct induction of mutation. Radiation may induce genetic instability which increases the spontaneous mutation rate in the cells to produce carcinogenic mutations. Growth stimulatory effect of radiation may also contribute to the process. Thus, epigenetic, but not genetic effect of radiation might better contribute in the process of carcinogenesis. (author)

  7. Radiation carcinogenesis: Epidemiology and biological significance

    International Nuclear Information System (INIS)

    Boice, J.D.; Fraumeni, J.F.

    1984-01-01

    Epidemiologic studies of populations exposed to radiation have led to the identification of a preventable cause of cancer, but in the long run perhaps the most important contribution of radiation studies will be to provide insights into the basic processes of human carcinogenesis. In this volume, key investigators of major epidemiologic projects summarize their observations to date, including information to help assess the effects of low-level exposures. Experimentalists and theorists emphasize the relevance of laboratory and epidemiologic data in elucidating carcinogenic risks and mechanisms in man. This volume was prepared with several objectives in mind: (a) organize and synthesize knowledge on radiation carcinogenesis through epidemiologic and experimental approaches; (b) illustrate and explore ways of utilizing this information to gain insights into the fundamental mechanisms of cancer development; (c) stimulate the formation of hypotheses suited to experimental or epidemiologic testing, theoretical modeling, and multidisciplinary approaches; and (d) identify recent advances that clarify dose-response relationships and the influence of low-dose exposures, provide leads to carcinogenic mechanisms and host-environmental interactions, and suggest strategies for future research and preventive action

  8. Modulation of Estrogen Chemical Carcinogenesis by Botanical Supplements used for Postmenopausal Women’s Health

    Science.gov (United States)

    Snelten, Courtney S.; Dietz, Birgit; Bolton, Judy L.

    2012-01-01

    Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements could protect women from estrogen carcinogenesis by modulating key enzymatic steps [aromatase, P4501B1, P4501A1, catechol-O-methyltransferase (COMT), NAD(P)H quinone oxidoreductase 1 (NQO1), and reactive oxygen species (ROS) scavenging] in estradiol metabolism leading to estrogen carcinogenesis as outlined in Figure 1. This review summarizes the influence of popular botanical supplements used for women’s health on these key steps in the estrogen chemical carcinogenesis pathway, and suggests that botanical supplements may have added chemopreventive benefits by modulating estrogen metabolism. PMID:24223609

  9. Experimental radiation carcinogenesis is studies at NIRS

    International Nuclear Information System (INIS)

    Sado, Toshihiko

    1992-01-01

    Experimental radiation carcinogenesis studies conducted during the past decade at NIRS are briefly reviewed. They include the following: 1) Age dependency of susceptibility to radiation carcinogenesis. 2) Radiation-induced myeloid leukemia. 3) Mechanism of fractionated X-irradiation (FX) induced thymic lymphomas. 4) Significance of radiation-induced immunosuppression in radiation carcinogenesis in vivo. 5) Other ongoing studies. (author)

  10. Mouse Models of the Skin: Models to Define Mechanisms of Skin Carcinogenesis

    International Nuclear Information System (INIS)

    Wheeler, D. L.; Verma, A. K.; Denning, M. F.

    2013-01-01

    The multistep model of mouse skin carcinogenesis has facilitated identification of irreversible genetic events of initiation and progression, and epigenetic events of tumor promotion. Mouse skin tumor initiation can be accomplished by a single exposure to a sufficiently small dose of a carcinogen, and this step is rapid and irreversible. However, promotion of skin tumor formation requires a repeated and prolonged exposure to a promoter, and that tumor promotion is reversible. Investigations focused on the mechanisms of mouse carcinogenesis have resulted in the identifications of potential molecular targets of cancer induction and progression useful in planning strategies for human cancer prevention trials. This special issue contains eight papers that focus on mouse models used to study individual proteins expressed in the mouse skin and the role they play in differentiation, tissue homeostasis, skin carcinogenesis, and chemo prevention of skin cancer.

  11. Human AP Endonuclease 1: A Potential Marker for the Prediction of Environmental Carcinogenesis Risk

    Directory of Open Access Journals (Sweden)

    Jae Sung Park

    2014-01-01

    Full Text Available Human apurinic/apyrimidinic endonuclease 1 (APE1 functions mainly in DNA repair as an enzyme removing AP sites and in redox signaling as a coactivator of various transcription factors. Based on these multifunctions of APE1 within cells, numerous studies have reported that the alteration of APE1 could be a crucial factor in development of human diseases such as cancer and neurodegeneration. In fact, the study on the combination of an individual’s genetic make-up with environmental factors (gene-environment interaction is of great importance to understand the development of diseases, especially lethal diseases including cancer. Recent reports have suggested that the human carcinogenic risk following exposure to environmental toxicants is affected by APE1 alterations in terms of gene-environment interactions. In this review, we initially outline the critical APE1 functions in the various intracellular mechanisms including DNA repair and redox regulation and its roles in human diseases. Several findings demonstrate that the change in expression and activity as well as genetic variability of APE1 caused by environmental chemical (e.g., heavy metals and cigarette smoke and physical carcinogens (ultraviolet and ionizing radiation is likely associated with various cancers. These enable us to ultimately suggest APE1 as a vital marker for the prediction of environmental carcinogenesis risk.

  12. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  13. End-Binding Protein 1 (EB1) Up-regulation is an Early Event in Colorectal Carcinogenesis

    Science.gov (United States)

    Stypula-Cyrus, Yolanda; Mutyal, Nikhil N.; Cruz, Mart Angelo Dela; Kunte, Dhananjay P.; Radosevich, Andrew J.; Wali, Ramesh; Roy, Hemant K.; Backman, Vadim

    2014-01-01

    End-binding protein (EB1) is a microtubule protein that binds to the tumor suppressor adenomatous polyposis coli (APC). While EB1 is implicated as a potential oncogene, its role in cancer progression is unknown. Therefore, we analyzed EB1/APC expression at the earliest stages of colorectal carcinogenesis and in the uninvolved mucosa ("field effect") of human and animal tissue. We also performed siRNA-knockdown in colon cancer cell lines. EB1 is up-regulated in early and field carcinogenesis in the colon, and the cellular/nano-architectural effect of EB1 knockdown depended on the genetic context. Thus, dysregulation of EB1 is an important early event in colon carcinogenesis. PMID:24492008

  14. Experimental Hepatic Carcinogenesis: Oxidative Stress and Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Velid Unsal

    2017-08-01

    Full Text Available Hepatocellular carcinoma is one of the most common cancers in the world, and it is influenced by agents such as DEN, 2-AAF, phenobarbital, alcohol, aflatoxin B1 metabolite or hepatitis viruses (B and C. Oxidative stress is becoming recognized as a key factor in the progression of hepatocarcinogenesis. Reactive oxygen species can play a leading role in initiation and promotion of hepatic carcinogenesis. The metabolites of DEN Diethylnitrosamine (DEN mediate the binding of tumour promoters by covalently binding to the DNA with one or two oxidation-providing electrons. 2-AAF is the inducer of DEN, and it is involved in tumour formation in the bladder and liver. Reactive Oxygen species (ROS; carbohydrates, lipids, DNA and enzymes, such as affect all important structures. Additionally, an excessive amount of ROS is highly toxic to cells. Antioxidants are protects against ROS, toxic substances, carcinogens. This review focuses on the literature on studies of Hepatic Carcinogenesis, oxidative stress and antioxidant therapy.

  15. Cortactin is a prognostic marker for oral squamous cell carcinoma and its overexpression is involved in oral carcinogenesis.

    Science.gov (United States)

    Liu, Yu-Ching; Ho, Heng-Chien; Lee, Miau-Rong; Yeh, Chung-Min; Tseng, Hsien-Chang; Lin, Yung-Chang; Chung, Jing-Gung

    2017-03-01

    EMS1 (chromosome eleven, band q13, mammary tumor and squamous cell carcinoma-associated gene 1) gene amplification and the concomitant cortactin overexpression have been reported to associate with poor prognosis and tumor metastasis. In this study, we examined cortactin expression by immunohistochemistry in human oral tumors and murine tongue tumors which were induced by the carcinogen 4-nitroquinoline 1-oxide (4-NQO). The immunostaining results show over- to moderate expression of cortactin in 85% (104/122) of oral squamous cell carcinoma (OSCC) tissues and in all 15 leukoplakia tissues examined. Further, statistical analysis indicates that cortactin overexpression appears to be a predictor for shorter survival and poorer prognosis in OSCC patients. In an animal model, cortactin is shown to upregulate in infiltrating squamous cell carcinoma, papilloma, and epithelia with squamous hyperplasia, indicating that cortactin induction is an early event during oral carcinogenesis. It is suggested that cortactin expression is mediated in the progression of pre-malignancy to papilloma, based on earlier cortactin induction in pre-malignancy preceding cyclin D1 in papilloma. In conclusion, cortactin overexpression is frequently observed in human OSCC and mouse tongue tumors. Thus, cortactin may have an important role in the development of oral tumors in human and mice. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 799-812, 2017. © 2016 Wiley Periodicals, Inc.

  16. Colorectal carcinogenesis: Review of human and experimental animal studies

    Directory of Open Access Journals (Sweden)

    Tanaka Takuji

    2009-01-01

    Full Text Available This review gives a comprehensive overview of cancer development and links it to the current understanding of tumorigenesis and malignant progression in colorectal cancer. The focus is on human and murine colorectal carcinogenesis and the histogenesis of this malignant disorder. A summary of a model of colitis-associated colon tumorigenesis (an AOM/DSS model will also be presented. The earliest phases of colorectal oncogenesis occur in the normal mucosa, with a disorder of cell replication. The large majority of colorectal malignancies develop from an adenomatous polyp (adenoma. These can be defined as well-demarcated masses of epithelial dysplasia, with uncontrolled crypt cell proliferation. When neoplastic cells pass through the muscularis mucosa and infiltrate the submucosa, they are malignant. Carcinomas usually originate from pre-existing adenomas, but this does not imply that all polyps undergo malignant changes and does not exclude de novo oncogenesis. Besides adenomas, there are other types of pre-neoplasia, which include hyperplastic polyps, serrated adenomas, flat adenomas and dysplasia that occurs in the inflamed colon in associated with inflammatory bowel disease. Colorectal neoplasms cover a wide range of pre-malignant and malignant lesions, many of which can easily be removed during endoscopy if they are small. Colorectal neoplasms and/or pre-neoplasms can be prevented by interfering with the various steps of oncogenesis, which begins with uncontrolled epithelial cell replication, continues with the formation of adenomas and eventually evolves into malignancy. The knowledge described herein will help to reduce and prevent this malignancy, which is one of the most frequent neoplasms in some Western and developed countries.

  17. Aberrant Hypermethylation of SALL3 with HPV Involvement Contributes to the Carcinogenesis of Cervical Cancer.

    Directory of Open Access Journals (Sweden)

    Xing Wei

    HPV-negative tissues (p<0.05.The aberrant hypermethylation of SALL3 together with HPV involvement inactivated its function as a tumor suppressor and contributed to carcinogenesis in cervical cancer.

  18. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  19. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States); Oksuz, Betul Akgol [Genome Technology Center, New York University Langone Medical Center, New York, NY 10016 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta [Department of Chemistry and Pharmacy, University of Sassari, Sassari (Italy); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States)

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. - Highlights: • Tungsten (W) induces cell transformation and increases migration in vitro. • W increases xenograft growth in nude mice. • W altered the expression of cancer-related genes such as those involved in leukemia. • Some of the dysregulated leukemia genes include, CD74, CTGF, MST4, and HOXB5. • For the first time, data is presented that demonstrates tungsten's carcinogenic potential.

  20. Palytoxin: exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis.

    Science.gov (United States)

    Wattenberg, Elizabeth V

    2007-01-01

    Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na(+),K(+)-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated.

  1. Biological Complexities in Radiation Carcinogenesis and Cancer Radiotherapy: Impact of New Biological Paradigms

    Directory of Open Access Journals (Sweden)

    Hossein Mozdarani

    2012-01-01

    Full Text Available Although radiation carcinogenesis has been shown both experimentally and epidemiologically, the use of ionizing radiation is also one of the major modalities in cancer treatment. Various known cellular and molecular events are involved in carcinogenesis. Apart from the known phenomena, there could be implications for carcinogenesis and cancer prevention due to other biological processes such as the bystander effect, the abscopal effect, intrinsic radiosensitivity and radioadaptation. Bystander effects have consequences for mutation initiated cancer paradigms of radiation carcinogenesis, which provide the mechanistic justification for low-dose risk estimates. The abscopal effect is potentially important for tumor control and is mediated through cytokines and/or the immune system (mainly cell-mediated immunity. It results from loss of growth and stimulatory and/or immunosuppressive factors from the tumor. Intrinsic radiosensitivity is a feature of some cancer prone chromosomal breakage syndromes such as ataxia telangectiasia. Radiosensitivity is manifested as higher chromosomal aberrations and DNA repair impairment is now known as a good biomarker for breast cancer screening and prediction of prognosis. However, it is not yet known whether this effect is good or bad for those receiving radiation or radiomimetic agents for treatment. Radiation hormesis is another major concern for carcinogenesis. This process which protects cells from higher doses of radiation or radio mimic chemicals, may lead to the escape of cells from mitotic death or apoptosis and put cells with a lower amount of damage into the process of cancer induction. Therefore, any of these biological phenomena could have impact on another process giving rise to genome instability of cells which are not in the field of radiation but still receiving a lower amount of radiation. For prevention of radiation induced carcinogenesis or risk assessment as well as for successful radiation

  2. Mutagenesis and carcinogenesis resulting from environment pollution

    International Nuclear Information System (INIS)

    Dimitrov, B.

    2001-01-01

    The paper reviews different ways of environmental contamination with natural and artificial harmful substances (chemical and radioactive) and their role in the processes of mutagenesis and carcinogenesis. The recent studies of the mechanism of mutagenesis and carcinogenesis due to environmental pollution are discussed

  3. Antibiotic suppression of intestinal microbiota reduces heme-induced lipoperoxidation associated with colon carcinogenesis in rats.

    Science.gov (United States)

    Martin, O C B; Lin, C; Naud, N; Tache, S; Raymond-Letron, I; Corpet, D E; Pierre, F H

    2015-01-01

    Epidemiological studies show that heme iron from red meat is associated with increased colorectal cancer risk. In carcinogen-induced-rats, a heme iron-rich diet increases the number of precancerous lesions and raises associated fecal biomarkers. Heme-induced lipoperoxidation measured by fecal thiobarbituric acid reagents (TBARs) could explain the promotion of colon carcinogenesis by heme. Using a factorial design we studied if microbiota could be involved in heme-induced carcinogenesis, by modulating peroxidation. Rats treated or not with an antibiotic cocktail were given a control or a hemoglobin-diet. Fecal bacteria were counted on agar and TBARs concentration assayed in fecal water. The suppression of microbiota by antibiotics was associated with a reduction of crypt height and proliferation and with a cecum enlargement, which are characteristics of germ-free rats. Rats given hemoglobin diets had increased fecal TBARs, which were suppressed by the antibiotic treatment. A duplicate experiment in rats given dietary hemin yielded similar results. These data show that the intestinal microbiota is involved in enhancement of lipoperoxidation by heme iron. We thus suggest that microbiota could play a role in the heme-induced promotion of colorectal carcinogenesis.

  4. Carcinogenesis of the Oral Cavity: Environmental Causes and Potential Prevention by Black Raspberry.

    Science.gov (United States)

    El-Bayoumy, Karam; Chen, Kun-Ming; Zhang, Shang-Min; Sun, Yuan-Wan; Amin, Shantu; Stoner, Gary; Guttenplan, Joseph B

    2017-01-17

    Worldwide, cancers of the oral cavity and pharynx comprise the sixth most common malignancies. Histologically, more than 90% of oral cancers are squamous cell carcinoma (SCC). Epidemiologic data strongly support the role of exogenous factors such as tobacco, alcohol, and human papilloma virus infection as major causative agents. Avoidance of risk factors has only been partially successful, and survival rates have not improved despite advances in therapeutic approaches. Therefore, new or improved approaches to prevention and/or early detection are critical. Better understanding of the mechanisms of oral carcinogenesis can assist in the development of novel biomarkers for early detection and strategies for disease prevention. Toward this goal, several animal models for carcinogenesis in the oral cavity have been developed. Among these are xenograft, and transgenic animal models, and others employing the synthetic carcinogens such as 7,12-dimethylbenz[a]anthracene in hamster cheek pouch and 4-nitroquinoline-N-oxide in rats and mice. Additional animal models employing environmental carcinogens such as benzo[a]pyrene and N'-nitrosonornicotine have been reported. Each model has certain advantages and disadvantages. Models that (1) utilize environmental carcinogens, (2) reflect tumor heterogeneity, and (3) accurately represent the cellular and molecular changes involved in the initiation and progression of oral cancer in humans could provide a realistic platform. To achieve this goal, we introduced a novel nonsurgical mouse model to study oral carcinogenesis induced by dibenzo[a,l]pyrene (DB[a,l]P), an environmental pollutant and tobacco smoke constituent, and its diol epoxide metabolite (±)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene [(±)-anti-DB[a,l]PDE]. On the basis of a detailed comparison of oral cancer induced by DB[a,l]P with that induced by the other above-mentioned oral carcinogens with respect to dose, duration, species and

  5. Hepatitis C virus core protein targets 4E-BP1 expression and phosphorylation and potentiates Myc-induced liver carcinogenesis in transgenic mice.

    Science.gov (United States)

    Abdallah, Cosette; Lejamtel, Charlène; Benzoubir, Nassima; Battaglia, Serena; Sidahmed-Adrar, Nazha; Desterke, Christophe; Lemasson, Matthieu; Rosenberg, Arielle R; Samuel, Didier; Bréchot, Christian; Pflieger, Delphine; Le Naour, François; Bourgeade, Marie-Françoise

    2017-08-22

    Hepatitis C virus (HCV) is a leading cause of liver diseases including the development of hepatocellular carcinoma (HCC). Particularly, core protein has been involved in HCV-related liver pathologies. However, the impact of HCV core on signaling pathways supporting the genesis of HCC remains largely elusive. To decipher the host cell signaling pathways involved in the oncogenic potential of HCV core, a global quantitative phosphoproteomic approach was carried out. This study shed light on novel differentially phosphorylated proteins, in particular several components involved in translation. Among the eukaryotic initiation factors that govern the translational machinery, 4E-BP1 represents a master regulator of protein synthesis that is associated with the development and progression of cancers due to its ability to increase protein expression of oncogenic pathways. Enhanced levels of 4E-BP1 in non-modified and phosphorylated forms were validated in human hepatoma cells and in mouse primary hepatocytes expressing HCV core, in the livers of HCV core transgenic mice as well as in HCV-infected human primary hepatocytes. The contribution of HCV core in carcinogenesis and the status of 4E-BP1 expression and phosphorylation were studied in HCV core/Myc double transgenic mice. HCV core increased the levels of 4E-BP1 expression and phosphorylation and significantly accelerated the onset of Myc-induced tumorigenesis in these double transgenic mice. These results reveal a novel function of HCV core in liver carcinogenesis potentiation. They position 4E-BP1 as a tumor-specific target of HCV core and support the involvement of the 4E-BP1/eIF4E axis in hepatocarcinogenesis.

  6. Gastric microbiota and carcinogenesis: the role of non-Helicobacter pylori bacteria: a systematic review

    Directory of Open Access Journals (Sweden)

    Emanuel Dias-Jácome

    Full Text Available Background and aim: Helicobacter pylori is the strongest risk factor for gastric cancer. However, recent advances in DNA sequencing technology have revealed a complex microbial community in the stomach that could also contribute to the development of gastric cancer. The aim of this study was to present recent scientific evidence regarding the role of non-Helicobacter pylori bacteria in gastric carcinogenesis. Methods: A systematic review of original articles published in PubMed in the last ten years related to gastric microbiota and gastric cancer in humans was performed. Results: Thirteen original articles were included. The constitution of gastric microbiota appears to be significantly affected by gastric cancer and premalignant lesions. In fact, differences in gastric microbiota have been documented, depending on Helicobacter pylori status and gastric conditions, such as non-atrophic gastritis, intestinal metaplasia and cancer. Gastric carcinogenesis can be associated with an increase in many bacteria (such as Lactobacillus coleohominis, Klebsiella pneumoniae or Acinetobacter baumannii as well as decrease in others (such as Porphyromonas spp, Neisseria spp, Prevotella pallens or Streptococcus sinensis. However, there is no conclusive data that confirms if these changes in microbiota are a cause or consequence of the process of carcinogenesis. Conclusions: Even though there is limited evidence in humans, microbiota differences between normal individuals, pre-malignant lesions and gastric cancer could suggest a progressive shift in the constitution of gastric microbiota in carcinogenesis, possibly resulting from a complex cross-talk between gastric microbiota and Helicobacter pylori. However, further studies are needed to elucidate the specific role (if any of different microorganisms.

  7. Gastric microbiota and carcinogenesis: the role of non-Helicobacter pylori bacteria - A systematic review.

    Science.gov (United States)

    Dias-Jácome, Emanuel; Libânio, Diogo; Borges-Canha, Marta; Galaghar, Ana; Pimentel-Nunes, Pedro

    2016-09-01

    Helicobacter pylori is the strongest risk factor for gastric cancer. However, recent advances in DNA sequencing technology have revealed a complex microbial community in the stomach that could also contribute to the development of gastric cancer. The aim of this study was to present recent scientific evidence regarding the role of non-Helicobacter pylori bacteria in gastric carcinogenesis. A systematic review of original articles published in PubMed in the last ten years related to gastric microbiota and gastric cancer in humans was performed. Thirteen original articles were included. The constitution of gastric microbiota appears to be significantly affected by gastric cancer and premalignant lesions. In fact, differences in gastric microbiota have been documented, depending on Helicobacter pylori status and gastric conditions, such as non-atrophic gastritis, intestinal metaplasia and cancer. Gastric carcinogenesis can be associated with an increase in many bacteria (such as Lactobacillus coleohominis, Klebsiella pneumoniae or Acinetobacter baumannii) as well as decrease in others (such as Porphyromonas spp, Neisseria spp, Prevotella pallens or Streptococcus sinensis). However, there is no conclusive data that confirms if these changes in microbiota are a cause or consequence of the process of carcinogenesis. Even though there is limited evidence in humans, microbiota differences between normal individuals, pre-malignant lesions and gastric cancer could suggest a progressive shift in the constitution of gastric microbiota in carcinogenesis, possibly resulting from a complex cross-talk between gastric microbiota and Helicobacter pylori. However, further studies are needed to elucidate the specific role (if any) of different microorganisms.

  8. International Activities in Radiation-Induced Carcinogenesis. Survey Paper

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, E. [World Health Organization, Geneva (Switzerland)

    1969-11-15

    During the past 10 years special attention has been paid to the problem of late effects of radiation and in particular to radiation-induced carcinogenesis and leukaemogenesis. In the UNSCEAR report of 1958-1962 this.problem was mentioned as being of considerable importance from the point of view of estimation of risk to the population from environmental radiation. In 1964 a special report was prepared by UNSCEAR on radiation- induced carcinogenesis. In the ICRP publication No. 8, a chapter dealing with assessment of somatic risks discussed the problem of leukaemia and other neoplasms and particularly stressed the problem of thyroid carcinoma-and bone sarcoma. WHO panels of experts discussed the problem in 1960-1966 and made some recommendations for international activity in this field. In spite of the amount of scientific attention that has been given in recent years to experimental radiobiology in animals and lower forms, it has become abundantly clear that information directly applicable to humans is woefully inadequate and that there is a desperate need for carefully collected data from man on which to base public health planning and day to day work in radiation protection. This has long been recognized in the technical program of WHO in the emphasis given to the practical importance of epidemiology in human radiobiology and the degree to which it depends upon international collaboration.

  9. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells.

    Science.gov (United States)

    Liu, Yi; Luo, Fei; Wang, Bairu; Li, Huiqiao; Xu, Yuan; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Xu, Wenchao; Lu, Lu; Qin, Yu; Xiang, Quanyong; Liu, Qizhan

    2016-01-01

    Although microRNA (miRNA) enclosed in exosomes can mediate intercellular communication, the roles of exosomal miRNA and angiogenesis in lung cancer remain unclear. We investigated functions of STAT3-regulated exosomal miR-21 derived from cigarette smoke extract (CSE)-transformed human bronchial epithelial (HBE) cells in the angiogenesis of CSE-induced carcinogenesis. miR-21 levels in serum were higher in smokers than those in non-smokers. The medium from transformed HBE cells promoted miR-21 levels in normal HBE cells and angiogenesis of human umbilical vein endothelial cells (HUVEC). Transformed cells transferred miR-21 into normal HBE cells via exosomes. Knockdown of STAT3 reduced miR-21 levels in exosomes derived from transformed HBE cells, which blocked the angiogenesis. Exosomes derived from transformed HBE cells elevated levels of vascular endothelial growth factor (VEGF) in HBE cells and thereby promoted angiogenesis in HUVEC cells. Inhibition of exosomal miR-21, however, decreased VEGF levels in recipient cells, which blocked exosome-induced angiogenesis. Thus, miR-21 in exosomes leads to STAT3 activation, which increases VEGF levels in recipient cells, a process involved in angiogenesis and malignant transformation of HBE cells. These results, demonstrating the function of exosomal miR-21 from transformed HBE cells, provide a new perspective for intervention strategies to prevent carcinogenesis of lung cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. TRP Channels in Human Prostate

    Directory of Open Access Journals (Sweden)

    Carl Van Haute

    2010-01-01

    Full Text Available This review gives an overview of morphological and functional characteristics in the human prostate. It will focus on the current knowledge about transient receptor potential (TRP channels expressed in the human prostate, and their putative role in normal physiology and prostate carcinogenesis. Controversial data regarding the expression pattern and the potential impact of TRP channels in prostate function, and their involvement in prostate cancer and other prostate diseases, will be discussed.

  11. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    International Nuclear Information System (INIS)

    Pradhan, Prabhakar; Damania, Dhwanil; Turzhitsky, Vladimir; Subramanian, Hariharan; Backman, Vadim; Joshi, Hrushikesh M; Dravid, Vinayak P; Roy, Hemant K; Taflove, Allen

    2011-01-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed

  12. Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis

    Science.gov (United States)

    Scott, RE; Ghule, PN; Stein, JL; Stein, GS

    2015-01-01

    The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with p = e−13 to e−36. Cell cycle expression networks show species, sex and tissue variability and they are enriched in mRNA transcripts associated with mitosis many of which are associated with chromosomal instability. PMID:25808367

  13. Alterations in mtDNA, gastric carcinogenesis and early diagnosis.

    Science.gov (United States)

    Rodrigues-Antunes, S; Borges, B N

    2018-05-26

    Gastric cancer remains one of the most prevalent cancers in the world. Due to this, efforts are being made to improve the diagnosis of this neoplasm and the search for molecular markers that may be involved in its genesis. Within this perspective, the mitochondrial DNA is considered as a potential candidate, since it has several well documented changes and is readily accessible. However, numerous alterations have been reported in mtDNA, not facilitating the visualization of which alterations and molecular markers are truly involved with gastric carcinogenesis. This review presents a compilation of the main known changes relating mtDNA to gastric cancer and their clinical significance.

  14. Dysregulation of Autophagy Contributes to Anal Carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Evie H Carchman

    Full Text Available Autophagy is an intracellular catabolic process that removes and recycles unnecessary/dysfunctional cellular components, contributing to cellular health and survival. Autophagy is a highly regulated cellular process that responds to several intracellular signals, many of which are deregulated by human papillomavirus (HPV infection through the expression of HPV-encoded oncoproteins. This adaptive inhibitory response helps prevent viral clearance. A strong correlation remains between HPV infection and the development of squamous cell carcinoma (SCC of the anus, particularly in HIV positive and other immunosuppressed patients. We hypothesize that autophagy is inhibited by HPV-encoded oncoproteins thereby promoting anal carcinogenesis (Fig 1.HPV16 transgenic mice (K14E6/E7 and non-transgenic mice (FVB/N, both of which do not spontaneously develop anal tumors, were treated topically with the chemical carcinogen, 7,12-Dimethylbenz[a]anthracene (DMBA, to induce anal cancer. The anuses at different time points of treatment (5, 10, 15 and 20 weeks were analyzed using immunofluorescence (IF for two key autophagy marker proteins (LC3β and p62 in addition to histological grading. The anuses from the K14E6/E7 mice were also analyzed for visual evidence of autophagic activity by electron microscopy (EM. To see if there was a correlation to humans, archival anal specimens were assessed histologically for grade of dysplasia and then analyzed for LC3β and p62 protein content. To more directly examine the effect of autophagic inhibition on anal carcinogenesis, nontransgenic mice that do not develop anal cancer with DMBA treatment were treated with a known pharmacologic inhibitor of autophagy, chloroquine, and examined for tumor development and analyzed by IF for autophagic proteins.Histologically, we observed the progression of normal anoderm to invasive SCC with DMBA treatment in K14E6/E7 mice but not in nontransgenic, syngeneic FVB/N background control mice

  15. Effects of environmental stressors on histone modifications and their relevance to carcinogenesis: a systematic review.

    NARCIS (Netherlands)

    Dik, S.; Scheepers, P.T.J.; Godderis, L.

    2012-01-01

    Carcinogenesis is a complex process involving both genetic and epigenetic mechanisms. The cellular molecular epigenetic machinery, including histone modifications, is associated with changes in gene expression induced by exposure to environmental agents. In this paper, we systematically reviewed

  16. Curcumin: the spicy modulator of breast carcinogenesis.

    Science.gov (United States)

    Banik, Urmila; Parasuraman, Subramani; Adhikary, Arun Kumar; Othman, Nor Hayati

    2017-07-19

    Worldwide breast cancer is the most common cancer in women. For many years clinicians and the researchers are examining and exploring various therapeutic modalities for breast cancer. Yet the disease has remained unconquered and the quest for cure is still going on. Present-day strategy of breast cancer therapy and prevention is either combination of a number of drugs or a drug that modulates multiple targets. In this regard natural products are now becoming significant options. Curcumin exemplifies a promising natural anticancer agent for this purpose. This review primarily underscores the modulatory effect of curcumin on the cancer hallmarks. The focus is its anticancer effect in the complex pathways of breast carcinogenesis. Curcumin modulates breast carcinogenesis through its effect on cell cycle and proliferation, apoptosis, senescence, cancer spread and angiogenesis. Largely the NFkB, PI3K/Akt/mTOR, MAPK and JAK/STAT are the key signaling pathways involved. The review also highlights the curcumin mediated modulation of tumor microenvironment, cancer immunity, breast cancer stem cells and cancer related miRNAs. Using curcumin as a therapeutic and preventive agent in breast cancer is perplexed by its diverse biological activity, much of which remains inexplicable. The information reviewed here should point toward potential scope of future curcumin research in breast cancer.

  17. Initiation-promotion skin carcinogenesis and immunological competence.

    Science.gov (United States)

    Curtis, G L; Stenbäck, F; Ryan, W L

    1975-10-01

    The immune competence of mice during initiation-promotion skin carcinogenesis was determined by skin allograft rejection and lymphocyte mitogenesis. The carcinogen 7, 12-dimethylbenzanthracene inhibited the cellular immune competence of mice while lymphocytes from croton oil treated mice had enhanced PWM response. Chlorphenesin, a stimulator of cellular immunity, was found to inhibit tumorigenesis in initiation-promotion skin carcinogenesis when injected during promotion.

  18. A importância do gene p53 na carcinogênese humana The importance of the p53 gene in human carcinogenesis

    Directory of Open Access Journals (Sweden)

    Agnes C. Fett-Conte

    2002-04-01

    Full Text Available Existem várias razões que justificam o título de "guardião do genoma" do gene P53. Seu envolvimento, direto ou indireto, tem sido observado na etiopatogenia de praticamente todas as neoplasias humanas, incluindo as leucemias e linfomas. Conhecer seus mecanismos de ação é fundamental para compreender os aspectos moleculares da carcinogênese. O presente trabalho apresenta uma revisão sobre as características deste gene e sua importância no diagnóstico, prognóstico e terapêutica, o que faz dele um alvo em potencial das estratégias de terapia gênica.There are several reasons which justify the name of 'guardian of the genome' given to the P53 gene. Its involvement either directly or indirectly has been observed in the pathology of practically all human neoplasias, including leukemia and lymphomas. Knowledge of its mechanisms of action is fundamental to understand molecular aspects of carcinogenesis. This work presents a revision of the characteristics of this gene and its importance in the diagnosis, prognosis and treatment and why this makes it a potential target for gene therapy strategies.

  19. Strawberry Phytochemicals Inhibit Azoxymethane/Dextran Sodium Sulfate-Induced Colorectal Carcinogenesis in Crj: CD-1 Mice

    Directory of Open Access Journals (Sweden)

    Ni Shi

    2015-03-01

    Full Text Available Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg−1 body weight. One week after injection, mice were administered 2% (w/v dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05. The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease.

  20. Collective studies on carcinogenesis due to exposure to radiation

    International Nuclear Information System (INIS)

    Yamashita, Hisao

    1980-01-01

    Carcinogenesis was found in 150 of 25,692 patients who had received radiotherapy for benign diseases. Of primary diseases subjected to radiotherapy, skin diseases were the most. Carcinogenesis was found in 26 of 7,230 patients with skin diseases (0.36%) and 18 in 2286 patients with tuberculous cervical lymphadenitis (0.79%). The sites of carcinogenesis was the skin in 51 patients, the hypopharynx in 43, and the larynx in 18. Carcinogenesis was also found in 140 of 220,361 patients who had received radiotherapy for malignant tumors. As primary cancer, cancer of the cervix uteri was found in 59 of 48,662 patients, and breast cancer was found in 20 of 27,967 patients. As radiation-induced cancer, leukemia was found in 18 patients, soft tissue sarcoma in 18, skin cancer in 10, osteosarcoma in 6, cancer of the hypopharynx in 6, and cancer of the cervical esophagus in 6. It is necessary to differentiate cancer due to exposure to radiation from delayed recurrent cancer and double cancer. Irradiation fields should be restricted as small as possible in order to reduce carcinogenesis. As leukemia and carcinoma were found in a-bomb survivors exposed to very small dose of a-bomb radiation, carcinogenic mechanisms by chromosome aberrations, carcinogenic rates from a viewpoint of epidemiology, and other factors which influenced carcinogenesis are being investigated. (Tsunoda, M.)

  1. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice.

    Science.gov (United States)

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-03-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1(-/-) and Mlh1(+/+) mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1(+/+) mice. Colon tumors developed after DSS treatment alone in Mlh1(-/-) mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  2. The cancer-promoting gene fatty acid-binding protein 5 (FABP5) is epigenetically regulated during human prostate carcinogenesis.

    Science.gov (United States)

    Kawaguchi, Koichiro; Kinameri, Ayumi; Suzuki, Shunsuke; Senga, Shogo; Ke, Youqiang; Fujii, Hiroshi

    2016-02-15

    FABPs (fatty-acid-binding proteins) are a family of low-molecular-mass intracellular lipid-binding proteins consisting of ten isoforms. FABPs are involved in binding and storing hydrophobic ligands such as long-chain fatty acids, as well as transporting these ligands to the appropriate compartments in the cell. FABP5 is overexpressed in multiple types of tumours. Furthermore, up-regulation of FABP5 is strongly associated with poor survival in triple-negative breast cancer. However, the mechanisms underlying the specific up-regulation of the FABP5 gene in these cancers remain poorly characterized. In the present study, we determined that FABP5 has a typical CpG island around its promoter region. The DNA methylation status of the CpG island in the FABP5 promoter of benign prostate cells (PNT2), prostate cancer cells (PC-3, DU-145, 22Rv1 and LNCaP) and human normal or tumour tissue was assessed by bisulfite sequencing analysis, and then confirmed by COBRA (combined bisulfite restriction analysis) and qAMP (quantitative analysis of DNA methylation using real-time PCR). These results demonstrated that overexpression of FABP5 in prostate cancer cells can be attributed to hypomethylation of the CpG island in its promoter region, along with up-regulation of the direct trans-acting factors Sp1 (specificity protein 1) and c-Myc. Together, these mechanisms result in the transcriptional activation of FABP5 expression during human prostate carcinogenesis. Importantly, silencing of Sp1, c-Myc or FABP5 expression led to a significant decrease in cell proliferation, indicating that up-regulation of FABP5 expression by Sp1 and c-Myc is critical for the proliferation of prostate cancer cells. © 2016 Authors; published by Portland Press Limited.

  3. In Vitro Chemical Carcinogenesis and Co-Carcino-genesis in Human Cells Initiated by Hydrazine and Polynuclear Components of Jet Fuel

    Science.gov (United States)

    1980-09-01

    cats exposed to methylnitrosourea, Cancer Res., 38, 996, 1978. 12. Prehn, R.T’, Function of depressed immunologic reactivity during carcinogenesis, 3...4/8 UDH 50.0 N.D. 5.1 4/8 MAMA 3.6 N.D. 900.0 2/16 B(a)P 10.0 39 1.0 6/10 MMS 0.1 2500 0 0/6 U.V. 40 J.m-2 78 20.0 4/6 137Cs 100 r 39 13.1 3/7...intracellular distribution and binding of benzo(a)pyrene in human dysloid fibroblasts. Cancer Letters 10:57-65. 2. G. Milo, G.A. Ackerman, and I

  4. (Radiation carcinogenesis in the whole body system)

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1990-12-14

    The objectives of the trip were: to take part in and to give the summary of a Symposium on Radiation Carcinogenesis at Tokyo, and to give a talk at the National Institute of Radiological Sciences at Chiba. The breadth of the aspects considered at the conference was about as broad as is possible, from effects at the molecular level to human epidemiology, from the effects of tritium to cancer induction by heavy ions. The events induced by cancer that lead to cancer and the events that are secondary are beginning to come into better focus but much is still not known. Interest in suppressor genes is increasing rapidly in the studies of human tumors and many would predict that the three or four suppressor genes associated with cancer are only the first sighting of a much larger number.

  5. Etiologic related studies of ultraviolet light-mediated carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Black, H S; Chan, J T

    1976-01-01

    Comparisons were made of cholesterol-5..cap alpha.. 6..cap alpha..-epoxide (CAE) levels in skin of hairless mice maintained on a regular or antioxidant supplemented diet and receiving chronic ultraviolet light (UVL) radiation over an 18-week period. Cholesterol-5..cap alpha.., 6..cap alpha..-epoxide levels in skin of animals on antioxidant supplemented diet, while reaching a peak four weeks after that of animals on regular diet, thereafter were consistently higher. Dietary antioxidants nevertheless had an inhibitory effect on UVL-induced tumors. These data are inconsistent with the theory of CAE involvement as an ultimate carcinogen in UVL-mediated carcinogenesis.

  6. Chemoprevention by Probiotics During 1,2-Dimethylhydrazine-Induced Colon Carcinogenesis in Rats.

    Science.gov (United States)

    Walia, Sohini; Kamal, Rozy; Dhawan, D K; Kanwar, S S

    2018-04-01

    Probiotics are believed to have properties that lower the risk of colon cancer. However, the mechanisms by which they exert their beneficial effects are relatively unknown. To assess the impact of probiotics in preventing induction of colon carcinogenesis in rats. The rats were divided into six groups viz., normal control, Lactobacillus plantarum (AdF10)-treated, Lactobacillus rhamnosus GG (LGG)-treated, 1,2-dimethylhydrazine (DMH)-treated, L. plantarum (AdF10) + DMH-treated and L. rhamnosus GG (LGG) + DMH-treated. Both the probiotics were supplemented daily at a dose of 2 × 10 10 cells per day. DMH at a dose of 30 mg/kg body weight was administered subcutaneously twice a week for the first 4 weeks and then once every week for a duration of 16 weeks. Glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and catalase as protein expression of genes involved in apoptosis were assessed during DMH-induced colon carcinogenesis in rats. DMH treatment decreased the activity of GSH, GPx, GST, SOD and catalase. However, AdF10 and LGG supplementation to DMH-treated rats significantly increased the activity of these enzymes. Further, DMH treatment revealed alterations in the protein expressions of various genes involved in the p53-mediated apoptotic pathway such as p53, p21, Bcl-2, Bax, caspase-9 and caspase-3, which, however, were shifted towards normal control levels upon simultaneous supplementation with probiotics. The present study suggests that probiotics can provide protection against oxidative stress and apoptotic-related protein disregulation during experimentally induced colon carcinogenesis.

  7. Carcinogenesis associated with parasites other than Schistosoma, Opisthorchis and Clonorchis: A systematic review.

    Science.gov (United States)

    Machicado, Claudia; Marcos, Luis A

    2016-06-15

    Only three helminths (Schistosoma haematobium, Opisthorchis viverrini and Clonorchis sinensis) are directly associated with carcinogenesis in humans whereas the role of other parasites in cancer remains unclear. This study aimed to perform a systematic review to identify recent insights in the role of other parasite infections in carcinogenesis. We conducted systematic searches of MEDLINE and EMBASE on July 2015. Our primary outcome was the association between parasitic infections and carcinogenesis. Out of 1,266 studies, 19 were selected for detailed evaluation (eight for helminths and 11 for protozoa). The mechanisms of helminth-induced cancer included chronic inflammation, sustained proliferation, modulation of the host immune system, reprogramming of glucose metabolism and redox signaling, induction of genomic instability and destabilization of suppressor tumor proteins, stimulation of angiogenesis, resisting cell death, and activation of invasion and metastasis. In addition to the current knowledge, the following parasites were found in cancers or tumors: Echinococcus, Strongyloides, Fasciola, Heterakis, Platynosomum and Trichuris. Additional parasites were found in this systematic review that could potentially be associated with cancers or tumors but further evidence is needed to elaborate a cause-effect relationship. © 2016 UICC.

  8. Radiation carcinogenesis in scid mice

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Hiroko; Nishimura, Mayumi; Kobayashi, Shigeru; Tsuji, Hideo; Shimada, Yoshiya; Ogiu, Toshiaki [National Inst. of Radiological Sciences, Chiba (Japan); Suzuki, Fumio; Sado, Toshihiko

    1999-06-01

    Scid mice which have the defect of DNA-dependent protein kinase catalitic subunit, exhibit the limited activities of repair from DNA double strand breaks, and are sensitive to ionizing radiation. In order to study the relationship between repair capacity for DNA double strand breaks and carcinogenesis, the effects of ionizing radiation were studied using scid homozygotes (scid/scid), scid heterozygotes (scid/+) and CB-17 (+/+) mice. Both the Scid bone marrow cells and fibroblast cell lines from Scid embryos were highly sensitivity to acute effects of ionizing radiation. Carcinogenesis experiments showed the high incidence of thymic lymphomas (80 to 90%) in 1 to 3 Gy {sup 137}Cs-{gamma}-ray-irradiated Scid mice. (author)

  9. Statistical modeling and extrapolation of carcinogenesis data

    International Nuclear Information System (INIS)

    Krewski, D.; Murdoch, D.; Dewanji, A.

    1986-01-01

    Mathematical models of carcinogenesis are reviewed, including pharmacokinetic models for metabolic activation of carcinogenic substances. Maximum likelihood procedures for fitting these models to epidemiological data are discussed, including situations where the time to tumor occurrence is unobservable. The plausibility of different possible shapes of the dose response curve at low doses is examined, and a robust method for linear extrapolation to low doses is proposed and applied to epidemiological data on radiation carcinogenesis

  10. Gene amplification in carcinogenesis

    Directory of Open Access Journals (Sweden)

    Lucimari Bizari

    2006-01-01

    Full Text Available Gene amplification increases the number of genes in a genome and can give rise to karyotype abnormalities called double minutes (DM and homogeneously staining regions (HSR, both of which have been widely observed in human tumors but are also known to play a major role during embryonic development due to the fact that they are responsible for the programmed increase of gene expression. The etiology of gene amplification during carcinogenesis is not yet completely understood but can be considered a result of genetic instability. Gene amplification leads to an increase in protein expression and provides a selective advantage during cell growth. Oncogenes such as CCND1, c-MET, c-MYC, ERBB2, EGFR and MDM2 are amplified in human tumors and can be associated with increased expression of their respective proteins or not. In general, gene amplification is associated with more aggressive tumors, metastases, resistance to chemotherapy and a decrease in the period during which the patient stays free of the disease. This review discusses the major role of gene amplification in the progression of carcinomas, formation of genetic markers and as possible therapeutic targets for the development of drugs for the treatment of some types of tumors.

  11. Review: the Contribution of both Nature and Nurture to Carcinogenesis and Progression in Solid Tumours.

    Science.gov (United States)

    Hyndman, Iain Joseph

    2016-04-01

    Cancer is a leading cause of mortality worldwide. Cancer arises due to a series of somatic mutations that accumulate within the nucleus of a cell which enable the cell to proliferate in an unregulated manner. These mutations arise as a result of both endogenous and exogenous factors. Genes that are commonly mutated in cancer cells are involved in cell cycle regulation, growth and proliferation. It is known that both nature and nurture play important roles in cancer development through complex gene-environment interactions; however, the exact mechanism of these interactions in carcinogenesis is presently unclear. Key environmental factors that play a role in carcinogenesis include smoking, UV light and oncoviruses. Angiogenesis, inflammation and altered cell metabolism are important factors in carcinogenesis and are influenced by both genetic and environmental factors. Although the exact mechanism of nature-nurture interactions in solid tumour formation are not yet fully understood, it is evident that neither nature nor nurture can be considered in isolation. By understanding more about gene-environment interactions, it is possible that cancer mortality could be reduced.

  12. Molecular Mechanism of Gastric Carcinogenesis in Helicobacter pylori-Infected Rodent Models

    Directory of Open Access Journals (Sweden)

    Takeshi Toyoda

    2014-06-01

    Full Text Available Since the discovery of Helicobacter pylori (H. pylori, many efforts have been made to establish animal models for the investigation of the pathological features and molecular mechanisms of gastric carcinogenesis. Among the animal models, Mongolian gerbils and mice are particularly useful for the analysis of H. pylori-associated inflammatory reactions and gastric cancer development. Inhibitors of oxidative stress, cyclooxygenase-2 (COX-2 and nuclear factor-κB, exert preventive effects on chronic gastritis and the development of adenocarcinomas in H. pylori-infected gerbils. Genetically-modified mouse models, including transgenic and knockout mice, have also revealed the importance of p53, COX-2/prostaglandin, Wnt/β-catenin, proinflammatory cytokines, gastrin and type III mucin in the molecular mechanisms of gastric carcinogenesis. Microarray technology is available for comprehensive gene analysis in the gastric mucosa of mouse models, and epigenetics, such as DNA methylation, could be an alternative approach to correlate the observations in animal models with the etiology in humans.

  13. Radiation carcinogenesis from a membrane perspective

    Energy Technology Data Exchange (ETDEWEB)

    Petkau, A

    1980-01-01

    Radiation damage in phospholipid membranes involves free radical chain reactions which propagate on their own. These reactions oxidize the constituent fatty acids (LH) to alkyl radicals (L) which upon oxygenation, form lipid hydroperoxides (LOOH), some of which absorb light at 232 nm. The response (R) of these membranes to irradiation from tritium (/sup 3/H) in tritiated water increases with dose (D) in accordance with R = aD/sup m/, where m = 1.44 +- 0.30 in the absence of superoxide dismutase and 0.80 +- 0.14 in its presence. The parameter a is expressible in terms of dose rate (..delta..D/..delta..t) by a = c (..delta..D/..delta..t)/sup -n/, where n = 1.18 +- 0.05 in the absence of superoxide dismutase and 0.82 +- 0.02 in its presence. Thus, R = cD/sup m/..delta..D/..delta..t)/sup -n/ where the values of m, n depend on the presence or absence of the free radical scavenger, superoxide dismutase. From this composite relationship, the response per annum for 100 to 250 millirem/y is calculable and found to differ qualitatively, that is, in the absence of superoxide dismutase the response increases whereas in the enzyme's presence it decreases. The latter trend is reminiscent of the correlation between radiation dose rate and the per annum malignant mortality rate in humans. This coincidence is interesting in that LOOH are linked in the literature to several forms of carcinogenesis.

  14. MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis

    International Nuclear Information System (INIS)

    Tsuchiya, Naoto; Nakagama, Hitoshi

    2010-01-01

    Post-transcriptional regulation of gene expression by microRNA (miRNA) has recently attracted major interest in relation to its involvement in cancer development. miRNA is a member of small non-coding RNA, consists of 22-24 nucleotides and regulates expression of target mRNA species in a post-transcriptional manner by being incorporated with RNA-induced silencing complex (RISC). Staphylococcal nuclease homology domain containing 1 (SND1), a component of RISC, is frequently up-regulated in human colon cancers and also chemically induced colon cancers in animals. We here showed that SDN1 is involved in miRNA-mediated gene suppression and overexpression of SND1 in colon cancer cells causes down-regulation of APC without altering APC mRNA levels. As for the miRNA expression profile in human colon cancer, miR-34a was among the list of down-regulated miRNA. Expression of miR-34a is tightly regulated by p53, and ectopic expression of miR-34a in colon cancer cells causes remarkable reduction of cell proliferation and induces senescence-like phenotypes. MiR-34a also participates in the positive feedback loop of the p53 tumor suppressor network. This circuitry mechanism for p53 activation is of interest in understanding the tumor suppressive function of miR-34a in colon carcinogenesis. miRNA should also be considered as novel anti-cancer agents in tumor suppressive therapeutic applications.

  15. Is radiation an appropriate model for chemical mutagenesis and carcinogenesis

    International Nuclear Information System (INIS)

    Bond, V.P.

    1982-01-01

    This chapter attempts to show why the quadratic, or ''linear quadratic,'' relationship holds for organ dose-single cell radiation effects, and to explore the extension of this relationship to chemical exposures in general. Demonstrates that although the ''αD + βD 2 relationship'' may be unexpected for normal pharmacologicalmedical dose-response relationships, a linear, no-threshold curve of this kind is expected for all stochastic-type (accidental or risk) situations with health consequences (e.g. all common accidents) including exposure to ''low-level radiation'' (LLR). Discusses the stochastic or risk approach, relevant radiobiology, and the stochastic for chemicals. Assumes that even though actual mutational rates cannot be expected to apply to the relevance of Tradescantia or any other single cell system as a predictor for mutagenesis and carcinogenesis in animals and man, the cardinal principles of genetics largely transcend species and the particular environment in which the cell is located. Concludes that with regard to LLR, the curve shapes and other relationships developed for Tradescantia would be expected to apply in principle to animal and human mutagenesis and carcinogenesis

  16. The scientific basis for the establishment of threshold levels and dose response relationships of carcinogenesis

    International Nuclear Information System (INIS)

    1975-01-01

    The International Atomic Energy Agency hosted a two day Symposium from 2-3 December 1974 at its Headquarters, organized by the 'International Academy for Environmental Safety and the Forum fur Wissenschaft, Wirtschaft und Politik' on the subject 'Scientific Basis for the Establishment of Threshold. Levels and Dose Response Relationships of Carcinogenesis'. Following an introductory paper by the Radiation Biology Section of the Agency on 'Radiation Carcinogenesis - Dose Response Relationship, Threshold and Risk Estimates', a series of papers dealt with this problem in chemical carcinogenesis.It was suggested that more experiments should be done using non-human primates for tests of carcinogens, especially chemicals. Preliminary experiments using monkeys with a potent carcinogen - nitrosoamine - indicate that there could possibly be a dose where no effect can be observed during the 5 year period of study. It was also pointed out that the overall cost/benefit and risk/ benefit relationships should be taken into consideration in determining limits for chemicals which are potentially carcinogenic but are used routinely by the public and industries; these considerations have been weighed in setting exposure limits for radiation

  17. Thrombospondin-1 in a Murine Model of Colorectal Carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Zenaida P Lopez-Dee

    Full Text Available Colorectal Cancer (CRC is one of the late complications observed in patients suffering from inflammatory bowel diseases (IBD. Carcinogenesis is promoted by persistent chronic inflammation occurring in IBD. Understanding the mechanisms involved is essential in order to ameliorate inflammation and prevent CRC. Thrombospondin 1 (TSP-1 is a multidomain glycoprotein with important roles in angiogenesis. The effects of TSP-1 in colonic tumor formation and growth were analyzed in a model of inflammation-induced carcinogenesis. WT and TSP-1 deficient mice (TSP-1-/- of the C57BL/6 strain received a single injection of azoxymethane (AOM and multiple cycles of dextran sodium sulfate (DSS to induce chronic inflammation-related cancers. Proliferation and angiogenesis were histologically analyzed in tumors. The intestinal transcriptome was also analyzed using a gene microarray approach. When the area containing tumors was compared with the entire colonic area of each mouse, the tumor burden was decreased in AOM/DSS-treated TSP-1-/- versus wild type (WT mice. However, these lesions displayed more angiogenesis and proliferation rates when compared with the WT tumors. AOM-DSS treatment of TSP-1-/- mice resulted in significant deregulation of genes involved in transcription, canonical Wnt signaling, transport, defense response, regulation of epithelial cell proliferation and metabolism. Microarray analyses of these tumors showed down-regulation of 18 microRNAs in TSP-1-/- tumors. These results contribute new insights on the controversial role of TSP-1 in cancer and offer a better understanding of the genetics and pathogenesis of CRC.

  18. Radiation carcinogenesis in mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Kominami, Ryo; Niwa, Ohtsura

    2006-01-01

    Ionizing radiation is a well-known carcinogen for various human tissues and a complete carcinogen that is able to initiate and promote neoplastic progression. Studies of radiation-induced mouse thymic lymphomas, one of the classic models in radiation carcinogenesis, demonstrated that even the unirradiated thymus is capable of developing into full malignancy when transplanted into the kidney capsule or subcutaneous tissue of irradiated mice. This suggests that radiation targets tissues other than thymocytes to allow expansion of cells with tumorigenic potential in the thymus. The idea is regarded as the ''indirect mechanism'' for tumor development. This paper reviews the indirect mechanism and genes affecting the development of thymic lymphomas that we have analyzed. One is the Bcl11b/Rit1 tumor suppressor gene and the other is Mtf-1 gene affecting tumor susceptibility. (author)

  19. Present status of theories and data analyses of mathematical models for carcinogenesis

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kawaguchi, Isao

    2007-01-01

    Reviewed are the basic mathematical models (hazard functions), present trend of the model studies and that for radiation carcinogenesis. Hazard functions of carcinogenesis are described for multi-stage model and 2-event model related with cell dynamics. At present, the age distribution of cancer mortality is analyzed, relationship between mutation and carcinogenesis is discussed, and models for colorectal carcinogenesis are presented. As for radiation carcinogenesis, models of Armitage-Doll and of generalized MVK (Moolgavkar, Venson, Knudson, 1971-1990) by 2-stage clonal expansion have been applied to analysis of carcinogenesis in A-bomb survivors, workers in uranium mine (Rn exposure) and smoking doctors in UK and other cases, of which characteristics are discussed. In analyses of A-bomb survivors, models above are applied to solid tumors and leukemia to see the effect, if any, of stage, age of exposure, time progression etc. In miners and smokers, stages of the initiation, promotion and progression in carcinogenesis are discussed on the analyses. Others contain the analyses of workers in Canadian atomic power plant, and of patients who underwent the radiation therapy. Model analysis can help to understand the carcinogenic process in a quantitative aspect rather than to describe the process. (R.T.)

  20. Effect of Dendrobium officinale Extraction on Gastric Carcinogenesis in Rats

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2016-01-01

    Full Text Available Dendrobium officinale (Tie Pi Shi Hu in Chinese has been widely used to treat different diseases in China. Anticancer effect is one of the important effects of Dendrobium officinale. However, the molecular mechanism of its anticancer effect remains unclear. In the present study, gastric carcinogenesis in rats was used to evaluate the effect of Dendrobium officinale on cancer, and its pharmacological mechanism was explored. Dendrobium officinale extracts (4.8 and 2.4 g/kg were orally administered to the rats of the gastric carcinogenesis model. Compared with the cancer model group, the high dose of Dendrobium officinale extracts significantly inhibited the rate of carcinogenesis. Further analysis revealed that Dendrobium officinale extracts could regulate the DNA damage, oxidative stress, and cytokines related with carcinogenesis and induce cell apoptosis in order to prevent gastric cancer.

  1. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaojun [The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Park, Eunmi [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Fischer, Susan M. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78967 (United States); Hu, Yinling, E-mail: huy2@mail.nih.gov [Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701 (United States)

    2013-02-15

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside.

  2. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    International Nuclear Information System (INIS)

    Xia, Xiaojun; Park, Eunmi; Fischer, Susan M.; Hu, Yinling

    2013-01-01

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside

  3. Experimental, statistical, and biological models of radon carcinogenesis

    International Nuclear Information System (INIS)

    Cross, F.T.

    1991-09-01

    Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig

  4. The Dose Response Relationship for Radiation Carcinogenesis

    Science.gov (United States)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  5. Mechanisms of caffeine-induced inhibition of UVB carcinogenesis

    Directory of Open Access Journals (Sweden)

    Allan H Conney

    2013-06-01

    Full Text Available Sunlight-induced nonmelanoma skin cancer is the most prevalent cancer in the United States with more than 2 million cases per year. Several studies have shown an inhibitory effect of caffeine administration on UVB-induced skin cancer in mice, and these studies are paralleled by epidemiology studies that indicate an inhibitory effect of coffee drinking on nonmelanoma skin cancer in humans. Strikingly, decaffeinated coffee consumption had no such inhibitory effect.Mechanism studies indicate that caffeine has a sunscreen effect that inhibits UVB-induced formation of thymine dimers and sunburn lesions in the epidermis of mice. In addition, caffeine administration has a biological effect that enhances UVB-induced apoptosis thereby enhancing the elimination of damaged precancerous cells, and caffeine administration also enhances apoptosis in tumors. Caffeine administration enhances UVB-induced apoptosis by p53-dependent and p53-independent mechanisms. Exploration of the p53-independent effect indicated that caffeine administration enhanced UVB-induced apoptosis by inhibiting the UVB-induced increase in ATR-mediated formation of phospho-Chk1 (Ser345 and abolishing the UVB-induced decrease in cyclin B1 which resulted in caffeine-induced premature and lethal mitosis in mouse skin. In studies with cultured primary human keratinocytes, inhibition of ATR with siRNA against ATR inhibited Chk1 phosphorylation and enhanced UVB-induced apoptosis. Transgenic mice with decreased epidermal ATR function that were irradiated chronically with UVB had 69% fewer tumors at the end of the study compared with irradiated littermate controls with normal ATR function. These results, which indicate that genetic inhibition of ATR (like pharmacologic inhibition of ATR via caffeine inhibits UVB-induced carcinogenesis and supports the concept that ATR-mediated phosphorylation of Chk1 is an important target for caffeine’s inhibitory effect on UVB-induced carcinogenesis.

  6. Toxicogenomic outcomes predictive of forestomach carcinogenesis following exposure to benzo(a)pyrene: Relevance to human cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Sarah, E-mail: Sarah.Labib@hc-sc.gc.ca; Guo, Charles H., E-mail: Charles.Guo@hc-sc.gc.ca; Williams, Andrew, E-mail: Andrew.Williams@hc-sc.gc.ca; Yauk, Carole L., E-mail: Carole.Yauk@hc-sc.gc.ca; White, Paul A., E-mail: Paul.White@hc-sc.gc.ca; Halappanavar, Sabina, E-mail: Sabina.Halappanavar@hc-sc.gc.ca

    2013-12-01

    Forestomach tumors are observed in mice exposed to environmental carcinogens. However, the relevance of this data to humans is controversial because humans lack a forestomach. We hypothesize that an understanding of early molecular changes after exposure to a carcinogen in the forestomach will provide mode-of-action information to evaluate the applicability of forestomach cancers to human cancer risk assessment. In the present study we exposed mice to benzo(a)pyrene (BaP), an environmental carcinogen commonly associated with tumors of the rodent forestomach. Toxicogenomic tools were used to profile gene expression response in the forestomach. Adult Muta™Mouse males were orally exposed to 25, 50, and 75 mg BaP/kg-body-weight/day for 28 consecutive days. The forestomach was collected three days post-exposure. DNA microarrays, real-time RT-qPCR arrays, and protein analyses were employed to characterize responses in the forestomach. Microarray results showed altered expression of 414 genes across all treatment groups (± 1.5 fold; false discovery rate adjusted P ≤ 0.05). Significant downregulation of genes associated with phase II xenobiotic metabolism and increased expression of genes implicated in antigen processing and presentation, immune response, chemotaxis, and keratinocyte differentiation were observed in treated groups in a dose-dependent manner. A systematic comparison of the differentially expressed genes in the forestomach from the present study to differentially expressed genes identified in human diseases including human gastrointestinal tract cancers using the NextBio Human Disease Atlas showed significant commonalities between the two models. Our results provide molecular evidence supporting the use of the mouse forestomach model to evaluate chemically-induced gastrointestinal carcinogenesis in humans. - Highlights: • Benzo(a)pyrene-mediated transcriptomic response in the forestomach was examined. • The immunoproteosome subunits and MHC class I

  7. A challenge to mutation theory of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Watanabe, Masami

    2006-01-01

    This paper presents an objection against the commonly accepted mutation theory in radiation carcinogenesis. First, author's studies of X-ray irradiated syrian hamster embryo (SHE) cells on malignant morphological changes and mutational change of HGPRT gene showed that the changing patterns were quite different, and as well, other studies in mice gave the essentially similar results. Thus radiation-induced carcinogenesis in cells does not simply occur by an accumulation of radiation-induced mutation. Second, as cultured cells usually used for oncogenesis studies already have the infinitively proliferative ability, the author used the primary cell culture obtained from the rodent embryo. Even those cells became immortal to be cancerous after repeated culture passage with the higher frequency of 10 3 -10 4 relative to somatic cell mutation. Cells thus seem to be easily changeable to cancerous ones. Bystander effect can cause transformation in non-irradiated cells and genetic instability by radiation can form the potentially unstable chromatin region, which induces telomere instability. The author has found that, while short-lived radicals yielded by X-ray irradiation attack DNA to induce cell death and chromosome aberration, long-lived radicals in biomolecules do not, but can cause mutation and carcinogenesis, which are reduced by vitamine C supplementation. The author concludes that the primary target in the radiation carcinogenesis in cells and even in the whole individuals is conceivably protein and not DNA. (T.I.)

  8. Carcinogenesis--a synopsis of human experience with external exposure in medicine

    International Nuclear Information System (INIS)

    Boice, J.D. Jr.

    1988-01-01

    Studies in the 1980s of medically irradiated populations have increased our knowledge of radiation carcinogenesis. (1) Investigations of prenatal x-ray exposures, especially in twins, provide evidence that very low doses of ionizing radiation may cause cancer in humans. (2) Fractionated doses appear as effective as single exposures of the same total dose in causing breast cancer, but seem less effective for lung cancer. (3) Excess breast cancers can occur among women exposed under age 10, indicating that the immature breast is susceptible to the carcinogenic action of radiation. (4) Moderate doses on the order of 1 Gy to the brains of children can cause tumors later in life; moderately high doses to the skin can cause cancer when followed by frequent exposure to ultraviolet light. (5) Radiotherapy for cervical cancer can increase the rate of subsequent leukemia with the best fitting dose-response functions including a negative exponential term to account for cell-killing. (6) Low-dose exposures of about 10 cGy may increase the risk of thyroid cancer. (7) Second cancers following radiotherapy for a variety of cancers occur primarily among long-term survivors. (8) Radiotherapy may not significantly increase the risk of leukemia following childhood cancer, whereas chemotherapy with alkylating agents is a major risk factor. (9) Bone cancer occurs after high-dose radiotherapy for childhood cancer, but children with retinoblastoma are not more susceptible to radiation-induced disease than children with other malignancies. (10) High-dose external beam therapy can cause thyroid cancer. (11) Studies of cervical cancer patients indicate that the risk of radiation-induced second malignancies follows a time-response model consistent with a constant multiplication of the underlying background incidence. 83 references

  9. Experimental photoimmunology: immunologic ramifications of UV-induced carcinogenesis

    International Nuclear Information System (INIS)

    Daynes, R.A.; Bernhard, E.J.; Gurish, M.F.; Lynch, D.H.

    1981-01-01

    The use of animal model systems to investigate the sequence of events which lead to the induction and progression of skin tumors following chronic ultraviolet light (UVL) exposure has clearly shown that the direct mutagenic effects of UVL is only one of the components involved in this process. In spite of the fact that overt carcinogenesis is only one of the many effects produced by UV light, most hypotheses as to the mechanism by which UVL can cause the mutations necessary to achieve the transformed phenotype have focused on the direct effects of UVL on DNA and the generation of carcinogenic compounds. Investigations during the last 5 yr, however, have clearly demonstrated that immunologic factors are also critically important in the pathogenesis of UV-induced skin cancers. A complete understanding of UV-carcinogenesis must therefore consider the mechanisms which allow the transformed cell to evade immunologic rejection by the host in addition to those aspects which deal with conversion of a normal cell to a cancer cell. It is the object of this review to provide both a historical account of the work which established the immunologic consequences of chronic UVL exposure and the results of recent experiments designed to investigate the kinetics and mechanisms by which UVL affects the immunologic apparatus. In addition, a hypothetical model is presented to explain the sequence of events which ultimately lead to the emergence of the suppressor T-cells which regulate antitumor immune responses

  10. Wnt5a Is Associated with Cigarette Smoke-Related Lung Carcinogenesis via Protein Kinase C

    OpenAIRE

    Whang, Young Mi; Jo, Ukhyun; Sung, Jae Sook; Ju, Hyun Jung; Kim, Hyun Kyung; Park, Kyong Hwa; Lee, Jong Won; Koh, In Song; Kim, Yeul Hong

    2013-01-01

    Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE) cells (NHBE, BEAS-2B, 1799, 1198 and 1170I) at different malignant stages established by exposure to cigarette smoke condensate (CSC). Abnormal up-regulation ...

  11. IMBALANCE OF DNA METHYLATION, BOTH HYPERMETHYLATION AND HYPOMETHYLATION, OCCUR AFTER EXPOSURE OF HUMAN CELLS TO NANOMOLAR CONCENTRATIONS OF ARSENITE IN CULTURE.

    Science.gov (United States)

    Imbalance of DNA methylation, BOTH hypermethylation and hypomethylation, occur after exposure of human cells to nanomolar concentrations of arsenite in culture.We and others have hypothesized that a mechanism of arsenic carcinogenesis could involve alteration of DNA methy...

  12. Radiation carcinogenesis: radioprotectors and photosensitizers

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1982-01-01

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer

  13. Radiation carcinogenesis: radioprotectors and photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1982-01-01

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer.

  14. Inherent aerobic capacity-dependent differences in breast carcinogenesis.

    Science.gov (United States)

    Thompson, Henry J; Jones, Lee W; Koch, Lauren G; Britton, Steven L; Neil, Elizabeth S; McGinley, John N

    2017-09-01

    Although regular physical activity is associated with improvement in aerobic capacity and lower breast cancer risk, there are heritable sets of traits that affect improvement in aerobic capacity in response to physical activity. Although aerobic capacity segregates risk for a number of chronic diseases, the effect of the heritable component on cancer risk has not been evaluated. Therefore, we investigated breast carcinogenesis in rodent models of heritable fitness in the absence of induced physical activity. Female offspring of N:NIH rats selectively bred for low (LIAC) or high (HIAC) inherent aerobic capacity were injected intraperitoneally with 1-methyl-1-nitrosurea (70 mg/kg body wt). At study termination 33 weeks post-carcinogen, cancer incidence (14.0 versus 47.3%; P < 0.001) and multiplicity (0.18 versus 0.85 cancers per rat; P < 0.0001) were significantly decreased in HIAC versus LIAC rats, respectively. HIAC had smaller visceral and subcutaneous body fat depots than LIAC and activity of two proteins that regulated the mammalian target of rapamycin, protein kinase B (Akt), and adenosine monophosphate-activated protein kinase were suppressed and activated, respectively, in HIAC. Although many factors distinguish between HIAC and LIAC, it appears that the protective effect of HIAC against breast carcinogenesis is mediated, at least in part, via alterations in core metabolic signaling pathways deregulated in the majority of human breast cancers. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Comfrey (Symphytum officinale. L. and Experimental Hepatic Carcinogenesis: A Short-Term Carcinogenesis Model Study

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Pereira Lavieri Gomes

    2010-01-01

    Full Text Available Comfrey or Symphytum officinale (L. (Boraginaceae is a very popular plant used for therapeutic purposes. Since the 1980s, its effects have been studied in long-term carcinogenesis studies, in which Comfrey extract is administered at high doses during several months and the neoplastic hepatic lesions are evaluated. However, the literature on this topic is very poor considering the studies performed under short-term carcinogenesis protocols, such as the ‘resistant hepatocyte model’ (RHM. In these studies, it is possible to observe easily the phenomena related to the early phases of tumor development, since pre-neoplastic lesions (PNLs rise in about 1–2 months of chemical induction. Herein, the effects of chronic oral treatment of rats with 10% Comfrey ethanolic extract were evaluated in a RHM. Wistar rats were sequentially treated with N-nitrosodiethylamine (ip and 2-acetilaminofluorene (po, and submitted to hepatectomy to induce carcinogenesis promotion. Macroscopic/microscopic quantitative analysis of PNL was performed. Non-parametric statistical tests (Mann–Whitney and χ2 were used, and the level of significance was set at P ≤ 0.05. Comfrey treatment reduced the number of pre-neoplastic macroscopic lesions up to 1 mm (P ≤ 0.05, the percentage of oval cells (P = 0.0001 and mitotic figures (P = 0.007, as well as the number of Proliferating Cell Nuclear Antigen (PCNA positive cells (P = 0.0001 and acidophilic pre-neoplastic nodules (P = 0.05. On the other hand, the percentage of cells presenting megalocytosis (P = 0.0001 and vacuolar degeneration (P = 0.0001 was increased. Scores of fibrosis, glycogen stores and the number of nucleolus organizing regions were not altered. The study indicated that oral treatment of rats with 10% Comfrey alcoholic extract reduced cell proliferation in this model.

  16. Comfrey (Symphytum Officinale. l.) and Experimental Hepatic Carcinogenesis: A Short-term Carcinogenesis Model Study.

    Science.gov (United States)

    Gomes, Maria Fernanda Pereira Lavieri; de Oliveira Massoco, Cristina; Xavier, José Guilherme; Bonamin, Leoni Villano

    2010-06-01

    Comfrey or Symphytum officinale (L.) (Boraginaceae) is a very popular plant used for therapeutic purposes. Since the 1980s, its effects have been studied in long-term carcinogenesis studies, in which Comfrey extract is administered at high doses during several months and the neoplastic hepatic lesions are evaluated. However, the literature on this topic is very poor considering the studies performed under short-term carcinogenesis protocols, such as the 'resistant hepatocyte model' (RHM). In these studies, it is possible to observe easily the phenomena related to the early phases of tumor development, since pre-neoplastic lesions (PNLs) rise in about 1-2 months of chemical induction. Herein, the effects of chronic oral treatment of rats with 10% Comfrey ethanolic extract were evaluated in a RHM. Wistar rats were sequentially treated with N-nitrosodiethylamine (ip) and 2-acetilaminofluorene (po), and submitted to hepatectomy to induce carcinogenesis promotion. Macroscopic/microscopic quantitative analysis of PNL was performed. Non-parametric statistical tests (Mann-Whitney and χ(2)) were used, and the level of significance was set at P ≤ 0.05. Comfrey treatment reduced the number of pre-neoplastic macroscopic lesions up to 1 mm (P ≤ 0.05), the percentage of oval cells (P = 0.0001) and mitotic figures (P = 0.007), as well as the number of Proliferating Cell Nuclear Antigen (PCNA) positive cells (P = 0.0001) and acidophilic pre-neoplastic nodules (P = 0.05). On the other hand, the percentage of cells presenting megalocytosis (P = 0.0001) and vacuolar degeneration (P = 0.0001) was increased. Scores of fibrosis, glycogen stores and the number of nucleolus organizing regions were not altered. The study indicated that oral treatment of rats with 10% Comfrey alcoholic extract reduced cell proliferation in this model.

  17. Methanolic extract of white asparagus shoots activates TRAIL apoptotic death pathway in human cancer cells and inhibits colon carcinogenesis in a preclinical model

    Science.gov (United States)

    BOUSSEROUEL, SOUAD; LE GRANDOIS, JULIE; GOSSÉ, FRANCINE; WERNER, DALAL; BARTH, STEPHAN W.; MARCHIONI, ERIC; MARESCAUX, JACQUES; RAUL, FRANCIS

    2013-01-01

    Shoots of white asparagus are a popular vegetable dish, known to be rich in many bioactive phytochemicals reported to possess antioxidant, and anti-inflammatory and antitumor activities. We evaluated the anticancer mechanisms of a methanolic extract of Asparagus officinalis L. shoots (Asp) on human colon carcinoma cells (SW480) and their derived metastatic cells (SW620), and Asp chemopreventive properties were also assessed in a model of colon carcinogenesis. SW480 and SW620 cell proliferation was inhibited by 80% after exposure to Asp (80 μg/ml). We demonstrated that Asp induced cell death through the activation of TRAIL DR4/DR5 death receptors leading to the activation of caspase-8 and caspase-3 and to cell apoptosis. By specific blocking agents of DR4/DR5 receptors we were able to prevent Asp-triggered cell death confirming the key role of DR4/DR5 receptors. We found also that Asp (80 μg/ml) was able to potentiate the effects of the cytokine TRAIL on cell death even in the TRAIL-resistant metastatic SW620 cells. Colon carcinogenesis was initiated in Wistar rats by intraperitoneal injections of azoxymethane (AOM), once a week for two weeks. One week after (post-initiation) rats received daily Asp (0.01%, 14 mg/kg body weight) in drinking water. After 7 weeks of Asp-treatment the colon of rats exhibited a 50% reduction of the number of preneoplastic lesions (aberrant crypt foci). In addition Asp induced inhibition of several pro-inflammatory mediators, in association with an increased expression of host-defense mediators. In the colonic mucosa of Asp-treated rats we also confirmed the pro-apoptotic effects observed in vitro including the activation of the TRAIL death-receptor signaling pathway. Taken together, our data highlight the chemopreventive effects of Asp on colon carcinogenesis and its ability to promote normal cellular homeostasis. PMID:23754197

  18. Information dynamics in carcinogenesis and tumor growth.

    Science.gov (United States)

    Gatenby, Robert A; Frieden, B Roy

    2004-12-21

    The storage and transmission of information is vital to the function of normal and transformed cells. We use methods from information theory and Monte Carlo theory to analyze the role of information in carcinogenesis. Our analysis demonstrates that, during somatic evolution of the malignant phenotype, the accumulation of genomic mutations degrades intracellular information. However, the degradation is constrained by the Darwinian somatic ecology in which mutant clones proliferate only when the mutation confers a selective growth advantage. In that environment, genes that normally decrease cellular proliferation, such as tumor suppressor or differentiation genes, suffer maximum information degradation. Conversely, those that increase proliferation, such as oncogenes, are conserved or exhibit only gain of function mutations. These constraints shield most cellular populations from catastrophic mutator-induced loss of the transmembrane entropy gradient and, therefore, cell death. The dynamics of constrained information degradation during carcinogenesis cause the tumor genome to asymptotically approach a minimum information state that is manifested clinically as dedifferentiation and unconstrained proliferation. Extreme physical information (EPI) theory demonstrates that altered information flow from cancer cells to their environment will manifest in-vivo as power law tumor growth with an exponent of size 1.62. This prediction is based only on the assumption that tumor cells are at an absolute information minimum and are capable of "free field" growth that is, they are unconstrained by external biological parameters. The prediction agrees remarkably well with several studies demonstrating power law growth in small human breast cancers with an exponent of 1.72+/-0.24. This successful derivation of an analytic expression for cancer growth from EPI alone supports the conceptual model that carcinogenesis is a process of constrained information degradation and that malignant

  19. Lymphotoxin prevention of diethylnitrosamine carcinogenesis in vivo

    International Nuclear Information System (INIS)

    Ransom, J.H.; Evans, C.H.; DiPaolo, J.A.

    1982-01-01

    Development of intervention measures to control cancer would be facilitated by being able to monitor in vivo carcinogenesis by in vitro quantitation of early indices of neoplastic transformation to assess the in vivo effectiveness of preventive-therapeutic measures. Pregnant Syrian golden hamsters were used in an in vivo-in vitro transplacental model of carcinogenesis to determine the extent that in vivo administration of immunologic hormone preparations along with chemical carcinogen would prevent morphologic transformation assessed in vitro. Pregnant hamsters at 10-11 days of gestation were given injections ip of 3 mg diethylnitrosamine (DENA)/100 g body weight and were killed 2 days later when fetal cells were seeded for colony formation. The frequency of morphologically transformed colonies was assessed after 7 days of growth. Cloning efficiency and mean transformation frequency after DENA exposure were 3.6% and 1 X 10(-4) per cell seeded, respectively. The ip injection of an immunologic hormone preparation reduced the transformation frequency by 46%. The hormone preparation, containing 10,000 U of lymphotoxin but no detectable interferon, was the ultrafiltered lymphokines (greater than 10,000 mol wt) from phytohemagglutinin-stimulated hamster peritoneal leukocytes. The effect of lymphotoxin on cocarcinogenic exposure of fetal cells to DENA in vivo followed by X-irradiation in vitro was also determined. Cells exposed to 250 rad in vitro had a cloning efficiency of 0.5% and a transformation frequency of 0.4 X 10(-4) per cell seeded. After DENA injection and X-irradiation, the transformation frequency increased to 1 X 10(-4) and was inhibited 64% by lymphotoxin in vivo. Thus immunologic hormones (e.g., lymphotoxin) can prevent carcinogenesis in vivo. Furthermore, in vitro quantitation of transformation is a rapid means for evaluating therapeutic and autochthonous effector mechanisms for their ability to prevent or otherwise modulate carcinogenesis in vivo

  20. Complex Systems Analysis of Cell Cycling Models in Carcinogenesis:II. Cell Genome and Interactome, Neoplastic Non-random Transformation Models in Topoi with Lukasiewicz-Logic and MV Algebras

    CERN Document Server

    Baianu, I C

    2004-01-01

    Quantitative Biology, abstract q-bio.OT/0406045 From: I.C. Baianu Dr. [view email] Date (v1): Thu, 24 Jun 2004 02:45:13 GMT (164kb) Date (revised v2): Fri, 2 Jul 2004 00:58:06 GMT (160kb) Complex Systems Analysis of Cell Cycling Models in Carcinogenesis: II. Authors: I.C. Baianu Comments: 23 pages, 1 Figure Report-no: CC04 Subj-class: Other Carcinogenesis is a complex process that involves dynamically inter-connected modular sub-networks that evolve under the influence of micro-environmentally induced perturbations, in non-random, pseudo-Markov chain processes. An appropriate n-stage model of carcinogenesis involves therefore n-valued Logic treatments of nonlinear dynamic transformations of complex functional genomes and cell interactomes. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous, Boolean or "fuzzy", logic models of genetic activities in vivo....

  1. Wnt5a is associated with cigarette smoke-related lung carcinogenesis via protein kinase C.

    Science.gov (United States)

    Whang, Young Mi; Jo, Ukhyun; Sung, Jae Sook; Ju, Hyun Jung; Kim, Hyun Kyung; Park, Kyong Hwa; Lee, Jong Won; Koh, In Song; Kim, Yeul Hong

    2013-01-01

    Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE) cells (NHBE, BEAS-2B, 1799, 1198 and 1170I) at different malignant stages established by exposure to cigarette smoke condensate (CSC). Abnormal up-regulation of Wnt5a mRNA and proteins was detected in CSC-exposed transformed 1198 and tumorigenic 1170I cells as compared with other non-CSC exposed HBE cells. Tumor tissues obtained from smokers showed higher Wnt5a expressions than matched normal tissues. In non-CSC exposed 1799 cells, treatment of recombinant Wnt5a caused the activations of PKC and Akt, and the blockage of Wnt5a and PKC significantly decreased the viabilities of CSC-transformed 1198 cells expressing high levels of Wnt5a. This reduced cell survival rate was associated with increased apoptosis via the down-regulation of Bcl2 and the induction of cleaved poly ADP-ribose polymerase. Moreover, CSC-treated 1799 cells showed induction of Wnt5a expression and enhanced colony-forming capacity. The CSC-induced colony forming efficiency was suppressed by the co-incubation with a PKC inhibitor. In conclusion, these results suggest that cigarette smoke induces Wnt5a-coupled PKC activity during lung carcinogenesis, which causes Akt activity and anti-apoptosis in lung cancer. Therefore, current study provides novel clues for the crucial role of Wnt5a in the smoking-related lung carcinogenesis.

  2. Wnt5a is associated with cigarette smoke-related lung carcinogenesis via protein kinase C.

    Directory of Open Access Journals (Sweden)

    Young Mi Whang

    Full Text Available Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE cells (NHBE, BEAS-2B, 1799, 1198 and 1170I at different malignant stages established by exposure to cigarette smoke condensate (CSC. Abnormal up-regulation of Wnt5a mRNA and proteins was detected in CSC-exposed transformed 1198 and tumorigenic 1170I cells as compared with other non-CSC exposed HBE cells. Tumor tissues obtained from smokers showed higher Wnt5a expressions than matched normal tissues. In non-CSC exposed 1799 cells, treatment of recombinant Wnt5a caused the activations of PKC and Akt, and the blockage of Wnt5a and PKC significantly decreased the viabilities of CSC-transformed 1198 cells expressing high levels of Wnt5a. This reduced cell survival rate was associated with increased apoptosis via the down-regulation of Bcl2 and the induction of cleaved poly ADP-ribose polymerase. Moreover, CSC-treated 1799 cells showed induction of Wnt5a expression and enhanced colony-forming capacity. The CSC-induced colony forming efficiency was suppressed by the co-incubation with a PKC inhibitor. In conclusion, these results suggest that cigarette smoke induces Wnt5a-coupled PKC activity during lung carcinogenesis, which causes Akt activity and anti-apoptosis in lung cancer. Therefore, current study provides novel clues for the crucial role of Wnt5a in the smoking-related lung carcinogenesis.

  3. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis.

    Science.gov (United States)

    Qian, Jiaying; Niu, Jiangong; Li, Ming; Chiao, Paul J; Tsao, Ming-Sound

    2005-06-15

    Genetic analysis of pancreatic ductal adenocarcinomas and their putative precursor lesions, pancreatic intraepithelial neoplasias (PanIN), has shown a multistep molecular paradigm for duct cell carcinogenesis. Mutational activation or inactivation of the K-ras, p16(INK4A), Smad4, and p53 genes occur at progressive and high frequencies in these lesions. Oncogenic activation of the K-ras gene occurs in >90% of pancreatic ductal carcinoma and is found early in the PanIN-carcinoma sequence, but its functional roles remain poorly understood. We show here that the expression of K-ras(G12V) oncogene in a near diploid HPV16-E6E7 gene immortalized human pancreatic duct epithelial cell line originally derived from normal pancreas induced the formation of carcinoma in 50% of severe combined immunodeficient mice implanted with these cells. A tumor cell line established from one of these tumors formed ductal cancer when implanted orthotopically. These cells also showed increased activation of the mitogen-activated protein kinase, AKT, and nuclear factor-kappaB pathways. Microarray expression profiling studies identified 584 genes whose expression seemed specifically up-regulated by the K-ras oncogene expression. Forty-two of these genes have been reported previously as differentially overexpressed in pancreatic cancer cell lines or primary tumors. Real-time PCR confirmed the overexpression of a large number of these genes. Immunohistochemistry done on tissue microarrays constructed from PanIN and pancreatic cancer samples showed laminin beta3 overexpression starting in high-grade PanINs and occurring in >90% of pancreatic ductal carcinoma. The in vitro modeling of human pancreatic duct epithelial cell transformation may provide mechanistic insights on gene expression changes that occur during multistage pancreatic duct cell carcinogenesis.

  4. Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Kun Shang

    Full Text Available Ulcerative colitis (UC is a major form of chronic inflammation that can frequently progress to colon cancer. Several studies have demonstrated massive infiltration of neutrophils and macrophages into the lamina propria and submucosa in the progression of UC-associated colon carcinogenesis. Macrophages contribute to the development of colitis-associated colon cancer (CAC. However, the role of neutrophils is not well understood. To better understand the involvement of tumor-associated neutrophils (TANs in the regulation of CAC, we used a mouse CAC model produced by administering azoxymethane (AOM, followed by repeated dextran sulfate sodium (DSS ingestion. This causes severe colonic inflammation and subsequent development of multiple tumors in mice colon. We observed that colorectal mucosal inflammation became increasingly severe with AOM and DSS treatment. Macrophages infiltrated the lamina propria and submucosa, together with a marked increase in neutrophil infiltration. The chemokine CXCL2 increased in the lamina propria and submucosal regions of the colons of the treated mice, together with the infiltration of neutrophils expressing CXCR2, a specific receptor for CXCL2. This process was followed by neoplastic transformation. After AOM and DSS treatment, the mice showed enhanced production of metalloproteinase (MMP-9 and neutrophil elastase (NE, accompanied by excessive vessel generation and cell proliferation. Moreover, CXCL2 promoted neutrophil recruitment and induced neutrophils to express MMP-9 and NE in vitro. Furthermore, administration of neutrophil-neutralizing antibodies after the last DSS cycle markedly reduced the number and size of tumors and decreased the expression of CXCR2, CXCL2, MMP-9, and NE. These observations indicate a crucial role for TANs in the initiation and progression of CAC and suggest that the CXCL2-CXCR2 axis might be useful in reducing the risk of UC-associated colon cancer.

  5. Crucial Involvement of Tumor-Associated Neutrophils in the Regulation of Chronic Colitis-Associated Carcinogenesis in Mice

    Science.gov (United States)

    Wang, Chen; Wang, Zhen; Gu, Hong-Yu; Du, Xiang; Zhou, Xiao-Yan; Zheng, Chun-Lei; Chi, Ya-Yun; Mukaida, Naofumi; Li, Ying-Yi

    2012-01-01

    Ulcerative colitis (UC) is a major form of chronic inflammation that can frequently progress to colon cancer. Several studies have demonstrated massive infiltration of neutrophils and macrophages into the lamina propria and submucosa in the progression of UC-associated colon carcinogenesis. Macrophages contribute to the development of colitis-associated colon cancer (CAC). However, the role of neutrophils is not well understood. To better understand the involvement of tumor-associated neutrophils (TANs) in the regulation of CAC, we used a mouse CAC model produced by administering azoxymethane (AOM), followed by repeated dextran sulfate sodium (DSS) ingestion. This causes severe colonic inflammation and subsequent development of multiple tumors in mice colon. We observed that colorectal mucosal inflammation became increasingly severe with AOM and DSS treatment. Macrophages infiltrated the lamina propria and submucosa, together with a marked increase in neutrophil infiltration. The chemokine CXCL2 increased in the lamina propria and submucosal regions of the colons of the treated mice, together with the infiltration of neutrophils expressing CXCR2, a specific receptor for CXCL2. This process was followed by neoplastic transformation. After AOM and DSS treatment, the mice showed enhanced production of metalloproteinase (MMP)-9 and neutrophil elastase (NE), accompanied by excessive vessel generation and cell proliferation. Moreover, CXCL2 promoted neutrophil recruitment and induced neutrophils to express MMP-9 and NE in vitro. Furthermore, administration of neutrophil-neutralizing antibodies after the last DSS cycle markedly reduced the number and size of tumors and decreased the expression of CXCR2, CXCL2, MMP-9, and NE. These observations indicate a crucial role for TANs in the initiation and progression of CAC and suggest that the CXCL2–CXCR2 axis might be useful in reducing the risk of UC-associated colon cancer. PMID:23272179

  6. Effects of dietary beef, pork, chicken and salmon on intestinal carcinogenesis in A/J Min/+ mice.

    Directory of Open Access Journals (Sweden)

    Christina Steppeler

    Full Text Available The International Agency for Research on Cancer has classified red meat as "probably carcinogenic to humans" (Group 2A. In mechanistic studies exploring the link between intake of red meat and CRC, heme iron, the pigment of red meat, is proposed to play a central role as a catalyzer of luminal lipid peroxidation and cytotoxicity. In the present work, the novel A/J Min/+ mouse was used to investigate the effects of dietary beef, pork, chicken, or salmon (40% muscle food (dry weight and 60% powder diet on Apc-driven intestinal carcinogenesis, from week 3-13 of age. Muscle food diets did not differentially affect carcinogenesis in the colon (flat ACF and tumors. In the small intestine, salmon intake resulted in a lower tumor size and load than did meat from terrestrial animals (beef, pork or chicken, while no differences were observed between the effects of white meat (chicken and red meat (pork and beef. Additional results indicated that intestinal carcinogenesis was not related to dietary n-6 polyunsaturated fatty acids, intestinal formation of lipid peroxidation products (thiobarbituric acid reactive substances, TBARS, or cytotoxic effects of fecal water on Apc-/+ cells. Notably, the amount of heme reaching the colon appeared to be relatively low in this study. The greatest tumor load was induced by the reference diet RM1, underlining the importance of the basic diets in experimental CRC. The present study in A/J Min/+ mice does not support the hypothesis of a role of red meat in intestinal carcinogenesis.

  7. BRAFV600E: implications for carcinogenesis and molecular therapy.

    LENUS (Irish Health Repository)

    Cantwell-Dorris, Emma R

    2012-02-01

    The mitogen-activated protein kinase (MAPK)\\/extracellular signal-regulated kinase (ERK) pathway is frequently mutated in human cancer. This pathway consists of a small GTP protein of the RAS family that is activated in response to extracellular signaling to recruit a member of the RAF kinase family to the cell membrane. Active RAF signals through MAP\\/ERK kinase to activate ERK and its downstream effectors to regulate a wide range of biological activities including cell differentiation, proliferation, senescence, and survival. Mutations in the v-raf murine sarcoma viral oncogenes homolog B1 (BRAF) isoform of the RAF kinase or KRAS isoform of the RAS protein are found as activating mutations in approximately 30% of all human cancers. The BRAF pathway has become a target of interest for molecular therapy, with promising results emerging from clinical trials. Here, the role of the most common BRAF mutation BRAF(V600E) in human carcinogenesis is investigated through a review of the literature, with specific focus on its role in melanoma, colorectal, and thyroid cancers and its potential as a therapeutic target.

  8. Breast cancer as heterogeneous disease: contributing factors and carcinogenesis mechanisms.

    Science.gov (United States)

    Kravchenko, Julia; Akushevich, Igor; Seewaldt, Victoria L; Abernethy, Amy P; Lyerly, H Kim

    2011-07-01

    The observed bimodal patterns of breast cancer incidence in the U.S. suggested that breast cancer may be viewed as more than one biological entity. We studied the factors potentially contributing to this phenomenon, specifically focusing on how disease heterogeneity could be linked to breast carcinogenesis mechanisms. Using empirical analyses and population-based biologically motivated modeling, age-specific patterns of incidence of ductal and lobular breast carcinomas from the SEER registry (1990-2003) were analyzed for heterogeneity and characteristics of carcinogenesis, stratified by race, stage, grade, and estrogen (ER)/progesterone (PR) receptor status. The heterogeneity of breast carcinoma age patterns decreased after stratification by grade, especially for grade I and III tumors. Stratification by ER/PR status further reduced the heterogeneity, especially for ER(+)/PR(-) and ER(-)/(-) tumors; however, the residual heterogeneity was still observed. The number of rate-limiting events of carcinogenesis and the latency of ductal and lobular carcinomas differed, decreasing from grade I to III, with poorly differentiated tumors associated with the least number of carcinogenesis stages and the shortest latency. Tumor grades play important role in bimodal incidence of breast carcinoma and have distinct mechanisms of carcinogenesis. Race and cancer subtype could play modifying role. ER/PR status contributes to the observed heterogeneity, but is subdominant to tumor grade. Further studies on sources of "remaining" heterogeneity of population with breast cancer (such as genetic/epigenetic characteristics) are necessary. The results of this study could suggest stratification rather than unification of breast cancer prevention strategies, risk assessment, and treatment.

  9. Free radicals in chemical carcinogenesis.

    Science.gov (United States)

    Clemens, M R

    1991-12-15

    During the past decade, remarkable progress has been made in our understanding of cancer-causing agents, mechanisms of cancer formation and the behavior of cancer cells. Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, and lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis). It has been estimated that about 75-80% of all human cancers are environmentally induced, 30-40% of them by diet. Only a small minority, possibly no more than 2% of all cases, result purely from inherent genetic changes. Several lines of evidence confirm that the fundamental molecular event or events that cause a cell to become malignant occur at the level of the DNA and a variety of studies indicate that the critical molecular event in chemical carcinogenesis is the interaction of the chemical agent with DNA. The demonstration that DNA isolated from tumor cells can transfect normal cells and render them neoplastic provides direct proof that an alteration of the DNA is responsible for cancer. The transforming genes, or oncogenes, have been identified by restriction endonuclease mapping. One of the characteristics of tumor cells generated by transformation with viruses, chemicals, or radiation is their reduced requirement for serum growth factors. A critical significance of electrophilic metabolites of carcinogenes in chemical carcinogenesis has been demonstrated. A number of "proximate" and "ultimate" metabolites, especially those of aromatic amines, were described. The "ultimate" forms of carcinogens actually interact with cellular constituents to cause neoplastic transformation and are the final metabolic products in most pathways. Recent evidence indicates that free radical derivatives of chemical carcinogens may be produced both metabolically and nonenzymatically during their metabolism. Free radicals carry no

  10. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice.

    Science.gov (United States)

    Chen, Jayson X; Li, Guangxun; Wang, Hong; Liu, Anna; Lee, Mao-Jung; Reuhl, Kenneth; Suh, Nanjoo; Bosland, Maarten C; Yang, Chung S

    2016-02-01

    Tocopherols, the major forms of vitamin E, exist as alpha-tocopherol (α-T), β-T, γ-T and δ-T. The cancer preventive activity of vitamin E is suggested by epidemiological studies, but recent large-scale cancer prevention trials with high dose of α-T yielded disappointing results. Our hypothesis that other forms of tocopherols have higher cancer preventive activities than α-T was tested, herein, in a novel prostate carcinogenesis model induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a dietary carcinogen, in the CYP1A-humanized (hCYP1A) mice. Treatment of hCYP1A mice with PhIP (200 mg/kg b.w., i.g.) induced high percentages of mouse prostatic intraepithelial neoplasia (mPIN), mainly in the dorsolateral glands. Supplementation with a γ-T-rich mixture of tocopherols (γ-TmT, 0.3% in diet) significantly inhibited the development of mPIN lesions and reduced PhIP-induced elevation of 8-oxo-deoxyguanosine, COX-2, nitrotyrosine, Ki-67 and p-AKT, and the loss of PTEN and Nrf2. Further studies with purified δ-T, γ-T or α-T (0.2% in diet) showed that δ-T was more effective than γ-T or α-T in preventing mPIN formations and p-AKT elevation. These results indicate that γ-TmT and δ-T could be effective preventive agents of prostate cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. A-to-I RNA editing: the "ADAR" side of human cancer.

    Science.gov (United States)

    Galeano, Federica; Tomaselli, Sara; Locatelli, Franco; Gallo, Angela

    2012-05-01

    Carcinogenesis is a complex, multi-stage process depending on both endogenous and exogenous factors. In the past years, DNA mutations provided important clues to the comprehension of the molecular pathways involved in numerous cancers. Recently, post-transcriptional modification events, such as RNA editing, are emerging as new players in several human diseases, including tumours. A-to-I RNA editing changes the nucleotide sequence of target RNAs, introducing A-to-I/G "mutations". Since ADAR enzymes catalyse this nucleotide conversion, their expression/activity is essential and finely regulated in normal cells. This review summarizes the available knowledge on A-to-I RNA editing in the cancer field, giving a new view on how ADARs may play a role in carcinogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Carcinogenesis in mice after low doses and dose rates

    International Nuclear Information System (INIS)

    Ullrich, R.L.

    1979-01-01

    The results from the experimental systems reported here indicate that the dose-response curves for tumor induction in various tissues cannot be described by a single model. Furthermore, although the understanding of the mechanisms involved in different systems is incomplete, it is clear that very different mechanisms for induction are involved. For some tumors the mechanism of carcinogenesis may be mainly a result of direct effects on the target cell, perhaps involving one or more mutations. While induction may occur, in many instances, through such direct effects, the eventual expression of the tumor can be influenced by a variety of host factors including endocrine status, competence of the immune system, and kinetics of target and interacting cell populations. In other tumors, indirect effects may play a major role in the initiation or expression of tumors. Some of the hormone-modulated tumors would fall into this class. Despite the complexities of the experimental systems and the lack of understanding of the types of mechanisms involved, in nearly every example the tumorigenic effectiveness per rad of low-LET radiation tends to decrease with decreasing dose rate. For some tumor types the differences may be small or may appear only with very low dose rates, while for others the dose-rate effects may be large

  13. Global Variation of Human Papillomavirus Genotypes and Selected Genes Involved in Cervical Malignancies.

    Science.gov (United States)

    Husain, R S Akram; Ramakrishnan, V

    2015-01-01

    Carcinoma of the cervix is ranked second among the top 5 cancers affecting women globally. Parallel to other cancers, it is also a complex disease involving numerous factors such as human papillomavirus (HPV) infection followed by the activity of oncogenes and environmental factors. The incidence rate of the disease remains high in developing countries due to lack of awareness, followed by mass screening programs, various socioeconomic issues, and low usage of preventive vaccines. Over the past 3 decades, extensive research has taken place in cervical malignancy to elucidate the role of host genes in the pathogenesis of the disease, yet it remains one of the most prevalent diseases. It is imperative that recent genome-wide techniques be used to determine whether carcinogenesis of oncogenes is associated with cervical cancer at the molecular level and to translate that knowledge into developing diagnostic and therapeutic tools. The aim of this study was to discuss HPV predominance with their genotype distribution worldwide, and in India, as well as to discuss the newly identified oncogenes related to cervical cancer in current scenario. Using data from various databases and robust technologies, oncogenes associated with cervical malignancies were identified and are explained in concise manner. Due to the advent of recent technologies, new candidate genes are explored and can be used as precise biomarkers for screening and developing drug targets. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Tissue misrepair hypothesis for radiation carcinogenesis

    International Nuclear Information System (INIS)

    Kondo, Sohei

    1991-01-01

    Dose-response curves for chronic leukemia in A-bomb survivors and liver tumors in patients given Thorotrast (colloidal thorium dioxide) show large threshold effects. The existence of these threshold effects can be explained by the following hypothesis. A high dose of radiation causes a persistent wound in a cellrenewable tissue. Disorder of the injured cell society partly frees the component cells from territorial restraints on their proliferation, enabling them to continue development of their cellular functions toward advanced autonomy. This progression might be achieved by continued epigenetic and genetic changes as a result of occasional errors in the otherwise concerted healing action of various endogeneous factors recruited for tissue repair. Carcinogenesis is not simply a single-cell problem but a cell-society problem. Therefore, it is not warranted to estimate risk at low doses by linear extrapolation from cancer data at high doses without knowledge of the mechanism of radiation carcinogenesis. (author) 57 refs

  15. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis.

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-09-06

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin.To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas.

  16. Cyr61/CCN1 signaling is critical for epithelial-mesenchymal transition and stemness and promotes pancreatic carcinogenesis

    Directory of Open Access Journals (Sweden)

    Van Veldhuizen Peter J

    2011-01-01

    Full Text Available Abstract Background Despite recent advances in outlining the mechanisms involved in pancreatic carcinogenesis, precise molecular pathways and cellular lineage specification remains incompletely understood. Results We show here that Cyr61/CCN1 play a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. Cyr61 mRNA and protein were detected in the early precursor lesions and their expression intensified with disease progression. Cyr61/CCN1 expression was also detected in different pancreatic cancer cell lines. The aggressive cell lines, in which the expressions of mesenchymal/stem cell molecular markers are predominant; exhibit more Cyr61/CCN1 expression. Cyr61 expression is exorbitantly higher in cancer stem/tumor initiating Panc-1-side-population (SP cells. Upon Cyr61/CCN1 silencing, the aggressive behaviors are reduced by obliterating interlinking pathobiological events such as reversing the EMT, blocking the expression of stem-cell-like traits and inhibiting migration. In contrast, addition of Cyr61 protein in culture medium augments EMT and stemness features in relatively less aggressive BxPC3 pancreatic cancer cells. Using a xenograft model we demonstrated that cyr61/CCN1 silencing in Panc-1-SP cells reverses the stemness features and tumor initiating potency of these cells. Moreover, our results imply a miRNA-based mechanism for the regulation of aggressive behaviors of pancreatic cancer cells by Cyr61/CCN1. Conclusions In conclusion, the discovery of the involvement of Cyr61/CCN1 in pancreatic carcinogenesis may represent an important marker for PDAC and suggests Cyr61/CCN1 can be a potential cancer therapeutic target.

  17. Effects of retinoids on ultraviolet-induced carcinogenesis

    International Nuclear Information System (INIS)

    Epstein, J.H.

    1981-01-01

    The evidence for effects of the retinoids on UV-induced carcinogenesis is sparse. Clinical observations indicate that topical RA can cause significant regression of premalignant actinic keratoses. Also there is some evidence that this agent can cause dissolution of some basal cell epitheliomas. However this latter effect does not appear to be of therapeutic value. Systemic retinoids are of little value in the treatment of premalignant and malignant cutaneous lesions though 13-cis-retinoic acid might be of use in the basal cell nevus syndrome. Examination of the influence of the retinoids on photocarcinogenesis essentially has been confined to RA and animal experimentation. RA in nontoxic concentrations can both stimulate and inhibit photocarcinogenesis depending upon the circumstances of the study. The mechanisms of these responses are not clear. Influences on DNA synthesis directly and/or indirectly or on immune responses may be involved in both effects. Preliminary studies with oral 13-cis-retinoic acid have not demonstrated any effects to date on UV-induced skin cancer formation

  18. Experimental gastric carcinogenesis in Cebus apella nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Joana de Fátima Ferreira Borges da Costa

    Full Text Available The evolution of gastric carcinogenesis remains largely unknown. We established two gastric carcinogenesis models in New-World nonhuman primates. In the first model, ACP03 gastric cancer cell line was inoculated in 18 animals. In the second model, we treated 6 animals with N-methyl-nitrosourea (MNU. Animals with gastric cancer were also treated with Canova immunomodulator. Clinical, hematologic, and biochemical, including C-reactive protein, folic acid, and homocysteine, analyses were performed in this study. MYC expression and copy number was also evaluated. We observed that all animals inoculated with ACP03 developed gastric cancer on the 9(th day though on the 14(th day presented total tumor remission. In the second model, all animals developed pre-neoplastic lesions and five died of drug intoxication before the development of cancer. The last surviving MNU-treated animal developed intestinal-type gastric adenocarcinoma observed by endoscopy on the 940(th day. The level of C-reactive protein level and homocysteine concentration increased while the level of folic acid decreased with the presence of tumors in ACP03-inoculated animals and MNU treatment. ACP03 inoculation also led to anemia and leukocytosis. The hematologic and biochemical results corroborate those observed in patients with gastric cancer, supporting that our in vivo models are potentially useful to study this neoplasia. In cell line inoculated animals, we detected MYC immunoreactivity, mRNA overexpression, and amplification, as previously observed in vitro. In MNU-treated animals, mRNA expression and MYC copy number increased during the sequential steps of intestinal-type gastric carcinogenesis and immunoreactivity was only observed in intestinal metaplasia and gastric cancer. Thus, MYC deregulation supports the gastric carcinogenesis process. Canova immunomodulator restored several hematologic measurements and therefore, can be applied during/after chemotherapy to increase the

  19. Role of infectious agents in the carcinogenesis of brain and head and neck cancers

    Directory of Open Access Journals (Sweden)

    Alibek Kenneth

    2013-02-01

    Full Text Available Abstract This review concentrates on tumours that are anatomically localised in head and neck regions. Brain cancers and head and neck cancers together account for more than 873,000 cases annually worldwide, with an increasing incidence each year. With poor survival rates at late stages, brain and head and neck cancers represent serious conditions. Carcinogenesis is a multi-step process and the role of infectious agents in this progression has not been fully identified. A major problem with such research is that the role of many infectious agents may be underestimated due to the lack of or inconsistency in experimental data obtained globally. In the case of brain cancer, no infection has been accepted as directly oncogenic, although a number of viruses and parasites are associated with the malignancy. Our analysis of the literature showed the presence of human cytomegalovirus (HCMV in distinct types of brain tumour, namely glioblastoma multiforme (GBM and medulloblastoma. In particular, there are reports of viral protein in up to 100% of GBM specimens. Several epidemiological studies reported associations of brain cancer and toxoplasmosis seropositivity. In head and neck cancers, there is a distinct correlation between Epstein-Barr virus (EBV and nasopharyngeal carcinoma (NPC. Considering that almost every undifferentiated NPC is EBV-positive, virus titer levels can be measured to screen high-risk populations. In addition there is an apparent association between human papilloma virus (HPV and head and neck squamous cell carcinoma (HNSCC; specifically, 26% of HNSCCs are positive for HPV. HPV type 16 was the most common type detected in HNSCCs (90% and its dominance is even greater than that reported in cervical carcinoma. Although there are many studies showing an association of infectious agents with cancer, with various levels of involvement and either a direct or indirect causative effect, there is a scarcity of articles covering the role of

  20. Selenium in human mammary carcinogenesis

    DEFF Research Database (Denmark)

    Overvad, Kim; Grøn, P.; Langhoff, Otto

    1991-01-01

    /l and TNM stage II 76 +/- 13 micrograms selenium/l), indicating disease-mediated changes. The evaluation of selenium as a risk indicator in human breast cancer was therefore restricted to TNM stage I patients (n = 36). Multiple logistic regression analyses including variables associated with selenium levels...

  1. Expression profile of microRNA-146a along HPV-induced multistep carcinogenesis: a study in HPV16 transgenic mice.

    Science.gov (United States)

    Araújo, Rita; Santos, Joana M O; Fernandes, Mara; Dias, Francisca; Sousa, Hugo; Ribeiro, Joana; Bastos, Margarida M S M; Oliveira, Paula A; Carmo, Diogo; Casaca, Fátima; Silva, Sandra; Medeiros, Rui; Gil da Costa, Rui M

    2018-02-01

    Persistent human papillomavirus (HPV) infection is associated with the development of certain types of cancer and the dysregulation of microRNAs has been implicated in HPV-associated carcinogenesis. This is the case of microRNA-146a (miR-146a), which is thought to regulate tumor-associated inflammation. We sought to investigate the expression levels of miR-146a during HPV16-mediated carcinogenesis using skin samples from K14-HPV16 transgenic mice which develop the consecutive phases of the carcinogenesis process. Female transgenic (HPV +/- ) and wild-type (HPV -/- ) mice were sacrificed at 24-26 weeks-old or 28-30 weeks-old. Chest and ear skin samples from HPV +/- and HPV -/- mice were histologically classified and used for microRNA extraction and quantification by qPCR. Chest skin samples from 24 to 26 weeks-old HPV +/- mice presented diffuse epidermal hyperplasia and only 22.5% showed multifocal dysplasia, while at 28-30 weeks-old all (100.0%) HPV +/- animals showed epidermal dysplasia. All HPV +/- ear skin samples showed carcinoma in situ (CIS). MiR-146a expression levels were higher in HPV +/- compared to HPV -/- mice (p = 0.006). There was also an increase in miR-146a expression in dysplastic skin lesions compared with hyperplasic lesions (p = 0.011). Samples showing CIS had a significant decrease in miR-146a expression when compared to samples showing epidermal hyperplasia (p = 0.018) and epidermal dysplasia (p = 0.009). These results suggest that HPV16 induces the overexpression of miR-146a in the initial stages of carcinogenesis (hyperplasia and dysplasia), whereas decreases its expression at later stages (CIS). Taken together, these data implicate and suggest different roles of miR-146a in HPV-mediated carcinogenesis.

  2. Local Acetaldehyde—An Essential Role in Alcohol-Related Upper Gastrointestinal Tract Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Mikko T. Nieminen

    2018-01-01

    Full Text Available The resident microbiome plays a key role in exposure of the upper gastrointestinal (GI tract mucosa to acetaldehyde (ACH, a carcinogenic metabolite of ethanol. Poor oral health is a significant risk factor for oral and esophageal carcinogenesis and is characterized by a dysbiotic microbiome. Dysbiosis leads to increased growth of opportunistic pathogens (such as Candida yeasts and may cause an up to 100% increase in the local ACH production, which is further modified by organ-specific expression and gene polymorphisms of ethanol-metabolizing and ACH-metabolizing enzymes. A point mutation in the aldehyde dehydrogenase 2 gene has randomized millions of alcohol consumers to markedly increased local ACH exposure via saliva and gastric juice, which is associated with a manifold risk for upper GI tract cancers. This human cancer model proves conclusively the causal relationship between ACH and upper GI tract carcinogenesis and provides novel possibilities for the quantitative assessment of ACH carcinogenicity in the human oropharynx. ACH formed from ethanol present in “non-alcoholic” beverages, fermented food, or added during food preparation forms a significant epidemiologic bias in cancer epidemiology. The same also concerns “free” ACH present in mutagenic concentrations in multiple beverages and foodstuffs. Local exposure to ACH is cumulative and can be reduced markedly both at the population and individual level. At best, a person would never consume tobacco, alcohol, or both. However, even smoking cessation and moderation of alcohol consumption are associated with a marked decrease in local ACH exposure and cancer risk, especially among established risk groups.

  3. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression.

    Science.gov (United States)

    Bonkhoff, Helmut

    2018-01-01

    The androgen receptor (AR) is the classical target for prostate cancer prevention and treatment, but more recently estrogens and their receptors have also been implicated in prostate cancer development and tumor progression. Recent experimental and clinical data were reviewed to elucidate pathogenetic mechanisms how estrogens and their receptors may affect prostate carcinogenesis and tumor progression. The estrogen receptor beta (ERβ) is the most prevalent ER in the human prostate, while the estrogen receptor alpha (ERα) is restricted to basal cells of the prostatic epithelium and stromal cells. In high grade prostatic intraepithelial neoplasia (HGPIN), the ERα is up-regulated and most likely mediates carcinogenic effects of estradiol as demonstrated in animal models. The partial loss of the ERβ in HGPIN indicates that the ERβ acts as a tumor suppressor. The tumor promoting function of the TMPRSS2-ERG fusion, a major driver of prostate carcinogenesis, is triggered by the ERα and repressed by the ERβ. The ERβ is generally retained in hormone naïve and metastatic prostate cancer, but is partially lost in castration resistant disease. The progressive emergence of the ERα and ERα-regulated genes (eg, progesterone receptor (PR), PS2, TMPRSS2-ERG fusion, and NEAT1) during prostate cancer progression and hormone refractory disease suggests that these tumors can bypass the AR by using estrogens and progestins for their growth. In addition, nongenomic estrogen signaling pathways mediated by orphan receptors (eg, GPR30 and ERRα) has also been implicated in prostate cancer progression. Increasing evidences demonstrate that local estrogen signaling mechanisms are required for prostate carcinogenesis and tumor progression. Despite the recent progress in this research topic, the translation of the current information into potential therapeutic applications remains highly challenging and clearly warrants further investigation. © 2017 Wiley Periodicals, Inc.

  4. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications.

    Science.gov (United States)

    Cao, Yi

    2015-09-01

    Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.

  5. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression

    International Nuclear Information System (INIS)

    Simiantonaki, Nektaria; Taxeidis, Marios; Jayasinghe, Caren; Kurzik-Dumke, Ursula; Kirkpatrick, Charles James

    2008-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is involved in processes promoting carcinogenesis of many tumors. However, its role in the development of colorectal cancer is unknown. To investigate the significance of HIF-1α during colorectal carcinogenesis and progression we examined its expression in precursor lesions constituting the conventional and serrated pathways, as well as in non-metastatic and metastatic adenocarcinomas. Immunohistochemistry and Western blot is used to analyse HIF-1α expression in normal colonic mucosa, hyperplastic polyps (HPP), sessile serrated adenomas (SSA), low-grade (TA-LGD) and high-grade (TA-HGD) traditional adenomas as well as in non-metastatic and metastatic colorectal adenocarcinomas. Eight colorectal carcinoma cell lines are tested for their HIF-1α inducibility after lipopolysaccharide (LPS) stimulation using western blot and immunocytochemistry. In normal mucosa, HPP and TA-LGD HIF-1α was not expressed. In contast, perinuclear protein accumulation and nuclear expression of HIF-1α were shown in half of the examined SSA and TA-HGD. In all investigated colorectal carcinomas a significant nuclear HIF-1α overexpression compared to the premalignant lesions was observed but a significant correlation with the metastatic status was not found. Nuclear HIF-1α expression was strongly accumulated in perinecrotic regions. In these cases HIF-1α activation was seen in viable cohesive tumor epithelia surrounding necrosis and in dissociated tumor cells, which subsequently die. Enhanced distribution of HIF-1α was also seen in periiflammatory regions. In additional in vitro studies, treatment of diverse colorectal carcinoma cell lines with the potent pro-inflammatory factor lipopolysaccharide (LPS) led to HIF-1α expression and nuclear translocation. We conclude that HIF-1α expression occurs in early stages of colorectal carcinogenesis and achieves a maximum in the invasive stage independent of the metastatic status. Perinecrotic

  6. Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes.

    Directory of Open Access Journals (Sweden)

    Herman F Fumiã

    Full Text Available A Boolean dynamical system integrating the main signaling pathways involved in cancer is constructed based on the currently known protein-protein interaction network. This system exhibits stationary protein activation patterns--attractors--dependent on the cell's microenvironment. These dynamical attractors were determined through simulations and their stabilities against mutations were tested. In a higher hierarchical level, it was possible to group the network attractors into distinct cell phenotypes and determine driver mutations that promote phenotypic transitions. We find that driver nodes are not necessarily central in the network topology, but at least they are direct regulators of central components towards which converge or through which crosstalk distinct cancer signaling pathways. The predicted drivers are in agreement with those pointed out by diverse census of cancer genes recently performed for several human cancers. Furthermore, our results demonstrate that cell phenotypes can evolve towards full malignancy through distinct sequences of accumulated mutations. In particular, the network model supports routes of carcinogenesis known for some tumor types. Finally, the Boolean network model is employed to evaluate the outcome of molecularly targeted cancer therapies. The major find is that monotherapies were additive in their effects and that the association of targeted drugs is necessary for cancer eradication.

  7. Towards a systemic paradigm in carcinogenesis: linking epigenetics and genetics.

    Science.gov (United States)

    Burgio, Ernesto; Migliore, Lucia

    2015-04-01

    For at least 30 years cancer has been defined as a genetic disease and explained by the so-called somatic mutation theory (SMT), which has dominated the carcinogenesis field. Criticism of the SMT has recently greatly increased, although still not enough to force all SMT supporters to recognize its limits. Various researchers point out that cancer appears to be a complex process concerning a whole tissue; and that genomic mutations, although variably deleterious and unpredictably important in determining the establishment of the neoplastic phenotype, are not the primary origin for a malignant neoplasia. We attempt to describe the inadequacies of the SMT and demonstrate that epigenetics is a more logical cause of carcinogenesis. Many previous models of carcinogenesis fall into two classes: (i) in which some biological changes inside cells alone lead to malignancy; and (ii) requiring changes in stroma/extracellular matrix. We try to make clear that in the (ii) model genomic instability is induced by persistent signals coming from the microenvironment, provoking epigenetic and genetic modifications in tissue stem cells that can lead to cancer. In this perspective, stochastic mutations of DNA are a critical by-product rather then the primary cause of cancer. Indirect support for such model of carcinogenesis comes from the in vitro and vivo experiments showing apparent 'reversion' of cancer phenotypes obtained via physiological factors of cellular differentiation (cytokines and other signaling molecules) or drugs, even if the key mutations are not 'reversed'.

  8. [In vitro and in vivo effects of mango pulp (Mangifera indica cv. Azucar) in colon carcinogenesis].

    Science.gov (United States)

    Corrales-Bernal, Andrea; Amparo Urango, Luz; Rojano, Benjamín; Maldonado, Maria Elena

    2014-03-01

    Mango pulp contains ascorbic acid, carotenoids, polyphenols, terpenoids and fiber which are healthy and could protect against colon cancer. The aim of this study was to evaluate the antiproliferative and preventive capacity of an aqueous extract of Mangifera indica cv. Azúcar on a human colon adenocarcinoma cell line (SW480) and in a rodent model of colorectal cancer, respectively. The content of total phenolics, flavonoids and carotenoids were also analyzed in the extract. SW480 cell growth was inhibited in a dose and time dependent manner by 22.3% after a 72h exposure to the extract (200 µg/ mL). Colon carcinogenesis was initiated in Balb/c mice by two intra-peritoneal injections of azoxymethane (AOM) at the third and fourth week of giving mango in drinking water (0.3%, 0.6%, 1.25%). After 10 weeks of treatment, in the colon of mice receiving 0.3% mango, aberrant crypt foci formation was inhibited more than 60% (p=0,05) and the inhibition was dose-dependent when compared with controls receiving water. These results show that mango pulp, a natural food, non toxic, part of human being diet, contains bioactive compounds able to reduce growth of tumor cells and to prevent the appearance of precancerous lesions in colon during carcinogenesis initiation.

  9. Early Involvement of Death-Associated Protein Kinase Promoter Hypermethylation in the Carcinogenesis of Barrett's Esophageal Adenocarcinoma and Its Association with Clinical Progression

    Directory of Open Access Journals (Sweden)

    Doerthe Kuester

    2007-03-01

    Full Text Available Esophageal Barrett's adenocarcinoma (BA develops through a multistage process, which is associated with the transcriptional silencing of tumor-suppressor genes by promoter CpG island hypermethylation. In this study, we explored the promoter hypermethylation and protein expression of proapoptotic deathassociated protein kinase (DAPK during the multistep Barrett's carcinogenesis cascade. Early BA and paired samples of premalignant lesions of 61 patients were analyzed by methylation-specific polymerase chain reaction and immunohistochemistry. For the association of clinicopathological markers and protein expression, an immunohistochemical tissue microarray analysis of 66 additional BAs of advanced tumor stages was performed. Hypermethylation of DAPK promoter was detected in 20% of normal mucosa, 50% of Barrett's metaplasia, 53% of dysplasia, and 60% of adenocarcinomas, and resulted in a marked decrease in DAPK protein expression (P < .01. The loss of DAPK protein was significantly associated with advanced depth of tumor invasion and advanced tumor stages (P < .001. Moreover, the severity of reflux esophagitis correlated significantly with the hypermethylation rate of the DAPK promoter (P < .003. Thus, we consider DAPK inactivation by promoter hypermethylation as an early event in Barrett's carcinogenesis and suggest that a decreased protein expression of DAPK likely plays a role in the development and progression of BA.

  10. Paradoxes in carcinogenesis: New opportunities for research directions

    Directory of Open Access Journals (Sweden)

    Kramer Barnett S

    2007-08-01

    Full Text Available Abstract Background The prevailing paradigm in cancer research is the somatic mutation theory that posits that cancer begins with a single mutation in a somatic cell followed by successive mutations. Much cancer research involves refining the somatic mutation theory with an ever increasing catalog of genetic changes. The problem is that such research may miss paradoxical aspects of carcinogenesis for which there is no likely explanation under the somatic mutation theory. These paradoxical aspects offer opportunities for new research directions that should not be ignored. Discussion Various paradoxes related to the somatic mutation theory of carcinogenesis are discussed: (1 the presence of large numbers of spatially distinct precancerous lesions at the onset of promotion, (2 the large number of genetic instabilities found in hyperplastic polyps not considered cancer, (3 spontaneous regression, (4 higher incidence of cancer in patients with xeroderma pigmentosa but not in patients with other comparable defects in DNA repair, (5 lower incidence of many cancers except leukemia and testicular cancer in patients with Down's syndrome, (6 cancer developing after normal tissue is transplanted to other parts of the body or next to stroma previously exposed to carcinogens, (7 the lack of tumors when epithelial cells exposed to a carcinogen were transplanted next to normal stroma, (8 the development of cancers when Millipore filters of various pore sizes were was inserted under the skin of rats, but only if the holes were sufficiently small. For the latter paradox, a microarray experiment is proposed to try to better understand the phenomena. Summary The famous physicist Niels Bohr said "How wonderful that we have met with a paradox. Now we have some hope of making progress." The same viewpoint should apply to cancer research. It is easy to ignore this piece of wisdom about the means to advance knowledge, but we do so at our peril.

  11. Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O(6-methylguanine-DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Wang

    Full Text Available Lung cancer is the leading cause of cancer-related deaths in the world. Achaete-scute complex homolog-1 (Ascl1 is a member of the basic helix-loop-helix (bHLH transcription factor family that has multiple functions in the normal and neoplastic lung such as the regulation of neuroendocrine differentiation, prevention of apoptosis and promotion of tumor-initiating cells. We now show that Ascl1 directly regulates matrix metalloproteinase-7 (MMP-7 and O(6-methylguanine-DNA methyltransferase (MGMT. Loss- and gain-of-function experiments in human bronchial epithelial and lung carcinoma cell lines revealed that Ascl1, MMP-7 and MGMT are able to protect cells from the tobacco-specific nitrosamine NNK-induced DNA damage and the alkylating agent cisplatin-induced apoptosis. We also examined the role of Ascl1 in NNK-induced lung tumorigenesis in vivo. Using transgenic mice which constitutively expressed human Ascl1 in airway lining cells, we found that there was a delay in lung tumorigenesis. We conclude that Ascl1 potentially enhances DNA repair through activation of MMP-7 and MGMT which may impact lung carcinogenesis and chemoresistance. The study has uncovered a novel and unexpected function of Ascl1 which will contribute to better understanding of lung carcinogenesis and the broad implications of transcription factors in tobacco-related carcinogenesis.

  12. Regulating hematology/oncology research involving human participants.

    Science.gov (United States)

    Kapp, Marshall B

    2002-12-01

    The conduct of hematology/oncology research, particularly clinical trials involving human participants, is an extensively regulated enterprise. Professionals in the specialty of hematology/oncology have important stakes in the success of biomedical research endeavors. Knowledge about and compliance strategies regarding the pertinent regulatory parameters are essential for avoiding negative legal repercussions for involved professionals. At the same time, there is a need to be aware of and actively resist the danger that strong [legal] protectionism might inadvertently result in undermining physician investigators' sense of personal moral responsibility in the conduct of human experiments. For all the limitations of that virtue in the protection of human subjects, it is surely not one that we would want medical scientists to be without [47]. Members of the potential participant pool, financial sponsors, and the general public must be convinced that everyone involved in the research enterprise is committed to operating within acceptable legal and ethical boundaries if the atmosphere of confidence and trust that is indispensable to the continued process and progress of investigation aimed at extending and improving quality of life for all of us in the future is to continue and flourish [48].

  13. Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells.

    Science.gov (United States)

    Trosko, James E; Tai, Mei-Hui

    2006-01-01

    Inflammation, induced by microbial agents, radiation, endogenous or exogenous chemicals, has been associated with chronic diseases, including cancer. Since carcinogenesis has been characterized as consisting of the 'initiation', 'promotion' and 'progression' phases, the inflammatory process could affect any or all three phases. The stem cell theory of carcinogenesis has been given a revival, in that isolated human adult stem cells have been isolated and shown to be 'targets' for neoplastic transformation. Oct4, a transcription factor, has been associated with adult stem cells, as well as their immortalized and tumorigenic derivatives, but not with the normal differentiated daughters. These data are consistent with the stem cell theory of carcinogenesis. In addition, Gap Junctional Intercellular Communication (GJIC) seems to play a major role in cell growth. Inhibition of GJIC by non-genotoxic chemicals or various oncogenes seems to be the mechanism for the tumor promotion and progression phases of carcinogenesis. Many of the toxins, synthetic non-genotoxicants, and endogenous inflammatory factors have been shown to inhibit GJIC and act as tumor promoters. The inhibition of GJIC might be the mechanism by which the inflammatory process affects cancer and that to intervene during tumor promotion with anti-inflammatory factors might be the most efficacious anti-cancer strategy.

  14. [Experimental study on carcinogenesis by human papillomavirus type 8 E7 gene].

    Science.gov (United States)

    Nishikawa, T

    1994-05-01

    Human papillomavirus (HPV) 5 and HPV8 are often detected in skin cancers developed in patients suffering from epidermodysplasia verruciformis, as well as in skin cancers developed in immunosuppressed patients. In the present study, in order to examine the transforming activity of the HPV8E7 gene, the HPV8E7 and HPV8E6/E7 genes were cloned into the expression vector (pcD2-Y), under the SV40 enhancer/promoter to construct pcD2-8E7 and pcD2-8E6/E7, respectively. The E7 and E6/E7 genes of genital high-risk HPV16 were also cloned into pcD2-Y to construct pcD2-16E7 and pcD2-16E6/E7, respectively. They were tested for their ability to collaboratively transform primary rat embryo fibroblasts (REFs) with activated H-ras gene. Transfection experiments of REFs having an activated H-ras gene revealed that pcD2-8E7, as well as pcD2-16E7 and pcD2-16E6/E7, induced transformation of cells in G418-resistant colonies at efficiencies of 11.9%, 43.0% and 53.0%, respectively. Transformed cell lines induced by activated H-ras gene and pcD2-8E7 or pcD2-16E7 were named 8RE and 16RE cell lines, respectively. Tumor induction in syngeneic newborn rats by injected the 8RE cells was higher than that of the 16RE cells. In cytological and histological examination, the 8RE cell lines and their induced tumors were different from the 16RE cell lines and their induced tumors. The 8RE cell lines showed the characteristic transformation with efficient growth ability on plastic and colony formation in 0.3% soft agar. These results support the hypothesis that the HPV8E7 gene plays an important role in the carcinogenesis of skin cancers.

  15. Molecular mechanisms in radiation carcinogenesis: introduction

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1975-01-01

    Molecular studies of radiation carcinogenesis are discussed in relation to theories for extrapolating from cellular and animal models to man. Skin cancer is emphasized because of sunlight-induced photochemical damage to DNA. It is emphasized that cellular and animal models are needed as well as molecular theories for quantitative evaluation of hazardous environmental agents. (U.S.)

  16. Protein Kinases and Transcription Factors Activation in Response to UV-Radiation of Skin: Implications for Carcinogenesis

    OpenAIRE

    Laurence A. Marchat; Elena Aréchaga Ocampo; Mavil López Casamichana; Carlos Pérez-Plasencia; César López-Camarillo; Elizbeth Álvarez-Sánchez

    2011-01-01

    Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-?B, AP-1, and NRF2...

  17. Quantifying Engagement: Measuring Player Involvement in Human-Avatar Interactions

    Science.gov (United States)

    Norris, Anne E.; Weger, Harry; Bullinger, Cory; Bowers, Alyssa

    2014-01-01

    This research investigated the merits of using an established system for rating behavioral cues of involvement in human dyadic interactions (i.e., face-to-face conversation) to measure involvement in human-avatar interactions. Gameplay audio-video and self-report data from a Feasibility Trial and Free Choice study of an effective peer resistance skill building simulation game (DRAMA-RAMA™) were used to evaluate reliability and validity of the rating system when applied to human-avatar interactions. The Free Choice study used a revised game prototype that was altered to be more engaging. Both studies involved girls enrolled in a public middle school in Central Florida that served a predominately Hispanic (greater than 80%), low-income student population. Audio-video data were coded by two raters, trained in the rating system. Self-report data were generated using measures of perceived realism, predictability and flow administered immediately after game play. Hypotheses for reliability and validity were supported: Reliability values mirrored those found in the human dyadic interaction literature. Validity was supported by factor analysis, significantly higher levels of involvement in Free Choice as compared to Feasibility Trial players, and correlations between involvement dimension sub scores and self-report measures. Results have implications for the science of both skill-training intervention research and game design. PMID:24748718

  18. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ki Baik Hahm

    2011-07-01

    Full Text Available Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis.

  19. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hee; Hong, Kyung-Sook; Hong, Hua [Lab of Translational Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Hahm, Ki Baik, E-mail: hahmkb@gachon.ac.kr [Lab of Translational Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Department of Gastroenterology, Gachon Graduate School of Medicine, Gil Hospital, Incheon 406-840 (Korea, Republic of)

    2011-07-25

    Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori) infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis.

  20. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    International Nuclear Information System (INIS)

    Kim, Eun-Hee; Hong, Kyung-Sook; Hong, Hua; Hahm, Ki Baik

    2011-01-01

    Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori) infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis

  1. Prevention of mammary carcinogenesis by short-term estrogen and progestin treatments

    International Nuclear Information System (INIS)

    Rajkumar, Lakshmanaswamy; Guzman, Raphael C; Yang, Jason; Thordarson, Gudmundur; Talamantes, Frank; Nandi, Satyabrata

    2004-01-01

    Women who have undergone a full-term pregnancy before the age of 20 have one-half the risk of developing breast cancer compared with women who have never gone through a full-term pregnancy. This protective effect is observed universally among women of all ethnic groups. Parity in rats and mice also protects them against chemically induced mammary carcinogenesis. Seven-week-old virgin Lewis rats were given N-methyl-N-nitrosourea. Two weeks later the rats were treated with natural or synthetic estrogens and progestins for 7–21 days by subcutaneous implantation of silastic capsules. In our current experiment, we demonstrate that short-term sustained exposure to natural or synthetic estrogens along with progestins is effective in preventing mammary carcinogenesis in rats. Treatment with 30 mg estriol plus 30 mg progesterone for 3 weeks significantly reduced the incidence of mammary cancer. Short-term exposure to ethynyl estradiol plus megesterol acetate or norethindrone was effective in decreasing the incidence of mammary cancers. Tamoxifen plus progesterone treatment for 3 weeks was able to confer only a transient protection from mammary carcinogenesis, while 2-methoxy estradiol plus progesterone was effective in conferring protection against mammary cancers. The data obtained in the present study demonstrate that, in nulliparous rats, long-term protection against mammary carcinogenesis can be achieved by short-term treatments with natural or synthetic estrogen and progesterone combinations

  2. Interaction Between Dietary Factors and Inflammation in Prostate Carcinogenesis

    National Research Council Canada - National Science Library

    De Marzo, Angelo M

    2007-01-01

    We are investigating whether inflammation can enhance prostate carcinogenesis in a rat model of dietary charred meat carcinogen induced cancers, and, whether antioxidant and other chemopreventative...

  3. Interactions between Dietary Factors and Inflammation in Prostate Carcinogenesis

    National Research Council Canada - National Science Library

    DeMarzo, Angelo M

    2006-01-01

    We are investigating whether inflammation can enhance prostate carcinogenesis in a rat model of dietary charred meat carcinogen induced cancers, and, whether antioxidant and other chemopreventative...

  4. The Society's Involvement in the Defense of Human Rights

    Science.gov (United States)

    Gerjuoy, Edward

    2015-04-01

    The history of the Society's involvement in the defense of human rights, a history of which the Society can be proud, will be summarized; the summary will include illustrative specific APS human rights defense actions in illustrative specific cases. As will be emphasized, the aforesaid involvement has been primarily through the activities of the APS Committee on International Freedom of Scientists (CIFS). It is noteworthy-and one of the reasons the Society can be proud-that CIFS is charged with ``monitoring concerns regarding human rights for scientists,'' not solely for physicists, and that CIFS indeed has sought to protect the human rights of nonphysicists.

  5. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    International Nuclear Information System (INIS)

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-01-01

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C → A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C → T, two C → A, one C → G, and one A → T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab

  6. Increased phosphorylation of histone H3 at serine 10 is involved in Epstein-Barr virus latent membrane protein-1-induced carcinogenesis of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Li, Binbin; Huang, Guoliang; Zhang, Xiangning; Li, Rong; Wang, Jian; Dong, Ziming; He, Zhiwei

    2013-01-01

    Increased histone H3 phosphorylation is an essential regulatory mechanism for neoplastic cell transformation. We aimed to explore the role of histone H3 phosphorylation at serine10 (p-H3Ser10) in Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1)-induced carcinogenesis of nasopharyngeal carcinoma (NPC). The expression of p-H3Ser10 was detected by the immunohistochemical analysis in NPC, chronic nasopharyngitis and normal nasopharynx tissues, and its correlation with LMP1 was analyzed in NPC tissues and cell lines. Using the small interfering RNA (siRNA)-H3 and histone H3 mutant (S10A), the effect of histone H3 Ser10 motif on LMP1-induced CNE1 cell proliferation, transformation and activator protein-1 (AP-1) activation were evaluated by CCK-8, focus-forming and reporter gene assay respectively. Mitogen- and stress-activated kinase 1 (MSK1) kinase activity and phosphorylation were detected by in vitro kinase assay and western blot. Using MSK1 inhibitor H89 or siRNA-MSK1, the regulatory role of MSK1 on histone H3 phosphorylation and AP-1 activation were analyzed. Immunohistochemical analysis revealed that the expression of p-H3Ser10 was significantly higher in the poorly differentiated NPC tissues than that in chronic nasopharyngitis (p <0.05) and normal nasopharynx tissues (p <0.001). Moreover, high level of p-H3Ser10 was positively correlated with the expression of LMP1 in NPC tissues (χ 2 =6.700, p =0.01; C=0.350) and cell lines. The knockdown and mutant (S10A) of histone H3 suppressed LMP1-induced CNE1 cell proliferation, foci formation and AP-1 activation. In addition, LMP1 could increase MSK1 kinase activity and phosphorylation. MSK1 inhibitor H89 or knockdown of MSK1 by siRNA blocked LMP1-induced phosphorylation of histone H3 at Ser10 and AP-1 activation. EBV-LMP1 can induce phosphorylation of histone H3 at Ser10 via MSK1. Increased phosphorylation of histone H3 at Ser10 is likely a crucial regulatory mechanism involved in LMP1-induced carcinogenesis of

  7. Cellular adaptation as an important response during chemical carcinogenesis

    International Nuclear Information System (INIS)

    Farber, E.

    1992-01-01

    Since disease processes are largely expressions of how living organisms react and respond to perturbations in the external and internal environments, adaptive or protective responses and their modulations and mechanisms are of the greatest concern in fundamental studies of disease pathogenesis. Such considerations are also of the greatest relevance in toxicology, including how living organisms respond to low levels of single and multiple xenobiotics and radiations. As the steps and mechanisms during cancer development are studied in greater depth, phenomena become apparent that suggest that adaptive reactions and responses may play important or even critical roles in the process of carcinogenesis. The question becomes whether the process of carcinogenesis is fundamentally an adversarial one (i.e., an abnormal cell in a vulnerable host), or is it more in the nature of a physiological selection or differentiation, which has survival value for the host as an adaptive phenomena? The very early initial interactions of mutagenic chemical carcinogens, radiations and viruses with DNA prejudice most to consider the adversarial 'abnormal' view as the appropriate one. Yet, the unusually common nature of the earliest altered rare cells that appear during carcinogenesis, their unusually bland nature, and their spontaneous differentiation to normal-appearing adult liver should be carefully considered

  8. Immunological responses against human papilloma virus and human papilloma virus induced laryngeal cancer.

    Science.gov (United States)

    Chitose, Shun-ichi; Sakazaki, T; Ono, T; Kurita, T; Mihashi, H; Nakashima, T

    2010-06-01

    This study aimed to clarify the local immune status in the larynx in the presence of infection or carcinogenesis associated with human papilloma virus. Cytological samples (for human papilloma virus detection) and laryngeal secretions (for immunoglobulin assessment) were obtained from 31 patients with laryngeal disease, during microscopic laryngeal surgery. On histological examination, 12 patients had squamous cell carcinoma, four had laryngeal papilloma and 15 had other benign laryngeal disease. Cytological samples were tested for human papilloma virus DNA using the Hybrid Capture 2 assay. High risk human papilloma virus DNA was detected in 25 per cent of patients (three of 12) with laryngeal cancer. Low risk human papilloma virus DNA was detected only in three laryngeal papilloma patients. The mean laryngeal secretion concentrations of immunoglobulins M, G and A and secretory immunoglobulin A in human papilloma virus DNA positive patients were more than twice those in human papilloma virus DNA negative patients. A statistically significant difference was observed between the secretory immunoglobulin A concentrations in the two groups. Patients with laryngeal cancer had higher laryngeal secretion concentrations of each immunoglobulin type, compared with patients with benign laryngeal disease. The study assessed the mean laryngeal secretion concentrations of each immunoglobulin type in the 12 laryngeal cancer patients, comparing human papilloma virus DNA positive patients (n = 3) and human papilloma virus DNA negative patients (n = 9); the mean concentrations of immunoglobulins M, G and A and secretory immunoglobulin A tended to be greater in human papilloma virus DNA positive cancer patients, compared with human papilloma virus DNA negative cancer patients. These results suggest that the local laryngeal immune response is activated by infection or carcinogenesis due to human papilloma virus. The findings strongly suggest that secretory IgA has inhibitory activity

  9. Role of Stat in Skin Carcinogenesis: Insights Gained from Relevant Mouse Models

    International Nuclear Information System (INIS)

    Macias, E.; Rao, D.; DiGiovanni, J.; DiGiovanni, J.; DiGiovanni, J.

    2013-01-01

    Signal transducer and activator of transcription 3 (Stat) is a cytoplasmic protein that is activated in response to cytokines and growth factors and acts as a transcription factor. Stat plays critical roles in various biological activities including cell proliferation, migration, and survival. Studies using keratinocyte-specific Stat-deficient mice have revealed that Stat plays an important role in skin homeostasis including keratinocyte migration, wound healing, and hair follicle growth. Use of both constitutive and inducible keratinocyte-specific Stat-deficient mouse models has demonstrated that Stat is required for both the initiation and promotion stages of multistage skin carcinogenesis. Further studies using a transgenic mouse model with a gain of function mutant of Stat (Stat3C) expressed in the basal layer of the epidermis revealed a novel role for Stat in skin tumor progression. Studies using similar Stat-deficient and gain-of-function mouse models have indicated its similar roles in ultraviolet B (UVB) radiation-mediated skin carcinogenesis. This paper summarizes the use of these various mouse models for studying the role and underlying mechanisms for the function of Stat in skin carcinogenesis. Given its significant role throughout the skin carcinogenesis process, Stat is an attractive target for skin cancer prevention and treatment.

  10. Folate, colorectal cancer and the involvement of DNA methylation.

    Science.gov (United States)

    Williams, Elizabeth A

    2012-11-01

    Diet is a major factor in the aetiology of colorectal cancer (CRC). Epidemiological evidence suggests that folate confers a modest protection against CRC risk. However, the relationship is complex, and evidence from human intervention trials and animal studies suggests that a high-dose of folic acid supplementation may enhance the risk of colorectal carcinogenesis in certain circumstances. The molecular mechanisms underlying the apparent dual modulatory effect of folate on colorectal carcinogenesis are not fully understood. Folate is central to C1 metabolism and is needed for both DNA synthesis and DNA methylation, providing plausible biological mechanisms through which folate could modulate cancer risk. Aberrant DNA methylation is an early event in colorectal carcinogenesis and is typically associated with the transcriptional silencing of tumour suppressor genes. Folate is required for the production of S-adenosyl methionine, which serves as a methyl donor for DNA methylation events; thereby folate availability is proposed to modulate DNA methylation status. The evidence for an effect of folate on DNA methylation in the human colon is limited, but a modulation of DNA methylation in response to folate has been demonstrated. More research is required to clarify the optimum intake of folate for CRC prevention and to elucidate the effect of folate availability on DNA methylation and the associated impact on CRC biology.

  11. Collagen mRNA levels changes during colorectal cancer carcinogenesis

    DEFF Research Database (Denmark)

    Skovbjerg, Hanne; Anthonsen, Dorit; Lothe, Inger M B

    2009-01-01

    BACKGROUND: Invasive growth of epithelial cancers is a complex multi-step process which involves dissolution of the basement membrane. Type IV collagen is a major component in most basement membranes. Type VII collagen is related to anchoring fibrils and is found primarily in the basement membrane...... zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different alpha(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of type IV collagen (alpha1/alpha 4/alpha 6......) and type VII collagen (alpha1) during colorectal cancer carcinogenesis. METHODS: Using quantitative RT-PCR, we have determined the mRNA levels for alpha1(IV), alpha 4(IV), alpha 6(IV), and alpha1(VII) in colorectal cancer tissue (n = 33), adenomas (n = 29) and in normal tissue from the same individuals...

  12. [Histologic study on impeding leukoplakia carcinogenesis of golden hamster cheek pouch about Erigeron breviscapus (Vant) Hand-Mazz].

    Science.gov (United States)

    Zhou, C T; Zhong, W J; Hua, L; Hu, H F; Jin, Z G

    2000-06-01

    To observe the effect of Erigeron breviscapus (Vant) Hand Mazz (HEr) in impeding oral leukoplakia carcinogenesis, and to seek effective Chinese herb medicine that can impede precarcinoma of oral mucosas. 132 golden hamsters were randomly divided into model group (60 animals), HEr group (60 animals), and control group 12 animals. Salley's leukoplakia carcinogenesis model of golden hamster cheek pouch was used in this study. HEr was injected into the stomach to impede evolution of carcinogenesis. Pathological specimens were observed via naked eye and light microscope between model group and HEr group. Results were compared. Observation via naked-eye showed that leukoplakia rate of HEr group (18.2%) was lower than that of model group (27.3%). Observation via light microscope showed that carcinogenesis rate descended one fold and displasia rate descended 0.4 fold in HEr group. HEr has exact effect in impeding leukoplakia carcinogenesis.

  13. Experimental radiation carcinogenesis: what have we learned

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1980-01-01

    The author reviews the need for animal experiments in development of a biological model for radioinduced carcinogenesis. He concludes they are vital for: (1) study of mechanisms; (2) establishment of generalizations; (3) elucidation of dose-response and time-dose relationships; and (4) determination of dose-distributions and their results, particularly for radionuclides. (PSB)

  14. Experimental radiation carcinogenesis: what have we learned

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1980-01-01

    The author reviews the need for animal experiments in development of a biological model for radioinduced carcinogenesis. He concludes they are vital for: (1) study of mechanisms; (2) establishment of generalizations; (3) elucidation of dose-response and time-dose relationships; and (4) determination of dose-distributions and their results, particularly for radionuclides

  15. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Subhayan, E-mail: subhayansur18@gmail.com [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Pal, Debolina; Roy, Rituparna; Barua, Atish [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Roy, Anup [North Bengal Medical College and Hospital, West Bengal (India); Saha, Prosenjit [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Panda, Chinmay Kumar, E-mail: ckpanda.cnci@gmail.com [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India)

    2016-06-01

    The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30th weeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30th week. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF. - Highlights: • Simultaneous tongue and liver carcinogenesis in mice by oral NDEA administration • Restriction of both carcinogenesis by EGCG and TF at early pre-malignant stages • The mechanisms of carcinogenesis and restriction were similar in both the organs. • Changes in proliferation

  16. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice

    International Nuclear Information System (INIS)

    Sur, Subhayan; Pal, Debolina; Roy, Rituparna; Barua, Atish; Roy, Anup; Saha, Prosenjit; Panda, Chinmay Kumar

    2016-01-01

    The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30th weeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30th week. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF. - Highlights: • Simultaneous tongue and liver carcinogenesis in mice by oral NDEA administration • Restriction of both carcinogenesis by EGCG and TF at early pre-malignant stages • The mechanisms of carcinogenesis and restriction were similar in both the organs. • Changes in proliferation

  17. Transplacental arsenic carcinogenesis in mice

    International Nuclear Information System (INIS)

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  18. Interaction between APC and Fen1 during breast carcinogenesis.

    Science.gov (United States)

    Narayan, Satya; Jaiswal, Aruna S; Law, Brian K; Kamal, Mohammad A; Sharma, Arun K; Hromas, Robert A

    2016-05-01

    Aberrant DNA base excision repair (BER) contributes to malignant transformation. However, inter-individual variations in DNA repair capacity plays a key role in modifying breast cancer risk. We review here emerging evidence that two proteins involved in BER - adenomatous polyposis coli (APC) and flap endonuclease 1 (Fen1) - promote the development of breast cancer through novel mechanisms. APC and Fen1 expression and interaction is increased in breast tumors versus normal cells, APC interacts with and blocks Fen1 activity in Pol-β-directed LP-BER, and abrogation of LP-BER is linked with cigarette smoke condensate-induced transformation of normal breast epithelial cells. Carcinogens increase expression of APC and Fen1 in spontaneously immortalized human breast epithelial cells, human colon cancer cells, and mouse embryonic fibroblasts. Since APC and Fen1 are tumor suppressors, an increase in their levels could protect against carcinogenesis; however, this does not seem to be the case. Elevated Fen1 levels in breast and lung cancer cells may reflect the enhanced proliferation of cancer cells or increased DNA damage in cancer cells compared to normal cells. Inactivation of the tumor suppressor functions of APC and Fen1 is due to their interaction, which may act as a susceptibility factor for breast cancer. The increased interaction of APC and Fen1 may occur due to polypmorphic and/or mutational variation in these genes. Screening of APC and Fen1 polymorphic and/or mutational variations and APC/Fen1 interaction may permit assessment of individual DNA repair capability and the risk for breast cancer development. Such individuals might lower their breast cancer risk by reducing exposure to carcinogens. Stratifying individuals according to susceptibility would greatly assist epidemiologic studies of the impact of suspected environmental carcinogens. Additionally, a mechanistic understanding of the interaction of APC and Fen1 may provide the basis for developing new and

  19. Molecular signaling involving intrinsically disordered proteins in prostate cancer

    Directory of Open Access Journals (Sweden)

    Anna Russo

    2016-01-01

    Full Text Available Investigations on cellular protein interaction networks (PINs reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.

  20. Role of MLH1 methylation in esophageal cancer carcinogenesis and its clinical significance.

    Science.gov (United States)

    Li, Jinyun; Ye, Dong; Wang, Lei; Peng, Yingying; Li, Qun; Deng, Hongxia; Zhou, Chongchang

    2018-01-01

    The mutL homolog-1 ( MLH1 ) is a DNA mismatch repair gene and has been reported to be frequently methylated in numerous cancers. However, the association between MLH1 methylation and esophageal cancer (EC), as well as its clinical significance, remains unclear. Hence, we conducted a systematic meta-analysis based on 19 articles (including 1384 ECs, 345 premalignant lesions, and 1244 healthy controls). Our analysis revealed that the frequency of MLH1 methylation was significantly elevated during EC carcinogenesis. In addition, we observed that MLH1 promoter methylation was associated with age (odds ratio [OR]=1.79; 95% CI =1.20-2.66), advanced tumor grade (OR=3.7; 95% CI =2.37-5.77), lymph node metastasis (OR=2.65; 95% CI =1.81-3.88), distant metastasis (OR=7.60; 95% CI =1.23-47.19), advanced clinical stage (OR=4.46; 95% CI =2.88-6.91), and poor prognosis in EC patients (hazard ratio =1.64, 95% CI =1.00-2.69). The pooled sensitivity, specificity, and area under the curve of MLH1 methylation in EC patients versus healthy individuals were 0.15, 0.99, and 0.77, respectively. Our findings indicate that MLH1 methylation is involved in the carcinogenesis, progression, and metastasis of EC. Moreover, methylated MLH1 could be a potential diagnostic and prognostic biomarker for EC.

  1. Hypoxia and cell cycle deregulation in endometrial carcinogenesis

    NARCIS (Netherlands)

    Horrée, N.

    2007-01-01

    Because uterine endometrial carcinoma is the most common malignancy of the female genital tract and 1 of every 5 patients dies of this disease, understanding the mechanisms of carcinogenesis and progression of endometrial carcinoma is important. In general, this thesis can be summarized as a study

  2. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Payne CM

    2011-05-01

    Full Text Available Claire M Payne, Cheray Crowley-Skillicorn, Carol Bernstein, Hana Holubec, Harris BernsteinDepartment of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USAAbstract: Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the “hot spots” in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss.Keywords: chromosome 1p, colon carcinogenesis, molecular pathways, cellular pathways

  3. Null effect of dietary restriction on prostate carcinogenesis in the Wistar-Unilever rat.

    Science.gov (United States)

    McCormick, David L; Johnson, William D; Haryu, Todd M; Bosland, Maarten C; Lubet, Ronald A; Steele, Vernon E

    2007-01-01

    Chronic dietary restriction inhibits carcinogenesis in several sites in laboratory animals. To determine the effects of dietary restriction on prostate carcinogenesis, prostate cancers were induced in male Wistar-Unilever rats by a sequential regimen of cyproterone acetate (50 mg/day; 21 days); testosterone propionate (100 mg/kg/day; 3 days); N-methyl-N-nitrosourea [MNU; 30 mg/kg; single dose]; and testosterone (subcutaneous implants of 2 pellets containing 40 mg each). Dietary restriction (0% [ad libitum control], 15%, or 30%) was initiated 2 wk post-MNU, and continued until study termination at 12 mo. Dietary restriction induced a rapid suppression of body weight gain but conferred no protection against prostate carcinogenesis. 74% of carcinogen-treated ad libitum controls developed accessory sex gland cancers, versus cancer incidences of 64% and 72% in groups restricted by 15% and 30%, respectively. Similarly, 44% of dietary controls developed cancers limited to the dorsolateral/prostate, versus incidences of 45% and 53% in groups restricted by 15% and 30%. The results of the present study do not support the hypothesis that prostate carcinogenesis can be prevented by reducing caloric intake. Reducing mean body weight by up to 25% through chronic dietary restriction has no effect on the induction of prostate cancers in the Wistar-Unilever rat model.

  4. Introduction and overview. Perinatal carcinogenesis: growing a node for epidemiology, risk management, and animal studies

    International Nuclear Information System (INIS)

    Anderson, Lucy M.

    2004-01-01

    Perinatal carcinogenesis as a cross-disciplinary concern is the subject of this special issue of Toxicology and Applied Pharmacology, which consists of a total of eight reviews or commentaries in the areas of epidemiology, risk assessment, and animal models. Some of the conclusions from these articles, and the Questions and Answers section that follows most of them, are summarized here. There is adequate reason to suspect that perinatal exposures contribute to human cancer risk, both childhood cancers, and those appearing later in life. The latter type of risk may actually be quantitatively the more important, and involve a wide range of types of effects, but has received only limited attention. With regard to childhood cancers, fetal irradiation and diethylstilbestrol exposure are known etiological agents, and it is likely, but not yet certain, there are additional external causes of a portion of these. Some current focal points of interest here include nitroso compounds, DNA topoisomerase inhibitors, viruses, anti-AIDS drugs, and endocrine disruptors. Regulatory agencies must rely heavily on animal data for estimation of human risk due to perinatal exposures to chemicals, and the quantity and quality of these data presently available for this purpose are greatly limiting. Correctly designed conventional animal studies with suspect chemicals are still needed. Furthermore, genetically engineered mouse models for childhood cancers, especially medulloblastoma, have become available, and could be used for screening of candidate causative agents for this cancer type, and for better understanding of gene-environment interactions

  5. Biologically based modelling and simulation of carcinogenesis at low doses

    International Nuclear Information System (INIS)

    Ouchi, Noriyuki B.

    2003-01-01

    The process of the carcinogenesis is studied by computer simulation. In general, we need a large number of experimental samples to detect mutations at low doses, but in practice it is difficult to get such a large number of data. To satisfy the requirements of the situation at low doses, it is good to study the process of carcinogenesis using biologically based mathematical model. We have mainly studied it by using as known as 'multi-stage model'; the model seems to get complicated, as we adopt the recent new findings of molecular biological experiments. Moreover, the basic idea of the multi-stage model is based on the epidemiologic data of log-log variation of cancer incidence with age, it seems to be difficult to compare with experimental data of irradiated cell culture system, which has been increasing in recent years. Taking above into consideration, we concluded that we had better make new model with following features: 1) a unit of the target system is a cell, 2) the new information of the molecular biology can be easily introduced, 3) having spatial coordinates for checking a colony formation or tumorigenesis. In this presentation, we will show the detail of the model and some simulation results about the carcinogenesis. (author)

  6. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-01-01

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways. PMID:28277539

  7. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  8. Estimating radiation-induced cancer risk using MVK two-stage model for carcinogenesis

    International Nuclear Information System (INIS)

    Kai, M.; Kusama, T.; Aoki, Y.

    1993-01-01

    Based on the carcinogenesis model as proposed by Moolgavkar et al., time-dependent relative risk models were derived for projecting the time variation in excess relative risk. If it is assumed that each process is described by time-independent linear dose-response relationship, the time variation in excess relative risk is influenced by the parameter related with the promotion process. The risk model based carcinogenesis theory would play a marked role in estimating radiation-induced cancer risk in constructing a projection model or transfer model

  9. Committees for Ethics in Research involving human subjects.

    Science.gov (United States)

    Hossne, William Saad; Vieira, Sonia; De Freitas, Corina Bontempo Duca

    2008-01-01

    In Brazil since October 1996 there have been guidelines for research involving human subjects. Now human subjects know when their treatment is part of research. Deceit is no longer tolerated. But is not enough to say we offer an explanation to the potential subject and we offer a choice before he or she is confronted with an informed consent form. As in all professional activity, scientific investigation needs social controls. In Brazil, the ultimate responsibility of an investigation lies on the investigator, but in every institution where research is carried out there is a Committee for Ethics in Research. All Committees are subordinated to the National Commission of Ethics in Research, which is submitted to the Brazilian Institute of Health. During 2005 around 17,000 protocols involving 700,000 human subjects were revised by 475 Committees distributed all over the country. Approximately 7,000 people are now working in these Committees.

  10. Classification system for reporting events involving human malfunctions

    DEFF Research Database (Denmark)

    Rasmussen, Jens; Pedersen, O.M.; Mancini, G.

    1981-01-01

    The report describes a set of categories for reporting indus-trial incidents and events involving human malfunction. The classification system aims at ensuring information adequate for improvement of human work situations and man-machine interface systems and for attempts to quantify "human error......" rates. The classification system has a multifacetted non-hierarchical struc-ture and its compatibility with Isprals ERDS classification is described. The collection of the information in general and for quantification purposes are discussed. 24 categories, 12 of which being human factors oriented......, are listed with their respective subcategories, and comments are given. Underlying models of human data processes and their typical malfunc-tions and of a human decision sequence are described....

  11. Classification system for reporting events involving human malfunctions

    International Nuclear Information System (INIS)

    Rasmussen, J.; Pedersen, O.M.; Mancini, G.; Carnino, A.; Griffon, M.; Gagnolet, P.

    1981-03-01

    The report describes a set of categories for reporting industrial incidents and events involving human malfunction. The classification system aims at ensuring information adequate for improvement of human work situations and man-machine interface systems and for attempts to quantify ''human error'' rates. The classification system has a multifacetted non-hierarchial structure and its compatibility with Ispra's ERDS classification is described. The collection of the information in general and for quantification purposes are discussed. 24 categories, 12 of which being human factors oriented, are listed with their respective subcategories, and comments are given. Underlying models of human data processes and their typical malfunctions and of a human decision sequence are described. (author)

  12. Thermodynamic considerations on the role of heat and mass transfer in biochemical causes of carcinogenesis

    Science.gov (United States)

    Lucia, Umberto; Grisolia, Giulia; Ponzetto, Antonio; Deisboeck, Thomas S.

    2018-01-01

    Cellular homoeostasis involves a continuous interaction between the cell and its microenvironment. As such, active and passive transport of ions, nutrients, molecules and water are the basis for biochemical-physical cell life. These transport phenomena change the internal and external ionic concentrations, and, as a consequence, the cell membrane's electric potential and the pH. In this paper we focus on the relationship between these ion transport-induced pH and membrane voltage changes to highlight their impact on carcinogenesis. The preliminary results suggest a critical role for Cl- in driving tumour transformation towards a more malignant phenotype.

  13. Identification of miRNAs involved in cell response to ionising radiation and modeled microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — BACKGROUND: Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis...

  14. A20 restricts wnt signaling in intestinal epithelial cells and suppresses colon carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Ling Shao

    Full Text Available Colon carcinogenesis consists of a multistep process during which a series of genetic and epigenetic adaptations occur that lead to malignant transformation. Here, we have studied the role of A20 (also known as TNFAIP3, a ubiquitin-editing enzyme that restricts NFκB and cell death signaling, in intestinal homeostasis and tumorigenesis. We have found that A20 expression is consistently reduced in human colonic adenomas than in normal colonic tissues. To further investigate A20's potential roles in regulating colon carcinogenesis, we have generated mice lacking A20 specifically in intestinal epithelial cells and interbred these with mice harboring a mutation in the adenomatous polyposis coli gene (APC(min. While A20(FL/FL villin-Cre mice exhibit uninflamed intestines without polyps, A20(FL/FL villin-Cre APC(min/+ mice contain far greater numbers and larger colonic polyps than control APC(min mice. We find that A20 binds to the β-catenin destruction complex and restricts canonical wnt signaling by supporting ubiquitination and degradation of β-catenin in intestinal epithelial cells. Moreover, acute deletion of A20 from intestinal epithelial cells in vivo leads to enhanced expression of the β-catenin dependent genes cyclinD1 and c-myc, known promoters of colon cancer. Taken together, these findings demonstrate new roles for A20 in restricting β-catenin signaling and preventing colon tumorigenesis.

  15. Predictive Mechanisms Are Not Involved the Same Way during Human-Human vs. Human-Machine Interactions: A Review

    Directory of Open Access Journals (Sweden)

    Aïsha Sahaï

    2017-10-01

    Full Text Available Nowadays, interactions with others do not only involve human peers but also automated systems. Many studies suggest that the motor predictive systems that are engaged during action execution are also involved during joint actions with peers and during other human generated action observation. Indeed, the comparator model hypothesis suggests that the comparison between a predicted state and an estimated real state enables motor control, and by a similar functioning, understanding and anticipating observed actions. Such a mechanism allows making predictions about an ongoing action, and is essential to action regulation, especially during joint actions with peers. Interestingly, the same comparison process has been shown to be involved in the construction of an individual's sense of agency, both for self-generated and observed other human generated actions. However, the implication of such predictive mechanisms during interactions with machines is not consensual, probably due to the high heterogeneousness of the automata used in the experimentations, from very simplistic devices to full humanoid robots. The discrepancies that are observed during human/machine interactions could arise from the absence of action/observation matching abilities when interacting with traditional low-level automata. Consistently, the difficulties to build a joint agency with this kind of machines could stem from the same problem. In this context, we aim to review the studies investigating predictive mechanisms during social interactions with humans and with automated artificial systems. We will start by presenting human data that show the involvement of predictions in action control and in the sense of agency during social interactions. Thereafter, we will confront this literature with data from the robotic field. Finally, we will address the upcoming issues in the field of robotics related to automated systems aimed at acting as collaborative agents.

  16. The prognostic potential and carcinogenesis of long non-coding RNA TUG1 in human cholangiocarcinoma

    OpenAIRE

    Xu, Yi; Leng, Kaiming; Li, Zhenglong; Zhang, Fumin; Zhong, Xiangyu; Kang, Pengcheng; Jiang, Xingming; Cui, Yunfu

    2017-01-01

    Cholangiocarcinoma (CCA) is a fatal disease with increasing worldwide incidence and is characterized by poor prognosis due to its poor response to conventional chemotherapy or radiotherapy. Long non-coding RNAs (lncRNAs) play key roles in multiple human cancers, including CCA. Cancer progression related lncRNA taurine-up-regulated gene 1 (TUG1) was reported to be involved in human carcinomas. However, the impact of TUG1 in CCA is unclear. The aim of this study was to explore the expression pa...

  17. Ethical issues in neonatal research involving human subjects.

    Science.gov (United States)

    Fleischman, Alan R

    2016-06-01

    Research involving critically ill neonates creates many ethical challenges. Neonatal clinical research has always been hard to perform, is very expensive, and may generate some unique ethical concerns. This article describes some examples of historical and modern controversies in neonatal research, discusses the justification for research involving such vulnerable and fragile patients, clarifies current federal regulations that govern research involving neonates, and suggests ways that clinical investigators can develop and implement ethically grounded human subjects research. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model.

    Science.gov (United States)

    Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M

    2017-11-07

    Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

  19. Classification system for reporting events involving human malfunctions

    International Nuclear Information System (INIS)

    Rasmussen, J.; Pedersen, O.M.; Mancini, G.

    1981-01-01

    The report describes a set of categories for reporting industrial incidents and events involving human malfunction. The classification system aims at ensuring information adequate for improvement of human work situations and man-machine interface systems and for attempts to quantify ''human error'' rates. The classification system has a multifacetted non-hierarchical structure and its compatibility with Ispra's ERDS classification is described. The collection of the information in general and for quantification purposes are discussed. 24 categories, 12 of which being human factors-oriented, are listed with their respective subcategories, and comments are given. Underlying models of human data process and their typical malfuntions and of a human decision sequence are described. The work reported is a joint contribution to the CSNI Group of Experts on Human Error Data and Assessment

  20. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...

  1. Bacterionomics and vironomics in carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pratiwi Sudarmono

    2017-02-01

    Full Text Available Virus and bacteria are microbes which are very common cause human infection. Most of the bacterial infection can be eradicated by antibiotics and infection symptoms disappear. But for virus infection, once infected, the virus will persistently stay in the host, even undergo not only a lytic cycle but also integrated into host genome. Nowadays, at least 6 virus type are consistently related to human cancer, such as EBV,HPV,HTLV,HBV,HCV,HKSV, and the new one Merkel Virus (MCV. Although not every infected people will get cancer, but around 20% of the whole cancer in human are caused by viral oncogene. Class one oncogenic bacterial is Helicobacter pylori. Infection with this bacteria can cause persistent gastro duodenal inflammation which cause some alteration in gastric cell growth into transformation. Expression of Cag gene and Vac gene and some expression of OMP protein usually link to gastric cancer. Molecular mechanisms of carcinogenesis for every virus which cause infection  is a very complex , which include several processes caused by cell transformation. Besides, other host and environmental factors are also play a significant role in cancer development. Some scientist put a Hallmark analysis as a model to quickly summarize what pathobiology process will happen and what gene or protein caused the process. The Hallmark analysis comprise of several process which may happen simultaneously because some of the Hallmark is caused by the same protein. The Hallmark consists of various virus strategies in oncogenesis such as promoting angiogenesis, avoiding immune destruction, genome instability and mutation, deregulating cellular energetic, resisting cell death, sustaining proliferative signaling, evading growth suppressors, enabling cellular immortality, promoting inflammation and activation metastasis. For example, infection by HPV, will cause low grade dysplasia which can continue to invasive cervical cancer. After host cell transformation, in

  2. Chronology of p53 protein accumulation in gastric carcinogenesis

    NARCIS (Netherlands)

    Craanen, M. E.; Blok, P.; Dekker, W.; Offerhaus, G. J.; Tytgat, G. N.

    1995-01-01

    p53 Protein accumulation in early gastric carcinoma was studied in relation to the histological type (Lauren classification) and the type of growth pattern, including the chronology of p53 protein accumulation during carcinogenesis. Forty five, paraffin embedded gastrectomy specimens from early

  3. Mechanisms of carcinogenesis prevention by flavonoids

    Directory of Open Access Journals (Sweden)

    G. A. Belitsky

    2014-01-01

    Full Text Available The mechanisms of anticancerogenic effects of flavanoids and isocyanates from the plants widely consumed in the midland belt of Russia were reviewed. Data of studies both in vitro and in vivo were analyzed. Special attention was paid to inhibition of targets responsible for carcinogen metabolic activation, carcinogenesis promotion and tumor progression as well as neoangiogenesis. Besides that the antioxidant properties of flavonoids and their effects on cell cycle regulation, apoptosis initiation and cell mobility were considered.

  4. External radiation carcinogenesis

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Storer, J.B.

    1987-01-01

    There have been many reviews of the subject of radiation carcinogenesis in general and of specific radiation-induced cancers. The aim of this article is not to give an exhaustive, and perhaps exhausting, review of all that has been published since the thorough treatise of Walburg in volume 4 of this series but rather to concentrate on the questions that still remain of importance and recent contributions to the answers. In the years since 1974 a vast amount of information has been reported, and the authors assess what gain there has been in knowledge. For example, it is in the 13 years since the last review that the great majority of data for the carcinogenic effects of neutrons has appeared. It is over 50 years since the discovery of the neutron, and yet knowledge of the carcinogenic effects of neutrons is far from adequate

  5. Effectiveness of Bioactive Food Components in Experimental Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Emília Hijová

    2009-01-01

    Full Text Available The aim of the present study was the evaluation of possible protective effects of selected bioactive food components in experimental N,N-dimethylhydrazine (DMH-induced colon carcinogenesis. Wistar albino rats (n = 92 were fed a high fat diet or conventional laboratory diet. Two weeks after the beginning of the trial, DMH injections were given to six groups of rats at the dose of 20 mg/kg b.w. twice weekly. The activity of bacterial enzymes in faeces and serum bile acid concentrations were determined. High fat diet, DMH injections, and their combination significantly increased the activies of β-galactosidase, β-glucuronidase, and α-glucosidase (p p < 0.001, as well as the bile acid concentration compared to the group at the highest risk. The protective effects of selected bioactive food components in experimentally induced colon carcinogenesis allow for their possible use in cancer prevention or treatment.

  6. Involvement of DNA repair in telomere maintenance and chromosomal instability in human cells

    International Nuclear Information System (INIS)

    Ayouaz, Ali

    2008-01-01

    Telomeres are a major actor of cell immortalization, precursor of a carcinogenesis process. Thus, it appears that the maintenance of telomeres is crucial in the implementation of carcinogenesis process. Due to their structures and under some conditions, telomeres can be assimilated in some respects to chromosomal breakages. Within this perspective, this research thesis aims at determining under which circumstances telomeres can be taken as targets by DNA repair mechanisms. More precisely, the author addressed the respective contributions of two repair mechanisms (the Non-Homologous End-Joining or NHEJ, and Homologous Recombination or HR) in the maintenance of telomere integrity. The author first discusses knowledge related to the interaction between chromosomal extremities and repair mechanisms. Then, he defines the behaviour of these mechanisms with respect to telomeres. He shows that, in absence of recombination mechanisms, the integrity of telomeres is not affected. Finally, he reports the attempt to determine their respective contributions in telomeric homeostasis [fr

  7. Studies in human skin epithelial cell carcinogenesis

    International Nuclear Information System (INIS)

    Lehman, T.A.

    1987-01-01

    Metabolism and DNA adduct formation of benzo[a]pyrene (BP) by human epidermal keratinocytes pretreated with inhibitors or inducer of cytochrame P450 was studied. To study DNA adduct analysis, cultures were pretreated as described above, and then treated with non-radiolabeled BP. DNA was prepared from these cultures, digested to the nucleotide level, and 32 P-postlabeled for adduct analysis. Cultures pretreated with BHA, 7,8-BF or disulfiralm formed significantly fewer BPDE I-dB adducts than non-pretreated cultures, while cultures pretreated with MeBHA formed more BPDE-I-dG adducts. MeBHA increased BP activation and adduct formation inhuman keratinocyte in cultures by inducing a specific isoenzyme of cytochrome P450 which preferentially increases the oxidative metabolism of BP to 7,8 diol BP and 7,8 diol BP to BPDE I. To approximate an in vivo human system, metabolism of BPDE I by human skin xenografts treated with cell cycles modulators was studied. When treated with BPDE I, specific carcinogen-DNA adducts were formed. Separation and identification of these adducts by the 32 P-postlabeling technique indicated that the 7R- and 7S-BPDE I-dG adducts were the major adducts

  8. Genetics of human sensitivity to ultraviolet radiation

    Science.gov (United States)

    Cleaver, James E.

    1994-07-01

    the major human health effects of solar and artificial UV light occur from the UVB and UVC wavelength ranges and involve a variety of short-term and long-term deleterious changes to the skin and eyes. the more important initial damage to cellular macromolecules involves dimerization of adjacent pyrimidines in DNA to produce cyclobutane pyrimidine dimes, (6-4) pyrimidine- pyrimidone, and (6-4) dewar photoproducts. these photoproducts can be repaired by a genetically regulated enzyme system (nucleotide excision repair) which removes oligonucleotides 29-30 nucleotides long that contain the photoproducts, and synthesizes replacement patches. At least a dozen gene products are involved in the process of recognizing photoproducts in DNA, altering local DNA helicity and cleaving the polynucleotide chain at defined positions either side of a photoproduct. Hereditary mutations in many of these genes are recognized in the human genetic disorders xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Several of the gene products have other functions involving the regulation of gene transcription which accounts for the complex clinical presentation of repair deficient diseases that involve sensitivity of the skin and eyes to UV light, increased solar carcinogenesis (in XP), demyelination, and ganglial calcification (in CS), hair abnormalities (in TTD), and developmental and neurological abnormalities

  9. Etoricoxib in the Prevention of Rat Mammary Carcinogenesis

    Directory of Open Access Journals (Sweden)

    P. Orendáš

    2007-01-01

    Full Text Available Several experimental studies suggest that non-steroidal antiinflammatory drugs have chemopreventive effects in mammary carcinogenesis. In this study, tumour suppressive effects of a selective inhibitor of cyclooxygenase-2 (COX-2 etoricoxib in the prevention of N-methyl-Nnitrosourea (NMU-induced mammary carcinogenesis in Sprague-Dawley rats were evaluated. Etoricoxib was administered in the diet, at two concentrations: 1 0.01 mg/g (ETO 0.001% and 2 0.025 mg/g (ETO 0.0025%. Although the chemopreventive effects were not statistically significant, remarkable tumour suppressive effects with the concentration of ETO 0.0025% were recorded. The incidence decreased by 4.31% and tumour frequency per group decreased by 6.67% when compared to the control group. Latency (the period from carcinogen administration to the first tumour appearance increased by 7.28% in dose-dependent manner. The results of our experiments point to dose-dependent tumour suppressive effects of a higher concentration of etoricoxib (ETO 0.0025% when compared to the control group. They suggest that higher etoricoxib concentrations may enhance its tumour suppressive effects.

  10. Interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.

    Science.gov (United States)

    Yang, Ke-Ke; Sui, Yi; Zhou, Hui-Rong; Zhao, Hai-Lu

    2017-05-01

    Renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Renal adenosine monophosphate-activated protein kinase and its downstream molecule acetyl coenzyme A carboxylase were detected by immunohistochemistry and western blot at 10 months after uninephrectomy. Meanwhile, we examined renal carcinogenesis by histological transformation and expressions of Ki67 and mutant p53. During the study, fasting lipid profiles were detected dynamically at 3, 6, 8, and 10 months. The results indicated that adenosine monophosphate-activated protein kinase expression in uninephrectomized rats showed 36.8% reduction by immunohistochemistry and 89.73% reduction by western blot. Inversely, acetyl coenzyme A carboxylase expression increased 83.3% and 19.07% in parallel to hyperlipidemia at 6, 8, and 10 months. The histopathology of carcinogenesis in remnant kidneys was manifested by atypical proliferation and carcinoma in situ, as well as increased expressions of Ki67 and mutant p53. Intervention with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker significantly prevented the inhibition of adenosine monophosphate-activated protein kinase signaling pathway and renal carcinogenesis in uninephrectomized rats. In conclusion, the novel findings suggest that uninephrectomy-induced disturbance in adenosine monophosphate-activated protein kinase signaling pathway resulted in hyperlipidemia and

  11. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-01-01

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT

  12. The level of claudin-7 is reduced as an early event in colorectal carcinogenesis

    DEFF Research Database (Denmark)

    Lange, Jette Bornholdt; Friis, Stine; Godiksen, Sine

    2011-01-01

    -regulation of the oncogenic serine protease, matriptase, induces leakiness in epithelial barriers both in vivo and in vitro. We found in an in-silico search tight co-regulation between matriptase and claudin-7 expression. We have previously shown that the matriptase expression level decreases during colorectal carcinogenesis....... In the present study we investigated whether claudin-7 expression is likewise decreased during colorectal carcinogenesis, thereby causing or contributing to the compromised epithelial leakiness of dysplastic tissue....

  13. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gülay Bulut

    Full Text Available Human papilloma virus (HPV is the principal etiological agent of cervical cancer in women, and its DNA is present in virtually all of these tumors. However, exposure to the high-risk HPV types alone is insufficient for tumor development. Identifying specific collaborating factors that will lead to cervical cancer remains an unanswered question, especially because millions of women are exposed to HPV. Our earlier work using an in vitro model indicated that activation of the canonical Wnt pathway in HPV-positive epithelial cells was sufficient to induce anchorage independent growth. We therefore hypothesized that constitutive activation of this pathway might function as the "second hit." To address this possibility, we developed two double-transgenic (DT mouse models, K14-E7/ΔN87βcat and K14-HPV16/ΔN87βcat that express either the proteins encoded by the E7 oncogene or the HPV16 early region along with constitutively active β-catenin, which was expressed by linking it to the keratin-14 (K14 promoter. We initiated tumor formation by treating all groups with estrogen for six months. Invasive cervical cancer was observed in 11% of the K14-ΔN87βcat mice, expressing activated β-catenin and in 50% of the animals expressing the HPV16 E7 oncogene. In double-transgenic mice, coexpression of β-catenin and HPV16 E7 induced invasive cervical cancer at about 7 months in 94% of the cases. We did not observe cervical cancer in any group unless the mice were treated with estrogen. In the second model, K14-HPV16 mice suffered cervical dysplasias, but this phenotype was not augmented in HPV16/ΔN87βcat mice. In summary, the phenotypes of the K14-E7/ΔN87βcat mice support the hypothesis that activation of the Wnt/β-catenin pathway in HPV-associated premalignant lesions plays a functional role in accelerating cervical carcinogenesis.

  14. Na+,HCO3--cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane

    DEFF Research Database (Denmark)

    Lee, Soojung; Mele, Marco; Vahl, Pernille

    2015-01-01

    Metabolic and biochemical changes during breast carcinogenesis enhance cellular acid production. Extrusion of the acid load from the cancer cells raises intracellular pH, while it decreases extracellular pH creating an inverted pH gradient across the plasma membrane compared to normal cells and p...

  15. Attribution of human characteristics and bullying involvement in childhood: Distinguishing between targets

    NARCIS (Netherlands)

    Noorden, T.H.J. van; Haselager, G.J.T.; Lansu, T.A.M.; Cillessen, A.H.N.; Bukowski, W.M.

    2016-01-01

    This investigation researched the association between the attribution of human characteristics and bullying involvement in children by distinguishing between targets. Study 1 focused on the attribution of human characteristics by bullies, victims, bully/victims, and non-involved children toward

  16. The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics

    International Nuclear Information System (INIS)

    Henkler, Frank; Brinkmann, Joep; Luch, Andreas

    2010-01-01

    In addition to a wide range of adverse effects on human health, toxic metals such as cadmium, arsenic and nickel can also promote carcinogenesis. The toxicological properties of these metals are partly related to generation of reactive oxygen species (ROS) that can induce DNA damage and trigger redox-dependent transcription factors. The precise mechanisms that induce oxidative stress are not fully understood. Further, it is not yet known whether chronic exposures to low doses of arsenic, cadmium or other metals are sufficient to induce mutations in vivo, leading to DNA repair responses and/or tumorigenesis. Oxidative stress can also be induced by environmental xenobiotics, when certain metabolites are generated that lead to the continuous release of superoxide, as long as the capacity to reduce the resulting dions (quinones) into hydroquinones is maintained. However, the specific significance of superoxide-dependent pathways to carcinogenesis is often difficult to address, because formation of DNA adducts by mutagenic metabolites can occur in parallel. Here, we will review both mechanisms and toxicological consequences of oxidative stress triggered by metals and dietary or environmental pollutants in general. Besides causing DNA damage, ROS may further induce multiple intracellular signaling pathways, notably NF-κB, JNK/SAPK/p38, as well as Erk/MAPK. These signaling routes can lead to transcriptional induction of target genes that could promote proliferation or confer apoptosis resistance to exposed cells. The significance of these additional modes depends on tissue, cell-type and is often masked by alternate oncogenic mechanisms being activated in parallel

  17. Age and Space Irradiation Modulate Tumor Progression: Implications for Carcinogenesis Risk

    Data.gov (United States)

    National Aeronautics and Space Administration — Age plays a major role in tumor incidence and is an important consideration when modeling the carcinogenesis process or estimating cancer risks. Epidemiological data...

  18. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis

    Science.gov (United States)

    Wan, Lei; Tan, Hsueh-Li; Thomas-Ahner, Jennifer M.; Pearl, Dennis K.; Erdman, John W.; Moran, Nancy E.; Clinton, Steven K.

    2014-01-01

    Consumption of tomato products containing the carotenoid lycopene is associated with a reduced risk of prostate cancer. To identify gene expression patterns associated with early testosterone-driven prostate carcinogenesis, which are impacted by dietary tomato and lycopene, wild type (WT) and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed control or tomato- or lycopene-containing diets from 4-10 wk-of-age. Eight-week-old mice underwent sham surgery, castration, or castration followed by testosterone-repletion (2.5 mg/kg/d initiated 1 wk after castration). Ten-wk-old intact TRAMP mice exhibit early multifocal prostatic intraepithelial neoplasia (PIN). Of the 200 prostate cancer-related genes measured by quantitative NanoString®, 189 are detectable, 164 significantly differ by genotype, 179 by testosterone status, and 30 by diet type (Plycopene feeding (Srd5a1) and by tomato-feeding (Srd5a2, Pxn, and Srebf1). Additionally, tomato-feeding significantly reduced expression of genes associated with stem cell features, Aldh1a and Ly6a, while lycopene-feeding significantly reduced expression of neuroendocrine differentiation-related genes, Ngfr and Syp. Collectively, these studies demonstrate a profile of testosterone-regulated genes associated with early stages of prostate carcinogenesis that are potential mechanistic targets of dietary tomato components. Future studies on androgen signaling/metabolism, stem cell features, and neuroendocrine differentiation pathways may elucidate the mechanisms by which dietary tomato and lycopene impact prostate cancer risk. PMID:25315431

  19. Downregulation of glutathione S-transferase M1 protein in N-butyl-N-(4-hydroxybutyl)nitrosamine-induced mouse bladder carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Jing-Jing [Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan (China); Dai, Yuan-Chang [Department of Pathology, Chiayi Christian Hospital, Chiayi, Taiwan (China); Lin, Yung-Lun; Chen, Yang-Yi; Lin, Wei-Han [Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan (China); Chan, Hong-Lin [Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, Yi-Wen, E-mail: ywlss@mail.ncyu.edu.tw [Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan (China)

    2014-09-15

    Bladder cancer is highly recurrent following specific transurethral resection and intravesical chemotherapy, which has prompted continuing efforts to develop novel therapeutic agents and early-stage diagnostic tools. Specific changes in protein expression can provide a diagnostic marker. In our present study, we investigated changes in protein expression during urothelial carcinogenesis. The carcinogen BBN was used to induce mouse bladder tumor formation. Mouse bladder mucosa proteins were collected and analyzed by 2D electrophoresis from 6 to 20 weeks after commencing continuous BBN treatment. By histological examination, the connective layer of the submucosa showed gradual thickening and the number of submucosal capillaries gradually increased after BBN treatment. At 12-weeks after the start of BBN treatment, the urothelia became moderately dysplastic and tumors arose after 20-weeks of treatment. These induced bladder lesions included carcinoma in situ and connective tissue invasive cancer. In protein 2D analysis, the sequentially downregulated proteins from 6 to 20 weeks included GSTM1, L-lactate dehydrogenase B chain, keratin 8, keratin 18 and major urinary proteins 2 and 11/8. In contrast, the sequentially upregulated proteins identified were GSTO1, keratin 15 and myosin light polypeptide 6. Western blotting confirmed that GSTM1 and NQO-1 were decreased, while GSTO1 and Sp1 were increased, after BBN treatment. In human bladder cancer cells, 5-aza-2′-deoxycytidine increased the GSTM1 mRNA and protein expression. These data suggest that the downregulation of GSTM1 in the urothelia is a biomarker of bladder carcinogenesis and that this may be mediated by DNA CpG methylation. - Highlights: • GSTM1 and NQO-1 proteins decreased in the mouse bladder mucosa after BBN treatment. • BBN induced GSTO1 and Sp1 protein expression in the mouse bladder mucosa. • 5-Aza-2′-deoxycytidine increased GSTM1 mRNA and protein in human bladder cancer cell. • GSTM1

  20. IGF-1R and ErbB3/HER3 contribute to enhanced proliferation and carcinogenesis in trastuzumab-resistant ovarian cancer model

    International Nuclear Information System (INIS)

    Jia, Yanhan; Zhang, Yan; Qiao, Chunxia; Liu, Guijun; Zhao, Qing; Zhou, Tingting; Chen, Guojiang; Li, Yali; Feng, Jiannan; Li, Yan; Zhang, Qiuping; Peng, Hui

    2013-01-01

    Highlights: •We established trastuzumab-resistant cell line SKOV3/T. •SKOV3/T enhances proliferation and in vivo carcinogenesis. •IGF-1R and HER3 genes were up-regulated in SKOV3/T based on microarray analysis. •Targeting IGF-1R and/or HER3 inhibited the proliferation of SKOV3/T. •Therapies targeting IGF-1R and HER3 might be effective in ovarian cancer. -- Abstract: Trastuzumab (Herceptin®) has demonstrated clinical potential in several types of HER2-overexpressing human cancers. However, primary and acquired resistance occurs in many HER2-positive patients with regimens. To investigate the possible mechanism of acquired therapeutic resistance to trastuzumab, we have developed a preclinical model of human ovarian cancer cells, SKOV3/T, with the distinctive feature of stronger carcinogenesis. The differences in gene expression between parental and the resistant cells were explored by microarray analysis, of which IGF-1R and HER3 were detected to be key molecules in action. Their correctness was validated by follow-up experiments of RT-PCR, shRNA-mediated knockdown, downstream signal activation, cell cycle distribution and survival. These results suggest that IGF-1R and HER3 differentially regulate trastuzumab resistance and could be promising targets for trastuzumab therapy in ovarian cancer

  1. The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects.

    Science.gov (United States)

    Romano, Barbara; Fasolino, Ines; Pagano, Ester; Capasso, Raffaele; Pace, Simona; De Rosa, Giuseppe; Milic, Natasa; Orlando, Pierangelo; Izzo, Angelo A; Borrelli, Francesca

    2014-03-01

    Colorectal cancer is an important health problem across the world. Here, we investigated the possible antiproliferative/proapoptotic effects of bromelain (from the pineapple stem Ananas comosus L., family Bromeliaceae) in a human colorectal carcinoma cell line and its potential chemopreventive effect in a murine model of colon cancer. Proliferation and apoptosis were evaluated in human colon adenocarcinoma (Caco-2) cells by the (3) H-thymidine incorporation assay and caspase 3/7 activity measurement, respectively. Extracellular signal-related kinase (ERK) and Akt expression were evaluated by Western blot analysis, reactive oxygen species production by a fluorimetric method. In vivo, bromelain was evaluated using the azoxymethane murine model of colon carcinogenesis. Bromelain reduced cell proliferation and promoted apoptosis in Caco-2 cells. The effect of bromelain was associated to downregulation of pERK1/2/total, ERK, and pAkt/Akt expression as well as to reduction of reactive oxygen species production. In vivo, bromelain reduced the development of aberrant crypt foci, polyps, and tumors induced by azoxymethane. Bromelain exerts antiproliferative and proapoptotic effects in colorectal carcinoma cells and chemopreventive actions in colon carcinogenesis in vivo. Bromelain-containing foods and/or bromelain itself may represent good candidates for colorectal cancer chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. IGF-1R and ErbB3/HER3 contribute to enhanced proliferation and carcinogenesis in trastuzumab-resistant ovarian cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yanhan [Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071 (China); Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Zhang, Yan [Department of Gynaecology and Obstetrics, PLA General Hospital, Beijing 100853 (China); Qiao, Chunxia; Liu, Guijun [Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Zhao, Qing [Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Department of Gynaecology and Obstetrics, PLA General Hospital, Beijing 100853 (China); Zhou, Tingting; Chen, Guojiang [Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Li, Yali [Department of Gynaecology and Obstetrics, PLA General Hospital, Beijing 100853 (China); Feng, Jiannan; Li, Yan [Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Zhang, Qiuping, E-mail: qpzhang@whu.edu.cn [Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071 (China); Peng, Hui, E-mail: p_h2002@hotmail.com [Department of Immunology, Institute of Basic Medical Sciences, Beijing 100850 (China); Cardiovascular Drug Research Center, Institute of Health and Environmental Medicine, Beijing 100850 (China)

    2013-07-12

    Highlights: •We established trastuzumab-resistant cell line SKOV3/T. •SKOV3/T enhances proliferation and in vivo carcinogenesis. •IGF-1R and HER3 genes were up-regulated in SKOV3/T based on microarray analysis. •Targeting IGF-1R and/or HER3 inhibited the proliferation of SKOV3/T. •Therapies targeting IGF-1R and HER3 might be effective in ovarian cancer. -- Abstract: Trastuzumab (Herceptin®) has demonstrated clinical potential in several types of HER2-overexpressing human cancers. However, primary and acquired resistance occurs in many HER2-positive patients with regimens. To investigate the possible mechanism of acquired therapeutic resistance to trastuzumab, we have developed a preclinical model of human ovarian cancer cells, SKOV3/T, with the distinctive feature of stronger carcinogenesis. The differences in gene expression between parental and the resistant cells were explored by microarray analysis, of which IGF-1R and HER3 were detected to be key molecules in action. Their correctness was validated by follow-up experiments of RT-PCR, shRNA-mediated knockdown, downstream signal activation, cell cycle distribution and survival. These results suggest that IGF-1R and HER3 differentially regulate trastuzumab resistance and could be promising targets for trastuzumab therapy in ovarian cancer.

  3. Genes involved in immortalization of human mammary cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2001-09-27

    Breast cancer progression is characterized by inappropriate cell growth. Normal cells cease growth after a limited number of cell divisions--a process called cellular senescence-while tumor cells may acquire the ability to proliferate indefinitely (immortality). Inappropriate expression of specific oncogenes in a key cellular signaling pathway (Ras, Raf) can promote tumorigenicity in immortal cells, while causing finite lifespan cells to undergo a rapid senescence-like arrest. We have studied when in the course of transformation of cultured human mammary epithelial cells (HMEC), the response to overexpressed oncogenic Raf changes from being tumor-suppressive to tumor enhancing, and what are the molecular underpinnings of this response. Our data indicate: (1) HMEC acquire the ability to maintain growth in the presence of oncogenic Raf not simply as a consequence of overcoming senescence, but as a result of a newly discovered step in the process of immortal transformation uncovered by our lab, termed conversion. Immortal cells that have not undergone conversion (e.g., cells immortalized by exogenous introduction of the immortalizing enzyme, telomerase) remain growth inhibited. (2) Finite lifespan HMEC growth arrest in response to oncogenic Raf using mediators of growth inhibition that are very different from those used in response to oncogenic Raf by rodent cells and certain other human cell types, including the connective tissue cells from the same breast tissue. While many diverse cell types appear to have in common a tumor-suppressive response to this oncogenic signal, they also have developed multiple mechanisms to elicit this response. Understanding how cancer cells acquire the crucial capacity to be immortal and to abrogate normal tumor-suppressive mechanisms may serve both to increase our understanding of breast cancer progression, and to provide new targets for therapeutic intervention. Our results indicate that normal HMEC have novel means of enforcing a Raf

  4. Sewage sludge does not induce genotoxicity and carcinogenesis

    Science.gov (United States)

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lúcia Zaidan; Saldiva, Paulo Hilário Nascimento

    2012-01-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

  5. Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles.

    Science.gov (United States)

    Xu, Jiegou; Futakuchi, Mitsuru; Alexander, David B; Fukamachi, Katsumi; Numano, Takamasa; Suzui, Masumi; Shimizu, Hideo; Omori, Toyonori; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki

    2014-01-01

    Zinc oxide (ZnO) is known to induce lung toxicity, including terminal bronchiolar epithelial hyperplasia, which gives rise to concerns that nanosized ZnO (nZnO) might lead to lung carcinogenesis. We studied the tumor promoting activity of nZnO by an initiation-promotion protocol using human c-Ha-ras proto-oncogene transgenic rats (Hras128 rats). The rats were given 0.2 % N-nitrosobis(2-hydroxypropyl)amine (DHPN) in the drinking water for 2 weeks and then treated with 0.5 ml of 250 or 500 μg/ml nZnO suspension by intra-pulmonary spraying once every 2 weeks for a total of 7 times. Treatment with nZnO particles did not promote DHPN-induced lung carcinogenesis. However, nZnO dose-dependently caused epithelial hyperplasia of terminal bronchioles (EHTB) and fibrosis-associated interstitial pneumonitis (FAIP) that were independent of DHPN treatment. Tracing the fate of EHTB lesions in wild-type rats indicated that the hyperplastic lesions almost completely disappeared within 12 weeks after the last nZnO treatment. Since nZnO particles were not found in the lung and ZnCl2 solution induced similar lung lesions and gene expression profiles, the observed lesions were most likely caused by dissolved Zn(2+). In summary, nZnO did not promote carcinogenesis in the lung and induced EHTB and FAIP lesions that regressed rapidly, probably due to clearance of surplus Zn(2+) from the lung.

  6. Time factors in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Sasaki, Shunsaku

    1995-01-01

    Results of experiments using B6C3F 1 female mice were made subject of analysis on the time factors in radiation carcinogenesis. In the experiment for examination of influence of age at irradiation on the lifetime risk and on distribution of ages at death, mice were irradiated at day 12, 14 or 17 of the prenatal period, or day 0, 7, 35, 105, 240 or 365 of the postnatal period with doses ranging from 0.48 to 5.7 Gy gamma-rays from 137 Cs. In the experiment to examine the reduction factor for carcinogenic effect by multiple fractionation of gamma-rays dose 1.9 or 3.8 Gy was divided into 10 fractions, which were delivered once a week during period from 5 to 15 weeks of age. All mice were allowed to live out their life spans under a specific pathogen free condition. The cumulative relative risk for mortality from all causes except lymphoma and leukemia was shown to decrease with age when mice were irradiated at the fetal, neonatal, suckling, adolescent or young adult period, whereas, the decrease in the cumulative relative risk was very little when gamma-rays were given at the intermediate adult period. The lifetime risk for the increase in mortality and for the induction of solid tumors was highest in mice irradiated during neonatal, suckling or adolescent period. Age-dependence of susceptibility to radiation carcinogenesis was different for each type of neoplasm. However, the most susceptible period for induction of each type of neoplasm concentrated in the age from neonatal to adolescent period. Radiation-induced late effects were apparently reduced by multiple fractionation of radiation dose, but the reduction factor for the increase in the long-term mortality did not exceed 2.0. (author)

  7. Radiation-induced carcinogenesis: mechanistically based differences between gamma-rays and neutrons, and interactions with DMBA.

    Directory of Open Access Journals (Sweden)

    Igor Shuryak

    Full Text Available Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect. Densely ionizing radiation (e.g. neutrons often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect. These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA. The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis.

  8. Defining the role of polyamines in colon carcinogenesis using mouse models

    Directory of Open Access Journals (Sweden)

    Natalia A Ignatenko

    2011-01-01

    Full Text Available Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention.

  9. Involvement of p53 Mutation and Mismatch Repair Proteins Dysregulation in NNK-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Ying Shen

    2014-01-01

    Full Text Available Genome integrity is essential for normal cellular functions and cell survival. Its instability can cause genetic aberrations and is considered as a hallmark of most cancers. To investigate the carcinogenesis process induced by tobacco-specific carcinogen NNK, we studied the dynamic changes of two important protectors of genome integrity, p53 and MMR system, in malignant transformation of human bronchial epithelial cells after NNK exposure. Our results showed that the expression of MLH1, one of the important MMR proteins, was decreased early and maintained the downregulation during the transformation in a histone modification involved and DNA methylation-independent manner. Another MMR protein PMS2 also displayed a declined expression while being in a later stage of transformation. Moreover, we conducted p53 mutation analysis and revealed a mutation at codon 273 which led to the replacement of arginine by histidine. With the mutation, DNA damage-induced activation of p53 was significantly impaired. We further reintroduced the wild-type p53 into the transformed cells, and the malignant proliferation can be abrogated by inducing cell cycle arrest and apoptosis. These findings indicate that p53 and MMR system play an important role in the initiation and progression of NNK-induced transformation, and p53 could be a potential therapeutic target for tobacco-related cancers.

  10. Carcinogenesis

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1975-01-01

    The long-term aims are concerned with various aspects of the natural history and biology of cancer, the mechanism of induction and of the advancement of time of appearance of tumors, the development of systems suitable for the assay of oncogenesis and cocarcinogenesis, and the elucidation of some of the factors important to the problem of extrapolation of estimates of risk made in experimental systems to the estimate of risk in man. It is necessary to have a number of test systems in order to study the various factors related to cocarcinogenesis; some of these are clearly tissue specific. The liver tumor system is clearly useful for certain compounds, and the liver is an excellent tissue for the study of the mechanisms of cocarcinogenesis. This year we report on the relatively rapid induction of what appears histologically to be carcinoma of the thyroid by aminotriazole. In a collaborative study with the Neutron and Gamma-Ray Toxicity Group, we have established a new example of synergism in carcinogenesis, namely between radiation and pituitary hormone(s) in the production of Harderian gland tumors. Not only does a synergistic effect on incidence occur, but also on the degree of malignancy of the tumor induced. We thus have three different model systems for the study of various aspects of cocarcinogenesis: various chemicals, including nononcogenic polycyclic hydrocarbons, in liver tumorigenesis; ionizing radiation and aminotriazole in thyroid tumorigenesis; and in conjunction with the JANUS Program, the interaction of radiation and hormones in the production of Harderian gland, mammary gland, and other tumors

  11. E-cadherin Mediates the Preventive Effect of Vitamin D3 in Colitis-associated Carcinogenesis.

    Science.gov (United States)

    Xin, Yu; He, Longmei; Luan, Zijian; Lv, Hong; Yang, Hong; Zhou, Ying; Zhao, Xinhua; Zhou, Weixun; Yu, Songlin; Tan, Bei; Wang, Hongying; Qian, Jiaming

    2017-09-01

    Vitamin D3 is beneficial in ameliorating or preventing inflammation and carcinogenesis. Here, we evaluated if vitamin D3 has a preventive effect on colitis-associated carcinogenesis. Administration of azoxymethane (AOM), followed with dextran sulfate sodium (DSS), was used to simulate colitis-associated colon cancer in mice. The supplement of vitamin D3 at different dosages (15, 30, 60 IU·g·w), started before AOM or immediately after DSS treatment (post 60), was sustained to the end of the experiment. Dietary vitamin D3 significantly reduced the number of tumors and tumor burden in a dose-dependent manner. Of note, vitamin D3 in high doses showed significant preventive effects on carcinogenesis regardless of administration before or after AOM-DSS treatment. Cell proliferation decreased in vitamin D3 groups compared with the control group after inhibition of expression of β-catenin and its downstream target gene cyclin D1 in the colon. In vitro, vitamin D3 reduced the transcriptional activity and nuclear level of β-catenin, and it also increased E-cadherin expression and its binding affinity for β-catenin. Moreover, repression of E-cadherin was rescued by supplemental vitamin D3 in mouse colons. Taken together, our results indicate that vitamin D3 effectively suppressed colonic carcinogenesis in the AOM-DSS mouse model. Our findings further suggest that upregulation of E-cadherin contributes to the preventive effect of vitamin D3 on β-catenin activity.

  12. Prospects for cellular mutational assays in human populations

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1985-01-01

    Practical, sensitive, effective, human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis. When available, such assays should allow us to fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. We will be able to validate the role of somatic mutations in carcinogenesis, to identify environmental factors that affect human germ cells, to integrate the effects of complex mixtures and the environment in the human subject, and to identify people who are hypersusceptible to genetic injury. Human cellular mutational assays, particularly when combined with cytogenetic and heritable mutational tests, promise to play pivotal roles in estimating the risk from low-dose radiation and chemical exposures. These combined methods avoid extrapolations of dose and from species to species, and may be sensitive enough and credible enough to permit politically, socially and scientifically acceptable risk management. 16 references

  13. Lactobacillus salivarius Ren prevent the early colorectal carcinogenesis in 1, 2-dimethylhydrazine-induced rat model.

    Science.gov (United States)

    Zhu, J; Zhu, C; Ge, S; Zhang, M; Jiang, L; Cui, J; Ren, F

    2014-07-01

    The objective of this study was to investigate the impact of Lactobacillus salivarius Ren (LS) on modulating colonic micro flora structure and influencing host colonic health in a rat model with colorectal precancerous lesions. Male F344 rats were injected with 1, 2-dimethylhydrazine (DMH) and treated with LS of two doses (5 × 10(8) and 1 × 10(10) CFU kg(-1) body weight) for 15 weeks. The colonic microflora profiles, luminal metabolites, epithelial proliferation and precancerous lesions [aberrant crypt foci (ACF)] were determined. A distinct segregation of colonic microflora structures was observed in LS-treated group. The abundance of one Prevotella-related strain was increased, and the abundance of one Bacillus-related strain was decreased by LS treatment. These changes were accompanied by increased short-chain fatty acid levels and decreased azoreductase activity. LS treatment also reduced the number of ACF by c. 40% and suppressed epithelial proliferation. Lactobacillus salivarius Ren improved the colonic microflora structures and the luminal metabolisms in addition preventing the early colorectal carcinogenesis in DMH-induced rat model. Colonic microflora is an important factor in colorectal carcinogenesis. Modulating the structural shifts of microflora may provide a novel option for preventing colorectal carcinogenesis. This study suggested a potential probiotic-based approach to modulate the intestinal microflora in the prevention of colorectal carcinogenesis. © 2014 The Society for Applied Microbiology.

  14. 65Zn kinetics as a biomarker of DMH induced colon carcinogenesis

    International Nuclear Information System (INIS)

    Chadha, Vijayta Dani

    2012-01-01

    Dietary factors are considered crucial for the prevention of initiating events in the multistep progression of colon carcinoma. There is substantial evidence that zinc may play a pivotal role in host defense against several malignancies, including colon cancer. The present study was conducted to evaluate the kinetics of zinc utilization following experimental colon carcinogenesis in rat model. The rats were segregated into two groups viz., untreated control and DMH treated. Colon carcinogenesis was established through weekly subcutaneous injections of DMH (30mg/Kg body weight) for 16 weeks. Whole body 65 Zn kinetics followed two compartment kinetics, with Tb1 representing the initial fast component of the biological half-life and Tb2, the slower component. The present study revealed a significant depression in the Tb1 and Tb2 components of 65 Zn in DMH treated rats. Further, DMH treatment caused a significant increase in the percent uptake values of 65 Zn in the colon, small intestine, kidney and blood, whereas a significant decrease was observed in the liver. Subcellular distribution revealed a significant increase in 65 Zn uptake in the mitochondrial and microsomal fractions following 16 weeks of DMH supplementation. The present study demonstrated a slow mobilization of zinc during promotion of experimentally induced colon carcinogenesis and provides a physiological basis for the role of zinc in colon tumorigenesis, a paradigm which may have clinical implications in the management of colon cancer. (author)

  15. Acidic bile salts induces mucosal barrier dysfunction through let-7a reduction during gastric carcinogenesis after Helicobacter pylori eradication

    Science.gov (United States)

    Takahashi, Yasushi; Uno, Kaname; Iijima, Katsunori; Abe, Yasuhiko; Koike, Tomoyuki; Asano, Naoki; Asanuma, Kiyotaka; Shimosegawa, Tooru

    2018-01-01

    Gastric cancer (GC) after eradication for Helicobacter pylori (H.pylori) increases, but its carcinogenesis is not elucidated. It is mainly found in acid non-secretion areas (ANA), as mucosal regeneration in acid secretory areas (AA) after eradication changes the acidity and bile toxicity of gastric juice. We aimed to clarify the role of barrier dysfunction of ANA by the stimulation of pH3 bile acid cocktail (ABC) during carcinogenesis. We collected 18 patients after curative endoscopic resection for GC, identified later than 24 months after eradication, and took biopsies by Congo-red chromoendoscopy to distinguish AA and ANA (UMIN00018967). The mucosal barrier function was investigated using a mini-Ussing chamber system and molecular biological methods. The reduction in mucosal impedance in ANA after stimulation was significantly larger than that in AA, 79.6% vs. 87.9%, respectively. The decrease of zonula occludens-1 (ZO-1) and let-7a and the increase of snail in ANA were significant compared to those in AA. In an in vitro study, the restoration of ZO-1 and let-7a as well as the induction of snail were observed after stimulation. High mobility group A2 (HMGA2)-snail activation, MTT proliferation, and cellular infiltration capacity were significantly increased in AGS transfected with let-7a inhibitor, and vice versa. Accordingly, using a mini-Ussing chamber system for human biopsy specimens followed by an in vitro study, we demonstrated for the first time that the exposure of acidic bile salts to ANA might cause serious barrier dysfunction through the let-7a reduction, promoting epithelial-mesenchymal transition during inflammation-associated carcinogenesis even after eradication. PMID:29719591

  16. Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Heidrun Hirner

    Full Text Available Simian virus 40 (SV40 is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA

  17. Recent progress in nickel carcinogenesis. [Cornybacterium; E. coli; S. typhimurium; B. subtillis

    Energy Technology Data Exchange (ETDEWEB)

    Sunderman, F.W. Jr.

    1984-01-01

    Research on nickel carcinogenesis from 1979 to 1983 is reviewed. Epidemiological studies have strengthened the evidence that workers in nickel refineries have increased risks of lung and sinonasal cancers, but have not substantiated increased risks of respiratory cancers in other nickel-exposed workers. Carcinogenesis bioassays have demonstrated carcinogenicity of certain nickel sulfide, hydroxide, selenide, arsenide, antimonide, and telluride compounds following parenteral administration to rodents. Positive bacterial mutagenesis tests have been obtained with Ni(II) in Cornybacterium, but not in E. coli, S. typhimurium, or B. subtilis. Transformation assays of several soluble and crystalline Ni compounds have been positive in Syrian hamster embryo cells. Ni(II) binds to DNA, RNA, and nucleoproteins, and becomes localized in nucleoli. Genotoxic effects of Ni include: (a) chromosomal aberrations, including sister-chromatid exchanges, (b) DNA strandbreaks and DNA-protein cross-links, (c) inhibition of DNA and RNA synthesis, (d) infidelity of DNA transcription, and (e) mutations at the HGPRTase locus in Chinese hamster cells and the TK locus in mouse lymphoma cells. These findings are consistent with somatic mutation as the mechanism for initiation of nickel carcinogenesis. Ni compounds cause reversible transition of double-stranded poly(dG-dC) DNA from the right-handed B-helix to the left-handed Z-helix, suggesting a mechanism whereby nickel might modulate oncogene expression. 99 references, 6 tables.

  18. Modeling Multiple Causes of Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T D

    1999-01-24

    An array of epidemiological results and databases on test animal indicate that risk of cancer and atherosclerosis can be up- or down-regulated by diet through a range of 200%. Other factors contribute incrementally and include the natural terrestrial environment and various human activities that jointly produce complex exposures to endotoxin-producing microorganisms, ionizing radiations, and chemicals. Ordinary personal habits and simple physical irritants have been demonstrated to affect the immune response and risk of disease. There tends to be poor statistical correlation of long-term risk with single agent exposures incurred throughout working careers. However, Agency recommendations for control of hazardous exposures to humans has been substance-specific instead of contextually realistic even though there is consistent evidence for common mechanisms of toxicological and carcinogenic action. That behavior seems to be best explained by molecular stresses from cellular oxygen metabolism and phagocytosis of antigenic invasion as well as breakdown of normal metabolic compounds associated with homeostatic- and injury-related renewal of cells. There is continually mounting evidence that marrow stroma, comprised largely of monocyte-macrophages and fibroblasts, is important to phagocytic and cytokinetic response, but the complex action of the immune process is difficult to infer from first-principle logic or biomarkers of toxic injury. The many diverse database studies all seem to implicate two important processes, i.e., the univalent reduction of molecular oxygen and breakdown of aginuine, an amino acid, by hydrolysis or digestion of protein which is attendant to normal antigen-antibody action. This behavior indicates that protection guidelines and risk coefficients should be context dependent to include reference considerations of the composite action of parameters that mediate oxygen metabolism. A logic of this type permits the realistic common-scale modeling of

  19. Inflammation, oxidative DNA damage, and carcinogenesis

    International Nuclear Information System (INIS)

    Lewis, J.G.; Adams, D.O.

    1987-01-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is though that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. The authors and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H 2 O 2 and oxidized lipid products. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin that C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H 2 O 2 and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice. These data support the hypothesis that inflammation and the release of genotoxic oxidants may be one mechanism whereby initiated cells receive further genetic insults. They also further complicate risk assessment by suggesting that some environmental agents may work indirectly by subverting host systems to induce damage rather than maintaining homeostasis

  20. Experimental pulmonary carcinogenesis by radon and its daughters

    International Nuclear Information System (INIS)

    Sato, Fumiaki

    1989-01-01

    Information on experimental pulmonary carcinogenesis by radon and its daughters has come mostly from experiments carried out in France and United States of America. In rats a dose response relation was estimated to be linear with dose at low dose region. Studies of rats exposed daily to radon and radon daughters indicated that the frequency of pulmonary cancer at total exposure greater than 3000 WLM was greater when the exposure rates were low. At low total exposures the dose-rate effect was less apparent. Cigarette smoke increased the pulmonary cancer in rats but decreased in dogs. The decrease may be due to a decrease of absorbed doses with increased secretion of mucus and to an enhancement of mucociliary clearance. After inhalation of 222 Ru at equilibrium with radon daughters, rats were inoculated intrapleurally with asbestos fibres or glass fibres. The additive co-carcinogenic effects of this type of insult were demonstrated by the increased incidence of malignant thoracic tumours. As for species differences, dogs and hamsters are relatively resistant to cancer induction and rats are sensitive. While bronchogenic carcinomas are the most frequently observed radiation-induced pulmonary cancer in humans, bronchioloalveolar carcinomas are the most frequent type in most animal species. (author)

  1. Application of evolutionary games to modeling carcinogenesis.

    Science.gov (United States)

    Swierniak, Andrzej; Krzeslak, Michal

    2013-06-01

    We review a quite large volume of literature concerning mathematical modelling of processes related to carcinogenesis and the growth of cancer cell populations based on the theory of evolutionary games. This review, although partly idiosyncratic, covers such major areas of cancer-related phenomena as production of cytotoxins, avoidance of apoptosis, production of growth factors, motility and invasion, and intra- and extracellular signaling. We discuss the results of other authors and append to them some additional results of our own simulations dealing with the possible dynamics and/or spatial distribution of the processes discussed.

  2. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis

    International Nuclear Information System (INIS)

    Santibáñez-Andrade, Miguel; Quezada-Maldonado, Ericka Marel; Osornio-Vargas, Álvaro; Sánchez-Pérez, Yesennia; García-Cuellar, Claudia M.

    2017-01-01

    In this review, we summarize and discuss the evidence regarding the interaction between air pollution, especially particulate matter (PM), and genomic instability. PM has been widely studied in the context of several diseases, and its role in lung carcinogenesis gained relevance due to an increase in cancer cases for which smoking does not seem to represent the main risk factor. According to epidemiological and toxicological evidence, PM acts as a carcinogenic factor in humans, inducing high rates of genomic alterations. Here, we discuss not only how PM is capable of inducing genomic instability during the carcinogenic process but also how our genetic background influences the response to the sources of damage. - Highlights: • Air pollution represents a worldwide problem with impact on human health. • Particulate matter (PM) has a recognized carcinogenic potential in humans. • Lung cancer susceptibility depends on gene-environment interactions. • Epidemiological and experimental evidence links PM exposure to genomic instability. • PM and genomic instability are co-dependent factors during cancer continuum. - We summarize the association between particulate matter (a component of air pollution) and genomic instability as well as discuss how new strategies to study the impact of air pollution on genomic instability and lung-cancer development could improve our understanding of the lung-cancer genome.

  3. PPARα- and DEHP-Induced Cancers

    Directory of Open Access Journals (Sweden)

    Yuki Ito

    2008-01-01

    Full Text Available Di(2-ethylhexylphthalate (DEHP is a widely used plasticizer and a potentially nongenotoxic carcinogen. Its mechanism had been earlier proposed based on peroxisome proliferator-activated receptor α (PPARα because metabolites of DEHP are agonists. However, recent evidence also suggests the involvement of non-PPARα multiple pathway in DEHP-induced carcinogenesis. Since there are differences in the function and constitutive expression of PPARα among rodents and humans, species differences are also thought to exist in the carcinogenesis. However, species differences were also seen in the lipase activity involved in the first step of the DEHP metabolism, which should be considered in DEHP-induced carcinogenesis. Taken together, it is very difficult to extrapolate the results from rodents to humans in the case of DEHP carcinogenicity. However, PPARα-null mice or mice with human PPARα gene have been developed, which may lend support to make such a difficult extrapolation. Overall, further mechanical study on DEHP-induced carcinogenicity is warranted using these mice.

  4. Expression of Hormonal Carcinogenesis Genes and Related Regulatory microRNAs in Uterus and Ovaries of DDT-Treated Female Rats.

    Science.gov (United States)

    Kalinina, T S; Kononchuk, V V; Gulyaeva, L F

    2017-10-01

    The insecticide dichlorodiphenyltrichloroethane (DDT) is a nonmutagenic xenobiotic compound able to exert estrogen-like effects resulting in activation of estrogen receptor-α (ERα) followed by changed expression of its downstream target genes. In addition, studies performed over recent years suggest that DDT may also influence expression of microRNAs. However, an impact of DDT on expression of ER, microRNAs, and related target genes has not been fully elucidated. Here, using real-time PCR, we assessed changes in expression of key genes involved in hormonal carcinogenesis as well as potentially related regulatory oncogenic/tumor suppressor microRNAs and their target genes in the uterus and ovaries of female Wistar rats during single and chronic multiple-dose DDT exposure. We found that applying DDT results in altered expression of microRNAs-221, -222, -205, -126a, and -429, their target genes (Pten, Dicer1), as well as genes involved in hormonal carcinogenesis (Esr1, Pgr, Ccnd1, Cyp19a1). Notably, Cyp19a1 expression seems to be also regulated by microRNAs-221, -222, and -205. The data suggest that epigenetic effects induced by DDT as a potential carcinogen may be based on at least two mechanisms: (i) activation of ERα followed by altered expression of the target genes encoding receptor Pgr and Ccnd1 as well as impaired expression of Cyp19a1, affecting, thereby, cell hormone balance; and (ii) changed expression of microRNAs resulting in impaired expression of related target genes including reduced level of Cyp19a1 mRNA.

  5. The effect of synthetic immunomodulator thymogen on radiation carcinogenesis in rats

    International Nuclear Information System (INIS)

    Anisimov, V.N.; Miretskij, G.I.; Morozov, V.G.; Pavel'eva, I.A.; Khavinson, V.Kh.

    1992-01-01

    Five month-old female rats were given a mixture of Sr-90 and Cs-137 in drinking water in the dose of 0.1 and 0.2 μCi/day per animal over 12 months. Some animals received 12 monthly course of a synthetic immunomodulating dipeptide-thymogen in the dose of 5 μg/animal for 5 consecutive days. Radionuclide-treated rats showed higher occurence of tumors on the whole and of breast adenocarcinoma, in particular. Thymogen was shown to inhibit Sr-90- and Cs-137-induced radiation carcinogenesis, namely, a decrease in the total tumor and cancer occurence was observed. The animals receiving thymogen alone showed longer life span, slower rate of aging and lower overall tumor and cancer occurence. In this study, the ability of asynthetic peptide immunomodulator-thymogen to inhibit spontaneous and radionuclide-induced carcinogenesis in female rats was first established

  6. Comparative aspects of animal and human data on somatic effects of ionizing radiation

    International Nuclear Information System (INIS)

    Matsuoka, Osamu; Kobayashi, Sadayoshi

    1986-10-01

    This report contains presentations at the 17th Symposium organized by the National Institute of Radiological Sciences, which took place in Chiba, Japan, from 11 to 12 December 1985. Unlike in the previous symposiums dealing with cellular and molecular levels, the present symposium discussed somatic effects of ionizing radiation at the organic level in conjunction with epidemiological data. This report is divided into five sections: the first is explanation for UNSCEAR's and ICRP's views of human and animal data in the current assessment of radiation health risks; the second covers comparison of epidemiological and animal experimental data on the dose-effect relationship for carcinogenesis, together with problems in epidemiological and experimental studies; the third discusses significance and problems in animal experiments on modifying factors of radiation carcinogenesis; the fourth deals with studies on carcinogenesis mechanism, aiming at elucidating their significance and potential role in the risk evaluation for humans; and the last section is a compilation of panel discussion of differences in humans and animals, giving a proposal for future research. (Namekawa, K.)

  7. The association between methylated CDKN2A and cervical carcinogenesis, and its diagnostic value in cervical cancer: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Li J

    2016-08-01

    Full Text Available Jinyun Li,1,2,* Chongchang Zhou,1,* Haojie Zhou,3,* Tianlian Bao,1 Tengjiao Gao,1 Xiangling Jiang,1 Meng Ye1,2 1Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, 2Department of Medical Oncology, Affiliated Hospital, Ningbo University, 3Department of Molecular Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, Zhejiang, People’s Republic of China *These authors are co-first authors of this work Background: Cervical cancer is the second deadliest gynecologic malignancy, characterized by apparently precancerous lesions and cervical intraepithelial neoplasia (CIN, and having a long course from the development of CIN to cervical cancer. Cyclin-dependent kinase inhibitor 2A (CDKN2A is a well-documented tumor suppressor gene and is commonly methylated in cervical cancer. However, the relationship between methylated CDKN2A and carcinogenesis in cervical cancer is inconsistent, and the diagnostic accuracy of methylated CDKN2A is underinvestigated. In this study, we attempted to quantify the association between CDKN2A methylation and the carcinogenesis of cervical cancer, and its diagnostic power.Methods: We systematically reviewed four electronic databases and identified 26 studies involving 1,490 cervical cancers, 1,291 CINs, and 964 controls. A pooled odds ratio (OR with corresponding 95% confidence intervals (95% CI was calculated to evaluate the association between methylated CDKN2A and the carcinogenesis of cervical cancer. Specificity, sensitivity, the area under the receiver operating characteristic curve, and the diagnostic odds ratio were computed to assess the effect of methylated CDKN2A in the diagnosis of cervical cancer.Results: Our results indicated an upward trend in the methylation frequency of CDKN2A in the carcinogenesis of cervical cancer (cancer vs control: OR =23.67, 95% CI =15.54–36.06; cancer vs CIN: OR =2.53, 95% CI =1.79–3.5; CIN vs control: OR =9.68, 95% CI =5.82–16.02. The

  8. Overview of osseous tissue findings from the lifespan carcinogenesis studies: From whole animals to molecules

    International Nuclear Information System (INIS)

    Miller, S.C.; Jee, W.S.S.; Bruenger, F.B.; Lloyd, R.D.; Taylor, G.N.

    1991-01-01

    This summary presents some of the findings from the 226 Ra and 239 Pu lifespan carcinogenesis studies in Beagle dogs and discusses these findings relative to the tissue, cellular and molecular biology of osseous tissues. This report attempts to integrate some of the dosimetric and pathological findings with current understanding of the factors that may influence carcinogenesis (and non-carcinogenic pathologies) at the various levels of biological organization. Emphasis is placed on the findings from the 226 Ra study, as this study has recently been completely reviewed and verified

  9. Influence of Ionizing Radiation on Stromal-Epithelial Communication in Esophageal Carcinogenesis

    Science.gov (United States)

    Huff, Janice; Patel, Zarana; Grugan, Katharine; Rustgi, Anil; Cucinotta, Francis A.

    Esophageal cancer is the 6th leading cause of cancer death worldwide and is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. A connection with ionizing radiation exposure is revealed by the high excess relative risk for esophageal squamous cell carcinoma observed in the survivors of the atomic bomb detonations in Japan. Esophageal carcinomas are also seen as secondary malignancies in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely responsive to treatment. In normal epithelium, the stromal microenvironment is essential for the maintenance and modulation of cell growth and differentiation. Cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibrob-lasts (Okawa et al., Genes Dev. 2007. 21: 2788-2803). We examined how irradiation of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. These assays were conducted in modified Boyden chambers using conditioned media from irradiated fibroblasts. Our results using low LET gamma radiation showed a dose-dependent increase in migration of epithelial

  10. Mast cells are dispensable for normal and activin-promoted wound healing and skin carcinogenesis.

    Science.gov (United States)

    Antsiferova, Maria; Martin, Caroline; Huber, Marcel; Feyerabend, Thorsten B; Förster, Anja; Hartmann, Karin; Rodewald, Hans-Reimer; Hohl, Daniel; Werner, Sabine

    2013-12-15

    The growth and differentiation factor activin A is a key regulator of tissue repair, inflammation, fibrosis, and tumorigenesis. However, the cellular targets, which mediate the different activin functions, are still largely unknown. In this study, we show that activin increases the number of mature mast cells in mouse skin in vivo. To determine the relevance of this finding for wound healing and skin carcinogenesis, we mated activin transgenic mice with CreMaster mice, which are characterized by Cre recombinase-mediated mast cell eradication. Using single- and double-mutant mice, we show that loss of mast cells neither affected the stimulatory effect of overexpressed activin on granulation tissue formation and reepithelialization of skin wounds nor its protumorigenic activity in a model of chemically induced skin carcinogenesis. Furthermore, mast cell deficiency did not alter wounding-induced inflammation and new tissue formation or chemically induced angiogenesis and tumorigenesis in mice with normal activin levels. These findings reveal that mast cells are not major targets of activin during wound healing and skin cancer development and also argue against nonredundant functions of mast cells in wound healing and skin carcinogenesis in general.

  11. [THE ROLE OF ESTROGENS IN THE CARCINOGENESIS OF LUNG CANCER].

    Science.gov (United States)

    Uchikova, E; Uchikov, A; Dimitrakova, E; Uchikov, P

    2016-01-01

    Morbidity and mortality from lung cancer has dramatically increased in women as compared to men over the past few years. Historically, smoking has been considered the major risk factor for lung cancer regardless of gender. Several recent lines of evidence implicate gender differences in the observed differences in prevalence and histologic type which cannot be explained based on the carcinogenic action of nicotine. Several recent studies underscore the importance of reproductive and hormonal factors in the carcinogenesis of lung cancer Lung cancer morbidity and mortality in Bulgaria was 16.2/100000 women and 14.6/ 100000 women, resp. Lung cancer morbidity in Europe was 39/100000 women. Lung cancer is extremely sensitive to estrogens. The latter act directly or as effect modifiers for the relationship between smoking and lung cancer. Further research examining the relationship between serum estrogen levels and the estrogen receptor expression in normal and tumor lung tissue samples can help elucidate the importance of reproductive and hormonal (exogenous and endogenous) factors in the carcinogenesis of lung cancer.

  12. Human Papilloma Virus-Dependent HMGA1 Expression Is a Relevant Step in Cervical Carcinogenesis1

    Science.gov (United States)

    Mellone, Massimiliano; Rinaldi, Christian; Massimi, Isabella; Petroni, Marialaura; Veschi, Veronica; Talora, Claudio; Truffa, Silvia; Stabile, Helena; Frati, Luigi; Screpanti, Isabella; Gulino, Alberto; Giannini, Giuseppe

    2008-01-01

    HMGA1 is a member of a small family of architectural transcription factors involved in the coordinate assembly of multiprotein complexes referred to as enhanceosomes. In addition to their role in cell proliferation, differentiation, and development, high-mobility group proteins of the A type (HMGA) family members behave as transforming protoncogenes either in vitro or in animal models. Recent reports indicated that HMGA1 might counteract p53 pathway and provided an interesting hint on the mechanisms determining HMGA's transforming potential. HMGA1 expression is deregulated in a very large array of human tumors, including cervical cancer, but very limited information is available on the molecular mechanisms leading to HMGA1 deregulation in cancer cells. Here, we report that HMGA1 expression is sustained by human papilloma virus (HPV) E6/E7 proteins in cervical cancer, as demonstrated by either E6/E7 overexpression or by repression through RNA interference. Knocking down HMGA1 expression by means of RNA interference, we also showed that it is involved in cell proliferation and contributes to p53 inactivation in this type of neoplasia. Finally, we show that HMGA1 is necessary for the full expression of HPV18 E6 and E7 oncoproteins thus establishing a positive autoregulatory loop between HPV E6/E7 and HMGA1 expression. PMID:18670638

  13. A Review of ERCC1 Gene in Bladder Cancer: Implications for Carcinogenesis and Resistance to Chemoradiotherapy

    Directory of Open Access Journals (Sweden)

    Atsunari Kawashima

    2012-01-01

    Full Text Available The excision repair cross-complementing group 1 (ERCC1 gene performs a critical incision step in DNA repair and is reported to be correlated with carcinogenesis and resistance to drug or ionizing radiation therapy. We reviewed the correlation between ERCC1 and bladder cancer. In carcinogenesis, several reports discussed the relation between ERCC1 single nucleotide polymorphisms and carcinogenesis in bladder cancer only in case-control studies. Regarding the relation between ERCC1 and resistance to chemoradiotherapy, in vitro and clinical studies indicate that ERCC1 might be related to resistance to radiation therapy rather than cisplatin therapy. It is controversial whether ERCC1 predicts prognosis of bladder cancer treated with cisplatin-based chemotherapy. Tyrosine kinase receptors or endothelial-mesenchymal transition are reported to regulate the expression of ERCC1, and further study is needed to clarify the mechanism of ERCC1 expression and resistance to chemoradiotherapy in vitro and to discover novel therapies for advanced and metastatic bladder cancer.

  14. A Review of ERCC1 Gene in Bladder Cancer: Implications for Carcinogenesis and Resistance to Chemoradiotherapy.

    Science.gov (United States)

    Kawashima, Atsunari; Takayama, Hitoshi; Tsujimura, Akira

    2012-01-01

    The excision repair cross-complementing group 1 (ERCC1) gene performs a critical incision step in DNA repair and is reported to be correlated with carcinogenesis and resistance to drug or ionizing radiation therapy. We reviewed the correlation between ERCC1 and bladder cancer. In carcinogenesis, several reports discussed the relation between ERCC1 single nucleotide polymorphisms and carcinogenesis in bladder cancer only in case-control studies. Regarding the relation between ERCC1 and resistance to chemoradiotherapy, in vitro and clinical studies indicate that ERCC1 might be related to resistance to radiation therapy rather than cisplatin therapy. It is controversial whether ERCC1 predicts prognosis of bladder cancer treated with cisplatin-based chemotherapy. Tyrosine kinase receptors or endothelial-mesenchymal transition are reported to regulate the expression of ERCC1, and further study is needed to clarify the mechanism of ERCC1 expression and resistance to chemoradiotherapy in vitro and to discover novel therapies for advanced and metastatic bladder cancer.

  15. Metallothioneins in human tumors and potential roles in carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cherian, M. George; Jayasurya, A.; Bay, Boon-Huat

    2003-12-10

    Metallothioneins (MT) are a group of low-molecular weight, cysteine rich intracellular proteins, which are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins have been associated with protection against DNA damage, oxidative stress and apoptosis. Moreover, MT may potentially activate certain transcriptional factors by donating zinc. Although MT is a cytosolic protein in resting cells, it can be translocated transiently to the cell nucleus during cell proliferation and differentiation. A number of studies have shown an increased expression of MT in various human tumors of the breast, colon, kidney, liver, lung, nasopharynx, ovary, prostate, salivary gland, testes, thyroid and urinary bladder. However, MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors, but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. In certain tumors such as germ cell carcinoma, the expression of MT is closely related to the tumor grade and proliferative activity. Increased expression of MT has also been observed in less differentiated tumors. Thus, expression of MT may be a potential prognostic marker for certain tumors. There are few reports on the expression of the different isoforms of MT which have been analyzed by specific gene probes. They reveal that certain isoforms are expressed in specific cell types. The factors which can influence MT induction in human tumors are not yet understood. Down-regulation of MT synthesis in hepatic tumors may be related to hypermethylation of the MT-promoter or mutation of other genes such as the p53 tumor suppressor gene. In vitro studies using human cancer cells suggest a possible role for p53 and the estrogen-receptor on the expression and induction of MT in epithelial neoplastic cells

  16. Metallothioneins in human tumors and potential roles in carcinogenesis

    International Nuclear Information System (INIS)

    Cherian, M. George; Jayasurya, A.; Bay, Boon-Huat

    2003-01-01

    Metallothioneins (MT) are a group of low-molecular weight, cysteine rich intracellular proteins, which are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins have been associated with protection against DNA damage, oxidative stress and apoptosis. Moreover, MT may potentially activate certain transcriptional factors by donating zinc. Although MT is a cytosolic protein in resting cells, it can be translocated transiently to the cell nucleus during cell proliferation and differentiation. A number of studies have shown an increased expression of MT in various human tumors of the breast, colon, kidney, liver, lung, nasopharynx, ovary, prostate, salivary gland, testes, thyroid and urinary bladder. However, MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors, but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. In certain tumors such as germ cell carcinoma, the expression of MT is closely related to the tumor grade and proliferative activity. Increased expression of MT has also been observed in less differentiated tumors. Thus, expression of MT may be a potential prognostic marker for certain tumors. There are few reports on the expression of the different isoforms of MT which have been analyzed by specific gene probes. They reveal that certain isoforms are expressed in specific cell types. The factors which can influence MT induction in human tumors are not yet understood. Down-regulation of MT synthesis in hepatic tumors may be related to hypermethylation of the MT-promoter or mutation of other genes such as the p53 tumor suppressor gene. In vitro studies using human cancer cells suggest a possible role for p53 and the estrogen-receptor on the expression and induction of MT in epithelial neoplastic cells

  17. Mammary carcinogenesis in rats: basic facts and recent results in Brookhaven

    International Nuclear Information System (INIS)

    Shellabarger, C.J.; Stone, J.P.; Holtzman, s.

    1982-01-01

    Some research results from experiments investigating neutron-induced mammary carcinogenesis in rats are presented. The additive effects of neutrons and 3-methylcholanthrene on mammary adenocarcinoma were determined. Synergism between diethylstilbestrol and neutrons was likewise studied. Differences in mammary neoplastic response between strains of laboratory rats was also investigated

  18. Dysregulation of microRNAs in colonic field carcinogenesis: implications for screening.

    Directory of Open Access Journals (Sweden)

    Dhananjay P Kunte

    Full Text Available Colorectal cancer (CRC screening tests often have a trade-off between efficacy and patient acceptability/cost. Fecal tests (occult blood, methylation engender excellent patient compliance but lack requisite performance underscoring the need for better population screening tests. We assessed the utility of microRNAs (miRNAs as markers of field carcinogenesis and their potential role for CRC screening using the azoxymethane (AOM-treated rat model. We found that 63 miRNAs were upregulated and miR-122, miR-296-5p and miR-503# were downregulated in the uninvolved colonic mucosa of AOM rats. We monitored the expression of selected miRNAs in colonic biopsies of AOM rats at 16 weeks and correlated it with tumor development. We noted that the tumor bearing rats had significantly greater miRNA modulation compared to those without tumors. The miRNAs showed good diagnostic performance with an area under the receiver operator curve (AUROC of >0.7. We also noted that the miRNA induction in the colonic mucosa was mirrorred in the mucus layer fecal colonocytes isolated from AOM rat stool and the degree of miRNA induction was greater in the tumor bearing rats compared to those without tumors. Lastly, we also noted significant miRNA modulation in the Pirc rats- the genetic model of colon carcinogenesis, both in the uninvolved colonic mucosa and the fecal colonocytes. We thus demonstrate that miRNAs are excellent markers of field carcinogenesis and could accurately predict future neoplasia. Based on our results, we propose an accurate, inexpensive, non-invasive miRNA test for CRC risk stratification based on rectal brushings or from abraded fecal colonocytes.

  19. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  20. Expression Patterns of Cancer Stem Cell Markers During Specific Celecoxib Therapy in Multistep Rat Colon Carcinogenesis Bioassays.

    Science.gov (United States)

    Salim, Elsayed I; Hegazi, Mona M; Kang, Jin Seok; Helmy, Hager M

    2016-01-01

    The purpose of this study was to investigate the role of colon cancer stem cells (CSCs) during chemicallyinduced rat multi-step colon carcinogenesis with or without the treatment with a specific cyclooxygenase-2 inhibitor drug (celecoxib). Two experiments were performed, the first, a short term 12 week colon carcinogenesis bioassay in which only surrogate markers for colon cancer, aberrant crypt foci (ACF) lesions, were formed. The other experiment was a medium term colon cancer rat assay in which tumors had developed after 32 weeks. Treatment with celecoxib lowered the numbers of ACF, as well as the tumor volumes and multiplicities after 32 weeks. Immunohistochemical proliferating cell nuclear antigen (PCNA) labeling indexes LI (%) were downregulated after treatment by celecoxib. Also different cell surface antigens known to associate with CSCs such as the epithelial cell adhesion molecule (EpCAM), CD44 and CD133 were compared between the two experiments and showed differential expression patterns depending on the stage of carcinogenesis and treatment with celecoxib. Flow cytometric analysis demonstrated that the numbers of CD133 cells were increased in the colonic epithelium after 12 weeks while those of CD44 but not CD133 cells were increased after 32 weeks. Moreover, aldehyde dehydrogenase-1 activity levels in the colonic epithelium (a known CSC marker) detected by ELISA assay were found down-regulated after 12 weeks, but were up-regulated after 32 weeks. The data have also shown that the protective effect of celecoxib on these specific markers and populations of CSCs and on other molecular processes such as apoptosis targeted by this drug may vary depending on the genetic and phenotypic stages of carcinogenesis. Therefore, uncovering these distinction roles of CSCs during different phases of carcinogenesis and during specific treatment could be useful for targeted therapy.

  1. Association of Betel Nut with Carcinogenesis: Revisit with a Clinical Perspective

    Science.gov (United States)

    Sharan, Rajeshwar N.; Mehrotra, Ravi; Choudhury, Yashmin; Asotra, Kamlesh

    2012-01-01

    Abstract Betel nut (BN), betel quid (BQ) and products derived from them are widely used as a socially endorsed masticatory product. The addictive nature of BN/BQ has resulted in its widespread usage making it the fourth most abused substance by humans. Progressively, several additives, including chewing tobacco, got added to simple BN preparations. This addictive practice has been shown to have strong etiological correlation with human susceptibility to cancer, particularly oral and oropharyngeal cancers. The PUBMED database was searched to retrieve all relevant published studies in English on BN and BQ, and its association with oral and oropharyngeal cancers. Only complete studies directly dealing with BN/BQ induced carcinogenesis using statistically valid and acceptable sample size were analyzed. Additional relevant information available from other sources was also considered. This systematic review attempts to put in perspective the consequences of this widespread habit of BN/BQ mastication, practiced by approximately 10% of the world population, on oral cancer with a clinical perspective. BN/BQ mastication seems to be significantly associated with susceptibility to oral and oropharyngeal cancers. Addition of tobacco to BN has been found to only marginally increase the cancer risk. Despite the widespread usage of BN/BQ and its strong association with human susceptibility to cancer, no serious strategy seems to exist to control this habit. The review, therefore, also looks at various preventive efforts being made by governments and highlights the multifaceted intervention strategies required to mitigate and/or control the habit of BN/BQ mastication. PMID:22912735

  2. Histopathological and in vivo evidence of regucalcin as a protective molecule in mammary gland carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Ricardo; Vaz, Cátia V.; Maia, Cláudio J. [CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Gomes, Madalena [IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto (Portugal); Gama, Adelina [Department of Veterinary Sciences, Animal and Veterinary Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD) (Portugal); Alves, Gilberto; Santos, Cecília R. [CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Schmitt, Fernando [IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto (Portugal); Medical Faculty, University of Porto, Porto (Portugal); Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto (Canada); Department of Pathology, University Health Network, Toronto (Canada); Socorro, Sílvia, E-mail: ssocorro@fcsaude.ubi.pt [CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal)

    2015-01-15

    Regucalcin (RGN) is a calcium-binding protein, which has been shown to be underexpressed in cancer cases. This study aimed to determine the association of RGN expression with clinicopathological parameters of human breast cancer. In addition, the role of RGN in malignancy of mammary gland using transgenic rats overexpressing the protein (Tg-RGN) was investigated. Wild-type (Wt) and Tg-RGN rats were treated with 7,12-dimethylbenz[α]anthracene (DMBA). Carcinogen-induced tumors were histologically classified and the Ki67 proliferation index was estimated. Immunohistochemistry analysis showed that RGN immunoreactivity was negatively correlated with the histological grade of breast infiltrating ductal carcinoma suggesting that progression of breast cancer is associated with loss of RGN. Tg-RGN rats displayed lower incidence of carcinogen-induced mammary gland tumors, as well as lower incidence of invasive forms. Moreover, higher proliferation was observed in non-invasive tumors of Wt animals comparatively with Tg-RGN. Overexpression of RGN was associated with diminished expression of cell-cycle inhibitors and increased expression of apoptosis inducers. Augmented activity of apoptosis effector caspase-3 was found in the mammary gland of Tg-RGN. RGN overexpression protected from carcinogen-induced mammary gland tumor development and was linked with reduced proliferation and increased apoptosis. These findings indicated the protective role of RGN in the carcinogenesis of mammary gland. - Highlights: • RGN immunoreactivity was negatively correlated with breast cancer differentiation. • Transgenic overexpression of RGN diminished incidence of carcinogen-induced tumors. • Transgenic overexpression of RGN restricted proliferation and fostered apoptosis. • RGN has a protective role in the carcinogenesis of mammary gland.

  3. Glutaminolysis and carcinogenesis of oral squamous cell carcinoma.

    Science.gov (United States)

    Cetindis, Marcel; Biegner, Thorsten; Munz, Adelheid; Teriete, Peter; Reinert, Siegmar; Grimm, Martin

    2016-02-01

    Glutaminolysis is a crucial factor for tumor metabolism in the carcinogenesis of several tumors but has not been clarified for oral squamous cell carcinoma (OSCC) yet. Expression of glutaminolysis-related solute carrier family 1, member 5 (SLC1A5)/neutral amino acid transporter (ASCT2), glutaminase (GLS), and glutamate dehydrogenase (GLDH) was analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry. SLC1A5/ASCT2 and GLS were significantly overexpressed in the carcinogenesis of OSCC compared with normal tissue, while GLDH was weakly detected. Compared with SIN I-III SLC1A5/ASCT2 and GLS expression were significantly increased in OSCC. GLDH expression did not significantly differ from SIN I-III compared with OSCC. This study shows the first evidence of glutaminolysis-related SLC1A5/ASCT2, GLS, and GLDH expression in OSCC. The very weak GLDH expression indicates that glutamine metabolism is rather related to nucleotide or protein/hexosamine biosynthesis or to the function as an antioxidant (glutathione) than to energy production or generation of lactate through entering the tricarboxylic acid cycle. Overcoming glutaminolysis by targeting c-Myc oncogene (e.g. by natural compounds) and thereby cross-activation of mammalian target of rapamycin complex 1 or SLC1A5/ASCT2, GLS inhibitors may be a useful strategy to sensitize cancer cells to common OSCC cancer therapies.

  4. Apc-Mutant Kyoto Apc Delta (KAD) Rats Are Susceptible to 4-NQO-Induced Tongue Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takuji, E-mail: tmntt08@gmail.com [Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-1 Kashima-Cho, Gifu 500-8513 (Japan); Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Shimizu, Masahito; Kochi, Takahiro; Shirakami, Yohei [Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Mori, Takayuki [Department of Pharmacy, Ogaki Municipal Hospital, 4-86 Minaminokawa-cho, Ogaki 503-8502 (Japan); Watanabe, Naoki [Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-1 Kashima-Cho, Gifu 500-8513 (Japan); Naiki, Takafumi [Department of Clinical Laboratory, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513 (Japan); Moriwaki, Hisataka [Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Yoshimi, Kazuto; Serikawa, Tadao; Kuramoto, Takashi [The Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan)

    2014-07-21

    Despite widening interest in the possible association between infection/inflammation and cancer development, knowledge of this issue in relation to oral cancer remains inadequate. This study aimed to determine the susceptibility of Apc-mutant Kyoto Apc Delta (KAD) rats, which are vulnerable to developing inflammation-associated colorectal carcinogenesis, to 4-nitroquinoline 1-oxide (4-NQO)-induced tongue carcinogenesis in order to clarify the role of inflammation in oral cancer. KAD (20 males and 22 females) and F344/NS1c (22 males and 23 females) rats received drinking water with or without 4-NQO (20 ppm) for eight weeks. Histopathological and immunohistochemical analyses of the tongue were performed at week 20. Additionally, the mRNA expression of inflammatory cytokines in the tongue mucosa was determined at week 8. Tongue squamous cell carcinoma (SCC) developed in the KAD and F344/NS1c rats that received 4-NQO. Regardless of gender, the incidence and multiplicity of tongue SCC were greater in the KAD rats than in the F344/NS1c rats. In addition, the multiplicity of tongue SCC in the female KAD rats was significantly greater than that observed in the male KAD (p < 0.01) and female F344/NS1c rats (p < 0.05). The levels of inflammation and the mRNA expression of inflammatory cytokines in the tongue in the 4-NQO-treated female KAD rats were the highest among the rats given 4-NQO. These results show that KAD rats, particularly females, are susceptible to 4-NQO-induced tongue carcinogenesis, suggesting the utility of models employing KAD rats for investigating the pathobiology of oral (tongue) carcinogenesis associated with inflammation.

  5. Apc-Mutant Kyoto Apc Delta (KAD) Rats Are Susceptible to 4-NQO-Induced Tongue Carcinogenesis

    International Nuclear Information System (INIS)

    Tanaka, Takuji; Shimizu, Masahito; Kochi, Takahiro; Shirakami, Yohei; Mori, Takayuki; Watanabe, Naoki; Naiki, Takafumi; Moriwaki, Hisataka; Yoshimi, Kazuto; Serikawa, Tadao; Kuramoto, Takashi

    2014-01-01

    Despite widening interest in the possible association between infection/inflammation and cancer development, knowledge of this issue in relation to oral cancer remains inadequate. This study aimed to determine the susceptibility of Apc-mutant Kyoto Apc Delta (KAD) rats, which are vulnerable to developing inflammation-associated colorectal carcinogenesis, to 4-nitroquinoline 1-oxide (4-NQO)-induced tongue carcinogenesis in order to clarify the role of inflammation in oral cancer. KAD (20 males and 22 females) and F344/NS1c (22 males and 23 females) rats received drinking water with or without 4-NQO (20 ppm) for eight weeks. Histopathological and immunohistochemical analyses of the tongue were performed at week 20. Additionally, the mRNA expression of inflammatory cytokines in the tongue mucosa was determined at week 8. Tongue squamous cell carcinoma (SCC) developed in the KAD and F344/NS1c rats that received 4-NQO. Regardless of gender, the incidence and multiplicity of tongue SCC were greater in the KAD rats than in the F344/NS1c rats. In addition, the multiplicity of tongue SCC in the female KAD rats was significantly greater than that observed in the male KAD (p < 0.01) and female F344/NS1c rats (p < 0.05). The levels of inflammation and the mRNA expression of inflammatory cytokines in the tongue in the 4-NQO-treated female KAD rats were the highest among the rats given 4-NQO. These results show that KAD rats, particularly females, are susceptible to 4-NQO-induced tongue carcinogenesis, suggesting the utility of models employing KAD rats for investigating the pathobiology of oral (tongue) carcinogenesis associated with inflammation

  6. Mycotoxins as human carcinogens-the IARC Monographs classification.

    Science.gov (United States)

    Ostry, Vladimir; Malir, Frantisek; Toman, Jakub; Grosse, Yann

    2017-02-01

    Humans are constantly exposed to mycotoxins (e.g. aflatoxins, ochratoxins), mainly via food intake of plant and animal origin. The health risks stemming from mycotoxins may result from their toxicity, in particular their carcinogenicity. In order to prevent these risks, the International Agency for Research on Cancer (IARC) in Lyon (France)-through its IARC Monographs programme-has performed the carcinogenic hazard assessment of some mycotoxins in humans, on the basis of epidemiological data, studies of cancer in experimental animals and mechanistic studies. The present article summarizes the carcinogenic hazard assessments of those mycotoxins, especially aflatoxins (aflatoxin B 1 , B 2 , G 1 , G 2 and M 1 ), fumonisins (fumonisin B 1 and B 2 ) and ochratoxin A (OTA). New information regarding the genotoxicity of OTA (formation of OTA-DNA adducts), the role of OTA in oxidative stress and the identification of epigenetic factors involved in OTA carcinogenesis-should they indeed provide strong evidence that OTA carcinogenicity is mediated by a mechanism that also operates in humans-could lead to the reclassification of OTA.

  7. Investigating the Role of FIP200 in Mammary Carcinogenesis Using a Transgenic Mouse Model

    National Research Council Canada - National Science Library

    Nagy, Tamas

    2007-01-01

    ...) deletion in mammary-specific polyoma middle-T transgenic mice. We monitored mammary carcinogenesis in positive control (FAKFlox/Flox; MMTV-PyVT) and target (FAKFlox/Flox; MMTV-Cre; MMTV-PyVT) females...

  8. Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse

    Directory of Open Access Journals (Sweden)

    Kimura Shioko

    2012-12-01

    Full Text Available Abstract Background The CCAAT/enhancer binding proteins (C/EBPs play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known. Methods A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung carcinogenesis bioassay in the presence and absence of doxycycline, and the effect of abolition of DNA binding activities of C/EBPs on lung carcinogenesis was examined. Results A-C/EBP expression was found not to interfere with tumor development; however, it suppressed the malignant conversion of adenoma to carcinoma during NNK-induced lung carcinogenesis. The results suggested that Ki67 may be used as a marker for lung carcinomas in mouse. Conclusions The DNA binding of C/EBP family members can be used as a potential molecular target for lung cancer therapy.

  9. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    Science.gov (United States)

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  10. Co-carcinogenesis: Human Papillomaviruses, Coal Tar Derivatives, and Squamous Cell Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Harry W. Haverkos

    2017-11-01

    Full Text Available Cervical cancer (CC is the fourth most common cancers among women worldwide. Human papillomaviruses (HPVs play a major role in the etiology of CC, with several lines of epidemiologic and experimental evidence supporting a role for non-viral (co-carcinogens and host genetic factors in controlling the risk for progression to neoplasia among HPV-infected individuals. The role of co-carcinogens in the development of CC is significant in the developing world where poor sanitation and other socio-economic conditions increase the infectious cancer burden. Here, we discuss how exposure to environmental factors such as coal tar derivatives from cigarette smoking, tar-based sanitary products, and inhaled smoke from biomass-burning stoves, could activate host pathways involved in development of HPV-associated squamous cell cancers in resource-limited settings. Understanding interactions between these pathways with certain oncogenic HPV genotypes may guide implementation of strategies for control and treatment of HPV-associated cancers that develop in populations at high risk of exposure to various co-carcinogens.

  11. A central role for heme iron in colon carcinogenesis associated with red meat intake.

    Science.gov (United States)

    Bastide, Nadia M; Chenni, Fatima; Audebert, Marc; Santarelli, Raphaelle L; Taché, Sylviane; Naud, Nathalie; Baradat, Maryse; Jouanin, Isabelle; Surya, Reggie; Hobbs, Ditte A; Kuhnle, Gunter G; Raymond-Letron, Isabelle; Gueraud, Françoise; Corpet, Denis E; Pierre, Fabrice H F

    2015-03-01

    Epidemiology shows that red and processed meat intake is associated with an increased risk of colorectal cancer. Heme iron, heterocyclic amines, and endogenous N-nitroso compounds (NOC) are proposed to explain this effect, but their relative contribution is unknown. Our study aimed at determining, at nutritional doses, which is the main factor involved and proposing a mechanism of cancer promotion by red meat. The relative part of heme iron (1% in diet), heterocyclic amines (PhIP + MeIQx, 50 + 25 μg/kg in diet), and NOC (induced by NaNO₂+ NaNO₂; 0.17 + 0.23 g/L of drinking water) was determined by a factorial design and preneoplastic endpoints in chemically induced rats and validated on tumors in Min mice. The molecular mechanisms (genotoxicity, cytotoxicity) were analyzed in vitro in normal and Apc-deficient cell lines and confirmed on colon mucosa. Heme iron increased the number of preneoplastic lesions, but dietary heterocyclic amines and NOC had no effect on carcinogenesis in rats. Dietary hemoglobin increased tumor load in Min mice (control diet: 67 ± 39 mm²; 2.5% hemoglobin diet: 114 ± 47 mm², P = 0.004). In vitro, fecal water from rats given hemoglobin was rich in aldehydes and was cytotoxic to normal cells, but not to premalignant cells. The aldehydes 4-hydroxynonenal and 4-hydroxyhexenal were more toxic to normal versus mutated cells and were only genotoxic to normal cells. Genotoxicity was also observed in colon mucosa of mice given hemoglobin. These results highlight the role of heme iron in the promotion of colon cancer by red meat and suggest that heme iron could initiate carcinogenesis through lipid peroxidation. . ©2015 American Association for Cancer Research.

  12. Dietary fish oil (MaxEPA) enhances pancreatic carcinogenesis in azaserine-treated rats

    NARCIS (Netherlands)

    Appel, M.J.; Woutersen, R.A.

    1996-01-01

    In the present study the putative chemopreventive effect of dietary fish oil (MaxEPA) on azaserine-induced pancreatic carcinogenesis in rats was investigated. Groups of rats were maintained on a semipurified low-fat (LF; 5 wt%) diet or on semipurified high-fat (HF; 25 wt%) diets containing 5 wt%

  13. Deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 knockout mice.

    Science.gov (United States)

    Zhang, Danqing; Kobayashi, Toshiyuki; Kojima, Tetsuo; Kanenishi, Kenji; Hagiwara, Yoshiaki; Abe, Masaaki; Okura, Hidehiro; Hamano, Yoshitomo; Sun, Guodong; Maeda, Masahiro; Jishage, Kou-ichi; Noda, Tetsuo; Hino, Okio

    2011-04-01

    Genetic crossing experiments were performed between tuberous sclerosis-2 (Tsc2) KO and expressed in renal carcinoma (Erc) KO mice to analyze the function of the Erc/mesothelin gene in renal carcinogenesis. We found the number and size of renal tumors were significantly less in Tsc2+/-;Erc-/- mice than in Tsc2+/-;Erc+/+ and Tsc2+/-;Erc+/- mice. Tumors from Tsc2+/-;Erc-/- mice exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen (Ki67) and TUNEL analysis, respectively. Adhesion to collagen-coated plates in vitro was enhanced in Erc-restored cells and decreased in Erc-suppressed cells with siRNA. Tumor formation by Tsc2-deficient cells in nude mice was remarkably suppressed by stable knockdown of Erc with shRNA. Western blot analysis showed that the phosphorylation of focal adhesion kinase, Akt and signal transducer and activator of transcription protein 3 were weaker in Erc-deficient/suppressed cells compared with Erc-expressed cells. These results indicate that deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 KO mice and inhibits the phosphorylation of several kinases of cell adhesion mechanism. This suggests that Erc/mesothelin may have an important role in the promotion and/or maintenance of carcinogenesis by influencing cell-substrate adhesion via the integrin-related signal pathway. © 2011 Japanese Cancer Association.

  14. [HPV (Human Papilloma Virus) implication in other cancers than gynaecological].

    Science.gov (United States)

    Badoual, C; Tartour, E; Roussel, H; Bats, A S; Pavie, J; Pernot, S; Weiss, L; Mohamed, A Si; Thariat, J; Hoffmann, C; Péré, H

    2015-08-01

    Worldwide, approximately 5 to 10% of the population is infected by a Human Papilloma Virus (HPV). Some of these viruses, with a high oncogenic risk (HPV HR), are responsible for about 5% of cancer. It is now accepted that almost all carcinomas of the cervix and the vulva are due to an HPV HR (HPV16 and 18) infection. However, these viruses are known to be involved in the carcinogenesis of many other cancers (head and neck [SCCHN], penis, anus). For head and neck cancer, HPV infection is considered as a good prognostic factor. The role of HPV HR in anal cancer is also extensively studied in high-risk patient's population. The role of HPV infection in the carcinogenesis of esophageal, bladder, lung, breast or skin cancers is still debated. Given the multiple possible locations of HPV HR infection, the question of optimizing the management of patients with a HPV+ cancer arises in the implementation of a comprehensive clinical and biological monitoring. It is the same in therapeutics with the existence of a preventive vaccination, for example. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  15. Recent progress in nickel carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sunderman, F.W. Jr.

    1984-01-01

    Positive bacterial mutagenesis tests have been obtained with Ni(II) in Corynybacterium, but not in E. coli, S. typhimurium, or B. subtilis. Transformation assays of several soluble and crystalline Ni compounds have been positive in Syrian hamster embryo cells. Ni(II) binds to DNA, RNA, and nucleoproteins, and becomes localized in nucleoli. Genotoxic effects of Ni include: (a) chromosomal aberrations, including sister-chromatid exchanges, (b) DNA strandbreaks and DNA-protein crosslinks, (c) inhibition of DNA and RNA synthesis, (d) infidelity of DNA transcription, and (e) mutations at the HGPRTase locus in Chinese hamster cells and the TK locus in mouse lymphoma cells. These findings are consistent with somatic mutation as the mechanism for initiation of nickel carcinogenesis. Ni compounds cause reversible transition of double-stranded poly(dG-dC) DNA from the right-handed B-helix to the left-handed Z-helix, suggesting a mechanism whereby nickel might modulate oncogene expression. 99 references, 4 tables.

  16. Effect of complex polyphenols on colon carcinogenesis.

    Science.gov (United States)

    Caderni, G; Remy, S; Cheynier, V; Morozzi, G; Dolara, P

    1999-06-01

    Complex polyphenols and tannins from wine (WCPT) are being considered increasingly as potential cancer chemopreventive agents, since epidemiological studies suggest that populations consuming a high amount of polyphenols in the diet may have a lower incidence of some types of cancer. We studied the effect of WCPT on a series of parameters related to colon carcinogenesis in rats. WCPT were administered to F344 rats at a dose of 14 or 57 mg/kg/d, mixed with the diet. The higher dose is about ten times the exposure to polyphenols of a moderate drinker of red wine. In rats treated with WCPT, we measured fecal bile acids and long chain fatty acids, colon mucosa cell proliferation, apoptosis and, after administration of colon carcinogens, the number and size of aberrant crypt foci (ACF) and nuclear aberrations. Colon mucosa proliferation was not varied by chronic administration (90 d) of WCPT (14 or 57 mg/kg/d). The highest dose of WCPT decreased the number of cells in the colon crypts, but did not increase apoptosis. WCPT (57 mg/kg) administered before or after the administration of azoxymethane (AOM) did not vary the number or multiplicity of ACF in the colon. The number of nuclear aberrations (NA) in colon mucosa was studied after administration of 1,2-dimethylhydrazine (DMH) and 2-amino-3-methylimidazo (4,5-f)quinoline (IQ), colon-specific carcinogens which require metabolic activation. The effect of DMH and IQ was not varied by pre-feeding WCPT (57 mg/kg) for 10 d. Similarly, the levels of total, secondary bile acids and long chain fatty acids did not varied significantly in animals fed WCPT for 90 d. WCPT administration does not influence parameters related to colon carcinogenesis in the rat.

  17. [Observation on alpha-SMA during Erigeron Breviscapus (Vant) Hand-Mazz obstructs the evolution of carcinogenesis of golden hamster cheek pouch].

    Science.gov (United States)

    Zhou, C T; Zhang, S L; Ding, R Y; Hua, L; Zhong, W J

    2000-06-01

    To observe dynamically that Erigeron Breviscapus (Vant) Hand-Mazz (HEr) affects the expression of alpha-smooth muscle actin (alpha-SMA). To discuss the probable mechanism of obstructing leukoplakia carcinogenesis of this medicine. 120 golden hamsters were randomly divided into model group (48), HEr group (48) and control group (6). HEr was applied to obstruct the evolution of carcinogenesis of golden hamster cheek pouch. Immunohistochemistry was used to detect the expression level of alpha-SMA with cheek pouch specimen that besmears DMBA in 4-9 weeks. Results were compared with model group. Vessel density dyed with alpha-SMA continuously of HEr group was 65.76 significantly higher than that of model group 42.12 (P<0.001). High classification cases in HEr group were much more than model group when cases were divided into five groups as follow: 100%, 50%, 20%, 10%, 3% (P<0.01). HEr can raise the expression level of alpha-SMA exactly during the evolution of leukoplakia carcinogenesis of golden hamster, which shows that this medicine obstructs carcinogenesis by keeping the normal physiological function of vascular myoepithelial cell and integrity of vascular basement membrane.

  18. Punica granatum and its therapeutic implications on breast carcinogenesis: A review.

    Science.gov (United States)

    Vini, Ravindran; Sreeja, Sreeharshan

    2015-01-01

    Punica granatum has a recorded history of pharmacological properties which can be attributed to its rich reservoir of phytochemicals. Investigations in recent years have established its tremendous potential as an antitumorogenic agent against various cancers including breast cancer, which is the second leading cause of cancer-related deaths in women. The plausible role of Punica as a therapeutic agent, as an adjuvant in chemotherapy, and its dietary implications as chemopreventive agent in breast cancer have been explored. Mechanistic studies have revealed that Punica extracts and its components, individually or in combination, can modulate and target key proteins and genes involved in breast cancer. Our earlier finding also demonstrated the role of methanolic extract of pomegranate pericarp in reducing proliferation in breast cancer by binding to estrogen receptor at the same time not affecting uterine weight unlike estradiol or tamoxifen. This review analyses other plausible mechanisms of Punica in preventing the progression of breast cancer and how it can possibly be a therapeutic agent by acting at various steps of carcinogenesis including proliferation, invasion, migration, metastasis, angiogenesis, and inflammation via various molecular mechanisms. © 2015 International Union of Biochemistry and Molecular Biology.

  19. Bovine milk-derived α-lactalbumin inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sodium sulfate-treated mice.

    Science.gov (United States)

    Yamaguchi, Makoto; Takai, Shoko; Hosono, Akira; Seki, Taiichiro

    2014-01-01

    Cyclooxygenase-2 is expressed early in colon carcinogenesis and plays crucial role in the progress of the disease. Recently, we found that α-lactalbumin had anti-inflammatory activity by inhibiting cyclooxygenase-2. In experiment 1, we investigated the effects of α-lactalbumin on the colon carcinogenesis initiated with azoxymethane (AOM) followed by promotion with dextran sodium sulfate (DSS) in mice. Dietary treatment with α-lactalbumin decreased fecal occult blood score at 3 days after DSS intake. α-Lactalbumin also decreased the colon tumor at week 9. In experiment 2, AOM-treated mice were sacrificed at 7 days after DSS intake. The plasma and colon prostaglandin E2 (PGE2) levels in AOM/DSS-treated mice were higher than those in the DSS-treated mice without initiation by AOM. α-Lactalbumin decreased PGE2 in both plasma and colon. These results suggest that α-lactalbumin effectively inhibited colon carcinogenesis, and the inhibition may be due to the decreased PGE2 by inhibiting cyclooxygenase-2 at cancer promotion stages.

  20. Perspectives in the paradigm of radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Sugakhara, T.; Vatanabe, M.; Niva, O.; Nikajdo, O.

    1995-01-01

    Carcinogenesis is analysed as a multistage process consisting of initiation, promotion and progression. This model includes the mutation of oncogenes and the loss of hetrezygosity by tumor-suppressor genes. The threshold concept of radiation cancerogenesis is proposed, under which ionizing radiation can induce in somatic cell genetic effects a s result of DNA damage and epigenetic changes as well. The epigenetic changes (through DNA or cytoplasma) can be stabilized as mutations observed in many cancer cells and play a dominant role in radiation cancerogenesis induction. The ration of epigenetic and genetic effects largely depends on radiation doses

  1. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    Energy Technology Data Exchange (ETDEWEB)

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen

    2006-01-13

    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.

  2. Use of medaka as a tool in studies of radiation effects and chemical carcinogenesis

    International Nuclear Information System (INIS)

    Hyodo-Taguchi, Y.; Aoki, K.; Matsudaira, H.

    1982-01-01

    The medaka, Oryzias latipes, a small freshwater oviparous fish, is common in Japan and found in some parts of Asia. Adult fish are 3.0-3.5 cm long and weigh 0.5-0.7 g. The small fish have been used extensively in this laboratory for analysis of radiation effects and for study of chemical carcinogenesis. These fish are relatively easy to rear and their reproductive biology is well known. Recently, inbred strains of the fish have been established by full sister-brother mating. In this report, we will review experimental results using medaka in studies of : 1) radiation effects on spermatogenesis, and 2) induction of hepatic tumors by MAM acetate, we will also review use of medaka in related studies of radiation effects and chemical carcinogenesis. (author)

  3. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  4. An Evolutionary Genomic Approach to Identify Genes Involved in Human Birth Timing

    Science.gov (United States)

    Orabona, Guilherme; Morgan, Thomas; Haataja, Ritva; Hallman, Mikko; Puttonen, Hilkka; Menon, Ramkumar; Kuczynski, Edward; Norwitz, Errol; Snegovskikh, Victoria; Palotie, Aarno; Fellman, Vineta; DeFranco, Emily A.; Chaudhari, Bimal P.; McGregor, Tracy L.; McElroy, Jude J.; Oetjens, Matthew T.; Teramo, Kari; Borecki, Ingrid; Fay, Justin; Muglia, Louis

    2011-01-01

    Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened >8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition. PMID:21533219

  5. Role of atypical chemokine receptor ACKR2 in experimental oral squamous cell carcinogenesis.

    Science.gov (United States)

    da Silva, Janine Mayra; Dos Santos, Tálita Pollyanna Moreira; Saraiva, Adriana Machado; Fernandes de Oliveira, Ana Laura; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; de Mesquita, Ricardo Alves; Russo, Remo Castro; da Silva, Tarcília Aparecida

    2018-03-14

    Chemokines and chemokine receptors are critical in oral tumourigenesis. The atypical chemokine receptor ACKR2 is a scavenger of CC chemokines controlling the availability of these molecules at tumour sites, but the role of ACKR2 in the context of oral carcinogenesis is unexplored. In this study, wild-type (WT) and ACKR2 deficient mice (ACKR2 -/- ) were treated with chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) for induction of oral carcinogenesis. Tongues were collected for macro and microscopic analysis and to evaluate the expression of ACKRs, CC chemokines and its receptors, inflammatory cytokines, angiogenic factors, adhesion molecules and extracellular matrix components. An increased expression of ACKR2 in squamous cell carcinoma (SCC) lesions of 4NQO-treated WT mice was observed. No significant differences were seen in the ACKR1, ACKR3 and ACKR4 mRNA expression comparing SCC lesions from WT and ACKR2 -/- treated mice. Significantly higher expression of CCL2, IL-6 and IL-17 was detected in ACKR2 -/- treated mice. In contrast, the expression of other CC-chemokines, and receptors, angiogenic factors, adhesion molecules and extracellular matrix components were similarly increased in SCC lesions of both groups. Clinical and histopathological analysis revealed no differences in inflammatory cell recruitment and in the SCC incidence comparing WT and ACKR2 -/- treated mice. The results suggest that ACKR2 expression regulates inflammation in tumour-microenvironment but the absence of ACKR2 does not impact chemically-induced oral carcinogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Bacterial infection increases risk of carcinogenesis by targeting mitochondria

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A.B.; Desler, Claus; Rasmussen, Lene Juel

    2017-01-01

    pathways, and compares the impact of the bacterial alteration of mitochondrial function to that of cancer. Bacterial virulence factors have been demonstrated to induce mutations of mitochondrial DNA (mtDNA) and to modulate DNA repair pathways of the mitochondria. Furthermore, virulence factors can induce...... or impair the intrinsic apoptotic pathway. The effect of bacterial targeting of mitochondria is analogous to behavior of mitochondria in a wide array of tumours, and this strongly suggests that mitochondrial targeting of bacteria is a risk factor for carcinogenesis....

  7. A new dietary model to study colorectal carcinogenesis: experimental design, food preparation, and experimental findings.

    Science.gov (United States)

    Rozen, P; Liberman, V; Lubin, F; Angel, S; Owen, R; Trostler, N; Shkolnik, T; Kritchevsky, D

    1996-01-01

    Experimental dietary studies of human colorectal carcinogenesis are usually based on the AIN-76A diet, which is dissimilar to human food in source, preparation, and content. The aims of this study were to examine the feasibility of preparing and feeding rats the diet of a specific human population at risk for colorectal neoplasia and to determine whether changes in the colonic morphology and metabolic contents would differ from those resulting from a standard rat diet. The mean daily food intake composition of a previously evaluated adenoma patient case-control study was used for the "human adenoma" (HA) experimental diet. Foods were prepared as for usual human consumption and processed by dehydration to the physical characteristics of an animal diet. Sixty-four female Sprague-Dawley rats were randomized and fed ad libitum the HA or the AIN-76A diet. Every eight weeks, eight rats from each group were sacrificed, and the colons and contents were examined. Analysis of the prepared food showed no significant deleterious changes; food intake and weight gain were similar in both groups. Compared with the controls, the colonic contents of rats fed the HA diet contained significantly less calcium, concentrations of neutral sterols, total lipids, and cholic and deoxycholic acids were increased, and there were no colonic histological changes other than significant epithelial hyperproliferation. This initial study demonstrated that the HA diet can be successfully processed for feeding to experimental animals and is acceptable and adequate for growth but induces significant metabolic and hyperproliferative changes in the rat colon. This dietary model may be useful for studies of human food, narrowing the gap between animal experimentation and human nutritional research.

  8. Lineage fate of ductular reactions in liver injury and carcinogenesis.

    Science.gov (United States)

    Jörs, Simone; Jeliazkova, Petia; Ringelhan, Marc; Thalhammer, Julian; Dürl, Stephanie; Ferrer, Jorge; Sander, Maike; Heikenwalder, Mathias; Schmid, Roland M; Siveke, Jens T; Geisler, Fabian

    2015-06-01

    Ductular reactions (DRs) are observed in virtually all forms of human liver disease; however, the histogenesis and function of DRs in liver injury are not entirely understood. It is widely believed that DRs contain bipotential liver progenitor cells (LPCs) that serve as an emergency cell pool to regenerate both cholangiocytes and hepatocytes and may eventually give rise to hepatocellular carcinoma (HCC). Here, we used a murine model that allows highly efficient and specific lineage labeling of the biliary compartment to analyze the histogenesis of DRs and their potential contribution to liver regeneration and carcinogenesis. In multiple experimental and genetic liver injury models, biliary cells were the predominant precursors of DRs but lacked substantial capacity to produce new hepatocytes, even when liver injuries were prolonged up to 12 months. Genetic modulation of NOTCH and/or WNT/β-catenin signaling within lineage-tagged DRs impaired DR expansion but failed to redirect DRs from biliary differentiation toward the hepatocyte lineage. Further, lineage-labeled DRs did not produce tumors in genetic and chemical HCC mouse models. In summary, we found no evidence in our system to support mouse biliary-derived DRs as an LPC pool to replenish hepatocytes in a quantitatively relevant way in injury or evidence that DRs give rise to HCCs.

  9. Rat Urinary Bladder Carcinogenesis by Dual-Acting PPARα+γ Agonists

    Directory of Open Access Journals (Sweden)

    Martin B. Oleksiewicz

    2008-01-01

    Full Text Available Despite clinical promise, dual-acting activators of PPARα and γ (here termed PPARα+γ agonists have experienced high attrition rates in preclinical and early clinical development, due to toxicity. In some cases, discontinuation was due to carcinogenic effect in the rat urothelium, the epithelial layer lining the urinary bladder, ureters, and kidney pelvis. Chronic pharmacological activation of PPARα is invariably associated with cancer in rats and mice. Chronic pharmacological activation of PPARγ can in some cases also cause cancer in rats and mice. Urothelial cells coexpress PPARα as well as PPARγ, making it plausible that the urothelial carcinogenicity of PPARα+γ agonists may be caused by receptor-mediated effects (exaggerated pharmacology. Based on previously published mode of action data for the PPARα+γ agonist ragaglitazar, and the available literature about the role of PPARα and γ in rodent carcinogenesis, we propose a mode of action hypothesis for the carcinogenic effect of PPARα+γ agonists in the rat urothelium, which combines receptor-mediated and off-target cytotoxic effects. The proposed mode of action hypothesis is being explored in our laboratories, towards understanding the human relevance of the rat cancer findings, and developing rapid in vitro or short-term in vivo screening approaches to faciliate development of new dual-acting PPAR agonist compounds.

  10. The Human Papillomavirus Type 16 E6 Gene Alone Is Sufficient To Induce Carcinomas in Transgenic Animals

    Science.gov (United States)

    Song, Shiyu; Pitot, Henry C.; Lambert, Paul F.

    1999-01-01

    High-risk human papillomaviruses (HPVs) are the causative agents of certain human cancers. HPV type 16 (HPV16) is the papillomavirus most frequently associated with cervical cancer in women. The E6 and E7 genes of HPV are expressed in cells derived from these cancers and can transform cells in tissue culture. Animal experiments have demonstrated that E6 and E7 together cause tumors. We showed previously that E6 and E7 together or E7 alone could induce skin tumors in mice when these genes were expressed in the basal epithelia of the skin. In this study, we investigated the role that the E6 gene plays in carcinogenesis. We generated K14E6 transgenic mice, in which the HPV16 E6 gene was directed in its expression by the human keratin 14 promoter (hK14) to the basal layer of the epidermis. We found that E6 induced cellular hyperproliferation and epidermal hyperplasia and caused skin tumors in adult mice. Interestingly, the tumors derived from E6 were mostly malignant, as opposed to the tumors from E7 mice, which were mostly benign. This result leads us to hypothesize that E6 may contribute differently than E7 to HPV-associated carcinogenesis; whereas E7 primarily contributes to the early stages of carcinogenesis that lead to the formation of benign tumors, E6 primarily contributes to the late stages of carcinogenesis that lead to malignancy. PMID:10364340

  11. Confirmation of RAX gene involvement in human anophthalmia.

    Science.gov (United States)

    Lequeux, L; Rio, M; Vigouroux, A; Titeux, M; Etchevers, H; Malecaze, F; Chassaing, N; Calvas, P

    2008-10-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. Mutations in several genes have been involved in syndromic and non-syndromic anophthalmia. Previously, RAX recessive mutations were implicated in a single patient with right anophthalmia, left microphthalmia and sclerocornea. In this study, we report the findings of novel compound heterozygous RAX mutations in a child with bilateral anophthalmia. Both mutations are located in exon 3. c.664delT is a frameshifting deletion predicted to introduce a premature stop codon (p.Ser222ArgfsX62), and c.909C>G is a nonsense mutation with similar consequences (p.Tyr303X). This is the second report of a patient with anophthalmia caused by RAX mutations. These findings confirm that RAX plays a major role in the early stages of eye development and is involved in human anophthalmia.

  12. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    Directory of Open Access Journals (Sweden)

    Spyridon Loridas

    2013-08-01

    Full Text Available Reactive oxygen or nitrogen species (ROS, RNS and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.. Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM, at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc. play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  13. Protein expression analysis of inflammation-related colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2009-01-01

    Full Text Available Background: Chronic inflammation is a risk factor for colorectal cancer (CRC development. The aim of this study was to determine the differences in protein expression between CRC and the surrounding nontumorous colonic tissues in the mice that received azoxymethane (AOM and dextran sodium sulfate (DSS using a proteomic analysis. Materials and Methods: Male ICR mice were given a single intraperitoneal injection of AOM (10 mg/kg body weight, followed by 2% (w/v DSS in their drinking water for seven days, starting one week after the AOM injection. Colonic adenocarcinoma developed after 20 weeks and a proteomics analysis based on two-dimensional gel electrophoresis and ultraflex TOF/TOF mass spectrometry was conducted in the cancerous and nontumorous tissue specimens. Results: The proteomic analysis revealed 21 differentially expressed proteins in the cancerous tissues in comparison to the nontumorous tissues. There were five markedly increased proteins (beta-tropomyosin, tropomyosin 1 alpha isoform b, S100 calcium binding protein A9, and an unknown protein and 16 markedly decreased proteins (Car1 proteins, selenium-binding protein 1, HMG-CoA synthase, thioredoxin 1, 1 Cys peroxiredoxin protein 2, Fcgbp protein, Cytochrome c oxidase, subunit Va, ETHE1 protein, and 7 unknown proteins. Conclusions: There were 21 differentially expressed proteins in the cancerous tissues of the mice that received AOM and DSS. Their functions include metabolism, the antioxidant system, oxidative stress, mucin production, and inflammation. These findings may provide new insights into the mechanisms of inflammation-related colon carcinogenesis and the establishment of novel therapies and preventative strategies to treat carcinogenesis in the inflamed colon.

  14. Implications of tyrosine phosphoproteomics in cervical carcinogenesis

    Directory of Open Access Journals (Sweden)

    DeFord James

    2008-01-01

    Full Text Available Abstract Background Worldwide cervical cancer remains a leading cause of mortality from gynecologic malignancies. The link between cervical cancer and persistent infection with HPV has been established. At a molecular level little is known about the transition from the precancerous state to invasive cancer. To elucidate this process, cervical biopsies from human specimens were obtained from precancerous state to stage III disease. Methods Cervical biopsies were obtained from patients with a diagnosis of cervical cancer undergoing definitive surgery or staging operation. Biopsies were obtained from patients with precancerous lesions at the time of their excisional procedure. Control samples were obtained from patients undergoing hysterectomy for benign conditions such as fibroids. Samples were subjected to proteomic profiling using two dimensional gel electrophoresis with subsequent trypsin digestion followed by MALDI-TOF protein identification. Candidate proteins were then further studied using western blotting, immunoprecipitation and immunohistochemistry. Results Annexin A1 and DNA-PKcs were found to be differentially expressed. Phosphorylated annexin A1 was up regulated in diseased states in comparison to control and its level was strongly detected in the serum of cervical cancer patients compared to controls. DNA-PKcs was noted to be hyperphosphorylated and fragmented in cancer when compared to controls. By immunohistochemistry annexin A1 was noted in the vascular environment in cancer and certain precancerous samples. Conclusion This study suggests a probable role for protein tyrosine phosphorylation in cervical carcinogenesis. Annexin A1 and DNA-PK cs may have synergistic effects with HPV infection. Precancerous lesions that may progress to cervical cancer may be differentiated from lesions that will not base on similar immunohistochemical profile to invasive squamous cell carcinoma.

  15. Effect of Dendrobium officinale Extraction on Gastric Carcinogenesis in Rats

    OpenAIRE

    Zhao, Yi; Liu, Yan; Lan, Xi-Ming; Xu, Guo-Liang; Sun, You-Zhi; Li, Fei; Liu, Hong-Ning

    2016-01-01

    Dendrobium officinale (Tie Pi Shi Hu in Chinese) has been widely used to treat different diseases in China. Anticancer effect is one of the important effects of Dendrobium officinale. However, the molecular mechanism of its anticancer effect remains unclear. In the present study, gastric carcinogenesis in rats was used to evaluate the effect of Dendrobium officinale on cancer, and its pharmacological mechanism was explored. Dendrobium officinale extracts (4.8 and 2.4 g/kg) were orally adminis...

  16. Possible involvement of loss of imprinting in immortalization of human fibroblasts.

    Science.gov (United States)

    Okamura, Kotaro; Ohno, Maki; Tsutsui, Takeki

    2011-04-01

    Disruption of the normal pattern of parental origin-specific gene expression is referred to as loss of imprinting (LOI), which is common in various cancers. To investigate a possible role of LOI in the early stage of human cell transformation, we studied LOI in 18 human fibroblast cell lines immortalized spontaneously, by viral oncogenes, by chemical or physical carcinogens, or by infection with a retrovirus vector encoding the human telomerase catalytic subunit, hTERT cDNA. LOI was observed in all the 18 immortal cell lines. The gene most commonly exhibiting LOI was NDN which displayed LOI in 15 of the 18 cell lines (83%). The other genes exhibiting LOI at high frequencies were PEG3 (50%), MAGE-L2 (61%) and ZNF 127 (50%). Expression of NDN that was lost in the immortal cell lines was restored by treatment with 5-aza-2'-deoxycytidine. The ratio of histone H3 lysine 9 methylation to histone H3 lysine 4 methylation of the chromatin containing the NDN promoter in the immortal WI-38VA13 cells was greater than that in the parental cells, suggesting chromatin structure-mediated regulation of NDN expression. We previously demonstrated that inactivation of the p16INK4a/pRb pathway is necessary for immortalization of human cells. Human fibroblasts in the pre-crisis phase and cells with an extended lifespan that eventually senesce, both of which have the normal p16INK4a/pRb pathway, did not show LOI at any imprinted gene examined. Although it is not clear if LOI plays a causal role in immortalization of human cells or is merely coincidental, these findings indicate a possible involvement of LOI in immortalization of human cells or a common mechanism involved in both processes.

  17. Cinnamic Acid Is Partially Involved in Propolis Immunomodulatory Action on Human Monocytes

    Directory of Open Access Journals (Sweden)

    Bruno José Conti

    2013-01-01

    Full Text Available Propolis is a beehive product used in traditional medicine due to its biological properties. It shows a complex chemical composition including phenolics, such as cinnamic acid (Ci. The mechanisms of action of propolis have been the subject of research recently; however, the involvement of Ci on propolis activity was not investigated on immune cells. Ci effects were evaluated on human monocytes, assessing the expression of Toll-like receptors (TLRs, HLA-DR, and CD80. Cytokine production (TNF-α and IL-10 and the fungicidal activity of monocytes were evaluated as well. Data showed that Ci downregulated TLR-2, HLA-DR, and CD80 and upregulated TLR-4 expression by human monocytes. High concentrations of Ci inhibited both TNF-α and IL-10 production, whereas the same concentrations induced a higher fungicidal activity against Candida albicans. TNF-α and IL-10 production was decreased by blocking TLR-4, while the fungicidal activity of monocytes was not affected by blocking TLRs. These results suggest that Ci modulated antigen receptors, cytokine production, and the fungicidal activity of human monocytes depending on concentration, and TLR-4 may be involved in its mechanism of action. Ci seemed to be partially involved in propolis activities.

  18. Modelling carcinogenesis after radiotherapy using Poisson statistics: implications for IMRT, protons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Bleddyn [Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ (United Kingdom)], E-mail: Bleddyn.Jones@rob.ox.ac.uk

    2009-06-01

    Current technical radiotherapy advances aim to (a) better conform the dose contours to cancers and (b) reduce the integral dose exposure and thereby minimise unnecessary dose exposure to normal tissues unaffected by the cancer. Various types of conformal and intensity modulated radiotherapy (IMRT) using x-rays can achieve (a) while charged particle therapy (CPT)-using proton and ion beams-can achieve both (a) and (b), but at greater financial cost. Not only is the long term risk of radiation related normal tissue complications important, but so is the risk of carcinogenesis. Physical dose distribution plans can be generated to show the differences between the above techniques. IMRT is associated with a dose bath of low to medium dose due to fluence transfer: dose is effectively transferred from designated organs at risk to other areas; thus dose and risk are transferred. Many clinicians are concerned that there may be additional carcinogenesis many years after IMRT. CPT reduces the total energy deposition in the body and offers many potential advantages in terms of the prospects for better quality of life along with cancer cure. With C ions there is a tail of dose beyond the Bragg peaks, due to nuclear fragmentation; this is not found with protons. CPT generally uses higher linear energy transfer (which varies with particle and energy), which carries a higher relative risk of malignant induction, but also of cell death quantified by the relative biological effect concept, so at higher dose levels the frank development of malignancy should be reduced. Standard linear radioprotection models have been used to show a reduction in carcinogenesis risk of between two- and 15-fold depending on the CPT location. But the standard risk models make no allowance for fractionation and some have a dose limit at 4 Gy. Alternatively, tentative application of the linear quadratic model and Poissonian statistics to chromosome breakage and cell kill simultaneously allows estimation of

  19. Modification of N-Methyl-N-Nitrosourea initiated bladder carcinogenesis in Wistar rats by terephthalic acid

    International Nuclear Information System (INIS)

    Cui Lunbiao; Shi Yuan; Dai Guidong; Pan Hongxin; Chen Jianfeng; Song Ling; Wang Shouling; Chang, Hebron C.; Sheng Hongbing; Wang Xinru

    2006-01-01

    The effect of terephthalic acid (TPA) on urinary bladder carcinogenesis was examined. Male Wistar rats were initiated by injection of N-Methyl-N-Nitrosourea (MNU) (20 mg/kg b.w. ip) twice a week for 4 weeks, then given basal diet containing 5% TPA, 5% TPA plus 4% Sodium bicarbonate (NaHCO 3 ) or 1% TPA for the next 22 weeks, and then euthanized. 5% TPA treatment induced a high incidence of urinary bladder calculi and a large amount of precipitate. Though 5% TPA plus 4% Sodium bicarbonate (NaHCO 3 ) and 1% TPA treatment did not induce urinary bladder calculi formation, they resulted in a moderate increase in urinary precipitate. Histological examination of urinary bladder revealed that MNU-5% TPA treatment resulted in a higher incidence of simple hyperplasia, papillary or nodular hyperplasia (PN hyperplasia), papilloma and cancer than MNU control. MNU-5% TPA plus 4% Sodium bicarbonate (NaHCO 3 ) and 1% TPA treatment increased slightly the incidence of simple hyperplasia and PN hyperplasia (not statistically significant). The major elements of the precipitate are phosphorus, potassium, sulfur, chloride, calcium and TPA. The present study indicated that the calculi induced by TPA had a strong promoting activity on urinary bladder carcinogenesis and the precipitate containing calcium terephthalate (CaTPA) may also have weak promoting activity on urinary bladder carcinogenesis

  20. Genome-Wide Screening of Genes Showing Altered Expression in Liver Metastases of Human Colorectal Cancers by cDNA Microarray

    Directory of Open Access Journals (Sweden)

    Rempei Yanagawa

    2001-01-01

    Full Text Available In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions.

  1. Chlamydia trachomatis and risk of cervical intraepithelial neoplasia grade 3 or worse in women with persistent human papillomavirus infection

    DEFF Research Database (Denmark)

    Jensen, Kirsten E; Thomsen, Louise T; Schmiedel, Sven

    2014-01-01

    Some studies suggest that Chlamydia trachomatis (CT) enhances cervical carcinogenesis; however, a possible confounding effect of persistent human papillomavirus (HPV) infection was not addressed. We examined the potential role of CT infection in the development of subsequent cervical intraepithel...... intraepithelial neoplasia grade 3 or worse (CIN3+) in women with prevalent HPV infection and in a subgroup of women with persistent HPV infection.......Some studies suggest that Chlamydia trachomatis (CT) enhances cervical carcinogenesis; however, a possible confounding effect of persistent human papillomavirus (HPV) infection was not addressed. We examined the potential role of CT infection in the development of subsequent cervical...

  2. SPECT/CT of lung nodules using 111In-DOTA-c(RGDfK) in a mouse lung carcinogenesis model.

    Science.gov (United States)

    Hayakawa, Takuya; Mutoh, Michihiro; Imai, Toshio; Tsuta, Koji; Yanaka, Akinori; Fujii, Hirofumi; Yoshimoto, Mitsuyoshi

    2013-08-01

    Lung cancer is one of the leading causes of cancer-related deaths worldwide, including Japan. Although computed tomography (CT) can detect small lung lesions such as those appearing as ground glass opacity, it cannot differentiate between malignant and non-malignant lesions. Previously, we have shown that single photon emission computed tomography (SPECT) imaging using (111)In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-cyclo-(Arg-Gly-Asp-D-Phe-Lys) (DOTA-c(RGDfK)), an imaging probe of αvβ3 integrin, is useful for the early detection of pancreatic cancer in a hamster pancreatic carcinogenesis model. In this study, we aimed to assess the usefulness of SPECT/CT with (111)In-DOTA-c(RGDfK) for the evaluation of the malignancy of lung cancer. Lung tumors were induced by a single intraperitoneal injection (250 mg/kg) of urethane in male A/J mice. Twenty-six weeks after the urethane treatment, SPECT was performed an hour after injection of (111)In-DOTA-c(RGDfK). Following this, the radioactivity ratios of tumor to normal lung tissue were measured by autoradiography (ARG) in the excised lung samples. We also examined the expression of αvβ3 integrin in mouse and human lung samples. Urethane treatment induced 5 hyperplasias, 41 adenomas and 12 adenocarcinomas in the lungs of 8 A/J mice. SPECT with (111)In-DOTA-c(RGDfK) could clearly visualize lung nodules, though we failed to detect small lung nodules like adenoma and hyperplasias (adenocarcinoma: 66.7%, adenoma: 33.6%, hyperplasia: 0.0%). ARG analysis revealed significant uptake of (111)In-DOTA-c(RGDfK) in all the lesions. Moreover, tumor to normal lung tissue ratios increased along with the progression of carcinogenesis. Histopathological examination using human lung tissue samples revealed clear up-regulation of αvβ3 integrin in well-differentiated adenocarcinoma (Noguchi type B and C) rather than atypical adenomatous hyperplasia. Although there are some limitations in evaluating the malignancy of

  3. Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state.

    Science.gov (United States)

    Hanning, Jennifer E; Saini, Harpreet K; Murray, Matthew J; Caffarel, Maria M; van Dongen, Stijn; Ward, Dawn; Barker, Emily M; Scarpini, Cinzia G; Groves, Ian J; Stanley, Margaret A; Enright, Anton J; Pett, Mark R; Coleman, Nicholas

    2013-11-01

    In cervical carcinomas, high-risk human papillomavirus (HR-HPV) may be integrated into host chromosomes or remain extra-chromosomal (episomal). We used the W12 cervical keratinocyte model to investigate the effects of HPV16 early gene depletion on in vitro cervical carcinogenesis pathways, particularly effects shared by cells with episomal versus integrated HPV16 DNA. Importantly, we were able to study the specific cellular consequences of viral gene depletion by using short interfering RNAs known not to cause phenotypic or transcriptional off-target effects in keratinocytes. We found that while cervical neoplastic progression in vitro was characterized by dynamic changes in HPV16 transcript levels, viral early gene expression was required for cell survival at all stages of carcinogenesis, regardless of viral physical state, levels of early gene expression or histology in organotypic tissue culture. Moreover, HPV16 early gene depletion induced changes in host gene expression that were common to both episome-containing and integrant-containing cells. In particular, we observed up-regulation of autophagy genes, associated with enrichment of senescence and innate immune-response pathways, including the senescence-associated secretory phenotype (SASP). In keeping with these observations, HPV16 early gene depletion induced autophagy in both episome-containing and integrant-containing W12 cells, as evidenced by the appearance of autophagosomes, punctate expression of the autophagy marker LC3, conversion of LC3B-I to LC3B-II, and reduced levels of the autophagy substrate p62. Consistent with the reported association between autophagy and senescence pathways, HPV16 early gene depletion induced expression of the senescence marker beta-galactosidase and increased secretion of the SASP-related protein IGFBP3. Together, these data indicate that depleting HR-HPV early genes would be of potential therapeutic benefit in all cervical carcinogenesis pathways, regardless of viral

  4. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    Science.gov (United States)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using

  5. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Maayah, Zaid H. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Ghebeh, Hazem [Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211 (Saudi Arabia); Alhaider, Abdulqader A. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh 11451 (Saudi Arabia); El-Kadi, Ayman O.S. [Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton (Canada); Soshilov, Anatoly A.; Denison, Michael S. [Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616 (United States); Ansari, Mushtaq Ahmad [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Korashy, Hesham M., E-mail: hkorashy@ksu.edu.sa [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-15

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  6. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    International Nuclear Information System (INIS)

    Maayah, Zaid H.; Ghebeh, Hazem; Alhaider, Abdulqader A.; El-Kadi, Ayman O.S.; Soshilov, Anatoly A.; Denison, Michael S.; Ansari, Mushtaq Ahmad; Korashy, Hesham M.

    2015-01-01

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  7. Trends in research involving human beings in Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo Eccard da Silva

    2015-02-01

    Full Text Available Developing countries have experienced a dramatic increase in the number of clinical studies in the last decades. The aim of this study was to describe 1 the number of clinical trials submitted to the Brazilian Health Surveillance Agency (Agência Nacional de Vigilância Sanitária, Anvisa from 2007 to 2012 and the number of human-subject research projects approved by research ethics committees (RECs and the National Research Ethics Committee (Comissão Nacional de Ética em Pesquisa, CONEP in Brazil from 2007 to 2011 and 2 the diseases most frequently studied in Brazilian states in clinical trials approved in the country from 2009 to 2012, based on information from an Anvisa databank. Two databases were used: 1 the National Information System on Research Ethics Involving Human Beings (Sistema Nacional de Informação Sobre Ética em Pesquisa envolvendo Seres Humanos, SISNEP and 2 Anvisa's Clinical Research Control System (Sistema de Controle de Pesquisa Clínica, SCPC. Data from the SCPC indicated an increase of 32.7% in the number of clinical trials submitted to Anvisa, and data from the SISNEP showed an increase of 69.9% in those approved by RECs and CONEP (from 18 160 in 2007 to 30 860 in 2011. Type 2 diabetes (26.0% and breast cancer (20.5%-related to the main causes of mortality in Brazil-were the two most frequently studied diseases. The so-called “neglected diseases,” such as dengue fever, were among the least studied diseases in approved clinical trials, despite their significant impact on social, economic, and health indicators in Brazil. Overall, the data indicated 1 a clear trend toward more research involving human beings in Brazil, 2 good correspondence between diseases most studied in clinical trials approved by Anvisa and the main causes of death in Brazil, and 3 a low level of attention to neglected diseases, an issue that should be considered in setting future research priorities, given their socioeconomic and health effects.

  8. In vivo cell kinetics in breast carcinogenesis

    International Nuclear Information System (INIS)

    Bai, Maria; Agnantis, Niki J; Kamina, Sevasti; Demou, Asimina; Zagorianakou, Panayiota; Katsaraki, Aphroditi; Kanavaros, Panayiotis

    2001-01-01

    Disruption of the balance between apoptosis and proliferation is considered to be an important factor in the development and progression of tumours. In the present study we determined the in vivo cell kinetics along the spectrum of apparently normal epithelium, hyperplasia, preinvasive lesions and invasive carcinoma, in breast tissues affected by fibrocystic changes in which preinvasive and/or invasive lesions developed, as a model of breast carcinogenesis. A total of 32 areas of apparently normal epithelium and 135 ductal proliferative and neoplastic lesions were studied. More than one epithelial lesion per case were analyzed. The apoptotic index (AI) and the proliferative index (PI) were expressed as the percentage of TdT-mediated dUTP-nick end-labelling (TUNEL) and Ki-67-positive cells, respectively. The PI/AI (P/A index) was calculated for each case. The AIs and PIs were significantly higher in hyperplasia than in apparently normal epithelium (P = 0.04 and P = 0.0005, respectively), in atypical hyperplasia than in hyperplasia (P = 0.01 and P = 0.04, respectively) and in invasive carcinoma than in in situ carcinoma (P < 0.001 and P < 0.001, respectively). The two indices were similar in atypical hyperplasia and in in situ carcinoma. The P/A index increased significantly from normal epithelium to hyperplasia (P = 0.01) and from preinvasive lesions to invasive carcinoma (P = 0.04) whereas it was decreased (non-significantly) from hyperplasia to preinvasive lesions. A strong positive correlation between the AIs and the PIs was found (r = 0.83, P < 0.001). These findings suggest accelerating cell turnover along the continuum of breast carcinogenesis. Atypical hyperplasias and in situ carcinomas might be kinetically similar lesions. In the transition from normal epithelium to hyperplasia and from preinvasive lesions to invasive carcinoma the net growth of epithelial cells results from a growth imbalance in favour of proliferation. In the transition from hyperplasia

  9. Role of oxidative stress in cadmium toxicity and carcinogenesis

    International Nuclear Information System (INIS)

    Liu Jie; Qu Wei; Kadiiska, Maria B.

    2009-01-01

    Cadmium (Cd) is a toxic metal, targeting the lung, liver, kidney, and testes following acute intoxication, and causing nephrotoxicity, immunotoxicity, osteotoxicity and tumors after prolonged exposures. Reactive oxygen species (ROS) are often implicated in Cd toxicology. This minireview focused on direct evidence for the generation of free radicals in intact animals following acute Cd overload and discussed the association of ROS in chronic Cd toxicity and carcinogenesis. Cd-generated superoxide anion, hydrogen peroxide, and hydroxyl radicals in vivo have been detected by the electron spin resonance spectra, which are often accompanied by activation of redox sensitive transcription factors (e.g., NF-κB, AP-1 and Nrf2) and alteration of ROS-related gene expression. It is generally agreed upon that oxidative stress plays important roles in acute Cd poisoning. However, following long-term Cd exposure at environmentally-relevant low levels, direct evidence for oxidative stress is often obscure. Alterations in ROS-related gene expression during chronic exposures are also less significant compared to acute Cd poisoning. This is probably due to induced adaptation mechanisms (e.g., metallothionein and glutathione) following chronic Cd exposures, which in turn diminish Cd-induced oxidative stress. In chronic Cd-transformed cells, less ROS signals are detected with fluorescence probes. Acquired apoptotic tolerance renders damaged cells to proliferate with inherent oxidative DNA lesions, potentially leading to tumorigenesis. Thus, ROS are generated following acute Cd overload and play important roles in tissue damage. Adaptation to chronic Cd exposure reduces ROS production, but acquired Cd tolerance with aberrant gene expression plays important roles in chronic Cd toxicity and carcinogenesis.

  10. Phosphorylation of human INO80 is involved in DNA damage tolerance

    International Nuclear Information System (INIS)

    Kato, Dai; Waki, Mayumi; Umezawa, Masaki; Aoki, Yuka; Utsugi, Takahiko; Ohtsu, Masaya; Murakami, Yasufumi

    2012-01-01

    Highlights: ► Depletion of hINO80 significantly reduced PCNA ubiquitination. ► Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. ► Western blot analyses showed phosphorylated hINO80 C-terminus. ► Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in the DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.

  11. Helicobacter pylori promotes the expression of Krüppel-like factor 5, a mediator of carcinogenesis, in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jennifer M Noto

    Full Text Available Helicobacter pylori is the strongest known risk factor for the development of gastric adenocarcinoma. H. pylori expresses a repertoire of virulence factors that increase gastric cancer risk, including the cag pathogenicity island and the vacuolating cytotoxin (VacA. One host element that promotes carcinogenesis within the gastrointestinal tract is Krüppel-like factor 5 (KLF5, a transcription factor that mediates key cellular functions. To define the role of KLF5 within the context of H. pylori-induced inflammation and injury, human gastric epithelial cells were co-cultured with the wild-type cag(+ H. pylori strain 60190. KLF5 expression was significantly upregulated following co-culture with H. pylori, but increased expression was independent of the cag island or VacA. To translate these findings into an in vivo model, C57BL/6 mice were challenged with the wild-type rodent-adapted cag(+ H. pylori strain PMSS1 or a PMSS1 cagE(- isogenic mutant. Similar to findings in vitro, KLF5 staining was significantly enhanced in gastric epithelium of H. pylori-infected compared to uninfected mice and this was independent of the cag island. Flow cytometry revealed that the majority of KLF5(+ cells also stained positively for the stem cell marker, Lrig1, and KLF5(+/Lrig1(+ cells were significantly increased in H. pylori-infected versus uninfected tissue. To extend these results into the natural niche of this pathogen, levels of KLF5 expression were assessed in human gastric biopsies isolated from patients with or without premalignant lesions. Levels of KLF5 expression increased in parallel with advancing stages of neoplastic progression, being significantly elevated in gastritis, intestinal metaplasia, and dysplasia compared to normal gastric tissue. These results indicate that H. pylori induces expression of KLF5 in gastric epithelial cells in vitro and in vivo, and that the degree of KLF5 expression parallels the severity of premalignant lesions in human

  12. Radiation hybrid mapping as one of the main methods of the creation of high resolution maps of human and animal genomes

    International Nuclear Information System (INIS)

    Sulimova, G.E.; Kompanijtsev, A.A.; Mojsyak, E.V.; Rakhmanaliev, Eh.R.; Klimov, E.A.; Udina, I.G.; Zakharov, I.A.

    2000-01-01

    Radiation hybrid mapping (RH mapping) is considered as one of the main method of constructing physical maps of mammalian genomes. In introduction, theoretical prerequisites of developing of the RH mapping and statistical methods of data analysis are discussed. Comparative characteristics of universal commercial panels of the radiation hybrid somatic cells (RH panels) are shown. In experimental part of the work, RH mapping is used to localize nucleotide sequences adjacent to Not I sites of human chromosome 3 with the aim to integrate contig map of Nor I clones to comprehensive maps of human genome. Five nucleotide sequences adjacent to the sites of integration of papilloma virus in human genome and expressed in the cells of cervical cancer involved localized. It is demonstrated that the region 13q14.3-q21.1 was enriched with nucleotide sequences involved in the processes of carcinogenesis. RH mapping can be considered as one of the most perspective applications of modern radiation biology in the field of molecular genetics, that is, in constructing physical maps of mammalian genomes with high resolution level [ru

  13. Resveratrol: A review of preclinical studies for human cancer prevention

    International Nuclear Information System (INIS)

    Athar, Mohammad; Back, Jung Ho; Tang Xiuwei; Kim, Kwang Ho; Kopelovich, Levy; Bickers, David R.; Kim, Arianna L.

    2007-01-01

    The search for novel and effective cancer chemopreventive agents has led to the identification of various naturally occurring compounds one of which is resveratrol (trans-3,4',5-trihydroxystilbene), a phytoalexin derived from the skin of grapes and other fruits. Resveratrol is known to have potent anti-inflammatory and antioxidant effects and to inhibit platelet aggregation and the growth of a variety of cancer cells. Its potential chemopreventive and chemotherapeutic activities have been demonstrated in all three stages of carcinogenesis (initiation, promotion, and progression), in both chemically and UVB-induced skin carcinogenesis in mice, as well as in various murine models of human cancers. Evidence from numerous in vitro and in vivo studies has confirmed its ability to modulate various targets and signaling pathways. This review discusses the current preclinical and mechanistic data available and assesses resveratrol's anticancer effects to support its potential as an anticancer agent in human populations

  14. Dimeric ligands for GPCRs involved in human reproduction : synthesis and biological evaluation

    NARCIS (Netherlands)

    Bonger, Kimberly Michelle

    2008-01-01

    Dimeric ligands for G-protein coupled receptors that are involved in human reproduction, namely the gonadotropin releasing hormone receptor, the luteinizing hormone receptor and the follicle-stimulating hormone receptor, were synthesized and biologically evaluated.

  15. Molecular epidemiology of radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Trosko, J.E.

    1996-01-01

    The role of ionizing radiation in carcinogenesis is discussed. Every cell contains proto-oncogenes, which if damaged may lead to cell transformation. Every cell also contains tumor suppressor genes, which guard against transformation. Thus, transformation would seem to require a double injury to the DNA in a cell. Ionizing radiation is known to be a relatively weak mutagen, but a good clastogen (inducer of chromosome breaks, deletions and rearrangements). Ionizing radiation may therefore be a 'promoter' of cancer, i.e. a stimulant of the clonal expansion of transformed cells, if it kills enough cells to induce compensatory hyperplasia - i.e. rapid growth of cells. Ionizing radiation may be a 'progressor', if it deactivates tumor suppressor genes tending to suppress the growth of existing clones of transformed cells resulting from any of numerous causes. It may therefore be an oversimplification to say that radiation causes cancer; rather, it seems to be a weak initiator, an indirect promoter, and a late-stage progressor. 2 figs

  16. Regulation of the Wnt/β-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins

    Directory of Open Access Journals (Sweden)

    Jesus Omar Muñoz Bello

    2015-08-01

    Full Text Available Cell signaling pathways are the mechanisms by which cells transduce external stimuli, which control the transcription of genes, to regulate diverse biological effects. In cancer, distinct signaling pathways, such as the Wnt/β-catenin pathway, have been implicated in the deregulation of critical molecular processes that affect cell proliferation and differentiation. For example, changes in β-catenin localization have been identified in Human Papillomavirus (HPV-related cancers as the lesion progresses. Specifically, β-catenin relocates from the membrane/cytoplasm to the nucleus, suggesting that this transcription regulator participates in cervical carcinogenesis. The E6 and E7 oncoproteins are responsible for the transforming activity of HPV, and some studies have implicated these viral oncoproteins in the regulation of the Wnt/β-catenin pathway. Nevertheless, new interactions of HPV oncoproteins with cellular proteins are emerging, and the study of the biological effects of such interactions will help to understand HPV-related carcinogenesis. Viruses 2015, 7 4735 This review addresses the accumulated evidence of the involvement of the HPV E6 and E7 oncoproteins in the activation of the Wnt/β-catenin pathway.

  17. Clinical Relevance of KRAS in Human Cancers

    Directory of Open Access Journals (Sweden)

    Sylwia Jančík

    2010-01-01

    Full Text Available The KRAS gene (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog is an oncogene that encodes a small GTPase transductor protein called KRAS. KRAS is involved in the regulation of cell division as a result of its ability to relay external signals to the cell nucleus. Activating mutations in the KRAS gene impair the ability of the KRAS protein to switch between active and inactive states, leading to cell transformation and increased resistance to chemotherapy and biological therapies targeting epidermal growth factor receptors. This review highlights some of the features of the KRAS gene and the KRAS protein and summarizes current knowledge of the mechanism of KRAS gene regulation. It also underlines the importance of activating mutations in the KRAS gene in relation to carcinogenesis and their importance as diagnostic biomarkers, providing clues regarding human cancer patients' prognosis and indicating potential therapeutic approaches.

  18. Cytogenetic and molecular genetic characterization of immortalized human ovarian surface epithelial cell lines: consistent loss of chromosome 13 and amplification of chromosome 20.

    Science.gov (United States)

    Jin, Yuesheng; Zhang, Hao; Tsao, Sai Wah; Jin, Charlotte; Lv, Mei; Strömbeck, Bodil; Wiegant, Joop; Wan, Thomas Shek Kong; Yuen, Po Wing; Kwong, Yok-Lam

    2004-01-01

    This study aimed at identifying the genetic events involved in immortalization of ovarian epithelial cells, which might be important steps in ovarian carcinogenesis. The genetic profiles of five human ovarian surface epithelial (HOSE) cell lines immortalized by retroviral transfection of the human papillomavirus (HPV) E6/E7 genes were thoroughly characterized by chromosome banding and fluorescence in situ hybridization (FISH), at various passages pre- and post-crisis. In pre-crisis, most cells had simple, non-clonal karyotypic changes. Telomere association was the commonest aberration, suggesting that tolermase dysfunction might be an important genetic event leading to cellular crisis. After immortalization post-crisis, however, the karyotypic patterns were non-random. Loss of genetic materials was a characteristic feature. The commonest numerical aberrations were -13, -14, -16, -17, -18, and +5. Among them, loss of chromosome 13 was common change observed in all lines. The only recurrent structural aberration was homogeneously staining regions (hsr) observed in three lines. FISH and combined binary ratio labeling (COBRA)-FISH showed in two cases that the hsrs were derived from chromosome 20. Clonal evolution was observed in four of the lines. In one line, hsr was the only change shared by all subclones, suggesting that it might be a primary event in cell immortalization. The results of the present study suggested that loss of chromosome 13 and the amplification of chromosome 20 might be early genetic events involved in ovarian cell immortalization, and might be useful targets for the study of genomic aberrations in ovarian carcinogenesis.

  19. STICS, SCOUTs and p53 signatures; a new language for pelvic serous carcinogenesis.

    Science.gov (United States)

    Mehra, Karishma; Mehrad, Mitra; Ning, Geng; Drapkin, Ronny; McKeon, Frank D; Xian, Wa; Crum, Christopher P

    2011-01-01

    The events leading to the most common and most lethal ovarian carcinoma - high grade serous carcinoma - have been poorly understood. However, the detailed pathologic study of asymptomatic women with germ-line BRCA 1 or BRCA2 (BCRA+) mutations has unearthed an early malignancy, serous tubal intraepithelial carcinomas (STIC), which has linked many peritoneal and ovarian serous carcinomas to the fimbria. The distinction between high-grade serous and endometrioid carcinomas continues to narrow, with shared alterations in expression of pTEN, PAX2 and p53. Moreover, the discovery of clonal alterations in p53 in benign tubal epithelium, - p53 signatures - has established a foundation for a serous cancer precursor in the fimbria. We have expanded this concept to include a generic secretory cell outgrowth (SCOUT) in the fallopian tube that is associated with altered PAX2 expression. As the repertoire of gene alterations is expanded and its link to serous carcinogenesis clarified, a cogent pathway to high-grade Mullerian carcinomas will emerge. This will challenge conventional thinking about ovarian carcinogenesis but will provide a new template for studies of ovarian cancer prevention.

  20. Chemoprevention of Lung Cancer: Prospects and Disappointments in Human Clinical Trials

    Directory of Open Access Journals (Sweden)

    William N. Rom

    2013-01-01

    Full Text Available Decreasing the risk of lung cancer, or preventing its development in high-risk individuals, would have a huge impact on public health. The most effective means to decrease lung cancer incidence is to eliminate exposure to carcinogens. However, with recent advances in the understanding of pulmonary carcinogenesis and the identification of intermediate biomarkers, the prospects for the field of chemoprevention research have improved dramatically. Here we review the most recent research in lung cancer chemoprevention—focusing on those agents that have been investigated in human clinical trials. These agents fall into three major categories. First, oxidative stress plays an important role in pulmonary carcinogenesis; and therefore, antioxidants (including vitamins, selenium, green tea extracts, and isothiocyanates may be particularly effective in preventing the development of lung cancer. Second, inflammation is increasingly accepted as a crucial factor in carcinogenesis, and many investigators have focused on anti-inflammatory agents, such as glucocorticoids, NSAIDs, statins, and PPARγ agonists. Finally, the PI3K/AKT/mTOR pathway is recognized to play a central role in tobacco-induced carcinogenesis, and inhibitors of this pathway, including myoinositol and metformin, are promising agents for lung cancer prevention. Successful chemoprevention will likely require targeting of multiple pathways to carcinogenesis—both to minimize toxicity and maximize efficacy.

  1. Role of the chronic bacterial infection in urinary bladder carcinogenesis

    International Nuclear Information System (INIS)

    Higgy, N.A.

    1985-01-01

    The purpose of this thesis was to determine whether or not bacterial infection of the urinary bladder had a role in urinary bladder carcinogenesis. To investigate this proposition, four separate studies were conducted. The first study developed an experimental animal model where bacterial infection of the urinary bladder could be introduced and maintained for a period in excess of one year. The method of infection, inoculation of bacteria (Escherichia coli type 04) subserosally into the vesical wall, successfully caused persistent infection in the majority of animals. In the second study the temporal effects of bacterial infection on the induction of urothelial ornithine decarboxylase (ODC) and 3 H-thymidine uptake and DNA synthesis were examined. Bacterial infection of the urinary bladder induced urothelial ODC with a peak in enzyme activity 6 hr after infection. 3 H-Thymidine uptake and DNA synthesis peaked 48 hr after infection and coincided with the urothelial hyperplasia that occurred in response to the infection. In the third study the specific bladder carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) was given to rats concurrent with the urinary bacterial infection. In the fourth study rats were administered sodium nitrate and either dibutylamine or piperazine in the drinking water. The infected group developed bladder tumors while none were detected in the non-infected rats. From these studies it may be concluded that bacterial infection may have a significant role in the process of urinary bladder carcinogenesis

  2. Nutraceutical Approach for Preventing Obesity-Related Colorectal and Liver Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Hisataka Moriwaki

    2012-01-01

    Full Text Available Obesity and its related metabolic abnormalities, including insulin resistance, alterations in the insulin-like growth factor-1 (IGF-1/IGF-1 receptor (IGF-1R axis, and the state of chronic inflammation, increase the risk of colorectal cancer (CRC and hepatocellular carcinoma (HCC. However, these findings also indicate that the metabolic disorders caused by obesity might be effective targets to prevent the development of CRC and HCC in obese individuals. Green tea catechins (GTCs possess anticancer and chemopreventive properties against cancer in various organs, including the colorectum and liver. GTCs have also been known to exert anti-obesity, antidiabetic, and anti-inflammatory effects, indicating that GTCs might be useful for the prevention of obesity-associated colorectal and liver carcinogenesis. Further, branched-chain amino acids (BCAA, which improve protein malnutrition and prevent progressive hepatic failure in patients with chronic liver diseases, might be also effective for the suppression of obesity-related carcinogenesis because oral supplementation with BCAA reduces the risk of HCC in obese cirrhotic patients. BCAA shows these beneficial effects because they can improve insulin resistance. Here, we review the detailed relationship between metabolic abnormalities and the development of CRC and HCC. We also review evidence, especially that based on our basic and clinical research using GTCs and BCAA, which indicates that targeting metabolic abnormalities by either pharmaceutical or nutritional intervention may be an effective strategy to prevent the development of CRC and HCC in obese individuals.

  3. 2-deoxy-d-glucose (2-DG) inhibits radiation induced carcinogenesis (skin tumors) in mice

    International Nuclear Information System (INIS)

    Singh, Saurabh; Bhuria, Vikas; Pandey, Sanjay; Saluja, Daman; Dwarakanath, B.S.

    2014-01-01

    One of the late effects of radiation exposure i.e. carcinogenesis is exemplified by atomic bomb survivors, radiotherapy patients and occupational workers. Enhanced glucose metabolism (Warburg's effect) is a fundamental metabolic change in transformed cells which drives tumorigenesis. It is suggested that Dietary Energy Restriction (DER) that targets glucose metabolism may afford protection against radiation-induced carcinogenesis. However, DER is practically difficult to sustain in humans. Therefore, we have hypothesized that the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), a potential energy restriction mimetic agent (ERMA) may impair the process of tumorigenesis as an alternative to DER. In the present studies we investigated the effects of dietary 2-DG on radiation induced papillomas in mice. Swiss albino mice (male) were irradiated with a fractionated dose schedule (1.5 Gy ionizing radiation/week for four weeks) focally on the shaved back followed by the application of tumor promoting agent (TPA) once weekly till the termination of the study. Mice were administered 2-DG (0.2% and 0.4% w/v) containing water starting a week after last irradiation. A significant reduction in the tumor incidence, tumor burden, besides increase in the latency period was observed in the 2-DG fed mice. The average tumor incidence (papillomas formation) was reduced to 25% and 37% in 0.2% and 0.4% 2-DG group respectively from 47% in the control group with a significant delay in the onset. Under these conditions, 2-DG considerably enhanced the level of reduced glutathione (GSH) with a concomitant decrease in the lipid peroxidation. 2-DG fed tumor bearing mice showed decrease in splenic CD4 + to CD8 + T-cell ratio and prevented the tumor induced augmentation of T-regulatory cells (CD4 + CD25 + ) which correlated with an increase in CD8 + (CTLs) cells. Dietary 2-DG also reduced the tumor associated and radiation induced angiogenesis. These observations suggest that dietary 2-DG

  4. Reduced type II interleukin-4 receptor signalling drives initiation, but not progression, of colorectal carcinogenesis: evidence from transgenic mouse models and human case?control epidemiological observations

    OpenAIRE

    Ingram, Nicola; Northwood, Emma L.; Perry, Sarah L.; Marston, Gemma; Snowden, Helen; Taylor, John C.; Scott, Nigel; Bishop, D. Timothy; Coletta, P. Louise; Hull, Mark A.

    2013-01-01

    We investigated the role of interleukin (IL)-4 receptor (IL-4R) signalling during mouse carcinogen-induced colorectal carcinogenesis and in a case-control genetic epidemiological study of IL-4Rα single nucleotide polymorphisms (SNPs). Azoxymethane-induced aberrant crypt focus (ACF; 6 weeks) and tumours (32 weeks) were analysed in wild-type (WT) BALB/c mice, as well as in IL-4Rα (-) (/-) , IL-13 (-/-) and 'double-knockout' (DKO) animals. Colorectal cancer (CRC) cases (1502) and controls (584) ...

  5. Contingency learning in human fear conditioning involves the ventral striatum.

    Science.gov (United States)

    Klucken, Tim; Tabbert, Katharina; Schweckendiek, Jan; Merz, Christian Josef; Kagerer, Sabine; Vaitl, Dieter; Stark, Rudolf

    2009-11-01

    The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.

  6. Mammary carcinogenesis induced by three consecutive 14 MeV neutron irradiations in Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Jacrot, M.; Mouriquand, J.; Mouriquand, C.

    1978-01-01

    At high doses (400 to 800 rads) the relative biological effectiveness (R.B.E.) of neutrons is two or three times greater than that of X-rays or gamma radiation. The neutron irradiation-induced mammary carcinogenesis threshold, if any, is certainly very low in Sprague-Dawley females. The purpose of this work is to test the possibilities offered by three consecutive 14 MeV neutron irradiations in the mammary carcinogenesis region of Sprague-Dawley rats. The results of these experiments show a hormone-dependence of tumour promotion similar to that observed with chemical carcinogenetic agents. However these tumours, by their recurrences and possible metastases, bear some resemblance to breast cancers in women. Although the tumour induction frequencies seem modest in relation to those obtained with the DMBA model they should nevertheless prove very useful in the study of hormone effects liable to control the appearance of such radioinduced cancers [fr

  7. The influence of chromosome density variations on the increase in nuclear disorder strength in carcinogenesis

    International Nuclear Information System (INIS)

    Kim, Jun Soo; Pradhan, Prabhakar; Backman, Vadim; Szleifer, Igal

    2011-01-01

    Microscopic structural changes have long been observed in cancer cells and used as a marker in cancer diagnosis. Recent development of an optical technique, partial-wave spectroscopy (PWS), enabled more sensitive detection of nanoscale structural changes in early carcinogenesis in terms of the disorder strength related to density variations. These nanoscale alterations precede the well-known microscopic morphological changes. We investigate the influence of nuclear density variations due to chromosome condensation on changes of disorder strength by computer simulations of model chromosomes. Nuclear configurations with different degrees of chromosome condensation are realized from simulations of decondensing chromosomes and the disorder strength is calculated for these nuclear configurations. We found that the disorder strength increases significantly for configurations with slightly more condensed chromosomes. Coupled with PWS measurements, the simulation results suggest that the chromosome condensation and the resulting spatial density inhomogeneity may represent one of the earliest events in carcinogenesis

  8. Prospects for cellular mutational assays in human populations

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1984-01-01

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references

  9. Prospects for cellular mutational assays in human populations

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.L.

    1984-06-29

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references.

  10. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    International Nuclear Information System (INIS)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-01-01

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA

  11. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  12. Data on efficacy of umbelliferone on glycoconjugates and immunological marker in 7,12-dimethylbenz(aanthracene induced oral carcinogenesis

    Directory of Open Access Journals (Sweden)

    Annamalai Vijayalakshmi

    2017-12-01

    Full Text Available Umbelliferone, a phenolic coumarin and dietary agent is believed to play a key role in pharmacological activities including anti-cancer and anti-oxidants effect in various in vitro and in vivo models. In present data on the pre-treatment of umbelliferone (30 mg/kg b.w. for 16 weeks to 7,12-dimethylbenz(aanthracene induced hamsters provides protection on cellular integrity by observing the status of cell surface glycoconjugates in the circulation and buccal mucosa and cytokeratin immunoexpression in the buccal mucosa of experimental animals. Data presented in this article brief that umbelliferone exhibits potent to clear cell surface abnormalities in buccal tissues and circulation during carcinogenesis and restored the expression of cytokeratin effect against 7,12-dimethylbenz(aanthracene induced hamster buccal pouch carcinogenesis, which is attributes to its inhibitory role on glycoprotein synthesis or on the activity of the glycosyltransferase. In an article associates with this data set given the relevance to the research article entitled “Dose responsive efficacy of umbelliferone on lipid peroxidation, anti-oxidant, and xenobiotic metabolism in 7,12-dimethylbenz(aanthracene-induced oral carcinogenesis” namely Vijayalakshmi and Sindhu, 2017 assessed 100% tumour formation in 7,12-dimethylbenz(aanthracene treated hamsters and oral administration of umbelliferone at a dose of 30 mg/kg b.w to 7,12-dimethylbenz(aanthracene treated hamsters prevents tumour incidence, restores the status of the biochemical markers in circulation and buccal mucosa and also dysregulation in the expression of molecular markers. Given the relevance to this article entitled “Berberine protects cellular integrity during 7,12-dimethylbenz[a]anthracene-induced oral carcinogenesis in golden Syrian hamsters” namely Sindhu and Manoharan 2010, which were based on spectrophotometry and florescence microscope analysis. Keywords: Oral cancer, 7

  13. Cytogenetic and molecular characterization of human radio-induced tumours

    International Nuclear Information System (INIS)

    Lefevre, S.

    2002-09-01

    After a brief recall of some fundamentals regarding radiobiology, this research thesis discusses some epidemiological aspects of radio carcinogenesis, based on epidemiological studies performed on people having survived to Hiroshima, Nagasaki and Chernobyl, but also performed on people submitted to domestic or professional exposures to radon, or to medicine-related exposures. The author highlights some predispositions to radio-induced cancers. Then, she discusses the genetic mechanisms of radio-induced carcinogenesis and the genetic alterations observed in human radio-induced tumours. She discusses and comments the genomic instability, its mechanisms and some models observed on mice, and describes the various forms of radio-induced genomic instability. After a discussion of all these aspects, the author draws some perspectives for future research works

  14. Radiation carcinogenesis. Comprehensive three-year progress report, 1 May 1972--15 March 1976

    International Nuclear Information System (INIS)

    Warren, S.; Gates, O.

    1976-03-01

    Progress is reported on studies on the pathological effects of various doses of x radiation on rats and mice, with emphasis on radioinduced carcinogenesis in parabiont rats with one of the pair exposed to 1000 R of whole body x radiation and the other shielded. Results are included from studies on alterations in metabolic parameters and life span induced by irradiation

  15. ADA-07 Suppresses Solar Ultraviolet-Induced Skin Carcinogenesis by Directly Inhibiting TOPK.

    Science.gov (United States)

    Gao, Ge; Zhang, Tianshun; Wang, Qiushi; Reddy, Kanamata; Chen, Hanyong; Yao, Ke; Wang, Keke; Roh, Eunmiri; Zykova, Tatyana; Ma, Weiya; Ryu, Joohyun; Curiel-Lewandrowski, Clara; Alberts, David; Dickinson, Sally E; Bode, Ann M; Xing, Ying; Dong, Zigang

    2017-09-01

    Cumulative exposure to solar ultraviolet (SUV) irradiation is regarded as the major etiologic factor in the development of skin cancer. The activation of the MAPK cascades occurs rapidly and is vital in the regulation of SUV-induced cellular responses. The T-LAK cell-originated protein kinase (TOPK), an upstream activator of MAPKs, is heavily involved in inflammation, DNA damage, and tumor development. However, the chemopreventive and therapeutic effects of specific TOPK inhibitors in SUV-induced skin cancer have not yet been elucidated. In the current study, ADA-07, a novel TOPK inhibitor, was synthesized and characterized. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that ADA-07 interacted with TOPK at the ATP-binding pocket and inhibited its kinase activity. Western blot analysis showed that ADA-07 suppressed SUV-induced phosphorylation of ERK1/2, p38, and JNKs and subsequently inhibited AP-1 activity. Importantly, topical treatment with ADA-07 dramatically attenuated tumor incidence, multiplicity, and volume in SKH-1 hairless mice exposed to chronic SUV. Our findings suggest that ADA-07 is a promising chemopreventive or potential therapeutic agent against SUV-induced skin carcinogenesis that acts by specifically targeting TOPK. Mol Cancer Ther; 16(9); 1843-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. The prognostic potential and carcinogenesis of long non-coding RNA TUG1 in human cholangiocarcinoma.

    Science.gov (United States)

    Xu, Yi; Leng, Kaiming; Li, Zhenglong; Zhang, Fumin; Zhong, Xiangyu; Kang, Pengcheng; Jiang, Xingming; Cui, Yunfu

    2017-09-12

    Cholangiocarcinoma (CCA) is a fatal disease with increasing worldwide incidence and is characterized by poor prognosis due to its poor response to conventional chemotherapy or radiotherapy. Long non-coding RNAs (lncRNAs) play key roles in multiple human cancers, including CCA. Cancer progression related lncRNA taurine-up-regulated gene 1 (TUG1) was reported to be involved in human carcinomas. However, the impact of TUG1 in CCA is unclear. The aim of this study was to explore the expression pattern of TUG1 and evaluate its clinical significance as well as prognostic potential in CCA. In addition, the functional roles of TUG1 including cell proliferation, apoptosis, migration, invasion and epithelial-mesenchymal transition (EMT), were evaluated after TUG1 silencing. Our data demonstrated up-regulation of TUG1 in both CCA tissues and cell lines. Moreover, overexpression of TUG1 is linked to tumor size ( p =0.005), TNM stage ( p =0.013), postoperative recurrence ( p =0.036) and overall survival ( p =0.010) of CCA patients. Furthermore, down-regulation of TUG1 following RNA silencing reduced cell growth and increased apoptosis in CCA cells. Additionally, TUG1 suppression inhibited metastasis potential in vitro by reversing EMT. Overall, our results suggest that TUG1 may be a rational CCA-related prognostic factor and therapeutic target.

  17. 76 FR 5735 - Revisions to EPA's Rule on Protections for Subjects in Human Research Involving Pesticides

    Science.gov (United States)

    2011-02-02

    ... addressed in EPA science and ethics reviews of proposed and completed human research with pesticides, drawn..., which suggest ethical considerations relevant to evaluation of human studies. Third, Petitioners argued... Revisions to EPA's Rule on Protections for Subjects in Human Research Involving Pesticides AGENCY...

  18. Chemopreventive effect of artesunate in 1,2-dimethylhydrazine-induced rat colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Sazal Patyar

    2017-01-01

    Full Text Available Artesunate (ART is a semisynthetic derivative of artemisinin. Artemisinin and its derivatives have shown profound cytotoxicity and antitumor activity in addition to antimalarial activity in various studies. As the in vivo chemopreventive efficacy of ART in colon carcinogenesis has not been investigated so far, the aim of the current study was to study the chemopreventive effect of ART in 1,2-dimethylhydrazine (DMH-induced rat colon carcinogenesis. Animals were divided into four groups (n = 6: Group I - vehicle (1 mM ethylenediaminetetraacetic acid, Group II - DMH (20 mg/kg, Group III - DMH + 5-fluorouracil (81 mg/kg, Group IV - DMH + ART (6.7 mg/kg. After completion of 15 weeks of treatment, rats were sacrificed under ether anesthesia by cervical dislocation for assessment of lipid peroxidation (LPO, antioxidant status, average number of aberrant crypt foci (ACF, and cytokine levels. ART administration significantly decreased the average number of ACF/microscopic field. Similarly, LPO level was decreased and antioxidant activities were enhanced after ART treatment. ART decreased the levels of proinflammatory cytokines and induced apoptosis in the colons of DMH-treated rats. The results of this study suggest that ART has a beneficial effect against chemically induced colonic preneoplastic progression in rats.

  19. Widespread hypomethylation occurs early and synergizes with gene amplification during esophageal carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Hector Alvarez

    2011-03-01

    Full Text Available Although a combination of genomic and epigenetic alterations are implicated in the multistep transformation of normal squamous esophageal epithelium to Barrett esophagus, dysplasia, and adenocarcinoma, the combinatorial effect of these changes is unknown. By integrating genome-wide DNA methylation, copy number, and transcriptomic datasets obtained from endoscopic biopsies of neoplastic progression within the same individual, we are uniquely able to define the molecular events associated progression of Barrett esophagus. We find that the previously reported global hypomethylation phenomenon in cancer has its origins at the earliest stages of epithelial carcinogenesis. Promoter hypomethylation synergizes with gene amplification and leads to significant upregulation of a chr4q21 chemokine cluster and other transcripts during Barrett neoplasia. In contrast, gene-specific hypermethylation is observed at a restricted number of loci and, in combination with hemi-allelic deletions, leads to downregulatation of selected transcripts during multistep progression. We also observe that epigenetic regulation during epithelial carcinogenesis is not restricted to traditionally defined "CpG islands," but may also occur through a mechanism of differential methylation outside of these regions. Finally, validation of novel upregulated targets (CXCL1 and 3, GATA6, and DMBT1 in a larger independent panel of samples confirms the utility of integrative analysis in cancer biomarker discovery.

  20. Aggravation of serum Hepatocyte Growth Factor levels during hepato carcinogenesis in Rats

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.; Ghareeb, N.A.

    2010-01-01

    Hepatocyte growth factor (HGF) has an essential role during liver development and it plays an important role in the regeneration and repair of injured tissues and acting as a mitogen, motogen and morphogens for a variety of epithelial cells. The role of HGF in carcinogenesis is in straggle and so, the present study aimed to through light through the level of HGF during different steps of carcinogenesis. Forty male rats were given diethylnitrosamine (DEN) in drinking water (100 mg/l) for up to 16 weeks. Eight rats were sacrificed at 8, 12 and 16 weeks. Besides, 8 hepatoma bearing rats were exposed to a single dose gamma irradiation (3 Gy) were sacrificed after 2 weeks from exposure (2 rats died, 36 hrs post irradiation) and 8 hepatoma bearing rats were sacrificed after 4 weeks from receiving a combined antioxidant (N-acetylcysteine and Lmethionine). Serum HGF was assayed by enzyme linked immunosorbent assay (ELISA). Serum HGF level in DEN treated rats and in exposed hepatoma bearing rats was significantly higher than in control rats whereas, serum HGF level after treatment with N acetylcysteine and L-methionine for 4 weeks was significantly decreased than DEN treated rats and concluded that serum HGF may play a role during promotion and progression of hepatocellular carcinoma (HCC) and during treatment

  1. Environment and breast cancer - the role of xenooestrogens in breast cancer carcinogenesis

    International Nuclear Information System (INIS)

    Plesnicar, A.; Kralj, B.; Druzina, B.; Kovac, V.

    2002-01-01

    Background. The survival rate of breast cancer patients has not changed much in the last few decades in developed countries. In order to improve the efficacy of breast cancer prevention and treatment, the role of xenooestrogens in the mechanisms of its development has been evaluated. These industrial chemicals bear little structural resemblance to each other and bind to the oestrogen receptors of exposed cells and/or trigger oestrogenic responses in laboratory test systems. Exposure to xenooestrogens has been regarded as a risk factor for carcinogenesis and a preventable cause of breast carcinoma. Several epidemiological and experimental studies in in vivo and in in vitro conditions of the influence of xenooestrogens on the occurrence of breast cancer have been conducted in the last decades and have shown ambiguous results. Conclusions. No increase in breast carcinoma incidence could be found in women who were exposed to relatively high concentrations of xenooestrogens for extended periods and small quantities of these compounds that are present in the environment probably cannot act as etiological agents for the occurrence of this disease. A multi step approach is suggested regarding the sequence of studies and measures that should be taken to further assess the importance of xenooestrogens on breast cancer carcinogenesis. (author)

  2. Chromosome aberrations induced by radiation. With special reference to possible relation between chromosome aberrations and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, N [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1980-02-01

    Chromosome aberration seems to be one of the most conspicuous residual abnormalities recognizable in radiation-exposed persons for many years after exposure. Knowledge of the biological significance of these abnormalities seems to be necessary for understanding of the effect of radiation on humans, especially in relation to possible leukemic development. Cytogenetic studies were performed on the bone marrow cells, T and B lymphocytes, and fibroblasts in atomic bomb-survivors who were in apparent good health (105 cases), atomic bomb exposed patients who had prolonged periods of blood disorders which terminated in acute leukemia (8 cases), and who had no such abnormalities (6 cases). All patients with chronic myelocytic leukemia (CML) and a history of atomic bomb exposure showed Philadelphia chromosome, a characteristic chromosome abnormality for CML. The persistent chromosome aberrations of bone marrow cells, T and B lymphocytes found among the atomic bomb survivors with or without blood disorders may give some clue to solve the problems of carcinogenesis.

  3. Protective single/combined treatment with betel leaf and turmeric against methyl (acetoxymethyl) nitrosamine-induced hamster oral carcinogenesis.

    Science.gov (United States)

    Azuine, M A; Bhide, S V

    1992-05-28

    The inhibitory effect of oral administration of betel-leaf extract (BLE) and 2 of its constituents, beta-carotene and alpha-tocopherol, as single agents or in combination with dietary turmeric on methyl(acetoxymethyl)nitrosamine (DMN-OAC)-induced oral carcinogenesis in Syrian hamsters was studied. DMN-OAC was administered twice monthly for 6 months. The chemopreventive effect of BLE or its constituents with turmeric was determined by comparing tumor incidence observed in treated groups with that seen in control animals. The apparent site-specific chemopreventive effect of BLE or its constituents was demonstrated by inhibition of tumor incidence, reduction of tumor burden, extension of the tumor latency period and regression of established, frank tumors. The inhibitory effect of BLE or its constituents combined with turmeric was higher than that of the individual constituents. The study suggests that BLE could be developed as a potential chemopreventive agent for human oral cancer.

  4. Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology.

    Science.gov (United States)

    Moon, Jiyun M; Aronoff, David M; Capra, John A; Abbot, Patrick; Rokas, Antonis

    2018-03-28

    Sialic acids are nine carbon sugars ubiquitously found on the surfaces of vertebrate cells and are involved in various immune response-related processes. In humans, at least 58 genes spanning diverse functions, from biosynthesis and activation to recycling and degradation, are involved in sialic acid biology. Because of their role in immunity, sialic acid biology genes have been hypothesized to exhibit elevated rates of evolutionary change. Consistent with this hypothesis, several genes involved in sialic acid biology have experienced higher rates of non-synonymous substitutions in the human lineage than their counterparts in other great apes, perhaps in response to ancient pathogens that infected hominins millions of years ago (paleopathogens). To test whether sialic acid biology genes have also experienced more recent positive selection during the evolution of the modern human lineage, reflecting adaptation to contemporary cosmopolitan or geographically-restricted pathogens, we examined whether their protein-coding regions showed evidence of recent hard and soft selective sweeps. This examination involved the calculation of four measures that quantify changes in allele frequency spectra, extent of population differentiation, and haplotype homozygosity caused by recent hard and soft selective sweeps for 55 sialic acid biology genes using publicly available whole genome sequencing data from 1,668 humans from three ethnic groups. To disentangle evidence for selection from confounding demographic effects, we compared the observed patterns in sialic acid biology genes to simulated sequences of the same length under a model of neutral evolution that takes into account human demographic history. We found that the patterns of genetic variation of most sialic acid biology genes did not significantly deviate from neutral expectations and were not significantly different among genes belonging to different functional categories. Those few sialic acid biology genes that

  5. Prevention of human cancer by modulation of chronic inflammatory processes

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Hiroshi [International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08 (France)]. E-mail: ohshima@iarc.fr; Tazawa, Hiroshi [International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08 (France); Sylla, Bakary S. [International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08 (France); Sawa, Tomohiro [International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08 (France)

    2005-12-11

    Chronic inflammation induced by biological, chemical and physical factors has been associated with increased risk of human cancer at various sites. Inflammation facilitates the initiation of normal cells and their growth and progression to malignancy through production of pro-inflammatory cytokines and diverse reactive oxygen and nitrogen species. These also activate signaling molecules involved in inflammation and carcinogenesis such as nuclear transcription factor (NF-{kappa}B), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Several chemopreventive agents act through inhibition of signaling pathways (e.g. NF-{kappa}B), inhibition of oxidant-generating enzymes (e.g. iNOS) and mediators of inflammation (e.g. COX-2), scavenging reactive oxygen and nitrogen species, and modulation of xenobiotic-metabolizing enzymes (especially phase II enzyme induction). Some anti-inflammatory drugs have been tested in clinical trials to prevent human cancer at several sites. Better understanding of the molecular mechanisms by which chronic inflammation increases cancer risk will lead to further development of new strategies for cancer prevention at many sites.

  6. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1982-04-01

    Of the important health effects of ionizing radiation, three important late effects - carcinogenesis, teratogenesis and mutagenesis are of greatest concern. This is because any exposure, even at low levels, carries some risk of such deleterious effects. As the dose of radiation increases above very low levels, the risk of health effects increases. Cancer-induction is the most important late somatic effect of low-dose ionizing radiation. Solid cancers, rather than leukemia, are principal late effects in exposed individuals. Tissues vary greatly in their susceptibility to radiation carcinogenesis. The most frequently occurring radiation-induced cancers in man include, in decreasing order of susceptibility: the female breast, the thyroid gland, the blood-forming tissues, the lung, certain organs of the gastrointestinal tract, and the bones. A number of biological and physical factors affect the cancer risk, such as age, sex, life-style, LET, and RBE. Despite uncertainty about low-level radiation risks, regulatory and advisory bodies must set standards for exposure, and individuals need information to be able to make informed judgments for themselves. From the point of view of the policy maker, the overriding concern is the fact that small doses of radiation can cause people to have more cancers than would otherwise be expected. While concern for all radiation effects exists, our human experience is limited to cancer-induction in exposed populations. This discussion is limited to cancer risk estimation and decision-making in relation to the health effects on populations of exposure to low levels of ionizing radiation. Here, low-level radiation will refer to yearly whole-body doses up to 5 rems or 0.05 Sv, or to cumulative doses up to 50 rems or 0.5 Sv from low-LET radiation and from high-LET radiation. (ERB)

  7. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1982-04-01

    Of the important health effects of ionizing radiation, three important late effects - carcinogenesis, teratogenesis and mutagenesis are of greatest concern. This is because any exposure, even at low levels, carries some risk of such deleterious effects. As the dose of radiation increases above very low levels, the risk of health effects increases. Cancer-induction is the most important late somatic effect of low-dose ionizing radiation. Solid cancers, rather than leukemia, are principal late effects in exposed individuals. Tissues vary greatly in their susceptibility to radiation carcinogenesis. The most frequently occurring radiation-induced cancers in man include, in decreasing order of susceptibility: the female breast, the thyroid gland, the blood-forming tissues, the lung, certain organs of the gastrointestinal tract, and the bones. A number of biological and physical factors affect the cancer risk, such as age, sex, life-style, LET, and RBE. Despite uncertainty about low-level radiation risks, regulatory and advisory bodies must set standards for exposure, and individuals need information to be able to make informed judgments for themselves. From the point of view of the policy maker, the overriding concern is the fact that small doses of radiation can cause people to have more cancers than would otherwise be expected. While concern for all radiation effects exists, our human experience is limited to cancer-induction in exposed populations. This discussion is limited to cancer risk estimation and decision-making in relation to the health effects on populations of exposure to low levels of ionizing radiation. Here, low-level radiation will refer to yearly whole-body doses up to 5 rems or 0.05 Sv, or to cumulative doses up to 50 rems or 0.5 Sv from low-LET radiation and from high-LET radiation

  8. Mushroom Ganoderma lucidum Prevents Colitis-Associated Carcinogenesis in Mice

    Science.gov (United States)

    Sliva, Daniel; Loganathan, Jagadish; Jiang, Jiahua; Jedinak, Andrej; Lamb, John G.; Terry, Colin; Baldridge, Lee Ann; Adamec, Jiri; Sandusky, George E.; Dudhgaonkar, Shailesh

    2012-01-01

    Background Epidemiological studies suggest that mushroom intake is inversely correlated with gastric, gastrointestinal and breast cancers. We have recently demonstrated anticancer and anti-inflammatory activity of triterpene extract isolated from mushroom Ganoderma lucidum (GLT). The aim of the present study was to evaluate whether GLT prevents colitis-associated carcinogenesis in mice. Methods/Principal Findings Colon carcinogenesis was induced by the food-borne carcinogen (2-Amino-1-methyl-6-phenylimidazol[4,5-b]pyridine [PhIP]) and inflammation (dextran sodium sulfate [DSS]) in mice. Mice were treated with 0, 100, 300 and 500 mg GLT/kg of body weight 3 times per week for 4 months. Cell proliferation, expression of cyclin D1 and COX-2 and macrophage infiltration was assessed by immunohistochemistry. The effect of GLT on XRE/AhR, PXR and rPXR was evaluated by the reporter gene assays. Expression of metabolizing enzymes CYP1A2, CYP3A1 and CYP3A4 in colon tissue was determined by immunohistochemistry. GLT treatment significantly suppressed focal hyperplasia, aberrant crypt foci (ACF) formation and tumor formation in mice exposed to PhIP/DSS. The anti-proliferative effects of GLT were further confirmed by the decreased staining with Ki-67 in colon tissues. PhIP/DSS-induced colon inflammation was demonstrated by the significant shortening of the large intestine and macrophage infiltrations, whereas GLT treatment prevented the shortening of colon lengths, and reduced infiltration of macrophages in colon tissue. GLT treatment also significantly down-regulated PhIP/DSS-dependent expression of cyclin D1, COX-2, CYP1A2 and CYP3A4 in colon tissue. Conclusions Our data suggest that GLT could be considered as an alternative dietary approach for the prevention of colitis-associated cancer. PMID:23118901

  9. Development and oversight of ethical health promotion quality assurance and evaluation activities involving human participants.

    Science.gov (United States)

    Sainsbury, Peter

    2015-12-01

    This paper considers the role of ethics and ethics review processes in the development of health promotion quality assurance and evaluation activities involving human participants. The Australian National Health and Medical Research Council (NHMRC) National Statement on Ethical Conduct in Human Research and associated documents provide the framework for the ethical conduct and independent review of research (including quality assurance and evaluation) involving humans in Australia. Identifying the level of risk to which participants may be exposed by participation in quality assurance and evaluation activities is essential for health promotion workers undertaking such activities. Organisations can establish processes other than review by a Human Research Ethics Committee for negligible and low risk research activities. Health promotion quality assurance and evaluation activities often involve negligible and low risk to participants. Seven triggers that indicate the need for ethics review of quality assurance and evaluation activities and a procedural checklist for developing ethical quality assurance and evaluation activities are provided. Health promotion workers should be familiar with the NHMRC's National Statement on Ethical Conduct in Human Research. When ethical considerations underpin the planning and conduct of all quality assurance and evaluation from the very beginning, the activity is the better for it, independent 'ethics approval' can mostly be secured without much trouble and workers' frustration levels are reduced. So what? Health promotion quality assurance and evaluation activities must be ethically justified. Health promotion workers should be familiar with the NHMRC's National Statement on Ethical Conduct in Human Research and should use it when developing health promotion quality assurance and evaluation activities.

  10. Studies on the multistage nature of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Ley, R.D.; Grube, D.; Staffeldt, E.

    1980-01-01

    With low dose levels of ionizing or ultraviolet radiation, the number of initiation events exceeds the number of tumors that grow to a detectable size. Ionizing radiation, which is a complete carcinogen, appears to be a more effective initiator than an enhancer or promoter. However, the initiation and promotion aspects of ionizing radiation have been studied in very few organ systems. In the case of UVR, with or without photosensitizers such as psoralens, the requirement of a relatively large number of exposures for carcinogenesis suggests that the expression of the initiated cells as frank tumors requires a number of events spread out over the time of the development of the tumor. Both ionizing and ultraviolet radiation are, perhaps, underutilized as tools for probing the mechanism of both initiation and promotion

  11. Immunological and Biochemical Markers in Oral Carcinogenesis: The Public Health Perspective

    Directory of Open Access Journals (Sweden)

    Sunali Khanna

    2008-12-01

    Full Text Available Oral health is an integral component of general health and well being and a basic human right. Dental public health is probably the most challenging specialty of dentistry. Because of the lack of adequate resources among other factors, many people are likely to suffer from dental diseases. Despite great improvements in the oral health status of populations across the world, the burden and impact of dental diseases are still high. This is particularly true among underprivileged groups in both developed and developing communities. Oral diseases and conditions, including oral cancer, oral manifestations of HIV/AIDS, dental trauma, craniofacial anomalies, and noma, all have broad impacts on health and well-being. Oral cancer, the sixth most common cancer worldwide continues to be most prevalent cancer related to the consumption of tobacco, alcohol and other carcinogenic products. Nevertheless, significant reduction in mortality can be achieved by advances in early diagnosis and implementation of multidisciplinary treatment programs leading to improvement of survivorship and better quality of life. The present study was designed to evaluate the immunologic and biochemical markers in oral carcinogenesis using circulating immune complexes (CIC, copper, iron, and selenium concentrations as assessment endpoints. Study results indicated an increase in CIC and copper levels, and a decrease in iron and selenium concentrations in oral cancer patients compared to controls. The implications of these findings for public health are discussed.

  12. UV Radiation Activates Toll-Like Receptor 9 Expression in Primary Human Keratinocytes, an Event Inhibited by Human Papillomavirus 38 E6 and E7 Oncoproteins.

    Science.gov (United States)

    Pacini, Laura; Ceraolo, Maria Grazia; Venuti, Assunta; Melita, Giusi; Hasan, Uzma A; Accardi, Rosita; Tommasino, Massimo

    2017-10-01

    Several lines of evidence indicate that cutaneous human papillomavirus (HPV) types belonging to the beta genus of the HPV phylogenetic tree synergize with UV radiation in the development of skin cancer. Accordingly, the E6 and E7 oncoproteins from some beta HPV types are able to deregulate pathways related to immune response and cellular transformation. Toll-like receptor 9 (TLR9), in addition to playing a role in innate immunity, has been shown to be involved in the cellular stress response. Using primary human keratinocytes as experimental models, we have shown that UV irradiation (and other cellular stresses) activates TLR9 expression. This event is closely linked to p53 activation. Silencing the expression of p53 or deleting its encoding gene affected the activation of TLR9 expression after UV irradiation. Using various strategies, we have also shown that the transcription factors p53 and c-Jun are recruited onto a specific region of the TLR9 promoter after UV irradiation. Importantly, the E6 and E7 oncoproteins from beta HPV38, by inducing the accumulation of the p53 antagonist ΔNp73α, prevent the UV-mediated recruitment of these transcription factors onto the TLR9 promoter, with subsequent impairment of TLR9 gene expression. This study provides new insight into the mechanism that mediates TLR9 upregulation in response to cellular stresses. In addition, we show that HPV38 E6 and E7 are able to interfere with this mechanism, providing another explanation for the possible cooperation of beta HPV types with UV radiation in skin carcinogenesis. IMPORTANCE Beta HPV types have been suggested to act as cofactors in UV-induced skin carcinogenesis by altering several cellular mechanisms activated by UV radiation. We show that the expression of TLR9, a sensor of damage-associated molecular patterns produced during cellular stress, is activated by UV radiation in primary human keratinocytes (PHKs). Two transcription factors known to be activated by UV radiation, p53

  13. Comparative evaluation of carcinogenesis risk in case of radiation effect and pollution of atmospheric air with coal ashes and benzo(a)pyrene

    International Nuclear Information System (INIS)

    Knizhnikov, V.A.; Shandala, N.K.; Komleva, V.A.; Likhovajdo, N.V.; Shvetsov, A.I.

    1993-01-01

    Assessment of the risk of lung carcinogenesis under the effect of benzo(a)pyrene (BP) and volatil coal ash in the atmospheric air was performed as well as comparison of this risk with the risk due to ionizing radiation effect from natural and technogenic sources. White mice were used as experimental animals. It was shown that BP was rather more carcinogenic than volatile coal ash. BP inhalation at a maximum permissible concentration level (0.1 μg/100 m 3 of air) corresponds to the equivalent risk of whole-body gamma exposure at bout 2 Sv. Coal ash inhalation at the concentration of 0.05 mg/m 3 corresponds to the same equivalent risk as for radiation dose 0.05 Sv. Conclusion is made that safety standards for coal ash and BP contents in the air do not remove carcinogenesis risk for the population. Whereas carcinogenesis risk due to irradiation at the level of radiation safety standards is considerably lower

  14. 75 FR 62738 - Revisions to EPA's Rule on Protections for Subjects in Human Research Involving Pesticides...

    Science.gov (United States)

    2010-10-13

    ... addressed in EPA science and ethics reviews of proposed and completed human research for pesticides, based... Revisions to EPA's Rule on Protections for Subjects in Human Research Involving Pesticides; Notification to... protection of human subjects of research that apply to third parties who conduct or support research for...

  15. Complex Biological Systems Analysis of Cell Cycling Models in Carcinogenesis: I. The essential roles of modifications in the c-Myc, TP53/p53, p27 and hTERT modules in Cancer Initiation and Progression

    CERN Document Server

    Prisecaru, V I

    2004-01-01

    A new approach to the integration of results from a modular, complex biological systems analysis of nonlinear dynamics in cell cycling network transformations that are leading to carcinogenesis is proposed. Carcinogenesis is a complex process that involves dynamically inter-connected biomolecules in the intercellular, membrane, cytosolic, nuclear and nucleolar compartments that form numerous inter-related pathways referred to as networks. One such network module contains the cell cyclins whose functions are essential to cell cycling and division. Cyclins are proteins that also link to several critical pro-apoptotic and other cell cycling/division components, such as: c-Myc, p27, the tumor suppressor gene TP53 and its product-- the p53 protein with key roles in controlling DNA repair, inducing apoptosis and activating p21 (which can depress cell cyclins if activated), mdm2(with its biosynthesis activated by p53 and also, in its turn, inhibiting p53), p21, the Thomsen-Friedenreich antigen(T- antigen),Rb,Bax, Ba...

  16. Candidate mechanisms accounting for effects of physical activity on breast carcinogenesis.

    Science.gov (United States)

    Thompson, Henry J; Jiang, Weiqin; Zhu, Zongjian

    2009-09-01

    Evidence is strong that a reduction in risk for breast cancer is associated with moderate to vigorous physical activity (PA); however, there is limited understanding of the role of type, intensity, duration, and frequency of PA and their mechanisms in accounting for this health benefit. The objective of this review is to stimulate investigations of candidate mechanisms that may account for the effects of the intensity and duration of aerobic PA on breast cancer risk and tumor burden. Three hypotheses are considered: 1) the mTOR network hypothesis: PA inhibits carcinogenesis by suppressing the activation of the mTOR signaling network in mammary carcinomas; 2) the hormesis hypothesis: the carcinogenic response to PA is nonlinear and accounted for by a physiological cellular stress response; and 3) the metabolic reprogramming hypothesis: PA limits the amount of glucose and glutamine available to mammary carcinomas thereby inducing apoptosis because tumor-associated metabolic programming is reversed. To link these hypotheses to systemic effects of PA, it is recommended that consideration be given to determining: 1) what contracting muscle releases into circulation or removes from circulation that would directly modulate the carcinogenic process in epithelial cells; 2) whether the effects of muscle contraction on epithelial cell carcinogenesis are exerted in an endocrine, paracrine, autocrine, or intracrine manner; and 3) if the effects of muscle contraction on malignant cells differ from effects on normal or premalignant cells that do not manifest the hallmarks of malignancy. (c) 2009 IUBMB

  17. Genes Involved in Human Ribosome Biogenesis areTranscriptionally Upregulated in Colorectal Cancer

    DEFF Research Database (Denmark)

    Mansilla, Francisco; Lamy, Philippe; Ørntoft, Torben Falck

    2009-01-01

    Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p<10-3) when compared to normal mucosa. Overexpression was independent of microsate......Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p... of microsatellite status. The promoters of the genes studied showed a significant enrichment for several transcription factor binding sites. There was a significant correlation between the number of binding site targets for these transcription factors and the observed gene transcript upregulation. The upregulation...

  18. Human Trafficking and Sexual Servitude: Organised Crime’s Involvement in Australia

    Directory of Open Access Journals (Sweden)

    Mark Langhorn

    2018-03-01

    Full Text Available This study examined the context of organised crime groups that traffic in people for the Australian sex industry. It is a qualitative study of twenty-one cases of human trafficking. The study found that criminal networks preyed on vulnerable females from countries such as Thailand, South Korea, and China. Victims were deceptively recruited with the cost of their travel to Australia held against them as a highly inflated debt. As a result, they find themselves forced into sex work to repay the debt. This study examined the attributes of the organised crime syndicates involved in the people trafficking and discussed the context in which they operate in Australia. The study used the Sleipnir framework to analyse organised crime groups and it is recommended that the Sleipnir model is integrated into future law enforcement activities in respect of human trafficking. The introduction of a standardised data and statistical collection tool in respect of human trafficking would provide law enforcement and intelligence agencies with a conceptual framework and a greater comprehensive description of human trafficking.

  19. Somatic gene mutation in the human in relation to radiation risk

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1992-01-01

    This report discusses the measurement of somatic gene-mutation frequencies in the human. We ask the following questions. How well can they be measured? Do they respond to radiation? Can they also function as a dosimeter? What do they tell us about the somatic mutation theory of carcinogenesis?

  20. Biogenic silica fibre promotes carcinogenesis in mouse skin.

    Science.gov (United States)

    Bhatt, T; Coombs, M; O'Neill, C

    1984-10-15

    Silica fibres derived from plants are common contaminants of human diet in certain regions of the world where oesophageal cancer reaches extremely high incidences. We show here that one of these types of fibre (derived from Phalaris canariensis L) promotes the occurrence of tumours in the skin of mice initiated with a polycyclic carcinogen. Three experiments are described. In the first, the grain which bears these fibres was added to the diet. This did not result in any abnormality in any part of the gastrointestinal tract, but there was a significant induction of tumours in the skin around the mouth and nose; these were the areas of the body surface which most frequently came into contact with the grain. In the second experiment, the mice were separated from the grain by an intervening wire gauze barrier; a similar number of tumours appeared on initiated mice treated in this way. In this case, contact now occurred most frequently on the dorsal surface, which was rubbed against the gauze barrier, and it was on this surface that the tumours appeared. No tumours appeared if the grain was removed. In the third experiment, pure fibres were isolated from the surface of the grain and boiled in strong nitric acid so as to remove any organic material. When these acid-cleaned fibres were applied to the initiated skin with light pressure, they promoted carcinogenesis in the same way as croton oil. In each experiment the majority of tumours produced were benign neoplasms, together with at least one squamous carcinoma. It seems possible that the size and shape of these fibres are the critical properties determining their promoting activity. Their mean diameter is 15 microns, their modal length close to 200 microns, and they are sharply pointed with a tip diameter of 0.5 micron.

  1. Reporting of ethical protection in recent oral and maxillofacial surgery research involving human subjects.

    Science.gov (United States)

    Pitak-Arnnop, P; Sader, R; Hervé, C; Dhanuthai, K; Bertrand, J-Ch; Hemprich, A

    2009-07-01

    This retrospective observational study investigated the frequency of reporting ethical approval and informed consent in recently published oral and maxillofacial surgery (OMS) research involving human subjects. All research involving human subjects published in the International Journal of Oral and Maxillofacial Surgery, Journal of Oral and Maxillofacial Surgery, British Journal of Oral and Maxillofacial Surgery, and Journal of Cranio-Maxillofacial Surgery during January to June 2005-2007 were analysed for disclosure of ethical approval by a local ethical committee and obtaining informed consent from the subjects. 534 articles were identified; ethical approval was documented in 118 (22%) and individual patient consent in 135 (25%). 355 reports (67%) did not include a statement on ethical approval or informed consent and only 74 reports (14%) disclosed statements of both. Ethical documentation in retrospective and observational studies was scant; 12% of randomised controlled trials and 38% of non-random trials did not report both of ethical protections. Most recent OMS publications involving humans failed to mention ethical review or subjects' consent. Authors must adhere to the international research ethics guidelines and journal instructions, while editors should play a gatekeeper role to protect research participants, uphold scientific integrity and maintain public trust in the experimental process and OMS profession.

  2. Role of retinoic receptors in lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    Renyi-Vamos Ferenc

    2008-07-01

    Full Text Available Abstract Several in vitro and in vivo studies have examined the positive and negative effects of retinoids (vitamin A analogs in premalignant and malignant lesions. Retinoids have been used as chemopreventive and anticancer agents because of their pleiotropic regulator function in cell differentiation, growth, proliferation and apoptosis through interaction with two types of nuclear receptors: retinoic acid receptors and retinoid X receptors. Recent investigations have gradually elucidated the function of retinoids and their signaling pathways and may explain the failure of earlier chemopreventive studies. In this review we have compiled basic and recent knowledge regarding the role of retinoid receptors in lung carcinogenesis. Sensitive and appropriate biological tools are necessary for screening the risk population and monitoring the efficacy of chemoprevention. Investigation of retinoid receptors is important and may contribute to the establishment of new strategies in chemoprevention for high-risk patients and in the treatment of lung cancer.

  3. Relevance of CCL3/CCR5 axis in oral carcinogenesis.

    Science.gov (United States)

    da Silva, Janine Mayra; Moreira Dos Santos, Tálita Pollyanna; Sobral, Lays Martin; Queiroz-Junior, Celso Martins; Rachid, Milene Alvarenga; Proudfoot, Amanda E I; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; Teixeira, Mauro Martins; Leopoldino, Andréia Machado; Russo, Remo Castro; Silva, Tarcília Aparecida

    2017-08-01

    The chemokine CCL3 is a chemotactic cytokine crucial for inflammatory cell recruitment in homeostatic and pathological conditions. CCL3 might stimulate cancer progression by promoting leukocyte accumulation, angiogenesis and tumour growth. The expression of CCL3 and its receptors CCR1 and CCR5 was demonstrated in oral squamous cell carcinoma (OSCC), but their role was not defined. Here, the functions of CCL3 were assessed using a model of chemically induced tongue carcinogenesis with 4-nitroquinoline-1-oxide (4NQO). Lineages of OSCC were used to analyse the effects of CCL3 in vitro . The 4NQO-induced lesions exhibited increased expression of CCL3, CCR1 and CCR5. CCL3 -/- and CCR5 -/- mice presented reduced incidence of tongue tumours compared to wild-type (WT) and CCR1 -/- mice. Consistently, attenuated cytomorphological atypia and reduced cell proliferation were observed in lesions of CCL3 -/- and CCR5 -/- mice. OSCC from CCL3 -/- mice exhibited lower infiltration of eosinophils and reduced expression of Egf, Fgf1, Tgf-β1, Vegfa, Vegfb, Itga-4, Vtn, Mmp-1a, Mmp-2 and Mmp-9 than WT mice. In vitro , CCL3 induced invasion and production of CCL5, IL-6, MMP -2, -8, -9. Blockage of CCL3 in vitro using α-CCL3 or Evasin-1 (a CCL3-binding protein) impaired tumour cell invasion. In conclusion, CCL3/CCR5 axis has pro-tumourigenic effects in oral carcinogenesis. The induction of inflammatory and angiogenic pathways and eosinophils recruitment appear to be the underlying mechanism explaining these effects. These data reveal potential protective effects of CCL3 blockade in oral cancer.

  4. Challenging the Myth: Transvaginal Mesh is Not Associated with Carcinogenesis.

    Science.gov (United States)

    Chughtai, Bilal; Sedrakyan, Art; Mao, Jialin; Thomas, Dominique; Eilber, Karyn S; Clemens, J Quentin; Anger, Jennifer T

    2017-10-01

    We sought to determine if there was a potential link between synthetic polypropylene mesh implantation for transvaginal pelvic organ prolapse and stress urinary incontinence, and carcinogenesis using statewide administrative data. Women who underwent transvaginal surgery for pelvic organ prolapse or stress urinary incontinence with mesh between January 2008 and December 2009 in New York State were identified using ICD-9-CM procedure codes and CPT-4 codes. Patients in the mesh cohort were individually matched to 2 control cohorts based on comorbidities and procedure date. Carcinogenesis was determined before and after matching at 1, 2 and 3 years, and during the entire followup time. A total of 2,229 patients who underwent mesh based pelvic organ prolapse surgery and 10,401 who underwent sling surgery for stress urinary incontinence between January 2008 and December 2009 were included in the study. Mean followup was 6 years (range 5 to 7). Exact matching between the mesh and control cohorts resulted in 1,870 pairs for pelvic organ prolapse mesh and cholecystectomy (1:2), 1,278 pairs for pelvic organ prolapse mesh and hysterectomy (1:1), 7,986 pairs for sling and cholecystectomy (1:1) and 3,810 pairs for sling and hysterectomy (1:1). Transvaginal mesh implantation was not associated with an increased risk of a cancer diagnosis (pelvic/local cancers or any cancer) at 1 year and during the entire followup of up to 7 years. Transvaginal surgery with implantation of mesh was not associated with the development of malignancy at a mean followup of 6 years. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Inverse antagonist activities of parabens on human oestrogen-related receptor γ (ERRγ): In vitro and in silico studies

    International Nuclear Information System (INIS)

    Zhang, Zhaobin; Sun, Libei; Hu, Ying; Jiao, Jian; Hu, Jianying

    2013-01-01

    Parabens are p-hydroxybenzoic acid esters that have been used extensively as preservatives in foods, cosmetics, drugs and toiletries. These intact esters are commonly detected in human breast cancer tissues and other human samples, thus arousing concern about the involvement of parabens in human breast cancer. In this study, an in vitro nuclear receptor coactivator recruiting assay was developed and used to evaluate the binding activities of parabens, salicylates and benzoates via antagonist competitive binding on the human oestrogen-related receptor γ (ERRγ), which is known as both a diagnostic biomarker and a treatment target of breast cancer. The results showed that all of the test parabens (methyl-, ethyl-, propyl-, butyl- and benzylparaben) possessed clear inverse antagonist activities on ERRγ, with a lowest observed effect level (LOEL) of 10 −7 M and the 50% relative effective concentrations (REC50) varying from 3.09 × 10 −7 to 5.88 × 10 −7 M, whereas the salicylates possessed much lower activities and the benzoates showed no obvious activity. In silico molecular docking analyses showed that parabens fitted well into the active site of ERRγ, with hydrogen bonds forming between the p-hydroxyl group of parabens and the Glu275/Arg316 of ERRγ. As the paraben levels reported in breast cancer tissues are commonly higher than the LOELs observed in this study, parabens may play some role via ERRγ in the carcinogenesis of human breast cancer. In addition, parabens may have significant effects on breast cancer patients who are taking tamoxifen, as ERRγ is regarded as a treatment target for tamoxifen. - Highlights: • An oestrogen-related receptor γ coactivator recruiting assay was developed. • Strong binding activities of parabens with oestrogen-related receptor γ were found. • The paraben levels reported in breast cancer tissues were higher than their LOELs. • Parabens may play some role via ERRγ in the carcinogenesis of human breast cancer.

  6. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (uv) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either x-ray-like (i.e., they cause damage that XP cells can repair) or uv-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed. (U.S.)

  7. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (UV) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either X-ray-like (i.e., they cause damage that XP cells can repair) or UV-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed

  8. The ethics of human volunteer studies involving experimental exposure to pesticides: unanswered dilemmas

    Directory of Open Access Journals (Sweden)

    London Leslie

    2010-08-01

    Full Text Available Abstract The controversy about the use of data from human volunteer studies involving experimental exposure to pesticides as part of regulatory risk assessment has been widely discussed, but the complex and interrelated scientific and ethical issues remain largely unresolved. This discussion paper, generated by authors who comprised a workgroup of the ICOH Scientific Committee on Rural Health, reviews the use of human experimental studies in regulatory risk assessment for pesticides with a view to advancing the debate as to when, if ever, such studies might be ethically justifiable. The discussion is based on three elements: (a a review of discussion papers on the topic of human testing of pesticides and the positions adopted by regulatory agencies in developed countries; (b an analysis of published and unpublished studies involving human testing with pesticides, both in the peer-reviewed literature and in the JMPR database; and (c application of an ethical analysis to the problem. The paper identifies areas of agreement which include general principles that may provide a starting point on which to base criteria for judgements as to the ethical acceptability of such studies. However, the paper also highlights ongoing unresolved differences of opinion inherent in ethical analysis of contentious issues, which we propose should form a starting point for further debate and the development of guidelines to achieve better resolution of this matter.

  9. The ethics of human volunteer studies involving experimental exposure to pesticides: unanswered dilemmas.

    Science.gov (United States)

    London, Leslie; Coggon, David; Moretto, Angelo; Westerholm, Peter; Wilks, Martin F; Colosio, Claudio

    2010-08-18

    The controversy about the use of data from human volunteer studies involving experimental exposure to pesticides as part of regulatory risk assessment has been widely discussed, but the complex and interrelated scientific and ethical issues remain largely unresolved. This discussion paper, generated by authors who comprised a workgroup of the ICOH Scientific Committee on Rural Health, reviews the use of human experimental studies in regulatory risk assessment for pesticides with a view to advancing the debate as to when, if ever, such studies might be ethically justifiable. The discussion is based on three elements: (a) a review of discussion papers on the topic of human testing of pesticides and the positions adopted by regulatory agencies in developed countries; (b) an analysis of published and unpublished studies involving human testing with pesticides, both in the peer-reviewed literature and in the JMPR database; and (c) application of an ethical analysis to the problem. The paper identifies areas of agreement which include general principles that may provide a starting point on which to base criteria for judgements as to the ethical acceptability of such studies. However, the paper also highlights ongoing unresolved differences of opinion inherent in ethical analysis of contentious issues, which we propose should form a starting point for further debate and the development of guidelines to achieve better resolution of this matter.

  10. The ethics of human volunteer studies involving experimental exposure to pesticides: unanswered dilemmas

    Science.gov (United States)

    2010-01-01

    The controversy about the use of data from human volunteer studies involving experimental exposure to pesticides as part of regulatory risk assessment has been widely discussed, but the complex and interrelated scientific and ethical issues remain largely unresolved. This discussion paper, generated by authors who comprised a workgroup of the ICOH Scientific Committee on Rural Health, reviews the use of human experimental studies in regulatory risk assessment for pesticides with a view to advancing the debate as to when, if ever, such studies might be ethically justifiable. The discussion is based on three elements: (a) a review of discussion papers on the topic of human testing of pesticides and the positions adopted by regulatory agencies in developed countries; (b) an analysis of published and unpublished studies involving human testing with pesticides, both in the peer-reviewed literature and in the JMPR database; and (c) application of an ethical analysis to the problem. The paper identifies areas of agreement which include general principles that may provide a starting point on which to base criteria for judgements as to the ethical acceptability of such studies. However, the paper also highlights ongoing unresolved differences of opinion inherent in ethical analysis of contentious issues, which we propose should form a starting point for further debate and the development of guidelines to achieve better resolution of this matter. PMID:20718963

  11. Role of Free Radicals, Oxidative Stress and Xenobiotics in Carcinogenesis by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Dibyajyoti Saha

    2014-09-01

    Full Text Available Carcinogenesis by many small molecular weight chemicals involves either a direct action of the chemical on cellular DNA or metabolism of the parent chemical to an active or ultimate form, which can than react with cellular DNA to produce a permanent chemical change in a DNA structure. A free radical is an atom or molecule that has one or more unpaired electron(s. These are highly reactive species capable of wide spread, indiscriminate oxidation and per oxidation of proteins, lipids and DNA which can lead to significant cellular damage and even tissue and/or organ failure. . Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. Xenobiotics are a compound that is foreign to the body. Xenobiotics can produce a variety of biological effects, including pharmacologic responses, toxicity, genes, immunologic reactions and cancer. Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. This communication highlights the role of carcinogens as environmental pollutants with the possible mechanism of free radicals, oxidative stress and xenobiotics.

  12. Chemopreventive effect of Cynodon dactylon (L.) Pers. extract against DMH-induced colon carcinogenesis in experimental animals.

    Science.gov (United States)

    Albert-Baskar, Arul; Ignacimuthu, Savarimuthu

    2010-07-01

    The present study was aimed at evaluating the chemopreventive property of Cynodon dactylon. The antioxidant, antiproliferative and apoptotic potentials of the plant were investigated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, nitric oxide radical scavenging activity (NO(-)) and MTT assay on four cancer cell lines (COLO 320 DM, MCH-7, AGS, A549) and a normal cell line (VERO). In vivo chemopreventive property of the plant extract was studied in DMH-induced colon carcinogenesis. The methanolic extract of C. dactylon was found to be antiproliferative and antioxidative at lower concentrations and induced apoptotic cell death in COLO 320 DM cells. Treatment with methanolic extract of C. dactylon increased the levels of antioxidant enzymes and reduced the number of dysplastic crypts in DMH-induced colon of albino rats. The present investigation revealed the anticancer potential of methanolic extract of C. dactylon in COLO 320 DM cells and experimentally induced colon carcinogenesis in rats.

  13. Cell Cycle Phase Abnormalities Do Not Account for Disordered Proliferation in Barrett's Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pierre Lao-Sirieix

    2004-11-01

    Full Text Available Barrett's esophagus (BE epithelium is the precursor lesion for esophageal adenocarcinoma. Cell cycle proteins have been advocated as biomarkers to predict the malignant potential in BE. However, whether disruption of the cell cycle plays a causal role in Barrett's carcinogenesis is not clear. Specimens from the Barrett's dysplasia—carcinoma sequence were immunostained for cell cycle phase markers (cyclin D1 for G1; cyclin A for S, G2, and M; cytoplasmic cyclin B1 for G2; and phosphorylated histone 3 for M phase and expressed as a proportion of proliferating cells. Flow cytometric analysis of the cell cycle phase of prospective biopsies was also performed. The proliferation status of nondysplastic BE was similar to gastric antrum and D2, but the proliferative compartment extended to the luminal surface. In dysplastic samples, the number of proliferating cells correlated with the degree of dysplasia (P < .001. The overall levels of cyclins A and B1 correlated with the degree of dysplasia (P < .001. However, the cell cycle phase distribution measured with both immunostaining and flow cytometry was conserved during all stages of BE, dysplasia, and cancer. Hence, the increased proliferation seen in Barrett's carcinogenesis is due to abnormal cell cycle entry or exit, rather than a primary abnormality within the cell cycle.

  14. Research for genetic instability of human genome

    International Nuclear Information System (INIS)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M.; Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author)

  15. Genetic and Molecular Differences in Prostate Carcinogenesis between African American and Caucasian American Men

    Directory of Open Access Journals (Sweden)

    Shiv Srivastava

    2013-07-01

    Full Text Available Prostate cancer is the most common non-skin cancer and the second leading cause of cancer-related death for men in the United States. Prostate cancer incidence and associated mortality are highest in African American men in comparison to other races. The observed differences in incidence and disease aggressiveness at presentation support a potential role for different pathways of prostate carcinogenesis between African American and Caucasian men. This review focuses on some of the recent molecular biology discoveries, which have been investigated in prostate carcinogenesis and their likely contribution to the known discrepancies across race and ethnicity. Key discussion points include the androgen receptor gene structure and function, genome-wide association studies and epigenetics. The new observations of the ethnic differences of the ERG oncogene, the most common prostate cancer gene, are providing new insights into ERG based stratification of prostate cancers in the context of ethnically diverse patient populations. This rapidly advancing knowledge has the likely potential to benefit clinical practice. Current and future work will improve the ability to sub-type prostate cancers by molecular alterations and lead to targeted therapy against this common malignancy.

  16. Promoter hypermethylation mediated downregulation of FBP1 in human hepatocellular carcinoma and colon cancer.

    Directory of Open Access Journals (Sweden)

    Mingquan Chen

    Full Text Available FBP1, fructose-1,6-bisphosphatase-1, a gluconeogenesis regulatory enzyme, catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and inorganic phosphate. The mechanism that it functions to antagonize glycolysis and was epigenetically inactivated through NF-kappaB pathway in gastric cancer has been reported. However, its role in the liver carcinogenesis still remains unknown. Here, we investigated the expression and DNA methylation of FBP1 in primary HCC and colon tumor. FBP1 was lowly expressed in 80% (8/10 human hepatocellular carcinoma, 66.7% (6/9 liver cancer cell lines and 100% (6/6 colon cancer cell lines, but was higher in paired adjacent non-tumor tissues and immortalized normal cell lines, which was well correlated with its promoter methylation status. Methylation was further detected in primary HCCs, gastric and colon tumor tissues, but none or occasionally in paired adjacent non-tumor tissues. Detailed methylation analysis of 29 CpG sites at a 327-bp promoter region by bisulfite genomic sequencing confirmed its methylation. FBP1 silencing could be reversed by chemical demethylation treatment with 5-aza-2'-deoxycytidine (Aza, indicating direct epigenetic silencing. Restoring FBP1 expression in low expressed cells significantly inhibited cell growth and colony formation ability through the induction of G2-M phase cell cycle arrest. Moreover, the observed effects coincided with an increase in reactive oxygen species (ROS generation. In summary, epigenetic inactivation of FBP1 is also common in human liver and colon cancer. FBP1 appears to be a functional tumor suppressor involved in the liver and colon carcinogenesis.

  17. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    Science.gov (United States)

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  18. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells.

    Science.gov (United States)

    Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W

    2005-07-01

    Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.

  19. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation

    Directory of Open Access Journals (Sweden)

    Abd-Ellatef GF

    2017-02-01

    Full Text Available Gamal-Eldein F Abd-Ellatef,1 Osama M Ahmed,2 Eman S Abdel-Reheim,2 Abdel-Hamid Z Abdel-Hamid,1 1Pharmaceutical and Drug Industries Research Division, Therapeutic Chemistry Department, National Research Centre, Cairo, Egypt; 2Division of Physiology, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt Background: Recently, several research studies have been focused on the isolation and function of the polysaccharides derived from different algal species, which revealed multiple biological activities such as antioxidant and antitumor activities. This study assesses the possible breast cancer chemopreventive properties of common seaweeds, sea lettuce, Ulva lactuca (ulvan polysaccharides using in vitro bioassays on human breast cancer cell line (MCF-7 and an in vivo animal model of breast carcinogenesis. Methods: Cytotoxic effect of ulvan polysaccharides on MCF-7 was tested in vitro. For an in vivo investigation, a single dose of 25 mg/kg body weight 7,12-dimethylbenz[a]anthracene (DMBA and ulvan polysaccharides (50 mg/kg body weight every other day for 10 weeks were administered orally to the Wistar rats. Results: Deleterious histopathological alterations in breast tissues including papillary cyst adenoma and hyperplasia of ductal epithelial lining with intraluminal necrotic materials and calcifications were observed in the DMBA-administered group. These lesions were prevented in the DMBA-administered group treated with ulvan polysaccharides. The immunohistochemical sections depicted that the treatment of DMBA-administered rats with ulvan polysaccharides markedly increased the lowered pro-apoptotic protein, p53, and decreased the elevated anti-apoptotic marker, bcl2, expression in the breast tissue. The elevated lipid peroxidation and the suppressed antioxidant enzyme activities in DMBA-administered control were significantly prevented by the treatment with ulvan polysaccharides. The elevated levels of inflammatory

  20. Age-dependent change in biological characteristics of stem cells in radiation-induced mammary carcinogenesis

    International Nuclear Information System (INIS)

    Shimada, Yoshiya; Nishimura, Mayumi; Kakinuma, Shizuko; Imaoka, Tatsuhiko; Yasukawa-Barnes, Jane; Gould, Michael N.; Clifton, Kelly H.

    2003-01-01

    If you ask what types of cells are the targets for carcinogenesis, a popular answer would be that cancer arises from stem cells. Stem cells are cells that are capable of both self-renewal and generation of differentiated progenies. If the hypothesis of 'cancer as stem cell disease' is correct, the risk of carcinogenesis should be a function of the number of stem cells and their responsiveness of carcinogen-induced damage. In the present study, we addressed the feasibility of this hypothesis using the rat mammary carcinogenesis model. One of the important conclusions emerging from studies on atomic bomb survivors concerns age-related changes in the susceptibility to breast cancer. The relative risk of breast cancer is very high among women exposed to ionizing radiation before or during puberty, and it decreases thereafter. Little information is available, however, on age-related changes in the radiobiological nature of mammary stem cells. We examined age-associated changes in the number of mammary stem-like cells (clonogens) and their susceptibility to radiation in terms of cell death and carcinogenic initiation frequency. The results were as follows. (1) During the prepubertal period, the total number of mammary clonogens per rat increased exponentially with a population doubling time of ∼4 days. After puberty, the doubling time lengthened to ∼30 days. The total number of clonogens in abdominal and inguinal mammary glands was ∼200 in 2-week-old rats, while it was ∼5600 in 8-week-old rats. (2) The survival curves of clonogenic cells after irradiation indicated that radiation sensitivity of the cells before and during puberty was much higher than after puberty. (3) The initiation frequency of the clonogens from prepubertal rats after 5 Gy irradiation was four times higher than that of the clonogens from post-pubertal rats. These results suggest that changes in the number of stem cells and their radiobiological characteristics underlie the age

  1. Age-dependent change in biological characteristics of stem cells in radiation-induced mammary carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Yoshiya; Nishimura, Mayumi; Kakinuma, Shizuko; Imaoka, Tatsuhiko [National Institute of Radiological Sciences, Anagawa, Chiba (Japan); Yasukawa-Barnes, Jane; Gould, Michael N.; Clifton, Kelly H. [Univ. of Wisconsin, Department of Human Oncology, Madison, WI (United States)

    2003-07-01

    If you ask what types of cells are the targets for carcinogenesis, a popular answer would be that cancer arises from stem cells. Stem cells are cells that are capable of both self-renewal and generation of differentiated progenies. If the hypothesis of 'cancer as stem cell disease' is correct, the risk of carcinogenesis should be a function of the number of stem cells and their responsiveness of carcinogen-induced damage. In the present study, we addressed the feasibility of this hypothesis using the rat mammary carcinogenesis model. One of the important conclusions emerging from studies on atomic bomb survivors concerns age-related changes in the susceptibility to breast cancer. The relative risk of breast cancer is very high among women exposed to ionizing radiation before or during puberty, and it decreases thereafter. Little information is available, however, on age-related changes in the radiobiological nature of mammary stem cells. We examined age-associated changes in the number of mammary stem-like cells (clonogens) and their susceptibility to radiation in terms of cell death and carcinogenic initiation frequency. The results were as follows. (1) During the prepubertal period, the total number of mammary clonogens per rat increased exponentially with a population doubling time of {approx}4 days. After puberty, the doubling time lengthened to {approx}30 days. The total number of clonogens in abdominal and inguinal mammary glands was {approx}200 in 2-week-old rats, while it was {approx}5600 in 8-week-old rats. (2) The survival curves of clonogenic cells after irradiation indicated that radiation sensitivity of the cells before and during puberty was much higher than after puberty. (3) The initiation frequency of the clonogens from prepubertal rats after 5 Gy irradiation was four times higher than that of the clonogens from post-pubertal rats. These results suggest that changes in the number of stem cells and their radiobiological characteristics

  2. Association of cancer metabolism-related proteins with oral carcinogenesis – indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma?

    Science.gov (United States)

    2014-01-01

    Background Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). Methods Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines. Results Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay). Conclusions This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC. PMID:25048361

  3. The purification, crystallization and preliminary structural characterization of human MAWDBP, a member of the phenazine biosynthesis-like protein family

    International Nuclear Information System (INIS)

    Herde, Petra; Blankenfeldt, Wulf

    2006-01-01

    The purification, crystallization and preliminary structural characterization of human MAWD-binding protein (MAWDBP) are described. MAWDBP is the only representative of the phenazine biosynthesis-like protein family in the human genome. Its expression is elevated in several disease processes, including insulin resistance, folate deficiency and hypotension, and it may also be involved in carcinogenesis. The exact molecular function of MAWDBP is unknown. Native and seleno-l-methionine-labelled MAWDBP were expressed in Escherichia coli and crystallized at room temperature from precipitants containing 10 mM KF, 14%(w/v) PEG 3350 and 0.1 M sodium citrate pH 5.4. Crystals belong to space group H32, with unit-cell parameters a = b = 187, c = 241 Å, indicative of three to five monomers per asymmetric unit. Crystals were cryoprotected with 15%(v/v) glycerol and data have been collected to 2.7 Å resolution

  4. The purification, crystallization and preliminary structural characterization of human MAWDBP, a member of the phenazine biosynthesis-like protein family

    Energy Technology Data Exchange (ETDEWEB)

    Herde, Petra; Blankenfeldt, Wulf, E-mail: wulf.blankenfeldt@mpi-dortmund.mpg.de [Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)

    2006-06-01

    The purification, crystallization and preliminary structural characterization of human MAWD-binding protein (MAWDBP) are described. MAWDBP is the only representative of the phenazine biosynthesis-like protein family in the human genome. Its expression is elevated in several disease processes, including insulin resistance, folate deficiency and hypotension, and it may also be involved in carcinogenesis. The exact molecular function of MAWDBP is unknown. Native and seleno-l-methionine-labelled MAWDBP were expressed in Escherichia coli and crystallized at room temperature from precipitants containing 10 mM KF, 14%(w/v) PEG 3350 and 0.1 M sodium citrate pH 5.4. Crystals belong to space group H32, with unit-cell parameters a = b = 187, c = 241 Å, indicative of three to five monomers per asymmetric unit. Crystals were cryoprotected with 15%(v/v) glycerol and data have been collected to 2.7 Å resolution.

  5. Prevention of Lung Carcinogenesis by Suppressing Pathogenic CD4 T Cells

    Science.gov (United States)

    2017-05-01

    intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells . Nat Med, 2016. 22(3): p. 319-23.   ...stable population of YFP+  cells  similar  to  innate  IL‐17–producing  cells  (e.g., γδ T  cells ) during acute infection (Fig.2) , which is in sharp contrast...AWARD NUMBER: W81XWH-16-1-0100 TITLE: Prevention of Lung Carcinogenesis by Suppressing Pathogenic CD4 T Cells PRINCIPAL INVESTIGATOR: Seon Hee

  6. Modulation of expression of Programmed Death-1 by administration of probiotic Dahi in DMH-induced colorectal carcinogenesis in rats.

    Science.gov (United States)

    Mohania, Dheeraj; Kansal, Vinod K; Kumar, Manoj; Nagpal, Ravinder; Yamashiro, Yuichiro; Marotta, Francesco

    2013-09-01

    Interaction of probiotic bacteria with the host immune system elicits beneficial immune modulating effects. Although, there are many published studies on interaction of probiotics with immune system focusing on activation of immune system by bacterial cell wall through the engagement of Toll-like receptor family; very few studies have focused on molecules involved in the T-cell activation, and not much work has been executed to study the correlation of probiotics and programmed death-1 in colorectal carcinogenesis in animal models. Hence, the present study was carried out to assess the effect of probiotic Dahi on expression of programmed death (PD-1) in colorectum of 1, 2-dimethylhydrazine treated Wistar rats. DMH was injected subcutaneously at the rate of 40 mg/kg body weight per animal twice a week for 2 weeks. A total of 168 male Wistar rats were randomly allocated to seven groups, each group having twenty-four animals. The rats were euthanized at the 8th, 16th and 32nd week of the experiment and examined for the expression of PD-1 in colorectal tissues by immunohistochemical staining. Expression of PD-1 was observed in colorectal tissues of normal and DMH-treated rats. Feeding rats with probiotic Dahi or the treatment with piroxicam decreased the expression of PD-1 in DMH-induced colorectal mucosa, and the combined treatment with probiotic Dahi and piroxicam was significantly more effective in reducing the expression of PD-1. PD-1 expressed independent of carcinogen administration in normal colonic mucosa and may play a role in modulation of immune response in DMH-induced colorectal carcinogenesis. The present study suggests that probiotic Dahi can be used as an effective chemopreventive agent in the management of colorectal cancer.

  7. Task types and error types involved in the human-related unplanned reactor trip events

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Park, Jin Kyun

    2008-01-01

    In this paper, the contribution of task types and error types involved in the human-related unplanned reactor trip events that have occurred between 1986 and 2006 in Korean nuclear power plants are analysed in order to establish a strategy for reducing the human-related unplanned reactor trips. Classification systems for the task types, error modes, and cognitive functions are developed or adopted from the currently available taxonomies, and the relevant information is extracted from the event reports or judged on the basis of an event description. According to the analyses from this study, the contributions of the task types are as follows: corrective maintenance (25.7%), planned maintenance (22.8%), planned operation (19.8%), periodic preventive maintenance (14.9%), response to a transient (9.9%), and design/manufacturing/installation (6.9%). According to the analysis of the error modes, error modes such as control failure (22.2%), wrong object (18.5%), omission (14.8%), wrong action (11.1%), and inadequate (8.3%) take up about 75% of the total unplanned trip events. The analysis of the cognitive functions involved in the events indicated that the planning function had the highest contribution (46.7%) to the human actions leading to unplanned reactor trips. This analysis concludes that in order to significantly reduce human-induced or human-related unplanned reactor trips, an aide system (in support of maintenance personnel) for evaluating possible (negative) impacts of planned actions or erroneous actions as well as an appropriate human error prediction technique, should be developed

  8. Task types and error types involved in the human-related unplanned reactor trip events

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Park, Jin Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    In this paper, the contribution of task types and error types involved in the human-related unplanned reactor trip events that have occurred between 1986 and 2006 in Korean nuclear power plants are analysed in order to establish a strategy for reducing the human-related unplanned reactor trips. Classification systems for the task types, error modes, and cognitive functions are developed or adopted from the currently available taxonomies, and the relevant information is extracted from the event reports or judged on the basis of an event description. According to the analyses from this study, the contributions of the task types are as follows: corrective maintenance (25.7%), planned maintenance (22.8%), planned operation (19.8%), periodic preventive maintenance (14.9%), response to a transient (9.9%), and design/manufacturing/installation (6.9%). According to the analysis of the error modes, error modes such as control failure (22.2%), wrong object (18.5%), omission (14.8%), wrong action (11.1%), and inadequate (8.3%) take up about 75% of the total unplanned trip events. The analysis of the cognitive functions involved in the events indicated that the planning function had the highest contribution (46.7%) to the human actions leading to unplanned reactor trips. This analysis concludes that in order to significantly reduce human-induced or human-related unplanned reactor trips, an aide system (in support of maintenance personnel) for evaluating possible (negative) impacts of planned actions or erroneous actions as well as an appropriate human error prediction technique, should be developed.

  9. Review of colorectal cancer and its metastases in rodent models: comparative aspects with those in humans

    DEFF Research Database (Denmark)

    Kobaek-Larsen, M; Thorup, I; Diederichsen, Axel Cosmus Pyndt

    2000-01-01

    BACKGROUND AND PURPOSE: Colorectal cancer (CRC) remains one of the most common cancer forms developing in industrialized countries, and its incidence appears to be rising. Studies of human population groups provide insufficient information about carcinogenesis, pathogenesis, and treatment of CRC...

  10. Celecoxib prevents colitis associated colon carcinogenesis: an upregulation of apoptosis.

    Science.gov (United States)

    Setia, Shruti; Nehru, Bimla; Sanyal, Sankar N

    2014-12-01

    Uncontrolled cell proliferation and suppressed apoptosis are the critical events transforming a normal cell to a cancerous one wherein the inflammatory microenvironment supports this oncogenic transformation. The process of colon carcinogenesis may be aggravated in chronic inflammatory conditions such as ulcerative colitis where non-steroidal anti-inflammatory drugs (NSAIDs) may effectively prevent the cellular and molecular events. Western blots and immunofluorescent analysis of DNA mismatch repair enzymes, cell cycle regulators and pro- and anti-apoptotic proteins were performed in dextran sulfate sodium (DSS)-induced ulcerative colitis and 1,2-dimethyl benz(a)anthracene (DMH)-induced colon cancer. Also, apoptotic studies were done in isolated colonocytes using fluorescent staining and in paraffin sections using TUNEL assay. An upregulation of cell cycle regulators: cyclin D1/cdk4 and cyclin E/cdk2 and anti-apoptotic Bcl-2, along with the suppression of DNA repair enzymes: MLH1 and MSH2; tumour suppressors: p53, p21and Rb and pro-apoptotic proteins: Bax and Bad were observed in the DSS, DMH and DSS+DMH groups. Proliferating cell nuclear antigen (PCNA) was also overexpressed in these groups. The ultimate executioner of the apoptotic pathway; caspase-3, was suppressed in these groups. Apoptotic studies in colonocytes and paraffin sections revealed suppressed apoptosis in these groups. These effects were corrected with the administration of a second generation NSAID, celecoxib along with the treatment of DSS and DMH. The chemopreventive action of celecoxib in colitis mediated colon carcinogenesis may include the regulation of DNA mismatch repair enzymes, cell cycle check points, cell proliferation and apoptosis. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Mutagenic effect of cadmium on tetranucleotide repeats in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Slebos, Robbert J.C. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States) and Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)]. E-mail: r.slebos@vanderbilt.edu; Li Ming [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Evjen, Amy N. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Coffa, Jordy [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Shyr, Yu [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Yarbrough, Wendell G. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)

    2006-12-01

    Cadmium is a human carcinogen that affects cell proliferation, apoptosis and DNA repair processes that are all important to carcinogenesis. We previously demonstrated that cadmium inhibits DNA mismatch repair (MMR) in yeast cells and in human cell-free extracts (H.W. Jin, A.B. Clark, R.J.C. Slebos, H. Al-Refai, J.A. Taylor, T.A. Kunkel, M.A. Resnick, D.A. Gordenin, Cadmium is a mutagen that acts by inhibiting mismatch repair, Nat. Genet. 34 (3) (2003) 326-329), but cadmium also inhibits DNA excision repair. For this study, we selected a panel of three hypermutable tetranucleotide markers (MycL1, D7S1482 and DXS981) and studied their suitability as readout for the mutagenic effects of cadmium. We used a clonal derivative of the human fibrosarcoma cell line HT1080 to assess mutation levels in microsatellites after cadmium and/or N-methyl-N-nitro-N-nitrosoguanidine (MNNG) exposure to study effects of cadmium in the presence or absence of base damage. Mutations were measured in clonally expanded cells obtained by limiting dilution after exposure to zero dose, 0.5 {mu}M cadmium, 5 nM MNNG or a combination of 0.5 {mu}M cadmium and 5 nM MNNG. Exposure of HT1080-C1 to cadmium led to statistically significant increases in microsatellite mutations, either with or without concurrent exposure to MNNG. A majority of the observed mutant molecules involved 4-nucleotide shifts consistent with DNA slippage mutations that are normally repaired by MMR. These results provide evidence for the mutagenic effects of low, environmentally relevant levels of cadmium in intact human cells and suggest that inhibition of DNA repair is involved.

  12. Role of Viral miRNAs and Epigenetic Modifications in Epstein-Barr Virus-Associated Gastric Carcinogenesis.

    Science.gov (United States)

    Giudice, Aldo; D'Arena, Giovanni; Crispo, Anna; Tecce, Mario Felice; Nocerino, Flavia; Grimaldi, Maria; Rotondo, Emanuela; D'Ursi, Anna Maria; Scrima, Mario; Galdiero, Massimiliano; Ciliberto, Gennaro; Capunzo, Mario; Franci, Gianluigi; Barbieri, Antonio; Bimonte, Sabrina; Montella, Maurizio

    2016-01-01

    MicroRNAs are short (21-23 nucleotides), noncoding RNAs that typically silence posttranscriptional gene expression through interaction with target messenger RNAs. Currently, miRNAs have been identified in almost all studied multicellular eukaryotes in the plant and animal kingdoms. Additionally, recent studies reported that miRNAs can also be encoded by certain single-cell eukaryotes and by viruses. The vast majority of viral miRNAs are encoded by the herpesviruses family. These DNA viruses including Epstein-Barr virus encode their own miRNAs and/or manipulate the expression of cellular miRNAs to facilitate respective infection cycles. Modulation of the control pathways of miRNAs expression is often involved in the promotion of tumorigenesis through a specific cascade of transduction signals. Notably, latent infection with Epstein-Barr virus is considered liable of causing several types of malignancies, including the majority of gastric carcinoma cases detected worldwide. In this review, we describe the role of the Epstein-Barr virus in gastric carcinogenesis, summarizing the functions of the Epstein-Barr virus-encoded viral proteins and related epigenetic alterations as well as the roles of Epstein-Barr virus-encoded and virally modulated cellular miRNAs.

  13. Alterations of global histone H4K20 methylation during prostate carcinogenesis

    Directory of Open Access Journals (Sweden)

    Behbahani Turang E

    2012-03-01

    Full Text Available Abstract Background Global histone modifications have been implicated in the progression of various tumour entities. Our study was designed to assess global methylation levels of histone 4 lysine 20 (H4K20me1-3 at different stages of prostate cancer (PCA carcinogenesis. Methods Global H4K20 methylation levels were evaluated using a tissue microarray in patients with clinically localized PCA (n = 113, non-malignant prostate disease (n = 27, metastatic hormone-naive PCA (mPCA, n = 30 and castration-resistant PCA (CRPC, n = 34. Immunohistochemistry was performed to assess global levels of H4K20 methylation levels. Results Similar proportions of the normal, PCA, and mPCA prostate tissues showed strong H4K20me3 staining. CRPC tissue analysis showed the weakest immunostaining levels of H4K20me1 and H4K20me2, compared to other prostate tissues. H4K20me2 methylation levels indicated significant differences in examined tissues except for normal prostate versus PCA tissue. H4K20me1 differentiates CRPC from other prostate tissues. H4K20me1 was significantly correlated with lymph node metastases, and H4K20me2 showed a significant correlation with the Gleason score. However, H4K20 methylation levels failed to predict PSA recurrence after radical prostatectomy. Conclusions H4K20 methylation levels constitute valuable markers for the dynamic process of prostate cancer carcinogenesis.

  14. An experimental study on carcinogenesis related to localized fibrosis in the lung

    International Nuclear Information System (INIS)

    Ohwada, Hidemi; Hayashi, Yutaka; Seki, Masatoshi.

    1980-01-01

    The present series of experiments was carried out in order to see what role pre-existing localized fibrosis plays in carcinogenesis of the lung. Hemorrhagic infarction was produced in the lung of 180 male Wistar rats by injecting 0.05 ml of hexachlorotetrafluorobutane into the tail vein. This resulted in localized fibrosis in the lung 3 months later. One hundred and fifteen rats were alive 3 months after administration of the chemical. Of these animals, 30 were given no further treatment (control). The remaining 85 rats were given intratracheal instillation of 0.2 μCi of polonium-210 once a week, a total of 15 times. It was subsequently found that lung carcinoma was induced in close proximity to the localized pulmonary fibrosis in 3 of 26 rats (11.5%) during the period from completion of the 15 weekly administrations of polonium-210 until the end of this experiment (21 months after the 1st instillation of polonium-210). Polonium-210 was found to be deposited in the fibrous thickening of the alveolus around the subpleural fibrotic lesion, bronchial epithelium, and peribronchial lymph apparati at the initial period of administration of polonium-210, but during the period of pulmonary carcinogenesis, it was deposited in the localized fibrotic lesion in the lung and in a few cancer cells. This suggests that polonium-210 deposited in the pulmonary fibrotic lesion remains there over a long period of time, indicating a reduced clearance ability at this site. (author)

  15. The landscape of human genes involved in the immune response to parasitic worms

    Directory of Open Access Journals (Sweden)

    Fumagalli Matteo

    2010-08-01

    Full Text Available Abstract Background More than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. Therefore, helminth infections can be regarded as a strong selective pressure. Results Here we propose that candidate susceptibility genes for parasitic worm infections can be identified by searching for SNPs that display a strong correlation with the diversity of helminth species/genera transmitted in different geographic areas. By a genome-wide search we identified 3478 variants that correlate with helminth diversity. These SNPs map to 810 distinct human genes including loci involved in regulatory T cell function and in macrophage activation, as well as leukocyte integrins and co-inhibitory molecules. Analysis of functional relationships among these genes identified complex interaction networks centred around Th2 cytokines. Finally, several genes carrying candidate targets for helminth-driven selective pressure also harbour susceptibility alleles for asthma/allergy or are involved in airway hyper-responsiveness, therefore expanding the known parallelism between these conditions and parasitic infections. Conclusions Our data provide a landscape of human genes that modulate susceptibility to helminths and indicate parasitic worms as one of the major selective forces in humans.

  16. Nucleosomes correlate with in vivo progression pattern of de novo methylation of p16 CpG islands in human gastric carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Zhe-Ming Lu

    Full Text Available BACKGROUND: The exact relationship between nucleosome positioning and methylation of CpG islands in human pathogenesis is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we characterized the nucleosome position within the p16 CpG island and established a seeding methylation-specific PCR (sMSP assay based on bisulfite modification to enrich the p16 alleles containing methylated-CpG at the methylation "seeding" sites within its intron-1 in gastric carcinogenesis. The sMSP-positive rate in primary gastric carcinoma (GC samples (36/40 was significantly higher than that observed in gastritis (19/45 or normal samples (7/13 (P<0.01. Extensive clone sequencing of these sMSP products showed that the density of methylated-CpGs in p16 CpG islands increased gradually along with the severity of pathological changes in gastric tissues. In gastritis lesions the methylation was frequently observed in the region corresponding to the exon-1 coding-nucleosome and the 5'UTR-nucleosome; the methylation was further extended to the region corresponding to the promoter-nucleosome in GC samples. Only few methylated-CpG sites were randomly detected within p16 CpG islands in normal tissues. The significantly inversed relationship between the p16 exon-1 methylation and its transcription was observed in GC samples. An exact p16 promoter-specific 83 bp-MSP assay confirms the result of sMSP (33/55 vs. 1/6, P<0.01. In addition, p16 methylation in chronic gastritis lesions significantly correlated with H. pylori infection; however, such correlation was not observed in GC specimens. CONCLUSIONS/SIGNIFICANCE: It was determined that de novo methylation was initiated in the coding region of p16 exon-1 in gastritis, then progressed to its 5'UTR, and ultimately to the proximal promoter in GCs. Nucleosomes may function as the basic extension/progression unit of de novo methylation of p16 CpG islands in vivo.

  17. Repair of DNA treated with λ-irradiation and chemical carcinogens: Progress report (1983-1986)

    International Nuclear Information System (INIS)

    Goldthwait, D.A.

    1986-01-01

    This progress report summarizes work on DNA repair of chromatin and then details our progress in developing three model systems. These model systems center on signal transduction in cancer and in carcinogenesis. Molecular biological approaches to three model systems are being developed. The first involves signal transduction controlling sis gene (platelet derived growth factor-β) mRNA levels in human glioblastoma cells. The second involves signal transduction in the activation of a long terminal repeat. The third involves an experiment designed to detect a transposition event in a human cell

  18. Characterization of Staphylococcus aureus strains involved in human and bovine mastitis.

    Science.gov (United States)

    Delgado, Susana; García, Pilar; Fernández, Leonides; Jiménez, Esther; Rodríguez-Baños, Mercedes; del Campo, Rosa; Rodríguez, Juan M

    2011-07-01

    Staphylococcus aureus is one of the main etiological agents of mastitis in different mammalian species. At present, it is unknown whether strains isolated from human mastitis cases share phenotypic properties and genetic background with those obtained from animal mastitis cases. Therefore, the objective of this study was to characterize S. aureus strains isolated from women with lactational mastitis and to compare them with the strains responsible for bovine mastitis and noninfectious strains. All the strains were genotyped by both pulsed field gel electrophoresis and multilocus sequence typing and submitted to a characterization scheme that included diverse assays related to pathogenic potential and antibiotic resistance. Apart from siderophore production, no significant association was observed between the strains from bovine and human mastitis. Statistical differences between human- and bovine-mastitis-associated strains were detected for some traits and virulence determinants, such as the presence of prophages and cna and hlb genes, which were more frequently found within the bovine group. On the contrary, resistance to penicillin was significantly higher among strains isolated from human lactational mastitis, probably related to the common presence of the blaZ gene. A high genetic diversity was found among the strains involved in mastitis in breastfeeding women. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Role of Helicobacter pylori infection in gastric carcinogenesis: Current knowledge and future directions

    Science.gov (United States)

    Sokic-Milutinovic, Aleksandra; Alempijevic, Tamara; Milosavljevic, Tomica

    2015-01-01

    Helicobacter pylori (H. pylori) plays a role in the pathogenesis of gastric cancer. The outcome of the infection depends on environmental factors and bacterial and host characteristics. Gastric carcinogenesis is a multistep process that is reversible in the early phase of mucosal damage, but the exact point of no return has not been identified. Therefore, two main therapeutic strategies could reduce gastric cancer incidence: (1) eradication of the already present infection; and (2) immunization (prior to or during the course of the infection). The success of a gastric cancer prevention strategy depends on timing because the prevention strategy must be introduced before the point of no return in gastric carcinogenesis. Although the exact point of no return has not been identified, infection should be eradicated before severe atrophy of the gastric mucosa develops. Eradication therapy rates remain suboptimal due to increasing H. pylori resistance to antibiotics and patient noncompliance. Vaccination against H. pylori would reduce the cost of eradication therapies and lower gastric cancer incidence. A vaccine against H. pylori is still a research challenge. An effective vaccine should have an adequate route of delivery, appropriate bacterial antigens and effective and safe adjuvants. Future research should focus on the development of rescue eradication therapy protocols until an efficacious vaccine against the bacterium becomes available. PMID:26556993

  20. Human needs as predictors for organizational commitment and job involvement: An exploratory empirical study

    OpenAIRE

    Park, Yang-Kyu; Lee, Chul-in; Kabst, Rüdiger

    2008-01-01

    While the literature on the determinants of organizational commitment (OC) and job involvement (JI) is vast, little has been studied about the impact of human needs. In search for the institutional stars, this study examines whether human needs can serve a predictor for both high OC and high JI. Exploratory empirical results based on quantile regressions suggest that the needs for achievement, belonging, and power are more important than others in predicting OC and JI. In addition, the basic ...

  1. Molecular markers of carcinogenesis for risk stratification of individuals with colorectal polyps: a case-control study.

    Science.gov (United States)

    Gupta, Samir; Sun, Han; Yi, Sang; Storm, Joy; Xiao, Guanghua; Balasubramanian, Bijal A; Zhang, Song; Ashfaq, Raheela; Rockey, Don C

    2014-10-01

    Risk stratification using number, size, and histology of colorectal adenomas is currently suboptimal for identifying patients at increased risk for future colorectal cancer. We hypothesized that molecular markers of carcinogenesis in adenomas, measured via immunohistochemistry, may help identify high-risk patients. To test this hypothesis, we conducted a retrospective, 1:1 matched case-control study (n = 216; 46% female) in which cases were patients with colorectal cancer and synchronous adenoma and controls were patients with adenoma but no colorectal cancer at baseline or within 5 years of follow-up. In phase I of analyses, we compared expression of molecular markers of carcinogenesis in case and control adenomas, blind to case status. In phase II of analyses, patients were randomly divided into independent training and validation groups to develop a model for predicting case status. We found that seven markers [p53, p21, Cox-2, β-catenin (BCAT), DNA-dependent protein kinase (DNApkcs), survivin, and O6-methylguanine-DNA methyltransferase (MGMT)] were significantly associated with case status on unadjusted analyses, as well as analyses adjusted for age and advanced adenoma status (P marker component). When applied to the validation set, a predictive model using these seven markers showed substantial accuracy for identifying cases [area under the receiver operation characteristic curve (AUC), 0.83; 95% confidence interval (CI), 0.74-0.92]. A parsimonious model using three markers performed similarly to the seven-marker model (AUC, 0.84). In summary, we found that molecular markers of carcinogenesis distinguished adenomas from patients with and without colorectal cancer. Furthermore, we speculate that prospective studies using molecular markers to identify individuals with polyps at risk for future neoplasia are warranted. ©2014 American Association for Cancer Research.

  2. Genetic and environmental factors in experimental and human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, S.; Takebe, H.; Gelboin, H.V.; MaChahon, B.; Matsushima, T.; Sugimura, T.

    1980-01-01

    Recently technological advances in assaying mutagenic principles have revealed that there are many mutagens in the environment, some of which might be carcinogenic to human beings. Other advances in genetics have shown that genetic factors might play an important role in the induction of cancer in human beings, e.g., the high incidence of skin cancers in patients with xeroderma pigmentosum. These proceedings deal with the relationships between genetic and environmental factors in carcinogenesis. The contributors cover mixed-function oxidases, pharmacogenetics, twin studies, DNA repair, immunology, and epidemiology.

  3. Lack of promotion of colon carcinogenesis by high-oleic safflower oil.

    Science.gov (United States)

    Takeshita, M; Ueda, H; Shirabe, K; Higuchi, Y; Yoshida, S

    1997-04-15

    The nonpromoting effect of olive oil on colon carcinogenesis has been attributed to its high oleic acid content, whereas a positive association of monounsaturated fat in beef tallow with colon tumors has been reported. The effect of constituents other than fatty acids could not be neglected in these experiments. In order to minimize the effects of minor constituents in the oils, the authors compared conventional safflower oil with oil from a mutant strain of safflower that is rich in oleic acid. ICR mice were treated with 1,2-dimethylhydrazine (DMH, 20 mg/kg body weight every week for 12 weeks) and then were fed either a high-fat diet (23.5% by weight), containing safflower oil (HF-LA) or high-oleic safflower oil (HF-OA), or a low-fat diet (5% by weight), containing safflower oil (LF-LA) or high-oleic safflower oil (LF-OA). The test diets were continued until termination of the experiment at 30 weeks after the first administration of DMH. Fatty acid composition of colon phospholipids was determined by gas-liquid chromatography-mass spectrometry. Tumor multiplicity in animals fed the HF-OA diet was indistinguishable from that in animals fed LF-LA or LF-OA. In contrast, animals fed the HF-LA diet had a significantly higher incidence of colon tumors (mostly adenocarcinomas) than the other groups. Fatty acid profiles of colon phospholipids reflected those of the diet. Animals fed a HF-LA diet showed a marked decrease of nervonic acid (C24:1, n-9) in the colon sphingomyelin. These data indicate that oleic acid does not enhance DMH-induced colon carcinogenesis in mice, even when they are fed a high-fat diet.

  4. Transformation assay in Bhas 42 cells: a model using initiated cells to study mechanisms of carcinogenesis and predict carcinogenic potential of chemicals.

    Science.gov (United States)

    Sasaki, Kiyoshi; Umeda, Makoto; Sakai, Ayako; Yamazaki, Shojiro; Tanaka, Noriho

    2015-01-01

    Transformation assays using cultured cells have been applied to the study of carcinogenesis. Although various cell systems exist, few cell types such as BALB/c 3T3 subclones and Syrian hamster embryo cells have been used to study chemically induced two-stage carcinogenesis. Bhas 42 cells were established as a clone by the transfection with the v-Ha-ras gene into mouse BALB/c 3T3 A31-1-1 cells and their subsequent selection based on their sensitivity to 12-O-tetradecanoylphorbol-13-acetate. Using Bhas 42 cells, transformed foci were induced by the treatment with nongenotoxic carcinogens, most of which act as tumor promoters. Therefore, Bhas 42 cells were considered to be a model of initiated cells. Subsequently, not only nongenotoxic carcinogens but also genotoxic carcinogens, most of which act as tumor initiators, were found to induce transformed foci by the modification of the protocol. Furthermore, transformation of Bhas 42 cells was induced by the transfection with genes of oncogenic potential. We interpret this high sensitivity of Bhas 42 cells to various types of carcinogenic stimuli to be related to the multistage model of carcinogenesis, as the transfection of v-Ha-ras gene further advances the parental BALB/c 3T3 A31-1-1 cells toward higher transforming potential. Thus, we propose that Bhas 42 cells are a novel and sensitive cell line for the analysis of carcinogenesis and can be used for the detection of not only carcinogenic substances but also gene alterations related to oncogenesis. This review will address characteristics of Bhas 42 cells, the transformation assay protocol, validation studies, and the various chemicals tested in this assay.

  5. Pulmonary carcinogenesis from plutonium-containing particles

    International Nuclear Information System (INIS)

    Thomas, R.G.; Smith, D.M.; Anderson, E.C.

    1980-01-01

    Induction of lung tumors by various types of radiation is of paramount concern to the nuclear industry. The data presented were obtained by exposing the pulmonary system of Syrian hamsters to particles of zirconium oxide containing various amounts of either plutonium-238 or -239 as the alpha radiation source. These particles were injected intravenously and lodged permanently in the capillary bed of the lung. When less than 20% of the lung tissue was irradiated, simulating the ''hot particle'' mode, tumors were not evident with lung burdens up to 500 nCi plutonium. More diffuse irradiation significantly increased the tumor incidence, with lung burdens of 50 to 150 nCi. When plutonium-laden microspheres were administered intratracheally, tumor production was considerably increased and the addition of 3 mg of iron oxide intratracheally further increased the incidence. Using the zirconium oxide matrix for the carrier of plutonium in aerosol particles produced tumor incidences of up to 50% in Syrian hamsters exposed by inhalation. Initial pulmonary (alveolar) burdens reached 100 nCi of plutonium. Similar inhalation studies using plutonium dioxide alone (no matrix) failed to produce any increase in lung tumorigenesis. The results are discussed in terms of possible mechanisms necessary for lung carcinogenesis. (H.K.)

  6. Experimental carcinogenesis induced by incorporated plutonium

    International Nuclear Information System (INIS)

    Oghiso, Yoichi

    1999-01-01

    The carcinogenic effects of an alpha-emitter, 239 Pu, were investigated by animal experiments as focused on both pulmonary tumors after inhalation exposures to insoluble oxide aerosols and tumor spectra induced by injection of soluble citrate. The life-span study using Wistar strain rats exposed to Pu dioxide aerosols has shown differential dose-related responses of malignancies and histopathological phenotypes of lung tumors, suggesting a threshold dose around 1.0 Gy of the lung dose. As abnormality of tumor-related genes could be supposed for the background of pulmonary carcinogenesis, the mutations of p53 tumor suppressor gene were examined by PCR-SSCP analysis using DNA fragments extracted from lung tumors. While mutations were detected in 23 cases (about 28%) among 82 lung tumors, their relations to either malignancies, histological phenotypes, dose, or oncogenesis are not yet to be elucidated. The life-span study using C3H strain mice injected with Pu citrate has shown contrast dose responses between osteosarcomas and lymphoid tumors around 10 Gy of the skeletal dose, and further indicated specific tumor spectra differed from low LET radiation exposures as shown by much more frequency of B cell type leukemic lymphomas and none of myeloid leukemias. (author)

  7. Gene dosage, expression, and ontology analysis identifies driver genes in the carcinogenesis and chemoradioresistance of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Malin Lando

    2009-11-01

    Full Text Available Integrative analysis of gene dosage, expression, and ontology (GO data was performed to discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses (on 3p, 13q, 21q associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on 3p (RYBP, GBE1 and 13q (FAM48A, MED4 correlated with outcome at both the gene dosage and expression level and were satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic events, drivers, and biological processes suggested that each individual event stimulates specific processes in carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic opportunities of both early and advanced stage cervical cancers.

  8. Oxidative DNA base modifications as factors in carcinogenesis

    International Nuclear Information System (INIS)

    Olinski, R.; Jaruga, P.; Zastawny, T.H.

    1998-01-01

    Reactive oxygen species can cause extensive DNA modifications including modified bases. Some of the DNA base damage has been found to possess premutagenic properties. Therefore, if not repaired, it can contribute to carcinogenesis. We have found elevated amounts of modified bases in cancerous and precancerous tissues as compared with normal tissues. Most of the agents used in anticancer therapy are paradoxically responsible for induction of secondary malignancies and some of them may generate free radicals. The results of our experiments provide evidence that exposure of cancer patients to therapeutic doses of ionizing radiation and anticancer drugs cause base modifications in genomic DNA of lymphocytes. Some of these base damages could lead to mutagenesis in critical genes and ultimately to secondary cancers such as leukemias. This may point to an important role of oxidative base damage in cancer initiation. Alternatively, the increased level of the modified base products may contribute to genetic instability and metastatic potential of tumor cells. (author)

  9. Thyroid cancer. Reevaluation of an experimental model for radiogenic endocrine carcinogenesis

    International Nuclear Information System (INIS)

    Clifton, K.H.

    1984-11-01

    The status of experimental studies of radiogenic thyroid cancer is appraised, and some older data are reinterpreted in the light of more recent findings. Problems of thyroid dosimetry, particularly the dosimetry of internal radioiodides, are discussed. The steps in radiation carcinogenesis during the acute phase, the latent phase, and the phase of tumor growth are discussed in terms of thyroid epithelial cell population changes. The roles of three cell populations (undamaged or completely repaired epithelial cells, oncogenically initiated cells, and terminally damaged but functionally competent cells) in neoplasia are described. Finally, the implications for man of these experimental results and conclusions are discussed. 89 refs., 4 figs

  10. Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: a proteomic approach

    Directory of Open Access Journals (Sweden)

    De Marco Federico

    2010-03-01

    Full Text Available Abstract Background The UVB component of solar ultraviolet irradiation is one of the major risk factors for the development of skin cancer in humans. UVB exposure elicits an increased generation of reactive oxygen species (ROS, which are responsible for oxidative damage to proteins, DNA, RNA and lipids. In order to examine the biological impact of UVB irradiation on skin cells, we used a parallel proteomics approach to analyze the protein expression profile and to identify oxidatively modified proteins in normal human epithelial keratinocytes. Results The expression levels of fifteen proteins - involved in maintaining the cytoskeleton integrity, removal of damaged proteins and heat shock response - were differentially regulated in UVB-exposed cells, indicating that an appropriate response is developed in order to counteract/neutralize the toxic effects of UVB-raised ROS. On the other side, the redox proteomics approach revealed that seven proteins - involved in cellular adhesion, cell-cell interaction and protein folding - were selectively oxidized. Conclusions Despite a wide and well orchestrated cellular response, a relevant oxidation of specific proteins concomitantly occurs in UVB-irradiated human epithelial Keratinocytes. These modified (i.e. likely dysfunctional proteins might result in cell homeostasis impairment and therefore eventually promote cellular degeneration, senescence or carcinogenesis.

  11. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer.

    Science.gov (United States)

    Liu, Li; Li, Yu H; Niu, Yin B; Sun, Yang; Guo, Zhen J; Li, Qian; Li, Chen; Feng, Juan; Cao, Shou S; Mei, Qi B

    2010-10-01

    Evidence strongly supported a link between inflammation and cancer. Patients with colitis have high risk for development of colon cancer. Nuclear factor-kappa B (NF-κB), partially induced by lipopolysaccharide (LPS) binding to Toll-like receptor (TLR) 4, is a vital molecule in supervising the transformation of colitis to colon cancer. It could be a good strategy to prevent colitis carcinogenesis for targeting LPS/TLR4/NF-κB pathway. In the present study, we obtained an oligogalactan composed of five galacturonic acids from apple pectin and evaluated its protective efficacy on intestinal toxicities and carcinogenesis in a mouse model of colitis-associated colon cancer induced by 1,2-dimethylhydrazine and dextran sodium sulfate (DSS). The apple oligogalactan (AOG) was highly effective against intestinal toxicities and carcinogenesis and decreased the elevated levels of TLR4 and tumor necrosis factor-α (TNF-α) induced by inflammation in vivo in this model system. In vitro studies, AOG alone only slightly increased the levels of protein expression and messenger RNA of TLR4, phosphorylation of IκBα and production of TNF-α in HT-29 cells. However, AOG significantly decreased the elevation of all the biomarkers induced by LPS when it was combined with LPS. The effect of AOG may be related to membrane internalization and redistribution of TLR4 from cell membrane to cytoplasm. AOG is active against inflammation and carcinogenesis through targeting LPS/TLR4/NF-κB pathway. Both AOG and LPS are agonists of TLR4 for sharing the same ligand but AOG has a much lower intrinsic activity than that of LPS. AOG may be useful for treatment of colitis and prevention of carcinogenesis in the clinics.

  12. Titanium Dioxide Nanoparticles: a Risk for Human Health?

    Science.gov (United States)

    Grande, Fedora; Tucci, Paola

    2016-01-01

    Titanium dioxide (TiO2) is a natural oxide of the element titanium with low toxicity, and negligible biological effects. The classification as bio-inert material has given the possibility to normal-sized (>100 nm) titanium dioxide particles (TiO2-NPs) to be extensively used in food products and as ingredients in a wide range of pharmaceutical products and cosmetics, such as sunscreens and toothpastes. Therefore, human exposure may occur through ingestion and dermal penetration, or through inhalation route, during both the manufacturing process and use. In spite of the extensively use of TiO2-NPs, the biological effects and the cellular response mechanisms are still not completely elucidated and thus a deep understanding of the toxicological profile of this compound is required. The main mechanism underlining the toxicity potentially triggered by TiO2-NPs seems to involve the reactive oxygen species (ROS) production, resulting in oxidative stress, inflammation, genotoxicity, metabolic change and potentially carcinogenesis. The extent and type of cell damage strongly depend on chemical and physical characteristics of TiO2-NPs, including size, crystal structure and photo-activation. In this mini-review, we would like to discuss the latest findings on the adverse effects and on potential human health risks induced by TiO2-NPs exposure.

  13. Association between Fusobacterium nucleatum and colorectal cancer: Progress and future directions

    Science.gov (United States)

    Zhang, Sheng; Cai, Sanjun; Ma, Yanlei

    2018-01-01

    The initiation and progression of colorectal cancer (CRC) involves genetic and epigenetic alterations influenced by dietary and environmental factors. Increasing evidence has linked the intestinal microbiota and colorectal cancer. More recently, Fusobacterium nucleatum (Fn), an opportunistic commensal anaerobe in the oral cavity, has been associated with CRC. Several research teams have reported an overabundance of Fn in human CRC and have elucidated the possible mechanisms by which Fn is involved in colorectal carcinogenesis in vitro and in mouse models. However, the mechanisms by which Fn promotes colorectal carcinogenesis remain unclear. To provide new perspectives for early diagnosis, the identification of high risk populations and treatment for colorectal cancer, this review will summarize the relative research progresses regarding the relationship between Fn and colorectal cancer. PMID:29760804

  14. Expression loss and revivification of RhoB gene in ovary carcinoma carcinogenesis and development.

    Science.gov (United States)

    Liu, Yingwei; Song, Na; Ren, Kexing; Meng, Shenglan; Xie, Yao; Long, Qida; Chen, Xiancheng; Zhao, Xia

    2013-01-01

    RhoB, a member of small GTPases belonging to the Ras protein superfamily, might have a suppressive activity in cancer progression. Here, expression of RhoB gene was evaluated in human benign, borderline and malignant ovary tumors by immunostaining, with normal ovary tissue as control. Malignant tumors were assessed according to Federation Internationale de Gynecologie Obstetrique (FIGO) guidelines and classified in stage I-IV. Revivification of RhoB gene was investigated by analyzing the effect of histone deacetylase (HDAC) inhibitor trichostatin (TSA) and methyltransferase inhibitor 5-azacytidine (5-Aza) on ovarian cancer cells via RT-PCR and western blot. Apoptosis of ovary cancer cells was detected using flowcytometry and fluorescence microscopy. Subsequently, RhoB expression is detected in normal ovary epithelium, borderline tumors, and decreases significantly or lost in the majority of ovarian cancer specimen (Pcancer cells, but 5-Aza couldn't. Interference into Revivification of RhoB gene results in reduction of ovary carcinoma cell apoptosis. It is proposed that loss of RhoB expression occurs frequently in ovary carcinogenesis and progression and its expression could be regulated by histone deacetylation but not by promoter hypermethylation, which may serve as a prospective gene treatment target for the patients with ovarian malignancy not responding to standard therapies.

  15. Human RecQL4 helicase plays critical roles in prostate carcinogenesis

    DEFF Research Database (Denmark)

    Su, Yanrong; Meador, Jarah A; Calaf, Gloria M

    2010-01-01

    Prostate cancer is the second leading cause of cancer-associated deaths among men in the western countries. Here, we report that human RecQL4 helicase, which is implicated in the pathogenesis of a subset of cancer-prone Rothmund-Thomson syndrome, is highly elevated in metastatic prostate cancer c...

  16. Mechanistic modelling of genetic and epigenetic events in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Andreev, S. G.; Eidelman, Y. A.; Salnikov, I. V.; Khvostunov, I. K.

    2006-01-01

    Methodological problems arise on the way of radiation carcinogenesis modelling with the incorporation of radiobiological and cancer biology mechanistic data. The results of biophysical modelling of different endpoints [DNA DSB induction, repair, chromosome aberrations (CA) and cell proliferation] are presented and applied to the analysis of RBE-LET relationships for radiation-induced neoplastic transformation (RINT) of C3H/10T1/2 cells in culture. Predicted values for some endpoints correlate well with the data. It is concluded that slowly repaired DSB clusters, as well as some kind of CA, may be initiating events for RINT. As an alternative interpretation, it is possible that DNA damage can induce RINT indirectly via epigenetic process. A hypothetical epigenetic pathway for RINT is discussed. (authors)

  17. [Curcumin inhibited rat colorectal carcinogenesis by activating PPAR-γ: an experimental study].

    Science.gov (United States)

    Liu, Liu-bin; Duan, Chang-nong; Ma, Zeng-yi; Xu, Gang

    2015-04-01

    To explore the chemopreventive effect of curcumin on DMH induced colorectal carcinogenesis and the underlining mechanism. Totally 40 Wistar rats were divided into the model group and the curcumin group by random digit table, 20 in each group. Meanwhile, a normal control group was set up (n =10). A colorectal cancer model was induced by subcutaneously injecting 20 mg/kg DMH. The tumor incidence and the inhibition rate were calculated. The effect of curcumin on the expression of peroxisome proliferator-activated receptor gamma (PPARγ) in rat colon mucosal tissues was observed using immunohistochemistry and Western blot. HT 29 cell line were cultured and divided into a control group, the curcumin + GW9662 (2-chloro-5-nitro-N-4-phenylbenzamide) intervention group, and the curcumin group. The inhibition of different concentrations curcumin on HT29 cell line was detected using MTT. The expression of curcumin on PPARy was also detected using Western blot. The tumor incidence was 80. 00% (12/15 cases) in the model group, obviously higher than that of the curcumin group (58. 82%, 10/17 cases, P manners. The expression of PPARy protein was significantly increased in the GW9662 group and the curcumin group, showing statistical difference when compared with the normal control group (P <0. 01). Compared with the GW9662 group, the expression of PPARγ protein was significantly increased in the curcumin group (P <0. 01). Curcumin could inhibit DMH-induced rat colorectal carcinogenesis and the growth of in vitro cultured HT 29 cell line, which might be achieved by activating PPARy signal transduction pathway.

  18. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters

    International Nuclear Information System (INIS)

    Straka, Elisabeth; Ellinger, Isabella; Balthasar, Christina; Scheinast, Matthias; Schatz, Jasmin; Szattler, Tamara; Bleichert, Sonja; Saleh, Leila; Knöfler, Martin; Zeisler, Harald; Hengstschläger, Markus; Rosner, Margit; Salzer, Hans; Gundacker, Claudia

    2016-01-01

    Highlights: • It is known that MeHg is able to pass the placenta and to affect fetal brain development. • Uptake and efflux transporters were examined in human primary trophoblast cells and BeWo cells. • Involvement in mercury transfer was assessed by measurement of cellular mercury content upon siRNA mediated gene knockdown. • Localization of transporters was determined by immunofluorescence microscopy. • LAT1 and rBAT at the apical membrane of the syncytiotrophoblast (STB) are involved in MeHg uptake. • MRP1 located at basal membrane of STB mediates mercury efflux. - Abstract: Background: The capacity of the human placenta to handle exogenous stressors is poorly understood. The heavy metal mercury is well-known to pass the placenta and to affect brain development. An active transport across the placenta has been assumed. The underlying mechanisms however are virtually unknown. Objectives: Uptake and efflux transporters (17 candidate proteins) assumed to play a key role in placental mercury transfer were examined for expression, localization and function in human primary trophoblast cells and the trophoblast-derived choriocarcinoma cell line BeWo. Methods: To prove involvement of the transporters, we used small interfering RNA (siRNA) and exposed cells to methylmercury (MeHg). Total mercury contents of cells were analyzed by Cold vapor-atomic fluorescence spectrometry (CV-AFS). Localization of the proteins in human term placenta sections was determined via immunofluorescence microscopy. Results: We found the amino acid transporter subunits L-type amino acid transporter (LAT)1 and rBAT (related to b 0,+ type amino acid transporter) as well as the efflux transporter multidrug resistance associated protein (MRP)1 to be involved in mercury kinetics of trophoblast cells (t-test P < 0.05). Conclusion: The amino acid transporters located at the apical side of the syncytiotrophoblast (STB) manage uptake of MeHg. Mercury conjugated to glutathione (GSH) is

  19. [Microsatellite instability and human papilloma virus genotypes in preneoplastic and neoplastic uterine cervix lesions].

    Science.gov (United States)

    Roa S, Juan Carlos; Martínez S, Ricardo; Montenegro, Sonia; Roa E, Iván; Capurro V, Italo; Ibacache S, Gilda; Melo A, Angélica

    2007-01-01

    The association between some specific human papilloma virus (HPV) types and cervix cancer is well known. However, the genetic conditions that favor the development of cervical cancer are less well known. To determine the presence of satellite instability (MSI) in preneoplastic and neoplastic lesions of the cervix and correlate these findings with HPV genotypes. Biopsy samples of cervical lesions were studied. Sixteen had low grade lesions, 22 had high grade lesions and 28 had an epidermoid cancer. Viral types were identified with polymerase chain reaction, dot-blot hybridization and restriction fragment length polymorphism. MSI was determined using a panel of eight highly informative microsatellites. Microsatellite instability in at least one locus was observed in 91, 56 and 69% of low grade lesions, high grade lesions and epidermoid carcinomas, respectively. MSI-High grade, MSI-Low grade instability and microsatellite stability were observed in 5, 60 and 46% of samples, respectively. Two of three samples with high grade instability had HPV 52 genotype. Other viral subtypes had frequencies that ranged from 78% to 100%, with the exception of HPV16 that was present in only 53% of samples with low grade instability. Two thirds of biopsy samples from cervical lesions had MSI, mechanism that can be involved in the first stages of cervical carcinogenesis. The low frequency of high grade instability, its association with HPV52 and the low frequency of HPV16 in samples with low grade instability, suggest different coadjutant mechanisms in cervical carcinogenesis.

  20. Aquaporin-5: from structure to function and dysfunction in cancer.

    Science.gov (United States)

    Direito, Inês; Madeira, Ana; Brito, Maria Alexandra; Soveral, Graça

    2016-04-01

    Aquaporins, a highly conserved group of membrane proteins, are involved in the bidirectional transfer of water and small solutes across cell membranes taking part in many biological functions all over the human body. In view of the wide range of cancer malignancies in which aquaporin-5 (AQP5) has been detected, an increasing interest in its implication in carcinogenesis has emerged. Recent publications suggest that this isoform may enhance cancer cell proliferation, migration and survival in a variety of malignancies, with strong evidences pointing to AQP5 as a promising drug target and as a novel biomarker for cancer aggressiveness with high translational potential for therapeutics and diagnostics. This review addresses the structural and functional features of AQP5, detailing its tissue distribution and functions in human body, its expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. Finally, the actual progress of AQP5 research, implications in cancer biology and potential for cancer detection and prognosis are discussed.

  1. Research for genetic instability of human genome

    Energy Technology Data Exchange (ETDEWEB)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M. (National Inst. of Radiological Sciences, Chiba (Japan)); Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author).

  2. Involvement of activation-induced cytidine deaminase in skin cancer development.

    Science.gov (United States)

    Nonaka, Taichiro; Toda, Yoshinobu; Hiai, Hiroshi; Uemura, Munehiro; Nakamura, Motonobu; Yamamoto, Norio; Asato, Ryo; Hattori, Yukari; Bessho, Kazuhisa; Minato, Nagahiro; Kinoshita, Kazuo

    2016-04-01

    Most skin cancers develop as the result of UV light-induced DNA damage; however, a substantial number of cases appear to occur independently of UV damage. A causal link between UV-independent skin cancers and chronic inflammation has been suspected, although the precise mechanism underlying this association is unclear. Here, we have proposed that activation-induced cytidine deaminase (AID, encoded by AICDA) links chronic inflammation and skin cancer. We demonstrated that Tg mice expressing AID in the skin spontaneously developed skin squamous cell carcinoma with Hras and Trp53 mutations. Furthermore, genetic deletion of Aicda reduced tumor incidence in a murine model of chemical-induced skin carcinogenesis. AID was expressed in human primary keratinocytes in an inflammatory stimulus-dependent manner and was detectable in human skin cancers. Together, the results of this study indicate that inflammation-induced AID expression promotes skin cancer development independently of UV damage and suggest AID as a potential target for skin cancer therapeutics.

  3. Urotensin-II receptor is over-expressed in colon cancer cell lines and in colon carcinoma in humans.

    Science.gov (United States)

    Federico, Alessandro; Zappavigna, Silvia; Romano, Marco; Grieco, Paolo; Luce, Amalia; Marra, Monica; Gravina, Antonietta Gerarda; Stiuso, Paola; D'Armiento, Francesco Paolo; Vitale, Giovanni; Tuccillo, Concetta; Novellino, Ettore; Loguercio, Carmela; Caraglia, Michele

    2014-01-01

    Urotensin (U)-II receptor (UTR) has been previously reported to be over-expressed in a number of tumours. Whether UTR-related pathway plays a role in colon carcinogenesis is unknown. We evaluated UTR protein and mRNA expression in human epithelial colon cancer cell lines and in normal colon tissue, adenomatous polyps and colon cancer. U-II protein expression was assessed in cancer cell lines. Moreover, we evaluated the effects of U-II(4-11) (an UTR agonist), antagonists and knockdown of UTR protein expression through a specific shRNA, on proliferation, invasion and motility of human colon cancer cells. Cancer cell lines expressed U-II protein and UTR protein and mRNA. By immunohistochemistry, UTR was expressed in 5-30% of epithelial cells in 45 normal controls, in 30-48% in 21 adenomatous polyps and in 65-90% in 48 colon adenocarcinomas. UTR mRNA expression was increased by threefold in adenomatous polyps and eightfold in colon cancer, compared with normal colon. U-II(4-11) induced a 20-40% increase in cell growth while the blockade of the receptor with specific antagonists caused growth inhibition of 20-40%. Moreover, the knock down of UTR with a shRNA or the inhibition of UTR with the antagonist urantide induced an approximately 50% inhibition of both motility and invasion. UTR appears to be involved in the regulation of colon cancer cell invasion and motility. These data suggest that UTR-related pathway may play a role in colon carcinogenesis and that UTR may function as a target for therapeutic intervention in colon cancer. © 2013 Stichting European Society for Clinical Investigation Journal Foundation.

  4. Reasons of carcinogenesis indicate a big-bang inside: a hypothesis for the aberration of DNA methylation.

    Science.gov (United States)

    Roy, A; Roy Chattopadhyay, N

    2013-07-01

    Cancer involves various sets of altered gene functions which embrace all the three basic mechanisms of regulation of gene expression. However, no common mechanism is inferred till date for this versatile disease and thus no full proof remedy can be offered. Here we show that the basic mechanisms are interlinked and indicate towards one of those mechanisms as being the superior one; the methylation of cytosines in specific DNA sequences, for the initiation and maintenance of carcinogenesis. The analyses of the previous reports and the nucleotide sequences of the DNA methyltransferases strongly support the assumption that the mutation(s) in the DNA-binding site(s) of DNA-methyltransferases acts as a master regulator; though it continues the cycle from mutation to repair to methylation. We anticipate that our hypothesis will start a line of study for the proposal of a treatment regime for cancers by introducing wild type methyltransferases in the diseased cells and/or germ cells, and/or by targeting ligands to the altered binding domain(s) where a mutation in the concerned enzyme(s) is seen. Copyright © 2013. Published by Elsevier Ltd.

  5. Involvement of DNA topoisomerase I in transcription of human ribosomal RNA genes

    International Nuclear Information System (INIS)

    Zhang, H.; Wang, J.C.; Liu, L.F.

    1988-01-01

    Treatment of HeLa cells with a DNA topoisomerase I-specific inhibitor, camptothecin, results in rapid cessation of the synthesis of the 45S rRNA precursor. The inhibition of rRNA synthesis is reversible following drug removal and correlates with the presence of camptothecin-trapped topoisomerase I-DNA abortive complexes, which can be detected as topoisomerase I-linked DNA breaks upon lysis with sodium dodecyl sulfate. These breaks were found to be concentrated within the transcribed region of human rRNA genes. No such sites can be detected in the inactive human rRNA genes in mouse-human hybrid cells, suggesting a preferential association of topoisomerase I with actively transcribed genes. The distribution of RNA polymerase molecules along the transcription unit of human rRNA genes in camptothecin-treated HeLa cells, as assayed by nuclear run-on transcription, shows a graded decrease of the RNA polymerase density toward the 3' end of the transcription unit; the density is minimally affected near the 5' start of the transcription unit. These results suggest that DNA topoisomerase I is normally involved in the elongation step of transcription, especially when the transcripts are long, and that camptothecin interferes with this role

  6. No evidence for functional inactivation of wild-type p53 protein by MDM2 overexpression in gastric carcinogenesis

    NARCIS (Netherlands)

    Blok, P.; Craanen, M. E.; Dekker, W.; Offerhaus, G. J.; Tytgat, G. N.

    1998-01-01

    Inactivation of wild-type p53 during gastric carcinogenesis is usually caused by mutations within exons 5-8 of the p53 gene leading to mutated, usually immunohistochemically detectable p53 proteins. However, functional inactivation of wild-type p53, mimicking mutational inactivation, may also result

  7. Inhibitory effect of etodolac, a selective cyclooxygenase-2 inhibitor, on stomach carcinogenesis in Helicobacter pylori-infected Mongolian gerbils

    International Nuclear Information System (INIS)

    Magari, Hirohito; Shimizu, Yasuhito; Inada, Ken-ichi; Enomoto, Shotaro; Tomeki, Tatsuji; Yanaoka, Kimihiko; Tamai, Hideyuki; Arii, Kenji; Nakata, Hiroya; Oka, Masashi; Utsunomiya, Hirotoshi; Tsutsumi, Yutaka; Tsukamoto, Tetsuya; Tatematsu, Masae; Ichinose, Masao

    2005-01-01

    The effect of the selective COX-2 inhibitor, etodolac, on Helicobacter pylori (Hp)-associated stomach carcinogenesis was investigated in Mongolian gerbils (MGs). Hp-infected MGs were fed for 23 weeks with drinking water containing 10 ppm N-methyl-N-nitrosourea. They were then switched to distilled water and placed on a diet containing 5-30 mg/kg/day etodolac for 30 weeks. We found that etodolac dose-dependently inhibited the development of gastric cancer, and no cancer was detected at a dose of 30 mg/kg/day. Etodolac did not affect the extent of inflammatory cell infiltration or oxidative DNA damage, but it significantly inhibited mucosal cell proliferation and dose-dependently repressed the development of intestinal metaplasia in the stomachs of Hp-infected MGs. These results suggest that COX-2 is a key molecule in inflammation-mediated stomach carcinogenesis and that chemoprevention of stomach cancer should be possible by controlling COX-2 expression or activity

  8. Human cortical areas involved in perception of surface glossiness.

    Science.gov (United States)

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2014-09-01

    Glossiness is the visual appearance of an object's surface as defined by its surface reflectance properties. Despite its ecological importance, little is known about the neural substrates underlying its perception. In this study, we performed the first human neuroimaging experiments that directly investigated where the processing of glossiness resides in the visual cortex. First, we investigated the cortical regions that were more activated by observing high glossiness compared with low glossiness, where the effects of simple luminance and luminance contrast were dissociated by controlling the illumination conditions (Experiment 1). As cortical regions that may be related to the processing of glossiness, V2, V3, hV4, VO-1, VO-2, collateral sulcus (CoS), LO-1, and V3A/B were identified, which also showed significant correlation with the perceived level of glossiness. This result is consistent with the recent monkey studies that identified selective neural response to glossiness in the ventral visual pathway, except for V3A/B in the dorsal visual pathway, whose involvement in the processing of glossiness could be specific to the human visual system. Second, we investigated the cortical regions that were modulated by selective attention to glossiness (Experiment 2). The visual areas that showed higher activation to attention to glossiness than that to either form or orientation were identified as right hV4, right VO-2, and right V3A/B, which were commonly identified in Experiment 1. The results indicate that these commonly identified visual areas in the human visual cortex may play important roles in glossiness perception. Copyright © 2014. Published by Elsevier Inc.

  9. Dysbiosis of the microbiome in gastric carcinogenesis.

    Science.gov (United States)

    Castaño-Rodríguez, Natalia; Goh, Khean-Lee; Fock, Kwong Ming; Mitchell, Hazel M; Kaakoush, Nadeem O

    2017-11-21

    The gastric microbiome has been proposed as an etiological factor in gastric carcinogenesis. We compared the gastric microbiota in subjects presenting with gastric cancer (GC, n = 12) and controls (functional dyspepsia (FD), n = 20) from a high GC risk population in Singapore and Malaysia. cDNA from 16S rRNA transcripts were amplified (515F-806R) and sequenced using Illumina MiSeq 2 × 250 bp chemistry. Increased richness and phylogenetic diversity but not Shannon's diversity was found in GC as compared to controls. nMDS clustered GC and FD subjects separately, with PERMANOVA confirming a significant difference between the groups. H. pylori serological status had a significant impact on gastric microbiome α-diversity and composition. Several bacterial taxa were enriched in GC, including Lactococcus, Veilonella, and Fusobacteriaceae (Fusobacterium and Leptotrichia). Prediction of bacterial metabolic contribution indicated that serological status had a significant impact on metabolic function, while carbohydrate digestion and pathways were enriched in GC. Our findings highlight three mechanisms of interest in GC, including enrichment of pro-inflammatory oral bacterial species, increased abundance of lactic acid producing bacteria, and enrichment of short chain fatty acid production pathways.

  10. Enhancement of preneoplastic lesion yield by Chios Mastic Gum in a rat liver medium-term carcinogenesis bioassay

    International Nuclear Information System (INIS)

    Doi, Kenichiro; Wei, Min; Kitano, Mitsuaki; Uematsu, Naomi; Inoue, Masayo; Wanibuchi, Hideki

    2009-01-01

    The mastic (Pistacia lentiscus var. chia) tree is native throughout the Mediterranean region and has long proved a source of food additives and medical treatments. To investigate the modifying effects of Chios Mastic Gum on rat liver carcinogenesis, 6-week-old male F344 rats were subjected to the established rat liver medium-term carcinogenesis bioassay (Ito-test). At the commencement, rats (groups 1-4) were intraperitoneally injected with 200 mg/kg body weight of diethylnitrosamine (DEN). After two weeks, mastic was added to CRF (Charles River Formula)-1 powdered basal diet at doses of 0, 0.01, 0.1 and 1% in groups 1-4, respectively. At week 3, all rats were underwent two-thirds partial hepatectomy. The experiment was terminated at week 8. As results show, liver weights were significantly increased in a mastic dose-dependent manner among groups 1-4. The numbers (/cm 2 ) and the areas (mm 2 /cm 2 ) of glutathione S-transferase placental form (GST-P)-positive cell foci (≥ 0.2 mm in diameter) were significantly increased in the DEN-1% group compared to the DEN-alone group, along with the average areas per foci and larger-sized foci (≥ 0.4 mm). 5-Bromo-2'-deoxyuridine (BrdU) + GST-P double-immunohistochemistry showed the highest BrdU-labeling indices within GST-P foci in the DEN-1% group. 8-hydroxydeoxyguanosine (8-OHdG) levels in liver DNA did not vary, while real-time quantitative polymerase chain reaction (PCR) analysis of livers revealed many up- or down-regulated genes in the DEN-1% group. In conclusion, this is the first report to display a promotion potential of Chios Mastic Gum on the formation of preneoplastic lesions in the established rat liver medium-term carcinogenesis bioassay

  11. Enhancement of broccoli indole glucosinolates by methyl jasmonate treatment and effects on prostate carcinogenesis.

    Science.gov (United States)

    Liu, Ann G; Juvik, John A; Jeffery, Elizabeth H; Berman-Booty, Lisa D; Clinton, Steven K; Erdman, John W

    2014-11-01

    Broccoli is rich in bioactive components, such as sulforaphane and indole-3-carbinol, which may impact cancer risk. The glucosinolate profile of broccoli can be manipulated through treatment with the plant stress hormone methyl jasmonate (MeJA). Our objective was to produce broccoli with enhanced levels of indole glucosinolates and determine its impact on prostate carcinogenesis. Brassica oleracea var. Green Magic was treated with a 250 μM MeJA solution 4 days prior to harvest. MeJA-treated broccoli had significantly increased levels of glucobrassicin, neoglucobrassicin, and gluconasturtiin (P broccoli powder, or 10% MeJA broccoli powder. Diets were fed throughout the study until termination at 20 weeks of age. Hepatic CYP1A was induced with MeJA broccoli powder feeding, indicating biological activity of the indole glucosinolates. Following ∼ 15 weeks on diets, neither of the broccoli treatments significantly altered genitourinary tract weight, pathologic score, or metastasis incidence, indicating that broccoli powder at 10% of the diet was ineffective at reducing prostate carcinogenesis in the TRAMP model. Whereas broccoli powder feeding had no effect in this model of prostate cancer, our work demonstrates the feasibility of employing plant stress hormones exogenously to stimulate changes in phytochemical profiles, an approach that may be useful for optimizing bioactive component patterns in foods for chronic-disease-prevention studies.

  12. Zyflamend reduces LTB4 formation and prevents oral carcinogenesis in a 7,12-dimethylbenz[alpha]anthracene (DMBA)-induced hamster cheek pouch model.

    Science.gov (United States)

    Yang, Peiying; Sun, Zheng; Chan, Diana; Cartwright, Carrie A; Vijjeswarapu, Mary; Ding, Jibin; Chen, Xiaoxin; Newman, Robert A

    2008-11-01

    Aberrant arachidonic acid metabolism, especially altered cyclooxygenase and 5-lipoxygenase (LOX) activities, has been associated with chronic inflammation as well as carcinogenesis in human oral cavity tissues. Here, we examined the effect of Zyflamend, a product containing 10 concentrated herbal extracts, on development of 7,12-dimethylbenz[alpha]anthracene (DMBA)-induced inflammation and oral squamous cell carcinoma (SCC). A hamster cheek pouch model was used in which 0.5% DMBA was applied topically onto the left cheek pouch of male Syrian golden hamsters either three times per week for 3 weeks (short term) or 6 weeks (long term). Zyflamend was then applied topically at one of three different doses (25, 50 and 100 microl) onto the left cheek pouch three times for 1 week (short-term study) or chronically for 18 weeks. Zyflamend significantly reduced infiltration of inflammatory cells, incidence of hyperplasia and dysplastic lesions, bromodeoxyuridine-labeling index as well as number of SCC in a concentration-dependent manner. Application of Zyflamend (100 microl) reduced formation of leukotriene B(4) (LTB(4)) by 50% compared with DMBA-treated tissues. The reduction of LTB(4) was concentration dependent. The effect of Zyflamend on inhibition of LTB(4) formation was further confirmed with in vitro cell-based assay. Adding LTB(4) to RBL-1 cells, a rat leukemia cell line expressing high levels of 5-LOX and LTA(4) hydrolase, partially blocked antiproliferative effect of Zyflamend. This study demonstrates that Zyflamend inhibited LTB(4) formation and modulated adverse histopathological changes in the DMBA-induced hamster cheek pouch model. The study suggests that Zyflamend might prevent oral carcinogenesis at the post-initiation stage.

  13. Reconstruction and analysis of transcription factor-miRNA co-regulatory feed-forward loops in human cancers using filter-wrapper feature selection.

    Directory of Open Access Journals (Sweden)

    Chen Peng

    Full Text Available BACKGROUND: As one of the most common types of co-regulatory motifs, feed-forward loops (FFLs control many cell functions and play an important role in human cancers. Therefore, it is crucial to reconstruct and analyze cancer-related FFLs that are controlled by transcription factor (TF and microRNA (miRNA simultaneously, in order to find out how miRNAs and TFs cooperate with each other in cancer cells and how they contribute to carcinogenesis. Current FFL studies rely on predicted regulation information and therefore suffer the false positive issue in prediction results. More critically, FFLs generated by existing approaches cannot represent the dynamic and conditional regulation relationship under different experimental conditions. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we proposed a novel filter-wrapper feature selection method to accurately identify co-regulatory mechanism by incorporating prior information from predicted regulatory interactions with parallel miRNA/mRNA expression datasets. By applying this method, we reconstructed 208 and 110 TF-miRNA co-regulatory FFLs from human pan-cancer and prostate datasets, respectively. Further analysis of these cancer-related FFLs showed that the top-ranking TF STAT3 and miRNA hsa-let-7e are key regulators implicated in human cancers, which have regulated targets significantly enriched in cellular process regulations and signaling pathways that are involved in carcinogenesis. CONCLUSIONS/SIGNIFICANCE: In this study, we introduced an efficient computational approach to reconstruct co-regulatory FFLs by accurately identifying gene co-regulatory interactions. The strength of the proposed feature selection method lies in the fact it can precisely filter out false positives in predicted regulatory interactions by quantitatively modeling the complex co-regulation of target genes mediated by TFs and miRNAs simultaneously. Moreover, the proposed feature selection method can be generally applied to

  14. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...... observation period. Side effects were evaluated clinically. No tumors appeared in untreated control mice or in just IPL-treated mice. Skin tumors developed in UV-exposed mice independently of IPL treatments. The time it took for 50% of the mice to first develop skin tumor ranged from 47 to 49 weeks...... in preoperative UV-exposed mice (p=0.94) and from 22 to 23 weeks in pre- and postoperative UV-exposed mice (p=0.11). IPL rejuvenation of lightly pigmented skin did not induce pigmentary changes (p=1.00). IPL rejuvenation of UV-pigmented skin resulted in an immediate increased skin pigmentation and a subsequent...

  15. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria.

    Science.gov (United States)

    Perera, Manosha; Al-Hebshi, Nezar Noor; Speicher, David J; Perera, Irosha; Johnson, Newell W

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it.

  16. Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis

    NARCIS (Netherlands)

    Hougardy, BMT; Maduro, JH; van der Zee, AGJ; de Groot, DJA; van den Heuvel, FAJ; de Vries, EGE; de Jong, S

    2006-01-01

    In cervical carcinogenesis, the p53 tumor suppressor pathway is disrupted by HPV (human papilloma virus) E6 oncogene expression. E6 targets p53 for rapid proteasome-mediated degradation. We therefore investigated whether proteasome inhibition by MG132 could restore wild-type p53 levels and sensitize

  17. Epidemiology and quantitation of environmental risk in humans from radiation and other agents

    International Nuclear Information System (INIS)

    Castellani, Amleto

    1985-01-01

    The identification and quantitation of environmental risk in humans is one of the main problems to be solved in order to improve the protection of individuals and of human populations against physical and chemical pollutants. Epidemiology plays a central role in the evaluation of health risk directly in human populations. In this volume are collected 33 lectures presented at the AS! course on ''Epidemiology and quantitation of environmental risk in humans from radiation and other agents: potential and limitations'', sponsored by NATO and Italian Association of Radiobiology and organized by ENEA. The course has been devoted to a number of aspects of environmental risk analysis and evaluation based on epidemiological investigation. Basic epidemiological concepts and methods have been reviewed. Fundamentals of dosimetry and microdosimetry were presented in relation to the contribution of epidemiology in defining the dose effect relationships for radiation carcinogenesis and its relation with age, sex and ethnicity. The mechanisms of carcinogenesis as a multi-stage process were illustrated. One of the main topics was 'cancer epidemiology' and its correlation with: - occupational and non-occupational exposure to radiation - diagnostic and therapeutic irradiation - cancer proneness - hereditary and familiar diseases - abnormal response to carcinogens - environmental pollution in air and water - exposure to radon in mines and in building material - atomic bomb explosion - chemotherapy - dioxin and related compounds

  18. Microarray Analyses of Genes Differentially Expressed by Diet (Black Beans and Soy Flour) during Azoxymethane-Induced Colon Carcinogenesis in Rats.

    Science.gov (United States)

    Rondini, Elizabeth A; Bennink, Maurice R

    2012-01-01

    We previously demonstrated that black bean (BB) and soy flour (SF)-based diets inhibit azoxymethane (AOM)-induced colon cancer. The objective of this study was to identify genes altered by carcinogen treatment in normal-appearing colonic mucosa and those attenuated by bean feeding. Ninety-five male F344 rats were fed control (AIN) diets upon arrival. At 4 and 5 weeks, rats were injected with AOM (15 mg/kg) or saline and one week later administered an AIN, BB-, or SF-based diet. Rats were sacrificed after 31 weeks, and microarrays were conducted on RNA isolated from the distal colonic mucosa. AOM treatment induced a number of genes involved in immunity, including several MHC II-associated antigens and innate defense genes (RatNP-3, Lyz2, Pla2g2a). BB- and SF-fed rats exhibited a higher expression of genes involved in energy metabolism and water and sodium absorption and lower expression of innate (RatNP-3, Pla2g2a, Tlr4, Dmbt1) and cell cycle-associated (Cdc2, Ccnb1, Top2a) genes. Genes involved in the extracellular matrix (Col1a1, Fn1) and innate immunity (RatNP-3, Pla2g2a) were induced by AOM in all diets, but to a lower extent in bean-fed animals. This profile suggests beans inhibit colon carcinogenesis by modulating cellular kinetics and reducing inflammation, potentially by preserving mucosal barrier function.

  19. Biological parameters for lung cancer in mathematical models of carcinogenesis

    International Nuclear Information System (INIS)

    Jacob, P.; Jacob, V.

    2003-01-01

    Applications of the two-step model of carcinogenesis with clonal expansion (TSCE) to lung cancer data are reviewed, including those on atomic bomb survivors from Hiroshima and Nagasaki, British doctors, Colorado Plateau miners, and Chinese tin miners. Different sets of identifiable model parameters are used in the literature. The parameter set which could be determined with the lowest uncertainty consists of the net proliferation rate gamma of intermediate cells, the hazard h 55 at an intermediate age, and the hazard H? at an asymptotically large age. Also, the values of these three parameters obtained in the various studies are more consistent than other identifiable combinations of the biological parameters. Based on representative results for these three parameters, implications for the biological parameters in the TSCE model are derived. (author)

  20. Polymeric black tea polyphenols inhibit 1,2-dimethylhydrazine induced colorectal carcinogenesis by inhibiting cell proliferation via Wnt/β-catenin pathway

    International Nuclear Information System (INIS)

    Patel, Rachana; Ingle, Arvind; Maru, Girish B.

    2008-01-01

    Tea polyphenols like epigallocatechin gallate and theaflavins are established chemopreventive agents for colorectal carcinogenesis. However, studies on evaluating similar chemopreventive properties of thearubigins or polymeric black tea polyphenols (PBPs), the most abundant polyphenols in black tea, are limited. Hence, in the present study we aim to investigate chemopreventive effects along with probable mechanisms of action of PBP extract employing 1,2-dimethylhydrazine (DMH)-induced colorectal carcinogenesis in Sprague-Dawley rats as experimental model. The present study suggests that PBPs, like other tea polyphenols, also inhibit DMH-induced colorectal tumorigenesis by decreasing tumor volume and multiplicity. This study also shows that although the pretreatment with PBP extract could induce detoxifying enzymes in hepatic and colorectal tissue, it did not show any additional chemopreventive effects when compared to treatments with PBP extract after initiation with DMH. Mechanistically, PBP extract may inhibit colorectal carcinogenesis by decreasing DMH-induced cell proliferation via Wnt/β-catenin pathway. Treatments with PBP extract showed decreased levels of COX-2, c-MYC and cyclin D1 proteins which aid cell proliferation probably by regulating β-catenin by maintaining expression of APC and decreasing inactivation of GSK3β. DMH-induced activation of MAP kinases such as ERK and JNK was also found to be inhibited by treatments with PBP extract. In conclusion, the protective effects of PBP extract could be attributed to inhibition of DMH-induced cellular proliferation probably through β-catenin regulation

  1. The relationship between Human Papillomavirus and Epstein-Barr virus infections with breast cancer of Iranian patients

    Directory of Open Access Journals (Sweden)

    Zahra Tahmasebi fard

    2013-11-01

    Our analysis could not confirm a role of HPV in breast cancer but statistically, significant correlation between EBV infection and breast cancer exists. To demonstrate the possible relationship between viral load and breast cancer, need for epidemiological, biological and molecular mechanisms to clear the virus is involved in the process of carcinogenesis.

  2. Involvement of the kynurenine pathway in human glioma pathophysiology.

    Directory of Open Access Journals (Sweden)

    Seray Adams

    Full Text Available The kynurenine pathway (KP is the principal route of L-tryptophan (TRP catabolism leading to the production of kynurenine (KYN, the neuroprotectants, kynurenic acid (KYNA and picolinic acid (PIC, the excitotoxin, quinolinic acid (QUIN and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+. The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1, indoleamine 2,3-dioxygenase-2 (IDO-2 and tryptophan 2,3-dioxygenase (TDO-2 initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1 cultured human glioma cells and 2 plasma from patients with glioblastoma (GBM. Our data revealed that interferon-gamma (IFN-γ stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU, kynurenine hydroxylase (KMO and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD and kynurenine aminotransferase-I (KAT-I expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18 compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD(+, which is necessary for energy production and DNA repair.

  3. A generalized theory of carcinogenesis due to chronodisruption.

    Science.gov (United States)

    Erren, Thomas C; Reiter, Russel J

    2008-12-01

    For two decades, research has been suggested and conducted into the causation and development of cancers in seemingly diverse and unrelated populations such as blind individuals, shift-workers, flight personnel, Arctic residents and subsets of sleepers. One common denominator of these investigations is "melatonin". Another common denominator is that all these studies implicitly pursued the validity of the so-called "melatonin hypothesis", of a corollary and of associated predictions which can be united in our proposed theory of "carcinogenesis due to chronodisruption". The new theory suggests that the various predictions investigated between 1987 and 2008 represent different aspects of the same problem. Indeed, abundant experimental evidence supports the notion that the final common cause of many cases of cancer may be what has been termed chronodisruption (CD), a relevant disturbance of the temporal organization or order of physiology, endocrinology, metabolism and behaviour. While melatonin as a key time messenger and time keeper can be a marker of CD, it is probably only partially related to the differential cancer occurrence apparent in individuals who chronically or frequently experience an excess or deficit of chronodisruption.

  4. Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis.

    Science.gov (United States)

    Ghouri, Yezaz Ahmed; Mian, Idrees; Rowe, Julie H

    2017-01-01

    Since the 1970s, the epidemic of hepatocellular carcinoma (HCC) has spread beyond the Eastern Asian predominance and has been increasing in Northern hemisphere, especially in the United States (US) and Western Europe. It occurs more commonly in males in the fourth and fifth decades of life. Among all cancers, HCC is one of the fastest growing causes of death in the US and poses a significant economic burden on healthcare. Chronic liver disease due to hepatitis B virus or hepatitis C virus and alcohol accounts for the majority of HCC cases. Incidence of nonalcoholic fatty liver disease has been on the risem and it has also been associated with the development of HCC. Its pathogenesis varies based on the underlying etiological factor although majority of cases develop in the setting of background cirrhosis. Carcinogenesis of HCC includes angiogenesis, chronic inflammation, and tumor macroenvironment and microenvironment. There is a significant role of both intrinsic genetic risk factors and extrinsic influences such as alcohol or viral infections that lead to the development of HCC. Understanding its etiopathogenesis helps select appropriate diagnostic tests and treatments.

  5. [Molecular aspects of human papillomaviruses and their relation to uterine cervix cancer].

    Science.gov (United States)

    García-Carrancá, A; Gariglio, P V

    1993-01-01

    Papillomaviruses (wart viruses) are responsible for the development of benign and malignant epithelial lesions in mammals. More than 60 different types of human papillomaviruses (HPVs) have been isolated to date. Some of them are major candidates as etiologic agents in cervical cancer. DNA from HPV types 16, 18 and 33 is usually found integrated in about 90 percent of genital carcinomas. Integration of the viral DNA into the cellular genome may be an important step towards the development of malignancy. Two early genes of HPVs (E6 y E7) are involved in cellular transformation. Another early gene (E2) participates in gene control by directly binding to conserved DNA motifs in the viral genome. Several protein factors of viral and cellular origin interact with the regulatory region of HPVs and participate in the regulation transcription of oncogenes E6 and E7. Cellular factors, such as immune system and oncogene and anti-oncogene alterations, seem to play an important role in papillomavirus-associated cervical carcinogenesis.

  6. The induction and repair of cyclobutane thymidine dimers in human skin

    International Nuclear Information System (INIS)

    Roza, L.; Erasmus Univ., Rotterdam; Vermeulen, W.; Schans, G.P. van der; Lohman, P.H.M.

    1987-01-01

    The most important detrimental effect of ultraviolet radiation (UV) on the living cell, so far known, is the induction of damage in the DNA. The major photoproducts induced in DNA by UV-C (200-280 nm) and UV-B (280-315 nm) are the cyclobutane-type pyrimidine dimers, which have been implicated in UV-induced mutagenesis and carcinogenesis. Dimer lesions in DNA of cells may be repaired in the dark by a multi-enzyme process (excision repair), or via a light dependent enzymatic reaction known as photoreactivation (phr) which is specific for pyrimidine dimers. Although phr has been found to occur in a wide range of organisms, studies on the presence of phr in mammalian cells have yielded conflicting results. To investigate repair of pyrimidine dimers in human skin cells irradiated in vivo, a specific and sensitive detection method was developed based on a monoclonal antibody directed against thymidine dimers. Application together with a fluorescent immunostaining permits the direct detection of thymidine dimers in human skin cells. The method is used in studies aimed at a better understanding of the role of these lesions in the process of carcinogenesis. A report is given on the isolation and characterization of the antibodies, and their application in a study on the induction of pyrimidine dimers in human skin and on photorepair in cultured cells. 10 refs.; 2 figs

  7. TP53 mutation and human papilloma virus status of oral squamous cell carcinomas in young adult patients

    NARCIS (Netherlands)

    Braakhuis, B.J.M.; Rietbergen, M.M.; Buijze, M.; Snijders, P.J.F.; Bloemena, E.; Brakenhoff, R.H.; Leemans, C.R.

    2014-01-01

    Objective Little is known about the molecular carcinogenesis of oral squamous cell carcinoma (OSCC) in young adult patients. The aim of this study was to investigate the detailed TP53 mutation and human papilloma virus (HPV) status of OSCC in patients, younger than 45 years. Methods TP53 mutations

  8. Is the role of the environment in carcinogenesis overestimated. [Individual health status, modifying factor

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E J

    1979-01-01

    The dominant role of the physical and chemical environment in the development of cancer is challenged. Analyses of the etiology of skin, bladder, respiratory and gastric cancers are presented which demonstrate the considerable extent to which one's health status may modify the initiation and promotion of environmentally asociated cancers. It is concluded that although environmental factors may initiate and/or promote 85 to 90 percent of all cancers this is misleading since it neglects the critical role of the individual's health status as a factor modifying carcinogenesis.

  9. Proč rypoši nestárnou?

    OpenAIRE

    Jelínková, Alena

    2016-01-01

    Naked mole rat and blind mole rat are useful model organisms for human age-associated diaseases studies. Unlike human, their long lifespan is not accompanied by physical health impairment. In both species, the genes involved in aging process or carcinogenesis are under positive selection or their regulation differs from the regulatory pattern known in other rodents or human. Some genes are present in higher number of copies, missing or entirely new and not observed in other organisms. In nake...

  10. Differentiation and carcinogenesis: an integrated multilevel study of mechanisms from molecules to man. Progress report

    International Nuclear Information System (INIS)

    1985-01-01

    This study sought to identify and characterize mesenchymal progenitor cells (MPCs) in vitro, to identify the in vivo equivalent of the in vitro MPCs, and to determine the relationship between the presence or response of these cells both in vitro and eventually in vivo to altered proliferative capacity (in vitro cellular senescence, in vivo organismal aging) and altered susceptibility to carcinogenesis (frequency of in vitro neoplastic transformation and age-related frequency of in vivo cancer incidence). 16 refs

  11. p21(Waf1/Cip1) expression and the p53/MDM2 feedback loop in gastric carcinogenesis

    NARCIS (Netherlands)

    Craanen, M. E.; Blok, P.; Offerhaus, G. J.; Meijer, G. A.; Dekker, W.; Kuipers, E. J.; Meuwissen, S. G.

    1999-01-01

    Data are non-existent regarding coincidental alterations in the expression of p53 and its downstream target genes MDM2 and p21(Waf1/Cip1) in gastric carcinogenesis. An immunohistochemical study was therefore performed to examine the interrelationships of p53, MDM2, and p21(Waf1/Cip1) expression in a

  12. Synthetic triterpenoid induces 15-PGDH expression and suppresses inflammation-driven colon carcinogenesis.

    Science.gov (United States)

    Choi, Sung Hee; Kim, Byung-Gyu; Robinson, Janet; Fink, Steve; Yan, Min; Sporn, Michael B; Markowitz, Sanford D; Letterio, John J

    2014-06-01

    Colitis-associated colon cancer (CAC) develops as a result of inflammation-induced epithelial transformation, which occurs in response to inflammatory cytokine-dependent downregulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and subsequent suppression of prostaglandin metabolism. Agents that both enhance 15-PGDH expression and suppress cyclooxygenase-2 (COX-2) production may more effectively prevent CAC. Synthetic triterpenoids are a class of small molecules that suppress COX-2 as well as inflammatory cytokine signaling. Here, we found that administration of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-C28-methyl ester (CDDO-Me) suppresses CAC in mice. In a spontaneous, inflammation-driven intestinal neoplasia model, deletion of Smad4 specifically in T cells led to progressive production of inflammatory cytokines, including TNF-α, IFN-γ, iNOS, IL-6, IL-1β; as well as activation of STAT1 and STAT3; along with suppression of 15-PGDH expression. Oral administration of CDDO-Me to mice with SMAD4-deficient T cells increased survival and suppressed intestinal epithelial neoplasia by decreasing production of inflammatory mediators and increasing expression of 15-PGDH. Induction of 15-PGDH by CDDO-Me was dose dependent in epithelial cells and was abrogated following treatment with TGF-β signaling inhibitors in vitro. Furthermore, CDDO-Me-dependent 15-PGDH induction was not observed in Smad3-/- mice. Similarly, CDDO-Me suppressed azoxymethane plus dextran sodium sulfate-induced carcinogenesis in wild-type animals, highlighting the potential of small molecules of the triterpenoid family as effective agents for the chemoprevention of CAC in humans.

  13. Doenjang prepared with mixed starter cultures attenuates azoxymethane and dextran sulfate sodium-induced colitis-associated colon carcinogenesis in mice

    Directory of Open Access Journals (Sweden)

    Ji-Kang Jeong

    2014-01-01

    Full Text Available Backgrounds: Doenjang is traditional Korean fermented soybean paste and widely known for its various health benefits including anticancer effect. In this study, we manufactured doenjang with the grain-type meju using probiotic mixed starter cultures of Aspegillus oryzae, Bacillus subtilis-SKm, and Lactococcus lactis-GAm to improve the qualities and beneficial properties of doenjang. Materials and Methods: The inhibitory effects of the doenjang prepared with the grain-type meju using mixed starter cultures were investigated in azoxymethane (AOM and dextran sulfate sodium (DSS-induced colon carcinogenesis mice model. AOM and DSS colon carcinogenesis was induced in female C57BL/6 mice, and doenjang was orally administered for 4 weeks. Body weight, colon length, and colon weight of mice were determined, and colonic tissues were histologically evaluated. The serum levels of proinflammatory cytokines as well as the expression of inflammation- and apoptosis-related genes in colonic tissue were also analyzed. Results: Administration of the doenjang using probiotic mixed starter cultures ameliorated the symptoms of colon cancer, and reduced the incidence of neoplasia, and reduced the levels of serum proinflammatory cytokines such as interleukin-6, and tumor necrosis factor-α and inducible nitric oxide synthase and cycloooxygenase-2 expression levels in colonic tissue. In addition, it increased Bax and reduced Bcl-2 expression levels and increased p21 and p53 expression in the colonic tissues. Conclusion: These findings indicate that the doenjang attenuated colon carcinogenesis induced by AOM and DSS by ameliorating the symptoms of colon cancer, reducing the occurrence of neoplasia, regulating proinflammatory cytokine levels, and controlling the expressions of inflammation- and apoptosis-related genes in the colonic tissue.

  14. Evaluation of carcinogenic potential of diuron in a rat mammary two-stage carcinogenesis model.

    Science.gov (United States)

    Grassi, Tony Fernando; Rodrigues, Maria Aparecida Marchesan; de Camargo, João Lauro Viana; Barbisan, Luís Fernando

    2011-04-01

    This study aimed to evaluate the carcinogenic potential of the herbicide Diuron in a two-stage rat medium-term mammary carcinogenesis model initiated by 7,12-dimethylbenz(a)anthracene (DMBA). Female seven-week-old Sprague-Dawley (SD) rats were allocated to six groups: groups G1 to G4 received intragastrically (i.g.) a single 50 mg/kg dose of DMBA; groups G5 and G6 received single administration of canola oil (vehicle of DMBA). Groups G1 and G5 received a basal diet, and groups G2, G3, G4, and G6 were fed the basal diet with the addition of Diuron at 250, 1250, 2500, and 2500 ppm, respectively. After twenty-five weeks, the animals were euthanized and mammary tumors were histologically confirmed and quantified. Tumor samples were also processed for immunohistochemical evaluation of the expressions of proliferating cell nuclear antigen (PCNA), cleaved caspase-3, estrogen receptor-α (ER-α), p63, bcl-2, and bak. Diuron treatment did not increase the incidence or multiplicity of mammary tumors (groups G2 to G4 versus Group G1). Also, exposure to Diuron did not alter tumor growth (cell proliferation and apoptosis indexes) or immunoreactivity to ER-α, p63 (myoephitelial marker), or bcl-2 and bak (apoptosis regulatory proteins). These findings indicate that Diuron does not have a promoting potential on mammary carcinogenesis in female SD rats initiated with DMBA.

  15. Stimulatory effects of curcumin and quercetin on posttranslational modifications of p53 during lung carcinogenesis.

    Science.gov (United States)

    Zhang, P; Zhang, Xy

    2018-06-01

    Lung cancer is responsible for increase in mortality due to cancer-related deaths, and new approaches are being explored for the betterment of the situation. In the present study, chemopreventive efficacy of curcumin and quercetin was investigated against benzo(a)pyrene (BP)-induced lung carcinogenesis. The mice were segregated into five groups, which included normal control, BP-treated, BP + curcumin-treated, BP + quercetin-treated, and BP + curcumin + quercetin-treated groups. The morphological and histological analyses of tumor nodules confirmed lung carcinogenesis22 weeks after weeks single intraperitoneal injection of BP at a dose of 100 mg/kg body weight to mice. Curcumin and quercetin when administered individually as well as in combination significantly elevated the expression of acetylated-p53, which was otherwise depressed due to BP treatment. Also, both the phytochemicals significantly reduced the BP-inflicted increased levels of phosphorylated-p53. Furthermore, observed increase in the number of apoptotic cells by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), assay and increased activities of caspase 3 and 9 confirmed the induction of apoptosis by curcumin and quercetin. Moreover, the histological slides also showed noticeable improvement in the histoarchitecture of lungs by phytochemicals. The present study concludes that prophylactic treatment with curcumin and quercetin induces apoptosis in the lungs by modulation of p53 posttranslational modifications.

  16. Transcriptional profiling of human breast cancer cells cultured under microgravity conditions revealed the key role of genetic gravity sensors previously detected in Drosophila melanogaster

    Science.gov (United States)

    Valdivia-Silva, Julio E.; Lavan, David; Diego Orihuela-Tacuri, M.; Sanabria, Gabriela

    2016-07-01

    Currently, studies in Drosophila melanogaster has shown emerging evidence that microgravity stimuli can be detected at the genetic level. Analysis of the transcriptome in the pupal stage of the fruit flies under microgravity conditions versus ground controls has suggested the presence of a few candidate genes as "gravity sensors" which are experimentally validated. Additionally, several studies have shown that microgravity causes inhibitory effects in different types of cancer cells, although the genes involved and responsible for these effects are still unknown. Here, we demonstrate that the genes suggested as the sensors of gravitational waves in Drosophila melanogaster and their human counterpart (orthologous genes) are highly involved in carcinogenesis, proliferation, anti-apoptotic signals, invasiveness, and metastatic potential of breast cancer cell tumors. The transcriptome analyses suggested that the observed inhibitory effect in cancer cells could be due to changes in the genetic expression of these candidates. These results encourage the possibility of new therapeutic targets managed together and not in isolation.

  17. Effect of dietary supplementation on the prognostic value of urinary and serum 8-isoprostaglandin F2α in chemically-induced mammary carcinogenesis in the rat

    Directory of Open Access Journals (Sweden)

    Białek Sławomir

    2011-03-01

    Full Text Available Abstract Backround The aim of the present study was to assess the effects of zinc or copper and polyphenolic compounds on the 8-isoprostaglandin F2α concentration in the serum and urine of rats with mammary cancer (adenocarcinoma induced with 7,12-dimethylbenz[a]antracene. The research focused on the kinetics of alterations in urinary 8-isoPGF2α at the early stage of carcinogenesis as well as the influence of dietary factors on the process. The impact of selected compounds on the intensity of DMBA - induced carcinogenesis was also assessed. Result and conclusions Administration of DMBA, a compound that inducers mammary tumors in experimental animals, increased the serum and urinary 8-isoPGF2α levels in study rats. In the rat model, diet supplementation with zinc, combined with selected polyphenolic compounds (resveratrol or genistein yielded a statistically significant decrease in the rat serum and urinary biomarker concentration with a simultaneously significant stimulation of carcinogenesis. The results indicate that there is an inverse correlation between the intensity of DMBA-induced carcinogenicity and the level of 8-isoPGF2α in urine and serum of rats.

  18. Dietary chromium and nickel enhance UV-carcinogenesis in skin of hairless mice

    International Nuclear Information System (INIS)

    Uddin, Ahmed N.; Burns, Fredric J.; Rossman, Toby G.; Chen, Haobin; Kluz, Thomas; Costa, Max

    2007-01-01

    The skin cancer enhancing effect of chromium (in male mice) and nickel in UVR-irradiated female Skh1 mice was investigated. The dietary vitamin E and selenomethionine were tested for prevention of chromium-enhanced skin carcinogenesis. The mice were exposed to UVR (1.0 kJ/m 2 3x weekly) for 26 weeks either alone, or combined with 2.5 or 5.0 ppm potassium chromate, or with 20, 100 or 500 ppm nickel chloride in drinking water. Vitamin E or selenomethionine was added to the lab chow for 29 weeks beginning 3 weeks before the start of UVR exposure. Both chromium and nickel significantly increased the UVR-induced skin cancer yield in mice. In male Skh1 mice, UVR alone induced 1.9 ± 0.4 cancers/mouse, and 2.5 or 5.0 ppm potassium chromate added to drinking water increased the yields to 5.9 ± 0.8 and 8.6 ± 0.9 cancers/mouse, respectively. In female Skh1 mice, UVR alone induced 1.7 ± 0.4 cancers/mouse, and the addition of 20, 100 or 500 ppm nickel chloride increased the yields to 2.8 ± 0.9, 5.6 ± 0.7 and 4.2 ± 1.0 cancers/mouse, respectively. Neither vitamin E nor selenomethionine reduced the cancer yield enhancement by chromium. These results confirm that chromium and nickel, while not good skin carcinogens per se, are enhancers of UVR-induced skin cancers in Skh1 mice. Data also suggest that the enhancement of UVR-induced skin cancers by chromate may not be oxidatively mediated since the antioxidant vitamin E as well as selenomethionine, found to prevent arsenite-enhanced skin carcinogenesis, failed to suppress enhancement by chromate

  19. Vulnerability of Normal Human Mammary Epithelial Cells to Oncogenic Transformation

    Science.gov (United States)

    2012-04-01

    control expression of many of these miRNA genes. Many of the epigenetically regulated miRNAs identified are deregulated in breast cancer-derived...review board and Health Insurance Portability and Accountability Act regulations. At the time of surgery, a 1 to 3 cm section of the tumor was immediately...transformation process for- ward; the early deregulation of the HOX gene family clusters, which are decisively linked to human carcinogenesis, are one clear

  20. Calretinin as a marker for premotor neurons involved in upgaze in human brainstem

    Directory of Open Access Journals (Sweden)

    Christopher eAdamczyk

    2015-12-01

    Full Text Available Eye movements are generated by different premotor pathways. Damage to them can cause specific deficits of eye movements, such as saccades. For correlative clinico-anatomical post-mortem studies of cases with eye movement disorders it is essential to identify the functional cell groups of the oculomotor system in the human brain by marker proteins. Based on monkey studies, the premotor neurons of the saccadic system can be identified by the histochemical markers parvalbumin and perineuronal nets in humans. These areas involve the interstitial nucleus of Cajal (INC and the rostral interstitial nucleus of the medial longitudinal fascicle (RIMLF, which both contain premotor neurons for upgaze and downgaze. Recent monkey and human studies revealed a selective excitatory calretinin-positive input to the motoneurons mediating upgaze, but not to those for downgaze. Three premotor regions were identified as sources of calretinin input in monkey: y-group, INC and RIMLF. These findings suggest that the expression pattern of parvalbumin and calretinin may help to identify premotor neurons involved in up- or downgaze. In a post-mortem study of five human cases without neurological diseases we investigated the y-group, INC and RIMLF for the presence of parvalbumin and calretinin positive neurons including their co-expression. Adjacent thin paraffin sections were stained for the aggrecan component of perineuronal nets, parvalbumin or calretinin and glutamate decarboxylase. The comparative analysis of scanned thin sections of INC and RIMLF revealed medium-sized parvalbumin positive neurons with and without calretinin coexpression, which were intermingled. The parvalbumin/calretinin positive neurons in both nuclei are considered as excitatory premotor upgaze neurons. Accordingly, the parvalbumin-positive neurons lacking calretinin are considered as premotor downgaze neurons in RIMLF, but may in addition include inhibitory premotor upgaze neurons in the INC as

  1. Radiation toxicology

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Storer, J.B.; Ullrich, R.L.

    1979-01-01

    Extensive studies on both human and experimental animal populations have provided information that allow radiation protection standards to be set with greater confidence than for most if not all other carcinogenic agents. Furthermore, both international and national advisory bodies are continually updating the risk estimates and the standards as new information is available. However, it is clear that models are needed that take into account the multistage nature of carcinogenesis. Studies in both ionizing and ultraviolet radiation carcinogenesis are more valuable to the general problem of elucidating the mechanisms involved in cancer than is indicated by the amount of work or support for this field of research

  2. Radiation toxicology

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Storer, J.B.; Ullrich, R.L.

    1979-01-01

    The extensive studies on both human and experimental animal populations have provided information that allows radiation protection standards to be set with greater confidence than for most if not all other carcinogenic agents. Furthermore, both international and national advisory bodies are continually updating the risk estimates and the standards as new information is available. However, it is clear that we need models that take into account the multistage nature of carcinogenesis. Studies in both ionizing and ultraviolet radiation carcinogenesis are more valuable to the general problem of elucidating the mechanisms involved in cancer than is indicated by the amount of work or support for this field of research

  3. Sulfogalactosylglycerolipid is involved in human gamete interaction.

    Science.gov (United States)

    Weerachatyanukul, W; Rattanachaiyanont, M; Carmona, E; Furimsky, A; Mai, A; Shoushtarian, A; Sirichotiyakul, S; Ballakier, H; Leader, A; Tanphaichitr, N

    2001-12-01

    Recent results from our laboratory have revealed the role of sulfogalactosylglycerolipid (SGG) in mouse sperm-zona pellucida (ZP) binding. In this report, we demonstrated the presence of SGG in Percoll-gradient centrifuged (PGC) human sperm by high performance thin layer chromatography with orcinol and Azure A staining, specific for glycolipids and sulfolipids, respectively. SGG in human PGC sperm was quantified by its affinity to Azure A to be 12-15 mol% of sperm lipids. Indirect immunofluorescence revealed that SGG existed on both live and aldehyde fixed human sperm in the head region. Pretreatment of human PGC sperm with affinity purified antiSGG Fab markedly inhibited sperm binding to the ZP in a concentration dependent manner, without any changes in the spontaneous acrosome rate or sperm motility parameters. Fluorescently labeled SGG liposomes also bound uniformly to isolated human ZP, while fluorescently labeled galactosylglycerolipid (GG, SGG's parental lipid) or phosphatidylserine (PS, negatively charged like SGG) liposomes did not. All of these results suggested the role of human sperm SGG in ZP binding. Copyright 2001 Wiley-Liss, Inc.

  4. Possible Involvement of Human Mast Cells in the Establishment of Pregnancy via Killer Cell Ig-Like Receptor 2DL4.

    Science.gov (United States)

    Ueshima, Chiyuki; Kataoka, Tatsuki R; Hirata, Masahiro; Sugimoto, Akihiko; Iemura, Yoshiki; Minamiguchi, Sachiko; Nomura, Takashi; Haga, Hironori

    2018-06-01

    The involvement of mast cells in the establishment of pregnancy is unclear. Herein, we found that human mast cells are present in the decidual tissues of parous women and expressed a human-specific protein killer cell Ig-like receptor (KIR) 2DL4, a receptor for human leukocyte antigen G expressed on human trophoblasts. In contrast, decreased numbers of decidual mast cells and reduced KIR2DL4 expression were observed in these cells of infertile women who had undergone long-term corticosteroid treatment. Co-culture of the human mast cell line, LAD2, and human trophoblast cell line, HTR-8/SVneo, accelerated the migration and tube formation of HTR-8/SVneo cells in a KIR2DL4-dependent manner. These observations suggest the possible involvement of human mast cells in the establishment of pregnancy via KIR2DL4 and that long-term corticosteroid treatment may cause infertility by influencing the phenotypes of decidual mast cells. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Association of Chlamydia trachomatis Infection and Herpes Simplex Virus Type 2 Serostatus With Genital Human Papillomavirus Infection in Men: The HPV in Men Study

    NARCIS (Netherlands)

    Alberts, Catharina Johanna; Schim van der Loeff, Maarten F.; Papenfuss, Mary R.; da Silva, Roberto José Carvalho; Villa, Luisa Lina; Lazcano-Ponce, Eduardo; Nyitray, Alan G.; Giuliano, Anna R.

    2013-01-01

    Background: Studies in women indicate that some sexually transmitted infections promote human papillomavirus (HPV) persistence and carcinogenesis. Little is known about this association in men; therefore, we assessed whether Chlamydia trachomatis (CT) infection and herpes simplex virus type 2

  6. Daily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal mucosa carcinoma

    Directory of Open Access Journals (Sweden)

    Ye H

    2015-06-01

    Full Text Available Hua Ye, Kai Yang, Xue-Mei Tan, Xiao-Juan Fu, Han-Xue LiDepartment of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of ChinaBackground: Recent studies have demonstrated that the clock gene PER1 regulates various tumor-related genes. Abnormal expressions and circadian rhythm alterations of PER1 are closely related to carcinogenesis. However, the dynamic circadian variations of PER1 and tumor-related genes at different stages of carcinogenesis remain unknown. This study was conducted to investigate the daily rhythm variation of PER1 and expression of tumor-related genes VEGF, KI67, C-MYC, and P53 in different stages of carcinogenesis.Materials and methods: Dimethylbenzanthracene was used to establish a golden hamster model of buccal mucosa carcinogenesis. Hamsters with normal buccal mucosa, precancerous lesion, and cancerous lesion were sacrificed at six different time points during a 24-hour period of a day. Pathological examination was conducted using routine hematoxylin and eosin staining. PER1, VEGF, KI67, C-MYC, and P53 mRNAs were detected by real-time reverse transcriptase polymerase chain reaction, and a cosinor analysis was applied to analyze the daily rhythm.Results: PER1, VEGF, C-MYC, and P53 mRNA exhibited daily rhythmic expression in three carcinogenesis stages, and KI67 mRNA exhibited daily rhythmic expression in the normal and precancerous stages. The daily rhythmic expression of KI67 was not observed in cancerous stages. The mesor and amplitude of PER1 and P53 mRNA expression decreased upon the development of cancer (P<0.05, whereas the mesor and amplitude of VEGF, KI67, and C-MYC mRNA increased upon the development of cancer (P<0.05. Compared with the normal tissues, the acrophases of PER1, VEGF, and C-MYC mRNA occurred earlier, whereas the acrophases of P53 and KI67 mRNA lagged remarkably in the precancerous lesions. In the cancer stage, the acrophases

  7. Cloning and characterization of the human integrin β6 gene promoter.

    Directory of Open Access Journals (Sweden)

    Mingyan Xu

    Full Text Available The integrin β6 (ITGB6 gene, which encodes the limiting subunit of the integrin αvβ6 heterodimer, plays an important role in wound healing and carcinogenesis. The mechanism underlying ITGB6 regulation, including the identification of DNA elements and cognate transcription factors responsible for basic transcription of human ITGB6 gene, remains unknown. This report describes the cloning and characterization of the human ITGB6 promoter. Using 5'-RACE (rapid amplification of cDNA ends analysis, the transcriptional initiation site was identified. Promoter deletion analysis identified and functionally validated a TATA box located in the region -24 to -18 base pairs upstream of the ITGB6 promoter. The regulatory elements for transcription of the ITGB6 gene were predominantly located -289 to -150 from the ITGB6 promoter and contained putative binding sites for transcription factors such as STAT3 and C/EBPα. Using chromatin immunoprecipitation assays, this study has demonstrated, for the first time, that transcription factors STAT3 and C/EBPα are involved in the positive regulation of ITGB6 transcription in oral squamous cell carcinoma cells. These findings have important implications for unraveling the mechanism of abnormal ITGB6 activation in tissue remodeling and tumorigenesis.

  8. Radiation transformation in differentiated human cells in culture

    International Nuclear Information System (INIS)

    Mothersill, C.; Seymour, C.; Moriarty, M.; Malone, J.; Byrne, P.; Hennessy, T.

    1986-01-01

    A tissue culture technique is described for human thyroid tissue as an approach to studying mechanisms of human radiation carcinogenesis. Normal human tissue obtained from surgery is treated in one of two ways, depending upon size of specimen. Large pieces are completely digested in trypsin/ collagenase solution to a single cell suspension. Small pieces of tissue are plated as explants following partial digestion in trypsin/collagenase solution. Following irradiation of the primary differentiated monolayers (normally 10 days after plating), the development of transformed characteristics is monitored in the subsequent subcultures. A very high level of morphological and functional differentiation is apparent in the primary cultures. Over a period of approx. 6 months, the irradiated surviving cells continue to grow in culture, unlike the unirradiated controls which senesce after 2-3 subcultures. (UK)

  9. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Shterzer, Naama; Heyman, Dariya; Shapiro, Beny; Yaniv, Abraham; Jackman, Anna [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Serour, Francis [Department of Pediatric Surgery, The E. Wolfson Medical Center, Holon (Israel); Chaouat, Malka [Laboratory of Experimental Surgery, Hadassah University Hospital, Ein Karem, Jerusalem (Israel); Gonen, Pinhas [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Tommasino, Massimo [International Agency for Research on Cancer, World Health Organization, Lyon (France); Sherman, Levana [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-11-15

    In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis. - Highlights: • Primary keratinocytes were used to evaluate transforming and carcinogenic abilities of cutaneous HPVs. • E6E7 of cancer associated β HPV types transform primary human keratinocytes. • E6 proteins of cancer and wart associated HPVs inhibit UVB induced cell death. • E6s of cancer and wart associated HPVs attenuate UVB induced proliferation arrest. • E6s of cancer and wart associated HPVs attenuate UVB induced apoptosis signaling.

  10. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes

    International Nuclear Information System (INIS)

    Shterzer, Naama; Heyman, Dariya; Shapiro, Beny; Yaniv, Abraham; Jackman, Anna; Serour, Francis; Chaouat, Malka; Gonen, Pinhas; Tommasino, Massimo; Sherman, Levana

    2014-01-01

    In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis. - Highlights: • Primary keratinocytes were used to evaluate transforming and carcinogenic abilities of cutaneous HPVs. • E6E7 of cancer associated β HPV types transform primary human keratinocytes. • E6 proteins of cancer and wart associated HPVs inhibit UVB induced cell death. • E6s of cancer and wart associated HPVs attenuate UVB induced proliferation arrest. • E6s of cancer and wart associated HPVs attenuate UVB induced apoptosis signaling

  11. Protective molecular mechanisms of resveratrol in UVR-induced Skin carcinogenesis.

    Science.gov (United States)

    Aziz, Saba W; Aziz, Moammir H

    2018-01-01

    Skin cancer is a major health problem worldwide. It is the most common cancer in the United States and poses a significant healthcare burden. Excessive UVR exposure is the most common cause of skin cancer. Despite various precautionary measures to avoid direct UVR exposure, the incidence of skin cancer and mortality related to it remains high. Furthermore, the current treatment options are expensive and have side effects including toxicity to normal cells. Thus, a safe and effective approach is needed to prevent and treat skin cancer. Chemopreventive strategy using naturally occurring compounds, such as resveratrol, is a promising approach to reduce the incidence of UVR-induced skin cancer and delay its progression. This review highlights the current body of evidence related to chemopreventive role of resveratrol and its molecular mechanisms in UVR-induced skin carcinogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Skin carcinogenesis in man and in experimental models

    International Nuclear Information System (INIS)

    Hecker, E.; Jung, E.G.; Marks, F.; Tilgen, W.

    1993-01-01

    This book presents an updated overview of the current state of the art in scientific, experimental and clinical investigations on the generation and the prevention of cancer of the skin. From the achievements presented, marked refinements in the assessment of the risk of cancer, by environmental and endogenous factors, including tumor virus, will be stimulated. They include the problem of the stratospheric 'ozone holes' above both poles of the earth causing much public concern as expressed by current headlines in the media and by the United Nations Environmental Program. Moreover, new ideas will merge for developing specific approaches to explore the mechanistic, i.e. ultimately the molecular-biological, causes of skin cancer and others. In addition, the experimental utilization of oncogens and of other techniques of molecular biology at all levels of the biology of tissues and cells, may open up entirely new facets in the research on skin cancer. Detailed knowledge of the mechanistic aspects of skin carcinogenesis may give important hints with respect to 'tailor-make' and utilize new anti-tumor agents in the therapy of skin cancer for the benefit of the cancer patient. (orig.). 67 figs., 44 tabs

  13. Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Yezaz Ahmed Ghouri

    2017-01-01

    Full Text Available Since the 1970s, the epidemic of hepatocellular carcinoma (HCC has spread beyond the Eastern Asian predominance and has been increasing in Northern hemisphere, especially in the United States (US and Western Europe. It occurs more commonly in males in the fourth and fifth decades of life. Among all cancers, HCC is one of the fastest growing causes of death in the US and poses a significant economic burden on healthcare. Chronic liver disease due to hepatitis B virus or hepatitis C virus and alcohol accounts for the majority of HCC cases. Incidence of nonalcoholic fatty liver disease has been on the risem and it has also been associated with the development of HCC. Its pathogenesis varies based on the underlying etiological factor although majority of cases develop in the setting of background cirrhosis. Carcinogenesis of HCC includes angiogenesis, chronic inflammation, and tumor macroenvironment and microenvironment. There is a significant role of both intrinsic genetic risk factors and extrinsic influences such as alcohol or viral infections that lead to the development of HCC. Understanding its etiopathogenesis helps select appropriate diagnostic tests and treatments.

  14. Cellular and molecular effect of MEHP Involving LXRα in human fetal testis and ovary.

    Science.gov (United States)

    Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N'tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie

    2012-01-01

    Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10(-4)M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.

  15. Cellular and molecular effect of MEHP Involving LXRα in human fetal testis and ovary.

    Directory of Open Access Journals (Sweden)

    Vincent Muczynski

    Full Text Available Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro.Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10(-4M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro.We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.

  16. Structural insights into human Kif7, a kinesin involved in Hedgehog signalling

    Energy Technology Data Exchange (ETDEWEB)

    Klejnot, Marta, E-mail: m.klejnot@beatson.gla.ac.uk; Kozielski, Frank, E-mail: m.klejnot@beatson.gla.ac.uk [The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland (United Kingdom)

    2012-02-01

    The human Kif7 motor domain structure provides insights into a kinesin of medical significance. Kif7, a member of the kinesin 4 superfamily, is implicated in a variety of diseases including Joubert, hydrolethalus and acrocallosal syndromes. It is also involved in primary cilium formation and the Hedgehog signalling pathway and may play a role in cancer. Its activity is crucial for embryonic development. Kif7 and Kif27, a closely related kinesin in the same subfamily, are orthologues of the Drosophila melano@@gaster kinesin-like protein Costal-2 (Cos2). In vertebrates, they work together to fulfil the role of the single Cos2 gene in Drosophila. Here, the high-resolution structure of the human Kif7 motor domain is reported and is compared with that of conventional kinesin, the founding member of the kinesin superfamily. These data are a first step towards structural characterization of a kinesin-4 family member and of this interesting molecular motor of medical significance.

  17. User involvement in the design of human-computer interactions: some similarities and differences between design approaches

    NARCIS (Netherlands)

    Bekker, M.M.; Long, J.B.

    1998-01-01

    This paper presents a general review of user involvement in the design of human-computer interactions, as advocated by a selection of different approaches to design. The selection comprises User-Centred Design, Participatory Design, Socio-Technical Design, Soft Systems Methodology, and Joint

  18. How to Cope with the Rare Human Error Events Involved with organizational Factors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Luo, Meiling; Lee, Yong Hee [Korea Atomic Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The current human error guidelines (e.g. US DOD handbooks, US NRC Guidelines) are representative tools to prevent human errors. These tools, however, have limits that they do not adapt all operating situations and circumstances such as design base events. In other words, these tools are only adapted foreseeable standardized operating situations and circumstances. In this study, our research team proposed an evidence-based approach such as UK's safety case to coping with the rare human error events such as TMI, Chernobyl, Fukushima accidents. These accidents are representative events involved with rare human errors. Our research team defined the 'rare human errors' as the follow three characterized events; Extremely low frequency Extremely high complicated structure Extremely serious damage of human life and property A safety case is a structured argument, supported by evidence, intended to justify that a system is acceptably safe. The definition by UK defense standard 00-56 issue 4 states that such an evidence-based approach can be contrast with a prescriptive approach to safety certification, which require safety to be justified using a prescribed process. Safety managements and safety regulatory activities based on safety case are effective to control organizational factors in terms of integrated safety management. Especially safety issues relevant with public acceptance are useful to provide practical evidences to the public reasonably. European Union including UK has developed the concept of engineered safety management system to deal with public acceptance using the safety case. In Korea nuclear industry, the Korean Atomic Research Institute has firstly performed a basic research to adapt the safety case in the field of radioactive waste according to the IAEA SSG-23(KAERI/TR-4497, 4531). Excepting the radioactive waste, there is no try to adapt the safety case yet. Most incidents and accidents involved human during operating NPPs have a tendency

  19. How to Cope with the Rare Human Error Events Involved with organizational Factors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Sa Kil; Luo, Meiling; Lee, Yong Hee

    2014-01-01

    The current human error guidelines (e.g. US DOD handbooks, US NRC Guidelines) are representative tools to prevent human errors. These tools, however, have limits that they do not adapt all operating situations and circumstances such as design base events. In other words, these tools are only adapted foreseeable standardized operating situations and circumstances. In this study, our research team proposed an evidence-based approach such as UK's safety case to coping with the rare human error events such as TMI, Chernobyl, Fukushima accidents. These accidents are representative events involved with rare human errors. Our research team defined the 'rare human errors' as the follow three characterized events; Extremely low frequency Extremely high complicated structure Extremely serious damage of human life and property A safety case is a structured argument, supported by evidence, intended to justify that a system is acceptably safe. The definition by UK defense standard 00-56 issue 4 states that such an evidence-based approach can be contrast with a prescriptive approach to safety certification, which require safety to be justified using a prescribed process. Safety managements and safety regulatory activities based on safety case are effective to control organizational factors in terms of integrated safety management. Especially safety issues relevant with public acceptance are useful to provide practical evidences to the public reasonably. European Union including UK has developed the concept of engineered safety management system to deal with public acceptance using the safety case. In Korea nuclear industry, the Korean Atomic Research Institute has firstly performed a basic research to adapt the safety case in the field of radioactive waste according to the IAEA SSG-23(KAERI/TR-4497, 4531). Excepting the radioactive waste, there is no try to adapt the safety case yet. Most incidents and accidents involved human during operating NPPs have a tendency

  20. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Stimpson

    2010-08-01

    Full Text Available Genome rearrangement often produces chromosomes with two centromeres (dicentrics that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.