WorldWideScience

Sample records for human c1 inhibitor

  1. Recombinant human C1-inhibitor in the treatment of acute angioedema attacks

    NARCIS (Netherlands)

    Choi, Goda; Soeters, Maarten R.; Farkas, Henriette; Varga, Lilian; Obtulowicz, Krystyna; Bilo, Barbara; Porebski, Greg; Hack, C. Erik; Verdonk, Rene; Nuijens, Jan; Levi, Marcel

    2007-01-01

    Background: Patients with hereditary C1-inhibitor deficiency have recurrent attacks of angioedema, preferably treated with C1-inhibitor concentrate. A recombinant human C1-inhibitor (rHuC1INH) was developed, derived from milk from transgenic rabbits. This study was undertaken to investigate the effe

  2. Treatment of type I and II hereditary angioedema with Rhucin, a recombinant human C1 inhibitor.

    Science.gov (United States)

    Varga, Lilian; Farkas, Henriette

    2008-11-01

    Hereditary and acquired angioedema are of outstanding clinical importance, as edematous attacks associated with these conditions can thrust afflicted patients into mortal danger. Currently, C1 inhibitor concentrate - a human blood product - is available as a replacement therapy. In view of the limited number of donors, as well as the risk of transmission of blood-borne infections, it is a reasonable expectation to develop a therapeutic alternative based on recombinant technology, which would eliminate all these shortcomings. Pharming (Leiden, The Netherlands) has developed Rhucin, a recombinant human C1 inhibitor, as a proprietary product, which is currently being evaluated in Phase III clinical trials. Ongoing studies conducted within the framework of the development program are almost complete and their interim findings are reassuring. This should facilitate successful regulatory approval in the near future, which is indispensable in order to make Rhucin available for patients with hereditary angioedema or other disorders amenable to C1 inhibitor replacement.

  3. Subcutaneous administration of human C1 inhibitor with recombinant human hyaluronidase in patients with hereditary angioedema.

    Science.gov (United States)

    Riedl, Marc A; Lumry, William R; Li, H Henry; Banerji, Aleena; Bernstein, Jonathan A; Ba, Murat; Bjrkander, Janne; Magerl, Markus; Maurer, Marcus; Rockich, Kevin; Chen, Hongzi; Schranz, Jennifer

    2016-11-01

    The currently approved method of C1 inhibitor (C1 INH) administration for patients with hereditary angioedema with C1 INH deficiency (HAE) is by intravenous injection. A C1 INH subcutaneous formulation may provide an attractive mode of administration for some patients. To evaluate efficacy and safety of two doses of subcutaneous, plasma-derived C1 INH with the dispersing agent, recombinant human hyaluronidase (rHuPH20) to prevent angioedema attacks in patients with HAE. A randomized, double-blind, dose-ranging, crossover study, patients 12 years of age (n = 47) with a confirmed diagnosis of HAE were randomly assigned to receive subcutaneous injections of 1000 U C1 INH with 24,000 U rHuPH20 or 2000 U C1 INH with 48,000 U rHuPH20 every 3 or 4 days for 8 weeks and then crossed-over for another 8-week period. The primary efficacy end point was the number of angioedema attacks during each treatment period. The study was terminated early as a precaution related to non-neutralizing antibodies to rHuPH20 in 45% of patients. The mean standard deviation number of angioedema attacks during the 8-week treatment periods were 1.58 1.59 with 1000 U C1 INH and 0.97 1.26 with 2000 U. The mean (95% confidence interval [CI]) within-patient difference (2000 U-1000 U, respectively) was 0.61 (95% CI, 1.23 to 0.01) attacks per month (p = 0.0523), and 0.56 (95% CI, 1.06 to 0.05) attacks that required acute treatment, (p = 0.0315). No deaths or other serious adverse events were reported. Injection-site reaction was the most common adverse event. Despite early termination, this study demonstrated a clinically and statistically significant difference in burden of disease, which favored 2000 U C1 INH, without associated serious adverse events.

  4. Human Plasma-Derived, Nanofiltered, C1-Inhibitor Concentrate (Cinryze®), a Novel Therapeutic Alternative for the Management of Hereditary Angioedema Resulting from C1-Inhibitor Deficiency

    National Research Council Canada - National Science Library

    Farkas, Henriette; Varga, Lilian

    2012-01-01

    Hereditary angioedema resulting from the deficiency of the C1 inhibitor (HAE-C1-INH) is a rare, but potentially life-threatening disorder characterized by paroxysmal episodes of subcutaneous or submucosal edema...

  5. Recombinant human C1-inhibitor inhibits cytotoxicity induced by allo- and xenoantibodies.

    Science.gov (United States)

    Poirier, N; Blancho, G

    2008-03-01

    Antibody-mediated rejection (AMR) is usually poorly controlled, especially in the context of pretransplant immunization, and remains an unsolved issue in xenotransplantation. In order to study prevention and/or treatment of AMR through an early blockade of the complement classical pathway, we designed two strategies to test the effect of a new recombinant human C1-inhibitor that inhibits C1 esterase (rhC1-INH; Pharming, The Netherlands), in a complement-dependent cytotoxicity assay, in the contexts of pretransplant anti-donor alloimmunization and pig-to-primate combinations in order to compare the situations. RhC1-INH appeared to be efficient, in allo- and xenotransplantation settings to block cytotoxicity when given at the initiation of (preventive strategy) or during (curative strategy) the cytotoxicity assay. Importantly, we showed that a small amount of exogenous rhC1-INH was sufficient to prevent cytotoxicity induced by anti-donor alloantibody, thus possibly helping to prevent or treat AMR in preimmunized patients. These in vitro data lead to future in vivo studies in models of AMR in pigs and baboons in allotransplantation and xenotransplantation, in which cytotoxicity due to Gal and non-Gal antibodies is so detrimental.

  6. Human Plasma-Derived, Nanofiltered, C1-Inhibitor Concentrate (Cinryze®), a Novel Therapeutic Alternative for the Management of Hereditary Angioedema Resulting from C1-Inhibitor Deficiency

    OpenAIRE

    Farkas, Henriette; Varga, Lilian

    2012-01-01

    Hereditary angioedema resulting from the deficiency of the C1 inhibitor (HAE-C1-INH) is a rare, but potentially life-threatening disorder characterized by paroxysmal episodes of subcutaneous or submucosal edema. Early diagnosis is essential. Management is aimed at the prompt elimination of full-fledged attacks, as well as at the prevention of edematous episodes. The most straightforward means for therapy is supplementation with the deficient C1-INH protein. Placebo-controlled and open clinica...

  7. C1-esterase inhibitor attenuates the inflammatory response during human endotoxemia.

    NARCIS (Netherlands)

    Dorresteijn, M.J.; Visser, T.; Cox, L.A.; Bouw, M.P.W.J.M.; Pillay, J.; Koenderman, A.H.; Strengers, P.F.W.; Leenen, L.P.H.; Hoeven, J.G. van der; Koenderman, L.; Pickkers, P.

    2010-01-01

    OBJECTIVE: Besides its role in regulation of the complement and contact system, C1-esterase inhibitor has other immunomodulating effects that could prove beneficial in patients with acute inflammation such as during sepsis or after trauma. We examined the immunomodulating properties of C1-esterase

  8. Recombinant Human C1 Esterase Inhibitor in the Management of Hereditary Angioedema

    OpenAIRE

    Riedl, Marc

    2015-01-01

    Hereditary angioedema (HAE), a rare autosomal dominant genetic disorder, is caused by a deficiency in functional C1 esterase inhibitor (C1-INH). This potentially life-threatening condition manifests as recurrent attacks of subcutaneous and submucosal swelling of the skin, gastrointestinal tract and larynx. The management of HAE includes treatment of acute episodes, short-term prophylaxis in preparation for exposure to known triggers and long-term prophylaxis to decrease the incidence and seve...

  9. Human oligodendroglial cells express low levels of C1 inhibitor and membrane cofactor protein mRNAs

    Directory of Open Access Journals (Sweden)

    McGeer Patrick L

    2004-08-01

    Full Text Available Abstract Background Oligodendrocytes, neurons, astrocytes, microglia, and endothelial cells are capable of synthesizing complement inhibitor proteins. Oligodendrocytes are vulnerable to complement attack, which is particularly observed in multiple sclerosis. This vulnerability may be related to a deficiency in their ability to express complement regulatory proteins. Methods This study compared the expression level of complement inhibitor mRNAs by human oligodendrocytes, astrocytes and microglia using semi-quantitative RT-PCR. Results Semi-quantitative RT-PCR analysis showed that C1 inhibitor (C1-inh mRNA expression was dramatically lower in oligodendroglial cells compared with astrocytes and microglia. The mRNA expression level of membrane cofactor protein (MCP by oligodendrocytes was also significantly lower than for other cell types. Conclusion The lower mRNA expression of C1-inh and MCP by oligodendrocytes could contribute to their vulnerability in several neurodegenerative and inflammatory diseases of the central nervous system.

  10. 86 The Efficacy and Safety of Human Plasma-derived C1-Inhibitor Concentrate Administered for the Treatment of Attacks in Pediatric Patients with Hereditary Angioedema Due to C1-Inhibitor Deficiency

    OpenAIRE

    Farkas, Henriette; Csuka, Dorottya; Zotter, Zsuzsanna; Szabó, Erika; Kelemen, Zsuzsanna; Varga, Lilian; Fejes, János; Harmat, George

    2012-01-01

    Background Hereditary angioedema due to C1-inhibitor deficiency (HAE-C1-INH) is a life-threatening, rare disease characterized by recurrent edematous attacks. In 50% of cases, the initial onset of symptoms occurs between 5 and 11 years of age. There are limited data on the emergency treatment of acute episodes in pediatric patients. Our aim was to analyze the efficacy and safety of human plasma-derived C1-INH concentrate in our pediatric patient population with HAE-C1-INH. Methods 50 pediatri...

  11. Allergenicity and safety of recombinant human C1 esterase inhibitor in patients with allergy to rabbit or cow's milk.

    Science.gov (United States)

    van den Elzen, Mignon T; van Os-Medendorp, Harmieke; Röckmann-Helmbach, Heike; van Hoffen, Els; Lebens, Ans F M; van Doorn, Helma; Klemans, Rob J B; Bruijnzeel-Koomen, Carla A F M; Hack, C Erik; Kaufman, Leonard; Relan, Anurag; Knulst, André C

    2016-08-01

    Recombinant human C1 inhibitor (rhC1INH) for on-demand treatment of hereditary angioedema is purified from milk of transgenic rabbits. It contains low amounts (<0.002%) of host-related impurities, which could trigger hypersensitivity reactions in patients with rabbit allergy (RA) and/or cow's milk allergy (CMA). This study is an assessment of allergenicity and safety of rhC1INH in patients with RA and/or CMA. Patients with CMA and/or RA underwent skin prick test (SPT), intracutaneous test (ICT), and, when results for both were negative, subcutaneous (SC) challenge with up to 2100U (14 mL) rhC1INH. The negative predictive value of the skin test protocol was calculated, defined as the ratio of patients without systemic symptoms of hypersensitivity following SC challenge, over the number of patients having tested negative for both the SPT and the ICT. Adverse events after exposure to rhC1INH were recorded. Twenty-six patients with RA and/or CMA were enrolled. Twenty-four had negative SPT and ICT results for rhC1INH, whereas 2 had negative SPT result but positive ICT result to rhC1INH (only the highest concentration). Twenty-two patients with negative SPT and ICT results underwent SC challenge. None developed allergic symptoms. Local treatment-emergent adverse events occurred in 7 patients (32%) after SC challenge. In 5 these were considered drug related. All were mild. None of the patients with negative SPT and ICT results for rhC1INH had allergic symptoms during rhC1INH challenge. The negative predictive value of the combination of SPT and ICT for the outcome of the SC challenge was 100% (95% CI, 84.6%-100%). SC administration of rhC1INH was well tolerated. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Association between nasal carriage of Staphylococcus aureus and the human complement cascade activator serine protease C1 inhibitor (C1INH) valine vs. methionine polymorphism at amino acid position 480.

    NARCIS (Netherlands)

    Emonts, M.; Jongh, C.E. de; Houwing-Duistermaat, J.J.; Leeuwen, W.B. van; Groot, R. de; Verbrugh, H.A.; Hermans, P.W.M.; Belkum, A. van

    2007-01-01

    Staphylococcus aureus produces compounds that interfere with complement deposition. We hypothesized that humans have developed countermeasures to staphylococcal complement evasion and we screened for single nucleotide polymorphisms in the serine protease C1 inhibitor (C1INH) gene at amino acid posit

  13. 84 Immuno-Safety of Recombinant Human C1 Inhibitor in Patients With Hereditary Angioedema: An Integrated Analysis

    Science.gov (United States)

    Hack, Erik; Relan, Anurag; Kaufman, Leonard; Pijpstra, Rienk

    2012-01-01

    Background Recombinant C1 inhibitor (rhC1INH) is a novel therapeutic option for the treatment of acute angioedema attacks in patients with hereditary angioedema (HAE). The amino acid sequence of rhC1INH is identical to that of endogenous C1INH. However, any recombinant protein may elicit antibodies against the protein and/or host related impurities (HRI). Clinical consequences of these antibodies can theoretically range from no clinical symptoms to allergic reactions and reduced C1INH activity due to neutralizing antibodies. Objective To analyze the immuno-safety of rhC1INH in symptomatic patients with HAE. Methods Plasma samples were collected pre-treatment and 22 and 90 days post-treatment of an acute angioedema attack. Plasma samples were tested for the presence of antibodies against plasma-derived C1INH and rhC1INH using 6 different, validated enzyme-linked immunosorbent assays (ELISAs), to detect IgM, IgG and IgA antibodies against plasma-derived C1INH or rhC1INH. Antibodies against HRI in plasma samples were measured in an ELISA testing for all antibody classes. Plasma samples from normal healthy controls and HAE patients, never exposed to rhC1INH, were used to estimate cut off levels of the assays. Plasma samples with antibody levels above the cut-off level in the screening assays were tested in confirmatory displacement assay in case of anti-HRI antibodies and in an assay for neutralizing antibodies in case of antibodies against C1INH. Results Data from 155 symptomatic HAE patients having received a total of 424 administrations of rhC1INH were analyzed. The frequency of anti-C1INH antibody levels above the assay cut-off was low and similar in pre- and post-exposure samples (1.7 and 1.8%, respectively). Results above the assay cut-off were sporadic and transient. Occurrence of anti-C1INH antibodies did not correlate with repeated treatment or time since last treatment. No neutralizing antibodies were detected. A total of 5/155 (3%) rhC1INH-treated patients

  14. Hereditary angioedema with normal C1 inhibitor.

    Science.gov (United States)

    Bork, Konrad

    2013-11-01

    Until recently it was assumed that hereditary angioedema was a disease that results exclusively from a genetic deficiency of the C1 inhibitor. In 2000, families with hereditary angioedema, normal C1 inhibitor activity, and protein in plasma were described. Since then, numerous patients and families with that condition have been reported. Most of the patients were women. In many of the affected women, oral contraceptives, hormone replacement therapy containing estrogens, and pregnancies triggered the clinical symptoms. In some families mutations in the coagulation factor XII (Hageman factor) gene were detected.

  15. Antithrombin III, but not C1 esterase inhibitor reduces inflammatory response in lipopolysaccharide-stimulated human monocytes in an ex-vivo whole blood setting.

    Science.gov (United States)

    Kellner, Patrick; Nestler, Frank; Leimert, Anja; Bucher, Michael; Czeslick, Elke; Sablotzki, Armin; Raspè, Christoph

    2014-12-01

    In order to examine the immunomodulatory effects of antithrombin III (AT-III) and C1 esterase inhibitor (C1-INH) in human monocytes, we investigated the intracellular expression of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α in an ex-vivo laboratory study in a whole blood setting. Heparinized whole blood samples from 23 healthy male and female volunteers (mean age: 27±7years) were pre-incubated with clinically relevant concentrations of AT-III (n=11) and C1-INH (n=12), then stimulated with 0.2 ng/mL lipopolysaccharide (LPS) for 3h. After phenotyping CD14⁺ monocytes, intracellular expression of IL-6, IL-8, and TNF-α was assessed using flow cytometry. In addition, 12 whole blood samples (AT-III and C1-INH, n=6 each) were examined using hirudin for anticoagulation; all samples were processed in the same way. To exclude cytotoxicity effects, 7-amino-actinomycin D and Nonidet P40 staining were used to investigate probes. This study is the first to demonstrate the influence of C1-INH and AT-III on the monocytic inflammatory response in a whole blood setting, which mimics the optimal physiological setting. Cells treated with AT-III exhibited significant downregulation of the proportion of gated CD14⁺ monocytes for IL-6 and IL-8, in a dose-dependent manner; downregulation for TNF-α did not reach statistical significance. There were no significant effects on mean fluorescence intensity (MFI). In contrast, C1-INH did not significantly reduce the proportion of gated CD14⁺ monocytes or the MFI regarding IL-6, TNF-α, and IL-8. When using hirudin for anticoagulation, no difference in the anti-inflammatory properties of AT-III and C1-INH in monocytes occurs. Taken together, in contrast to TNF-α, IL-6 and IL-8 were significantly downregulated in monocytes in an ex-vivo setting of human whole blood when treated with AT-III. This finding implicates monocytes as an important point of action regarding the anti-inflammatory properties of AT-III in sepsis. C1

  16. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia.

    Science.gov (United States)

    de Beer, F M; Aslami, H; Hoeksma, J; van Mierlo, G; Wouters, D; Zeerleder, S; Roelofs, J J T H; Juffermans, N P; Schultz, M J; Lagrand, W K

    2014-11-01

    Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary complement activation, and as such attenuates lung inflammation and lung injury in a rat model of Streptococcus pneumoniae pneumonia. Forty hours after intratracheal challenge with S. pneumoniae causing pneumonia rats were subjected to ventilation with lower tidal volumes and positive end-expiratory pressure (PEEP) or high tidal volumes without PEEP, after an intravenous bolus of C1-INH (200 U/kg) or placebo (saline). After 4 h of ventilation blood, broncho-alveolar lavage fluid and lung tissue were collected. Non-ventilated rats with S. pneumoniae pneumonia served as controls. While ventilation with lower tidal volumes and PEEP slightly amplified pneumonia-induced complement activation in the lungs, ventilation with higher tidal volumes without PEEP augmented local complement activation more strongly. Systemic pre-treatment with C1-INH, however, failed to alter ventilation-induced complement activation with both ventilation strategies. In accordance, lung inflammation and lung injury were not affected by pre-treatment with C1-INH, neither in rats ventilated with lower tidal volumes and PEEP, nor rats ventilated with high tidal volumes without PEEP. Ventilation augments pulmonary complement activation in a rat model of S. pneumoniae pneumonia. Systemic administration of C1-INH, however, does not attenuate ventilation-induced complement activation, lung inflammation, and lung injury.

  17. Safety and Usage of C1-Inhibitor in Hereditary Angioedema

    DEFF Research Database (Denmark)

    Riedl, Marc A; Bygum, Anette; Lumry, William

    2016-01-01

    BACKGROUND: The plasma-derived, highly purified, nanofiltered C1-inhibitor concentrate (Berinert; "pnfC1-INH") is approved in the United States for treating hereditary angioedema (HAE) attacks and in many European countries for attack treatment and short-term prophylaxis. OBJECTIVE: The objective...... of this study was to describe safety and usage patterns of pnfC1-INH. METHODS: A multicenter, observational, registry was conducted between 2010 and 2014 at 30 United States and 7 European sites to obtain both prospective (occurring after enrollment) and retrospective (occurring before enrollment) safety...... and usage data on subjects receiving pnfC1-INH for any reason. RESULTS: Of 343 enrolled patients, 318 received 1 or more doses of pnfC1-INH for HAE attacks (11,848 infusions) or for prophylaxis (3142 infusions), comprising the safety population. Median dosages per infusion were 10.8 IU/kg (attack treatment...

  18. Hereditary Angioedema due to C1 Inhibitor Deficiency: C1-INH Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Mauro Cancian

    2014-04-01

    Full Text Available Hereditary angioedema (HAE is a rare condition affecting about 1 in 50.000 individuals and caused by a mutation in the gene encoding the C1-esterase inhibitor (C1-INH, which is involved in the control of complement, clotting, fibrinolytic and kinin pathways. HAE is characterized by plasma outflow from blood vessels, leading to fluid collecting (edema in the deep tissue layers of the face, larynx, abdomen, and extremities. Three different types of HAE have been identified: in type I the mutation leads to the lack of production of C1-INH, in type II the mutation leads to the production of dysfunctional C1-INH, while type III is extremely rare and still not fully understood. Therapeutic approaches for HAE include on-demand treatments to stop angioedema attacks and prophylactic treatment to prevent attacks both by pre-procedural (short-term and routine (long-term prophylaxis. Aim of the present review is to present an overview of C1-INH replacement therapy with the plasma-derived concentrate of C1-INH Berinert® (CSL Behring GmbH in the treatment of type I and II HAE.http://dx.doi.org/10.7175/rhc.v5i2.913

  19. A Case of angioedema : C1 inhibitor deficiency

    Directory of Open Access Journals (Sweden)

    Arijit Sinha

    2015-03-01

    Full Text Available Angioedema is rapid swelling (oedema of subcutaneous tissue involving dermis, mucosa and sub mucosal tissues. It may be IgE dependant, bradykinin mediated, complement mediated, non immunologic or idiopathic. It may be heriditory or acquired. In our case the child was suffering from recurrent episodes of angioedema and found to be due to C1 inhibitor deficiency. [Natl J Med Res 2015; 5(1.000: 89-90

  20. Pediatric hereditary angioedema due to C1-inhibitor deficiency

    Directory of Open Access Journals (Sweden)

    Farkas Henriette

    2010-07-01

    Full Text Available Abstract Hereditary angioedema (HAE resulting from the deficiency of the C1 inhibitor (C1-INH is a rare, life-threatening disorder. It is characterized by attacks of angioedema involving the skin and/or the mucosa of the upper airways, as well as the intestinal mucosa. In approximately 50 per cent of cases, clinical manifestations may appear during childhood. The complex management of HAE in pediatric patients is in many respects different from the management of adults. Establishing the diagnosis early, preferably before the onset of clinical symptoms, is essential in cases with a positive family history. Complement studies usually afford accurate diagnosis, whereas molecular genetics tests may prove helpful in uncertain cases. Appropriate therapy, supported by counselling, suitable modification of lifestyle, and avoidance of triggering factors (which primarily include mechanical trauma, mental stress and airway infections in children may spare the patient unnecessary surgery and may prevent mortality. Prompt control of edematous attacks, short-term prophylaxis and intermittent therapy are recommended as the primary means for the management of pediatric cases. Medicinal products currently used for the treatment of children with hereditary angioedema include antifibrinolytics, attenuated androgens, and C1-INH replacement therapy. Current guidelines favour antifibrinolytics for long-term prophylaxis because of their favorable safety profile but efficacy may be lacking. Attenuated androgens administered in the lowest effective dose are another option. C1-INH replacement therapy is also an effective and safe agent for children. Regular monitoring and follow-up of patients are necessary.

  1. C1-esterase inhibitor blocks T lymphocyte proliferation and cytotoxic T lymphocyte generation in vitro

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Bregenholt, S; Nording, J A

    1998-01-01

    We have previously shown that activated C1s complement and activated T cells cleave beta2-microglobulin (beta2m) in vitro leading to the formation of desLys58 beta2m. This process can specifically be inhibited by C1-esterase inhibitor (C1-inh). Furthermore we showed that exogenously added desLys58...... beta2m in nanomolar amounts to a one-way allogenic mixed lymphocyte culture (MLC) increased the endogenous production of IL-2 and the generation of allo-specific cytotoxic T lymphocytes. C1-inh was purified from fresh human plasma and added to human or murine MLC and mitogen-stimulated lymphocyte...... of allospecific cytotoxic activity, and changed the endogenous production of IL-2, IL-4, IL-10, IL-12 and IFN-gamma. These data clearly demonstrate a regulatory function of C1-inh on T cell-mediated immune functions....

  2. Rhucin, a recombinant C1 inhibitor for the treatment of hereditary angioedema and cerebral ischemia.

    Science.gov (United States)

    Longhurst, Hilary

    2008-03-01

    Pharming NV and Esteve are developing Rhucin, a recombinant human C1 esterase inhibitor. Rhucin is currently undergoing phase III clinical trials in North America and is awaiting regulatory approval in Western Europe for the treatment of prophylactic and acute hereditary angioedema. Pharming is also investigating Rhucin for the potential treatment of cerebral ischemic injury.

  3. Recombinant replacement therapy for hereditary angioedema due to C1 inhibitor deficiency.

    Science.gov (United States)

    Moldovan, Dumitru; Bernstein, Jonathan A; Cicardi, Marco

    2015-01-01

    Hereditary angioedema is a rare genetic condition transmitted as an autosomal dominant trait and characterized most commonly by the production of either inadequate or nonfunctioning C1 esterase inhibitor (C1-INH), a blood protein that regulates proteases in the complement, fibrinolytic and contact systems. Patients with hereditary angioedema suffer from episodic, unpredictable manifestations of edema affecting multiple anatomical locations, including the GI tract, facial tissue, the upper airway, oropharynx, urogenital region and/or the arms and legs. A rational approach to treatment is replacement of C1-INH protein, to normalize the levels of C1-INH activity and halt the progression of the biochemical activation processes underlying the edema formation. Ruconest is a highly purified recombinant human C1-INH. This article will focus on the results of ten clinical studies demonstrating the efficacy and safety of Ruconest(®) (Pharming Group NV, Leiden, the Netherlands), which is now approved for use in Europe, Israel and the USA.

  4. rhC1INH: a new drug for the treatment of attacks in hereditary angioedema caused by C1-inhibitor deficiency.

    Science.gov (United States)

    Varga, Lilian; Farkas, Henriette

    2011-03-01

    Recombinant human C1 esterase inhibitor (rhC1INH) (Ruconest(®), Pharming) is a new drug developed for the relief of symptoms occurring in patients with angioedema due to C1-inhibitor deficiency. Pertinent results have already been published elsewhere; this article summarizes the progress made since then. Similar to the purified C1-inhibitor derived from human plasma, the therapeutic efficacy of rhC1INH results from its ability to block the actions of enzymes belonging to the overactivated bradykinin-forming pathway, at multiple locations. During clinical trials into the management of acute edema, a total of 190 subjects received recombinant C1-inhibitor by intravenous infusion on 714 occasions altogether. Dose-ranging efficacy studies established 50 U/kg as the recommended dose, and demonstrated the effectiveness of this agent in all localizations of hereditary angioedema attacks. Studies into the safety of rhC1INH based on 300 administrations to healthy subjects or hereditary angioedema patients followed-up for 90 days have not detected the formation of autoantibodies against rhC1INH or IgE antibodies directed against rabbit proteins, even after repeated administration on multiple occasions. These findings met favorable appraisal by the EMA, which granted European marketing authorization for rhC1INH. Pharming is expected to file a biological licence with the US FDA by the end of 2010 to obtain marketing approval in the USA. The launch of rhC1INH onto the pharmaceutical market may represent an important progress in the management of hereditary angioedema patients.

  5. C1-esterase inhibitor treatment: preclinical safety aspects on the potential prothrombotic risk.

    Science.gov (United States)

    Schürmann, Daniel; Herzog, Eva; Raquet, Elmar; Nolte, Marc W; May, Frauke; Müller-Cohrs, Jochen; Björkqvist, Jenny; Dickneite, Gerhard; Pragst, Ingo

    2014-11-01

    Human plasma-derived C1-esterase inhibitor (C1-INH) is an efficacious and safe treatment for hereditary angioedema. However, thrombotic events in subjects treated with C1-INH at recommended or off-label, high doses have been reported. In this study, we addressed the potential prothrombotic risk of C1-INH treatment in high doses using a non-clinical rabbit model. Following intravenous infusion of C1-INH to rabbits at doses up to 800 IU/kg, the exposure and the pharmacodynamic efficacy of C1-INH in rabbits were confirmed by activity measurements of C1-esterase, and coagulation factors XIa and XIIa, respectively. Potential prothrombotic effects were assessed following induction of venous and arterial thrombosis using in vivo models of venous and arterial stasis, complemented by various in vitro assays of coagulation markers. Administration of C1-INH at doses up to 800 IU/kg did not potentiate thrombus formation during venous stasis. In contrast, inhibition of arterial occlusion was observed upon C1-INH administration when compared with isotonic saline treatment, indicating antithrombotic rather than prothrombotic activity of high dose C1-INH treatment in vivo. This was further confirmed in vitro by decreased thrombin generation, increased activated partial thromboplastin time, clotting time and clot formation time, and inhibition of platelet aggregation. No relevant changes in fibrinolysis or in the levels of thrombin-antithrombin complexes, and prothrombin fragment 1+2 were observed upon high dose C1-INH treatment. The data suggest that treatment of healthy rabbits with high doses of C1-INH could potentially inhibit coagulation and thrombus formation rather than induce a prothrombotic risk.

  6. Presence of C1-Inhibitor Polymers in a Subset of Patients Suffering from Hereditary Angioedema

    DEFF Research Database (Denmark)

    Elenius Madsen, Daniel; Hansen, Søren Werner Karlskov; Gram, Jørgen Brodersen

    2014-01-01

    Hereditary angioedema (HAE) is a potentially life-threatening disease caused by mutations in the gene encoding the serine protease inhibitor (serpin) C1 inhibitor (C1-inh). The mutations cause decreased functional plasma levels of C1-inh, which triggers unpredictable recurrent edema attacks...

  7. C1-Inhibitor Decreases the Release of Vasculitis-Like Chemotactic Endothelial Microvesicles.

    Science.gov (United States)

    Mossberg, Maria; Ståhl, Anne-Lie; Kahn, Robin; Kristoffersson, Ann-Charlotte; Tati, Ramesh; Heijl, Caroline; Segelmark, Mårten; Leeb-Lundberg, L M Fredrik; Karpman, Diana

    2017-08-01

    The kinin system is activated during vasculitis and may contribute to chronic inflammation. C1-inhibitor is the main inhibitor of the kinin system. In this study, we investigated the presence of the kinin B1 receptor on endothelial microvesicles and its contribution to the inflammatory process. Compared with controls (n=15), patients with acute vasculitis (n=12) had markedly higher levels of circulating endothelial microvesicles, identified by flow cytometry analysis, and significantly more microvesicles that were positive for the kinin B1 receptor (Pmicrovesicles from wild-type cells, B1 receptor-positive microvesicles derived from transfected human embryonic kidney cells induced a significant neutrophil chemotactic effect, and a B1 receptor antagonist blocked this effect. Likewise, patient plasma induced neutrophil chemotaxis, an effect decreased by reduction of microvesicle levels and by blocking the B1 receptor. We used a perfusion system to study the effect of patient plasma (n=6) and control plasma (n=6) on the release of microvesicles from glomerular endothelial cells. Patient samples induced the release of significantly more B1 receptor-positive endothelial microvesicles than control samples, an effect abrogated by reduction of the microvesicles in the perfused samples. Perfusion of C1-inhibitor-depleted plasma over glomerular endothelial cells promoted excessive release of B1 receptor-positive endothelial microvesicles compared with normal plasma, an effect significantly decreased by addition of C1-inhibitor or B1 receptor-antagonist. Thus, B1 receptor-positive endothelial microvesicles may contribute to chronic inflammation by inducing neutrophil chemotaxis, and the reduction of these microvesicles by C1-inhibitor should be explored as a potential treatment for neutrophil-induced inflammation. Copyright © 2017 by the American Society of Nephrology.

  8. Presence of C1-Inhibitor Polymers in a Subset of Patients Suffering from Hereditary Angioedema

    DEFF Research Database (Denmark)

    Elenius Madsen, Daniel; Hansen, Søren Werner Karlskov; Gram, Jørgen Brodersen

    2014-01-01

    Hereditary angioedema (HAE) is a potentially life-threatening disease caused by mutations in the gene encoding the serine protease inhibitor (serpin) C1 inhibitor (C1-inh). The mutations cause decreased functional plasma levels of C1-inh, which triggers unpredictable recurrent edema attacks. Subj...... affected helix C (p.Thr167Asn). In conclusion, we demonstrate that C1-inh polymers are present in the plasma of a subgroup of HAE type I patients....

  9. Self-administration of C1-inhibitor concentrate in patients with hereditary or acquired angioedema caused by C1-inhibitor deficiency

    NARCIS (Netherlands)

    Levi, M; Choi, G; Picavet, C; Hack, CE

    2006-01-01

    Background: Administration of C1-inhibitor concentrate is effective for prophylaxis and treatment of severe angioedema attacks caused by Cl-inhibitor deficiency. The concentrate should be administered intravenously and hence needs to be administered by health care professionals, which might cause co

  10. Safety and Usage of C1-Inhibitor in Hereditary Angioedema

    DEFF Research Database (Denmark)

    Riedl, Marc A; Bygum, Anette; Lumry, William;

    2016-01-01

    of this study was to describe safety and usage patterns of pnfC1-INH. METHODS: A multicenter, observational, registry was conducted between 2010 and 2014 at 30 United States and 7 European sites to obtain both prospective (occurring after enrollment) and retrospective (occurring before enrollment) safety...... and usage data on subjects receiving pnfC1-INH for any reason. RESULTS: Of 343 enrolled patients, 318 received 1 or more doses of pnfC1-INH for HAE attacks (11,848 infusions) or for prophylaxis (3142 infusions), comprising the safety population. Median dosages per infusion were 10.8 IU/kg (attack treatment......) and 16.6 IU/kg (prophylaxis). Approximately 95% of infusions were administered outside of a health care setting. No adverse events (AEs) were reported in retrospective data. Among prospective data (n = 296 subjects; 9148 infusions), 252 AEs were reported in 85 (28.7%) subjects (rate of 0.03 events...

  11. Treatment of hereditary angioedema with plasma-derived C1 inhibitor

    Directory of Open Access Journals (Sweden)

    Michael J Prematta

    2008-08-01

    Full Text Available Michael J Prematta, Tracy Prematta, Timothy J CraigSection of Allergy and Immunology, Penn State University, Milton S. Hershey Medical Center, PA, USABackground: Plasma-derived C1 inhibitor (C1-INH concentrate is a treatment option for acute hereditary angioedema (HAE attacks and is considered the standard-of-care in many countries, although it is not yet available in the United States. Studies are still being conducted to establish its safety and efficacy as required by the FDA.Objective: To review the medical literature to determine if C1-INH concentrate is a safe and effective treatment for acute HAE attacks.Methods: The following keywords were searched in PubMed and OVID: C1 esterase inhibitor, C1-inhibitor, C1 inhibitor, and hereditary angioedema treatment. English-language articles were searched from 1966 to the present to look for studies demonstrating the efficacy and the safety of C1-INH concentrate.Results: The English-language literature search revealed several studies showing significantly improved relief of HAE symptoms with the administration of C1-INH concentrate – many studies demonstrated some improvement of symptoms within 30 minutes. Side effects have been similar to placebo, and no proven cases of viral transmission have occurred in over 20 years.Conclusion: C1-INH concentrate appears to be a very safe and effective treatment option for HAE.Keywords: hereditary angioedema, c1 inhibitor, c1 esterase inhibitor, hereditary angioedema treatment

  12. Functional C1-inhibitor diagnostics in hereditary angioedema: assay evaluation and recommendations

    DEFF Research Database (Denmark)

    Wagenaar-Bos, Ineke G A; Drouet, Christian; Aygören-Pursun, Emel

    2008-01-01

    Hereditary angioedema (HAE) is an autosomal dominant disease characterized by recurrent episodes of potentially life-threatening angioedema. The most widespread underlying genetic deficiency is a heterozygous deficiency of the serine protease inhibitor C1 esterase inhibitor (C1-Inh). In addition ...

  13. Safety of C1-Esterase Inhibitor in Acute and Prophylactic Therapy of Hereditary Angioedema

    DEFF Research Database (Denmark)

    Busse, Paula; Bygum, Anette; Edelman, Jonathan

    2014-01-01

    BACKGROUND: The plasma-derived, pasteurized C1-inhibitor (C1-INH) concentrate, Berinert has a 4-decade history of use in hereditary angioedema (HAE), with a substantial literature base that demonstrates safety and efficacy. Thromboembolic events have rarely been reported with C1-INH products...

  14. Alterations of coagulation and fibrinolysis in patients with angioedema due to C1-inhibitor deficiency

    NARCIS (Netherlands)

    Geffen, M. van; Cugno, M.; Lap, P.; Loof, A.; Cicardi, M.; Heerde, W.L. van

    2012-01-01

    Patients with functional deficiency of C1-inhibitor (C1-INH) suffer from recurrent acute attacks (AA) of localized oedema associated with activation of the contact system, complement and fibrinolysis. To unravel further the role of coagulation and fibrinolysis in the pathophysiology of C1-INH defici

  15. The role of ficolins and MASPs in hereditary angioedema due to C1-inhibitor deficiency

    DEFF Research Database (Denmark)

    Csuka, Dorottya; Munthe-Fog, Lea; Skjoedt, Mikkel-Ole

    2013-01-01

    Hereditary angioedema due to C1-inhibitor deficiency (HAE-C1-INH) causes disturbances in the complement system. However, the influence of HAE-C1-INH on the lectin pathway of complement is unresolved. Thus, we studied the main initiator molecules, enzymes and regulators in the lectin pathway...

  16. Hereditary and acquired C1-inhibitor-dependent angioedema: from pathophysiology to treatment.

    Science.gov (United States)

    Zeerleder, Sacha; Levi, Marcel

    2016-01-01

    Uncontrolled generation of bradykinin (BK) due to insufficient levels of protease inhibitors controlling contact phase (CP) activation, increased activity of CP proteins, and/or inadequate degradation of BK into inactive peptides increases vascular permeability via BK-receptor 2 (BKR2) and results in subcutaneous and submucosal edema formation. Hereditary and acquired angioedema due to C1-inhibitor deficiency (C1-INH-HAE and -AAE) are diseases characterized by serious and potentially fatal attacks of subcutaneous and submucosal edemas of upper airways, facial structures, abdomen, and extremities, due to inadequate control of BK generation. A decreased activity of C1-inhibitor is the hallmark of C1-INH-HAE (types 1 and 2) due to a mutation in the C1-inhibitor gene, whereas the deficiency in C1-inhibitor in C1-INH-AAE is the result of autoimmune phenomena. In HAE with normal C1-inhibitor, a significant percentage of patients have an increased activity of factor XIIa due to a FXII mutation (FXII-HAE). Treatment of C1-inhibitor-dependent angioedema focuses on restoring control of BK generation by inhibition of CP proteases by correcting the balance between CP inhibitors and BK breakdown or by inhibition of BK-mediated effects at the BKR2 on endothelial cells. This review will address the pathophysiology, clinical picture, diagnosis and available treatment in C1-inhibitor-dependent angioedema focusing on BK-release and its regulation. Key Messages Inadequate control of bradykinin formation results in the formation of characteristic subcutaneous and submucosal edemas of the skin, upper airways, facial structures, abdomen and extremities as seen in hereditary and acquired C1-inhibitor-dependent angioedema. Diagnosis of hereditary and acquired C1-inhibitor-dependent angioedema may be troublesome as illustrated by the fact that there is a significant delay in diagnosis; a certain grade of suspicion is therefore crucial for quick diagnosis. Submucosal edema formation in

  17. Modulation of C1-Inhibitor and Plasma Kallikrein Activities by Type IV Collagen

    OpenAIRE

    Sriram Ravindran; Marc Schapira; Patston, Philip A.

    2012-01-01

    The contact system of coagulation can be activated when in contact with biomaterials. As collagen is being tested in novel biomaterials in this study, we have investigated how type IV collagen affects plasma kallikrein and C1-inhibitor. Firstly, we showed C1-inhibitor binds to type IV collagen with a Kd of 0.86 μM. The effects of type IV collagen on plasma kallikrein, factor XIIa, and β-factor XIIa activity and on C1-inhibitor function were determined. Factor XIIa rapidly lost activity in the...

  18. A Case of Angioedema Associated with Decreased C1 Inhibitor Activity

    Directory of Open Access Journals (Sweden)

    Chizuko Yano

    2007-01-01

    Discussion: Based on the presence of the typical clinical features and the positive results on the complement tests, we diagnosed hereditary angioedema. A decrease in C1 inhibitor activity and an increase in specific protein concentrations indicated type 1.

  19. Modulation of C1-Inhibitor and Plasma Kallikrein Activities by Type IV Collagen

    Directory of Open Access Journals (Sweden)

    Sriram Ravindran

    2012-01-01

    Full Text Available The contact system of coagulation can be activated when in contact with biomaterials. As collagen is being tested in novel biomaterials in this study, we have investigated how type IV collagen affects plasma kallikrein and C1-inhibitor. Firstly, we showed C1-inhibitor binds to type IV collagen with a Kd of 0.86 μM. The effects of type IV collagen on plasma kallikrein, factor XIIa, and β-factor XIIa activity and on C1-inhibitor function were determined. Factor XIIa rapidly lost activity in the presence of type IV collagen, whereas plasma kallikrein and β-factor XIIa were more stable. The rate of inhibition of plasma kallikrein by C1-inhibitor was decreased by type IV collagen in a dose-dependent manner. These studies could be relevant to the properties of biomaterials, which contain collagen, and should be considered in the testing for biocompatibility.

  20. Newly Found C1 Inhibitor Gene Mutation in Hereditary Angioedema Patients

    Institute of Scientific and Technical Information of China (English)

    Rui Tang; Hong-yu Zhang

    2009-01-01

    @@ Hereditary angioedema (HAE) is an autosomal dominant condition that affects one in about 50 000 persons,characterized by recurrent episodes of subcutaneous or submucosal swelling involving the hands, feet, limbs, face,intestinal tract, even larynx and trachea. HAE is caused by gene mutation of C1 esterase inhibitor (C1INH) on the position of chromosome 11q12-q13.1, which results in quantitative or qualitative deficiency of C1INH. C1INH, a member of the serpin family of the serine protease inhibitors, plays a key role in the classical pathway of the complement cascade and mainly controls enzymatic activity of the first component. In this study, we evaluated the expression of C1INH gene in HAE patients in order to find novel mutation in C1INH.

  1. Pharmacokinetics of plasma-derived C1-esterase inhibitor after subcutaneous versus intravenous administration in subjects with mild or moderate hereditary angioedema: the PASSION study

    OpenAIRE

    Martinez-Saguer, Inmaculada; Cicardi, Marco; Suffritti, Chiara; Rusicke, Eva; Aygören-Pürsün, Emel; Stoll, Hildegard; Rossmanith, Tanja; Feussner, Annette; Kalina, Uwe; Kreuz, Wolfhart

    2013-01-01

    Background Hereditary angioedema (HAE) is a rare disease caused by C1-esterase inhibitor (C1-INH) deficiency, characterized by periodic attacks of acute edema affecting subcutaneous (SC) tissues and mucous membranes. Human C1-INH concentrate given intravenously (IV) is effective and safe, but venous access may be difficult. We compared SC and IV administration of human pasteurized C1-INH concentrate with respect to pharmacokinetics, pharmacodynamics, and safety. Study Design and Methods This ...

  2. Overview of hereditary angioedema caused by C1-inhibitor deficiency: assessment and clinical management.

    Science.gov (United States)

    Bork, K; Davis-Lorton, M

    2013-02-01

    Hereditary angioedema due to C1-inhibitor deficiency (HAE-C1-INH) is a rare, autosomal-dominant disease. HAE-C1-INH is characterized by recurrent attacks of marked, diffuse, nonpitting and nonpruritic skin swellings, painful abdominal attacks, and laryngeal edema. The extremities and the gastrointestinal tract are most commonly affected. Swelling of the upper respiratory mucosa poses the greatest risk because death from asphyxiation can result from laryngealedema. HAE-C1-INH attacks are variable, unpredictable, and may be induced by a variety of stimuli, including stress or physical trauma. Because the clinical presentation of HAE-C1-INH is similar to other types of angioedema, the condition may be a challenge to diagnose. Accurate identification of HAE-C1-INH is critical in order to avoid asphyxiation by laryngeal edema and to improve the burden of disease. Based on an understanding of the underlying pathophysiology of IHAE-C1-INH, drugs targeted specifically to the disease, such as C1-inhibitor therapy, bradykinin B2-receptor antagonists, and kallikrein-inhibitors, have become available for both treatment and prevention of angioedema attacks. This article reviews the clinical features, differential diagnosis, and current approaches to management of HAE-C1-INH.

  3. Potential therapeutic benefit of C1-esterase inhibitor in neuromyelitis optica evaluated in vitro and in an experimental rat model.

    Directory of Open Access Journals (Sweden)

    Lukmanee Tradtrantip

    Full Text Available Neuromyelitis optica (NMO is an autoimmune demyelinating disease of the central nervous system in which binding of anti-aquaporin-4 (AQP4 autoantibodies (NMO-IgG to astrocytes causes complement-dependent cytotoxicity (CDC and inflammation resulting in oligodendrocyte and neuronal injury. There is compelling evidence for a central role of complement in NMO pathogenesis. Here, we evaluated the potential of C1-esterase inhibitor (C1-inh for complement-targeted therapy of NMO. C1-inh is an anti-inflammatory plasma protein with serine protease inhibition activity that has a broad range of biological activities on the contact (kallikrein, coagulation, fibrinolytic and complement systems. C1-inh is approved for therapy of hereditary angioedema (HAE and has been studied in a small safety trial in acute NMO relapses (NCT 01759602. In vitro assays of NMO-IgG-dependent CDC showed C1-inh inhibition of human and rat complement, but with predicted minimal complement inhibition activity at a dose of 2000 units in humans. Inhibition of complement by C1-inh was potentiated by ∼10-fold by polysulfated macromolecules including heparin and dextran sulfate. In rats, intravenous C1-inh at a dose 30-fold greater than that approved to treat HAE inhibited serum complement activity by <5%, even when supplemented with heparin. Also, high-dose C1-inh did not reduce pathology in a rat model of NMO produced by intracerebral injection of NMO-IgG. Therefore, although C1r and C1s are targets of C1-inh, our in vitro data with human serum and in vivo data in rats suggest that the complement inhibition activity of C1-inh in serum is too low to confer clinical benefit in NMO.

  4. Presence of C1-inhibitor polymers in a subset of patients suffering from hereditary angioedema.

    Directory of Open Access Journals (Sweden)

    Daniel Elenius Madsen

    Full Text Available Hereditary angioedema (HAE is a potentially life-threatening disease caused by mutations in the gene encoding the serine protease inhibitor (serpin C1 inhibitor (C1-inh. The mutations cause decreased functional plasma levels of C1-inh, which triggers unpredictable recurrent edema attacks. Subjects suffering from HAE have been classified in type I patients with decreased functional and antigenic levels of C1-inh, and type II patients with decreased functional but normal antigenic C1-inh levels. However, a few reports have demonstrated that some mutations cause C1-inh polymerization in vitro, and it is speculated that C1-inh polymers may exist in patient plasma, challenging the current classification of HAE patients. To investigate the presence of C1-inh polymers in patient plasma samples, we developed an immunological method, where monoclonal antibodies produced against polymerized C1-inh were applied in native PAGE western blotting. Using this approach we analyzed genuine plasma samples from 31 Danish HAE families, and found that plasma samples from three genotypically distinct HAE type I families (classified upon C1-inh plasma concentrations contained C1-inh polymers. Identical C1-inh polymerization phenotypes were observed in four affected family members from one of these families. Genotyping of the families revealed that the polymerogenic mutations of two families were located in proximity to the reactive center loop insertion site in C1-inh (p.Ile271Thr and p.Ser258_Pro260del,and one mutation affected helix C (p.Thr167Asn. In conclusion, we demonstrate that C1-inh polymers are present in the plasma of a subgroup of HAE type I patients.

  5. Oversulfated chondroitin sulfate inhibits the complement classical pathway by potentiating C1 inhibitor.

    Directory of Open Access Journals (Sweden)

    Zhao-Hua Zhou

    Full Text Available Oversulfated chondroitin sulfate (OSCS has become the subject of multidisciplinary investigation as a non-traditional contaminant in the heparin therapeutic preparations that were linked to severe adverse events. In this study, it was found that OSCS inhibited complement fixation on bacteria and bacterial lysis mediated by the complement classical pathway. The inhibition of complement by OSCS is not due to interference with antibody/antigen interaction or due to consumption of C3 associated with FXII-dependent contact system activation. However, OSCS complement inhibition is dependent on C1 inhibitor (C1inh since the depletion of C1inh from either normal or FXII-deficient complement plasma prevents OSCS inhibition of complement activity. Surface plasmon resonance measurements revealed that immobilized C1inhibitor bound greater than 5-fold more C1s in the presence of OSCS than in presence of heparin. Although heparin can also inhibit complement, OSCS and OSCS contaminated heparin are more potent inhibitors of complement. Furthermore, polysulfated glycosaminoglycan (PSGAG, an anti-inflammatory veterinary medicine with a similar structure to OSCS, also inhibited complement in the plasma of dogs and farm animals. This study provides a new insight that in addition to the FXII-dependent activation of contact system, oversulfated and polysulfated chondroitin-sulfate can inhibit complement activity by potentiating the classical complement pathway regulator C1inh. This effect on C1inh may play a role in inhibiting inflammation as well as impacting bacterial clearance.

  6. Cell surface expression and function of the macromolecular C1 complex on the surface of human monocytes

    Directory of Open Access Journals (Sweden)

    Kinga K Hosszu

    2012-03-01

    Full Text Available The synthesis of the subunits of the C1 complex (C1q, C1s, C1r, and its regulator C1 inhibitor (C1-Inh by human monocytes has been previously established. However, surface expression of these molecules by monocytes has not been shown. Using flow cytometry and antigen-capture ELISA, we show here for the first time that, in addition to C1q, PB monocytes and the monocyte-derived U937 cells express C1s and C1r, as well as Factor B and C1-Inh on their surface. C1s and C1r immunoprecipitated with C1q, suggesting that at least some of the C1q on these cells is part of the C1 complex. Furthermore, the C1 complex on U937 cells was able to trigger complement activation via the classical pathway. The presence of C1-Inh may ensure that an unwarranted autoactivation of the C1 complex does not take place. Since C1-Inh closely monitors the activation of the C1 complex in a sterile or infectious inflammatory environment, further elucidation of the role of C1 complex is crucial to dissect its function in monocyte, DC and T cell activities, and its implications in host defense and tolerance.

  7. C1 Inhibitor Deficiency and Angioedema of the Small Intestine Masquerading as Crohn’s Disease

    Directory of Open Access Journals (Sweden)

    Kelly W Burak

    2000-01-01

    Full Text Available A case of C1 inhibitor deficiency presenting as localized edema of the small intestine is described. A 16-year-old, previously healthy woman presented with recurrent attacks of abdominal pain and vomiting following minor abdominal trauma. Investigations including computed tomography scan and barium studies confirmed localized edema of the jejunum. At laparoscopy, Crohn’s disease was suspected; however, a subsequent enteroscopy was normal. Complement levels revealed a low C4 level, and C1 inhibitor deficiency was later confirmed. Attacks of abdominal pain began after starting oral contraceptives and have not returned since stopping the birth control pill. This rare cause of abdominal pain is examined, and C1 inhibitor deficiency and angioedema are reviewed.

  8. Neuroprotection by complement (C1) inhibitor in mouse transient brain ischemia.

    Science.gov (United States)

    De Simoni, M G; Storini, C; Barba, M; Catapano, L; Arabia, A M; Rossi, E; Bergamaschini, L

    2003-02-01

    The authors investigated the effect of the C1 inhibitor (C1-INH), the only known inhibitor of complement C1, in a murine model of transient focal ischemia. Ischemia was induced by intraluminal occlusion of the middle cerebral artery. After 2 hours, reperfusion was produced by removing the nylon monofilament occluding the artery. The effect of 15 U C1-INH (intravenously) was evaluated in terms of general and focal neurologic deficits, ischemic volume, neutral red staining (to identify the brain areas subject to ischemic damage), and glial fibrillary acidic protein immunoreactivity (to show astrocytic response). Forty-eight hours after ischemia, C1-INH significantly improved general and focal deficits by 36% and 54%, respectively, and significantly reduced infarct volume (CI-INH, 6.69% +/- 2.93%; saline, 24.24% +/- 8.24%) of total brain. Neutral red staining further showed the strong protective effect of C1-INH in cortex, hippocampus, and striatum. Astrocyte activation induced by ischemia was not affected by C1-INH. These findings show that C1-INH displayed a potent neuroprotective action by effectively reducing ischemia-reperfusion injury.

  9. Therapeutic management of hereditary angioedema due to C1 inhibitor deficiency.

    Science.gov (United States)

    Zanichelli, Andrea; Mansi, Marta; Periti, Giulia; Cicardi, Marco

    2013-05-01

    Hereditary angioedema (HAE) due to C1 inhibitor (C1-INH) deficiency is a rare genetic disease characterized by recurrent swellings of the subcutaneous and submucosal tissues that can manifest as cutaneous edema, abdominal pain and laryngeal edema with airway obstruction. These symptoms have a significant impact on patients' quality of life. The reduction in C1-INH function leads to uncontrolled activation of the contact system and generation of bradykinin, the mediator of increased vascular permeability and edema formation. In the past, few treatment options were available; however, several new therapies with proven efficacy have recently become available to treat and prevent HAE attacks, such as plasma-derived and recombinant C1-INHs that replace the deficient protein, bradykinin receptor antagonist (icatibant) that blocks bradykinin activity and kallikrein inhibitor (ecallantide) that prevents bradykinin release. Such therapies can improve disease outcome. This article reviews the therapeutic management of HAE, which involves the treatment of acute attacks and prophylaxis.

  10. Diagnosis and treatment of hereditary angioedema with normal C1 inhibitor

    Directory of Open Access Journals (Sweden)

    Bork Konrad

    2010-07-01

    Full Text Available Abstract Until recently it was assumed that hereditary angioedema is a disease that results exclusively from a genetic deficiency of the C1 inhibitor. In 2000, families with hereditary angioedema, normal C1 inhibitor activity and protein in plasma were described. Since then numerous patients and families with that condition have been reported. Most of the patients by far were women. In many of the affected women, oral contraceptives, hormone replacement therapy containing estrogens, and pregnancies triggered the clinical symptoms. Recently, in some families mutations in the coagulation factor XII (Hageman factor gene were detected in the affected persons.

  11. Complement, Kinins, and Hereditary Angioedema: Mechanisms of Plasma Instability when C1 Inhibitor is Absent.

    Science.gov (United States)

    Kaplan, Allen P; Joseph, Kusumam

    2016-10-01

    Plasma of patients with types I and II hereditary angioedema is unstable if incubated in a plastic (i.e., inert) vessel at 37 °C manifested by progressively increasing formation of bradykinin. There is also a persistent low level of C4 in 95 % of patients even when they are symptomatic. These phenomena are due to the properties of the C1r subcomponent of C1, factor XII, and the bimolecular complex of prekallikrein with high molecular weight kininogen (HK). Purified C1r auto-activates in physiologic buffers, activates C1s, which in turn depletes C4. This occurs when C1 inhibitor is deficient. The complex of prekallikrein-HK acquires an inducible active site not present in prekallikrein which in Tris-type buffers cleaves HK stoichiometrically to release bradykinin, or in phosphate buffer auto-activates to generate kallikrein and bradykinin. Thus immunologic depletion of C1 inhibitor from factor XII-deficient plasma (phosphate is the natural buffer) auto-activates on incubation to release bradykinin. Normal C1 inhibitor prevents this from occurring. During attacks of angioedema, if factor XII auto-activates on surfaces, the initial factor XIIa formed converts prekallikrein to kallikrein, and kallikrein cleaves HK to release bradykinin. Kallikrein also rapidly activates most remaining factor XII to factor XIIa. Additional cleavages convert factor XIIa to factor XIIf and factor XIIf activates C1r enzymatically so that C4 levels approach zero, and C2 is depleted. There is also a possibility that kallikrein is generated first as a result of activation of the prekallikrein-HK complex by heat shock protein 90 released from endothelial cells, followed by kallikrein activation of factor XII.

  12. Mutational spectrum and phenotypes in Danish families with hereditary angioedema because of C1 inhibitor deficiency

    DEFF Research Database (Denmark)

    Bygum, A; Fagerberg, C R; Ponard, D

    2011-01-01

    Hereditary angioedema (HAE), type I and II, is an autosomal dominant disease with deficiency of functional C1 inhibitor protein causing episodic swellings of skin, mucosa and viscera. HAE is a genetically heterogeneous disease with more than 200 different mutations in the SERPING1 gene. A genotype...

  13. Endothelial targeting with C1-inhibitor reduces complement activation in vitro and during ex vivo reperfusion of pig liver.

    Science.gov (United States)

    Bergamaschini, L; Gobbo, G; Gatti, S; Caccamo, L; Prato, P; Maggioni, M; Braidotti, P; Di Stefano, R; Fassati, L R

    2001-12-01

    Tissue damage during cold storage and reperfusion remains a major obstacle to wider use of transplantation. Vascular endothelial cells and complement activation are thought to be involved in the inflammatory reactions following reperfusion, so endothelial targeting of complement inhibitors is of great interest. Using an in vitro model of human umbilical vein endothelial cells (HUVEC) cold storage and an animal model of ex vivo liver reperfusion after cold ischaemia, we assessed the effect of C1-INH on cell functions and liver damage. We found that in vitro C1-INH bound to HUVEC in a manner depending on the duration of cold storage. Cell-bound C1-INH was functionally active since retained the ability to inhibit exogenous C1s. To assess the ability of cell-bound C1-INH to prevent complement activation during organ reperfusion, we added C1-INH to the preservation solution in an animal model of extracorporeal liver reperfusion. Ex vivo liver reperfusion after 8 h of cold ischaemia resulted in plasma C3 activation and reduction of total serum haemolytic activity, and at tissue level deposition of C3 associated with variable level of inflammatory cell infiltration and tissue damage. These findings were reduced when livers were stored in preservation solution containing C1-INH. Immunohistochemical analysis of C1-INH-treated livers showed immunoreactivity localized on the sinusoidal pole of the liver trabeculae, linked to sinusoidal endothelium, so it is likely that the protective effect was due to C1-INH retained by the livers. These results suggest that adding C1-INH to the preservation solution may be useful to reduce complement activation and tissue injury during the reperfusion of an ischaemic liver.

  14. An update on the diagnosis and management of hereditary angioedema with abnormal C1 inhibitor.

    Science.gov (United States)

    Davis-Lorton, Mark

    2015-02-01

    Hereditary angioedema (HAE) is a rare genetic disease caused by a deficiency in functional C1-esterase inhibitor characterized by recurrent episodes of angioedema in the absence of associated urticaria. Subcutaneous swellings are experienced by virtually all patients with HAE, and dermatologists are likely to encounter this manifestation, requiring that they be knowledgeable about diagnosis and treatment options. Diagnosis of HAE is often delayed because several of the symptoms can mimic other disease states. Delays in diagnosis can lead to increased inappropriate treatment and decreased patient quality of life. Once a proper diagnosis is made, treatment needs to be targeted to the individual patient and includes on-demand therapy and an option for short- and long-term prophylaxis. On-demand therapy is required for all patients who are diagnosed with HAE and effective options include plasma-derived and recombinant C1 inhibitors, kallikrein inhibitors, and bradykinin B2-receptor antagonists. Options available for prophylaxis include plasma-derived C1 inhibitors, attenuated androgens, and antifibrinolytic agents, although the latter 2 options are associated with significant adverse events. This article reviews the diagnosis and options for effective management of patients with HAE.

  15. ACE-inhibitor induced angio-oedema treated with complement C1-inhibitor concentrate

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; Bygum, Anette

    2013-01-01

    severe angio-oedema of the tongue and floor of the mouth. He was successfully treated with complement C1-concentrate causing the swelling to regress within 20 min. This treatment option can be an effective alternative to bradykinin antagonists, which might not be available in the emergency room, or more...

  16. Self-administered C1 esterase inhibitor concentrates for the management of hereditary angioedema: usability and patient acceptance

    Directory of Open Access Journals (Sweden)

    Li HH

    2016-09-01

    Full Text Available Huamin Henry Li Institute for Asthma and Allergy, Chevy Chase, MD, USA Abstract: Hereditary angioedema (HAE is a rare genetic disease characterized by episodic subcutaneous or submucosal swelling. The primary cause for the most common form of HAE is a deficiency in functional C1 esterase inhibitor (C1-INH. The swelling caused by HAE can be painful, disfiguring, and life-threatening. It reduces daily function and compromises the quality of life of affected individuals and their caregivers. Among different treatment strategies, replacement with C1-INH concentrates is employed for on-demand treatment of acute attacks and long-term prophylaxis. Three human plasma-derived C1-INH preparations are approved for HAE treatment in the US, the European Union, or both regions: Cinryze®, Berinert®, and Cetor®; however, only Cinryze is approved for long-term prophylaxis. Postmarketing studies have shown that home therapy (self-administered or administered by a caregiver is a convenient and safe option preferred by many HAE patients. In this review, we summarize the role of self-administered plasma-derived C1-INH concentrate therapy with Cinryze at home in the prophylaxis of HAE. Keywords: C1-INH concentrate, hereditary angioedema, disease management, first line, prophylaxis, self-administration 

  17. Procyanidin trimer C1 derived from Theobroma cacao reactivates latent human immunodeficiency virus type 1 provirus.

    Science.gov (United States)

    Hori, Takanori; Barnor, Jacob; Huu, Tung Nguyen; Morinaga, Osamu; Hamano, Akiko; Ndzinu, Jerry; Frimpong, Angela; Minta-Asare, Keren; Amoa-Bosompem, Mildred; Brandful, James; Odoom, John; Bonney, Joseph; Tuffour, Isaac; Owusu, Baffour-Awuah; Ofosuhene, Mark; Atchoglo, Philip; Sakyiamah, Maxwell; Adegle, Richard; Appiah-Opong, Regina; Ampofo, William; Koram, Kwadwo; Nyarko, Alexander; Okine, Laud; Edoh, Dominic; Appiah, Alfred; Uto, Takuhiro; Yoshinaka, Yoshiyuki; Uota, Shin; Shoyama, Yukihiro; Yamaoka, Shoji

    2015-04-03

    Despite remarkable advances in combination antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) infection remains incurable due to the incomplete elimination of the replication-competent virus, which persists in latent reservoirs. Strategies for targeting HIV reservoirs for eradication that involves reactivation of latent proviruses while protecting uninfected cells by cART are urgently needed for cure of HIV infection. We screened medicinal plant extracts for compounds that could reactivate the latent HIV-1 provirus and identified a procyanidin trimer C1 derived from Theobroma cacao as a potent activator of the provirus in human T cells latently infected with HIV-1. This reactivation largely depends on the NF-κB and MAPK signaling pathways because either overexpression of a super-repressor form of IκBα or pretreatment with a MEK inhibitor U0126 diminished provirus reactivation by C1. A pan-PKC inhibitor significantly blocked the phorbol ester-induced but not the C1-induced HIV-1 reactivation. Although C1-induced viral gene expression persisted for as long as 48 h post-stimulation, NF-κB-dependent transcription peaked at 12 h post-stimulation and then quickly declined, suggesting Tat-mediated self-sustainment of HIV-1 expression. These results suggest that procyanidin C1 trimer is a potential compound for reactivation of latent HIV-1 reservoirs. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Prevention of Hereditary Angioedema Attacks with a Subcutaneous C1 Inhibitor.

    Science.gov (United States)

    Longhurst, Hilary; Cicardi, Marco; Craig, Timothy; Bork, Konrad; Grattan, Clive; Baker, James; Li, Huamin H; Reshef, Avner; Bonner, James; Bernstein, Jonathan A; Anderson, John; Lumry, William R; Farkas, Henriette; Katelaris, Constance H; Sussman, Gordon L; Jacobs, Joshua; Riedl, Marc; Manning, Michael E; Hebert, Jacques; Keith, Paul K; Kivity, Shmuel; Neri, Sergio; Levy, Donald S; Baeza, Maria L; Nathan, Robert; Schwartz, Lawrence B; Caballero, Teresa; Yang, William; Crisan, Ioana; Hernandez, María D; Hussain, Iftikhar; Tarzi, Michael; Ritchie, Bruce; Králíčková, Pavlina; Guilarte, Mar; Rehman, Syed M; Banerji, Aleena; Gower, Richard G; Bensen-Kennedy, Debra; Edelman, Jonathan; Feuersenger, Henrike; Lawo, John-Philip; Machnig, Thomas; Pawaskar, Dipti; Pragst, Ingo; Zuraw, Bruce L

    2017-03-23

    Background Hereditary angioedema is a disabling, potentially fatal condition caused by deficiency (type I) or dysfunction (type II) of the C1 inhibitor protein. In a phase 2 trial, the use of CSL830, a nanofiltered C1 inhibitor preparation that is suitable for subcutaneous injection, resulted in functional levels of C1 inhibitor activity that would be expected to provide effective prophylaxis of attacks. Methods We conducted an international, prospective, multicenter, randomized, double-blind, placebo-controlled, dose-ranging, phase 3 trial to evaluate the efficacy and safety of self-administered subcutaneous CSL830 in patients with type I or type II hereditary angioedema who had had four or more attacks in a consecutive 2-month period within 3 months before screening. We randomly assigned the patients to one of four treatment sequences in a crossover design, each involving two 16-week treatment periods: either 40 IU or 60 IU of CSL830 per kilogram of body weight twice weekly followed by placebo, or vice versa. The primary efficacy end point was the number of attacks of angioedema. Secondary efficacy end points were the proportion of patients who had a response (≥50% reduction in the number of attacks with CSL830 as compared with placebo) and the number of times that rescue medication was used. Results Of the 90 patients who underwent randomization, 79 completed the trial. Both doses of CSL830, as compared with placebo, reduced the rate of attacks of hereditary angioedema (mean difference with 40 IU, -2.42 attacks per month; 95% confidence interval [CI], -3.38 to -1.46; and mean difference with 60 IU, -3.51 attacks per month; 95% CI, -4.21 to -2.81; Phereditary angioedema, the prophylactic use of a subcutaneous C1 inhibitor twice weekly significantly reduced the frequency of acute attacks. (Funded by CSL Behring; COMPACT EudraCT number, 2013-000916-10 , and ClinicalTrials.gov number, NCT01912456 .).

  19. Ecallantide is a novel treatment for attacks of hereditary angioedema due to C1 inhibitor deficiency

    OpenAIRE

    Farkas H; Varga L

    2011-01-01

    Henriette Farkas, Lilian Varga3rd Department of Internal Medicine, Semmelweis University, Budapest, HungaryAbstract: Hereditary angioedema (HAE) resulting from the deficiency of the C1 inhibitor protein is a rare disease, characterized by paroxysms of edema formation in the subcutis and in the submucosa. Edema can cause obstruction of the upper airway, which may lead to suffocation. Prompt elimination of edema is necessary to save patients from this life-threatening condition. Essentially, th...

  20. Biological activities of C1 inhibitor independent of protease inhibition%C1酯酶抑制剂的非蛋白酶抑制功能

    Institute of Scientific and Technical Information of China (English)

    杨晓凤; 张俊平; 胡振林

    2012-01-01

    C1 esterase inhibitor belongs to the superfamily of serine proteinase inhibitors (serpins) and regulates several important systems including the complement system, the contact activation system, the fibrinolytic system, and the intrinsic pathway of coagulation. It is currently used for the treatment of hereditary angioedema in clinic. However, recent studies have suggested that Cl esterase inhibitor may have potential use in the treatment of diseases other than hereditary angioedema, such as sepsis and reperfusion of ischemic myocardium, due to its new biological activities, for instance, anti-inflammation and anti-apoptosis, unrelated to protease inhibition. Here we review the biological activities of Cl inhibitor independent of protease inhibition.%C1酯酶抑制剂(C1 esterase inhibitor,C1INH)属于丝氨酸蛋白酶抑制剂家族,能够调节补体系统、激肽释放系统、纤溶系统和凝血系统.目前在临床号主要用于遗传性血管性水肿的治疗.但最近的研究表明C1 INH除丝氨酸蛋白酶抑制作用外,还具有多种非蛋白酶抑制功能,如抗炎和抗凋亡作用.而且很多动物实验和临床试验显示C1INH对脓毒症(sepsis),心肌缺血等疾病也有治疗作用.本文主要综述C1INH的非蛋白酶抑制功能的最新研究进展.

  1. Nebulized C1-Esterase Inhibitor does not Reduce Pulmonary Complement Activation in Rats with Severe Streptococcus Pneumoniae Pneumonia.

    Science.gov (United States)

    de Beer, Friso; Lagrand, Wim; Glas, Gerie J; Beurskens, Charlotte J P; van Mierlo, Gerard; Wouters, Diana; Zeerleder, Sacha; Roelofs, Joris J T H; Juffermans, Nicole P; Horn, Janneke; Schultz, Marcus J

    2016-12-01

    Complement activation plays an important role in the pathogenesis of pneumonia. We hypothesized that inhibition of the complement system in the lungs by repeated treatment with nebulized plasma-derived human C1-esterase inhibitor reduces pulmonary complement activation and subsequently attenuates lung injury and lung inflammation. This was investigated in a rat model of severe Streptococcus pneumoniae pneumonia. Rats were intra-tracheally challenged with S. pneumoniae to induce pneumonia. Nebulized C1-esterase inhibitor or saline (control animals) was repeatedly administered to rats, 30 min before induction of pneumonia and every 6 h thereafter. Rats were sacrificed 20 or 40 h after inoculation with bacteria. Brochoalveolar lavage fluid and lung tissue were obtained for measuring levels of complement activation (C4b/c), lung injury and inflammation. Induction of pneumonia was associated with pulmonary complement activation (C4b/c at 20 h 1.24 % [0.56-2.59] and at 40 h 2.08 % [0.98-5.12], compared to 0.50 % [0.07-0.59] and 0.03 % [0.03-0.03] in the healthy control animals). The functional fraction of C1-INH was detectable in BALF, but no effect was found on pulmonary complement activation (C4b/c at 20 h 0.73 % [0.16-1.93] and at 40 h 2.38 % [0.54-4.19]). Twenty hours after inoculation, nebulized C1-esterase inhibitor treatment reduced total histology score, but this effect was no longer seen at 40 h. Nebulized C1-esterase inhibitor did not affect other markers of lung injury or lung inflammation. In this negative experimental animal study, severe S. pneumoniae pneumonia in rats is associated with pulmonary complement activation. Repeated treatment with nebulized C1-esterase inhibitor, although successfully delivered to the lungs, does not affect pulmonary complement activation, lung inflammation or lung injury.

  2. Ecallantide is a novel treatment for attacks of hereditary angioedema due to C1 inhibitor deficiency

    Directory of Open Access Journals (Sweden)

    Farkas H

    2011-05-01

    Full Text Available Henriette Farkas, Lilian Varga3rd Department of Internal Medicine, Semmelweis University, Budapest, HungaryAbstract: Hereditary angioedema (HAE resulting from the deficiency of the C1 inhibitor protein is a rare disease, characterized by paroxysms of edema formation in the subcutis and in the submucosa. Edema can cause obstruction of the upper airway, which may lead to suffocation. Prompt elimination of edema is necessary to save patients from this life-threatening condition. Essentially, these edematous attacks are related to the activation of the kinin-kallikrein system and the consequent release of bradykinin. Ecallantide (known as DX-88 previously, a potent and specific inhibitor of plasma kallikrein is an innovative medicinal product. This is the only agent approved recently by the FDA for all localizations of edematous HAE attacks. Its advantages include no risk of viral contamination, high selectivity, very rapid onset of action, good tolerability, and straightforward subcutaneous administration. Owing to the risk of anaphylaxis, ecallantide should be administered by a health care professional. A postmarketing survey to improve risk-assessment and risk-minimization has been launched. The results of these studies may lead to the approval of ecallantide for self-administration.Keywords: hereditary angioedema, C1-inhibitor deficiency, treatment, bradykinin, kallikrein inhibitor, subcutaneous administration

  3. The Janus faces of acquired angioedema: C1-inhibitor deficiency, lymphoproliferation and autoimmunity.

    Science.gov (United States)

    Wu, Maddalena Alessandra; Castelli, Roberto

    2016-02-01

    Several clinical and biological features of lymphoproliferative diseases have been associated with an increased risk of developing autoimmune manifestations. Acquired deficiency of C1-inhibitor (C1-INH) (AAE) is a rare syndrome clinically similar to hereditary angioedema (HAE) characterized by local increase in vascular permeability (angioedema) of the skin and the gastrointestinal and oro-pharyngo-laryngeal mucosa. Bradykinin, a potent vasoactive peptide, released from high molecular weight kininogen when it is cleaved by plasma kallikrein (a serine protease controlled by C1-INH), is the mediator of symptoms. In total 46% of AAE patients carry an underlying hematological disorder including monoclonal gammopathy of uncertain significance (MGUS) or B cell malignancies. However, 74% of AAE patients have anti-C1-INH autoantibodies without hematological, clinical or instrumental evidence of lymphoproliferative disease. Unlike HAE patients, AAE patients usually have late-onset symptoms, do not have a family history of angioedema and present variable response to treatment due to the hypercatabolism of C1-INH. Experiments show that C1-INH and/or the classical complement pathway were consumed by the neoplastic lymphatic tissues and/or anti-C1-INH neutralizing autoantibodies. Therapy of AAE follows two directions: 1) prevention/reversal of the symptoms of angioedema; and 2) treatment of the associated disease. Different forms of B cell disorders coexist and/or evolve into each other in AAE and seem to be dominated by an altered control of B cell proliferation, thus AAE represents an example of the strict link between autoimmunity and lymphoproliferation.

  4. Complement C1 esterase inhibitor levels linked to infections and contaminated heparin-associated adverse events.

    Directory of Open Access Journals (Sweden)

    Zhao-Hua Zhou

    Full Text Available Activation of kinin-kallikrein and complement pathways by oversulfated-chondroitin-sulfate (OSCS has been linked with recent heparin-associated adverse clinical events. Given the fact that the majority of patients who received contaminated heparin did not experience an adverse event, it is of particular importance to determine the circumstances that increase the risk of a clinical reaction. In this study, we demonstrated by both the addition and affinity depletion of C1inh from normal human plasma, that the level of C1inh in the plasma has a great impact on the OSCS-induced kallikrein activity and its kinetics. OSCS-induced kallikrein activity was dramatically increased after C1inh was depleted, while the addition of C1inh completely attenuated kallikrein activity. In addition, actual clinical infection can lead to increased C1inh levels. Plasma from patients with sepsis had higher average levels of functional C1inh and decreased OSCS-induced kallikrein activity. Lastly, descriptive data on adverse event reports suggest cases likely to be associated with contaminated heparin are inversely correlated with infection. Our data suggest that low C1inh levels can be a risk factor and high levels can be protective. The identification of risk factors for contact system-mediated adverse events may allow for patient screening and clinical development of prophylaxis and treatments.

  5. Angioedema with normal C1q and C1 inhibitor: an atypical presentation of Waldenström macroglobulinemia.

    Science.gov (United States)

    Khanfar, Anas; Trikha, Anita; Bonds, Rana; Jana, Bagi

    2013-05-01

    Angioedema is a recurrent, non-pitting, non-pruritic, transitory swelling due to transient increase of endothelial permeability in the capillaries of the deep cutaneous and mucosal layers. Angioedema is generally categorized based on etiology, and characteristic lab findings are associated with each category. Cases of acquired angioedema associated with myeloproliferative disorders have been described in the literature, but these have been associated with a characteristic low C1q, a defining laboratory finding in acquired angioedema. Here we present a case of 68-year-old female with acquired angioedema that was not associated with low C1q, but was found to have Waldenström disease. Her angioedema responded dramatically to combination therapy consisting of bortezomib, rituximab, and dexamethasone.

  6. Elucidating the Mechanism of Gain of Toxic Function From Mutant C1 Inhibitor Proteins in Hereditary Angioedema

    Science.gov (United States)

    2015-10-01

    in Hereditary Angioedema PRINCIPAL INVESTIGATOR: Dr. Bruce Zuraw, M.D. CONTRACTING: ORGANIZATION Veterans Medical Research Foundation San...C1 Inhibitor 5a. CONTRACT NUMBER Proteins in Hereditary Angioedema 5b. GRANT NUMBER W81XWH-14-1-0506 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr...unique structural characteristics of C1INH make it more susceptible to GOTF than other serpins. 2. KEYWORDS: Hereditary angioedema , C1 inhibitor, serpin

  7. C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation

    Directory of Open Access Journals (Sweden)

    Christiane eAlbert-Weissenberger

    2014-09-01

    Full Text Available Traumatic brain injury (TBI induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 hour. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 hour after cryolesion reduced lesion volumes by ~75% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted antiinflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings.

  8. Phase II study results of a replacement therapy for hereditary angioedema with subcutaneous C1inhibitor concentrate

    OpenAIRE

    Zuraw, B L; Cicardi, M; Longhurst, H. J.; Bernstein, J.A.; Li, H H; Magerl, M.; Martinez‐Saguer, I.; Rehman, S. M. M.; P. Staubach; Feuersenger, H; Parasrampuria, R.; Sidhu, J; Edelman, J; Craig, T.

    2015-01-01

    Abstract Background Hereditary angioedema (HAE) due to C1 inhibitor deficiency manifests as recurrent swelling attacks that can be disabling and sometimes fatal. Long‐term prophylaxis with twice‐weekly intravenous injections of plasma‐derived C1inhibitor (pdC1‐INH) has been established as an effective treatment. Subcutaneous (SC) administration of pdC1‐INH has not been studied in patients with HAE. Methods This open‐label, dose‐ranging, crossover study (COMPACT Phase II) was conducted in 18 ...

  9. Successful C1 inhibitor short-term prophylaxis during redo mitral valve replacement in a patient with hereditary angioedema

    Directory of Open Access Journals (Sweden)

    Coleman Suzanne

    2010-10-01

    Full Text Available Abstract Hereditary angioedema is characterized by sudden episodes of nonpitting edema that cause discomfort and pain. Typically the extremities, genitalia, trunk, gastrointestinal tract, face, and larynx are affected by attacks of swelling. Laryngeal swelling carries significant risk for asphyxiation. The disease results from mutations in the C1 esterase inhibitor gene that cause C1 esterase inhibitor deficiency. Attacks of hereditary angioedema result from contact, complement, and fibrinolytic plasma cascade activation, where C1 esterase inhibitor irreversibly binds substrates. Patients with hereditary angioedema cannot replenish C1 esterase inhibitor levels on pace with its binding. When C1 esterase inhibitor is depleted in these patients, vasoactive plasma cascade products cause swelling attacks. Trauma is a known trigger for hereditary angioedema attacks, and patients have been denied surgical procedures because of this risk. However, uncomplicated surgeries have been reported. Appropriate prophylaxis can reduce peri-operative morbidity in these patients, despite proteolytic cascade and complement activation during surgical trauma. We report a case of successful short-term prophylaxis with C1 esterase inhibitor in a 51-year-old man with hereditary angioedema who underwent redo mitral valve reconstructive surgery.

  10. International consensus on the diagnosis and management of pediatric patients with hereditary angioedema with C1 inhibitor deficiency

    DEFF Research Database (Denmark)

    Farkas, H; Martinez-Saguer, I; Bork, K;

    2016-01-01

    BACKGROUND: The consensus documents published to date on hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE) have focused on adult patients. Many of the previous recommendations have not been adapted to pediatric patients. We intended to produce consensus recommendations for the diagn...

  11. Self-administration of intravenous C1-inhibitor therapy for hereditary angioedema and associated quality of life benefits

    DEFF Research Database (Denmark)

    Bygum, Anette; Andersen, Klaus Ejner; Mikkelsen, Carsten Sauer

    2009-01-01

    Hereditary angioedema (HAE) is often debilitating with a serious effect on quality of life (QOL). Treatment of acute HAE attacks is usually with C1 esterase inhibitor (C1-INH) concentrates; however, treatment can be delayed by patients' travel time for attending emergency units. We assessed...

  12. Use of a C1 Inhibitor Concentrate in Adults ≥65 Years of Age with Hereditary Angioedema

    DEFF Research Database (Denmark)

    Bygum, Anette; Martinez-Saguer, Inmaculada; Bas, Murat

    2016-01-01

    BACKGROUND: Treatment of hereditary angioedema (HAE) in 'older adults' (those aged ≥65 years) has not been well studied. The international Berinert Patient Registry collected data on the use of intravenous plasma-derived, pasteurized, nanofiltered C1-inhibitor concentrate (pnfC1-INH; Berinert(®)/...

  13. Ecallantide is a novel treatment for attacks of hereditary angioedema due to C1 inhibitor deficiency.

    Science.gov (United States)

    Farkas, Henriette; Varga, Lilian

    2011-01-01

    Hereditary angioedema (HAE) resulting from the deficiency of the C1 inhibitor protein is a rare disease, characterized by paroxysms of edema formation in the subcutis and in the submucosa. Edema can cause obstruction of the upper airway, which may lead to suffocation. Prompt elimination of edema is necessary to save patients from this life-threatening condition. Essentially, these edematous attacks are related to the activation of the kinin-kallikrein system and the consequent release of bradykinin. Ecallantide (known as DX-88 previously), a potent and specific inhibitor of plasma kallikrein is an innovative medicinal product. This is the only agent approved recently by the FDA for all localizations of edematous HAE attacks. Its advantages include no risk of viral contamination, high selectivity, very rapid onset of action, good tolerability, and straightforward subcutaneous administration. Owing to the risk of anaphylaxis, ecallantide should be administered by a health care professional. A postmarketing survey to improve risk-assessment and risk-minimization has been launched. The results of these studies may lead to the approval of ecallantide for self-administration.

  14. International consensus on the diagnosis and management of pediatric patients with hereditary angioedema with C1 inhibitor deficiency

    DEFF Research Database (Denmark)

    Farkas, H; Martinez-Saguer, I; Bork, K

    2017-01-01

    BACKGROUND: The consensus documents published to date on hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE) have focused on adult patients. Many of the previous recommendations have not been adapted to pediatric patients. We intended to produce consensus recommendations for the diagn......BACKGROUND: The consensus documents published to date on hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE) have focused on adult patients. Many of the previous recommendations have not been adapted to pediatric patients. We intended to produce consensus recommendations...... for the diagnosis and management of pediatric patients with C1-INH-HAE. METHODS: During an expert panel meeting that took place during the 9th C1 Inhibitor Deficiency Workshop in Budapest, 2015 (www.haenet.hu), pediatric data were presented and discussed and a consensus was developed by voting. RESULTS......-HAE information card and medicine for emergency use. The regulatory approval status of the drugs for prophylaxis and for acute treatment is different in each country. Plasma-derived C1-INH, recombinant C1-INH, and ecallantide are the only agents licensed for the acute treatment of pediatric patients. Clinical...

  15. Angiotensin-converting enzyme inhibitors-induced angioedema treated by C1 esterase inhibitor concentrate (Berinert®): about one case and review of the therapeutic arsenal.

    Science.gov (United States)

    Lipski, Samuel Michael; Casimir, Georges; Vanlommel, Martine; Jeanmaire, Mathieu; Dolhen, Pierre

    2015-02-01

    C1 esterase inhibitor (Berinert®) is generally used to treat severe attack of hereditary angioedema. We describe here the case of a patient who presented with a severe angioedema induced by angiotensin-converting enzyme inhibitors (ACEIs) endangering her life. It could be successfully treated with that medicine.

  16. Lack of increased prevalence of immunoregulatory disorders in hereditary angioedema due to C1-inhibitor deficiency.

    Science.gov (United States)

    Farkas, Henriette; Csuka, Dorottya; Gács, Judit; Czaller, Ibolya; Zotter, Zsuzsanna; Füst, George; Varga, Lilian; Gergely, Péter

    2011-10-01

    Hereditary angioedema due to deficiency of C1-INH (HAE-C1-INH) is associated with enhanced consumption of the early complement components, which may predispose for autoimmune disease. We assessed the prevalence of such disorders among HAE- C1-INH patients and their impact on the natural course of HAE-C1-INH. Clinical data and immunoserological parameters of 130 HAE-C1-INH and 174 non-C1-INH-deficient patients with angioedema were analyzed. In our study, the incidence of immunoregulatory disorders was 11.5% in the population of HAE-C1-INH patients and 5.2% among non-C1-INH-deficient controls with angioedema. Immunoserology screening revealed a greater prevalence of anticardiolipin IgM (p=0.0118) among HAE-C1-INH patients, than in those with non-C1-INH-deficient angioedema. We did not find higher prevalence of immunoregulatory disorders among our HAE-C1-INH patients. However, in patients with confirmed immunoregulatory disorders, the latter influenced both the severity of HAE-C1-INH and the effectiveness of its long-term management. Appropriate management of the immunoregulatory disease thus identified improves the symptoms of HAE-C1-INH.

  17. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema

    DEFF Research Database (Denmark)

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette

    2016-01-01

    concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema......Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor...

  18. Self-administered C1 esterase inhibitor concentrates for the management of hereditary angioedema: usability and patient acceptance

    OpenAIRE

    Li HH

    2016-01-01

    Huamin Henry Li Institute for Asthma and Allergy, Chevy Chase, MD, USA Abstract: Hereditary angioedema (HAE) is a rare genetic disease characterized by episodic subcutaneous or submucosal swelling. The primary cause for the most common form of HAE is a deficiency in functional C1 esterase inhibitor (C1-INH). The swelling caused by HAE can be painful, disfiguring, and life-threatening. It reduces daily function and compromises the quality of life of affected individuals and their caregivers....

  19. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema.

    Science.gov (United States)

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette; Rasmussen, Eva Rye

    2016-01-01

    Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema (ACEi-AE) of the hypopharynx that completely resolved rapidly after the infusion of plasma-derived C1-inhibitor concentrate adding to the sparse reports in the existing literature.

  20. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert® in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema

    Directory of Open Access Journals (Sweden)

    Thorbjørn Hermanrud

    2016-01-01

    Full Text Available Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema (ACEi-AE of the hypopharynx that completely resolved rapidly after the infusion of plasma-derived C1-inhibitor concentrate adding to the sparse reports in the existing literature.

  1. Peptide inhibitor of complement C1 (PIC1, a novel suppressor of classical pathway activation: mechanistic studies and clinical potential

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    2014-08-01

    Full Text Available The classical pathway of complement plays multiple physiological roles including modulating immunological effectors initiated by adaptive immune responses as well as an essential homeostatic role in the clearance of damaged self-antigens. However, dysregulated classical pathway activation is associated with antibody-initiated, inflammatory diseases processes like cold agglutinin disease (CAD, acute intravascular hemolytic transfusion reaction (AIHTR and acute/hyperacute transplantation rejection. To date, only one putative classical pathway inhibitor, C1 esterase inhibitor (C1-INH, is currently commercially available and its only approved indication is for replacement treatment in hereditary angioedema (HAE, which is predominantly a kinin pathway disease. Given the variety of disease conditions in which the classical pathway is implicated, development of therapeutics that specifically inhibit complement initiation represents a major unmet medical need. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement. In vitro studies have demonstrated that these Peptide Inhibitors of Complement C1 (PIC1 bind to the collagen-like region of the initiator molecule of the classical pathway, C1q. PIC1 binding to C1q blocks activation of the associated serine proteases (C1s-C1r-C1r-C1s and subsequent downstream complement activation. Rational design optimization of PIC1 has resulted in the generation of a highly potent derivative of fifteen amino acids. PIC1 inhibits classical pathway mediated complement activation in ABO incompatibility in vitro as well as inhibiting classical pathway activation in vivo in rats. This review will focus on the pre-clinical development of PIC1 and discuss its potential as a therapeutic in antibody-mediated classical pathway disease, specifically AIHTR.

  2. Use of a C1 Inhibitor Concentrate in Adults ≥65 Years of Age with Hereditary Angioedema

    DEFF Research Database (Denmark)

    Bygum, Anette; Martinez-Saguer, Inmaculada; Bas, Murat;

    2016-01-01

    BACKGROUND: Treatment of hereditary angioedema (HAE) in 'older adults' (those aged ≥65 years) has not been well studied. The international Berinert Patient Registry collected data on the use of intravenous plasma-derived, pasteurized, nanofiltered C1-inhibitor concentrate (pnfC1-INH; Berinert......(®)/CSL Behring) in patients of any age, including many older adults. METHODS: This observational registry, conducted from 2010 to 2014 at 30 US and seven European sites, gathered prospective (post-enrollment) and retrospective (pre-enrollment) usage and adverse event (AE) data on subjects treated with pnfC1-INH...... doses were lower than those reported for 252 'younger adults' (those aged

  3. C1-inhibitor polymers activate the FXII-dependent kallikrein-kinin system

    DEFF Research Database (Denmark)

    Elenius Madsen, Daniel; Sidelmann, Johannes Jakobsen; Biltoft, Daniel

    2015-01-01

    attacks. HAE is caused by mutations in the C1-inh encoding gene, and we recently demonstrated that some mutations give rise to the presence of polymerized C1-inh in the plasma of HAE patients. METHODS: C1-inh polymers corresponding to the size of polymers observed in vivo were produced using heat...... denaturation and gel filtration. The ability of these polymers to facilitate FXII activation was assessed in vitro in an FXII activation bandshift assay. After spiking of plasma with C1-inh polymers, kallikrein generation was analyzed in a global kallikrein generation method. Prekallikrein consumption...... in the entire Danish HAE cohort was analyzed using an ELISA method. RESULTS: C1-inh polymers mediated FXII activation, and a dose dependent kallikrein generation in plasma spiked with C1-inh polymers. An increased (pre)kallikrein consumption was observed in plasma samples from HAE patients presenting with C1...

  4. Peptide Inhibitor of Complement C1 (PIC1 Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    Full Text Available The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1. In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases.

  5. The production and secretion of complement component C1q by human mast cells.

    Science.gov (United States)

    van Schaarenburg, Rosanne A; Suurmond, Jolien; Habets, Kim L L; Brouwer, Mieke C; Wouters, Diana; Kurreeman, Fina A S; Huizinga, Tom W J; Toes, René E M; Trouw, Leendert A

    2016-10-01

    C1q is the initiation molecule of the classical pathway of the complement system and is produced by macrophages and immature dendritic cells. As mast cells share the same myeloid progenitor cells, we have studied whether also mast cells can produce and secrete C1q. Mast cells were generated in vitro from CD34+ progenitor cells from buffy coats or cord blood. Fully differentiated mast cells were shown by both RNA sequencing and qPCR to express C1QA, C1QB and C1QC. C1q produced by mast cells has a similar molecular make-up as serum C1q. Reconstituting C1q depleted serum with mast cell supernatant in haemolytic assays, indicated that C1q secreted by mast cells is functionally active. The level of C1q in supernatants produced under basal conditions was considerably enhanced upon stimulation with LPS, dexamethasone in combination with IFN- γ or via FcεRI triggering. Mast cells in human tissues stained positive for C1q in both healthy and in inflamed tissue. Moreover, mast cells in healthy and diseased skin appear to be the predominant C1q positive cells. Together, our data reveal that mast cells are able to produce and secrete functional active C1q and indicate mast cells as a local source of C1q in human tissue. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Hereditary and acquired angioedema: problems and progress: proceedings of the third C1 esterase inhibitor deficiency workshop and beyond.

    Science.gov (United States)

    Agostoni, Angelo; Aygören-Pürsün, Emel; Binkley, Karen E; Blanch, Alvaro; Bork, Konrad; Bouillet, Laurence; Bucher, Christoph; Castaldo, Anthony J; Cicardi, Marco; Davis, Alvin E; De Carolis, Caterina; Drouet, Christian; Duponchel, Christiane; Farkas, Henriette; Fáy, Kálmán; Fekete, Béla; Fischer, Bettina; Fontana, Luigi; Füst, George; Giacomelli, Roberto; Gröner, Albrecht; Hack, C Erik; Harmat, George; Jakenfelds, John; Juers, Mathias; Kalmár, Lajos; Kaposi, Pál N; Karádi, István; Kitzinger, Arianna; Kollár, Tímea; Kreuz, Wolfhart; Lakatos, Peter; Longhurst, Hilary J; Lopez-Trascasa, Margarita; Martinez-Saguer, Inmaculada; Monnier, Nicole; Nagy, István; Németh, Eva; Nielsen, Erik Waage; Nuijens, Jan H; O'grady, Caroline; Pappalardo, Emanuela; Penna, Vincenzo; Perricone, Carlo; Perricone, Roberto; Rauch, Ursula; Roche, Olga; Rusicke, Eva; Späth, Peter J; Szendei, George; Takács, Edit; Tordai, Attila; Truedsson, Lennart; Varga, Lilian; Visy, Beáta; Williams, Kayla; Zanichelli, Andrea; Zingale, Lorenza

    2004-09-01

    Hereditary angioedema (HAE), a rare but life-threatening condition, manifests as acute attacks of facial, laryngeal, genital, or peripheral swelling or abdominal pain secondary to intra-abdominal edema. Resulting from mutations affecting C1 esterase inhibitor (C1-INH), inhibitor of the first complement system component, attacks are not histamine-mediated and do not respond to antihistamines or corticosteroids. Low awareness and resemblance to other disorders often delay diagnosis; despite availability of C1-INH replacement in some countries, no approved, safe acute attack therapy exists in the United States. The biennial C1 Esterase Inhibitor Deficiency Workshops resulted from a European initiative for better knowledge and treatment of HAE and related diseases. This supplement contains work presented at the third workshop and expanded content toward a definitive picture of angioedema in the absence of allergy. Most notably, it includes cumulative genetic investigations; multinational laboratory diagnosis recommendations; current pathogenesis hypotheses; suggested prophylaxis and acute attack treatment, including home treatment; future treatment options; and analysis of patient subpopulations, including pediatric patients and patients whose angioedema worsened during pregnancy or hormone administration. Causes and management of acquired angioedema and a new type of angioedema with normal C1-INH are also discussed. Collaborative patient and physician efforts, crucial in rare diseases, are emphasized. This supplement seeks to raise awareness and aid diagnosis of HAE, optimize treatment for all patients, and provide a platform for further research in this rare, partially understood disorder.

  7. I440V mutation in C1 esterase inhibitor gene in a patient with hereditary angioedema and its influence to the structure of C1 esterase inhibitor%遗传性血管性水肿C1INH基因1440V变异及其对结构的影响

    Institute of Scientific and Technical Information of China (English)

    吴焱; 邓列华; 赵刚; 胡云峰; 殷董; 林泽; 赵永铿

    2009-01-01

    Objective To assess the mutation in exon 8 of C1 esterase inhibitor(C1INH)gene in a patient with hereditary angioedema(HAE).Methods Genomic DNA was extracted from a female patient with HAE as well as her mother and a normal human control.The fragment of exon 8 of C1INH gene was amplified by PCR and inserted into plasmid carrier pUC19 with the help of ligase.Then,the recombinant plasmid was transformed into competent cells of E coli TG1 strains.After culture of positive transformant,plasmid DNA Was extracted and subjected to sequencing.SDS-PAGE and We:stem blot were performed on the sera of the patient to detect the concentration and function of C1INH protein.Results An A1677G mutation at exon 8 of C1INH gene.which resulted in a substitution of isoleucine to valine at codon 440,Was found in the patient who SUfiered from HAE type I.Additionally.SDS-PAGE and Western blot revealed that the molecular weight of C1INH protein was 96 000.but not 105 000 observed in noHnal human control.Conclusion The newly identified mutation 1440V.which is located at P4 residue of reactive center loop in C1INH.may result in conformational alteration of C1INH.%目的 通过基因测序了解遗传性血管性水肿(HAE)患者C1酯酶抑制剂(C1INH)基因第八外显子的变异情况.方法 从HAE患者外周血白细胞中提取基因组DNA,PCR扩增第八外显子片段后插入pUC19质粒载体冉转化入感受态大肠杆菌TG1菌株,培养扩增质粒DNA,提取纯化后进行基因测序.将患者血清进行SDS-PAGE及Westem印迹,以了解该变异对CIINH结构的可能影响.结果 在1例I型HAE患者的第八外显子中发现一个变异位点,16776A>G,致440位的异亮氨酸突变成缬氨酸(1440V),SDS-PAGE及Westem印迹显示该患者血清中C1INH全部表现为96 000片段而非正常的105 000片段.结论 1440v是一个新的C1INH基因变异,位于C1INH反应中心环的P4位,变异可能导致C1INH分子构象发生改变.

  8. Effects of C1 Inhibitor on Tissue Damage in a Porcine Model of Controlled Hemorrhage

    Science.gov (United States)

    2012-07-01

    glucose, hematocrit (Hct), hemoglobin ( Hb ), sodium (Na+), potassium (K+), and ionized calcium (Ca2+) using i STAT cartridges (Abbott Laboratories, Abbott...Shock Society. Unauthorized reproduction of this article is prohibited. (Princeton, NJ). MicroVue C1 INH enzyme immunoassay (EIA) kit was purchased from...TABLE 3. Prehemorrhage and posthemorrhage metabolic data of hemorrhaged animals Group PSham H H + C1-100 H + C1-250 n 5 5 6 4 5 4 5 Prehemorrhage Hb , g

  9. Effects of fenofibrate on hyperlipidemia and postprandial triglyceride metabolism in human apolipoprotein C1 transgenic mice

    NARCIS (Netherlands)

    Jong, M.C.; Dahlmans, V.E.H.; Princen, H.M.G.; Hofker, M.H.; Havekes, L.M.

    1998-01-01

    To study the in vivo role of apolipoprotein (apo) C1 in lipoprotein metabolism, we have generated transgenic mice expressing the human apo C1 gene. Apo C1 is a small 6.6 kDa protein that is primarily synthesized by the liver and is present on chylomicrons, very low density lipoproteins (VLDL) and hi

  10. Effects of fenofibrate on hyperlipidemia and postprandial triglyceride metabolism in human apolipoprotein C1 transgenic mice

    NARCIS (Netherlands)

    Jong, M.C.; Dahlmans, V.E.H.; Princen, H.M.G.; Hofker, M.H.; Havekes, L.M.

    1998-01-01

    To study the in vivo role of apolipoprotein (apo) C1 in lipoprotein metabolism, we have generated transgenic mice expressing the human apo C1 gene. Apo C1 is a small 6.6 kDa protein that is primarily synthesized by the liver and is present on chylomicrons, very low density lipoproteins (VLDL) and

  11. Hereditary angioedema in a Jordanian family with a novel missense mutation in the C1-inhibitor N-terminal domain.

    Science.gov (United States)

    Jaradat, Saied A; Caccia, Sonia; Rawashdeh, Rifaat; Melhem, Motasem; Al-Hawamdeh, Ali; Carzaniga, Thomas; Haddad, Hazem

    2016-03-01

    Hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) is an autosomal dominant disease caused by mutations in the SERPING1 gene. A Jordanian family, including 14 individuals with C1-INH-HAE clinical symptoms, was studied. In the propositus and his parents, SERPING1 had four mutations leading to amino acid substitutions. Two are known polymorphic variants (c.167T>C; p.Val34Ala and c.1438G>A; p.Val458Met), the others are newly described. One (c.203C>T; p.Thr46Ile) is located in the N-terminal domain of the C1-inhibitor protein and segregates with angioedema symptoms in the family. The other (c.800C>T; p.Ala245Val) belongs to the serpin domain, and derives from the unaffected father. DNA from additional 24 family members were screened for c.203C>T mutation in the target gene. All individuals heterozygous for the c.203C>T mutation had antigenic and functional plasma levels of C1-inhibitor below 50% of normal, confirming the diagnosis of type I C1-INH-HAE. Angioedema symptoms were present in 14 of 16 subjects carrier for the c.203T allele. Among these subjects, those carrying the c.800T variation had more severe and frequent symptoms than subjects without this mutation. This family-based study provides the first evidence that multiple amino acid substitutions in SERPING1 could influence C1-INH-HAE phenotype.

  12. A focused parameter update: hereditary angioedema, acquired C1 inhibitor deficiency, and angiotensin-converting enzyme inhibitor-associated angioedema.

    Science.gov (United States)

    Zuraw, Bruce L; Bernstein, Jonathan A; Lang, David M; Craig, Timothy; Dreyfus, David; Hsieh, Fred; Khan, David; Sheikh, Javed; Weldon, David; Bernstein, David I; Blessing-Moore, Joann; Cox, Linda; Nicklas, Richard A; Oppenheimer, John; Portnoy, Jay M; Randolph, Christopher R; Schuller, Diane E; Spector, Sheldon L; Tilles, Stephen A; Wallace, Dana

    2013-06-01

    These parameters were developed by the Joint Task Force on Practice Parameters (JTFPP), representing the American Academy of Allergy, Asthma & Immunology (AAAAI); the American College of Allergy, Asthma & Immunology (ACAAI); and the Joint Council of Allergy, Asthma and Immunology. The AAAAI and the ACAAI have jointly accepted responsibility for establishing "A focused parameter update: Hereditary angioedema, acquired C1 inhibitor deficiency, and angiotensin-converting enzyme inhibitor-associated angioedema." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the JTFPP, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma and Immunology. The Joint Task Force on Practice Parameters understands that the cost of diagnostic tests and therapeutic agents is an important concern that might appropriately influence the work-up and treatment chosen for a given patient. The JTFPP recognizes that the emphasis of our primary recommendations regarding a medication might vary, for example, depending on third-party payer issues and product patent expiration dates. However, because the cost of a given test or agent is so widely variable and there is a paucity of pharmacoeconomic data, the JTFPP generally does not consider cost when formulating practice parameter recommendations. In some instances the cost benefit of an intervention is considered relevant, and commentary might be provided. These parameters are not designed for use by pharmaceutical companies in drug promotion

  13. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface.

    Directory of Open Access Journals (Sweden)

    Elise S Hovingh

    2017-07-01

    Full Text Available Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8 of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.

  14. C1-inhibitor therapy for hereditary angioedema attacks: prospective patient assessments of health-related quality of life.

    Science.gov (United States)

    Bewtra, Againdra K; Levy, Robyn J; Jacobson, Kraig W; Wasserman, Richard L; Machnig, Thomas; Craig, Timothy J

    2012-01-01

    C1-inhibitor (INH) concentrate, which is recommended as first-line treatment for acute hereditary angioedema (HAE) attacks in many countries, was recently approved in the United States. We sought to solicit patients' feedback about their health-related quality of life (HRQoL) while being treated with C1-INH concentrate for acute HAE attacks under real-world conditions, as well as the personal impact of the availability of C1-INH on lifestyle and mental health domains. Subjects enrolled in an open-label study of C1-INH at 20 U/kg for acute HAE attacks were invited to participate in a prospectively designed survey to solicit "real-time" patient responses that were collected via an interactive voice response service or online with a personal computer. Eighteen subjects submitted 60 quarterly HRQoL and treatment impact survey responses over 29 months. Seventeen of 18 patients responding reported mean short form 12 HRQoL scores that were within a normal range. More than one-half indicated that C1-INH availability made them feel somewhat or much better, and >80% reported having a better outlook on the future and feeling more secure about the danger of life-threatening attacks. These data confirm a high level of HRQoL and a positive impact in lifestyle and emotional domains among patients who were treated for acute attacks of HAE with C1-INH concentrate.

  15. Treatment of hereditary angioedema due to C1 inhibitor deficiency in Argentina

    Directory of Open Access Journals (Sweden)

    Eloisa Malbrán

    2017-08-01

    Full Text Available The benefits of the worldwide approval of new drugs for the treatment of acute C1-INH-HAE attacks may still not reach all patients. Identifying the current barriers in the access to medication, as well as conducting a detailed assessment of the progress in this area, is essential to achieve universal treatment. Two hundred and twenty five patients registered in the Argentina Hereditary Angioedema Patient Association (AHAEPA were randomly selected and invited to participate in a web based questionnaire on accessibility to icatibant and pdC1-INH, self-treatment, delay to treatment, and coverage. The data retrieved was compared to our previous reports in 2008 and 2013. We collected 156/225 answers. One hundred and eighteen (76% patients have either pdC1-INH (n = 86, icatibant (n = 10 or both (n = 22, while 38 (24% do not have access to treatment. In 2008, 26% had access while 82% had it in 2013. Thirty-two subjects (22% self-inject themselves, similar to 29% in 2013, even though between studies, widespread self-injection training activities have taken place. However, considering injections by proxy, home treatment reached 56%. Only half of the patients decide to receive treatment early during the attack. Ninety-nine patients (63% have full coverage, thirty (19% have no coverage at all and the rest only obtain partial reimbursement. Twenty-nine families (31% share a single treatment dose of the medication, better than 36% in 2013. Argentina's C1-INH-HAE patients had a sustained improvement in their access to medication. Efforts should continue to further improve accessibility and optimal management of HAE acute attacks to all patients in the country.

  16. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association.

    Directory of Open Access Journals (Sweden)

    Slađana Andrejević

    Full Text Available Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T. Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444 or group 2 (missense, excluding mutations at Arg444. Significant differences were found in the clinical severity score (P = 0.005, prevalence of laryngeal (P = 0.040 and facial (P = 0.013 oedema, and long-term prophylaxis (P = 0.023 between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038. Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a

  17. Acquired Form of Angioedema of the Head and Neck Related to a Deficiency in C1-Inhibitor: A Case Report with a Review of the Literature

    Directory of Open Access Journals (Sweden)

    Bassel Hallak

    2012-01-01

    Full Text Available Angioedema related to a deficiency in the C1-inhibitor protein is characterized by its lack of response to therapies including antihistamine, steroids, and epinephrine. In the case of laryngeal edema, mortality rate is approximately 30 percent. The first case of the acquired form of angioedema related to a deficiency in C1-inhibitor was published in 1972. In our paper, we present a case of an acquired form of angioedema of the oropharyngeal region secondary to the simultaneous occurrence of two causative factors: neutralization of C1-inhibitor by an autoantibody and the use of an angiotensin convertin enzyme inhibitor.

  18. The Levels of the Lectin Pathway Serine Protease MASP-1 and Its Complex Formation with C1 Inhibitor Are Linked to the Severity of Hereditary Angioedema

    DEFF Research Database (Denmark)

    Hansen, Cecilie Bo; Csuka, Dorottya; Munthe-Fog, Lea

    2015-01-01

    C1 inhibitor (C1-INH) is known to form complexes with the lectin complement pathway serine proteases MASP-1 and MASP-2. Deficiency of C1-INH is associated with hereditary angioedema (HAE), an autosomal inherited disease characterized by swelling attacks caused by elevated levels of bradykinin. MASP...

  19. Trichinella spiralis Paramyosin Binds Human Complement C1q and Inhibits Classical Complement Activation.

    Directory of Open Access Journals (Sweden)

    Ran Sun

    2015-12-01

    Full Text Available Trichinella spiralis expresses paramyosin (Ts-Pmy as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host's immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated.The binding of recombinant and natural Ts-Pmy to human C1q were determined by ELISA, Far Western blotting and immunoprecipitation, respectively. Binding of recombinant Ts-Pmy (rTs-Pmy to C1q inhibited C1q binding to IgM and consequently inhibited C3 deposition. The lysis of antibody-sensitized erythrocytes (EAs elicited by the classical complement pathway was also inhibited in the presence of rTs-Pmy. In addition to inhibiting classical complement activation, rTs-Pmy also suppressed C1q binding to THP-1-derived macrophages, thereby reducing C1q-induced macrophages migration.Our results suggest that T. spiralis paramyosin plays an important role in immune evasion by interfering with complement activation through binding to C1q in addition to C8 and C9.

  20. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhishek, E-mail: akumar@bot.uni-kiel.de [Department of Genetics and Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Kiel (Germany); Bhandari, Anita [Molecular Physiology, Zoological Institute, Christian-Albrechts-University at Kiel, Kiel (Germany); Sarde, Sandeep J. [Department of Genetics and Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Kiel (Germany); Goswami, Chandan [National Institute of Science Education and Research, Bhubaneswar, Orissa (India)

    2014-07-18

    Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical properties and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys.

  1. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development.

    Science.gov (United States)

    Simeone, A; Mavilio, F; Acampora, D; Giampaolo, A; Faiella, A; Zappavigna, V; D'Esposito, M; Pannese, M; Russo, G; Boncinelli, E

    1987-07-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomain identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hydridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.

  2. Fibulin-1C, C1 Esterase Inhibitor and Glucose Regulated Protein 75 Interact with the CREC Proteins, Calumenin and Reticulocalbin.

    Directory of Open Access Journals (Sweden)

    Gry Aune Westergaard Hansen

    Full Text Available Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted with both proteins with an estimated dissociation constant at 1 μM for reticulocalbin and 150 nM for calumenin. The interaction, at least for calumenin, was dependent upon the presence of Ca2+ with strong interaction at 3.5 mM while no detectable interaction could be found at 0.1 mM. Grp75 binds with an affinity of approximately 3-7 nM with reticulocalbin as well as with calumenin. These interactions suggest functional participation of the CREC proteins in chaperone activity, cell proliferation and transformation, cellular aging, haemostasis and thrombosis as well as modulation of the complement system in fighting bacterial infection.

  3. Serping1/C1 Inhibitor Affects Cortical Development in a Cell Autonomous and Non-cell Autonomous Manner

    Directory of Open Access Journals (Sweden)

    Anna Gorelik

    2017-06-01

    Full Text Available Current knowledge regarding regulation of radial neuronal migration is mainly focused on intracellular molecules. Our unbiased screen aimed at identification of non-cell autonomous mechanisms involved in this process detected differential expression of Serping1 or C1 inhibitor, which is known to inhibit the initiation of the complement cascade. The complement cascade is composed of three pathways; the classical, lectin, and the alternative pathway; the first two are inhibited by C1 inhibitor, and all three converge at the level of C3. Knockdown or knockout of Serping1 affected neuronal stem cell proliferation and impaired neuronal migration in mice. Knockdown of Serping1 by in utero electroporation resulted in a migration delay of the electroporated cells as well as their neighboring cells demonstrating a non-cell autonomous effect. Cellular polarity was also affected. Most importantly, expression of protein components mimicking cleaved C3 rescued the knockdown of Serping1, indicating complement pathway functionality. Furthermore, we propose that this activity is mediated mainly via the complement peptide C5a receptors. Whereas addition of a selective C3a receptor agonist was minimally effective, the addition of a dual C3aR/C5a receptor agonist significantly rescued Serping1 knockdown-mediated neuronal migration defects. Our findings suggest that modulating Serping1 levels in the developing brain may affect the complement pathway in a complex way. Collectively, our findings demonstrate an unorthodox activity for the complement pathway during brain development.

  4. Transcriptional Factor PU.1 Regulates Decidual C1q Expression in Early Pregnancy in Human.

    Science.gov (United States)

    Madhukaran, Shanmuga Priyaa; Kishore, Uday; Jamil, Kaiser; Teo, Boon Heng Dennis; Choolani, Mahesh; Lu, Jinhua

    2015-01-01

    C1q is the first recognition subcomponent of the complement classical pathway, which in addition to being synthesized in the liver, is also expressed by macrophages and dendritic cells (DCs). Trophoblast invasion during early placentation results in accumulation of debris that triggers the complement system. Hence, both early and late components of the classical pathway are widely distributed in the placenta and decidua. In addition, C1q has recently been shown to significantly contribute to feto-maternal tolerance, trophoblast migration, and spiral artery remodeling, although the exact mechanism remains unknown. Pregnancy in mice, genetically deficient in C1q, mirrors symptoms similar to that of human preeclampsia. Thus, regulated complement activation has been proposed as an essential requirement for normal successful pregnancy. Little is known about the molecular pathways that regulate C1q expression in pregnancy. PU.1, an Ets-family transcription factor, is required for the development of hematopoietic myeloid lineage immune cells, and its expression is tissue-specific. Recently, PU.1 has been shown to regulate C1q gene expression in DCs and macrophages. Here, we have examined if PU.1 transcription factor regulates decidual C1q expression. We used immune-histochemical analysis, PCR, and immunostaining to localize and study the gene expression of PU.1 transcription factor in early human decidua. PU.1 was highly expressed at gene and protein level in early human decidual cells including trophoblast and stromal cells. Surprisingly, nuclear as well as cytoplasmic PU.1 expression was observed. Decidual cells with predominantly nuclear PU.1 expression had higher C1q expression. It is likely that nuclear and cytoplasmic PU.1 localization has a role to play in early pregnancy via regulating C1q expression in the decidua during implantation.

  5. Inhibition of Myeloperoxidase Activity in Cystic Fibrosis Sputum by Peptide Inhibitor of Complement C1 (PIC1)

    Science.gov (United States)

    Hair, Pamela S.; Sass, Laura A.; Krishna, Neel K.

    2017-01-01

    Myeloperoxidase is the major peroxidase enzyme in neutrophil granules and implicated in contributing to inflammatory lung damage in cystic fibrosis. Free myeloperoxidase is present in cystic fibrosis lung fluid and generates hypochlorous acid. Here we report a new inhibitor of myeloperoxidase activity, Peptide Inhibitor of Complement C1 (PIC1). Using TMB as the oxidizing substrate, PIC1 inhibited myeloperoxidase activity in cystic fibrosis sputum soluble fractions by an average of a 3.4-fold decrease (P = 0.02). PIC1 also dose-dependently inhibited myeloperoxidase activity in a neutrophil lysate or purified myeloperoxidase by up to 28-fold (P < 0.001). PIC1 inhibited myeloperoxidase activity similarly, on a molar basis, as the specific myeloperoxidase inhibitor 4-Aminobenzoic acid hydrazide (ABAH) for various oxidizing substrates. PIC1 was able to protect the heme ring of myeloperoxidase from destruction by NaOCl, assayed by spectral analysis. PIC1 incubated with oxidized TMB reversed the oxidation state of TMB, as measured by absorbance at 450 nm, with a 20-fold reduction in oxidized TMB (P = 0.02). This result was consistent with an antioxidant mechanism for PIC1. In summary, PIC1 inhibits the peroxidase activity of myeloperoxidase in CF sputum likely via an antioxidant mechanism. PMID:28135312

  6. Hereditary angioedema and pregnancy: successful management of recurrent and frequent attacks of angioedema with C1-inhibitor concentrate, danazol and tranexamic acid – a case report

    OpenAIRE

    Milingos, D S; Madhuvrata, P; Dean, J.; Shetty, A.; Campbell, D. M.

    2009-01-01

    Hereditary angioedema (HAE) is a rare but potentially life-threatening condition caused by deficiency of C1 esterase inhibitor. It is characterized by subcutaneous swelling in any part of the skin, gastrointestinal and respiratory tracts. We present the case of a pregnant woman with known HAE that deteriorated during pregnancy with frequent attacks that were managed successfully with danazol, tranexamic acid and regular intravenous administration of C1 esterase inhibitor.

  7. Complement protein C1q induces maturation of human dendritic cells

    DEFF Research Database (Denmark)

    Cosmor, E; Bajtay, Z; Sándor, N;

    2007-01-01

    in the absence of antibodies, we undertook to investigate whether this complement protein has an impact on various functions of human DCs. Maturation of monocyte-derived immature DCs (imMDCs) cultured on immobilized C1q was followed by monitoring expression of CD80, CD83, CD86, MHCII and CCR7. The functional...

  8. Development of atopic dermatitis in mice transgenic for human apolipoprotein C1

    NARCIS (Netherlands)

    Nagelkerken, L.; Verzaal, P.; Lagerweij, T.; Persoon-Deen, C.; Berbee, J.F.P.; Prens, E.P.; Havekes, L.M.; Oranje, A.P.

    2008-01-01

    Mice with transgenic expression of human apolipoprotein C1 (APOC1) in liver and skin have strongly increased serum levels of cholesterol, triglycerides, and free fatty acids, indicative of a disturbed lipid metabolism. Importantly, these mice display a disturbed skin barrier function, evident from i

  9. C1 esterase inhibitor

    Science.gov (United States)

    ... algorithm for the diagnosis, therapy and management of hereditary angioedema. Allergy Asthma Clin Immunol . 2010;6:24. PMID: ... chap 6. Read More Cirrhosis Complement Glomerulonephritis Hepatitis Hereditary angioedema Kidney transplant Lupus nephritis Systemic lupus erythematosus Ulcerative ...

  10. Subcellular location and molecular mobility of human cytosolic sulfotransferase 1C1 in living human embryonic kidney 293 cells.

    Science.gov (United States)

    Sheng, Jonathan J; Acquaah-Mensah, George K

    2011-08-01

    Cytosolic sulfotransferases were first isolated from the hepatic cytosol, and they have been localized in the cytoplasm of formaldehyde-fixed human cell samples. The current work was carried out to determine the subcellular localization and molecular mobility of cytosolic sulfotransferases in living human embryonic kidney (HEK) 293 cells. In this work, the subcellular location of human cytosolic sulfotransferase 1C1 (SULT1C1) was studied in cultured HEK293 cells using confocal laser-scanning microscopy. A green fluorescent protein (GFP)-tagged SULT1C1 protein was localized in the cytoplasm of living HEK293 cells. This is consistent with results from previous studies on several other cytosolic sulfotransferase isoforms. Fluorescence recovery after photobleaching microscopy was performed to assess the molecular mobility of the expressed GFP-SULT1C1 molecules. The results suggested that the expressed recombinant GFP-SULT1C1 molecules in living HEK293 cells may include both mobile and immobile populations. To obtain additional insights into the subcellular location of SULT1C1, two machine learning algorithms, Sequential Minimal Optimization and Multilayer Perceptron, were used to compute the probability distribution for the localization of SULT1C1 in nine selected cellular compartments. The resulting probability distribution suggested that the most likely subcellular location of SULT1C1 is the cytosol.

  11. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish.

    Science.gov (United States)

    Kumar, Abhishek; Bhandari, Anita; Sarde, Sandeep J; Goswami, Chandan

    2014-07-18

    C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical properties and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1'. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys.

  12. The effect of C1-esterase inhibitor on systemic inflammation in trauma patients with a femur fracture - The CAESAR study: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Strengers Paul FW

    2011-10-01

    Full Text Available Abstract Background Systemic inflammation in response to a femur fracture and the additional fixation is associated with inflammatory complications, such as acute respiratory distress syndrome and multiple organ dysfunction syndrome. The injury itself, but also the additional procedure of femoral fixation induces a release of pro-inflammatory cytokines such as interleukin-6. This results in an aggravation of the initial systemic inflammatory response, and can cause an increased risk for the development of inflammatory complications. Recent studies have shown that administration of the serum protein C1-esterase inhibitor can significantly reduce the release of circulating pro-inflammatory cytokines in response to acute systemic inflammation. Objective Attenuation of the surgery-induced additional systemic inflammatory response by perioperative treatment with C1-esterase inhibitor of trauma patients with a femur fracture. Methods The study is designed as a double-blind randomized placebo-controlled trial. Trauma patients with a femur fracture, Injury Severity Score ≥ 18 and age 18-80 years are included after obtaining informed consent. They are randomized for administration of 200 U/kg C1-esterase inhibitor intravenously or placebo (saline 0.9% just before the start of the procedure of femoral fixation. The primary endpoint of the study is Δ interleukin-6, measured at t = 0, just before start of the femur fixation surgery and administration of C1-esterase inhibitor, and t = 6, 6 hours after administration of C1-esterase inhibitor and the femur fixation. Conclusion This study intents to identify C1-esterase inhibitor as a safe and potent anti-inflammatory agent, that is capable of suppressing systemic inflammation in trauma patients. This might facilitate early total care procedures by lowering the risk of inflammation in response to the surgical intervention. This could result in increased functional outcomes and reduced health care related

  13. Elucidating the Mechanism of Gain of Toxic Function from Mutant C1 Inhibitor Proteins in Hereditary Angioedema

    Science.gov (United States)

    2016-10-01

    the C1INH allowed detection of the labeled protein. The first 97 amino acids of C1INH define the N-terminal glycosylation domain and have been shown...successfully made novel C1INH mutants that mirrored the equivalent A1AT mutations that cause A1AT deficiency based on the homology between these two

  14. Treatment of hereditary angioedema with nanofiltered C1-esterase inhibitor concentrate (Cetor (R)) : Multi-center phase II and III studies to assess pharmacokinetics, clinical efficacy and safety

    NARCIS (Netherlands)

    Hofstra, J. J.; Budde, I. Kleine; van Twuyver, E.; Choi, G.; Levi, M.; Leebeek, F. W. G.; de Monchy, J. G. R.; Ypma, P. F.; Keizer, R. J.; Huitema, A. D. R.; Strengers, P. F. W.

    2012-01-01

    From 1997, plasma-derived C1-inhibitor concentrate (Cetor (R)) has been available to HAE and AAE patients. Recently, a virus reducing 15 nm nanofiltration step has been introduced in the production process. A randomized, double-blind controlled cross-over study was performed to compare the pharmacok

  15. Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann Pick type C1.

    Science.gov (United States)

    Ordonez, M Paulina; Roberts, Elizabeth A; Kidwell, Chelsea U; Yuan, Shauna H; Plaisted, Warren C; Goldstein, Lawrence S B

    2012-06-15

    An unresolved issue about many neurodegenerative diseases is why neurons are particularly sensitive to defects in ubiquitous cellular processes. One example is Niemann Pick type C1, caused by defects in cholesterol trafficking in all cells, but where neurons are preferentially damaged. Understanding this selective failure is limited by the difficulty in obtaining live human neurons from affected patients. To solve this problem, we generated neurons with decreased function of NPC1 from human embryonic stem cells and used them to test the hypothesis that defective cholesterol handling leads to enhanced pathological phenotypes in neurons. We found that human NPC1 neurons have strong spontaneous activation of autophagy, and, contrary to previous reports in patient fibroblasts, a block of autophagic progression leading to defective mitochondrial clearance. Mitochondrial fragmentation is an exceptionally severe phenotype in NPC1 neurons compared with fibroblasts, causing abnormal accumulation of mitochondrial proteins. Contrary to expectation, these abnormal phenotypes were rescued by treatment with the autophagy inhibitor 3-methyladenine and by treatment with the potential therapeutic cyclodextrin, which mobilizes cholesterol from the lysosomal compartment. Our findings suggest that neurons are especially sensitive to lysosomal cholesterol accumulation because of autophagy disruption and accumulation of fragmented mitochondria, thus defining a new route to effective drug development for NPC1 disease.

  16. A simple method for the preparation and purification of C1 complement cleaved beta 2-microglobulin from human serum

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Johansen, B; Bjerrum, Ole Jannik

    1997-01-01

    A simple method is described for the preparation of proteolytically processed forms of beta 2-microglobulin suitable for structural and biological studies. PEG 6000 was added to the serum of healthy individuals to precipitate the C1 complement complex from C1 esterase inhibitor (C1-inh). After...... cleaved beta 2-microglobulin, whereby Lys58-cleaved beta 2-microglobulin was obtained. The proteolytically processed forms were subsequently purified by G-75 Sephadex gel filtration followed by chromatofocusing. A yield of 10-40% of proteolytically processed beta 2-microglobulin was obtained. Only one...

  17. International consensus and practical guidelines on the gynecologic and obstetric management of female patients with hereditary angioedema caused by C1 inhibitor deficiency

    DEFF Research Database (Denmark)

    Caballero, Teresa; Farkas, Henriette; Bouillet, Laurence

    2012-01-01

    BACKGROUND: There are a limited number of publications on the management of gynecologic/obstetric events in female patients with hereditary angioedema caused by C1 inhibitor deficiency (HAE-C1-INH). OBJECTIVE: We sought to elaborate guidelines for optimizing the management of gynecologic/obstetri...... patients, genetic counseling, infertility, abortion, lactation, menopause treatment, and endometrial cancer. CONCLUSIONS: A consensus for the management of female patients with HAE-C1-INH is presented....... section. Regional anesthesia is preferred to endotracheal intubation. Breast cancer: Attenuated androgens should be avoided. Antiestrogens can worsen angioedema symptoms. In these cases anastrozole might be an alternative. Other issues addressed include special features of HAE-C1-INH treatment in female...

  18. Histone deacetylase inhibitors correct the cholesterol storage defect in most Niemann-Pick C1 mutant cells.

    Science.gov (United States)

    Pipalia, Nina H; Subramanian, Kanagaraj; Mao, Shu; Ralph, Harold; Hutt, Darren M; Scott, Samantha M; Balch, William E; Maxfield, Frederick R

    2017-04-01

    Niemann-Pick C (NPC) disease is an autosomal recessive disorder that leads to excessive storage of cholesterol and other lipids in late endosomes and lysosomes. The large majority of NPC disease is caused by mutations in NPC1, a large polytopic membrane protein that functions in late endosomes. There are many disease-associated mutations in NPC1, and most patients are compound heterozygotes. The most common mutation, NPC1(I1061T), has been shown to cause endoplasmic reticulum-associated degradation of the NPC1 protein. Treatment of patient-derived NPC1(I1061T) fibroblasts with histone deacetylase inhibitors (HDACis) vorinostat or panobinostat increases expression of the mutant NPC1 protein and leads to correction of the cholesterol storage. Here, we show that several other human NPC1 mutant fibroblast cell lines can also be corrected by vorinostat or panobinostat and that treatment with vorinostat extends the lifetime of the NPC1(I1061T) protein. To test effects of HDACi on a large number of NPC1 mutants, we engineered a U2OS cell line to suppress NPC1 expression by shRNA and then transiently transfected these cells with 60 different NPC1 mutant constructs. The mutant NPC1 did not significantly reduce cholesterol accumulation, but approximately 85% of the mutants showed reduced cholesterol accumulation when treated with vorinostat or panobinostat. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Successful use of daily intravenous infusion of C1 esterase inhibitor concentrate in the treatment of a hereditary angioedema patient with ascites, hypovolemic shock, sepsis, renal and respiratory failure.

    Science.gov (United States)

    Pham, Hoang; Santucci, Stephanie; Yang, William H

    2014-01-01

    Hereditary angioedema (HAE) is a rare autosomal dominant disease most commonly associated with defects in C1 esterase inhibitor (C1-INH). HAE manifests as recurrent episodes of edema in various body locations. Atypical symptoms, such as ascites, acute respiratory distress syndrome, and hypovolemic shock, have also been reported. Management of HAE conventionally involves the treatment of acute attacks, as well as short- and long-term prophylaxis. Since attacks can be triggered by several factors, including stress and physical trauma, prophylactic therapy is recommended for patients undergoing surgery. Human plasma-derived C1-INH (pdC1-INH) concentrate is indicated for the treatment of both acute HAE attacks and pre-procedure prevention of HAE episodes in patients undergoing medical, dental, or surgical procedures. We report the first case of a patient with HAE who experienced an abdominal attack precipitated by a retroperitoneal bleed while being converted from warfarin to heparin in preparation for surgery. Subsequently, the patient had a protracted course in hospital with other complications, which included hypovolemic shock, ascites, severe sepsis from nosocomial pneumonia, renal and respiratory failure. Despite intensive interventions, the patient remained in a critical state for months; however, after a trial of daily intravenous infusion of pdC1-INH concentrate (Berinert®, CSL Behring GmbH, Marburg, Germany), clinical status improved, particularly renal function. Therefore, pdC1-INH concentrate may be an effective treatment option to consider for critically-ill patients with HAE.

  20. Human and mouse neuroinflammation markers in Niemann-Pick disease, type C1.

    Science.gov (United States)

    Cologna, Stephanie M; Cluzeau, Celine V M; Yanjanin, Nicole M; Blank, Paul S; Dail, Michelle K; Siebel, Stephan; Toth, Cynthia L; Wassif, Christopher A; Lieberman, Andrew P; Porter, Forbes D

    2014-01-01

    Niemann-Pick disease, type C1 (NPC1) is an autosomal recessive lipid storage disorder in which a pathological cascade, including neuroinflammation occurs. While data demonstrating neuroinflammation is prevalent in mouse models, data from NPC1 patients is lacking. The current study focuses on identifying potential markers of neuroinflammation in NPC1 from both the Npc1 mouse model and NPC1 patients. We identified in the mouse model significant changes in expression of genes associated with inflammation and compared these results to the pattern of expression in human cortex and cerebellar tissue. From gene expression array analysis, complement 3 (C3) was increased in mouse and human post-mortem NPC1 brain tissues. We also characterized protein levels of inflammatory markers in cerebrospinal fluid (CSF) from NPC1 patients and controls. We found increased levels of interleukin 3, chemokine (C-X-C motif) ligand 5, interleukin 16 and chemokine ligand 3 (CCL3), and decreased levels of interleukin 4, 10, 13 and 12p40 in CSF from NPC1 patients. CSF markers were evaluated with respect to phenotypic severity. Miglustat treatment in NPC1 patients slightly decreased IL-3, IL-10 and IL-13 CSF levels; however, further studies are needed to establish a strong effect of miglustat on inflammation markers. The identification of inflammatory markers with altered levels in the cerebrospinal fluid of NPC1 patients may provide a means to follow secondary events in NPC1 disease during therapeutic trials.

  1. A Nationwide Study of Norwegian Patients with Hereditary Angioedema with C1 Inhibitor Deficiency Identified Six Novel Mutations in SERPING1.

    Directory of Open Access Journals (Sweden)

    Irene Johnsrud

    Full Text Available Hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE is characterized by relapsing, non-pruritic swelling in skin and submucosal tissue. Symptoms can appear in early infancy when diagnosis is more difficult. In the absence of a correct diagnosis, treatment of abdominal attacks often lead to unnecessary surgery, and laryngeal edema can cause asphyxiation. A cohort study of 52 patients from 25 unrelated families in Norway was studied. Diagnosis of C1-INH-HAE was based on international consensus criteria including low functional and/or antigenic C1-INH values and antigenic C4. As SERPING1 mutations in Norwegian patients with C1-INH-HAE are largely undescribed and could help in diagnosis, we aimed to find and describe these mutations. Mutation analysis of the SERPING1 gene was performed by Sanger sequencing of all protein coding exons and exon-intron boundaries. Samples without detected mutation were further analyzed by multiplex ligation-dependent probe amplification to detect deletions and duplications. Novel mutations suspected to lead to splice defects were analyzed on the mRNA level. Fifty-two patients from 25 families were included. Forty-four (84,6% suffered from C1-INH-HAE type I and eight (15,4% suffered from C1-INH-HAE type II. Pathogenic or likely pathogenic mutations were found in 22/25 families (88%. Thirteen unique mutations were detected, including six previously undescribed. There were three missense mutations including one mutation affecting the reactive center loop at codon 466, three nonsense mutations, three small deletions/duplications, three gross deletions, and one splice mutation.

  2. Inhibitors of the mitochondrial cytochrome b-c1 complex inhibit the cyanide-insensitive respiration of Trypanosoma brucei.

    Science.gov (United States)

    Turrens, J F; Bickar, D; Lehninger, A L

    1986-06-01

    The cyanide-insensitive respiration of bloodstream trypomastigote forms of Trypanosoma brucei (75 +/- 8 nmol O2 min-1(mg protein)-1) is completely inhibited by the mitochondrial ubiquinone-like inhibitors 2-hydroxy-3-undecyl-1,4-naphthoquinone (UHNQ) and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT). The Ki values for UHDBT (30 nM) and UHNQ (2 microM) are much lower than the reported Ki for salicylhydroxamic acid (SHAM) (5 microM), a widely used inhibitor of the cyanide-insensitive oxidase. UHNQ also stimulated the glycerol-3-phosphate-dependent reduction of phenazine methosulfate, demonstrating that the site of UHNQ inhibition is on the terminal oxidase of the cyanide-insensitive respiration of T. brucei. These results suggest that a ubiquinone-like compound may act as an electron carrier between the two enzymatic components of the cyanide-insensitive glycerol-3-phosphate oxidase.

  3. Human sulfotransferase SULT1C1: cDNA cloning, tissue-specific expression, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Her, Chengtao; Weinshilboum, R.M. [Mayo Foundation, Rochester, MN (United States); Kaur, G.P. [Temple Univ. Medical School, Philadelphia, PA (United States)] [and others

    1997-05-01

    We have isolated and sequenced a cDNA that encodes an apparent human orthologue of a rat sulfotransferase (ST) cDNA that has been referred to as {open_quotes}ST1C1{close_quotes} - although it was recently recommended that sulfotransferase proteins and cDNAs be abbreviated {open_quotes}SULT.{close_quotes} The new human cDNA was cloned from a fetal liver-spleen cDNA library and had an 888-bp open reading frame. The amino acid sequence of the protein encoded by the cDNA was 62% identical with that encoded by the rat ST1C1 cDNA and included signature sequences that are conserved in all cytosolic SULT enzymes. Dot blot analysis of mRNA from 50 human tissues indicated that the cDNA was expressed in adult human stomach, kidney, and thyroid, as well as fetal kidney and liver. Northern blot analyses demonstrated that the major SULT1C1 mRNA in those same tissues was 1.4 kb in length. We next determined the partial human SULT1C1 gene sequence for a portion of the 5{prime}-terminus of one intron. That sequence was used to design SULT1C1 gene-specific primers that were used to perform the PCR with DNA from human/rodent somatic cell hybrids to demonstrate that the gene was located on chromosome 2. PCR amplifications performed with human chromosome 2/rodent hybrid cell DNA as template sublocalized SULT1C1 to a region between bands 2q11.1 and 2q11.2. 14 refs., 2 figs.

  4. Geometrical properties of the human child cervical spine with a focus on the C1 vertebra.

    Science.gov (United States)

    Yoganandan, Narayan; Pintar, Frank A; Lew, Sean M; Rao, Raj D

    2014-01-01

    Child dummies and injury criteria used in automotive crashworthiness environments are based on scaling from the adult and/or between children of different ages. Cartilage-to-bone ossification, spinal canal and joint developments of the spine, and strength attainments do not grow linearly from birth to maturity. Though this is known to medical professionals, age-based quantitative analyses are needed to accurately model the pediatric spine. The objective of this study was to quantify longitudinal growths of various regions of the first cervical vertebrae, responsible for transmitting the axial load from the base of the skull through the condyles to the neck/torso. Computed tomography (CT) images of 54 children from one day to 18 years of age were retrospectively used to determine the following geometrical properties: bilateral neurocentral synchondroses widths, the width of posterior synchondrosis, outer and inner anteroposterior and transverse diameters, spinal canal area, and depths of the anterior and posterior arches of the C1 vertebra. Both axial and sagittal CT images were used in the analysis. Sagittal images were used to quantify data for the anterior and posterior arches and axial images were used for all described cross-sectional parameters. Geometrical properties were extracted and reported for the various parameters at 6 months; one year; 18 months; and 3, 6, and 10 years of age corresponding to the dummy family ages routinely used in motor vehicle crashworthiness research and other applications. The outer transverse diameter ranged from 4.97 to 7.08 cm; outer and inner antero-posterior diameters ranged from 2.99 to 4.18 and 2.19 to 3.03 mm; and spinal canal area ranged from 4.34 to 6.68 mm(2). Other data are given in the body of the article. The growths of the first cervical vertebra quantified in terms of the above variables occurred nonlinearly with age and the degree of nonlinearity depended on the type of the geometrical parameter. Growths did not

  5. Activation-dependent surface expression of gC1qR/p33 on human blood platelets.

    Science.gov (United States)

    Peerschke, Ellinor I B; Murphy, Tara K; Ghebrehiwet, Berhane

    2003-02-01

    GC1qR/p33 (gC1qR) is expressed by a variety of somatic and cultured cells, including blood platelets. It interacts with several cellular, viral, bacterial, and plasma proteins, suggesting a potential role in thrombosis, inflammation, and infection. Considerable controversy has surrounded the surface membrane localization of gC1qR, however, since its cDNA sequence does not predict a traditional membrane-anchoring domain, and bears a typical mitochondrial targeting sequence. The present study examined gC1qR expression on resting and activated human blood platelets using flow cytometry and confocal microscopy with two monoclonal antibodies, 74.5.2 and 60.11, directed against gC1qR C-terminal amino acids 204-218, and N-terminal amino acids 76-93, respectively. Unstimulated platelets reacted minimally with either antibody. In contrast, platelet activation with TRAP, epinephrine, or ADP produced markedly increased gC1qR expression as reflected by 74.5.2 binding but not 60.11 binding. Platelet activation was verified using PAC-1 and anti CD 62 antibodies. Whereas PAC-1 binding to activated platelets could be reversed following platelet incubation with PGE1, 74.5.2 binding remained unchanged, suggesting the sustained expression of gC1qR following platelet stimulation. The data further demonstrate that detection of cell surface gC1qR may be dependent on antibody specificity. The ability of gC1qR to bind proteins involved in complement, coagulation, and kinin systems, as well as viral and bacterial pathogens including S. aureus protein A, supports the hypothesis that gC1qR expressed on activated platelets may contribute directly to thrombosis, inflammation, and endovascular infections.

  6. Recombinant human C1-inhibitor prevents acute antibody-mediated rejection in alloimmunized baboons

    NARCIS (Netherlands)

    Tillou, Xavier; Poirier, Nicolas; Le Bas-Bernardet, Stephanie; Hervouet, Jeremy; Minault, David; Renaudin, Karine; Vistoli, Fabio; Karam, Georges; Daha, Mohamed; Soulillou, Jean Paul; Blancho, Gilles

    2010-01-01

    Acute antibody-mediated rejection is an unsolved issue in transplantation, especially in the context of pretransplant immunization. The deleterious effect of preformed cytotoxic anti-HLA antibodies through complement activation is well proven, but very little is known concerning complement blockade

  7. Both lipolysis and hepatic uptake of VLDL are impaired in transgenic mice coexpressing human apolipoprotein E*3Leiden and human apolipoprotein C1

    NARCIS (Netherlands)

    Jong, M.C.; Dahlmans, V.E.H.; Gorp, P.J.J. van; Breuer, M.L.; Mol, M.J.T.M.; Zee, A. van der; Frants, R.R.; Hofker, M.H.; Havekes, L.M.

    1996-01-01

    Transgenic mice overexpressing human APOE*3Leiden are highly susceptible to diet-induced hyperlipoproteinemia and atherosclerosis due to a defect in hepatic uptake of remnant lipoproteins. In addition to the human APOE*3Leiden gene, these mice carry the human APOC1 gene (APOE*3Leiden- C1). To

  8. Transcriptome profiling of whole blood cells identifies PLEK2 and C1QB in human melanoma.

    Directory of Open Access Journals (Sweden)

    Yuchun Luo

    Full Text Available Developing analytical methodologies to identify biomarkers in easily accessible body fluids is highly valuable for the early diagnosis and management of cancer patients. Peripheral whole blood is a "nucleic acid-rich" and "inflammatory cell-rich" information reservoir and represents systemic processes altered by the presence of cancer cells.We conducted transcriptome profiling of whole blood cells from melanoma patients. To overcome challenges associated with blood-based transcriptome analysis, we used a PAXgene™ tube and NuGEN Ovation™ globin reduction system. The combined use of these systems in microarray resulted in the identification of 78 unique genes differentially expressed in the blood of melanoma patients. Of these, 68 genes were further analyzed by quantitative reverse transcriptase PCR using blood samples from 45 newly diagnosed melanoma patients (stage I to IV and 50 healthy control individuals. Thirty-nine genes were verified to be differentially expressed in blood samples from melanoma patients. A stepwise logit analysis selected eighteen 2-gene signatures that distinguish melanoma from healthy controls. Of these, a 2-gene signature consisting of PLEK2 and C1QB led to the best result that correctly classified 93.3% melanoma patients and 90% healthy controls. Both genes were upregulated in blood samples of melanoma patients from all stages. Further analysis using blood fractionation showed that CD45(- and CD45(+ populations were responsible for the altered expression levels of PLEK2 and C1QB, respectively.The current study provides the first analysis of whole blood-based transcriptome biomarkers for malignant melanoma. The expression of PLEK2, the strongest gene to classify melanoma patients, in CD45(- subsets illustrates the importance of analyzing whole blood cells for biomarker studies. The study suggests that transcriptome profiling of blood cells could be used for both early detection of melanoma and monitoring of patients

  9. Cloning and molecular characterization of complement component 1 inhibitor (C1INH) and complement component 8β (C8β) in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    He, Anyuan; Yang, Jie; Tang, Shoujie; Wang, Chenghui

    2013-09-01

    Nile tilapia (Oreochromis niloticus), one of the most important groups of food fishes in the world, has frequently suffered from serious challenge from pathogens in recent years. Immune responses of Nile tilapia should be understood to protect the aquaculture industry of this fish. The complement system has an important function in recognizing bacteria, opsonizing these pathogens by phagocytes, or killing them by direct lysis. In this study, two Nile tilapia complement component genes, complement component 1 inhibitor (C1INH) and complement component 8β subunit (C8β), were cloned and their expression characteristics were analyzed. C1INH cDNA was found containing a 1791 bp open reading frame (ORF) encoding a putative protein with 597 amino acids, a 101 bp 5'-untranslated region (UTR) and a 236 bp 3'-UTR. The predicted protein structure for this gene consisted of two Ig-like domains and glycosyl hydrolase family-9 active site signature 2. The C8β cDNA consisted of a 1761 bp ORF encoding 587 amino acids, a 15 bp 5'-UTR and a 170 bp 3'-UTR. The predicted protein of C8β contained three motifs, thrombospondin type-1 repeat, membrane attack complex/perforin domain, and LDL-receptor class A. Expression analysis revealed that these two complement genes were highly expressed in the liver, however, were weakly expressed in the gill, heart, brain, kidney, intestine, spleen and dorsal muscle tissues. The present study provided insights into the complement system and immune functions of Nile tilapia.

  10. Allogeneic Hematopoietic Stem Cell Transplantation in the Treatment of Human C1q Deficiency: The Karolinska Experience.

    Science.gov (United States)

    Olsson, Richard F; Hagelberg, Stefan; Schiller, Bodil; Ringdén, Olle; Truedsson, Lennart; Åhlin, Anders

    2016-06-01

    Human C1q deficiency is associated with systemic lupus erythematosus (SLE) and increased susceptibility to severe bacterial infections. These patients require extensive medical therapy and some develop treatment-resistant disease. Because C1q is produced by monocytes, it has been speculated that allogeneic hematopoietic stem cell transplantation (allo-HSCT) may cure this disorder. We have so far treated 5 patients with C1q deficiency. In 3 cases, SLE symptoms remained relatively mild after the start of medical therapy, but 2 patients developed treatment-resistant SLE, and we decided to pursue treatment with allo-HSCT. For this purpose, we chose a conditioning regimen composed of treosulfan (14 g/m) and fludarabine (30 mg/m) started on day -6 and given for 3 and 5 consecutive days, respectively. Thymoglobulin was given at a cumulative dose of 8 mg/kg, and graft-versus-host disease prophylaxis was composed of cyclosporine and methotrexate. A 9-year-old boy and a 12-year-old girl with refractory SLE restored C1q production after allo-HSCT. This resulted in normal functional properties of the classical complement pathway followed by reduced severity of SLE symptoms. The boy developed posttransplant lymphoproliferative disease, which resolved after treatment with rituximab and donor lymphocyte infusion. Unfortunately, donor lymphocyte infusion induced severe cortisone-resistant gastrointestinal graft-versus-host disease, and the patient died from multiple organ failure 4 months after transplantation. The girl is doing well 33 months after transplantation, and clinically, all signs of SLE have resolved. Allo-HSCT can cure SLE in human C1q deficiency and should be considered early in subjects resistant to medical therapy.

  11. Maternal nutritional status, C(1) metabolism and offspring DNA methylation: a review of current evidence in human subjects.

    Science.gov (United States)

    Dominguez-Salas, Paula; Cox, Sharon E; Prentice, Andrew M; Hennig, Branwen J; Moore, Sophie E

    2012-02-01

    Evidence is growing for the long-term effects of environmental factors during early-life on later disease susceptibility. It is believed that epigenetic mechanisms (changes in gene function not mediated by DNA sequence alteration), particularly DNA methylation, play a role in these processes. This paper reviews the current state of knowledge of the involvement of C1 metabolism and methyl donors and cofactors in maternal diet-induced DNA methylation changes in utero as an epigenetic mechanism. Methyl groups for DNA methylation are mostly derived from the diet and supplied through C1 metabolism by way of choline, betaine, methionine or folate, with involvement of riboflavin and vitamins B6 and B12 as cofactors. Mouse models have shown that epigenetic features, for example DNA methylation, can be altered by periconceptional nutritional interventions such as folate supplementation, thereby changing offspring phenotype. Evidence of early nutrient-induced epigenetic change in human subjects is scant, but it is known that during pregnancy C1 metabolism has to cope with high fetal demands for folate and choline needed for neural tube closure and normal development. Retrospective studies investigating the effect of famine or season during pregnancy indicate that variation in early environmental exposure in utero leads to differences in DNA methylation of offspring. This may affect gene expression in the offspring. Further research is needed to examine the real impact of maternal nutrient availability on DNA methylation in the developing fetus.

  12. Proteolytic Cleavage of Various Human Serum Proteinase Inhibitors by Candida albicans Aspartic Proteinase

    OpenAIRE

    Tsushima, Hirofumi; MINE, Hiroko

    2008-01-01

    The secreted Candida albicans aspartic proteinase (SAP) is presumed to be one of the putative Candida virulence factors, while serum proteinase inhibitors depend on host defense mechanisms. We examined the interaction between SAP and serum proteinase inhibitors, such as C1-inhibitor, α2 plasmin inhibitor, and antithrombin III. SAP progressively inactivated plasmin inhibitory activity of C1-inhibitor and α2 plasmin inhibitor. It also inactivated thrombin inhibitory activity of antithrombin III...

  13. Flavonoids as Inhibitors of Human Butyrylcholinesterase Variants

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2014-01-01

    Full Text Available The inhibition of butyrylcholinesterase (BChE, EC 3.1.1.8 appears to be of interest in treating diseases with symptoms of reduced neurotransmitter levels, such as Alzheimer’s disease. However, BCHE gene polymorphism should not be neglected in research since it could have an effect on the expected outcome. Several well-known cholinergic drugs (e.g. galantamine, huperzine and rivastigmine originating from plants, or synthesised as derivatives of plant compounds, have shown that herbs could serve as a source of novel target-directed compounds. We focused our research on flavonoids, biologically active polyphenolic compounds found in many plants and plant-derived products, as BChE inhibitors. All of the tested flavonoids: galangin, quercetin, fisetin and luteolin reversibly inhibited usual, atypical, and fluoride-resistant variants of human BChE. The inhibition potency increased in the following order, identically for all three BChE variants: luteolininhibitor dissociation constants (Ki ranged from 10 to 170 mmol/L. We showed that no significant change in the inhibition potency of selected flavonoids exists in view of BChE polymorphism. Our results suggested that flavonoids could assist the further development of new BChE-targeted drugs for treating symptoms of neurodegenerative diseases and dementia.

  14. Successful use of daily intravenous infusion of C1 esterase inhibitor concentrate in the treatment of a hereditary angioedema patient with ascites, hypovolemic shock, sepsis, renal and respiratory failure

    OpenAIRE

    Pham, Hoang; Santucci, Stephanie; Yang, William H

    2014-01-01

    Hereditary angioedema (HAE) is a rare autosomal dominant disease most commonly associated with defects in C1 esterase inhibitor (C1-INH). HAE manifests as recurrent episodes of edema in various body locations. Atypical symptoms, such as ascites, acute respiratory distress syndrome, and hypovolemic shock, have also been reported. Management of HAE conventionally involves the treatment of acute attacks, as well as short- and long-term prophylaxis. Since attacks can be triggered by several facto...

  15. Probing the aglycon binding site of a b-glucosidase: a collection of C-1-modified 2,5-dideoxy-2,5-imino-D-mannitol derivatives and their structure-activity relationships as competitive inhibitors

    DEFF Research Database (Denmark)

    Wrodnigg, Tanja; Diness, Frederik; Gruber, Christoph

    2004-01-01

    A range of new C-1 modified derivatives of the powerful glucosidase inhibitor 2,5-dideoxy-2,5-imino-D-mannitol has been synthesised and their biological activities probed with the b-glucosidase from Agrobacterium sp. Ki values are compared with those of previously prepared close relatives. Findin...

  16. The granzyme B inhibitor proteinase inhibitor 9 (PI9) is expressed by human mast cells.

    NARCIS (Netherlands)

    Bladergroen, B.A.; Strik, M.C.; Wolbink, A.M.; Wouters, D.; Broekhuizen, R.; Kummer, J.A.; Hack, C.E.

    2005-01-01

    The activity of granzyme B, a main effector molecule of cytotoxic T lymphocytes (CTL) and natural killer cells, is regulated by the human intracellular serpin proteinase inhibitor 9 (PI9). This inhibitor is particularly expressed by CTL and dendritic cells, in which it serves to protect these cells

  17. Hereditary Angioedema Resulting from C1 Inhibitor Gene Mutation Leading to Premature Stop Codons%C1抑制物基因突变提前形成终止密码子导致遗传性血管水肿

    Institute of Scientific and Technical Information of China (English)

    徐迎阳; 支玉香

    2013-01-01

    目的 检测7例来自不同遗传性血管水肿家系患者进行C1抑制物(C1 inhibitor,C1 INH)基因突变.方法 2011 至2012年北京协和医院变态反应科诊断为Ⅰ型HAE的7例来自不同HAE家系的先证者及53名健康成人为研究对象,采集外周静脉血,提取基因组DNA,聚合酶链反应扩增C1 INH基因的8个外显子及其相邻序列并进行序列检测.将检测结果与GenBank公布的C1 INH 基因序列相比较,确定突变及基因多态性.结果 7例患者C1 INH基因序列中均鉴定到致病突变,分别为c.289 CA,g.3248T>C,g.3493T>C,g.5755 G>A,g.9498 T>C,g.15193 A>G,g.18012 G>A.结论 本研究鉴定的7种不同C1 INH基因突变中有5种为国内外首次报道,丰富了中国C1 INH基因突变数据库.%Objective To detect C1 inhibitor gene mutations in 7 HAE patients from different families. Methods Seven HAE patients with from different families and 53 healthy controls were recruited in this study. Peripheral blood was collected for genome DNA extraction. All the eight exons and intron-exon boundaries of Cl inhibitor gene were amplified by PCR and sequenced. Mutations and SNPs were detected by alignment with the reference sequences from GenBank. Results Mutations were identified in all the 7 patients: c. 289 C A, g. 3248T>C, g. 3493T > C, g. 5755 G > A, g. 9498 T > C, g. 15193 A > G, g. 18012 G > A) . Conclusions Totally 7 different mutations of Cl-INH gene (3 nonsense and 4 frame shift) were detected in 7 HAE patients, 5 of them were reported for the first time. 7 SNPs were also identified in this patient group.

  18. Purification and reconstitution of human membrane-bound DHRS7 (SDR34C1) from Sf9 cells.

    Science.gov (United States)

    Skarka, Adam; Škarydová, Lucie; Štambergová, Hana; Wsól, Vladimír

    2014-03-01

    Dehydrogenase/reductase SDR family member 7 (DHRS7, SDR34C1, retSDR4) is one of the many endoplasmic reticulum bound members of the SDR superfamily. Preliminary results indicate its potential significance in human metabolism. DHRS7 containing TEV-cleavable His10 and FLAG-tag expressed in the Sf9 cell line was solubilised, purified, and reconstituted into liposomes to enable the improved characterisation of this enzyme in the future. Igepal CA-630 was determined to be the best detergent for the solubilisation process. The solubilised DHRS7 was purified using affinity chromatography, and the purified enzyme was subjected to TEV cleavage of the affinity tags and then repurified using subtractive Ni-IMAC. The cleaved and uncleaved versions of DHRS7 were successfully reconstituted into liposomes. In addition, using tobacco specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as the substrate, the cleaved liposomal DHRS7 was found to be inactive, whereas the pure and uncleaved liposomal DHRS7 were confirmed as enzymes, which reduce carbonyl group of the substrates.

  19. Hepatitis B Virus X Protein Up-Regulates AKR1C1 Expression Through Nuclear Factor-Y in Human Hepatocarcinoma Cells.

    Science.gov (United States)

    Li, Kai; Ding, Shijia; Chen, Ke; Qin, Dongdong; Qu, Jialin; Wang, Sen; Sheng, Yanrui; Zou, Chengcheng; Chen, Limin; Tang, Hua

    2013-01-01

    The hepatitis B virus X (HBx) protein has long been recognized as an important transcriptional transactivator of several genes. Human aldo-keto reductase family 1, member C1 (AKR1C1), a member of the family of AKR1CS, is significantly increased in HBx-expressed cells. This study aimed to investigate the possible mechanism of HBx in regulating AKR1C1 expression in HepG2.2.15 cells and the role of AKR1C1 for HBV-induced HCC. RT-PCR was performed to detect AKR1C1 expression on mRNA level in HepG2 and HepG2.2.15 cell. The promoter activity of AKR1C1 was assayed by transient transfection and Dual-luciferase reporter assay system. The AKR1C1 promoter sequence was screened using the TFSEARCH database and the ALIBABA 2.0 software. The potential transcription factors binding sites were identified using 5' functional deletion analysis and site-directed mutagenesis. In this study, we found that HBx promoted AKR1C1 expression in HepG2.2.15 cells. Knockdown of HBx inhibited AKR1C1 activation. The role of HBx expression in regulating the promoter activity of human AKR1C1 gene was analyzed. The 5'functional deletion analysis identified that the region between -128 and -88 was the minimal promoter region of HBx to activate AKR1C1 gene expression. Site-directed mutagenesis studies suggested that nuclear factor-Y (NF-Y) plays an important role in this HBx-induced AKR1C1 activation. In HepG2.2.1.5 cell, HBx can promote AKR1C1 promoter activity and thus activates the basal transcription of AKR1C1 gene. This process is mediated by the transcription factor NF-Y. This study explored the mechanism for the regulation of HBV on AKR1C1 expression and has provided a new understanding of HBV-induced HCC.

  20. Structure of human cytidine deaminase bound to a potent inhibitor.

    Science.gov (United States)

    Chung, Sang J; Fromme, J Christopher; Verdine, Gregory L

    2005-02-10

    Human cytidine deaminase (CDA) is an enzyme prominent for its role in catalyzing metabolic processing of nucleoside-type anticancer and antiviral agents. It is thus a promising target for the development of small molecule therapeutic adjuvants. We report the first crystal structure of human CDA as a complex with a tight-binding inhibitor, diazepinone riboside 1. The structure reveals that inhibitor 1 is able to establish a canonical pi/pi-interaction with a key active site residue, Phe 137.

  1. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    Science.gov (United States)

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells.

  2. Cross-sectional study of the neural ossification centers of vertebrae C1-S5 in the human fetus.

    Science.gov (United States)

    Szpinda, Michał; Baumgart, Mariusz; Szpinda, Anna; Woźniak, Alina; Mila-Kierzenkowska, Celestyna

    2013-10-01

    An understanding of the normal evolution of the spine is of great relevance in the prenatal detection of spinal abnormalities. This study was carried out to estimate the length, width, cross-sectional area and volume of the neural ossification centers of vertebrae C1-S5 in the human fetus. Using the methods of CT (Biograph mCT), digital-image analysis (Osirix 3.9) and statistics (the one-way ANOVA test for paired data, the Kolmogorov-Smirnov test, Levene's test, Student's t test, the one-way ANOVA test for unpaired data with post hoc RIR Tukey comparisons) the size for the neural ossification centers throughout the spine in 55 spontaneously aborted human fetuses (27 males, 28 females) at ages of 17-30 weeks was studied. The neural ossification centers were visualized in the whole pre-sacral spine, in 74.5 % for S1, in 61.8 % for S2, in 52.7 % for S3, and in 12.7 % for S4. Neither male-female nor right-left significant differences in the size of neural ossification centers were found. The neural ossification centers were the longest within the cervical spine. The maximum values referred to the axis on the right, and to C5 vertebra on the left. There was a gradual decrease in length for the neural ossification centers of T1-S4 vertebrae. The neural ossification centers were the widest within the proximal thoracic spine and narrowed bi-directionally. The growth dynamics for CSA of neural ossification centers were found to parallel that of volume. The largest CSAs and volumes of neural ossification centers were found in the C3 vertebra, and decreased in the distal direction. The neural ossification centers show neither male-female nor right-left differences. The neural ossification centers are characterized by the maximum length for C2-C6 vertebrae, the maximum width for the proximal thoracic spine, and both the maximum cross-sectional area and volume for C3 vertebra. There is a sharp decrease in size of the neural ossification centers along the sacral spine. A

  3. 比色法检测C1抑制物功能及其在遗传性血管水肿诊断中的应用%Measurement of C1 Inhibitor Function by Colorimetric Method and Its Usage in the Diagnosis of Hereditary Angioedema

    Institute of Scientific and Technical Information of China (English)

    支玉香; 刘宏侠; 徐迎阳; 张宏誉

    2013-01-01

    Objective to determine the C1 inhibitor function by using colorimetric method- Sensitivity and Specificity in the diagnosis of hereditary angioedema and the impact of the storage condition of the blood sample on the results were evaluated Methods The excess residual C1-esterase which formed complex with C1 inhibitor was detected by photometrical reaction with the new chromogenic substrate ( C2H5CO-Lys-Gly-Arg-pNA). Normal value was determined by detecting the plasma samples from 65 healthy volunteers. The sensitivity and specificity were also evaluated by detecting healthy volunteers and the patients with confirmed diagnosis of hereditary angioedema. Samples from 9 healthy controls were divided into 7 groups and stored at different temperatures (room temperature、 4℃、 - 20℃ ) for different durations (at prime tense, 4 h、 8 h and 24 h) and C1 inhibitor function were detected respectively, for evaluating the impact factors. Results The normal value of functional C1 INH was (0. 56-1. 58) U C1 INH/ml by colorimetric method. The sensitivity and specificity were both 100%. The bio-activity of C1 INH could be influenced by storage durations and temperature. Conclusions Colorimetric method is an effective method to determine the C1 inhibitor function, and sensitivity and specificity was hoth really high for diangnosis of HAE. THE samples should be prepared and stored at - 20℃ immediately,otherwise it will be resulted in false positive result.%目的 采用比色法检测C1抑制物功能并评价此方法 对诊断遗传性血管水肿(hereditary angioedema,HAE)的敏感性和特异性,以及标本的储存时间和温度对检测结果 的影响.方法 将血浆标本加入过量的C1酯酶中,然后加入染色底物C2H5CO-Lys-Gly-Arg-pNA,与剩余的C1酯酶发生反应,通过分光光度仪检测与受试者血浆反应后剩余的C1酯酶与底物反应的吸光度,得出C1 INH的功能活性.通过对65名健康对照者和21例已明确诊断的HAE患者C

  4. A Selective Cyclic Peptidic Human SIRT5 Inhibitor

    Directory of Open Access Journals (Sweden)

    Jiajia Liu

    2016-09-01

    Full Text Available In the current study, we discovered that a side chain-to-side chain cyclic pentapeptide harboring a central Nε-carboxyethyl-thiocarbamoyl-lysine residue behaved as a strong and selective (versus human SIRT1/2/3/6 inhibitor against human SIRT5-catalyzed deacylation reaction. This compound was also found to be proteolytically much more stable than its linear counterpart. This compound could be a valuable lead for developing stronger, selective, metabolically stable, and cell permeable human SIRT5 inhibitors.

  5. Metalloprotein Inhibitors for the Treatment of Human Diseases.

    Science.gov (United States)

    Yang, Yang; Hu, Xue-Qin; Li, Qing-Shan; Zhang, Xing-Xing; Ruan, Ban-Feng; Xu, Jun; Liao, Chenzhong

    2016-01-01

    Metalloproteins have attracted momentous attentions for the treatment of many human diseases, including cancer, HIV, hypertension, etc. This article reviews the progresses that have been made in the field of drug development of metalloprotein inhibitors, putting emphasis on the targets of carbonic anhydrase, histone deacetylase, angiotensin converting enzyme, and HIV-1 integrase. Many other important metalloproteins are also briefly discussed. The binding and coordination modes of different marketed metalloprotein inhibitors are stated, providing insights to design novel metal binding groups and further novel inhibitors for metalloproteins.

  6. The C1 and C2 domains target human type 6 adenylyl cyclase to lipid rafts and caveolae.

    Science.gov (United States)

    Thangavel, Muthusamy; Liu, Xiaoqiu; Sun, Shu Qiang; Kaminsky, Joseph; Ostrom, Rennolds S

    2009-02-01

    Previous data has shown that adenylyl cyclase type 6 (AC6) is expressed principally in lipid rafts or caveolae of cardiac myocytes and other cell types while certain other isoforms of AC are excluded from these microdomains. The mechanism by which AC6 is localized to lipid rafts or caveolae is unknown. In this study, we show AC6 is localized in lipid rafts of COS-7 cells (expressing caveolin-1) and in HEK-293 cells or cardiac fibroblasts isolated from caveolin-1 knock-out mice (both of which lack prototypical caveolins). To determine the region of AC6 that confers raft localization, we independently expressed each of the major intracellular domains, the N-terminus, C1 and C2 domains, and examined their localization with various approaches. The N-terminus did not associate with lipid rafts or caveolae of either COS-7 or HEK-293 cells nor did it immunoprecipitate with caveolin-1 when expressed in COS-7 cells. By contrast, the C1 and C2 domains each associated with lipid rafts to varying degrees and were present in caveolin-1 immunoprecipitates. There were no differences in the pattern of localization of either the C1 or C2 domains between COS-7 and HEK-293 cells. Further dissection of the C1 domain into four individual proteins indicated that the N-terminal half of this domain is responsible for its raft localization. To probe for a role of a putative palmitoylation motif in the C-terminal portion of the C2 domain, we expressed various truncated forms of AC6 lacking most or all of the C-terminal 41 amino acids. These truncated AC6 proteins were not altered in terms of their localization in lipid rafts or their catalytic activity, implying that this C-terminal region is not required for lipid raft targeting of AC6. We conclude that while the C1 domain may be most important, both the C1 and C2 domains of AC6 play a role in targeting AC6 to lipid rafts.

  7. Separation of human hemoglobins by DEAE-cellulose chromatography using glycine-KCN-NaC1 developers.

    Science.gov (United States)

    Abraham, E C; Reese, A; Stallings, M; Huisman, T H

    This chromatographic procedure uses DEAE-cellulose as ion exchanger and glycine-KCN-NaC1 solutions as developers. Blood samples from several adults and newborn infants with alpha, beta, delta, or gamma chains variants have been analysed. The hemoglobins are eluted as compact and symmetrical zones, and the separation of many hemoglobin types is greatly improved. The procedure is relatively fast, simple, and inexpensive.

  8. Glycosaminoglycans affect the interaction of human plasma kallikrein with plasminogen, factor XII and inhibitors

    Directory of Open Access Journals (Sweden)

    Gozzo A.J.

    2003-01-01

    Full Text Available Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates reduced (1.2 to 3.0 times the catalytic efficiency of kallikrein (in a nanomolar range on the hydrolysis of plasminogen (0.3 to 1.8 µM and increased (1.9 to 7.7 times the enzyme efficiency in factor XII (0.1 to 10 µM activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times kallikrein inhibition by antithrombin (1.4 µM, while chondroitin 4- and 6-sulfates reduced it (1.3 times. Heparin and heparan sulfate increased (1.4 times the enzyme inhibition by the C1-inhibitor (150 nM.

  9. Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Edvinsson, Lars

    2011-01-01

    was expressed in fibers of laminae I and II. The CGRP staining was similar in rat, except for CGRP positive neurons that were found close to the central canal. In C1, the receptor components were detected in laminae I and II, however these fibers were distinct from fibers expressing CGRP as verified by confocal...... to regions in the brainstem with Aδ- and C-fibers; this constitutes an essential part of the pain pathways activated in migraine attacks. Therefore it is of importance to identify the regions within the brainstem that processes nociceptive information from the trigeminovascular system, such as the spinal...... trigeminal nucleus (STN) and the C1-level of the spinal cord. Immunohistochemistry was used to study the distribution and relation between CGRP and its receptor components - calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) - in human and rat STN and at the C1-level...

  10. Streptococcus pyogenes Endopeptidase O Contributes to Evasion from Complement-mediated Bacteriolysis via Binding to Human Complement Factor C1q.

    Science.gov (United States)

    Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada

    2017-03-10

    Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Discovery of novel human acrosin inhibitors by virtual screening

    Science.gov (United States)

    Liu, Xuefei; Dong, Guoqiang; Zhang, Jue; Qi, Jingjing; Zheng, Canhui; Zhou, Youjun; Zhu, Ju; Sheng, Chunquan; Lü, Jiaguo

    2011-10-01

    Human acrosin is an attractive target for the discovery of male contraceptive drugs. For the first time, structure-based drug design was applied to discover structurally diverse human acrosin inhibitors. A parallel virtual screening strategy in combination with pharmacophore-based and docking-based techniques was used to screen the SPECS database. From 16 compounds selected by virtual screening, a total of 10 compounds were found to be human acrosin inhibitors. Compound 2 was found to be the most potent hit (IC50 = 14 μM) and its binding mode was investigated by molecular dynamics simulations. The hit interacted with human acrosin mainly through hydrophobic and hydrogen-bonding interactions, which provided a good starting structure for further optimization studies.

  12. Functional characterization of cholera toxin inhibitors using human intestinal organoids

    NARCIS (Netherlands)

    Zomer-van Ommen, Domenique D.; Pukin, Aliaksei V.; Fu, Ou; Quarles Van Ufford, Linda H C; Janssens, Hettie M.; Beekman, Jeffrey M.; Pieters, Roland J.

    2016-01-01

    Preclinical drug testing in primary human cell models that recapitulate disease can significantly reduce animal experimentation and time-to-the-clinic. We used intestinal organoids to quantitatively study the potency of multivalent cholera toxin inhibitors. The method enabled the determination of IC

  13. Functional characterization of cholera toxin inhibitors using human intestinal organoids

    NARCIS (Netherlands)

    Zomer-van Ommen, Domenique D.; Pukin, Aliaksei V.; Fu, Ou; Quarles Van Ufford, Linda H C; Janssens, Hettie M.; Beekman, Jeffrey M.; Pieters, Roland J.

    2016-01-01

    Preclinical drug testing in primary human cell models that recapitulate disease can significantly reduce animal experimentation and time-to-the-clinic. We used intestinal organoids to quantitatively study the potency of multivalent cholera toxin inhibitors. The method enabled the determination of

  14. Immune complexes in scabies. In vitro study of the serum C1q fixation in the presence of mite and unparasited human scale extracts.

    Science.gov (United States)

    Van Neste, D; Salmon, J

    1980-01-01

    The in vitro addition of mice or human unparasited scale extracts to the serum of 8 patients with scabies and 5 healthy controls did not significantly modify the fixation of 125I-C1q as compared to control tubes (serum with physiological saline). These results suggest that antigens or substances derived from the scabies mite are not involved in the immune complexes present in the serum of the parasited patients.

  15. Inhibition of human immunodeficiency virus type-1 by cdk inhibitors

    Directory of Open Access Journals (Sweden)

    Kehn-Hall Kylene

    2010-03-01

    Full Text Available Abstract Current therapy for human immunodeficiency virus (HIV-1 infection relies primarily on the administration of anti-retroviral nucleoside analogues, either alone or in combination with HIV-protease inhibitors. Although these drugs have a clinical benefit, continuous therapy with the drugs leads to drug-resistant strains of the virus. Recently, significant progress has been made towards the development of natural and synthetic agents that can directly inhibit HIV-1 replication or its essential enzymes. We previously reported on the pharmacological cyclin-dependent kinase inhibitor (PCI r-roscovitine as a potential inhibitor of HIV-1 replication. PCIs are among the most promising novel antiviral agents to emerge over the past few years. Potent activity on viral replication combined with proliferation inhibition without the emergence of resistant viruses, which are normally observed in HAART patients; make PCIs ideal candidates for HIV-1 inhibition. To this end we evaluated twenty four cdk inhibitors for their effect on HIV-1 replication in vitro. Screening of these compounds identified alsterpaullone as the most potent inhibitor of HIV-1 with activity at 150 nM. We found that alsterpaullone effectively inhibits cdk2 activity in HIV-1 infected cells with a low IC50 compared to control uninfected cells. The effects of alsterpaullone were associated with suppression of cdk2 and cyclin expression. Combining both alsterpaullone and r-roscovitine (cyc202 in treatment exhibited even stronger inhibitory activities in HIV-1 infected PBMCs.

  16. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3'- 5'-diphosphate (PAP)

    Energy Technology Data Exchange (ETDEWEB)

    Dombrovski, Luidmila; Dong, Aiping; Bochkarev, Alexey; Plotnikov, Alexander N. (Toronto)

    2008-09-17

    Cytosolic sulfotransferases (SULTs), often referred as Phase II enzymes of chemical defense, are a superfamily of enzymes that catalyze the transfer of a sulfonate group from 3{prime}-phosphoadenosine 5{prime}-phosphosulfate (PAPS) to an acceptor group of substrates. This reaction modulates the activities of a large array of small endogenous and foreign chemicals including drugs, toxic compounds, steroid hormones, and neurotransmitters. In some cases, however, SULTs activate certain food and environmental compounds to mutagenenic and carcinogenic metabolites. Twelve human SULTs have been identified, which are partitioned into three families: SULT1, SULT2 and SULT4. The SULT1 family is further divided in four subfamilies, A, B, C, and E, and comprises eight members (1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, and 1E1). Despite sequence and structural similarity among the SULTs, the family and subfamily members appear to have different biological function. SULT1 family shows substrate-binding specificity for simple phenols, estradiol, and thyroid hormones, as well as environmental xenobiotics and drugs. Human SULT1B1 is expressed in liver, colon, small intestine, and blood leukocytes, and shows substrate-binding specificity to thyroid hormones and benzylic alcohols. Human SULT1C1 is expressed in the adult stomach, kidney, and thyroid, as well as in fetal kidney and liver. SULT1C1 catalyzes the sulfonation of p-nitrophenol and N-hydroxy-2-acetylaminofluorene in vitro. However, the in vivo function of the enzyme remains unknown. We intend to solve the structures for all of the SULTs for which structural information is not yet available, and compare the structural and functional features of the entire SULT superfamily. Here we report the structures of two members of SULT1 family, SULT1B1 and SULT1C1, both in complex with the product of the PAPS cofactor, adenosine-3{prime}-5{prime}-diphosphate (PAP).

  17. Polymorphisms in STAT4, PTPN2, PSORS1C1 and TRAF3IP2 Genes Are Associated with the Response to TNF Inhibitors in Patients with Rheumatoid Arthritis

    Science.gov (United States)

    Politi, Cristina; Triggianese, Paola; Rufini, Sara; Kroegler, Barbara; Perricone, Carlo; Latini, Andrea; Novelli, Giuseppe; Borgiani, Paola; Perricone, Roberto

    2017-01-01

    Objective Rheumatoid Arthritis (RA) is a progressive autoimmune disease characterized by chronic joint inflammation and structural damage. Remission or at least low disease activity (LDA) represent potentially desirable goals of RA treatment. Single nucleotide polymorphisms (SNPs) in several genes might be useful for prediction of response to therapy. We aimed at exploring 4 SNPs in candidate genes (STAT4, PTPN2, PSORS1C1 and TRAF3IP2) in order to investigate their potential role in the response to therapy with tumor necrosis factor inhibitors (TNF-i) in RA patients. Methods In 171 RA patients we investigated the following SNPs: rs7574865 (STAT4), rs2233945 (PSORS1C1), rs7234029 (PTPN2) and rs33980500 (TRAF3IP2). Remission, LDA, and EULAR response were registered at 6 months and 2 years after initiation of first line TNF-i [Adalimumab (ADA) and Etanercept (ETN)]. Results STAT4 variant allele was associated with the absence of a good/moderate EULAR response at 2 years of treatment in the whole RA group and in ETN treated patients. The PTPN2 SNP was associated with no good/moderate EULAR response at 6 months in ADA treated patients. Patients carrying PSORS1C1 variant allele did not reach LDA at 6 months in both the whole RA group and ETN treated patients. TRAF3IP2 variant allele was associated with the lack of LDA and remission achievement at 6 months in all RA cohort while an association with no EULAR response at 2 years of treatment occurred only in ETN treated patients. Conclusions For the first time, we reported that SNPs in STAT4, PTPN2, PSORS1C1, and TRAF3IP2 are associated with response to TNF-i treatment in RA patients; however, these findings should be validated in a larger population. PMID:28107378

  18. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Emi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte

  19. Immunomodulation by α(1)-proteinase inhibitor: lack of chemotactic effects of recombinant human α(1)-proteinase inhibitor from yeast on human peripheral blood granulocytes

    OpenAIRE

    Mosheimer, Birgit; Alzner, Reinhard; Wiedermann, Christian J.

    2007-01-01

    Introduction: Recombinant α(1)-proteinase inhibitor, clinically developed for inhalative augmentation therapy in patients with α(1)-proteinase inhibitor deficiency or cystic fibrosis, may directly contribute to leukocyte accumulation as it may function as a chemoattractant. The migratory effects of yeast-derived human recombinant α(1)-proteinase inhibitor on human peripheral blood neutrophils and eosinophils were therefore tested in vitro. Materials and Methods: Human peripheral blood leukocy...

  20. Existence of different but overlapping IgG- and IgM-binding sties on the globular domain of human C1q

    DEFF Research Database (Denmark)

    Zlatarova, A.S.; Rouseva, M.; Roumenina, L.T.;

    2006-01-01

    C1q is the first subcomponent of the classical complement pathway that binds antigen-bound IgG or IgM and initiates complement activation via association of serine proteases C1r and C1s. The globular domain of C1q (gC1q), which is the ligand-recognition domain, is a heterotrimeric structure compo...

  1. Development of a disease-specific quality of life questionnaire for adult patients with hereditary angioedema due to C1 inhibitor deficiency (HAE-QoL: Spanish multi-centre research project

    Directory of Open Access Journals (Sweden)

    Prior Nieves

    2012-07-01

    Full Text Available Abstract Background There is a need for a disease-specific instrument for assessing health-related quality of life in adults with hereditary angioedema due to C1 inhibitor deficiency, a rare, disabling and life-threatening disease. In this paper we report the protocol for the development and validation of a specific questionnaire, with details on the results of the process of item generation, domain selection, and the expert and patient rating phase. Methods/Design Semi-structured interviews were completed by 45 patients with hereditary angioedema and 8 experts from 8 regions in Spain. A qualitative content analysis of the responses was carried out. Issues raised by respondents were grouped into categories. Content analysis identified 240 different responses, which were grouped into 10 conceptual domains. Sixty- four items were generated. A total of 8 experts and 16 patients assessed the items for clarity, relevance to the disease, and correct dimension assignment. The preliminary version of the specific health-related quality of life questionnaire for hereditary angioedema (HAE-QoL v 1.1 contained 44 items grouped into 9 domains. Discussion To the best of our knowledge, this is the first multi-centre research project that aims to develop a specific health-related quality of life questionnaire for adult patients with hereditary angioedema due to C1 inhibitor deficiency. A preliminary version of the specific HAE-QoL questionnaire was obtained. The qualitative analysis of interviews together with the expert and patient rating phase helped to ensure content validity. A pilot study will be performed to assess the psychometric properties of the questionnaire and to decide on the final version.

  2. Differences in TCDD-elicited gene expression profiles in human HepG2, mouse Hepa1c1c7 and rat H4IIE hepatoma cells

    Directory of Open Access Journals (Sweden)

    Burgoon Lyle D

    2011-04-01

    Full Text Available Abstract Background 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD is an environmental contaminant that elicits a broad spectrum of toxic effects in a species-specific manner. Current risk assessment practices routinely extrapolate results from in vivo and in vitro rodent models to assess human risk. In order to further investigate the species-specific responses elicited by TCDD, temporal gene expression responses in human HepG2, mouse Hepa1c1c7 and rat H4IIE cells were compared. Results Microarray analysis identified a core set of conserved gene expression responses across species consistent with the role of AhR in mediating adaptive metabolic responses. However, significant species-specific as well as species-divergent responses were identified. Computational analysis of the regulatory regions of species-specific and -divergent responses suggests that dioxin response elements (DREs are involved. These results are consistent with in vivo rat vs. mouse species-specific differential gene expression, and more comprehensive comparative DRE searches. Conclusions Comparative analysis of human HepG2, mouse Hepa1c1c7 and rat H4IIE TCDD-elicited gene expression responses is consistent with in vivo rat-mouse comparative gene expression studies, and more comprehensive comparative DRE searches, suggesting that AhR-mediated gene expression is species-specific.

  3. Binding and activation of human and mouse complement by Cryptosporidium parvum (Apicomplexa) and susceptibility of C1q- and MBL-deficient mice to infection.

    Science.gov (United States)

    Petry, Franz; Jakobi, Vera; Wagner, Swen; Tessema, Tesfaye Sisay; Thiel, Steffen; Loos, Michael

    2008-07-01

    Cryptosporidium parvum is a protozoan parasite (Apicomplexa) that causes gastrointestinal disease in animals and humans. Whereas immunocompetent hosts can limit the infection within 1 or 2 weeks, immunocompromised individuals develop a chronic, life-threatening disease. The importance of the adaptive cellular immune response, with CD4+ T-lymphocytes being the major players, has been clearly demonstrated. Several non-adaptive immune mechanisms have been suggested to contribute to the host defence, such as interferon-gamma (IFN-gamma) from NK cells, certain chemokines, beta-defensins and pro-inflammatory cytokines, but the influence of the complement systems has been less well studied. We analysed the in vitro binding and activation of the human and mouse complement systems and tested the susceptibility to infection in complement-deficient mouse strains. We found that C. parvum can activate both the classical and lectin pathways, leading to the deposition of C3b on the parasite. Using real-time PCR, parasite development could be demonstrated in adult mice lacking mannan-binding lectin (MBL-A/C-/-) but not in mice lacking complement factor C1q (C1qA-/-) or in wild type C57BL/6 mice. The contribution of the complement system and the lectin pathway in particular to the host defence against cryptosporidiosis may become apparent in situations of immunodeficiency such as HIV infections or in early childhood.

  4. Calcitonin gene-related peptide (CGRP and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level

    Directory of Open Access Journals (Sweden)

    Eftekhari Sajedeh

    2011-11-01

    Full Text Available Abstract Background Calcitonin gene-related peptide (CGRP has a key role in migraine pathophysiology and is associated with activation of the trigeminovascular system. The trigeminal ganglion, storing CGRP and its receptor components, projects peripheral to the intracranial vasculature and central to regions in the brainstem with Aδ- and C-fibers; this constitutes an essential part of the pain pathways activated in migraine attacks. Therefore it is of importance to identify the regions within the brainstem that processes nociceptive information from the trigeminovascular system, such as the spinal trigeminal nucleus (STN and the C1-level of the spinal cord. Immunohistochemistry was used to study the distribution and relation between CGRP and its receptor components - calcitonin receptor-like receptor (CLR and receptor activity modifying protein 1 (RAMP1 - in human and rat STN and at the C1-level, using a set of newly well characterized antibodies. In addition, double-stainings with CGRP and myelin basic protein (MBP, myelin, synaptophysin (synaptic vesicles or IB4 (C-fibers in general were performed. Results In the STN, the highest density of CGRP immunoreactive fibers were found in a network around fiber bundles in the superficial laminae. CLR and RAMP1 expression were predominately found in fibers in the spinal trigeminal tract region, with some fibers spanning into the superficial laminae. Co-localization between CGRP and its receptor components was not noted. In C1, CGRP was expressed in fibers of laminae I and II. The CGRP staining was similar in rat, except for CGRP positive neurons that were found close to the central canal. In C1, the receptor components were detected in laminae I and II, however these fibers were distinct from fibers expressing CGRP as verified by confocal microscopy. Conclusions This study demonstrates the detailed expression of CGRP and its receptor components within STN in the brainstem and in the spinal cord at C1

  5. Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy.

    Science.gov (United States)

    Schneider, Gabriela; Bryndza, Ewa; Abdel-Latif, Ahmed; Ratajczak, Janina; Maj, Magdalena; Tarnowski, Maciej; Klyachkin, Yuri M; Houghton, Peter; Morris, Andrew J; Vater, Axel; Klussmann, Sven; Kucia, Magdalena; Ratajczak, Mariusz Z

    2013-07-01

    Evidence suggests that bioactive lipids may regulate pathophysiologic functions such as cancer cell metastasis. Therefore, we determined that the bioactive lipid chemoattractants sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) strongly enhanced the in vitro motility and adhesion of human rhabdomyosarcoma (RMS) cells. Importantly, this effect was observed at physiologic concentrations for both bioactive lipids, which are present in biologic fluids, and were much stronger than the effects observed in response to known RMS prometastatic factors such as stromal derived factors-1 (SDF-1/CXCL12) or hepatocyte growth factor/scatter factor (HGF/SF). We also present novel evidence that the levels of S1P and C1P were increased in several organs after γ-irradiation or chemotherapy, which indicates an unwanted prometastatic environment related to treatment. Critically, we found that the metastasis of RMS cells in response to S1P can be effectively inhibited in vivo with the S1P-specific binder NOX-S93 that is based on a high-affinity Spiegelmer. These data indicate that bioactive lipids play a vital role in dissemination of RMS and contribute to the unwanted side effects of radio/chemotherapy by creating a prometastatic microenvironment.

  6. Expression of human α1-proteinase inhibitor in Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Punt Peter J

    2007-10-01

    Full Text Available Abstract Background Human α1-proteinase inhibitor (α1-PI, also known as antitrypsin, is the most abundant serine protease inhibitor (serpin in plasma. Its deficiency is associated with development of progressive, ultimately fatal emphysema. Currently in the United States, α1-PI is available for replacement therapy as an FDA licensed plasma-derived (pd product. However, the plasma source itself is limited; moreover, even with efficient viral inactivation steps used in manufacture of plasma products, the risk of contamination from emerging viruses may still exist. Therefore, recombinant α1-PI (r-α1-PI could provide an attractive alternative. Although r-α1-PI has been produced in several hosts, protein stability in vitro and rapid clearance from the circulation have been major issues, primarily due to absent or altered glycosylation. Results We have explored the possibility of expressing the gene for human α1-PI in the filamentous fungus Aspergillus niger (A. niger, a system reported to be capable of providing more "mammalian-like" glycosylation patterns to secretable proteins than commonly used yeast hosts. Our expression strategy was based on fusion of α1-PI with a strongly expressed, secreted leader protein (glucoamylase G2, separated by dibasic processing site (N-V-I-S-K-R that provides in vivo cleavage. SDS-PAGE, Western blot, ELISA, and α1-PI activity assays enabled us to select the transformant(s secreting a biologically active glycosylated r-α1-PI with yields of up to 12 mg/L. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS analysis further confirmed that molecular mass of the r-α1-PI was similar to that of the pd-α1-PI. In vitro stability of the r-α1-PI from A. niger was tested in comparison with pd-α1-PI reference and non-glycosylated human r-α1-PI from E. coli. Conclusion We examined the suitability of the filamentous fungus A. niger for the expression of the human gene for α1-PI, a medium size

  7. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Medicine, The University of Pittsburgh, Pittsburgh, PA 15213 (United States); Epperly, Michael W. [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Radiation Oncology, The University of Pittsburgh, Pittsburgh, PA 15213 (United States); Basse, Per H. [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15213 (United States); Wang, Hong [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Biostatistics, The University of Pittsburgh, Pittsburgh, PA 15213 (United States); Wang, Xinhui [Harvard Medical School, Harvard University, 25 Shattuck Street, Boston, MA 02115 (United States); Proia, David A. [Synta Pharmaceuticals Corp., 45 Hartwell Avenue, Lexington, MA 02421 (United States); Greenberger, Joel S. [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Radiation Oncology, The University of Pittsburgh, Pittsburgh, PA 15213 (United States); Socinski, Mark A.; Levina, Vera, E-mail: levinav@upmc.edu [The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Medicine, The University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2015-05-22

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors.

  8. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    Science.gov (United States)

    Keung, W M; Vallee, B L

    1993-02-15

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  9. A murine Niemann-Pick C1 I1061T knock-in model recapitulates the pathological features of the most prevalent human disease allele.

    Science.gov (United States)

    Praggastis, Maria; Tortelli, Brett; Zhang, Jessie; Fujiwara, Hideji; Sidhu, Rohini; Chacko, Anita; Chen, Zhouji; Chung, Chan; Lieberman, Andrew P; Sikora, Jakub; Davidson, Cristin; Walkley, Steven U; Pipalia, Nina H; Maxfield, Frederick R; Schaffer, Jean E; Ory, Daniel S

    2015-05-27

    Niemann-Pick Type C1 (NPC1) disease is a rare neurovisceral, cholesterol-sphingolipid lysosomal storage disorder characterized by ataxia, motor impairment, progressive intellectual decline, and dementia. The most prevalent mutation, NPC1(I1061T), encodes a misfolded protein with a reduced half-life caused by ER-associated degradation. Therapies directed at stabilization of the mutant NPC1 protein reduce cholesterol storage in fibroblasts but have not been tested in vivo because of lack of a suitable animal model. Whereas the prominent features of human NPC1 disease are replicated in the null Npc1(-/-) mouse, this model is not amenable to examining proteostatic therapies. The objective of the present study was to develop an NPC1 I1061T knock-in mouse in which to test proteostatic therapies. Compared with the Npc1(-/-) mouse, this Npc1(tm(I1061T)Dso) model displays a less severe, delayed form of NPC1 disease with respect to weight loss, decreased motor coordination, Purkinje cell death, lipid storage, and premature death. The murine NPC1(I1061T) protein has a reduced half-life in vivo, consistent with protein misfolding and rapid ER-associated degradation, and can be stabilized by histone deacetylase inhibition. This novel mouse model faithfully recapitulates human NPC1 disease and provides a powerful tool for preclinical evaluation of therapies targeting NPC1 protein variants with compromised stability.

  10. Expression, purification, and partial in vitro characterization of biologically active human coagulation factor VIII light chain (A3-C1-C2) in Pichia pastoris.

    Science.gov (United States)

    A R, Sudheer Reddy; Satheeshkumar, Padikara Kutty; Vijayalakshmi, Mookambeswaran A

    2013-09-01

    Recombinant coagulation factor VIII (FVIII) expressed in mammalian expression systems is used extensively in the treatment of hemophilia A. It is reported that the heavy (A1-A2) and light chains (A3-C1-C2) of factor VIII purified from plasma regained the coagulation activity by dimerization in vitro. In this work, cDNA coding for the light chain of human coagulation factor VIII (FVIII-LC) was cloned into pPICZα-A expression vector downstream of alcohol oxidase promoter and α-mating signal sequence from Saccharomyces cerevisiae in order to express the protein with a native N-terminus. The methylotrophic yeast, Pichia pastoris X-33, was transformed with this cassette, and transformants were selected for production of human factor VIII light chain into culture media. SDS-PAGE and Western blot analysis confirmed the expression of factor VIII light chain protein. The expressed protein was purified to near homogeneity using histidine ligand affinity chromatography (2.342 mg/L). The biological activity of FVIII-LC was confirmed by analyzing the interaction between FVIII-LC and phospholipid vesicles. The data presented here indicate the possibilities of exploring cost-effective systems to express complex proteins of therapeutic value.

  11. Novel selective inhibitors of hydroxyxanthone derivatives for human cyclooxygenase-2

    Institute of Scientific and Technical Information of China (English)

    Yu-chian CHEN; Kun-tze CHEN

    2007-01-01

    Aim: To screen the selective inhibitors for human cyclooxygenase-2 ((h)COX-2) utilizing molecular simulation. Methods: Eight xanthone derivatives, compounds A-H, were employed by the structure-based research methodology. Resveratrol and NS-398 were selected as the control compounds for COX-1 and COX-2, respectively. The docking results were scored and the interaction energies of the complexes were calculated by CHARMm forcefield. Results: NS-398 could not dock into the active site of COX-1. However, resveratrol, the specific selective compound for COX-1, gained lower interaction energy while docked in COX-1. The lower interaction energies were investigated, while compound B and F were docked into the catalytic sites of COX-1 and COX-2, respectively. Compound A, 1,3,6,7-tetrahydroxyxanthone, revealed high inhibitory potency to both COX-1 and COX-2. Conclusion: The conformations of the docking would influence the values of interaction energies. The hydrogen bond could also increase the stabi- lity of the whole complex, which might suggest that compound B had a suitable conformation in the tunnel-like active site of COX-1. Compound F, a potent agent for COX-2, revealed a strong hydrogen bond with Set516 in human COX-2 to form a stable complex.

  12. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins.

    Science.gov (United States)

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-09-11

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus.

  13. High level expression, purification and characterization of active fusion human C1q and tumor necrosis factor related protein 2 (hCTRP2) in Escherichia coli.

    Science.gov (United States)

    Li, Hongbo; Gao, Xuefei; Zhou, Yi; Li, Na; Ge, Caozuo; Hui, Xiaoyan; Wang, Yu; Xu, Aimin; Jin, Shouguang; Wu, Donghai

    2011-09-01

    C1q and tumor necrosis factor related proteins (CTRPs) are a family of adiponectin paralogues. Among them, CTRP2 is the only CTRP protein that has been shown to possess similar biological activities as adiponectin. To further explore the physiological roles of human CTRP2 and its mechanisms of action, hCTRP2 gene was expressed in Escherichia coli and Pichia pastoris, respectively. In the P. pastoris expression system, recombinant hCTRP2 could be secreted into the culture medium under induction condition, however, the resultant recombinant protein was highly unstable, resulting two main degradation products with molecular masses of approximately 20 and 26 kDa, respectively. In the E. coli expression system, a large amount of soluble thioredoxin (Trx)-hCTRP2 fusion protein could be produced, which accounts about 42% of the total soluble bacterial proteins. The recombinant Trx-hCTRP2 fusion protein was purified to an approximately 95% purity using Ni-NTA affinity chromatography and Superdex G-75 column with a yield of about 15 mg/l protein from 1l bacterial culture. The purified recombinant Trx-hCTRP2 was shown to be active under in vitro assay conditions.

  14. Identification of a Novel Mutation of C1 Inhibitor Gene in a Chinese Family with Hereditary Angioedema%一个遗传性血管水肿家系C1抑制物基因突变的检测分析

    Institute of Scientific and Technical Information of China (English)

    支玉香; 张宏誉; 黄尚志

    2003-01-01

    目的对一个遗传性血管水肿(HAE)家系患者C1抑制物(C1 INH)基因的突变类型进行检测分析.方法用聚合酶链反应扩增产物直接测序法检测HAE患者C1 INH基因8个外显子及旁侧内含子序列,将检测结果与GenBank公布的C1 INH基因序列相比较,确定突变.为除外多态性可能,在30名正常人中对该突变进行分析.结果该家系中的5例患者外显子8中均检测到1种新的突变类型(核苷酸序列17839 del C),正常人中无此改变.结论在该家系中发现C1 INH基因核苷酸序列17839 del C突变,该突变可能是此家系发病的分子基础.

  15. The HSP90 inhibitor alvespimycin enhances the potency of telomerase inhibition by imetelstat in human osteosarcoma

    OpenAIRE

    Hu, Yafang; Bobb, Daniel; He, Jianping; Hill, D. Ashley; Dome, Jeffrey S.

    2015-01-01

    The unsatisfactory outcomes for osteosarcoma necessitate novel therapeutic strategies. This study evaluated the effect of the telomerase inhibitor imetelstat in pre-clinical models of human osteosarcoma. Because the chaperone molecule HSP90 facilitates the assembly of telomerase protein, the ability of the HSP90 inhibitor alvespimycin to potentiate the effect of the telomerase inhibitor was assessed. The effect of single or combined treatment with imetelstat and alvespimycin on long-term grow...

  16. Discovery and analysis of inhibitors of the human immunodeficiency integrase.

    Science.gov (United States)

    Hazuda, D; Felock, P J; Hastings, J C; Pramanik, B; Wolfe, A L

    1997-05-01

    An essential step in the replication of retroviruses is the integration of a DNA copy of the viral genome into the genome of the host cell. Integration encompasses a series of ordered endonucleolytic and DNA strand transfer reactions catalyzed by the viral enzyme, integrase. The requirement for integrase activity in the propagation of HIV-1 in cell culture defines the enzyme as a potential target for chemotherapeutic intervention. We have therefore developed a non-radioisotopic microtiter plate assay which can be used to identify novel inhibitors of integrase from random chemical screens and for the bioassay driven isolation of inhibitors from natural products. This assay uncouples various steps in the reaction pathway and therefore can be exploited to characterize inhibitors. In this monograph we describe a series of modifications to the method which facilitate such mechanistic studies using as an example a series of previously described integrase inhibitors.

  17. Purification and Characterization of Human Thrombin Activatable Fibrinolysis Inhibitor (TAFI)

    DEFF Research Database (Denmark)

    Christensen, Trine; Skottrup, Peter Durand; Valnickova, Zuzana

    Thrombin Activatable Fibrinolysis inhibitor (TAFI) is a basic carboxypeptidase, circulating in plasma as an enzymatic inactive precursor. TAFI shares ~40% overall sequence identity with pancreas Carboxypeptidase B (PCPB) with the activation peptide being less conserved. Following activation of TA...

  18. N-Substituted pyrazole-3-carboxamides as inhibitors of human 15-lipoxygenase.

    Science.gov (United States)

    Pelcman, Benjamin; Sanin, Andrei; Nilsson, Peter; Schaal, Wesley; Olofsson, Kristofer; Krog-Jensen, Christian; Forsell, Pontus; Hallberg, Anders; Larhed, Mats; Boesen, Thomas; Kromann, Hasse; Claesson, Hans-Erik

    2015-08-01

    High-throughput screening was used to find selective inhibitors of human 15-lipoxygenase-1 (15-LOX-1). One hit, a 1-benzoyl substituted pyrazole-3-carboxanilide (1a), was used as a starting point in a program to develop potent and selective 15-LOX-1 inhibitors.

  19. Activation of human microglia by fibrillar prion protein-related peptides is enhanced by amyloid-associated factors SAP and C1q

    NARCIS (Netherlands)

    Veerhuis, R.; Boshuizen, R.S.; Morbin, M.; Mazzoleni, G.; Hoozemans, J.J.; Langedijk, J.P.; Tagliavini, F.; Langeveld, J.P.M.; Eikelenboom, P.

    2005-01-01

    Complement activation products C1q and C3d, serum amyloid P component (SAP) and activated glial cells accumulate in amyloid deposits of conformationally changed prion protein (PrPSc) in Creutzfeldt¿Jakob disease, Gerstmann¿Sträussler¿Scheinker disease and scrapie-infected mouse brain. Biological pro

  20. 成人隐匿性自身免疫性糖尿病早期血浆SERPING1的变化及意义%Clinical Significance of Plasma Protease C1 Inhibitor in Latent Autoimmune Diabetes in Adults

    Institute of Scientific and Technical Information of China (English)

    秦雯; 张佳俐; 夏宁

    2014-01-01

    Objective To examine plasma levels of protease C1 inhibitor (SERPING1) in adult patients with latent autoimmune diabetes (LADA), and their clinical significance thereof. Methods The levels of SERPING1 were detected and compared between LADA, type 1 diabetes (T1DM), type 2 diabetes (T2DM) and healthy control groups. The correlation between plasma levels of SERPING1 and other clinical indicators such as age, disease course, glycosylated hemoglobin (HbA1c), fasting blood glucose (FPG), 2 h postprandial plasma glucose (2 hPG), fasting c-peptide (FCP) and 2 h postprandi-al C peptide (2 hCP) was analyzed. Multi-factor regression analysis and receiver operating characteristic (ROC) were used to evaluate the predictive effect of SERPING1 in LADA at the early stage. Results The level of SERPING1 was significantly higher in LADA group than that of T2DM group and control group (P < 0.05). There was a negative correlation between SERPING1 and FCP, and a positive correlation between SERPING1 and HbA1c, FPG and 2 hPG (P<0.05). There were no significant correlation between SERPING1 and age, disease course and 2 hCP. FCP was analyzed by regression equation (P<0.05), and which was the main influence factor of the plasma level of SERPING1. The area under the ROC curve (AUC) of SERPING1 was 0.613 (P<0.05), 95%CI 0.514-0.712. The optimal cut-point of SERPING1 for early prediction of LADA was 289.71 mg/L, and the sensitivity and specificity were 69%and 48%respectively. Conclusion SERPING1 combined with other indicators will be useful for identifying LADA from T2DM at the early stage.%目的:检测成人隐匿性自身免疫性糖尿病(LADA)患者早期血浆中C1酯酶抑制物(SERPING1)的水平,探讨其临床意义。方法检测LADA组患者SERPING1水平,并与1型糖尿病(T1DM)组、2型糖尿病(T2DM)组和正常对照组进行比较。对SERPING1与年龄、病程、糖化血红蛋白(HbA1c)、空腹血糖(FPG)、餐后2 h血糖(2 hPG

  1. Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhengzhi, E-mail: zouzhengzhi@m.scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Luo, Xiaoyong [Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang 471000 (China); Nie, Peipei [KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510000 (China); Wu, Baoyan; Zhang, Tao; Wei, Yanchun [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Wang, Wenyi [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Geng, Guojun; Jiang, Jie [Xiamen Cancer Center, Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Mi, Yanjun, E-mail: myjgj_77@163.com [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China)

    2016-09-09

    SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuating AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies. - Highlights: • Depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors. • Overexpression of SRC-3 enhanced cancer cell resistance to HDAC inhibitors. • SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. • Bufalin synergized with HDAC inhibitor attenuated AKT activation and reduced Bcl-2 levels in human cancer cell.

  2. Structural Basis for Accelerated Cleavage of Bovine Pancreatic Trypsin Inhibitor (BPTI) by Human Mesotrypsin

    Energy Technology Data Exchange (ETDEWEB)

    Salameh,M.; Soares, A.; Hockla, A.; Radisky, E.

    2008-01-01

    Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation.

  3. Crystal structure of a complex of human chymase with its benzimidazole derived inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yoshiyuki; Kakuda, Shinji; Koizumi, Masahiro; Mizuno, Tsuyoshi; Muroga, Yumiko; Kawamura, Takashi; Takimoto-Kamimura, Midori, E-mail: m.kamimura@teijin.co.jp [Teijin Institute for Bio-medical Research, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512 (Japan)

    2013-11-01

    The crystal structure of human chymase complexed with a novel benzimidazole inhibitor, TJK002, was determined at 2.8 Å resolution. The present study shows that the benzimidazole ring of the inhibitor takes the stable stacking interaction with the protonated His57 in the catalytic domain of human chymase. The crystal structure of human chymase complexed with a novel benzimidazole inhibitor, TJK002, was determined at 2.8 Å resolution. The X-ray crystallographic study shows that the benzimidazole inhibitor forms a non-covalent interaction with the catalytic domain of human chymase. The hydrophobic fragment of the inhibitor occupies the S1 pocket. The carboxylic acid group of the inhibitor forms hydrogen bonds with the imidazole N(∊) atom of His57 and/or the O(γ) atom of Ser195 which are members of the catalytic triad. This imidazole ring of His57 induces π–π stacking to the benzene ring of the benzimidazole scaffold as P2 moiety. Fragment molecular orbital calculation of the atomic coordinates by X-ray crystallography shows that this imidazole ring of His57 could be protonated with the carboxyl group of Asp102 or hydroxyl group of Ser195 and the stacking interaction is stabilized. A new drug design strategy is proposed where the stacking to the protonated imidazole of the drug target protein with the benzimidazole scaffold inhibitor causes unpredicted potent inhibitory activity for some enzymes.

  4. Non enzymatic glycosylation of alpha-1-proteinase inhibitor of human plasma.

    Directory of Open Access Journals (Sweden)

    Phadke M

    1998-04-01

    Full Text Available Human plasma contains inhibitors, which control the activity of proteolytic enzymes. Alpha-1-proteinase inhibitor and alpha-2-macroglobulin are two of them present in high concentration in human plasma, which inhibit action of trypsin among other proteinases. The trypsin inhibitory capacity (TIC of human plasma is observed to be decreased in pathological conditions like diabetes mellitus. The mechanisms of decrease in TIC was due to nonenzymatic glycosylation of alpha-1-proteinase inhibitor (A1PI. A1PI was partially purified from normal human plasma by steps involving ammonium sulphate precipitation, DEAE Sepharose CL6B chromatography, Concanavalin A Sepharose Chromatography and Sephadex G-100 Gel filtration. Purified inhibitor was glycosylated in vitro by incubating it with varying glucose concentrations, under nitrogen for different periods of time in reducing conditions. After glycosylation, the molecular weight of inhibitor increased from 52 kDa to 57 KDa because of binding with glucose molecules. The percent free amino groups in the protein decreased with increasing glucose concentration and days of incubation. The TIC of such modified inhibitor decreased significantly. Decrease in TIC was dependent on the glucose concentration and period of incubation used during in-vitro glycosylation of native inhibitor.

  5. Inhibitors

    Science.gov (United States)

    ... Project (CHAMP) mutation list: a new online resource. Human Mutation. 2012; E2382-E2392. Li T, Miller CH, Payne AB, Hooper CW. The CDC Hemophilia B mutation project mutation list: a new online resource. Molecular Genetics and Genomic Medicine. 2013; 1(4):238-245. ...

  6. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A;

    2015-01-01

    that the effects of the pan-sirtuin inhibitor nicotinamide are primarily mediated by SIRT1 inhibition. Furthermore, we confirmed that the effects of tubacin and bufexamac on cytoplasmic proteins result from inhibition of HDAC6. Bufexamac also triggered an HDAC6-independent, hypoxia-like response by stabilizing HIF...

  7. Reductive metabolism of nabumetone by human liver microsomal and cytosolic fractions: exploratory prediction using inhibitors and substrates as marker probes.

    Science.gov (United States)

    Matsumoto, Kaori; Hasegawa, Tetsuya; Koyanagi, Junichi; Takahashi, Tamiko; Akimoto, Masayuki; Sugibayashi, Kenji

    2015-06-01

    The metabolic reduction of nabumetone was examined by inhibition and correlation studies using human liver microsomes and cytosol. This reduction was observed in both fractions, with the V(max) values for reduction activity being approximately fourfold higher, and the V(max)/K(m) values approximately three-fold higher, in the microsomes than in the cytosol. The reduction of nabumetone was inhibited by 18β-glycyrrhetinic acid, an 11β-hydroxysteroid dehydrogenase (11β-HSD) inhibitor, in the microsomal fraction. The reduction activity was also inhibited by quercetin and menadione [carbonyl reductase (CBR) inhibitors], and by phenolphthalein and medroxyprogesterone acetate [potent inhibitors of aldo-keto reductase (AKR) 1C1, 1C2 and 1C4] in the cytosol. A good correlation (r² = 0.93) was observed between the reduction of nabumetone and of cortisone, as a marker of 11β-HSD activity, in the microsomal fractions. There was also an excellent relationship between reduction of nabumetone and of the AKR1C substrates, acetohexamide, and ethacrynic acid (r 2 = 0.92 and 0.93, respectively), in the cytosol fractions. However, a poor correlation was observed between the formation of 4-(6-methoxy-2-naphthyl)-butan-2-ol (MNBO) from nabumetone and CBR activity (with 4-benzoyl pyridine reduction as a CBR substrate) in the cytosol fractions (r² = 0.24). These findings indicate that nabumetone may be metabolized by 11β-HSD in human liver microsomes, and primarily by AKR1C4 in human liver cytosol, although multiple enzymes in the AKR1C subfamily may be involved. It cannot be completely denied that CBR is involved to some extent in the formation of MNBO from nabumetone in the cytosol fraction.

  8. Triterpenoids as novel natural inhibitors of human cathepsin L.

    Science.gov (United States)

    Ramalho, Suelem D; De Sousa, Lorena R F; Nebo, Liliane; Maganhi, Stella H; Caracelli, Ignez; Zukerman-Schpector, Julio; Lima, Maria Inês S; Alves, Marcio F M; Da Silva, M Fátima das G F; Fernandes, João B; Vieira, Paulo C

    2014-09-01

    Cathepsins L (catL) and B play an important role in tumor progression and have been considered promising therapeutic targets in the development of novel anticancer agents. Using a bioactivity-guided fractionation, a series of triterpenoids was identified as a new class of competitive inhibitors towards cathepsin L with affinity values in micromolar range. Among the 14 compounds evaluated, the most promising were 3-epiursolic acid (3), 3-(hydroxyimino)oleanolic acid (9), and 3-(hydroxyimino)masticadienoic acid (13) with IC50 values of 6.5, 2.4, and 2.6 μM on catL, respectively. Most of the evaluated triterpenoids do not inhibit cathepsin B. Thus, the evaluated compounds exhibit a great potential to help in the design of new inhibitors with enhanced potency and affinity towards catL. Docking studies were performed in order to gain insight on the binding mode and SAR of these compounds.

  9. Evaluation of flavonols and derivatives as human cathepsin B inhibitor.

    Science.gov (United States)

    Ramalho, Suelem D; de Sousa, Lorena R F; Burger, Marcela C M; Lima, Maria Inês S; da Silva, M Fátima das G F; Fernandes, João B; Vieira, Paulo C

    2015-01-01

    Cathepsin B (catB) is a cysteine protease involved in tumour progression and represents a potential therapeutic target in cancer. Among the 15 evaluated extracts from cerrado biome, Myrcia lingua Berg. (Myrtaceae) extract demonstrated to be a source of compounds with potential to inhibit catB. Using bioactivity-guided fractionation, we have found flavonols as inhibitors and also some other derivatives were obtained. From the evaluated compounds, myricetin (5) and quercetin (6) showed the most promising results with IC50 of 4.9 and 8.2 μM, respectively, and mode of inhibition as uncompetitive on catB. The results demonstrated polyhydroxylated flavonols as promising inhibitors of catB.

  10. Modeling single nucleotide polymorphisms in the human AKR1C1 and AKR1C2 genes: implications for functional and genotyping analyses.

    Directory of Open Access Journals (Sweden)

    Jonathan W Arthur

    Full Text Available Enzymes encoded by the AKR1C1 and AKR1C2 genes are responsible for the metabolism of progesterone and 5α-dihydrotestosterone (DHT, respectively. The effect of amino acid substitutions, resulting from single nucleotide polymorphisms (SNPs in the AKR1C2 gene, on the enzyme kinetics of the AKR1C2 gene product were determined experimentally by Takashi et al. In this paper, we used homology modeling to predict and analyze the structure of AKR1C1 and AKR1C2 genetic variants. The experimental reduction in enzyme activity in the AKR1C2 variants F46Y and L172Q, as determined by Takahashi et al., is predicted to be due to increased instability in cofactor binding, caused by disruptions to the hydrogen bonds between NADP and AKR1C2, resulting from the insertion of polar residues into largely non-polar environments near the site of cofactor binding. Other AKR1C2 variants were shown to involve either conservative substitutions or changes taking place on the surface of the molecule and distant from the active site, confirming the experimental finding of Takahashi et al. that these variants do not result in any statistically significant reduction in enzyme activity. The AKR1C1 R258C variant is predicted to have no effect on enzyme activity for similar reasons. Thus, we provide further insight into the molecular mechanism of the enzyme kinetics of these proteins. Our data also highlight previously reported difficulties with online databases.

  11. Potent Human Telomerase Inhibitors: Molecular Dynamic Simulations, Multiple Pharmacophore-Based Virtual Screening, and Biochemical Assays.

    Science.gov (United States)

    Shirgahi Talari, Faezeh; Bagherzadeh, Kowsar; Golestanian, Sahand; Jarstfer, Michael; Amanlou, Massoud

    2015-12-28

    Telomere maintenance is a universal cancer hallmark, and small molecules that disrupt telomere maintenance generally have anticancer properties. Since the vast majority of cancer cells utilize telomerase activity for telomere maintenance, the enzyme has been considered as an anticancer drug target. Recently, rational design of telomerase inhibitors was made possible by the determination of high resolution structures of the catalytic telomerase subunit from a beetle and subsequent molecular modeling of the human telomerase complex. A hybrid strategy including docking, pharmacophore-based virtual screening, and molecular dynamics simulations (MDS) were used to identify new human telomerase inhibitors. Docking methodology was applied to investigate the ssDNA telomeric sequence and two well-known human telomerase inhibitors' (BIBR1532 and MST-312) modes of interactions with hTERT TEN domain. Subsequently molecular dynamic simulations were performed to monitor and compare hTERT TEN domain, TEN-ssDNA, TEN-BIBR1532, TEN-MST-312, and TEN-ssDNA-BIBR1532 behavior in a dynamic environment. Pharmacophore models were generated considering the inhibitors manner in the TEN domain anchor site. These exploratory studies identified several new potent inhibitors whose IC50 values were generated experimentally in a low micromolar range with the aid of biochemical assays, including both the direct telomerase and the telomeric repeat amplification protocol (TRAP) assays. The results suggest that the current models of human telomerase are useful templates for rational inhibitor design.

  12. 42 CFR 68c.1 - What is the scope and purpose of the National Institute of Child Health and Human Development...

    Science.gov (United States)

    2010-10-01

    ... Institute of Child Health and Human Development (NICHD) Contraception and Infertility Research Loan... purpose of the National Institute of Child Health and Human Development (NICHD) Contraception and... payments under the National Institute of Child Health and Human Development (NICHD) Contraception and...

  13. Modulation of histamine release from human colon mast cells by protease inhibitors

    Institute of Scientific and Technical Information of China (English)

    Shao-Heng He; Hua Xie

    2004-01-01

    AIM: To investigate the ability of protease inhibitors to modulate histamine release from human colon mast cells.METHODS: Enzymatically dispersed cells from human colon were challenged with anti-IgE or calcium ionophore A23187 in the absence or presence of tryptase and chymase inhibitors, and histamine release was determined.RESULTS: IgE dependent histamine release from colon mast cells was inhibited by up to approximately 37%, 26% and 36.8% by chymase inhibitors Z-Ile-Glu-Pro-Phe-CO2Me (ZIGPFM), N-Tosyl-L-phenylalanyl-chloromethyl ketone (TPCK), and α1-antitrypsin, respectively. Similarly, inhibitors of tryptase leupeptin, N-tosyl-L-lysine chloromethyl ketone (TLCK), lactoferrin and protamine were also able to inhibit anti-IgE induced histamine release by a maximum of some 48%, 37%, 40% and 34%, respectively. Preincubation of these inhibitors with cells for 20 min before challenged with anti-IgE had small effect on the inhibitory actions of these inhibitors on colon mast cells. A specific inhibitor of aminopeptidase amastatin had no effect on anti-IgE induced histamine release. The significant inhibition of calcium ionophore induced histamine release was also observed with the inhibitors of tryptase and chymase examined. Apart from leupeptin and protamine, the inhibitors tested by themselves did not stimulate colon mast cells.CONCLUSION: It was demonstrated that both tryptase and chymase inhibitors could inhibit IgE dependent and calcium ionophore induced histamine release from dispersed colon mast cells in a concentration dependent of manner, which suggest that they are likely to be developed as a novel class of anti-inflammatory drugs to treat chronic of colitis in man.

  14. Inhibition of tryptase release from human colon mast cells by protease inhibitors

    Institute of Scientific and Technical Information of China (English)

    Shao-Heng He; Hua Xie

    2004-01-01

    AIM: To investigate the ability of protease inhibitors to modulate tryptase release from human colon mast cells.METHODS: Enzymatically dispersed cells from human colon were challenged with anti-IgE or calcium ionophore A23187 in the absence or presence of tryptase and chymase inhibitors,and tryptase release was determined.RESULTS: IgE dependent tryptase release from colon mast cells was inhibited by up to approximately 37%, 40% and 36.6% by chymase inhibitors Z-Ile-Glu-Pro-Phe-CO2Me (ZIGPFM), N-tosyl-L-phenylalanyl-chloromethyl ketone (TPCK), and α1-antitrypsin, respectively. Similarly, the inhibitors of tryptase leupeptin, N-tosyl-L-lysine chloromethyl ketone (TLCK) and lactoferrin were also able to inhibit anti-IgE induced tryptase release by a maximum of 39.4%,47.6% and 36.6%, respectively. The inhibitory actions of chymase inhibitors, but not tryptase inhibitors on colon mast cells were enhanced by preincubation of them with cells for 20 min before challenged with anti-IgE. At a concentration of 10 μg/mL, protamine was able to inhibit anti-IgE and calcium ionophore induced tryptase release. However, at 100 μg/mL, protamine elevated tryptase levels in supernatants.A specific inhibitor of aminopeptidase amastatin had no effect on anti-IgE induced tryptase release. The significant inhibition of calcium ionophore induced tryptase release was also observed with the inhibitors of tryptase and chymase examined. The inhibitors tested by themselves did not stimulate tryptase release from colon mast cells.CONCLUSION: It was demonstrated for the first time that both tryptase and chymase inhibitors could inhibit IgE dependent and calcium ionophore induced tryptase release from dispersed colon mast cells in a concentration dependent of manner, which suggest that they are likely to be developed as a novel class of anti-inflammatory drugs to treat chronic of colitis in man.

  15. Effect of proteasome inhibitors on proliferation and apoptosis of human cutaneous melanoma-derived cell lines.

    Science.gov (United States)

    Sorolla, A; Yeramian, A; Dolcet, X; Pérez de Santos, A M; Llobet, D; Schoenenberger, J A; Casanova, J M; Soria, X; Egido, R; Llombart, A; Vilella, R; Matias-Guiu, X; Marti, R M

    2008-03-01

    Cutaneous malignant melanoma is an aggressive type of skin cancer which causes disproportionate mortality in young and middle-aged adults. Once disseminated, melanoma can be considered an incurable disease, highly resistant to standard antineoplastic treatment, such as chemotherapy or radiation therapy. The proteasome represents a novel target for cancer therapy that can potentially be used in melanoma. To assess the effect of four structurally different proteasome inhibitors on human cutaneous melanoma-derived cell lines. Sixteen human cutaneous melanoma-derived cell lines which are original were obtained from patients who were treated by two of the authors. Cells were cultured, exposed to proteasome inhibitors (bortezomib, ALLN, MG-132 and epoxomicin) and then assayed for cell cycle and cell death analyses. Proteasome inhibitors inhibited the in vitro growth of melanoma cells, and this effect was due to a reduction in cell proliferation rate and an induction of both caspase-dependent and caspase-independent cell death. Moreover, release of apoptosis-inducing factor was observed in the presence of the broad-specificity caspase inhibitor BAF (Boc-D-fmk). In addition, the four different proteasome inhibitors induced caspase 2 processing. This study provides information regarding the in vitro effects of proteasome inhibitors on melanoma cell lines, and the molecular mechanisms involved. It also gives support to the future use of such inhibitors in the treatment of patients with melanoma, either administered alone or in combination with other drugs.

  16. Identification of a specific inhibitor for DNA ligase I in human cells.

    OpenAIRE

    Yang, S W; Becker, F. F.; Chan, J Y

    1992-01-01

    A protein inhibitor for human DNA ligase I has recently been identified. It was copurified with a fraction of the enzymes from HeLa cells through several steps of chromatography. The inhibitor was first identified by the absence of ligation activity of the associated enzyme, while it retained the ability to form the ligase-[32P]AMP adducts. The inhibitor was eluted as a single peak at approximately 0.25-0.30 M NaCl from a Mono S column. It inhibited the ligation of both double-stranded and si...

  17. Synthesis and evaluation of potential inhibitors of human and Escherichia coli histidine triad nucleotide binding proteins.

    Science.gov (United States)

    Bardaweel, Sanaa K; Ghosh, Brahma; Wagner, Carston R

    2012-01-01

    Based on recent substrate specificity studies, a series of ribonucleotide based esters and carbamates were synthesized and screened as inhibitors of the phosphoramidases and acyl-AMP hydrolases, Escherichia coli Histidine Triad Nucleotide Binding Protein (ecHinT) and human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Using our established phosphoramidase assay, K(i) values were determined. All compounds exhibited non-competitive inhibition profiles. The carbamate based inhibitors were shown to successfully suppress the Hint1-associated phenotype in E. coli, suggesting that they are permeable intracellular inhibitors of ecHinT.

  18. Pyrazole phenylcyclohexylcarbamates as inhibitors of human fatty acid amide hydrolases (FAAH).

    Science.gov (United States)

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Ruggiero, Emanuela; Saponaro, Giulia; Baraldi, Stefania; Romagnoli, Romeo; Martinelli, Adriano; Tuccinardi, Tiziano

    2015-06-05

    Fatty acid amide hydrolase (FAAH) inhibitors have gained attention as potential therapeutic targets in the management of neuropathic pain. Here, we report a series of pyrazole phenylcyclohexylcarbamate derivatives standing on the known carbamoyl FAAH inhibitor URB597. Structural modifications led to the recognition of compound 22 that inhibited human recombinant FAAH (hrFAAH) in the low nanomolar range (IC50 = 11 nM). The most active compounds of this series showed significant selectivity toward monoacylglycerol lipase (MAGL) enzyme. In addition, molecular modeling and reversibility behavior of the new class of FAAH inhibitors are presented in this article.

  19. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Frederick Daidone

    Full Text Available Dopa decarboxylase (DDC, a pyridoxal 5'-phosphate (PLP enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD. PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a to use virtual screening to identify potential human DDC inhibitors and (b to evaluate the reliability of our virtual-screening (VS protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.

  20. An endogenous inhibitor of angiogenesis inversely correlates with side population phenotype and function in human lung cancer cells.

    Science.gov (United States)

    Han, H; Bourboulia, D; Jensen-Taubman, S; Isaac, B; Wei, B; Stetler-Stevenson, W G

    2014-02-27

    The side population (SP) in human lung cancer cell lines and tumors is enriched with cancer stem cells. An endogenous inhibitor of angiogenesis known as tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), characterized for its ability to inhibit matrix metalloproteinases (MMPs), has been shown by several laboratories to impede tumor progression through MMP-dependent or -independent mechanisms. We recently reported that forced expression of TIMP-2, as well as the modified form Ala+TIMP-2 (that lacks MMP inhibitory activity) significantly blocks growth of A549 human lung cancer cells in vivo. However, the mechanisms underlying TIMP-2 antitumor effects are not fully characterized. Here, we examine the hypothesis that the TIMP-2 antitumor activity may involve regulation of the SP in human lung cancer cells. Indeed, using Hoechst dye efflux assay and flow cytometry, as well as quantitative reverse transcriptase-PCR analysis, we found that endogenous TIMP-2 mRNA levels showed a significant inverse correlation with SP fraction size in six non-small cell lung cancer cell lines. In A549 cells expressing increased levels of TIMP-2, a significant decrease in SP was observed, and this decrease was associated with lowered gene expression of ABCG2, ABCB1 and AKR1C1. Functional analysis of A549 cells showed that TIMP-2 overexpression increased chemosensitivity to cytotoxic drugs. The SP isolated from TIMP-2-overexpressing A549 cells also demonstrated impaired migratory capacity compared with the SP from empty vector control. More importantly, our data provide strong evidence that these TIMP-2 functions occur independent of MMP inhibition, as A549 cells overexpressing Ala+TIMP-2 exhibited identical behavior to those overexpressing TIMP-2 alone. Our findings provide the first indication that TIMP-2 modulates SP phenotype and function, and suggests that TIMP-2 may act as an endogenous suppressor of the SP in human lung cancer cells.

  1. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    OpenAIRE

    Keung, W M; Vallee, B L

    1993-01-01

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3...

  2. Entry Properties and Entry Inhibitors of a Human H7N9 Influenza Virus

    OpenAIRE

    Youhui Si; Jianguo Li; Yuqiang Niu; Xiuying Liu; Lili Ren; Li Guo; Min Cheng; Hongli Zhou; Jianwei Wang; Qi Jin; Wei Yang

    2014-01-01

    The recently identified human infections with a novel avian influenza H7N9 virus in China raise important questions regarding possible risk to humans. However, the entry properties and tropism of this H7N9 virus were poorly understood. Moreover, neuraminidase inhibitor resistant H7N9 isolates were recently observed in two patients and correlated with poor clinical outcomes. In this study, we aimed to elucidate the entry properties of H7N9 virus, design and evaluate inhibitors for H7N9 virus e...

  3. Crystal structure of a human cyclin-dependent kinase 6 complexwith a flavonol inhibitor, Fisetin

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Heshu; Chang, Debbie J.; Baratte, Blandine; Meijer, Laurent; Schulze-Gahmen, Ursula

    2005-01-10

    Cyclin-dependent kinases (CDKs) play a central role in cell cycle control, apoptosis, transcription and neuronal functions. They are important targets for the design of drugs with anti-mitotic and/or anti-neurodegenerative effects. CDK4 and CDK6 form a subfamily among the CDKs in mammalian cells, as defined by sequence similarities. Compared to CDK2 and CDK5, structural information on CDK4 and CDK6 is sparse. We describe here the crystal structure of human CDK6 in complex with a viral cyclin and a flavonol inhibitor, fisetin. Fisetin binds to the active form of CDK6, forming hydrogen bonds with the side chains of residues in the binding pocket that undergo large conformational changes during CDK activation by cyclin binding. The 4-keto group and the 3-hydroxyl group of fisetin are hydrogen bonded with the backbone in the hinge region between the N-terminal and C-terminal kinase domain, as has been observed for many CDK inhibitors. However, CDK2 and HCK kinase in complex with other flavone inhibitors such as quercetin and flavopiridol showed a different binding mode with the inhibitor rotated by about 180. The structural information of the CDK6-fisetin complex is correlated with the binding affinities of different flavone inhibitors for CDK6. This complex structure is the first description of an inhibitor complex with a kinase from the CDK4/6 subfamily and can provide a basis for selecting and designing inhibitor compounds with higher affinity and specificity.

  4. Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Dayer

    2014-12-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this study, molecular dynamic simulation method was used to examine the combinational and additive effects of all known mutations involved in drug resistance against FDA approved inhibitors. Results showed that drug resistant mutations are not randomly distributed along the protease sequence; instead, they are localized on flexible or hot points of the protein chain. Substitution of more hydrophobic residues in flexible points of protease chains tends to increase the folding, lower the flexibility and decrease the active site area of the protease. The reduced affinities of HIV-1 protease for inhibitors seemed to be due to substantial decrease in the size of the active site and flap mobility. A correlation was found between the binding energy of inhibitors and their affinities for each mutant suggesting the distortion of the active site geometry in drug resistance by preventing effective fitting of inhibitors into the enzymes' active site. To overcome the problem of drug resistance of HIV-1 protease, designing inhibitors of variable functional groups and configurations is proposed.

  5. Software developments in automated structure solution and crystallographic studies of the Sso10a2 and human C1 inhibitor protein

    NARCIS (Netherlands)

    Waterreus, Willem-Jan

    2013-01-01

    CRANK is a suite that links different macromolecular X-ray crystallographic programs to solve macromolecular crystal structures automatically from experimental phasing data. In chapter 2, several new algorithms implemented within CRANK increase the robustness and speed of the structure solution proc

  6. Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes

    Science.gov (United States)

    Eagling, Victoria A; Tjia, John F; Back, David J

    1998-01-01

    Aims Chemical inhibitors of cytochrome P450 (CYP) are a useful tool in defining the role of individual CYPs involved in drug metabolism. The aim of the present study was to evaluate the selectivity and rank the order of potency of a range of isoform-selective CYP inhibitors and to compare directly the effects of these inhibitors in human and rat hepatic microsomes. Methods Four chemical inhibitors of human cytochrome P450 isoforms, furafylline (CYP1A2), sulphaphenazole (CYP2C9), diethyldithiocarbamate (CYP2E1), and ketoconazole (CYP3A4) were screened for their inhibitory specificity towards CYP-mediated reactions in both human and rat liver microsomal preparations. Phenacetin O-deethylation, tolbutamide 4-hydroxylation, chlorzoxazone 6-hydroxylation and testosterone 6β-hydroxylation were monitored for enzyme activity. Results Furafylline was a potent, selective inhibitor of phenacetin O-deethylation (CYP1A2-mediated) in human liver microsomes (IC50 = 0.48 μm), but inhibited both phenacetin O-deethylation and tolbutamide 4-hydroxylation (CYP2C9-mediated) at equimolar concentrations in rat liver microsomes (IC50 = 20.8 and 24.0 μm respectively). Sulphaphenazole demonstrated selective inhibition of tolbutamide hydroxylation in human liver microsomes but failed to inhibit this reaction in rat liver microsomes. DDC demonstrated a low level of selectivity as an inhibitory probe for chlorzoxazone 6-hydroxylation (CYP2E1-mediated). DDC also inhibited testosterone 6β-hydroxylation (CYP3A-mediated) in man and rat, and tolbutamide 4-hydroxylase activity in rat. Ketoconazole was a very potent, selective inhibitor of CYP3A4 activity in human liver (IC50 = 0.04 μm). Although inhibiting CYP3A in rat liver it also inhibited all other reactions at concentrations ≤5 μm. Conclusions It is evident that CYP inhibitors do not exhibit the same selectivity in human and rat liver microsomes. This is due to differential selectivity of the inhibitors and/or differences in the CYP

  7. Structure-guided inhibitor design for human FAAH by interspecies active site conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mileni, Mauro; Johnson, Douglas S.; Wang, Zhigang; Everdeen, Daniel S.; Liimatta, Marya; Pabst, Brandon; Bhattacharya, Keshab; Nugent, Richard A.; Kamtekar, Satwik; Cravatt, Benjamin F.; Ahn, Kay; Stevens, Raymond C. (Scripps); (Pfizer)

    2008-11-24

    The integral membrane enzyme fatty acid amide hydrolase (FAAH) hydrolyzes the endocannabinoid anandamide and related amidated signaling lipids. Genetic or pharmacological inactivation of FAAH produces analgesic, anxiolytic, and antiinflammatory phenotypes but not the undesirable side effects of direct cannabinoid receptor agonists, indicating that FAAH may be a promising therapeutic target. Structure-based inhibitor design has, however, been hampered by difficulties in expressing the human FAAH enzyme. Here, we address this problem by interconverting the active sites of rat and human FAAH using site-directed mutagenesis. The resulting humanized rat (h/r) FAAH protein exhibits the inhibitor sensitivity profiles of human FAAH but maintains the high-expression yield of the rat enzyme. We report a 2.75-{angstrom} crystal structure of h/rFAAH complexed with an inhibitor, N-phenyl-4-(quinolin-3-ylmethyl)piperidine-1-carboxamide (PF-750), that shows strong preference for human FAAH. This structure offers compelling insights to explain the species selectivity of FAAH inhibitors, which should guide future drug design programs.

  8. Adamantyl carboxamides and acetamides as potent human 11β-hydroxysteroid dehydrogenase type 1 inhibitors.

    Science.gov (United States)

    Su, Xiangdong; Halem, Heather A; Thomas, Mark P; Moutrille, Cecile; Culler, Michael D; Vicker, Nigel; Potter, Barry V L

    2012-11-01

    The modulation of 11β-HSD1 activity with selective inhibitors has beneficial effects on various metabolic disorders including insulin resistance, dyslipidemia and obesity. Here we report the discovery of a series of novel adamantyl carboxamide and acetamide derivatives as selective inhibitors of human 11β-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Optimization based on an initially identified 11β-HSD1 inhibitor (3) led to the discovery of potent inhibitors with IC(50) values in the 100 nM range. These compounds are also highly selective 11β-HSD1 inhibitors with no activity against 11β-HSD2 and 17β-HSD1. Compound 15 (IC(50)=114 nM) with weak inhibitory activity against the key human cytochrome P450 enzymes and moderate stability in incubation with human liver microsomes is worthy of further development. Importantly, compound 41 (IC(50)=280 nM) provides a new lead that incorporates an adamantyl group surrogate and should enable further series diversification.

  9. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Michele Cea

    Full Text Available Aberrant histone deacetylase (HDAC activity is frequent in human leukemias. However, while classical, NAD(+-independent HDACs are an established therapeutic target, the relevance of NAD(+-dependent HDACs (sirtuins in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527 and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.

  10. Differential inhibitor sensitivity between human kinases VRK1 and VRK2.

    Directory of Open Access Journals (Sweden)

    Marta Vázquez-Cedeira

    Full Text Available Human vaccinia-related kinases (VRK1 and VRK2 are atypical active Ser-Thr kinases implicated in control of cell cycle entry, apoptosis and autophagy, and affect signalling by mitogen activated protein kinases (MAPK. The specific structural differences in VRK catalytic sites make them suitable candidates for development of specific inhibitors. In this work we have determined the sensitivity of VRK1 and VRK2 to kinase inhibitors, currently used in biological assays or in preclinical studies, in order to discriminate between the two proteins as well as with respect to the vaccinia virus B1R kinase. Both VRK proteins and vaccinia B1R are poorly inhibited by inhibitors of different types targeting Src, MEK1, B-Raf, JNK, p38, CK1, ATM, CHK1/2 and DNA-PK, and most of them have no effect even at 100 µM. Despite their low sensitivity, some of these inhibitors in the low micromolar range are able to discriminate between VRK1, VRK2 and B1R. VRK1 is more sensitive to staurosporine, RO-31-8220 and TDZD8. VRK2 is more sensitive to roscovitine, RO 31-8220, Cdk1 inhibitor, AZD7762, and IC261. Vaccinia virus B1R is more sensitive to staurosporine, KU55933, and RO 31-8220, but not to IC261. Thus, the three kinases present a different pattern of sensitivity to kinase inhibitors. This differential response to known inhibitors can provide a structural framework for VRK1 or VRK2 specific inhibitors with low or no cross-inhibition. The development of highly specific VRK1 inhibitors might be of potential clinical use in those cancers where these kinases identify a clinical subtype with a poorer prognosis, as is the case of VRK1 in breast cancer.

  11. Thermodynamics and kinetics of inhibitor binding to human equilibrative nucleoside transporter subtype-1.

    Science.gov (United States)

    Rehan, Shahid; Ashok, Yashwanth; Nanekar, Rahul; Jaakola, Veli-Pekka

    2015-12-15

    Many nucleoside transport inhibitors are in clinical use as anti-cancer, vasodilator and cardioprotective drugs. However, little is known about the binding energetics of these inhibitors to nucleoside transporters (NTs) due to their low endogenous expression levels and difficulties in the biophysical characterization of purified protein with ligands. Here, we present kinetics and thermodynamic analyses of inhibitor binding to the human equilibrative nucleoside transporter-1 (hENT1), also known as SLC29A1. Using a radioligand binding assay, we obtained equilibrium binding and kinetic rate constants of well-known NT inhibitors--[(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR), dilazep, and dipyridamole--and the native permeant, adenosine, to hENT1. We observed that the equilibrium binding affinities for all inhibitors decreased whereas, the kinetic rate constants increased with increasing temperature. Furthermore, we found that binding is enthalpy driven and thus, an exothermic reaction, implying that the transporter does not discriminate between its inhibitors and substrates thermodynamically. This predominantly enthalpy-driven binding by four chemically distinct ligands suggests that the transporter may not tolerate diversity in the type of interactions that lead to high affinity binding. Consistent with this, the measured activation energy of [(3)H]NBMPR association was relatively large (20 kcal mol(-1)) suggesting a conformational change upon inhibitor binding. For all three inhibitors the enthalpy (ΔH°) and entropy (ΔS°) contributions to the reaction energetics were determined by van't Hoff analysis to be roughly similar (25-75% ΔG°). Gains in enthalpy with increasing polar surface area of inhibitors suggest that the binding is favored by electrostatic or polar interactions between the ligands and the transporter.

  12. Inhibitors of 5-lipoxygenase inhibit expression of intercellular adhesion molecule-1 in human melanoma cells

    Institute of Scientific and Technical Information of China (English)

    Yin WANG; Bin ZHOU; Ji LI; Yong-bing CAO; Xin-sheng CHEN; Ming-he CHENG; Ming YIN

    2004-01-01

    AIM: To study the effect of 5-lipoxygenase inhibitors on the expression of intercellular adhesion molecule-1 (ICAM-1) in melanoma cells. METHODS: ICAM-1 protein of human melanoma cell a375 was detected by enzyme-linked immunosorbent, flow cytometry and Western blot analysis. Level of ICAM-1 mRNA in a375 was evaluated by Northern blot analysis. Adhesion of a375 to endothelial cell EC304 was analyzed by isotopic tracing. RESULTS:5-Lipoxygenase inhibitors nordihydroguaiaretic acid, AA861 and MK886, could suppress the expression of ICAM-1 protein as well as of its mRNA in a375 cells and reduce the adhesion of a375 to EC304. CONCLUSION:5-Lipoxygenase inhibitors can inhibit the expression of ICAM-1 in human melanoma cells and may be valuable for treatment of melanoma metastasis.

  13. Converting enzyme inhibitor temocaprilat prevents high glucose-mediated suppression of human aortic endothelial cell proliferation.

    Science.gov (United States)

    Yasunari, Kenichi; Maeda, Kensaku; Watanabe, Takanori; Nakamura, Munehiro; Asada, Akira; Yoshikawa, Junichi

    2003-12-01

    We examined the involvement of the oxidative stress in high glucose-induced suppression of human aortic endothelial cell proliferation. Chronic glucose treatment for 72 h concentration-dependently (5.6-22.2 mol/l) inhibited human coronary endothelial cell proliferation. Temocaprilat, an angiotensin-converting enzyme inhibitor, at 10 nmol/l to 1 micromol/l inhibited high glucose (22.2 mmol/l)-mediated suppression of human aortic endothelial cell proliferation. Temocaprilat at 1 micromol/l inhibited high glucose-induced membrane-bound protein kinase C activity in human aortic endothelial cells. The protein kinase C inhibitors calphostin C 100 nmol/l or chelerythrine 1 micromol/l inhibited high glucose-mediated suppression of human aortic endothelial cell proliferation. Chronic high glucose treatment for 72 h increased intracellular oxidative stress, directly measured by flow cytometry using carboxydichlorofluorescein diacetate bis-acetoxymethyl ester, and this increase was significantly suppressed by temocaprilat 10 nmol/l to 1 micromol/l. Bradykinin B2 receptor antagonist icatibant 100 nmol/l significantly reduced the action of temocaprilat; whereas bradykinin B1 receptor antagonist des-Arg9-Leu8-bradykinin 100 nmol/l had no effect. These findings suggest that high glucose inhibits human aortic endothelial cell proliferation and that the angiotensin-converting enzyme inhibitor temocaprilat inhibits high glucose-mediated suppression of human aortic endothelial cell proliferation, possibly through suppression of protein kinase C, bradykinin B2 receptors and oxidative stress.

  14. Human neutrophil defensins and secretory leukocyte proteinase inhibitor in squamous metaplastic epithelium of bronchial airways.

    NARCIS (Netherlands)

    Aarbiou, J.; Schadewijk, A. van; Stolk, J.; Sont, J.K.; Boer, W.I.; Rabe, K.F.; Krieken, J.H.J.M. van; Mauad, T.; Hiemstra, P.S.

    2004-01-01

    OBJECTIVE: The aim of this study was to analyze a possible contribution of human neutrophil defensins and secretory leukocyte proteinase inhibitor (SLPI) to the induction of airway epithelial changes such as squamous cell metaplasia. MATERIALS AND METHODS: The presence of these molecules and the num

  15. Proteinase activity in human and murine saliva as a biomarker for proteinase inhibitor efficacy.

    Science.gov (United States)

    Fingleton, Barbara; Menon, Ramkumar; Carter, Kathy J; Overstreet, P Dawn; Hachey, David L; Matrisian, Lynn M; McIntyre, J Oliver

    2004-12-01

    As molecularly targeted agents reach the clinic, there is a need for assays to detect their presence and effectiveness against target molecules in vivo. Proteinase inhibitors are one example of a class of therapeutic agent for which satisfactory methods of identifying successful target modulation in vivo are lacking. This is of particular importance while these drugs are in clinical trials because standard maximum-tolerated dose-finding studies often are not suitable due to lack of toxicity. Saliva represents a readily accessible bodily fluid that can be repeatedly sampled and used for assaying in vivo effects of systemic drugs. Here we show the development of a simple assay that can be used to measure proteinase activity in saliva and proteinase inhibition after systemic treatment with three different proteinase inhibitors. A variety of gelatinolytic activities present in human and murine saliva have been assayed with a fluorescent dye-labeled substrate and assigned to different proteinase categories by inclusion of specific classes of inhibitors. Treatment of mice with either matrix metalloproteinase inhibitors or a urokinase inhibitor for a period as short as 48 hours results in levels of the drugs that can be detected in saliva by mass spectrometry and concomitant decreases in salivary proteinase activity, thus demonstrating that these inhibitors successfully modulate their targets in vivo.

  16. Virulence of Group A Streptococci Is Enhanced by Human Complement Inhibitors.

    Directory of Open Access Journals (Sweden)

    David Ermert

    2015-07-01

    Full Text Available Streptococcus pyogenes, also known as Group A Streptococcus (GAS, is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and consequent phagocytosis. Several strains of GAS bind to human-specific complement inhibitors, C4b-binding protein (C4BP and/or Factor H (FH, to curtail complement C3 (a critical opsonin deposition. This results in diminished activation of phagocytes and clearance of GAS that may lead to the host being unable to limit the infection. Herein we describe the course of GAS infection in three human complement inhibitor transgenic (tg mouse models that examined each inhibitor (human C4BP or FH alone, or the two inhibitors together (C4BPxFH or 'double' tg. GAS infection with strains that bound C4BP and FH resulted in enhanced mortality in each of the three transgenic mouse models compared to infection in wild type mice. In addition, GAS manifested increased virulence in C4BPxFH mice: higher organism burdens and greater elevations of pro-inflammatory cytokines and they died earlier than single transgenic or wt controls. The effects of hu-C4BP and hu-FH were specific for GAS strains that bound these inhibitors because strains that did not bind the inhibitors showed reduced virulence in the 'double' tg mice compared to strains that did bind; mortality was also similar in wild-type and C4BPxFH mice infected by non-binding GAS. Our findings emphasize the importance of binding of complement inhibitors to GAS that results in impaired opsonization and phagocytic killing, which translates to enhanced virulence in a humanized whole animal model. This novel hu-C4BPxFH tg model may prove invaluable in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy.

  17. Modulation of enzymatic activity of human mast cell tryptase and chymase by protease inhibitors

    Institute of Scientific and Technical Information of China (English)

    HEShao-Heng; CHENPu; CHENHan-Qiu

    2003-01-01

    AIM: To investigate the actions of protease inhibitors on the enzymatic activities of tryptase and chymase in similarexperimental systems. METHODS: Human lung tryptase and human skin chymase were purified by a similarprocedure involving high salt extraction of tryptase, heparin agarose affinity chromatography, and S-200 Sephacrylgel filtration chromatography. Actions of protease inhibitors on tryptase and chymase activities were examined byenzyme assays. RESULTS: The specific activities of tryptase and chymase were 2.1 kU/g protein and 4.9 kU/g protein, respectively. Both preparations showed a single diffuse band on SDS-PAGE. Among non-native proteaseinhibitors, N-(1-hydroxy-2-naphthoyl)-L- arginyl-L-prolinamide hydrochloride (HNAP), leupeptin, antipain,benzamidine, and protamine inhibited more than 90 % enzymatic activity of tryptase, whereas soy bean trypsininhibitor (SBTI), Z-Ile-Glu-Pro-Phe-CO2Me (ZIGPPM) and chymostatin inhibited more than 95 % enzymaticactivity of chymase. Native protease inhibitors α-antitrypsin and secretory leukocyte protease inhibitor (SLPI)inhibited more than 90 % enzymatic activity of chymase, but lactoferrin appeared to enhance chymase enzymaticactivity. All the 3 inhibitors had weak inhibitory actions on tryptase. CONCLUSION: The protease inhibitorstested had relatively good selectivity to either tryptase or chymase.

  18. Molecular modeling study for inhibition mechanism of human chymase and its application in inhibitor design.

    Directory of Open Access Journals (Sweden)

    Mahreen Arooj

    Full Text Available Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymase complexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41 upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most active compound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitory mechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes.

  19. Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord.

    Science.gov (United States)

    Tahtouh, Muriel; Croq, Françoise; Vizioli, Jacopo; Sautiere, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Daha, Mohamed R; Pestel, Joël; Lefebvre, Christophe

    2009-02-01

    In vertebrates, central nervous system (CNS) protection is dependent on many immune cells including microglial cells. Indeed, activated microglial cells are involved in neuroinflammation mechanisms by interacting with numerous immune factors. Unlike vertebrates, some lophotrochozoan invertebrates can fully repair their CNS following injury. In the medicinal leech Hirudo medicinalis, the recruitment of microglial cells at the lesion site is essential for sprouting of injured axons. Interestingly, a new molecule homologous to vertebrate C1q was characterized in leech, named HmC1q (for H. medicinalis) and detected in neurons and glial cells. In chemotaxis assays, leech microglial cells were demonstrated to respond to human C1q. The chemotactic activity was reduced when microglia was preincubated with signaling pathway inhibitors (Pertussis Toxin or wortmannin) or anti-human gC1qR antibody suggesting the involvement of gC1qR in C1q-mediated migration in leech. Assays using cells preincubated with NO chelator (cPTIO) showed that C1q-mediated migration was associated to NO production. Of interest, by using anti-HmC1q antibodies, HmC1q released in the culture medium was shown to exhibit a similar chemotactic effect on microglial cells as human C1q. In summary, we have identified, for the first time, a molecule homologous to mammalian C1q in leech CNS. Its chemoattractant activity on microglia highlights a new investigation field leading to better understand leech CNS repair mechanisms.

  20. Histone deacetylase inhibitors inducing human cervical cancer cell apoptosis by decreasing DNA-methyltransferase 3B

    Institute of Scientific and Technical Information of China (English)

    LIU Ning; ZHAO Li-jun; LI Xiao-ping; WANG Jian-liu; CHAI Guo-lin; WEI Li-hui

    2012-01-01

    Background Histone deacetylase (HDAC) inhibitors are a group of small chemical molecules that inhibit histone deacetylase.At cell level,HDAC inhibitors have multiple biological effects such as cell cycle arrest,apoptosis,cell differentiation and auotophagy.At molecular level,HDAC inhibitors cause histone and nonhistone acetylation and induce gene expression.HDAC inhibitors are widely used in cancer therapy because of its function of inducing apoptosis.However,the mechanisms of apoptosis effect are not fully understood.TSA is a classical HDAC inhibitor and widely used in epigenetic and anti-cancer research.In this study,we selected Trichostatin A (TSA) to investigate the mechanisms of HDAC inhibitors apoptotic effect on cancer cells.Methods Cervical cancer cell lines such as Hela,Caski and normal human keratinocyte line HaCaT were treated with various concentrations of TSA.Crystal violent assay and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were performed to determine cell number.PARP cleavage and FITC-AnexinV were performed to determine apoptosis.DNA-methyltransferase (DNMT)1,DNMT3A and DNMT3B were determined by regular PCR,qPCR and Western Blotting.Small interfering RNA (SiRNAi) was used to knock down DNMT3B.Results HDAC inhibitors only induce cervical cancer cell apoptosis.At 1 μmol/L of TSA,86% of Hela cell and 76% of Caski went apoptosis.For normal cells,HDAC inhibitors have no cytotoxic effect at therapeutic dosage,(90.0±8.4)% of normal cell survive after treated with 1 μmol/L of TSA.We compared 1 μmol/L group with untreated control with t-test.There was no significance between 1 μmol/L group and untreated control for normal cell (P >0.05).HDAC inhibitors decreased DNMT3B in cancer cell but not in normal cell.Manually knock-down of DNMT3B induced Hela and Caski cell apoptosis.More than 99% of Hela and Caski cell went apoptosis after deprived of DNMT3B.Conclusions DNMT3B was essential to cervical cancer cell survival

  1. Active Site Mapping of Human Cathepsin F with Dipeptide Nitrile Inhibitors.

    Science.gov (United States)

    Schmitz, Janina; Furtmann, Norbert; Ponert, Moritz; Frizler, Maxim; Löser, Reik; Bartz, Ulrike; Bajorath, Jürgen; Gütschow, Michael

    2015-08-01

    Cleavage of the invariant chain is the key event in the trafficking pathway of major histocompatibility complex class II. Cathepsin S is the major processing enzyme of the invariant chain, but cathepsin F acts in macrophages as its functional synergist which is as potent as cathepsin S in invariant chain cleavage. Dedicated low-molecular-weight inhibitors for cathepsin F have not yet been developed. An active site mapping with 52 dipeptide nitriles, reacting as covalent-reversible inhibitors, was performed to draw structure-activity relationships for the non-primed binding region of human cathepsin F. In a stepwise process, new compounds with optimized fragment combinations were designed and synthesized. These dipeptide nitriles were evaluated on human cysteine cathepsins F, B, L, K and S. Compounds 10 (N-(4-phenylbenzoyl)-leucylglycine nitrile) and 12 (N-(4-phenylbenzoyl)leucylmethionine nitrile) were found to be potent inhibitors of human cathepsin F, with Ki values nitriles from our study, a 3D activity landscape was generated to visualize structure-activity relationships for this series of cathepsin F inhibitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis and bioevaluation of pyrazole-benzimidazolone hybrids as novel human 4-Hydroxyphenylpyruvate dioxygenase inhibitors.

    Science.gov (United States)

    Xu, Yu-Ling; Lin, Hong-Yan; Ruan, Xu; Yang, Sheng-Gang; Hao, Ge-Fei; Yang, Wen-Chao; Yang, Guang-Fu

    2015-03-06

    4-Hydroxyphenylpyruvate dioxygenase (HPPD), an essential enzyme in tyrosine catabolism, is an important target for treating type I tyrosinemia. Inhibition of HPPD can effectively alleviate the symptoms of type I tyrosinemia. However, only one commercial HPPD inhibitor, 2-(2-nitro-4-trifluoromethylbenzoyl) cyclohexane-1,3-dione (NTBC), has been available for clinical use so far. In the present study, a series of novel pyrazole-benzimidazolone hybrids were designed, synthesized and evaluated as potent human HPPD inhibitors. Most of the new compounds displayed significant inhibitory activity against the recombinant human HPPD. Moreover, compound 9l was identified as the most potent candidate with IC50 value of 0.021 μM against recombinant human HPPD, about 3-fold more potent than NTBC. Thus the pyrazole-benzimidazolone hybrid has great potential to be further developed for the treatment of type I tyrosinemia.

  3. Azobenzene-based inhibitors of human carbonic anhydrase II

    Directory of Open Access Journals (Sweden)

    Leander Simon Runtsch

    2015-07-01

    Full Text Available Aryl sulfonamides are a widely used drug class for the inhibition of carbonic anhydrases. In the context of our program of photochromic pharmacophores we were interested in the exploration of azobenzene-containing sulfonamides to block the catalytic activity of human carbonic anhydrase II (hCAII. Herein, we report the synthesis and in vitro evaluation of a small library of nine photochromic sulfonamides towards hCAII. All molecules are azobenzene-4-sulfonamides, which are substituted by different functional groups in the 4´-position and were characterized by X-ray crystallography. We aimed to investigate the influence of electron-donating or electron-withdrawing substituents on the inhibitory constant Ki. With the aid of an hCAII crystal structure bound to one of the synthesized azobenzenes, we found that the electronic structure does not strongly affect inhibition. Taken together, all compounds are strong blockers of hCAII with Ki = 25–65 nM that are potentially photochromic and thus combine studies from chemical synthesis, crystallography and enzyme kinetics.

  4. C1-2 arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Chevrot, A. [Service de Radiologie B, Hopital Cochin, 75 - Paris (France); Cermakova, E. [Service de Radiologie B, Hopital Cochin, 75 - Paris (France); Vallee, C. [Service de Radiologie B, Hopital Cochin, 75 - Paris (France); Chancelier, M.D. [Service de Radiologie B, Hopital Cochin, 75 - Paris (France); Chemla, N. [Service de Radiologie B, Hopital Cochin, 75 - Paris (France); Rousselin, B. [Service de Radiologie B, Hopital Cochin, 75 - Paris (France); Langer-Cherbit, A. [Service de Radiologie B, Hopital Cochin, 75 - Paris (France)

    1995-08-01

    One hundred patients with the following conditions were studied: cervical pain or neuralgia without radiographic changes, osteoarthritis, rheumatoid arthritis, ankylosing spondylarthritis and diverse conditions. The technique consists of lateral puncture of the posterior aspect of the C1-2 joint with a 20-gauge needle under fluoroscopic control, arthrography using 1 ml contrast medium, and a 1-ml long-acting steroid injection subsequently. The articular cavity has an anterior and a posterior recess. Sometimes the posterior recess is large. In 18% of cases the contralateral joint also opacifies. C1-2 arthrography appears to be an efficient and safe technique for the treatment of upper cervical pain due to C1-2 articular disorders. (orig.)

  5. Exploring in vitro and in vivo Hsp90 inhibitors activity against human protozoan parasites.

    Science.gov (United States)

    Giannini, Giuseppe; Battistuzzi, Gianfranco

    2015-02-01

    A set of compounds, previously selected as potent Hsp90α inhibitors, has been studied on a panel of human parasites. 5-Aryl-3,4-isoxazolediamide derivatives (1) were active against two protozoa, Trypanosoma brucei rhodesiense and Plasmodium falciparum, with a good tolerability toward cytotoxicity on non-malignant L6 rat myoblast cell line, unlike the 1,5-diaryl,4-carboxamides-1,2,3-triazole derivatives (2) which, while showing a single-digit nM range activity against the same protozoa, were also highly cytotoxic on L6 cells. In a subsequent in vivo study, two isoxazolediamide derivatives, 1a and 1b, were very efficacious on the sleeping sickness-causing agent with a clear parasitaemia during treatment. These data, however, showed that not all protozoa are sensitive to Hsp90 inhibitors, as well as not all Hsp90 inhibitors are equally active on parasites.

  6. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors

    Directory of Open Access Journals (Sweden)

    Lucianna Helene Santos

    2015-11-01

    Full Text Available Reverse transcriptase (RT is a multifunctional enzyme in the human immunodeficiency virus (HIV-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.

  7. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors.

    Science.gov (United States)

    Santos, Lucianna Helene; Ferreira, Rafaela Salgado; Caffarena, Ernesto Raúl

    2015-11-01

    Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.

  8. Structural Basis for Reversible and Irreversible Inhibition of Human Cathepsin L by their Respective dipeptidyl glyoxal and diazomethylketone Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    R Shenoy; J Sivaraman

    2011-12-31

    Cathepsin L plays a key role in many pathophysiological conditions including rheumatoid arthritis, tumor invasion and metastasis, bone resorption and remodeling. Here we report the crystal structures of two analogous dipeptidyl inhibitor complexes which inhibit human cathepsin L in reversible and irreversible modes, respectively. To-date, there are no crystal structure reports of complexes of proteases with their glyoxal inhibitors or complexes of cathepsin L and their diazomethylketone inhibitors. These two inhibitors - inhibitor 1, an {alpha}-keto-{beta}-aldehyde and inhibitor 2, a diazomethylketone, have different groups in the S1 subsite. Inhibitor 1 [Z-Phe-Tyr (OBut)-COCHO], with a Ki of 0.6 nM, is the most potent, reversible, synthetic peptidyl inhibitor of cathepsin L reported to-date. The structure of the inhibitor 1 complex was refined up to 2.2 {angstrom} resolution. The structure of the complex of the inhibitor 2 [Z-Phe-Tyr (t-Bu)-diazomethylketone], an irreversible inhibitor that can inactivate cathepsin L at {micro}M concentrations, was refined up to 1.76 {angstrom} resolution. These two inhibitors have substrate-like interactions with the active site cysteine (Cys25). Inhibitor 1 forms a tetrahedral hemithioacetal adduct, whereas the inhibitor 2 forms a thioester with Cys25. The inhibitor 1 {beta}-aldehyde group is shown to make a hydrogen bond with catalytic His163, whereas the ketone carbonyl oxygen of the inhibitor 2 interacts with the oxyanion hole. tert-Butyl groups of both inhibitors are found to make several non-polar contacts with S' subsite residues of cathepsin L. These studies, combined with other complex structures of cathepsin L, reveal the structural basis for their potency and selectivity.

  9. Human 15-LOX-1 active site mutations alter inhibitor binding and decrease potency.

    Science.gov (United States)

    Armstrong, Michelle; van Hoorebeke, Christopher; Horn, Thomas; Deschamps, Joshua; Freedman, J Cody; Kalyanaraman, Chakrapani; Jacobson, Matthew P; Holman, Theodore

    2016-11-01

    Human 15-lipoxygenase-1 (h15-LOX-1 or h12/15-LOX) reacts with polyunsaturated fatty acids and produces bioactive lipid derivatives that are implicated in many important human diseases. One such disease is stroke, which is the fifth leading cause of death and the first leading cause of disability in America. The discovery of h15-LOX-1 inhibitors could potentially lead to novel therapeutics in the treatment of stroke, however, little is known about the inhibitor/active site interaction. This study utilizes site-directed mutagenesis, guided in part by molecular modeling, to gain a better structural understanding of inhibitor interactions within the active site. We have generated eight mutants (R402L, R404L, F414I, F414W, E356Q, Q547L, L407A, I417A) of h15-LOX-1 to determine whether these active site residues interact with two h15-LOX-1 inhibitors, ML351 and an ML094 derivative, compound 18. IC50 values and steady-state inhibition kinetics were determined for the eight mutants, with four of the mutants affecting inhibitor potency relative to wild type h15-LOX-1 (F414I, F414W, E356Q and L407A). The data indicate that ML351 and compound 18, bind in a similar manner in the active site to an aromatic pocket close to F414 but have subtle differences in their specific binding modes. This information establishes the binding mode for ML094 and ML351 and will be leveraged to develop next-generation inhibitors.

  10. The human immunodeficiency virus protease inhibitor ritonavir is potentially active against urological malignancies

    Directory of Open Access Journals (Sweden)

    Sato A

    2015-04-01

    Full Text Available Akinori Sato Department of Urology, National Defense Medical College, Tokorozawa, Japan Abstract: The human immunodeficiency virus protease inhibitor ritonavir has recently been shown to have antineoplastic activity, and its use in urological malignancies is under investigation with an eye toward drug repositioning. Ritonavir is thought to exert its antineoplastic activity by inhibiting multiple signaling pathways, including the Akt and nuclear factor-kappaB pathways. It can increase the amount of unfolded proteins in the cell by inhibiting both the proteasome and heat shock protein 90. Combinations of ritonavir with agents that increase the amount of unfolded proteins, such as proteasome inhibitors, histone deacetylase inhibitors, or heat shock protein 90 inhibitors, therefore, induce endoplasmic reticulum stress cooperatively and thereby kill cancer cells effectively. Ritonavir is also a potent cytochrome P450 3A4 and P-glycoprotein inhibitor, increasing the intracellular concentration of combined drugs by inhibiting their degradation and efflux from cancer cells and thereby enhancing their antineoplastic activity. Furthermore, riotnavir’s antineoplastic activity includes modulation of immune system activity. Therapies using ritonavir are thus an attractive new approach to cancer treatment and, due to their novel mechanisms of action, are expected to be effective against malignancies that are refractory to current treatment strategies. Further investigations using ritonavir are expected to find new uses for clinically available drugs in the treatment of urological malignancies as well as many other types of cancer. Keywords: drug repositioning, novel treatment

  11. Crystal structures of human pancreatic alpha-amylase in complex with carbohydrate and proteinaceous inhibitors.

    Science.gov (United States)

    Nahoum, V; Roux, G; Anton, V; Rougé, P; Puigserver, A; Bischoff, H; Henrissat, B; Payan, F

    2000-01-01

    Crystal structures of human pancreatic alpha-amylase (HPA) in complex with naturally occurring inhibitors have been solved. The tetrasaccharide acarbose and a pseudo-pentasaccharide of the trestatin family produced identical continuous electron densities corresponding to a pentasaccharide species, spanning the -3 to +2 subsites of the enzyme, presumably resulting from transglycosylation. Binding of the acarviosine core linked to a glucose residue at subsites -1 to +2 appears to be a critical part of the interaction process between alpha-amylases and trestatin-derived inhibitors. Two crystal forms, obtained at different values of pH, for the complex of HPA with the protein inhibitor from Phaseolus vulgaris (alpha-amylase inhibitor) have been solved. The flexible loop typical of the mammalian alpha-amylases was shown to exist in two different conformations, suggesting that loop closure is pH-sensitive. Structural information is provided for the important inhibitor residue, Arg-74, which has not been observed previously in structural analyses. PMID:10657258

  12. c=1 from c<1: Bulk and boundary correlators

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Sergei [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Postbus 80.195, 3508 TD Utrecht (Netherlands)]. E-mail: s.alexandrov@phys.uu.nl; Imeroni, Emiliano [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Postbus 80.195, 3508 TD Utrecht (Netherlands)]. E-mail: e.imeroni@phys.uu.nl

    2005-12-26

    We study the c{sub L}=25 limit, which corresponds to c=1 string theory, of bulk and boundary correlation functions of Liouville theory with FZZT boundary conditions. This limit is singular and requires a renormalization of vertex operators. We formulate a regularization procedure which allows to extract finite physical results. A particular attention is paid to c=1 string theory compactified at the self-dual radius R=1. In this case, the boundary correlation functions diverge even after the multiplicative renormalization. We show that all infinite contributions can be interpreted as contact terms arising from degenerate world sheet configurations. After their subtraction, one gets a well defined set of correlation functions. We also obtain several new results for correlation functions in Liouville theory at generic central charge.

  13. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair.

    Science.gov (United States)

    Chen, Xi; Zhong, Shijun; Zhu, Xiao; Dziegielewska, Barbara; Ellenberger, Tom; Wilson, Gerald M; MacKerell, Alexander D; Tomkinson, Alan E

    2008-05-01

    Based on the crystal structure of human DNA ligase I complexed with nicked DNA, computer-aided drug design was used to identify compounds in a database of 1.5 million commercially available low molecular weight chemicals that were predicted to bind to a DNA-binding pocket within the DNA-binding domain of DNA ligase I, thereby inhibiting DNA joining. Ten of 192 candidates specifically inhibited purified human DNA ligase I. Notably, a subset of these compounds was also active against the other human DNA ligases. Three compounds that differed in their specificity for the three human DNA ligases were analyzed further. L82 inhibited DNA ligase I, L67 inhibited DNA ligases I and III, and L189 inhibited DNA ligases I, III, and IV in DNA joining assays with purified proteins and in cell extract assays of DNA replication, base excision repair, and nonhomologous end-joining. L67 and L189 are simple competitive inhibitors with respect to nicked DNA, whereas L82 is an uncompetitive inhibitor that stabilized complex formation between DNA ligase I and nicked DNA. In cell culture assays, L82 was cytostatic whereas L67 and L189 were cytotoxic. Concordant with their ability to inhibit DNA repair in vitro, subtoxic concentrations of L67 and L189 significantly increased the cytotoxicity of DNA-damaging agents. Interestingly, the ligase inhibitors specifically sensitized cancer cells to DNA damage. Thus, these novel human DNA ligase inhibitors will not only provide insights into the cellular function of these enzymes but also serve as lead compounds for the development of anticancer agents.

  14. Ultrastructural evidence for differentiation in a human glioblastoma cell line treated with inhibitors of eicosanoid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.E.; Anderson, K.M. (Rush Presbyterian St. Luke' s Medical Center, Chicago, IL (United States)); Seed, T.M. (Argonne National Lab., IL (United States))

    1990-01-01

    Human glioblastoma cells incubated in the presence of inhibitors of eicosanoid biosynthesis show decreased cellular proliferation without cytotoxicity. The authors studied the ultrastructural morphology of a human glioblastoma cell line cultured with nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, or 5,8,11,14-eicosatetraynoic acid, a cyclooxygenase and lipoxygenase inhibitor. When glioblastoma cells were treated for 3 days with antiproliferative concentrations of either agent, they shared many morphological characteristics, including evidence for increased astrocytic differentiation with only limited signs of toxicity. The inhibited glioma cells demonstrated an increase in the number and length of astrocytic processes containing greater numbers of glial filaments, and the NDGA-treated cells also demonstrated extensive lateral pseudopod formation along the processes. The glioblastoma cell shape also become more elongated, losing the usual nuclear lobularity and nuclear inclusions, especially in NDGA-treated cells. Many cytoplasmic organelles packed the cytosol of the inhibited glioma cells, including prominent Golgi apparatus, dilated smooth endoplasmic reticulum evolving into dilated vesicles, cytoplasmic vacuoles, and numerous concentric laminations. There was limited evidence for toxicity, however, as the mitochondria were more pleomorphic with some mitochondrial distension and disruption of the cristae along with an increase in cytoplasmic vacuolization. The authors conclude that the inhibitors of eicosanoid biosynthesis. NDGA and 5,8,11,14-eicosatetraynoic acid, not only suppress glioblastoma cell proliferation, but also include increased astrocytic differentiation.

  15. Low Dose Histone Deacetylase Inhibitor, Depsipeptide (FR901228), Promotes Adenoviral Transduction in Human Rhabdomyosarcoma Cell Lines

    OpenAIRE

    Fariba Navid; Mischen, Blaine T.; Helman, Lee J.

    2004-01-01

    Purpose. Transduction of rhabdomyosarcoma (RMS) cells with adenoviral vectors for in vivo and in vitro applications has been limited by the low to absent levels of coxackie and adenovirus receptor (CAR). This study investigates the potential use of low doses of a histone deacetylase inhibitor, depsipeptide (FR901228), currently in Phase II human trials, to enhance adenoviral uptake in six rhabdomyosarcoma cell lines. Methods. Differences in adenoviral uptake in the presence and absence of dep...

  16. Hepatic Clearance Prediction of Nine Human Immunodeficiency Virus Protease Inhibitors in Rat

    OpenAIRE

    2016-01-01

    This study aimed to determine the rate-limiting step in the overall hepatic clearance of the marketed human immunodeficiency virus (HIV) protease inhibitors (PI) in rats by predicting the experimentally determined hepatic in vivo clearance of these drugs based on in vitro clearance values for uptake and/or metabolism. In vitro uptake and metabolic clearance values were determined in suspended rat hepatocytes and rat liver microsomes, respectively. In vivo hepatic clearance was determined afte...

  17. Structure-based design of ketone-containing, tripeptidyl human rhinovirus 3C protease inhibitors.

    Science.gov (United States)

    Dragovich, P S; Zhou, R; Webber, S E; Prins, T J; Kwok, A K; Okano, K; Fuhrman, S A; Zalman, L S; Maldonado, F C; Brown, E L; Meador, J W; Patick, A K; Ford, C E; Brothers, M A; Binford, S L; Matthews, D A; Ferre, R A; Worland, S T

    2000-01-03

    Tripeptide-derived molecules incorporating C-terminal ketone electrophiles were evaluated as reversible inhibitors of the cysteine-containing human rhinovirus 3C protease (3CP). An optimized example of such compounds displayed potent 3CP inhibition activity (K = 0.0045 microM) and in vitro antiviral properties (EC50=0.34 microM) when tested against HRV serotype-14.

  18. Why Do SGLT2 Inhibitors Inhibit Only 30–50% of Renal Glucose Reabsorption in Humans?

    OpenAIRE

    Liu, Jiwen; Lee, TaeWeon; DeFronzo, Ralph A.

    2012-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibition is a novel and promising treatment for diabetes under late-stage clinical development. It generally is accepted that SGLT2 mediates 90% of renal glucose reabsorption. However, SGLT2 inhibitors in clinical development inhibit only 30–50% of the filtered glucose load. Why are they unable to inhibit 90% of glucose reabsorption in humans? We will try to provide an explanation to this puzzle in this perspective analysis of the unique pharmacokineti...

  19. Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor.

    Directory of Open Access Journals (Sweden)

    Ulf Meyer-Hoffert

    Full Text Available Kallikreins-related peptidases (KLKs are serine proteases and have been implicated in the desquamation process of the skin. Their activity is tightly controlled by epidermal protease inhibitors like the lympho-epithelial Kazal-type inhibitor (LEKTI. Defects of the LEKTI-encoding gene serine protease inhibitor Kazal type (Spink5 lead to the absence of LEKTI and result in the genodermatose Netherton syndrome, which mimics the common skin disease atopic dermatitis. Since many KLKs are expressed in human skin with KLK5 being considered as one of the most important KLKs in skin desquamation, we proposed that more inhibitors are present in human skin. Herein, we purified from human stratum corneum by HPLC techniques a new KLK5-inhibiting peptide encoded by a member of the Spink family, designated as Spink9 located on chromosome 5p33.1. This peptide is highly homologous to LEKTI and was termed LEKTI-2. Recombinant LEKTI-2 inhibited KLK5 but not KLK7, 14 or other serine proteases tested including trypsin, plasmin and thrombin. Spink9 mRNA expression was detected in human skin samples and in cultured keratinocytes. LEKTI-2 immune-expression was focally localized at the stratum granulosum and stratum corneum at palmar and plantar sites in close localization to KLK5. At sites of plantar hyperkeratosis, LEKTI-2 expression was increased. We suggest that LEKTI-2 contributes to the regulation of the desquamation process in human skin by specifically inhibiting KLK5.

  20. Inhibition of histamine release from human mast cells by natural chymase inhibitors

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Hua XIE; Xiao-jun ZHANG; Xian-jie WANG

    2004-01-01

    AIM: To investigate the ability of natural chymase inhibitors to modulate histamine release from human mast cells.METHODS: Enzymatically dispersed cells from human lung, tonsil, and skin were challenged with anti-IgE or calcium ionophore A23187 in the absence or presence of the natural chymase inhibitors secretory leukocyte protease inhibitor (SLPI) and α1-antitrypsin, then histamine release was determined. RESULTS: IgE-dependent histamine release from lung, tonsil, and skin mast cells were inhibited by up to 70 %, 61%, and 62%, respectively following incubation with α1-antitrypsin (5000 nmol/L). SLPI 5000 nmol/L was also able to inhibit anti-IgEdependent histamine released from lung, tonsil and skin mast cells by up to approximately 72%, 67%, and 58%,respectively. While neither α1-antitrypsin nor SLPI by themselves altered histamine release from lung, tonsil and skin mast cells, they were able to inhibit calcium ionophore-induced histamine release from lung and tonsil mast cells. CONCLUSION: Both α1-antitrypsin and SLPI could potently inhibit IgE-dependent and calcium ionophoreinduced histamine release from dispersed human lung, tonsil, and skin mast cells in a concentration-dependent manner, which suggested that they were likely to play a protective role in mast cell associated diseases including allergy.

  1. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boonsri, Pornthip [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Herdendorf, Timothy J.; Miziorko, Henry M. [Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Hannongbua, Supa [Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sem, Daniel S., E-mail: daniel.sem@cuw.edu [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  2. Hereditary angioedema with normal C1-INH (HAE type III).

    Science.gov (United States)

    Riedl, Marc A

    2013-01-01

    Hereditary angioedema (HAE) with normal C1 inhibitor (C1-INH), also known as HAE type III, is a familial condition only clinically recognized within the past three decades. Similar to HAE from C1-INH deficiency (HAE types I and II), affected individuals experience unpredictable angioedema episodes of the skin, gastrointestinal tract, and airway. Unique clinical features of HAE with normal C1-INH include the predominance of affected women, frequent exacerbation by estrogen, and a prominence of angioedema that involves the face and oropharynx. The underlying pathophysiology of HAE with normal C1-INH is poorly understood, but indirect evidence points to contact pathway dysregulation with bradykinin-mediated angioedema. Currently, evaluation is complicated by a lack of confirmatory laboratory testing such that clinical criteria must often be used to make the diagnosis of HAE with normal C1-INH. Factor XII mutations have been identified in only a minority of persons affected by HAE with normal C1-INH, limiting the utility of such analysis. To date, no controlled clinical studies have examined the efficacy of therapeutic agents for HAE with normal C1-INH, although published evidence supports frequent clinical benefit with medications shown effective in HAE due to C1-INH deficiency.

  3. Cyclic Peptidyl Inhibitors against Human Peptidyl-Prolyl Isomerase Pin1

    Science.gov (United States)

    Liu, Tao; Liu, Yu; Kao, Hung-Ying; Pei, Dehua

    2010-01-01

    Peptidyl-prolyl isomerase Pin1 regulates the function and/or stability of phosphoproteins by altering the conformation of specific pSer/pThr-Pro peptide bonds. In this work, a cyclic peptide library was synthesized and screened against the catalytic domain of human Pin1. The selected inhibitors contained a consensus motif of D-pThr-Pip-Nal (where Pip is L-piperidine-2-carboxylic acid and Nal is L-2-naphthylalanine). Representative compounds were tested for binding to Pin1 by isothermal titration calorimetry and inhibition of Pin1 activity and the most potent inhibitors had KD (and KI) values in the low nanomolar range. Treatment of breast cancer cells with the inhibitors, which were rendered membrane permeable by attachment of an octaarginine sequence, inhibited cell proliferation and increased the protein levels of two previously established Pin1 substrates, PML and SMRT. Finally, a second generation of cell permeable Pin1 inhibitors was designed by replacing the noncritical residues within the cyclic peptide ring with arginine residues and shown to have anti-proliferative activity against the cancer cells. PMID:20180533

  4. Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Barinka, Cyril; Byun, Youngjoo; Dusich, Crystal L.; Banerjee, Sangeeta R.; Chen, Ying; Castanares, Mark; Kozikowski, Alan P.; Mease, Ronnie C.; Pomper, Martin G.; Lubkowski, Jacek (NCI); (JHMI); (UIC)

    2009-01-21

    Urea-based, low molecular weight ligands of glutamate carboxypeptidase II (GCPII) have demonstrated efficacy in various models of neurological disorders and can serve as imaging agents for prostate cancer. To enhance further development of such compounds, we determined X-ray structures of four complexes between human GCPII and urea-based inhibitors at high resolution. All ligands demonstrate an invariant glutarate moiety within the S1{prime} pocket of the enzyme. The ureido linkage between P1 and P1{prime} inhibitor sites interacts with the active-site Zn{sub 1}{sup 2+} ion and the side chains of Tyr552 and His553. Interactions within the S1 pocket are defined primarily by a network of hydrogen bonds between the P1 carboxylate group of the inhibitors and the side chains of Arg534, Arg536, and Asn519. Importantly, we have identified a hydrophobic pocket accessory to the S1 site that can be exploited for structure-based design of novel GCPII inhibitors with increased lipophilicity.

  5. Further biochemical characterization of an Na+ pump inhibitor purified from human urine.

    Science.gov (United States)

    Crabos, M; Grichois, M L; Guicheney, P; Wainer, I W; Cloix, J F

    1987-01-02

    An increase in endogenous Na+,K+-ATPase inhibitor(s) with digitalis-like properties has been reported in chronic renal insufficiency, in Na+-dependent experimental hypertension and in some essential hypertensive patients. The present study specifies some properties and some biochemical characteristics of a semipurified compound from human urine having digitalis-like properties. The urine-derived inhibitor (endalin) inhibits Na+,K+-ATPase activity and [3H]-ouabain binding, and cross-reacts with anti-digoxin antibodies. The inhibitory effect on ATPases of endalin is higher on Na+,K+-ATPase than on Mg2+-ATPase and Ca2+-ATPase. The mechanism of endalin action on highly purified Na+,K+-ATPase was compared to that of ouabain and was similar in that it reversibly inhibited Na+,K+-ATPase activity; it inhibited Na+,K+-ATPase non-competitively with ATP; its inhibitory effect was facilitated by Na+; K+ decreased its inhibitory effect on Na+,K+-ATPase; it competitively inhibited ouabain binding to the enzyme; its binding was maximal in the presence of Mg2+ and Pi; it decreased the Na+ pump activity in human erythrocytes; it reduced serotonin uptake by human platelets; and it was diuretic and natriuretic in rat bioassay. The endalin differed from ouabain in only three aspects: its inhibitory effect was not really specific for Na+,K+-ATPase; its binding to the enzyme was undetectable in the presence of Mg2+ and ATP; it was not kaliuretic in rat bioassay. Endalin is a reversible and partial specific inhibitor of Na+,K+-ATPase, its Na+,K+-ATPase inhibition closely resembles that of ouabain and it could be considered as one of the natriuretic hormones.

  6. Entry properties and entry inhibitors of a human H7N9 influenza virus.

    Directory of Open Access Journals (Sweden)

    Youhui Si

    Full Text Available The recently identified human infections with a novel avian influenza H7N9 virus in China raise important questions regarding possible risk to humans. However, the entry properties and tropism of this H7N9 virus were poorly understood. Moreover, neuraminidase inhibitor resistant H7N9 isolates were recently observed in two patients and correlated with poor clinical outcomes. In this study, we aimed to elucidate the entry properties of H7N9 virus, design and evaluate inhibitors for H7N9 virus entry. We optimized and developed an H7N9-pseudotyped particle system (H7N9pp that could be neutralized by anti-H7 antibodies and closely mimicked the entry process of the H7N9 virus. Avian, human and mouse-derived cultured cells showed high, moderate and low permissiveness to H7N9pp, respectively. Based on influenza virus membrane fusion mechanisms, a potent anti-H7N9 peptide (P155-185-chol corresponding to the C-terminal ectodomain of the H7N9 hemagglutinin protein was successfully identified. P155-185-chol demonstrated H7N9pp-specific inhibition of infection with IC50 of 0.19 µM. Importantly, P155-185-chol showed significant suppression of A/Anhui/1/2013 H7N9 live virus propagation in MDCK cells and additive effects with NA inhibitors Oseltamivir and Zanamivir. These findings expand our knowledge of the entry properties of the novel H7N9 viruses, and they highlight the potential for developing a new class of inhibitors targeting viral entry for use in the next pandemic.

  7. The potential role of inhibitor of differentiation-3 in human adipose tissue remodeling and metabolic health

    DEFF Research Database (Denmark)

    Svendstrup, Mathilde; Vestergaard, Henrik

    2014-01-01

    in the tissue. Regulation of angiogenesis in SAT and VAT in response to diet is therefore crucial for the metabolic outcome in obesity. Knowledge about the underlying genetic mechanisms determining metabolic health in obesity is very limited. We aimed to review the literature of the inhibitor of differentiation......-3 (ID3) gene in relation to adipose tissue and angiogenesis in humans in order to determine whether ID3 could be involved in the regulation of adipose tissue expansion and metabolic health in human obesity. We find evidence that ID3 is involved in regulatory mechanisms in adipose tissue...... literature suggest ID3 to play a potential role in the underlying regulatory mechanisms of metabolic health in human obesity. The literature is still sparse and further studies focusing on human ID3 in relation to the nature of obesity are warranted....

  8. Expression of survivin, a novel apoptosis inhibitor and cell cycle regulatory protein, in human gliomas

    Institute of Scientific and Technical Information of China (English)

    焦保华; 姚志刚; 耿少梅; 左书浩

    2004-01-01

    @@ Recently, a novel anti-apoptosis gene, named survivin,was identified as a structurally unique member of the inhibitor of apoptosis protein (lAP) family. The gene is located on chromosome 17q25. Survivin is a 16.5 kDa protein that is expressed in vivo in common human cancers, but not in normal adjacent tissue,1 during the G2/M phase of the cell cycle. Survivin expression is turned off during fetal development and not found in nonneoplastic adult human tissue, and it is turned on in most common human cancers. We investigated the expression of survivin in 50 patients with human gliomas, and determined its association with cell apoptosis and cell proliferation, and its impact on tumor progression and prognosis.

  9. Novel non-steroidal inhibitors of human 11beta-hydroxysteroid dehydrogenase type 1.

    Science.gov (United States)

    Vicker, Nigel; Su, Xiangdong; Ganeshapillai, Dharshini; Smith, Andrew; Purohit, Atul; Reed, Michael J; Potter, Barry V L

    2007-05-01

    11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) regulates glucocorticoid action at the pre-receptor stage by converting cortisone to cortisol. 11beta-HSD1 is selectively expressed in many tissues including the liver and adipose tissue where metabolic events are important. Metabolic syndrome relates to a number of metabolic abnormalities and currently has a prevalence of >20% in adult Americans. 11beta-HSD1 inhibitors are being investigated by many major pharmaceutical companies for type 2 diabetes and other abnormalities associated with metabolic syndrome. In this area of intense interest a number of structural types of 11beta-HSD1 inhibitor have been identified. It is important to have an array of structural types as the physicochemical properties of the compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here we report the discovery and synthesis of three structurally different series of novel 11beta-HSD1 inhibitors that inhibit human 11beta-HSD1 in the low micromolar range. Docking studies with 1-3 into the crystal structure of human 11beta-HSD1 reveal how the molecules may interact with the enzyme and cofactor and give further scope for structure based drug design in the optimisation of these series.

  10. Purification, enzymatic activity and inhibitor discovery for recombinant human carbonic anhydrase XIV.

    Science.gov (United States)

    Juozapaitienė, Vaida; Bartkutė, Brigita; Michailovienė, Vilma; Zakšauskas, Audrius; Baranauskienė, Lina; Satkūnė, Sandra; Matulis, Daumantas

    2016-12-20

    Human carbonic anhydrase XIV (CA XIV), a transmembrane protein, highly expressed in the central nervous system, is difficult to recombinantly express and purify in large scale for the measurements of inhibitor binding and drug design. CA XIV belongs to the family of twelve catalytically active CA isoforms in the human body. Disorders in the expression of CA XIV cause serious diseases and CA XIV has been described as a possible drug target for the treatment of epilepsy, some retinopathies, and skin tumors. In this study, the effect of different promoters, E. coli strains, and the length of recombinant CA XIV protein construct were analyzed for the production CA XIV in large scale by using affinity purification. Active site titration by inhibitors and the isothermal titration calorimery revealed over 96% purity of the protein. Enzymatic activity of the purified CA XIV was determined by following the CO2 hydration using the stopped-flow technique. Several inhibitors were discovered that exhibited selectivity towards CA XIV over other CA isoforms and could be developed as drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Structure-activity relationships of heteroaromatic esters as human rhinovirus 3C protease inhibitors.

    Science.gov (United States)

    Im, Isak; Lee, Eui Seung; Choi, Soo Jeong; Lee, Ju-Yeon; Kim, Yong-Chul

    2009-07-01

    Human rhinovirus 3C protease (HRV 3C(pro)) is known to be a promising target for development of therapeutic agents against the common cold because of the importance of the protease in viral replication as well as its expression in a large number of serotypes. To explore non-peptidic inhibitors of HRV 3C(pro), a series of novel heteroaromatic esters was synthesized and evaluated for inhibitory activity against HRV 3C(pro), to determine the structure-activity relationships. The most potent inhibitor, 7, with a 5-bromopyridinyl group, had an IC(50) value of 80nM. In addition, the binding mode of a novel analog, 19, with the 4-hydroxyquinolinone moiety, was explored by molecular docking, suggesting a new interaction in the S1 pocket.

  12. Identification of the first highly selective inhibitor of human GABA transporter GAT3

    DEFF Research Database (Denmark)

    Damgaard, Maria; Al-Khawaja, Anas; Vogensen, Stine B.;

    2015-01-01

    Screening a library of small-molecule compounds using a cell line expressing human GABA transporter 3 (hGAT3) in a [(3)H]GABA uptake assay identified isatin derivatives as a new class of hGAT3 inhibitors. A subsequent structure-activity relationship (SAR) study led to the identification of hGAT3......-yl)indoline-2,3-dione) revealed a noncompetitive mode of inhibition at hGAT3. This suggests that this compound class, which has no structural resemblance to GABA, has a binding site different from the substrate, GABA. This was supported by a molecular modeling study that suggested a unique binding...... site that matched the observed selectivity, inhibition kinetics, and SAR of the compound series. These compounds are the most potent GAT3 inhibitors reported to date that provide selectivity for GAT3 over other GABA transporter subtypes....

  13. Tariquidar Is an Inhibitor and Not a Substrate of Human and Mouse P-glycoprotein.

    Science.gov (United States)

    Weidner, Lora D; Fung, King Leung; Kannan, Pavitra; Moen, Janna K; Kumar, Jeyan S; Mulder, Jan; Innis, Robert B; Gottesman, Michael M; Hall, Matthew D

    2016-02-01

    Since its development, tariquidar (TQR; XR9576; N-[2-[[4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]carbamoyl]-4,5-dimethoxyphenyl]quinoline-3-carboxamide) has been widely regarded as one of the more potent inhibitors of P-glycoprotein (P-gp), an efflux transporter of the ATP-binding cassette (ABC) transporter family. A third-generation inhibitor, TQR exhibits high affinity for P-gp, although it is also a substrate of another ABC transporter, breast cancer resistance protein (BCRP). Recently, several studies have questioned the mechanism by which TQR interfaces with P-gp, suggesting that TQR is a substrate for P-gp instead of a noncompetitive inhibitor. We investigated TQR and its interaction with human and mouse P-gp to determine if TQR is a substrate of P-gp in vitro. To address these questions, we used multiple in vitro transporter assays, including cytotoxicity, flow cytometry, accumulation, ATPase, and transwell assays. A newly generated BCRP cell line was used as a positive control that demonstrates TQR-mediated transport. Based on our results, we conclude that TQR is a potent inhibitor of both human and mouse P-gp and shows no signs of being a substrate at the concentrations tested. These in vitro data further support our position that the in vivo uptake of [(11)C]TQR into the brain can be explained by its high-affinity binding to P-gp and by it being a substrate of BCRP, followed by amplification of the brain signal by ionic trapping in acidic lysosomes.

  14. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1.

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-11-03

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp.

  15. Further insight into the roles of the glycans attached to human blood protein C inhibitor

    DEFF Research Database (Denmark)

    Sun, Wei; Parry, Simon; Ubhayasekera, Wimal

    2010-01-01

    or absence of 6 amino acids at the amino-terminus. In this study we have verified that such heterogeneity exists in PCI purified from single individuals, and that individuals of two different ethnicities possess a similar PCI pattern, verifying that the micro-heterogeneity is conserved among humans......Protein C inhibitor (PCI) is a 57-kDa glycoprotein that exists in many tissues and secretions in human. As a member of the serpin superfamily of proteins it displays unusually broad protease specificity. PCI is implicated in the regulation of a wide range of processes, including blood coagulation......, fertilization, prevention of tumors and pathogen defence. It has been reported that PCI isolated from human blood plasma is highly heterogeneous, and that this heterogeneity is caused by differences in N-glycan structures, N-glycosylation occupancy, and the presence of two forms that differ by the presence...

  16. Inhibitors of serotonin reuptake and specific imipramine binding in human blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Brusov, O.S.; Fomenko, A.M.; Katasonov, A.B.; Lidemann, R.R.

    1985-12-01

    This paper describes a method of extraction of endogenous inhibitors of specific IMI binding and of 5-HT reuptake, from human blood plasma and the heterogeneity of these compounds is demonstrated. Specific binding was determined as the difference between binding of /sup 3/H-IMI in the absence and in the presence of 50 microM IMI. Under these conditions, specific binding amounted to 70-80% of total binding of /sup 3/H-IMI. It is shown that extract obtained from human blood contains a material which inhibits dose-dependently both 5-HT reuptake and specific binding of /sup 3/H-IMI. Gel-chromatography of extracts of human blood plasma on Biogel P-2 is also shown.

  17. Molecular docking analysis of curcumin analogues as human neutrophil elastase inhibitors

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Narayanaswamy

    2014-03-01

    Full Text Available In the present study, we aimed to dock 17 different ligands of curcumin analogues with that of human neutrophil elastase. Molecular descriptors analysis using Molinspiration online tool was carried out including investigation on human neutrophil elastase putative binding sites using Discovery Studio. The molecular physicochemical analysis revealed that all of the curcumin analogues complied well with the five rules of thumb. With regard to bioact-ivity score, compound 17 has exhibited least score towards nuclear receptor ligand (0.05 and enzyme inhibitor (0.10 compared to all other ligands. Compounds 2, 4 and 13 exhibited the maximum interaction energy (-40 kcal/mol. Interestingly, seven compounds namely 3, 11-14, 16 and 17 interacted well with Arg147 amino acid residue. The present study outcomes therefore might provide new insight in understanding these 17 curcumin analogues as potential candidates for human neutrophil elastase inhibitory agents.

  18. Virtual screening using ligand-based pharmacophores for inhibitors of human tyrosyl-DNA phospodiesterase (hTdp1)

    Science.gov (United States)

    Weidlich, Iwona E.; Dexheimer, Thomas; Marchand, Christophe; Antony, Smitha; Pommier, Yves; Nicklaus, Marc C.

    2012-01-01

    Human tyrosyl-DNA phosphodiesterase (hTdp1) inhibitors have become a major area of drug research and structure-based design since they have been shown to work synergistically with camptothecin (CPT) and selectively in cancer cells. The pharmacophore features of 14 hTdp1 inhibitors were used as a filter to screen the ChemNavigator iResearch Library of about 27 million purchasable samples. Docking of the inhibitors and hits obtained from virtual screening was performed into a structural model of hTdp1 based on a high resolution X-ray crystal structure of human Tdp1 in complex with vanadate, DNA and a human topoisomerase I (TopI)-derived peptide (PDB code: 1NOP). We present and discuss in some detail 46 compounds matching the three-dimensional arrangement of the pharmacophoric features. The presented novel chemotypes may provide new scaffolds for developing inhibitors of Tdp1. PMID:19963390

  19. Identification of the molecular basis of inhibitor selectivity between the human and streptococcal type I methionine aminopeptidases.

    Science.gov (United States)

    Arya, Tarun; Reddi, Ravikumar; Kishor, Chandan; Ganji, Roopa Jones; Bhukya, Supriya; Gumpena, Rajesh; McGowan, Sheena; Drag, Marcin; Addlagatta, Anthony

    2015-03-12

    The methionine aminopeptidase (MetAP) family is responsible for the cleavage of the initiator methionine from newly synthesized proteins. Currently, there are no small molecule inhibitors that show selectivity toward the bacterial MetAPs compared to the human enzyme. In our current study, we have screened 20 α-aminophosphonate derivatives and identified a molecule (compound 15) that selectively inhibits the S. pneumonia MetAP in low micromolar range but not the human enzyme. Further bioinformatics, biochemical, and structural analyses suggested that phenylalanine (F309) in the human enzyme and methionine (M205) in the S. pneumonia MetAP at the analogous position render them with different susceptibilities against the identified inhibitor. X-ray crystal structures of various inhibitors in complex with wild type and F309M enzyme further established the molecular basis for the inhibitor selectivity.

  20. Crystal structures of human RIP2 kinase catalytic domain complexed with ATP-competitive inhibitors: Foundations for understanding inhibitor selectivity.

    Science.gov (United States)

    Charnley, Adam K; Convery, Máire A; Lakdawala Shah, Ami; Jones, Emma; Hardwicke, Philip; Bridges, Angela; Ouellette, Michael; Totoritis, Rachel; Schwartz, Benjamin; King, Bryan W; Wisnoski, David D; Kang, James; Eidam, Patrick M; Votta, Bartholomew J; Gough, Peter J; Marquis, Robert W; Bertin, John; Casillas, Linda

    2015-11-01

    Receptor interacting protein 2 (RIP2) is an intracellular kinase and key signaling partner for the pattern recognition receptors NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins 1 and 2). As such, RIP2 represents an attractive target to probe the role of these pathways in disease. In an effort to design potent and selective inhibitors of RIP2 we established a crystallographic system and determined the structure of the RIP2 kinase domain in an apo form and also in complex with multiple inhibitors including AMP-PCP (β,γ-Methyleneadenosine 5'-triphosphate, a non-hydrolysable adenosine triphosphate mimic) and structurally diverse ATP competitive chemotypes identified via a high-throughput screening campaign. These structures represent the first set of diverse RIP2-inhibitor co-crystal structures and demonstrate that the protein possesses the ability to adopt multiple DFG-in as well as DFG-out and C-helix out conformations. These structures reveal key protein-inhibitor structural insights and serve as the foundation for establishing a robust structure-based drug design effort to identify both potent and highly selective inhibitors of RIP2 kinase.

  1. Computational characterisation of the interactions between human ST6Gal I and transition-state analogue inhibitors: insights for inhibitor design.

    Science.gov (United States)

    Montgomery, Andrew; Szabo, Rémi; Skropeta, Danielle; Yu, Haibo

    2016-05-01

    Human β-galactoside α-2,6-sialyltransferase I (hST6Gal I) catalyses the synthesis of sialylated glycoconjugates involved in cell-cell interactions. Overexpression of hST6Gal I is observed in many different types of cancers, where it promotes metastasis through altered cell surface sialylation. A wide range of sialyltransferase (ST) inhibitors have been developed based on the natural donor, cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac). Of these, analogues that are structurally similar to the transition state exhibit the highest inhibitory activity. In order to design inhibitors that are readily accessible synthetically and with favourable pharmacokinetic properties, an investigation of the replacement of the charged phosphodiester-linker, present in many ST inhibitors, with a potential neutral isostere such as a carbamate or a 1,2,3-triazole has been undertaken. To investigate this, molecular docking and molecular dynamics simulations were performed. These simulations provided an insight into the binding mode of previously reported phosphodiester-linked ST inhibitors and demonstrated that targeting the proposed sialyl acceptor site is a viable option for producing selective inhibitors. The potential for a carbamate- or triazole-linker as an isosteric replacement for the phosphodiester in transition-state analogue ST inhibitors was established using molecular docking. Molecular dynamics simulations of carbamate- and phosphodiester-linked compounds revealed that both classes exhibit consistent interactions with hST6Gal I. Overall, the results obtained from this study provide a rationale for synthetic and biological evaluation of triazole- and carbamate-linked transition-state analogue ST inhibitors as potential new antimetastatic agents.

  2. ABT-378, a Highly Potent Inhibitor of the Human Immunodeficiency Virus Protease

    Science.gov (United States)

    Sham, Hing L.; Kempf, Dale J.; Molla, Akhteruzammen; Marsh, Kennan C.; Kumar, Gondi N.; Chen, Chih-Ming; Kati, Warren; Stewart, Kent; Lal, Ritu; Hsu, Ann; Betebenner, David; Korneyeva, Marina; Vasavanonda, Sudthida; McDonald, Edith; Saldivar, Ayda; Wideburg, Norm; Chen, Xiaoqi; Niu, Ping; Park, Chang; Jayanti, Venkata; Grabowski, Brian; Granneman, G. Richard; Sun, Eugene; Japour, Anthony J.; Leonard, John M.; Plattner, Jacob J.; Norbeck, Daniel W.

    1998-01-01

    The valine at position 82 (Val 82) in the active site of the human immunodeficiency virus (HIV) protease mutates in response to therapy with the protease inhibitor ritonavir. By using the X-ray crystal structure of the complex of HIV protease and ritonavir, the potent protease inhibitor ABT-378, which has a diminished interaction with Val 82, was designed. ABT-378 potently inhibited wild-type and mutant HIV protease (Ki = 1.3 to 3.6 pM), blocked the replication of laboratory and clinical strains of HIV type 1 (50% effective concentration [EC50], 0.006 to 0.017 μM), and maintained high potency against mutant HIV selected by ritonavir in vivo (EC50, ≤0.06 μM). The metabolism of ABT-378 was strongly inhibited by ritonavir in vitro. Consequently, following concomitant oral administration of ABT-378 and ritonavir, the concentrations of ABT-378 in rat, dog, and monkey plasma exceeded the in vitro antiviral EC50 in the presence of human serum by >50-fold after 8 h. In healthy human volunteers, coadministration of a single 400-mg dose of ABT-378 with 50 mg of ritonavir enhanced the area under the concentration curve of ABT-378 in plasma by 77-fold over that observed after dosing with ABT-378 alone, and mean concentrations of ABT-378 exceeded the EC50 for >24 h. These results demonstrate the potential utility of ABT-378 as a therapeutic intervention against AIDS. PMID:9835517

  3. Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT).

    Science.gov (United States)

    Carrillo, Angela K; Guiguemde, W Armand; Guy, R Kiplin

    2015-08-15

    Two of the histone deacetylases, TbDAC1 and TbDAC3, have been reported to be essential genes in trypanosomes. Therefore, we tested the activity of a panel of human histone deacetylase inhibitors (HDACi) for their ability to block proliferation of Trypanosoma brucei brucei. Among the HDACi's, the hydroxamic acid derivatives panobinostat and belinostat exhibited potency that appeared to make them viable candidates for development due to their reported pharmacokinetic characteristics. However, cellular pharmacodynamic analysis demonstrated that these drugs were unable to kill cultured parasites at exposures seen in patients at their tolerated doses and additionally failed to show any synergistic effects in combination with pentamidine, suramin, melarsoprol, or nifurtimox. Analysis of the potency of the entire HDACi panel revealed no correlations between potency against any human HDAC isoform and inhibition of T. brucei proliferation, suggesting that the trypanosome histone deacetylases possess a unique specificity. These studies confirmed that HDAC inhibitors have potential as leads against human African trypanosomiasis but that none of the current clinical candidates can be directly repurposed. Therefore, development of HDACi's with appropriate specificity and potency may be a viable route to a new class of anti-trypanosomal drugs.

  4. Mapping the interactions of dengue virus NS1 protein with human liver proteins using a yeast two-hybrid system: identification of C1q as an interacting partner.

    Directory of Open Access Journals (Sweden)

    Emiliana M Silva

    Full Text Available Dengue constitutes a global health concern. The clinical manifestation of this disease varies from mild febrile illness to severe hemorrhage and/or fatal hypovolemic shock. Flavivirus nonstructural protein 1 (NS1 is a secreted glycoprotein that is displayed on the surface of infected cells but is absent in viral particles. NS1 accumulates at high levels in the plasma of dengue virus (DENV-infected patients, and previous reports highlight its involvement in immune evasion, dengue severity, liver dysfunction and pathogenesis. In the present study, we performed a yeast two-hybrid screen to search for DENV2 NS1-interacting partners using a human liver cDNA library. We identified fifty genes, including human complement component 1 (C1q, which was confirmed by coimmunoprecipitation, ELISA and immunofluorescence assays, revealing for the first time the direct binding of this protein to NS1. Furthermore, the majority of the identified genes encode proteins that are secreted into the plasma of patients, and most of these proteins are classified as acute-phase proteins (APPs, such as plasminogen, haptoglobin, hemopexin, α-2-HS-glycoprotein, retinol binding protein 4, transferrin, and C4. The results presented here confirm the direct interaction of DENV NS1 with a key protein of the complement system and suggest a role for this complement protein in the pathogenesis of DENV infection.

  5. A new synthetic matrix metalloproteinase inhibitor reduces human mesenchymal stem cell adipogenesis

    Science.gov (United States)

    Bosco, Dale B.; Roycik, Mark D.; Jin, Yonghao; Schwartz, Martin A.; Lively, Ty J.; Zorio, Diego A. R.

    2017-01-01

    Development of adipose tissue requires the differentiation of less specialized cells, such as human mesenchymal stem cells (hMSCs), into adipocytes. Since matrix metalloproteinases (MMPs) play critical roles in the cell differentiation process, we conducted investigations to determine if a novel mercaptosulfonamide-based MMP inhibitor (MMPI), YHJ-7-52, could affect hMSC adipogenic differentiation and lipid accumulation. Enzyme inhibition assays, adipogenic differentiation experiments, and quantitative PCR methods were employed to characterize this inhibitor and determine its effect upon adipogenesis. YHJ-7-52 reduced lipid accumulation in differentiated cells by comparable amounts as a potent hydroxamate MMPI, GM6001. However, YHJ-7-82, a non-inhibitory structural analog of YHJ-7-52, in which the zinc-binding thiol group is replaced by a hydroxyl group, had no effect on adipogenesis. The two MMPIs (YHJ-7-52 and GM6001) were also as effective in reducing lipid accumulation in differentiated cells as T0070907, an antagonist of peroxisome-proliferator activated receptor gamma (PPAR-gamma), at a similar concentration. PPAR-gamma is a typical adipogenic marker and a key regulatory protein for the transition of preadiopocyte to adipocyte. Moreover, MMP inhibition was able to suppress lipid accumulation in cells co-treated with Troglitazone, a PPAR-gamma agonist. Our results indicate that MMP inhibitors may be used as molecular tools for adipogenesis and obesity treatment research. PMID:28234995

  6. Structural characterization of human heme oxygenase-1 in complex with azole-based inhibitors.

    Science.gov (United States)

    Rahman, Mona N; Vlahakis, Jason Z; Roman, Gheorghe; Vukomanovic, Dragic; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2010-03-01

    The development of inhibitors specific for heme oxygenases (HO) aims to provide powerful tools in understanding the HO system. Based on the lead structure (2S, 4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[((4-aminophenyl)thio)methyl]-1,3-dioxolane (azalanstat, QC-1) we have synthesized structural modifications to develop novel and selective HO inhibitors. The structural study of human HO-1 (hHO-1) in complex with a select group of the inhibitors was initiated using X-ray crystallographic techniques. Comparison of the structures of four such compounds each in complex with hHO-1 revealed a common binding mode, despite having different structural fragments. The compounds bind to the distal side of heme through an azole "anchor" which coordinates with the heme iron. An expansion of the distal pocket, mainly due to distal helix flexibility, allows accommodation of the compounds without displacing heme or the critical Asp140 residue. Rather, binding displaces a catalytically critical water molecule and disrupts an ordered hydrogen-bond network involving Asp140. The presence of a triazole "anchor" may provide further stability via a hydrogen bond with the protein. A hydrophobic pocket acts to stabilize the region occupied by the phenyl or adamantanyl moieties of these compounds. Further, a secondary hydrophobic pocket is formed via "induced fit" to accommodate bulky substituents at the 4-position of the dioxolane ring. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Optimization of N-benzoylindazole Derivatives as Inhibitors of Human Neutrophil Elastase

    Science.gov (United States)

    Crocetti, Letizia; Schepetkin, Igor A.; Cilibrizzi, Agostino; Graziano, Alessia; Vergelli, Claudia; Giomi, Donatella; Khlebnikov, Andrei I.; Quinn, Mark T.; Giovannoni, Maria Paola

    2013-01-01

    Human neutrophil elastase (HNE) is an important therapeutic target for treatment of pulmonary diseases. Previously, we identified novel N-benzoylindazole derivatives as potent, competitive, and pseudoirreversible HNE inhibitors. Here, we report further development of these inhibitors with improved potency, protease selectivity, and stability compared to our previous leads. Introduction of a variety of substituents at position 5 of the indazole resulted in the potent inhibitor 20f (IC50~10 nM), and modifications at position 3 resulted the most potent compound in this series, the 3-CN derivative 5b (IC50= 7 nM); both derivatives demonstrated good stability and specificity for HNE versus other serine proteases. Molecular docking of selected N-benzoylindazoles into the HNE binding domain suggested that inhibitory activity depended on geometry of the ligand-enzyme complexes. Indeed, the ability of a ligand to form a Michaelis complex and favorable conditions for proton transfer between Hys57, Asp102 and Ser195 both affected activity. PMID:23844670

  8. Targeting Cyclin-Dependent Kinases in Human Cancers: From Small Molecules to Peptide Inhibitors

    Directory of Open Access Journals (Sweden)

    Marion Peyressatre

    2015-01-01

    Full Text Available Cyclin-dependent kinases (CDK/Cyclins form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.

  9. Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1.

    Science.gov (United States)

    Zou, Li-Wei; Dou, Tong-Yi; Wang, Ping; Lei, Wei; Weng, Zi-Miao; Hou, Jie; Wang, Dan-Dan; Fan, Yi-Ming; Zhang, Wei-Dong; Ge, Guang-Bo; Yang, Ling

    2017-01-01

    Human carboxylesterase 1 (hCE1), one of the most important serine hydrolases distributed in liver and adipocytes, plays key roles in endobiotic homeostasis and xenobiotic metabolism. This study aimed to find potent and selective inhibitors against hCE1 from phytochemicals and their derivatives. To this end, a series of natural triterpenoids were collected and their inhibitory effects against human carboxylesterases (hCEs) were assayed using D-Luciferin methyl ester (DME) and 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB) as specific optical substrate for hCE1, and hCE2, respectively. Following screening of a series of natural triterpenoids, oleanolic acid (OA), and ursolic acid (UA) were found with strong inhibitory effects on hCE1 and relative high selectivity over hCE2. In order to get the highly selective and potent inhibitors of hCE1, a series of OA and UA derivatives were synthesized from OA and UA by chemical modifications including oxidation, reduction, esterification, and amidation. The inhibitory effects of these derivatives on hCEs were assayed and the structure-activity relationships of tested triterpenoids as hCE1 inhibitors were carefully investigated. The results demonstrated that the carbonyl group at the C-28 site is essential for hCE1 inhibition, the modifications of OA or UA at this site including esters, amides and alcohols are unbeneficial for hCE1 inhibition. In contrast, the structural modifications on OA and UA at other sites, such as converting the C-3 hydroxy group to 3-O-β-carboxypropionyl (compounds 20 and 22), led to a dramatically increase of the inhibitory effects against hCE1 and very high selectivity over hCE2. 3D-QSAR analysis of all tested triterpenoids including OA and UA derivatives provide new insights into the fine relationships linking between the inhibitory effects on hCE1 and the steric-electrostatic properties of triterpenoids. Furthermore, both inhibition kinetic analyses and docking simulations

  10. Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1

    Directory of Open Access Journals (Sweden)

    Li-Wei Zou

    2017-06-01

    Full Text Available Human carboxylesterase 1 (hCE1, one of the most important serine hydrolases distributed in liver and adipocytes, plays key roles in endobiotic homeostasis and xenobiotic metabolism. This study aimed to find potent and selective inhibitors against hCE1 from phytochemicals and their derivatives. To this end, a series of natural triterpenoids were collected and their inhibitory effects against human carboxylesterases (hCEs were assayed using D-Luciferin methyl ester (DME and 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB as specific optical substrate for hCE1, and hCE2, respectively. Following screening of a series of natural triterpenoids, oleanolic acid (OA, and ursolic acid (UA were found with strong inhibitory effects on hCE1 and relative high selectivity over hCE2. In order to get the highly selective and potent inhibitors of hCE1, a series of OA and UA derivatives were synthesized from OA and UA by chemical modifications including oxidation, reduction, esterification, and amidation. The inhibitory effects of these derivatives on hCEs were assayed and the structure-activity relationships of tested triterpenoids as hCE1 inhibitors were carefully investigated. The results demonstrated that the carbonyl group at the C-28 site is essential for hCE1 inhibition, the modifications of OA or UA at this site including esters, amides and alcohols are unbeneficial for hCE1 inhibition. In contrast, the structural modifications on OA and UA at other sites, such as converting the C-3 hydroxy group to 3-O-β-carboxypropionyl (compounds 20 and 22, led to a dramatically increase of the inhibitory effects against hCE1 and very high selectivity over hCE2. 3D-QSAR analysis of all tested triterpenoids including OA and UA derivatives provide new insights into the fine relationships linking between the inhibitory effects on hCE1 and the steric-electrostatic properties of triterpenoids. Furthermore, both inhibition kinetic analyses and docking

  11. SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV.

    Science.gov (United States)

    Greco, George E; Matsumoto, Yoshihiro; Brooks, Rhys C; Lu, Zhengfei; Lieber, Michael R; Tomkinson, Alan E

    2016-07-01

    DNA ligases are attractive therapeutics because of their involvement in completing the repair of almost all types of DNA damage. A series of DNA ligase inhibitors with differing selectivity for the three human DNA ligases were identified using a structure-based approach with one of these inhibitors being used to inhibit abnormal DNA ligase IIIα-dependent repair of DNA double-strand breaks (DSB)s in breast cancer, neuroblastoma and leukemia cell lines. Raghavan and colleagues reported the characterization of a derivative of one of the previously identified DNA ligase inhibitors, which they called SCR7 (designated SCR7-R in our experiments using SCR7). SCR7 appeared to show increased selectivity for DNA ligase IV, inhibit the repair of DSBs by the DNA ligase IV-dependent non-homologous end-joining (NHEJ) pathway, reduce tumor growth, and increase the efficacy of DSB-inducing therapeutic modalities in mouse xenografts. In attempting to synthesize SCR7, we encountered problems with the synthesis procedures and discovered discrepancies in its reported structure. We determined the structure of a sample of SCR7 and a related compound, SCR7-G, that is the major product generated by the published synthesis procedure for SCR7. We also found that SCR7-G has the same structure as the compound (SCR7-X) available from a commercial vendor (XcessBio). The various SCR7 preparations had similar activity in DNA ligation assay assays, exhibiting greater activity against DNA ligases I and III than DNA ligase IV. Furthermore, SCR7-R failed to inhibit DNA ligase IV-dependent V(D)J recombination in a cell-based assay. Based on our results, we conclude that SCR7 and the SCR7 derivatives are neither selective nor potent inhibitors of DNA ligase IV.

  12. Diazepam-binding inhibitor. A brain neuropeptide present in human spinal fluid: studies in depression, schizophrenia, and Alzheimer's disease.

    Science.gov (United States)

    Barbaccia, M L; Costa, E; Ferrero, P; Guidotti, A; Roy, A; Sunderland, T; Pickar, D; Paul, S M; Goodwin, F K

    1986-12-01

    Diazepam-binding inhibitor is a novel peptide purified to homogeneity from rat and human brain. Diazepam-binding inhibitor is present, though not exclusively, in gamma-aminobutyric acid (GABA)-containing neurons where it is believed to inhibit GABAergic neurotransmission mediated by GABA by binding to the benzodiazepine-GABA receptor complex. Since an impairment of central GABAergic tone has been postulated to be associated with a number of neuropsychiatric disorders, we measured human diazepam-binding inhibitor immunoreactivity in the cerebrospinal fluid (CSF) of patients suffering from endogenous depression, schizophrenia, and dementia of the Alzheimer's type. Patients with major depression had significantly higher concentrations of human diazepam-binding inhibitor immunoreactivity in CSF when compared with age- and sex-matched normal volunteers, while no difference in CSF diazepam-binding inhibitor immunoreactivity was found in schizophrenics or patients with dementia of the Alzheimer's type when compared with controls. The possibility is discussed that the increased CSF human diazepam-binding inhibitor immunoreactivity observed in depressed patients may represent a functional disinhibition of GABAergic neurotransmission associated with depression.

  13. Direct interaction between CD91 and C1q.

    Science.gov (United States)

    Duus, Karen; Hansen, Erik W; Tacnet, Pascale; Frachet, Philippe; Arlaud, Gerard J; Thielens, Nicole M; Houen, Gunnar

    2010-09-01

    C1q-mediated removal of immune complexes and apoptotic cells plays an important role in tissue homeostasis and the prevention of autoimmune conditions. It has been suggested that C1q mediates phagocytosis of apoptotic cells through a receptor complex assembled from CD91 (alpha-2- macroglobulin receptor, or low-density lipoprotein receptor-related protein) and calreticulin, with CD91 being the transmembrane part and calreticulin acting as the C1q-binding molecule. In the present study, we observe that C1q binds cells from a CD91 expressing monocytic cell line as well as monocytes from human blood. C1q binding to monocytes was shown to be correlated with CD91 expression and could be inhibited by the CD91 chaperone, receptor-associated protein. We also report data showing a direct interaction between CD91 and C1q. The interaction was investigated using various protein interaction assays. A direct interaction between purified C1q and CD91 was observed both by ELISA and a surface plasmon resonance assay, with either C1q or CD91 immobilized. The interaction showed characteristics of specificity because it was time-dependent, saturable and could be inhibited by known ligands of both CD91 and C1q. The results obtained show for the first time that CD91 recognizes C1q directly. On the basis of these findings, we propose that CD91 is a receptor for C1q and that this multifunctional scavenger receptor uses a subset of its ligand-binding sites for clearance of C1q and C1q bound material.

  14. Design of an interface peptide as new inhibitor of human glucose-6-phosphate dehydrogenase.

    Science.gov (United States)

    Obiol-Pardo, Cristian; Alcarraz-Vizán, Gema; Díaz-Moralli, Santiago; Cascante, Marta; Rubio-Martinez, Jaime

    2014-04-01

    Glucose-6-phosphate dehydrogenase (G6PDH) is an essential enzyme involved in the first reaction of the oxidative branch of the pentose phosphate pathway (PPP). Recently, G6PDH was suggested as a novel target protein for cancer therapy as one of the final products of the PPP, ribose-5-phosphate, is necessary for nucleic acid synthesis and tumor progression. After analyzing the protein-protein interface of the crystal structure of human G6PDH by means of molecular dynamics simulations, we designed six interface peptides based on the natural sequence of the protein. The three most promising peptides, as predicted by binding free energy calculations, were synthesized and one of them was confirmed as a novel inhibitor of human G6PDH in experimental assays. Together, the active peptide found and its suggested binding mode proposes a new strategy for inhibiting this enzyme and should aid the further design of novel, potent and non-peptidic G6PDH inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Human Kunitz-type protease inhibitor engineered for enhanced matrix retention extends longevity of fibrin biomaterials.

    Science.gov (United States)

    Briquez, Priscilla S; Lorentz, Kristen M; Larsson, Hans M; Frey, Peter; Hubbell, Jeffrey A

    2017-08-01

    Aprotinin is a broad-spectrum serine protease inhibitor used in the clinic as an anti-fibrinolytic agent in fibrin-based tissue sealants. However, upon re-exposure, some patients suffer from hypersensitivity immune reactions likely related to the bovine origin of aprotinin. Here, we aimed to develop a human-derived substitute to aprotinin. Based on sequence homology analyses, we identified the Kunitz-type protease inhibitor (KPI) domain of human amyloid-β A4 precursor protein as being a potential candidate. While KPI has a lower intrinsic anti-fibrinolytic activity than aprotinin, we reasoned that its efficacy is additionally limited by its fast release from fibrin material, just as aprotinin's is. Thus, we engineered KPI variants for controlled retention in fibrin biomaterials, using either covalent binding through incorporation of a substrate for the coagulation transglutaminase Factor XIIIa or through engineering of extracellular matrix protein super-affinity domains for sequestration into fibrin. We showed that both engineered KPI variants significantly slowed plasmin-mediated fibrinolysis in vitro, outperforming aprotinin. In vivo, our best engineered KPI variant (incorporating the transglutaminase substrate) extended fibrin matrix longevity by 50%, at a dose at which aprotinin did not show efficacy, thus qualifying it as a competitive substitute of aprotinin in fibrin sealants. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Discovery of novel inhibitors of human 11beta-hydroxysteroid dehydrogenase type 1.

    Science.gov (United States)

    Su, Xiangdong; Vicker, Nigel; Trusselle, Melanie; Halem, Heather; Culler, Michael D; Potter, Barry V L

    2009-03-25

    11beta-Hydroxysteroid dehydrogenases (11beta-HSDs) are key enzymes regulating the pre-receptor metabolism of glucocorticoid hormones, which play essential roles in various vital physiological processes. The modulation of 11beta-HSD type 1 activity with selective inhibitors has beneficial effects on various conditions including insulin resistance, dyslipidemia and obesity. Therefore, inhibition of tissue-specific glucocorticoid action by regulating 11beta-HSD1 constitutes a promising treatment for metabolic and cardiovascular diseases. Here we report the discovery of a series of novel adamantyl carboxamides as selective inhibitors of human 11beta-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Compounds 9 and 14 show inhibitory activity against 11beta-HSD1 with IC(50) values in 100nM range. Docking studies with the potent compound 8 into the crystal structure of human 11beta-HSD1 (1XU9) reveals how the molecule may interact with the enzyme and cofactor.

  17. SC-535, a Novel Oral Multikinase Inhibitor, Showed Potent Antitumor Activity in Human Melanoma Models

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2013-07-01

    Full Text Available Background: Melanoma is considered as one of the most aggressive and deadliest cancers and current targeted therapies of melanoma often suffer limited efficacy or drug resistance. Discovery of novel multikinase inhibitors as anti-melanoma drug candidates is still needed. Methods: In this investigation, we assessed the in vitro and in vivo anti-melanoma activities of SC-535, which is a novel small molecule multikinase inhibitor discovered by us recently. We analyzed inhibitory effects of SC-535 on various melanoma cell lines and human umbilical vascular endothelial cells (HUVEC in vitro. Tumor xenografts in athymic mice were used to examine the in vivo activity of SC-535. Results: SC-535 could efficiently inhibit vascular endothelial growth factor receptor (VEGFR 1/2/3, B-RAF, and C-RAF kinases. It showed significant antiangiogenic potencies both in vitro and in vivo and considerable anti-proliferative ability against several melanoma cell lines. Oral administration of SC-535 resulted in dose-dependent suppression of tumor growth in WM2664 and C32 xenograft mouse models. Studies of mechanisms of action indicated that SC-535 suppressed the tumor angiogenesis and induced G2/M phase cell cycle arrest in human melanoma cells. SC-535 possesses favorable pharmacokinetic properties. Conclusion: All of these results support SC-535 as a potential candidate for clinical studies in patients with melanoma.

  18. Anti-hepatitis C virus potency of a new autophagy inhibitor using human liver slices model

    Institute of Scientific and Technical Information of China (English)

    Sylvie; Lagaye; Sonia; Brun; Jesintha; Gaston; Hong; Shen; Ruzena; Stranska; Claire; Camus; Clarisse; Dubray; Géraldine; Rousseau; Pierre-Philippe; Massault; Jer?me; Courcambeck; Firas; Bassisi; Philippe; Halfon; Stanislas; Pol

    2016-01-01

    AIM: To evaluate the antiviral potency of a new antihepatitis C virus(HCV) antiviral agent targeting the cellular autophagy machinery. METHODS: Non-infected liver slices, obtained from human liver resection and cut in 350 μm-thick slices(2.7 × 106 cells per slice) were infected with cell culture-grown HCV Con1b/C3 supernatant(multiplicity of infection = 0.1) cultivated for up to ten days. HCV infected slices were treated at day 4 post-infection with GNS-396 for 6 d at different concentrations. HCV replication was evaluated by strand-specific real-time quantitative reverse transcription- polymerase chain reaction. The infectivity titers of supernatants were evaluated by foci formation upon inoculation into naive Huh-7.5.1 cells. The cytotoxic effect of the drugs was evaluated by lactate dehydrogenase leakage assays. RESULTS: The antiviral efficacy of a new antiviral drug, GNS-396, an autophagy inhibitor, on HCV infection of adult human liver slices was evidenced in a dosedependent manner. At day 6 post-treatment, GNS-396 EC50 was 158 nmol/L without cytotoxic effect(compared to hydroxychloroquine EC50 = 1.17 μmol/L).CONCLUSION: Our results demonstrated that our ex vivo model is efficient for evaluation the potency of autophagy inhibitors, in particular a new quinoline derivative GNS-396 as antiviral could inhibit HCV infection in a dosedependent manner without cytotoxic effect.

  19. Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells.

    Science.gov (United States)

    Martinelli, Erika; Troiani, Teresa; D'Aiuto, Elena; Morgillo, Floriana; Vitagliano, Donata; Capasso, Anna; Costantino, Sarah; Ciuffreda, Loreta Pia; Merolla, Francesco; Vecchione, Loredana; De Vriendt, Veerle; Tejpar, Sabine; Nappi, Anna; Sforza, Vincenzo; Martini, Giulia; Berrino, Liberato; De Palma, Raffaele; Ciardiello, Fortunato

    2013-11-01

    The RAS/RAF/MEK/MAPK and the PTEN/PI3K/AKT/mTOR pathways are key regulators of proliferation and survival in human cancer cells. Selective inhibitors of different transducer molecules in these pathways have been developed as molecular targeted anti-cancer therapies. The in vitro and in vivo anti-tumor activity of pimasertib, a selective MEK 1/2 inhibitor, alone or in combination with a PI3K inhibitor (PI3Ki), a mTOR inhibitor (everolimus), or with multi-targeted kinase inhibitors (sorafenib and regorafenib), that block also BRAF and CRAF, were tested in a panel of eight human lung and colon cancer cell lines. Following pimasertib treatment, cancer cell lines were classified as pimasertib-sensitive (IC50 for cell growth inhibition of 0.001 µM) or pimasertib-resistant. Evaluation of basal gene expression profiles by microarrays identified several genes that were up-regulated in pimasertib-resistant cancer cells and that were involved in both RAS/RAF/MEK/MAPK and PTEN/PI3K/AKT/mTOR pathways. Therefore, a series of combination experiments with pimasertib and either PI3Ki, everolimus, sorafenib or regorafenib were conducted, demonstrating a synergistic effect in cell growth inhibition and induction of apoptosis with sustained blockade in MAPK- and AKT-dependent signaling pathways in pimasertib-resistant human colon carcinoma (HCT15) and lung adenocarcinoma (H1975) cells. Finally, in nude mice bearing established HCT15 and H1975 subcutaneous tumor xenografts, the combined treatment with pimasertib and BEZ235 (a dual PI3K/mTOR inhibitor) or with sorafenib caused significant tumor growth delays and increase in mice survival as compared to single agent treatment. These results suggest that dual blockade of MAPK and PI3K pathways could overcome intrinsic resistance to MEK inhibition.

  20. Novel C-1 Substituted Cocaine Analogs Unlike Cocaine or Benztropine

    OpenAIRE

    Reith, Maarten E. A.; Ali, Solav; Hashim, Audrey; Sheikh, Imran S.; Theddu, Naresh; Gaddiraju, Narendra V.; Mehrotra, Suneet; Schmitt, Kyle C.; Murray, Thomas F.; Sershen, Henry; Unterwald, Ellen M.; Davis, Franklin A.

    2012-01-01

    Despite a wealth of information on cocaine-like compounds, there is no information on cocaine analogs with substitutions at C-1. Here, we report on (R)-(−)-cocaine analogs with various C-1 substituents: methyl (2), ethyl (3), n-propyl (4), n-pentyl (5), and phenyl (6). Analog 2 was equipotent to cocaine as an inhibitor of the dopamine transporter (DAT), whereas 3 and 6 were 3- and 10-fold more potent, respectively. None of the analogs, however, stimulated mouse locomotor activity, in contrast...

  1. Phosphodiesterase 5 inhibitors augment UT-15C-stimulated ATP release from erythrocytes of humans with pulmonary arterial hypertension.

    Science.gov (United States)

    Bowles, Elizabeth A; Moody, Gina N; Yeragunta, Yashaswini; Stephenson, Alan H; Ellsworth, Mary L; Sprague, Randy S

    2015-01-01

    Both prostacyclin analogs and phosphodiesterase 5 (PDE5) inhibitors are effective treatments for pulmonary arterial hypertension (PAH). In addition to direct effects on vascular smooth muscle, prostacyclin analogs increase cAMP levels and ATP release from healthy human erythrocytes. We hypothesized that UT-15C, an orally available form of the prostacyclin analog, treprostinil, would stimulate ATP release from erythrocytes of humans with PAH and that this release would be augmented by PDE5 inhibitors. Erythrocytes were isolated and the effect of UT-15C on cAMP levels and ATP release were measured in the presence and absence of the PDE5 inhibitors, zaprinast or tadalafil. In addition, the ability of a soluble guanylyl cyclase inhibitor to prevent the effects of tadalafil was determined. Erythrocytes of healthy humans and humans with PAH respond to UT-15C with increases in cAMP levels and ATP release. In both groups, UT-15C-induced ATP release was potentiated by zaprinast and tadalafil. The effect of tadalafil was prevented by pre-treatment with an inhibitor of soluble guanylyl cyclase in healthy human erythrocytes. Importantly, UT-15C-induced ATP release was greater in PAH erythrocytes than in healthy human erythrocytes in both the presence and the absence of PDE5 inhibitors. The finding that prostacyclin analogs and PDE5 inhibitors work synergistically to enhance release of the potent vasodilator ATP from PAH erythrocytes provides a new rationale for the co-administration of these drugs in this disease. Moreover, these results suggest that the erythrocyte is a novel target for future drug development for the treatment of PAH.

  2. TLSC702, a Novel Inhibitor of Human Glyoxalase I, Induces Apoptosis in Tumor Cells.

    Science.gov (United States)

    Takasawa, Ryoko; Shimada, Nami; Uchiro, Hiromi; Takahashi, Satoshi; Yoshimori, Atsushi; Tanuma, Sei-Ichi

    2016-01-01

    Human glyoxalase I (hGLO I) is a rate-limiting enzyme in the pathway for detoxification of apoptosis-inducible methylglyoxal (MG), which is the side product of tumor-specific aerobic glycolysis. GLO I has been reported to be overexpressed in various types of cancer cells, and has been expected as an attractive target for the development of new anticancer drugs. We previously discovered a novel inhibitor of hGLO I, named TLSC702, by our in silico screening method. Here, we show that TLSC702 inhibits the proliferation of human leukemia HL-60 cells and induces apoptosis in a dose-dependent manner. In addition, TLSC702 more significantly inhibits the proliferation of human lung cancer NCI-H522 cells, which highly express GLO I, than that of GLO I lower-expressing human lung cancer NCI-H460 cells. Furthermore, this antiproliferative effect of TLSC702 on NCI-H522 cells is in a dose- and time-dependent manner. These results suggest that TLSC702 can induce apoptosis in tumor cells by GLO I inhibition, which lead to accumulation of MG. Taken together, TLSC702 could become a unique seed compound for the generation of novel chemotherapeutic drugs targeting GLO I-dependent human tumors.

  3. Synthetic lethal targeting of DNA double strand break repair deficient cells by human apurinic/apyrimidinic endonuclease (APE1) inhibitors

    Science.gov (United States)

    Sultana, Rebeka; McNeill, Daniel R.; Abbotts, Rachel; Mohammed, Mohammed Z.; Zdzienicka, Małgorzata Z.; Qutob, Haitham; Seedhouse, Claire; Laughton, Charles A.; Fischer, Peter M.; Patel, Poulam M.; Wilson, David M.; Madhusudan, Srinivasan

    2013-01-01

    An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In the current study we have investigated the ability of APE1 inhibitors to induce synthetic lethality in a panel of DNA double strand break (DSB) repair deficient and proficient cells; a) Chinese hamster (CH) cells: BRCA2 deficient (V-C8), ATM deficient (V-E5), wild type (V79) and BRCA2 revertant (V-C8(Rev1)). b) Human cancer cells: BRCA1 deficient (MDA-MB-436), BRCA1 proficient (MCF-7), BRCA2 deficient (CAPAN-1 and HeLa SilenciX cells), BRCA2 proficient (PANC1 and control SilenciX cells). We also tested synthetic lethality (SL) in CH ovary cells expressing a dominant–negative form of APE1 (E8 cells) using ATM inhibitors and DNA-PKcs inhibitors (DSB inhibitors). APE1 inhibitors are synthetically lethal in BRCA and ATM deficient cells. APE1 inhibition resulted in accumulation of DNA DSBs and G2/M cell cycle arrest. Synthetic lethality was also demonstrated in CH cells expressing a dominant–negative form of APE1 treated with ATM or DNA-PKcs inhibitors. We conclude that APE1 is a promising synthetic lethality target in cancer. PMID:22377908

  4. Low levels of Bax inhibitor-1 gene expression increase tunicamycin-induced apoptosis in human neuroblastoma SY5Y cells

    Institute of Scientific and Technical Information of China (English)

    Dan Wu; Peirong Wang; Shiyao Wang

    2012-01-01

    A human SH-SY5Y neuroblastoma cell line with a low level of Bax inhibitor-1 expression was established by lentivirus-mediated RNA interference and fluorescence-activated cell sorting. In control SH-SY5Y cells, tunicamycin treatment induced endoplasmic reticulum stress-mediated apoptosis; however, after Bax inhibitor-1 gene knockdown, cell survival rates were significantly decreased and the degree of apoptosis was significantly increased following tunicamycin treatment. In addition, chromatin condensation and apparent apoptotic phenomena, such as marginalization and cytoplasmic vesicles, were observed. Our findings indicate that Bax inhibitor-1 can delay apoptosis induced by endoplasmic reticulum stress.

  5. Synthetic lethal targeting of DNA double strand break repair deficient cells by human apurinic/apyrimidinic endonuclease (APE1) inhibitors

    OpenAIRE

    Sultana, Rebeka; McNeill, Daniel R.; Abbotts, Rachel; Mohammed, Mohammed Z.; Zdzienicka, Małgorzata Z.; Qutob, Haitham; Seedhouse, Claire; Charles A. Laughton; Fischer, Peter M.; Patel, Poulam M.; Wilson, David M.; Madhusudan, Srinivasan

    2012-01-01

    An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In the current study we have investigated the ability of APE1 inhibitors to induce synthetic lethality in a panel of DNA double strand break (DSB) repair deficient and proficient cells; a) Chine...

  6. Computational Insights into the Inhibitory Mechanism of Human AKT1 by an Orally Active Inhibitor, MK-2206

    OpenAIRE

    Mohd Rehan; Beg, Mohd A.; Shadma Parveen; Ghazi A Damanhouri; Galila F Zaher

    2014-01-01

    The AKT signaling pathway has been identified as an important target for cancer therapy. Among small-molecule inhibitors of AKT that have shown tremendous potential in inhibiting cancer, MK-2206 is a highly potent, selective and orally active allosteric inhibitor. Promising preclinical anticancer results have led to entry of MK-2206 into Phase I/II clinical trials. Despite such importance, the exact binding mechanism and the molecular interactions of MK-2206 with human AKT are not available. ...

  7. Discovery of a novel dual fungal CYP51/human 5-lipoxygenase inhibitor: implications for anti-fungal therapy.

    Directory of Open Access Journals (Sweden)

    Eric K Hoobler

    Full Text Available We report the discovery of a novel dual inhibitor targeting fungal sterol 14α-demethylase (CYP51 or Erg11 and human 5-lipoxygenase (5-LOX with improved potency against 5-LOX due to its reduction of the iron center by its phenylenediamine core. A series of potent 5-LOX inhibitors containing a phenylenediamine core, were synthesized that exhibit nanomolar potency and >30-fold selectivity against the LOX paralogs, platelet-type 12-human lipoxygenase, reticulocyte 15-human lipoxygenase type-1, and epithelial 15-human lipoxygenase type-2, and >100-fold selectivity against ovine cyclooxygenase-1 and human cyclooxygnease-2. The phenylenediamine core was then translated into the structure of ketoconazole, a highly effective anti-fungal medication for seborrheic dermatitis, to generate a novel compound, ketaminazole. Ketaminazole was found to be a potent dual inhibitor against human 5-LOX (IC50 = 700 nM and CYP51 (IC50 = 43 nM in vitro. It was tested in whole blood and found to down-regulate LTB4 synthesis, displaying 45% inhibition at 10 µM. In addition, ketaminazole selectively inhibited yeast CYP51 relative to human CYP51 by 17-fold, which is greater selectivity than that of ketoconazole and could confer a therapeutic advantage. This novel dual anti-fungal/anti-inflammatory inhibitor could potentially have therapeutic uses against fungal infections that have an anti-inflammatory component.

  8. Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2 is altered in human breast carcinoma

    Directory of Open Access Journals (Sweden)

    Wiebe John P

    2004-06-01

    Full Text Available Abstract Background Recent evidence suggests that progesterone metabolites play important roles in regulating breast cancer. Previous studies have shown that tumorous tissues have higher 5α-reductase (5αR and lower 3α-hydroxysteroid oxidoreductase (3α-HSO and 20α-HSO activities. The resulting higher levels of 5α-reduced progesterone metabolites such as 5α-pregnane-3,20-dione (5αP in tumorous tissue promote cell proliferation and detachment, whereas the 4-pregnene metabolites, 4-pregnen-3α-ol-20-one (3αHP and 4-pregnen-20α-ol-3-one (20αDHP, more prominent in normal tissue, have the opposite (anti-cancer-like effects. The aim of this study was to determine if the differences in enzyme activities between tumorous and nontumorous breast tissues are associated with differences in progesterone metabolizing enzyme gene expression. Methods Semi-quantitative RT-PCR was used to compare relative expression (as a ratio of 18S rRNA of 5αR type 1 (SRD5A1, 5αR type 2 (SRD5A2, 3α-HSO type 2 (AKR1C3, 3α-HSO type 3 (AKR1C2 and 20α-HSO (AKR1C1 mRNAs in paired (tumorous and nontumorous breast tissues from 11 patients, and unpaired tumor tissues from 17 patients and normal tissues from 10 reduction mammoplasty samples. Results Expression of 5αR1 and 5αR2 in 11/11 patients was higher (mean of 4.9- and 3.5-fold, respectively; p Conclusions The study shows changes in progesterone metabolizing enzyme gene expression in human breast carcinoma. Expression of SRD5A1 (5αR1 and SRD5A2 (5αR2 is elevated, and expression of AKR1C1 (20α-HSO, AKR1C2 (3α-HSO3 and AKR1C3 (3α-HSO2 is reduced in tumorous as compared to normal breast tissue. The changes in progesterone metabolizing enzyme expression levels help to explain the increases in mitogen/metastasis inducing 5αP and decreases in mitogen/metastasis inhibiting 3αHP progesterone metabolites found in breast tumor tissues. Understanding what causes these changes in expression could help in designing

  9. Limited proteolysis by macrophage elastase inactivates human alpha 1- proteinase inhibitor

    OpenAIRE

    1980-01-01

    Inflammatory mouse peritoneal macrophages secrete a metalloproteinase that is not inhibited by alpha 1-proteinase inhibitor. This proteinase, macrophage elastase, recognizes alpha 1-proteinase inhibitor with macrophage elastase does not involve a stable proteinase-inhibitor complex and results in the proteolytic removal of a peptide of apparent molecular weight 4,000-5,000 from the inhibitor. After degradation by macrophage elastase, alpha 1-proteinase inhibitor is no longer able to inhibit h...

  10. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells.

    Directory of Open Access Journals (Sweden)

    Shuhei Ito

    Full Text Available Poly(ADP-ribose polymerases (PARPs are the first proteins involved in cellular DNA repair pathways to be targeted by specific inhibitors for clinical benefit. Tumors harboring genetic defects in homologous recombination (HR, a DNA double-strand break (DSB repair pathway, are hypersensitive to PARP inhibitors (PARPi. Early phase clinical trials with PARPi have been promising in patients with advanced BRCA1 or BRCA2-associated breast, ovary and prostate cancer and have led to limited approval for treatment of BRCA-deficient ovary cancer. Unlike HR-defective cells, HR-proficient cells manifest very low cytotoxicity when exposed to PARPi, although they mount a DNA damage response. However, the genotoxic effects on normal human cells when agents including PARPi disturb proficient cellular repair processes have not been substantially investigated. We quantified cytogenetic alterations of human cells, including primary lymphoid cells and non-tumorigenic and tumorigenic epithelial cell lines, exposed to PARPi at clinically relevant doses by both sister chromatid exchange (SCE assays and chromosome spreading. As expected, both olaparib and veliparib effectively inhibited poly-ADP-ribosylation (PAR, and caused marked hypersensitivity in HR-deficient cells. Significant dose-dependent increases in SCEs were observed in normal and non-tumorigenic cells with minimal residual PAR activity. Clinically relevant doses of the FDA-approved olaparib led to a marked increase of SCEs (5-10-fold and chromatid aberrations (2-6-fold. Furthermore, olaparib potentiated SCE induction by cisplatin in normal human cells. Our data have important implications for therapies with regard to sustained genotoxicity to normal cells. Genomic instability arising from PARPi warrants consideration, especially if these agents will be used in people with early stage cancers, in prevention strategies or for non-oncologic indications.

  11. The histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates human astrocyte neurotoxicity induced by interferon-γ

    Directory of Open Access Journals (Sweden)

    Hashioka Sadayuki

    2012-05-01

    Full Text Available Abstract Backgrounds Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders. Methods We examined the effects of SAHA on interferon (IFN-γ-induced neurotoxicity of human astrocytes and on IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT 3 in human astrocytes. We also studied the effects of SAHA on the astrocytic production of two representative IFN-γ-inducible inflammatory molecules, namely IFN-γ-inducible T cell α chemoattractant (I-TAC and intercellular adhesion molecule-1 (ICAM-1. Results SAHA significantly attenuated the toxicity of astrocytes activated by IFN-γ towards SH-SY5Y human neuronal cells. In the IFN-γ-activated astrocytes, SAHA reduced the STAT3 phosphorylation. SAHA also inhibited the IFN-γ-induced astrocytic production of I-TAC, but not ICAM-1. These results indicate that SAHA suppresses IFN-γ-induced neurotoxicity of human astrocytes through inhibition of the STAT3 signaling pathway. Conclusion Due to its anti-neurotoxic and anti-inflammatory properties, SAHA appears to have the therapeutic or preventive potential for a wide range of neuroinflammatory disorders associated with activated astrocytes.

  12. Host Plasminogen Activator Inhibitor-1 Promotes Human Skin Carcinoma Progression in a Stage-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Catherine Maillard

    2005-01-01

    Full Text Available Angiogenesis and tumor expansion are associated with extracellular matrix remodeling and involve various proteases such as the plasminogen (Pig/plasminogen activator (PA system. Recently, several experimental data have implicated the plasminogen activator inhibitor-1 (PAI-1 in tumor angiogenesis in murine systems. However, little is known about PAI-1 functions in human skin carcinoma progression. By generating immunodeficient mice (in Rag-1-/- or nude background deleted for PAI-1 gene (PAI-1-/- , we have evaluated the impact of host PAI-1 deficiency on the tumorigenicity of two malignant human skin keratinocyte cell lines HaCaT II-4 and HaCaT A5-RT3 forming low-grade and high-grade carcinomas, respectively. When using the surface transplantation model, angiogenesis and tumor invasion of these two cell lines are strongly reduced in PAI-1-deficient mice as compared to the wild-type control animals. After subcutaneous injection in PAI-1-/- mice, the tumor incidence is reduced for HaCaT II-4 cells, but not for those formed by HaCaT A5-RT3 cells. These data indicate that PAI-1 produced by host cells is an important contributor to earlier stages of human skin carcinoma progression. It exerts its tumor-promoting effect in a tumor stage-dependent manner, but PAI-1 deficiency is not sufficient to prevent neoplastic growth of aggressive tumors of the human skin.

  13. Energy metabolism determines the sensitivity of human hepatocellular carcinoma cells to mitochondrial inhibitors and biguanide drugs.

    Science.gov (United States)

    Hsu, Chia-Chi; Wu, Ling-Chia; Hsia, Cheng-Yuan; Yin, Pen-Hui; Chi, Chin-Wen; Yeh, Tien-Shun; Lee, Hsin-Chen

    2015-09-01

    Human hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide particularly in Asia. Deregulation of cellular energetics was recently included as one of the cancer hallmarks. Compounds that target the mitochondria in cancer cells were proposed to have therapeutic potential. Biguanide drugs which inhibit mitochondrial complex I and repress mTOR signaling are clinically used to treat type 2 diabetes mellitus patients (T2DM) and were recently found to reduce the risk of HCC in T2DM patients. However, whether alteration of energy metabolism is involved in regulating the sensitivity of HCC to biguanide drugs is still unclear. In the present study, we treated four HCC cell lines with mitochondrial inhibitors (rotenone and oligomycin) and biguanide drugs (metformin and phenformin), and found that the HCC cells which had a higher mitochondrial respiration rate were more sensitive to these treatments; whereas the HCC cells which exhibited higher glycolysis were more resistant. When glucose was replaced by galactose in the medium, the altered energy metabolism from glycolysis to mitochondrial respiration in the HCC cells enhanced the cellular sensitivity to mitochondrial inhibitors and biguanides. The energy metabolism change enhanced AMP-activated protein kinase (AMPK) activation, mTOR repression and downregulation of cyclin D1 and Mcl-1 in response to the mitochondrial inhibitors and biguanides. In conclusion, our results suggest that increased mitochondrial oxidative metabolism upregulates the sensitivity of HCC to biguanide drugs. Enhancing the mitochondrial oxidative metabolism in combination with biguanide drugs may be a therapeutic strategy for HCC.

  14. Preventive effect of toothpastes with MMP inhibitors on human dentine erosion and abrasion in vitro

    Directory of Open Access Journals (Sweden)

    Angelica Reis Hannas

    2016-02-01

    Full Text Available ABSTRACT The use of gels and mouthrinses with MMP inhibitors (chlorhexidine, and green tea extract was shown to prevent erosive wear. The aim of this study was to analyze the protective effect of toothpastes containing MMP inhibitors on dentine loss induced by erosion in vitro. Material and Methods Five groups each containing 12 specimens of human root dentine were prepared. The specimens were subjected to 1 min erosion by immersion in a cola drink, 4 times a day, for 5 d. Each day, after the first and last erosive challenges, the specimens were brushed for 15 s with a slurry of dentifrice and water (1:3 containing placebo, 1,100 ppm fluoride, 0.61% green tea extract, 0.12% chlorhexidine or 0.004% chlorhexidine (commercial toothpaste. Between the acid challenges, the specimens were stored in artificial saliva with remineralizing potential until the next treatment. Dentine loss was determined using profilometry. Data were analyzed using one-way ANOVA after log transform (p<0.05. Results The mean wear values (μm were as follows: placebo 1.83±0.53; 0.61% green tea extract 1.00±0.21; fluoride 1.27±0.43; 0.12% chlorhexidine 1.19±0.30; and 0.004% chlorhexidine 1.22±0.46. There was a significant difference in wear between placebo and all the treatment toothpastes, which did not differ from each other. Conclusion The results suggest that toothpastes containing MMP inhibitors are as effective as those based on NaF in preventing dentine erosion and abrasion.

  15. The HSP90 inhibitor alvespimycin enhances the potency of telomerase inhibition by imetelstat in human osteosarcoma.

    Science.gov (United States)

    Hu, Yafang; Bobb, Daniel; He, Jianping; Hill, D Ashley; Dome, Jeffrey S

    2015-01-01

    The unsatisfactory outcomes for osteosarcoma necessitate novel therapeutic strategies. This study evaluated the effect of the telomerase inhibitor imetelstat in pre-clinical models of human osteosarcoma. Because the chaperone molecule HSP90 facilitates the assembly of telomerase protein, the ability of the HSP90 inhibitor alvespimycin to potentiate the effect of the telomerase inhibitor was assessed. The effect of single or combined treatment with imetelstat and alvespimycin on long-term growth was assessed in osteosarcoma cell lines (143B, HOS and MG-63) and xenografts derived from 143B cells. Results indicated that imetelstat as a single agent inhibited telomerase activity, induced telomere shortening, and inhibited growth in all 3 osteosarcoma cell lines, though the bulk cell cultures did not undergo growth arrest. Combined treatment with imetelstat and alvespimycin resulted in diminished telomerase activity and shorter telomeres compared to either agent alone as well as higher levels of γH2AX and cleaved caspase-3, indicative of increased DNA damage and apoptosis. With dual telomerase and HSP90 inhibition, complete growth arrest of bulk cell cultures was achieved. In xenograft models, all 3 treatment groups significantly inhibited tumor growth compared with the placebo-treated control group, with the greatest effect seen in the combined treatment group (imetelstat, p = 0.045, alvespimycin, p = 0.034; combined treatment, p = 0.004). In conclusion, HSP90 inhibition enhanced the effect of telomerase inhibition in pre-clinical models of osteosarcoma. Dual targeting of telomerase and HSP90 warrants further investigation as a therapeutic strategy.

  16. Human intestinal acyl-CoA synthetase 5 is sensitive to the inhibitor triacsin C

    Institute of Scientific and Technical Information of China (English)

    Elke Kaemmerer; Anne Peuscher; Andrea Reinartz; Christian Liedtke; Ralf Weiskirchen; Jürgen Kopitz; Nikolaus Gassler

    2011-01-01

    AIM: To investigate whether human acyl-CoA synthetase 5 (ACSL5) is sensitive to the ACSL inhibitor triacsin C.METHODS: The ACSL isoforms ACSL1 and ACSL5 from rat as well as human ACSL5 were cloned and recombinantly expressed as 6xHis-tagged enzymes. Ni2+-affinity purified recombinant enzymes were assayed at pH 7.5 or pH 9.5 in the presence or absence of triacsin C. In addition, ACSL5 transfected CaCo2 cells and intestinal human mucosa were monitored. ACSL5 expression in cellular systems was verified using Western blot and immunofluorescence.The ACSL assay mix included TrisHCl (pH 7.4), ATP, CoA, EDTA, DTT, MgCl2, [9,10-3H] palmitic acid, and triton X-100. The 200 μL reaction was initiated with the addition of solubilized, purified recombinant proteins or cellular lysates. Reactions were terminated after 10, 30 or 60 min of incubation with Doles medium.RESULTS: Expression of soluble recombinant ACSL pro-teins was found after incubation with isopropyl beta-D-1-thiogalactopyranoside and after ultracentrifugatio these were further purified to near homogeneity with Ni2+-affinity chromatography. Triacsin C selectively and strongly inhibited recombinant human ACSL5 protein at pH 7.5 and pH 9.5, as well as recombinant rat ACSL1 (sensitive control), but not recombinant rat ACSL5 (insensitive control). The IC50 for human ACSL5 was about 10 μmol/L. The inhibitory triacsin C effect was similar for different incubation times (10, 30 and 60 min) and was not modified by the N- or C-terminal location of the 6xHis-tag. In order to evaluate ACSL5 sensitivity to triacsin C in a cellular environment, stable human ACSL5 CaCo2 transfectants and mechanically dissected normal human intestinal mucosa with high physiological expression of ACSL5 were analyzed. In both models, ACSL5 peak activity was found at pH 7.5 and pH 9.5, corresponding to the properties of recombinant human ACSL5 protein. In the presence of triacsin C (25 μmol/L), total ACSL activity was dramatically diminished in

  17. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2017-02-01

    Full Text Available Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1, chloroquine (CQ and 3-methyladenine (3-MA were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8 assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating

  18. Phosphatidylinositol 3-kinase inhibitor, LY294002, induced senescence-like changes in human diploid fibroblasts

    Institute of Scientific and Technical Information of China (English)

    李淑萍; 张宗玉; 童坦君

    2003-01-01

    Objective To reveal the role of Phosphatidylinositol 3-kinases (PI3Ks) in regulating human diploid fibroblast (2BS cell) senescence as well as the possible mechanisms involved.Methods Using a PI3Ks specific inhibitor, LY294002, cell cycle, apoptosis, proliferation, senescence association β-galactosidase staining as well as senescence association CKIs, p16 INK4 and p21 Cip1 protein expressions were all measured in the low passages of 2BS cells.Results Both 25 μmol/L and 50 μmol/L concentrations of LY294002 could cause a significant decrease in cells entering into S phase, and this cell cycle of G 1 phase arrest was dose-dependent. Meanwhile, LY294002 contributed to apoptosis, caused 2BS cell growth arrest, and activated senescence association β-galactosidase (P<0.05). In addition, LY294002 could induce time-course expressions of p16 INK4 and p21 Cip1 in 2BS cell lines.Conclusions PI3Ks inhibitor LY294002 could induce senescence-like changes in 2BS cell lines. Two enescence associated CKIs,p16 INK4 and p21 Cip1, might be involved in this senescence phenotype proceeding in 2BS cell lines.

  19. Secretion of respiratory syncytial virus inhibitors and antibody in human milk throughout lactation.

    Science.gov (United States)

    Toms, G L; Gardner, P S; Pullan, C R; Scott, M; Taylor, C

    1980-01-01

    Neutralising inhibitors to respiratory syncytial (RS) virus have been demonstrated in the whey of most samples of human milk tested. Although high titres were secreted in colostra of some mothers (1/10-1/2,560; median 1/40) inhibitor levels in milk collected after the first week of lactation were uniformly low (median 1/10). High neutralising titres correlated with high colostral levels of specific antiviral IgA but, unlike neutralising activity, IgA antiviral antibody persisted in the milk of only four of 18 mothers. Similarly, antiviral IgG and IgM antibodies were not generally detected after the first post-partum week. Differences in antibody secretion among mothers did not correlate with differences in total protein or total immunoglobulin secretion, and appeared to reflect maternal immune status. In one mother a marked rise in specific antiviral IgA and IgG secretions during the second and third months of lactation suggested a response to virus infection. The relevance of maternal immunity and colostral and milk antiviral antibody to protection of breast-fed babies from RS-virus bronchiolitis is discussed.

  20. The tyrosine kinase inhibitor dasatinib induces a marked adipogenic differentiation of human multipotent mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Adriana Borriello

    Full Text Available BACKGROUND: The introduction of specific BCR-ABL inhibitors in chronic myelogenous leukemia therapy has entirely mutated the prognosis of this hematologic cancer from being a fatal disorder to becoming a chronic disease. Due to the probable long lasting treatment with tyrosine-kinase inhibitors (TKIs, the knowledge of their effects on normal cells is of pivotal importance. DESIGN AND METHODS: We investigated the effects of dasatinib treatment on human bone marrow-derived mesenchymal stromal cells (MSCs. RESULTS: Our findings demonstrate, for the first time, that dasatinib induces MSCs adipocytic differentiation. Particularly, when the TKI is added to the medium inducing osteogenic differentiation, a high MSCs percentage acquires adipocytic morphology and overexpresses adipocytic specific genes, including PPARγ, CEBPα, LPL and SREBP1c. Dasatinib also inhibits the activity of alkaline phosphatase, an osteogenic marker, and remarkably reduces matrix mineralization. The increase of PPARγ is also confirmed at protein level. The component of osteogenic medium required for dasatinib-induced adipogenesis is dexamethasone. Intriguingly, the increase of adipocytic markers is also observed in MSCs treated with dasatinib alone. The TKI effect is phenotype-specific, since fibroblasts do not undergo adipocytic differentiation or PPARγ increase. CONCLUSIONS: Our data demonstrate that dasatinib treatment affects bone marrow MSCs commitment and suggest that TKIs therapy might modify normal phenotypes with potential significant negative consequences.

  1. Crystallization and preliminary crystallographic studies of a cysteine protease inhibitor from the human nematode parasite Ascaris lumbricoides.

    Science.gov (United States)

    Liu, Sanling; Dong, Jianmei; Mei, Guoqiang; Liu, Guiyun; Xu, Wei; Su, Zhong; Liu, Jinsong

    2011-02-01

    The cysteine protease inhibitor from Ascaris lumbricoides, a roundworm that lives in the human intestine, may be involved in the suppression of human immune responses. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of the cysteine protease inhibitor from A. lumbricoides are reported. The rod-shaped crystal belonged to space group C2, with unit-cell parameters a = 99.40, b = 37.52, c = 62.92 Å, β = 118.26°. The crystal diffracted to 2.1 Å resolution and contained two molecules in the asymmetric unit.

  2. A human breast cancer model for the study of telomerase inhibitors based on a new biotinylated-primer extension assay

    OpenAIRE

    1999-01-01

    Telomerase is an RNA-dependent polymerase that synthesizes telomeric DNA (TTAGGG)n repeats. The overall goal of our work was to establish human cancer models that can be used to design clinical trials with telomerase inhibitors. The objectives of this study were (1) to set up a human breast cancer system that allows evaluation of the effects of telomerase inhibitors in cultured cells using a non-amplified telomerase assay and (2) to test this system using two drugs (cisplatin and TMPyP4) that...

  3. Interactions of human P-glycoprotein transport substrates and inhibitors at the drug binding domain: Functional and molecular docking analyses.

    Science.gov (United States)

    Kadioglu, Onat; Saeed, Mohamed E M; Valoti, Massimo; Frosini, Maria; Sgaragli, Giampietro; Efferth, Thomas

    2016-03-15

    Rhodamine 123 (R123) transport substrate sensitizes P-glycoprotein (P-gp) to inhibition by compound 2c (cis-cis) N,N-bis(cyclohexanolamine)aryl ester isomer in a concentration-dependent manner in human MDR1-gene transfected mouse T-lymphoma L5178 cells as shown previously. By contrast, epirubicin (EPI) concentration changes left unaltered 2c IC50 values of EPI efflux. To clarify this discrepancy, defined molecular docking (DMD) analyses of 12 N,N-bis(cyclohexanolamine)aryl esters, the highly flexible aryl ester analog 4, and several P-gp substrate/non-substrate inhibitors were performed on human P-gp drug- or nucleotide-binding domains (DBD or NBD). DMD measurements yielded lowest binding energy (LBE, kcal/mol) values (mean ± SD) ranging from -11.8 ± 0.54 (valspodar) to -3.98 ± 0.01 (4). Lys234, Ser952 and Tyr953 residues formed H-bonds with most of the compounds. Only 2c docked also at ATP binding site (LBE value of -6.9 ± 0.30 kcal/mol). Inhibition of P-gp-mediated R123 efflux by 12 N,N-bis(cyclohexanolamine)aryl esters and 4 significantly correlated with LBE values. DMD analysis of EPI, (3)H-1EPI, (3)H-2EPI, (14)C-1EPI, (14)C-2EPI, R123 and 2c before and after previous docking of each of them indicated that pre-docking of either 2c or EPI significantly reduced LBE of both EPI and R123, and that of both (3)H-2EPI and (14)C-2EPI, respectively. Since the clusters of DBD amino acid residues interacting with EPI were different, if EPI docked alone or after pre-docking of EPI or 2c, the existence of alternative secondary binding site for EPI on P-gp is credible. In conclusion, 2c may allocate the drug-binding pocket and reduce strong binding of EPI and R123 in agreement with P-gp inhibition experiments, where 2c reduced efflux of EPI and R123.

  4. Thermostabilisation of human serum butyrylcholinesterase for detection of its inhibitors in water and biological fluids

    Directory of Open Access Journals (Sweden)

    Lakshmanan Jaganathan

    1999-01-01

    Full Text Available The ability of gelatine-trehalose to convert the normally fragile, dry human serum BChE into a thermostable enzyme and its use in the detection of cholinesterase inhibitors in water and biological fluids is described. Gelatine or trehalose alone is unable to protect the dry enzyme against exposure to high temperature, while a combination of gelatine and trehalose were able to protect the enzyme activity against prolonged exposure to temperature as high as +50°C. A method for rapid, simple and inexpensive means of screening for cholinesterase inhibitors such as carbamates and organophosphates in water, vegetables and human blood has been developed.A capacidade da gelatina-trehalose em converter a frágil BChE do soro humano em uma enzima termoestável e seu uso na descoberta de inibidores de colinesterase em água e fluidos biológicos é apresentado. A Gelatina ou trehalose são incapazes de proteger a enzima seca BchE do soro humano contra exposição a elevadas temperaturas, enquanto que uma combinação de gelatina e trehalose são capazes de proteger a atividade de enzima contra exposição prolongada a temperaturas elevadas e da ordem de 50° C. Um método barato, simples e rápido de screening para inibidores de colinesterase tal como carbamatos e organofosfatos em água, verduras e sangue humano foi desenvolvido.

  5. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase.

    Science.gov (United States)

    Jia, Feng; Howlader, Md Amran; Cairo, Christopher W

    2016-09-01

    Integrins are critical receptors in cell migration and adhesion. A number of mechanisms are known to regulate the function of integrins, including phosphorylation, conformational change, and cytoskeletal anchoring. We investigated whether native neuraminidase (Neu, or sialidase) enzymes which modify glycolipids could play a role in regulating integrin-mediated cell migration. Using a scratch assay, we found that exogenously added Neu3 and Neu4 activity altered rates of cell migration. We observed that Neu4 increased the rate of migration in two cell lines (HeLa, A549); while Neu3 only increased migration in HeLa cells. A bacterial neuraminidase was able to increase the rate of migration in HeLa, but not in A549 cells. Treatment of cells with complex gangliosides (GM1, GD1a, GD1b, and GT1b) resulted in decreased cell migration rates, while LacCer was able to increase rates of migration in both lines. Importantly, our results show that treatment of cells with inhibitors of native Neu enzymes had a dramatic effect on the rates of cell migration. The most potent compound tested targeted the human Neu4 isoenzyme, and was able to substantially reduce the rate of cell migration. We found that the lateral mobility of integrins was reduced by treatment of cells with Neu3, suggesting that Neu3 enzyme activity resulted in changes to integrin-co-receptor or integrin-cytoskeleton interactions. Finally, our results support the hypothesis that inhibitors of human Neu can be used to investigate mechanisms of cell migration and for the development of anti-adhesive therapies.

  6. Effect of cell cycle inhibitor p19ARF on senescence of human diploid cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell, recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression. Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results re- vealed that, compared with control cells, the WI-38 cells in which p19ARF gene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10 12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells. These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.

  7. Inhibitors of human tyrosyl-DNA phospodiesterase (hTdp1) developed by virtual screening using ligand-based pharmacophores.

    Science.gov (United States)

    Weidlich, Iwona E; Dexheimer, Thomas; Marchand, Christophe; Antony, Smitha; Pommier, Yves; Nicklaus, Marc C

    2010-01-01

    Human tyrosyl-DNA phosphodiesterase (hTdp1) inhibitors have become a major area of drug research and structure-based design since they have been shown to work synergistically with camptothecin (CPT) and selectively in cancer cells. The pharmacophore features of 14 hTdp1 inhibitors were used as a filter to screen the ChemNavigator iResearch Library of about 27 million purchasable samples. Docking of the inhibitors and hits obtained from virtual screening was performed into a structural model of hTdp1 based on a high resolution X-ray crystal structure of human Tdp1 in complex with vanadate, DNA and a human topoisomerase I (TopI)-derived peptide (PDB code: 1NOP). A total of 46 compounds matching the three-dimensional arrangement of the pharmacophoric features were assayed. Using a high-throughput screening assay, we have identified an 1H-indol-3-yl-acetic acid derivative as a potent Tdp1 inhibitor with an IC(50) value of 7.94 microM. The obtained novel chemotype may provide a new scaffold for developing inhibitors of Tdp1. Copyright (c) 2009. Published by Elsevier Ltd.

  8. Centrosomal localisation of the cancer/testis (CT) antigens NY-ESO-1 and MAGE-C1 is regulated by proteasome activity in tumour cells.

    Science.gov (United States)

    Pagotto, Anna; Caballero, Otavia L; Volkmar, Norbert; Devalle, Sylvie; Simpson, Andrew J G; Lu, Xin; Christianson, John C

    2013-01-01

    The Cancer/Testis (CT) antigen family of genes are transcriptionally repressed in most human tissues but are atypically re-expressed in many malignant tumour types. Their restricted expression profile makes CT antigens ideal targets for cancer immunotherapy. As little is known about whether CT antigens may be regulated by post-translational processing, we investigated the mechanisms governing degradation of NY-ESO-1 and MAGE-C1 in selected cancer cell lines. Inhibitors of proteasome-mediated degradation induced the partitioning of NY-ESO-1 and MAGE-C1 into a detergent insoluble fraction. Moreover, this treatment also resulted in increased localisation of NY-ESO-1 and MAGE-C1 at the centrosome. Despite their interaction, relocation of either NY-ESO-1 or MAGE-C1 to the centrosome could occur independently of each other. Using a series of truncated fragments, the regions corresponding to NY-ESO-1(91-150) and MAGE-C1(900-1116) were established as important for controlling both stability and localisation of these CT antigens. Our findings demonstrate that the steady state levels of NY-ESO-1 and MAGE-C1 are regulated by proteasomal degradation and that both behave as aggregation-prone proteins upon accumulation. With proteasome inhibitors being increasingly used as front-line treatment in cancer, these data raise issues about CT antigen processing for antigenic presentation and therefore immunogenicity in cancer patients.

  9. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence.

    Science.gov (United States)

    Agarwal, Vaibhav; Sroka, Magdalena; Fulde, Marcus; Bergmann, Simone; Riesbeck, Kristian; Blom, Anna M

    2014-05-30

    The Gram-positive species Streptococcus pneumoniae is a human pathogen causing severe local and life-threatening invasive diseases associated with high mortality rates and death. We demonstrated recently that pneumococcal endopeptidase O (PepO) is a ubiquitously expressed, multifunctional plasminogen and fibronectin-binding protein facilitating host cell invasion and evasion of innate immunity. In this study, we found that PepO interacts directly with the complement C1q protein, thereby attenuating the classical complement pathway and facilitating pneumococcal complement escape. PepO binds both free C1q and C1 complex in a dose-dependent manner based on ionic interactions. Our results indicate that recombinant PepO specifically inhibits the classical pathway of complement activation in both hemolytic and complement deposition assays. This inhibition is due to direct interaction of PepO with C1q, leading to a strong activation of the classical complement pathway, and results in consumption of complement components. In addition, PepO binds the classical complement pathway inhibitor C4BP, thereby regulating downstream complement activation. Importantly, pneumococcal surface-exposed PepO-C1q interaction mediates bacterial adherence to host epithelial cells. Taken together, PepO facilitates C1q-mediated bacterial adherence, whereas its localized release consumes complement as a result of its activation following binding of C1q, thus representing an additional mechanism of human complement escape by this versatile pathogen.

  10. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors.

    Science.gov (United States)

    Vuille-dit-Bille, Raphael N; Camargo, Simone M; Emmenegger, Luca; Sasse, Tom; Kummer, Eva; Jando, Julia; Hamie, Qeumars M; Meier, Chantal F; Hunziker, Schirin; Forras-Kaufmann, Zsofia; Kuyumcu, Sena; Fox, Mark; Schwizer, Werner; Fried, Michael; Lindenmeyer, Maja; Götze, Oliver; Verrey, François

    2015-04-01

    Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

  11. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases.

    Science.gov (United States)

    Berger, Alexander; Venturelli, Sascha; Kallnischkies, Mascha; Böcker, Alexander; Busch, Christian; Weiland, Timo; Noor, Seema; Leischner, Christian; Weiss, Thomas S; Lauer, Ulrich M; Bischoff, Stephan C; Bitzer, Michael

    2013-06-01

    Kaempferol is a natural polyphenol belonging to the group of flavonoids. Different biological functions like inhibition of oxidative stress in plants or animal cells and apoptosis induction have been directly associated with kaempferol. The underlying mechanisms are only partially understood. Here we report for the first time that kaempferol has a distinct epigenetic activity by inhibition of histone deacetylases (HDACs). In silico docking analysis revealed that it fits into the binding pocket of HDAC2, 4, 7 or 8 and thereby binds to the zinc ion of the catalytic center. Further in vitro profiling of all conserved human HDACs of class I, II and IV showed that kaempferol inhibited all tested HDACs. In clinical oncology, HDAC inhibitors are currently under investigation as new anticancer compounds. Therefore, we studied the effect of kaempferol on human-derived hepatoma cell lines HepG2 and Hep3B as well as on HCT-116 colon cancer cells and found that it induces hyperacetylation of histone complex H3. Furthermore, kaempferol mediated a prominent reduction of cell viability and proliferation rate. Interestingly, toxicity assays revealed signs of relevant cellular toxicity in primary human hepatocytes only starting at 50 μM as well as in an in vivo chicken embryotoxicity assay at 200 μM. In conclusion, the identification of a novel broad inhibitory capacity of the natural compound kaempferol for human-derived HDAC enzymes opens up the perspective for clinical application in both tumor prevention and therapy. Moreover, kaempferol may serve as a novel lead structure for chemical optimization of pharmacokinetics, pharmacology or inhibitory activities.

  12. Minimal and inducible regulation of tissue factor pathway inhibitor-2 in human gliomas.

    Science.gov (United States)

    Konduri, Santhi D; Osman, Francis Ali; Rao, Chilukuri N; Srinivas, Harish; Yanamandra, Niranjan; Tasiou, Anastasia; Dinh, Dzung H; Olivero, William C; Gujrati, Meena; Foster, Donald C; Kisiel, Walter; Kouraklis, Gregory; Rao, Jasti S

    2002-01-31

    Tissue factor pathway inhibitor-2 (TFPI-2), a serine protease inhibitor abundant in the extra cellular matrix, is highly expressed in non-invasive cells but undetectable levels in highly invasive human glioma cells. The mechanisms responsible for its transcriptional regulation are not well elucidated. In this study, we made several deletion constructs from a 3.6 kb genomic fragment from Hs683 cells containing the 5'-flanking region of the TFPI-2 gene, transiently transfected with these constructs into non-invasive (Hs683) and highly invasive (SNB19) human glioma cells, and assessed their expression by using a luciferase reporter gene. Three constructs showed high promoter activity (pTF5, -670 to +1; pTF6, -312 to +1; pTF2, -1511 to +1). Another construct, pTF8 (-81 to +1), showed no activity. PTF9, a variant of pTF5 in which a further 231 bp fragment (-312 to -81) was deleted, from the [-670 to +1] pTF5 region, also showed no promoter activity. Hence, (-312 to -81) this region is essential for the transcription of TFPI-2 in glioma cells. Sequencing of this promoter region revealed that it has a high G+C content, contains potential SP1 and AP1 binding motifs, and lacks canonical TATA and CAAT boxes immediately upstream of the major transcriptional initiation site, although CAAT boxes were found about -3000 bp upstream of the transcription start site. We also found a strong repressor in the region between -927 to -1181, upstream of the major transcriptional initiation site, followed by positive elements or enhancers between -1511 to -1181. These positive elements masked the silencer effect. Finally TFPI-2 was induced in Hs683 cells transfected with the pTF6 construct (-312 to +1) and stimulated with phorbol-12-myristate-13-acetate (PMA). We conclude that the -312 to +1 region is critical for the minimal and inducible regulation of TFPI-2 in non-invasive (Hs683) and highly invasive (SNB19) human glioma cell lines.

  13. Preclinical Metabolism and Disposition of SB939 (Pracinostat), an Orally Active Histone Deacetylase Inhibitor, and Prediction of Human Pharmacokinetics

    NARCIS (Netherlands)

    Jayaraman, Ramesh; Reddy, Venkatesh Pilla; Pasha, Mohammed Khalid; Wang, Haishan; Sangthongpitag, Kanda; Yeo, Pauline; Hu, Chang Yong; Wu, Xiaofeng; Xin, Liu; Goh, Evelyn; New, Lee Sun; Ethirajulu, Kantharaj

    2011-01-01

    The preclinical absorption, distribution, metabolism, and excretion (ADME) properties of Pracinostat [(2E)-3-[2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl]-N-hydroxyarylamide hydrochloride; SB939], an orally active histone deacetylase inhibitor, were characterized and its human pharmacokin

  14. Plasma and cerebrospinal fluid pharmacokinetics of the histone deacetylase inhibitor, belinostat (PXD101), in non-human primates

    DEFF Research Database (Denmark)

    Warren, K.E.; McCully, C.; Dvinge, H.

    2008-01-01

    is a novel, potent, pan-HDAC inhibitor with antiproliferative activity on a wide variety of tumor cell lines. We studied the cerebrospinal fluid (CSF) penetration of intravenous (IV) belinostat in a non-human primate model as a surrogate for blood:brain barrier penetration. DESIGN: Five adult rhesus monkeys...

  15. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis.

    Science.gov (United States)

    Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-Fang; Cao, Deliang

    2009-07-31

    Acetyl-CoA carboxylase-alpha (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC(50) at approximately 5.0, 5.0, and 4.5 microg/ml, respectively. TOFA at 1.0-20.0 microg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 microM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis.

  16. Preparation and in vitro studies of microencapsulated cells releasing human tissue inhibitor of metalloproteinase-2

    Institute of Scientific and Technical Information of China (English)

    JIANG Qiang; ZHANG Su-zhan; PENG Jia-ping; WANG Xu-lin

    2005-01-01

    Objective: To prepare microencapsulated cells releasing human tissue inhibitor ofmetalloproteinase-2 (TIMP-2), and investigate their biological characteristics in vitro. Methods: Chinese hamster ovary (CHO) cells were stably transfected with a human TIMP-2 expression vector, encapsulated in barium alginate microcapsules and cultured in vitro. Morphological appearance of the microcapsules was observed under a light microscope. Cell viability was assessed using MTT (3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide) assay. Enzyme linked immunosorbent assay (ELISA) and reverse zymography were used to confirm the release of biologically active TIMP-2 from the microcapsules. Cryopreservation study of the microencapsulated cells was carried out using dimethyl sulfoxide (DMSO) as preservative agent. Results: The microcapsules appeared like a sphere kept proliferating over the 6 weeks observed. No significant difference in TIMP-2 secretion was found between encapsulated and unencapsulated cells. Reverse zymography confirmed the bioactivity of MMP (matrix metalloproteinase) inhibition of TIMP-2.The cryopreservation process did not damage the microcapsule morphology nor the viability of the cells inside. Conclusion:Microencapsulated engineered CHO cells survive at least 6 weeks after preparation in vitro, and secrete bioactive TIMP-2 freely from the microcapsules.

  17. Proton pump inhibitors induce a caspase-independent antitumor effect against human multiple myeloma.

    Science.gov (United States)

    Canitano, Andrea; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Federici, Cristina; Fais, Stefano

    2016-07-01

    Multiple Myeloma (MM) is the second most common hematological malignancy and is responsive to a limited number of drugs. Unfortunately, to date, despite the introduction of novel drugs, no relevant increase in survival rates has been obtained. Proton pump inhibitors (PPIs) have been shown to have significant antitumor action as single agents as well as in combination with chemotherapy. This study investigates the potential anti-tumor effectiveness of two PPIs, Lansoprazole and Omeprazole, against human MM cells. We found that Lansoprazole exerts straightforward efficacy against myeloma cells, even at suboptimal concentrations (50 µM), while Omeprazole has limited cytotoxic action. The Lansoprazole anti-MM effect was mostly mediated by a caspase-independent apoptotic-like cytotoxicity, with only a secondary anti-proliferative action. This study provides clear evidence supporting the use of Lansoprazole in the strive against MM with an efficacy proven much higher than current therapeutical approaches and without reported side effects. It is however conceivable that, consistent with the results obtained in other human tumors, Lansoprazole may well be combined with existing anti-myeloma therapies with the aim to improve the low level of efficacy of the current strategies.

  18. Complex formation between human prostate-specific antigen and protease inhibitors in mouse plasma.

    Science.gov (United States)

    Hekim, Can; Riipi, Tero; Zhu, Lei; Laakkonen, Pirjo; Stenman, Ulf-Håkan; Koistinen, Hannu

    2010-04-01

    When secreted from the prostate, most of prostate-specific antigen (PSA) is free and enzymatically active. Upon reaching circulation, active PSA is inactivated by complex formation with protease inhibitors. To justify the use of mouse models for evaluation of the function of PSA and for studies on therapeutic modalities based on modulation of PSA activity, it is important to know whether PSA complexation is similar in mouse and man. To characterize the circulating forms of PSA in mouse, we used subcutaneous LNCaP and 22RV1 human prostate cancer cell xenograft tumor models. We also added PSA directly to mouse serum. Free and total PSA were measured by immunoassay, and PSA complexes were extracted by immunopurification followed by SDS-PAGE, in-gel trypsin digestion and identification of signature peptides by mass spectrometry. In mice bearing xenograft tumors, 68% of the immunoreactive PSA occurred in complex, and when added to mouse serum, over 70% of PSA forms complexes that comprises alpha(2)-macroglobulin and members of the alpha(1)-antitrypsin (AAT) family. In mouse plasma, PSA forms complexes similar to those in man, but the major immunoreactive complex contains AAT rather than alpha(1)-antichymotrypsin, which is the main complex forming serpin in man. The complex formation of PSA produced by xenograft tumor models in mice is similar to that of human prostate tumors with respect to the complexation of PSA. (c) 2009 Wiley-Liss, Inc.

  19. Human DNA topoisomerase inhibitors from Potentilla argentea and their cytotoxic effect against MCF-7.

    Science.gov (United States)

    Tomczyk, M; Drozdowska, D; Bielawska, A; Bielawski, K; Gudej, J

    2008-05-01

    Two polyphenolics, kaempferol 3-O-beta-D-(6"-E-p-coumaroyl)-glucopyranoside (tiliroside) (1) and methyl brevifolincarboxylate (2) isolated from aerial parts of Potentilla argentea L. (Rosaceae) were evaluated for their cytotoxicities against human breast carcionoma cell line (MCF-7) and their DNA-binding ability. The DNA-binding ability of these compounds was studied by means of the human DNA topoisomerase I and II inhibition assay and ethidium displacement assay using calf thymus DNA, poly(dA-dT)2 and poly(dG-dC)2. Compound 2 was much more active and showed a higher level of cytotoxic potency than compound 1, with IC50 values of 1.11 +/- 2 microM and 21.60 +/- 2 microM, respectively. In DNA topoisomerase I and II inhibition in vitro assays both investigated compounds 1 and 2 were more effective against topoisomerase II than I. The results of DNA binding studies reveal that methyl brevifolincarboxylate had a greater DNA binding affinity that tiliroside, which correlates with its greater potency as a topoisomerase I/II inhibitor.

  20. Design and synthesis of benzodiazepine analogs as isoform-selective human lysine deacetylase inhibitors.

    Science.gov (United States)

    Reddy, D Rajasekhar; Ballante, Flavio; Zhou, Nancy J; Marshall, Garland R

    2017-02-15

    A comprehensive investigation was performed to identify new benzodiazepine (BZD) derivatives as potent and selective human lysine deacetylase inhibitors (hKDACis). A total of 108 BZD compounds were designed, synthesized and from that 104 compounds were biologically evaluated against human lysine deacetylases (hKDACs) 1, 3 and 8 (class I) and 6 (class IIb). The most active compounds showed mid-nanomolar potencies against hKDACs 1, 3 and 6 and micromolar activity against hKDAC8, while a promising compound (6q) showed selectivity towards hKDAC3 among the different enzyme isoforms. An hKDAC6 homology model, refined by molecular dynamics simulation was generated, and molecular docking studies performed to rationalize the dominant ligand-residue interactions as well as to define structure-activity-relationships. Experimental results confirmed the usefulness of the benzodiazepine moiety as capping group when pursuing hKDAC isoform-selectivity inhibition, suggesting its continued use when designing new hKDACis.

  1. Molecular mechanism of epididymal protease inhibitor modulating the liquefaction of human semen

    Institute of Scientific and Technical Information of China (English)

    Zeng-Jun Wang; Wei Zhang; Ning-Han Feng; Ning-Hong Song; Hong-Fei Wu; Yuan-Geng Sui

    2008-01-01

    Aim: To study the molecular mechanism of epididymal protease inhibitor (Eppin) modulating the process of prostate specific antigen (PSA) digesting semenogelin (Sg). Methods: Human Sg cDNA (nucleotides 82-849) and Eppin cDNA (nucleotides 70-423) were generated by polymerase chain reaction (PCR) and cloned into pET-100D/TOPO. Recombinant Eppin and Sg (rEppin and rSg) were produced by BL21 (DE3). The association of Eppin with Sg was studied by far-western immunoblot and radioautography. In vitro the digestion of rSg by PSA in the presence or absence of rEppin was studied. The effect of anti-Q20E (N-terminal) and C-terminal of Eppin on Eppin-Sg binding was monitored. Results: Eppin binds Sg on the surface of human spermatozoa with the C-terminal of Eppin (amino acids 75-133). rSg was digested with PSA and many low molecular weight fragments were produced. When rEppin is bound to rSg, then digested by PSA, incomplete digestion and a 15-kDa fragment results. Antibody binding to the N-terminal of rEppin did not affect rSg digestion. Addition of antibodies to the C-terminal of rEppin inhibited the modulating effect of rEppin. Conclusion: Eppin protects a 15-kDa fragment of rSg from hydrolysis by PSA.

  2. Long-term culture of human odontoma-derived cells with a Rho kinase inhibitor.

    Science.gov (United States)

    Uzawa, Katsuhiro; Kasamatsu, Atsushi; Saito, Tomoaki; Takahara, Toshikazu; Minakawa, Yasuyuki; Koike, Kazuyuki; Yamatoji, Masanobu; Nakashima, Dai; Higo, Morihiro; Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki

    2016-09-10

    Because of cellular senescence/apoptosis, no effective culture systems are available to maintain replication of cells from odontogenic tumors especially for odontoma, and, thus, the ability to isolate human odontoma-derived cells (hODCs) for functional studies is needed. The current study was undertaken to develop an approach to isolate hODCs and fully characterize the cells in vitro. The hODCs were cultured successfully with a Rho-associated protein kinase inhibitor (Y-27632) for an extended period with stabilized lengths of the telomeres to sustain a similar phenotype/property as the primary tumoral cells. While the hODCs showed stable long-term expansion with expression of major dental epithelial markers including dentin sialophosphoprotein (DSPP) even in the three-dimensional microenvironment, they lack the specific markers for the characteristics of stem cells. Moreover, cells from dental pulp showed significant up-regulation of DSPP when co-cultured with the hODCs, while control fibroblasts with the hODCs did not. Taken together, we propose that the hODCs can be isolated and expanded over the long term with Y-27632 to investigate not only the development of the hODCs but also other types of benign human tumors.

  3. Human metabolism of lapatinib, a dual kinase inhibitor: implications for hepatotoxicity.

    Science.gov (United States)

    Castellino, Stephen; O'Mara, Michael; Koch, Kevin; Borts, David J; Bowers, Gary D; MacLauchlin, Christopher

    2012-01-01

    Lapatinib (Tykerb, Tyverb) is an important orally active dual tyrosine kinase inhibitor efficacious in combination therapy for patients with progressive human epidermal receptor 2-overexpressing metastatic breast cancer. However, clinically significant liver injury, which may be associated with lapatinib metabolic activation, has been reported. We describe the metabolism and excretion of [(14)C]lapatinib in six healthy human volunteers after a single oral dose of 250 mg and the potential relationships between metabolism and clinical hepatotoxicity. Overall, elimination showed high intersubject variability, with fecal elimination being the predominant pathway, representing a median of 92% of the dose with lapatinib as the largest component (approximate median 27% of the dose). In plasma, approximately 50% of the observed radioactivity was attributed to metabolites. Analysis of a 4-h pooled plasma extract identified seven metabolites related by an N- and α-carbon oxidation cascade. Fecal metabolites derived from three prominent pathways: N- and α-carbon oxidation, fluorobenzyl oxidative cleavage, and hydroxypyridine formation. Several of the lapatinib metabolites can undoubtedly be linked to reactive species such as aldehydes or quinone imines. In addition to the contribution of these potentially reactive metabolites as suspects in clinical liver injury, the role of other disposition factors, including interaction with drug transporters, pharmacogenetics, or magnitude of the therapeutic dose, should not be discounted.

  4. Metabolism, excretion, and mass balance of the HIV-1 integrase inhibitor dolutegravir in humans.

    Science.gov (United States)

    Castellino, Stephen; Moss, Lee; Wagner, David; Borland, Julie; Song, Ivy; Chen, Shuguang; Lou, Yu; Min, Sherene S; Goljer, Igor; Culp, Amanda; Piscitelli, Stephen C; Savina, Paul M

    2013-08-01

    The pharmacokinetics, metabolism, and excretion of dolutegravir, an unboosted, once-daily human immunodeficiency virus type 1 integrase inhibitor, were studied in healthy male subjects following single oral administration of [(14)C]dolutegravir at a dose of 20 mg (80 μCi). Dolutegravir was well tolerated, and absorption of dolutegravir from the suspension formulation was rapid (median time to peak concentration, 0.5 h), declining in a biphasic fashion. Dolutegravir and the radioactivity had similar terminal plasma half-lives (t1/2) (15.6 versus 15.7 h), indicating metabolism was formation rate limited with no long-lived metabolites. Only minimal association with blood cellular components was noted with systemic radioactivity. Recovery was essentially complete (mean, 95.6%), with 64.0% and 31.6% of the dose recovered in feces and urine, respectively. Unchanged dolutegravir was the predominant circulating radioactive component in plasma and was consistent with minimal presystemic clearance. Dolutegravir was extensively metabolized. An inactive ether glucuronide, formed primarily via UGT1A1, was the principal biotransformation product at 18.9% of the dose excreted in urine and the principal metabolite in plasma. Two minor biotransformation pathways were oxidation by CYP3A4 (7.9% of the dose) and an oxidative defluorination and glutathione substitution (1.8% of the dose). No disproportionate human metabolites were observed.

  5. A Novel Ras Inhibitor (MDC-1016 Reduces Human Pancreatic Tumor Growth in Mice

    Directory of Open Access Journals (Sweden)

    Gerardo G Mackenzie

    2013-10-01

    Full Text Available Pancreatic cancer has one of the poorest prognoses among all cancers partly because of its persistent resistance to chemotherapy. The currently limited treatment options for pancreatic cancer underscore the need for more efficient agents. Because activating Kras mutations initiate and maintain pancreatic cancer, inhibition of this pathway should have a major therapeutic impact. We synthesized phospho-farnesylthiosalicylic acid (PFTS; MDC-1016 and evaluated its efficacy, safety, and metabolism in preclinical models of pancreatic cancer. PFTS inhibited the growth of human pancreatic cancer cells in culture in a concentration- and time-dependent manner. In an MIA PaCa-2 xenograft mouse model, PFTS at a dose of 50 and 100 mg/kg significantly reduced tumor growth by 62% and 65% (P < .05 vs vehicle control. Furthermore, PFTS prevented pancreatitis-accelerated acinar-to-ductal metaplasia in mice with activated Kras. PFTS appeared to be safe, with the animals showing no signs of toxicity during treatment. Following oral administration, PFTS was rapidly absorbed, metabolized to FTS and FTS glucuronide, and distributed through the blood to body organs. Mechanistically, PFTS inhibited Ras-GTP, the active form of Ras, both in vitro and in vivo, leading to the inhibition of downstream effector pathways c-RAF/mitogen-activated protein-extracellular signal-regulated kinase (ERK kinase (MEK/ERK1/2 kinase and phosphatidylinositol 3-kinase/AKT. In addition, PFTS proved to be a strong combination partner with phospho-valproic acid, a novel signal transducer and activator of transcription 3 (STAT3 inhibitor, displaying synergy in the inhibition of pancreatic cancer growth. In conclusion, PFTS, a direct Ras inhibitor, is an efficacious agent for the treatment of pancreatic cancer in preclinical models, deserving further evaluation.

  6. Radiosensitization of Human Leukemic HL-60 Cells by ATR Kinase Inhibitor (VE-821: Phosphoproteomic Analysis

    Directory of Open Access Journals (Sweden)

    Barbora Šalovská

    2014-07-01

    Full Text Available DNA damaging agents such as ionizing radiation or chemotherapy are frequently used in oncology. DNA damage response (DDR—triggered by radiation-induced double strand breaks—is orchestrated mainly by three Phosphatidylinositol 3-kinase-related kinases (PIKKs: Ataxia teleangiectasia mutated (ATM, DNA-dependent protein kinase (DNA-PK and ATM and Rad3-related kinase (ATR. Their activation promotes cell-cycle arrest and facilitates DNA damage repair, resulting in radioresistance. Recently developed specific ATR inhibitor, VE-821 (3-amino-6-(4-(methylsulfonylphenyl-N-phenylpyrazine-2-carboxamide, has been reported to have a significant radio- and chemo-sensitizing effect delimited to cancer cells (largely p53-deficient without affecting normal cells. In this study, we employed SILAC-based quantitative phosphoproteomics to describe the mechanism of the radiosensitizing effect of VE-821 in human promyelocytic leukemic cells HL-60 (p53-negative. Hydrophilic interaction liquid chromatography (HILIC-prefractionation with TiO2-enrichment and nano-liquid chromatography—tandem mass spectrometry (LC-MS/MS analysis revealed 9834 phosphorylation sites. Proteins with differentially up-/down-regulated phosphorylation were mostly localized in the nucleus and were involved in cellular processes such as DDR, all phases of the cell cycle, and cell division. Moreover, sequence motif analysis revealed significant changes in the activities of kinases involved in these processes. Taken together, our data indicates that ATR kinase has multiple roles in response to DNA damage throughout the cell cycle and that its inhibitor VE-821 is a potent radiosensitizing agent for p53-negative HL-60 cells.

  7. Topoisomerase I inhibitor, camptothecin, induces apoptogenic signaling in human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Carolina Paola García

    2014-03-01

    Full Text Available Embryonic stem cells (ESCs need to maintain their genomic integrity in response to DNA damage to safeguard the integrity of the organism. DNA double strand breaks (DSBs are one of the most lethal forms of DNA damage and, if not repaired correctly, they can lead to cell death, genomic instability and cancer. How human ESCs (hESCs maintain genomic integrity in response to agents that cause DSBs is relatively unclear. In the present study we aim to determine the hESC response to the DSB inducing agent camptothecin (CPT. We find that hESCs are hypersensitive to CPT, as evidenced by high levels of apoptosis. CPT treatment leads to DNA-damage sensor kinase (ATM and DNA-PKcs phosphorylation on serine 1981 and serine 2056, respectively. Activation of ATM and DNA-PKcs was followed by histone H2AX phosphorylation on Ser 139, a sensitive reporter of DNA damage. Nuclear accumulation and ATM-dependent phosphorylation of p53 on serine 15 were also observed. Remarkably, hESC viability was further decreased when ATM or DNA-PKcs kinase activity was impaired by the use of specific inhibitors. The hypersensitivity to CPT treatment was markedly reduced by blocking p53 translocation to mitochondria with pifithrin-μ. Importantly, programmed cell death was achieved in the absence of the cyclin dependent kinase inhibitor, p21Waf1, a bona fide p53 target gene. Conversely, differentiated hESCs were no longer highly sensitive to CPT. This attenuated apoptotic response was accompanied by changes in cell cycle profile and by the presence of p21Waf1. The results presented here suggest that p53 has a key involvement in preventing the propagation of damaged hESCs when genome is threatened. As a whole, our findings support the concept that the phenomenon of apoptosis is a prominent player in normal embryonic development.

  8. Angiogenesis inhibitor TNP-470 suppresses growth of peritoneal disseminating foci of human colon cancer line Lovo

    Institute of Scientific and Technical Information of China (English)

    Ying-Fang Fan; Zong-Hai Huang

    2002-01-01

    AIM: To study the effect of angiogenesis inhibitor TNP-470on peritoneal dissemination of colon cancer in nude mice,METHODS: The MTT assay was used to evaluate theinhibitory effect of TNP-470 on human colon cancer cell lineLovo. Lovo cells were injected into the peritoneal cavity ofBABL/C nu/nu mice and the models of peritonealdissemination were developed. Thirty nude mice wererandomly divided into control and TNP-470-treated group.In TNP-470-treated group, TNP-470 was injectedsubcutaneously every other day from day 1 until sacrifice ordeath (30 mg.kg-1). The control group received a shaminjection of the same volume saline solutionRESULTS: In vltro, TNP-470 inhibited the growth of Lovocells, with its IC50 at 2.14x102μg.L-1 In vivo, TNP-470demonstrated growth inhibition of tumors. Mice body weightand abdominal circumferences were significantly differentbetween TNP-470-treated group (24.5±3.2 g, 7.0±1.1 cm)and control group (29.5±2.1 g, 10.3±1.5 cm), P=0.005 andP=0.001. The number of disseminated foci was significantlydifferent between the control group (92.1±20.6) and theTNP-470-treated group (40.3±12.3), P<0.001. The maximalsize of foci was significantly smaller in TNP-470-treated group(3.3±0.7 mm) than that of control (7.3±2.3 mm), P=0.004.Mean survival time was significantly longer in TNP-470-treated group(98.00±12.06 d) than that in control group(41.86±9.51 d), P<0.001.CONCLUSION: Angiogenesis inhibitor TNP-470 might beeffective in treating peritoneal dissemination of colon cancerand improve the survival rate of nude mice.

  9. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α.

    Science.gov (United States)

    Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David

    2015-10-01

    The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.

  10. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    Energy Technology Data Exchange (ETDEWEB)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen (Sanofi); (Michigan); (Texas)

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  11. Expression of the familial Mediterranean fever gene and activity of the C5a inhibitor in human primary fibroblast cultures.

    Science.gov (United States)

    Matzner, Y; Abedat, S; Shapiro, E; Eisenberg, S; Bar-Gil-Shitrit, A; Stepensky, P; Calco, S; Azar, Y; Urieli-Shoval, S

    2000-07-15

    Familial Mediterranean fever (FMF) is an inherited disease whose manifestations are acute but reversible attacks of sterile inflammation affecting synovial and serosal spaces. The FMF gene (MEFV) was recently cloned, and it codes for a protein (pyrin/marenostrin) homologous to known nuclear factors. We previously reported the deficient activity of a C5a/interleukin (IL)-8 inhibitor, a physiologic regulator of inflammatory processes, in FMF serosal and synovial fluids. We now describe the concomitant expression of MEFV and C5a/IL-8-inhibitor activity in primary cultures of human fibroblasts. Fibroblasts grown from synovial and peritoneal tissues displayed C5a/IL-8-inhibitor activity that could be further induced with phorbol myristate acetate (PMA) and IL-1 beta. Very low levels of chemotactic inhibitor were evident in skin fibroblast cultures or in peritoneal and skin fibroblasts obtained from FMF patients. MEFV was expressed in peritoneal and skin fibroblasts at a lower level than in neutrophils and could be further induced by PMA and IL-1 beta. In the FMF cultures, the MEFV transcript carried the M694V mutation, consistent with the genetic defect found in patients with this disease. MEFV was also expressed in other cell lines that do not produce C5a/IL-8 inhibitor. These findings suggest that human primary fibroblast cultures express MEFV and produce C5a/IL-8-inhibitor activity. The interrelationship between pyrin, the MEFV product, and the C5a/IL-8 inhibitor requires further investigation. (Blood. 2000;96:727-731)

  12. The Antiproliferative and Colony-suppressive Activities of STAT3 Inhibitors in Human Cancer Cells Is Compromised Under Hypoxic Conditions.

    Science.gov (United States)

    Tian, Jilai; Xiao, Hui; Wu, Ruohan; Cao, Yang; Li, Chenglong; Xu, Ronald; Pierson, Christopher R; Finlay, Jonathan L; Yang, Fang; Gu, Ning; Lin, Jiayuh

    2017-02-01

    Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been indicated as a novel cancer drug target, since it plays an important role in diverse oncogenic processes including survival, cell proliferation and migration. Emerging STAT3 inhibitors have demonstrated efficacy in cancer cells and animal tumor models. It is well known that most solid tumors are characterized by hypoxia, but it is not clear if hypoxic conditions affect activity of STAT3 inhibitors. To examine this, two STAT3 inhibitors were tested to investigate their inhibitory efficacy in cancer cells grown under hypoxic conditions compared with those without hypoxia. Cell proliferation, colony formation and western blot assays were performed to examine the differences in the cell viability, proliferation and proteins in the STAT3 pathway. Under hypoxic conditions, the half-maximal inhibitory concentration values for both STAT3 inhibitors were increased compared to normoxic conditions in human pancreatic cancer, medulloblastoma and sarcoma cell lines. In addition, the ability of both STAT3 inhibitors to inhibit colony formation in pancreatic cancer, medulloblastoma and sarcoma cell lines was reduced under hypoxic conditions when compared to cells under normoxic conditions. Furthermore, there was an increase in phosphorylated STAT3 levels in cancer cells under hypoxic conditions, suggesting this may be one of the mechanisms of resistance. In summary, the results presented here provide a novel finding of STAT3 inhibitor activity under hypoxic conditions and indicate that under such low oxygen conditions, the anticancer efficacy of STAT3 inhibitors was indeed hampered. These results highlight the need to develop new therapeutic strategies to overcome the resistance of cancer cells to STAT3 inhibitors under hypoxic conditions.

  13. Joint bleeds increase the inhibitor response to human factor VIII in a rat model of severe haemophilia A.

    Science.gov (United States)

    Lövgren, K M; Søndergaard, H; Skov, S; Wiinberg, B

    2016-09-01

    The most serious complication in haemophilia A (HA) replacement therapy with coagulation factor VIII (FVIII) is neutralizing antibodies, i.e. inhibitors. It has been hypothesized that danger signals generated during a bleed might have an adjuvant effect on the immune response to FVIII in on-demand treatment, increasing the inhibitor risk. To compare the antibody response to treatment with recombinant human FVIII (rhFVIII) in relation to induced knee joint bleeds and treatment without concurrent bleeds in a HA rat model. HA rats were divided into two groups: one group (n = 10) receiving three needle induced knee joint bleeds 14 days apart and a control group (n = 9) receiving three sham procedures. Three hours after each injury/sham 50 IU kg(-1) rhFVIII was administrated intravenously. Subsequently, both groups continued rhFVIII treatment for another 9 weeks. Binding antibodies were analysed using an enzyme-linked immunosorbent assay and neutralizing antibodies using a Bethesda-like assay. Rats in the knee-bleed group developed a significantly faster inhibitor response and reached significantly higher inhibitor levels. In the knee-bleed group, 80% developed inhibitors vs. 33% in the control group, demonstrating a 2.4 times higher inhibitor risk when treating concurrent with bleeds. FVIII treatment in relation to a bleed potentiates inhibitor development compared to FVIII treatment alone in this HA rat, indicating that bleeding is a potential danger signal. Our results support the theory that FVIII replacement therapy concurrent with a bleeding episode increases the inhibitor risk, which to the best of our knowledge, has not been confirmed in an animal model before. © 2016 John Wiley & Sons Ltd.

  14. Alcohol binding in the C1 (C1A + C1B) domain of protein kinase C epsilon

    Science.gov (United States)

    Pany, Satyabrata; Das, Joydip

    2015-01-01

    Background Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε. Methods In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. Results In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40 Å apart from each other indicating that these residues form two different alcohol binding sites. Conclusions The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists. PMID:26210390

  15. Transcriptional regulation of human polo-like kinases and early mitotic inhibitors

    Institute of Scientific and Technical Information of China (English)

    Moe Tategu; Hiroki Nakagawa; Kaori Sasaki; Rieko Yamauchi; Sota Sekimachi; Yuka Suita; Naoko Watanabe; Kenichi Yoshida

    2008-01-01

    Human polo-like kinases (PLK1-PLK4) have been implicated in mitotic regulation and carcinogenesis.PLK1 phosphorylates early mitotic inhibitor 1 (Emil) to ensure mitosis entry,whereas Emi2 plays a key role during the meiotic cell cycle.Transcription factor E2F is primarily considered to regulate the G1/S transition of the cell cycle but its involvement in the regulation of mitosis has also been recently suggested.A gap still exists between the molecular basis of E2F and mitotic regulation.The present study was designed to characterize the transcriptional regulation of human PLK and Emi genes.Adenoviral overexpression of E2F1 increased PLK1 and PLK3 mRNA levels in A549 cells.A reporter gene assay revealed that the putative promoter regions of PLK1,PLK3,and PLK4 genes were responsive to ac-tivators E2F,E2F1-E2F3.We further characterized the putative promoter regions of Emil and Emi2 genes,and these could be regulated by activators E2F and E2F1-E2F4,respectively.Finally,PLK1-PLK4,Emil,and Emi2 mRNA expression levels in human adult,fetal tis-sues,and several cell lines indicated that each gene has a unique expression pattern but is uniquely expressed in common tissues and cells such as the testes and thymus.Collectively,these results indicate that E2F can integrate G1/S and G2/Mto oscillate the cell cycle by regu-lating mitotic genes PLK and Emi,leading to determination of the cell fate.

  16. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site.

    Science.gov (United States)

    Hardwicke, Mary Ann; Rendina, Alan R; Williams, Shawn P; Moore, Michael L; Wang, Liping; Krueger, Julie A; Plant, Ramona N; Totoritis, Rachel D; Zhang, Guofeng; Briand, Jacques; Burkhart, William A; Brown, Kristin K; Parrish, Cynthia A

    2014-09-01

    Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.

  17. Adamantyl ethanone pyridyl derivatives: potent and selective inhibitors of human 11β-hydroxysteroid dehydrogenase type 1.

    Science.gov (United States)

    Su, Xiangdong; Pradaux-Caggiano, Fabienne; Vicker, Nigel; Thomas, Mark P; Halem, Heather; Culler, Michael D; Potter, Barry V L

    2011-09-05

    Elevated levels of active glucocorticoids have been implicated in the development of several phenotypes of metabolic syndrome, such as type 2 diabetes and obesity. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular conversion of inactive cortisone to cortisol. Selective 11β-HSD1 inhibitors have shown beneficial effects in various conditions, including diabetes, dyslipidemia and obesity. A series of adamantyl ethanone pyridyl derivatives has been identified, providing potent and selective inhibitors of human 11β-HSD1. Lead compounds display low nanomolar inhibition against human and mouse 11β-HSD1 and are selective for this isoform, with no activity against 11β-HSD2 and 17β-HSD1. Structure-activity relationship studies reveal that an unsubstituted pyridine tethered to an adamantyl ethanone motif through an ether or sulfoxide linker provides a suitable pharmacophore for activity. The most potent inhibitors have IC₅₀ values around 34-48 nM against human 11β-HSD1, display reasonable metabolic stability in human liver microsomes, and weak inhibition of key human CYP450 enzymes.

  18. Adamantyl Ethanone Pyridyl Derivatives: Potent and Selective Inhibitors of Human 11β-Hydroxysteroid Dehydrogenase Type 1

    Science.gov (United States)

    Su, Xiangdong; Pradaux-Caggiano, Fabienne; Vicker, Nigel; Thomas, Mark P; Halem, Heather; Culler, Michael D; Potter, Barry V L

    2011-01-01

    Elevated levels of active glucocorticoids have been implicated in the development of several phenotypes of metabolic syndrome, such as type 2 diabetes and obesity. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular conversion of inactive cortisone to cortisol. Selective 11β-HSD1 inhibitors have shown beneficial effects in various conditions, including diabetes, dyslipidemia and obesity. A series of adamantyl ethanone pyridyl derivatives has been identified, providing potent and selective inhibitors of human 11β-HSD1. Lead compounds display low nanomolar inhibition against human and mouse 11β-HSD1 and are selective for this isoform, with no activity against 11β-HSD2 and 17β-HSD1. Structure–activity relationship studies reveal that an unsubstituted pyridine tethered to an adamantyl ethanone motif through an ether or sulfoxide linker provides a suitable pharmacophore for activity. The most potent inhibitors have IC50 values around 34–48 nm against human 11β-HSD1, display reasonable metabolic stability in human liver microsomes, and weak inhibition of key human CYP450 enzymes. PMID:21714097

  19. Identification of a macromolecular crystal growth inhibitor in human urine as osteopontin

    DEFF Research Database (Denmark)

    Sørensen, Steen; Justesen, S J; Johnsen, A H

    1995-01-01

    study was to outline a simple procedure for isolating and identifying this inhibitor. Purification was done as follows: precipitation of the major proteins (albumin and uromucoid) with trichloroacetic acid, followed by anion exchange chromatography, hydroxyapatite chromatography, anion exchange...... chromatography, negative affinity chromatography, and twice reversed phase chromatographies of the supernatant. By this procedure, the inhibitor was identified as being a fragment of osteopontin; urinary trypsin inhibitor and nucleic acids were excluded as being responsible for inhibitory action....

  20. Human inter-α-inhibitor is a substrate for factor XIIIa and tissue transglutaminase

    DEFF Research Database (Denmark)

    Sonne-Schmidt, Carsten Scavenius; Sanggaard, Kristian W; Nikolajsen, Camilla L;

    2011-01-01

    In this study, we show that inter-α-inhibitor is a substrate for both factor XIIIa and tissue transglutaminase. These enzymes catalyze the incorporation of dansylcadaverine and biotin-pentylamine, revealing that inter-α-inhibitor contains reactive Gln residues within all three subunits. These fin......In this study, we show that inter-α-inhibitor is a substrate for both factor XIIIa and tissue transglutaminase. These enzymes catalyze the incorporation of dansylcadaverine and biotin-pentylamine, revealing that inter-α-inhibitor contains reactive Gln residues within all three subunits...

  1. High-resolution structure of human carbonic anhydrase II complexed with acetazolamide reveals insights into inhibitor drug design.

    Science.gov (United States)

    Sippel, Katherine H; Robbins, Arthur H; Domsic, John; Genis, Caroli; Agbandje-McKenna, Mavis; McKenna, Robert

    2009-10-01

    The crystal structure of human carbonic anhydrase II (CA II) complexed with the inhibitor acetazolamide (AZM) has been determined at 1.1 A resolution and refined to an R(cryst) of 11.2% and an R(free) of 14.7%. As observed in previous CA II-inhibitor complexes, AZM binds directly to the zinc and makes several key interactions with active-site residues. The high-resolution data also showed a glycerol molecule adjacent to the AZM in the active site and two additional AZMs that are adventitiously bound on the surface of the enzyme. The co-binding of AZM and glycerol in the active site demonstrate that given an appropriate ring orientation and substituents, an isozyme-specific CA inhibitor may be developed.

  2. Low Dose Histone Deacetylase Inhibitor, Depsipeptide (FR901228), Promotes Adenoviral Transduction in Human Rhabdomyosarcoma Cell Lines.

    Science.gov (United States)

    Navid, Fariba; Mischen, Blaine T; Helman, Lee J

    2004-01-01

    Purpose. Transduction of rhabdomyosarcoma (RMS) cells with adenoviral vectors for in vivo and in vitro applications has been limited by the low to absent levels of coxackie and adenovirus receptor (CAR). This study investigates the potential use of low doses of a histone deacetylase inhibitor, depsipeptide (FR901228), currently in Phase II human trials, to enhance adenoviral uptake in six rhabdomyosarcoma cell lines.Methods. Differences in adenoviral uptake in the presence and absence of depsipeptide (FR901228) were assessed using an adenoviral construct tagged with green fluorescent protein. Changes in CAR and alpha(v) integrin expression RMS in response to pretreatment with depsipeptide (FR901128) was determined using RT-PCR.Results. Pretreatment of five of six RMS cell lines with 0.5 ng/ml of depsipeptide (FR901228) for 72 h resulted in increased viral uptake as assessed by green fluorescent protein expression. RT-PCR analysis for CAR showed that in four of these five cell lines, CAR expression was increased 2.8-8.1-fold in cells treated with depsipeptide (FR901228) as compared to control. alpha(v) integrin expression was substantially increased in the one cell line, RH5, which showed increased GFP expression in response to depsipeptide (FR901228) pretreatment but a minimal increase in CAR expression.Conclusions. Depsipeptide (FR901228) can be used as a vehicle to enhance adenoviral transduction in a majority of RMS cells. The mechanism of increased viral uptake appears to mediate via upregulation of CAR.

  3. Expression of ODC Antizyme Inhibitor 2 (AZIN2 in Human Secretory Cells and Tissues.

    Directory of Open Access Journals (Sweden)

    Tiina Rasila

    Full Text Available Ornithine decarboxylase (ODC antizyme inhibitor 2 (AZIN2, originally called ODCp, is a regulator of polyamine synthesis that we originally identified and cloned. High expression of ODCp mRNA was found in brain and testis. We reported that AZIN2 is involved in regulation of cellular vesicle transport and / or secretion, but the ultimate physiological role(s of AZIN2 is still poorly understood. In this study we used a peptide antibody (K3 to human AZIN2 and by immunohistochemistry mapped its expression in various normal tissues. We found high expression in the nervous system, in type 2 pneumocytes in the lung, in megakaryocytes, in gastric parietal cells co-localized with H,K-ATPase beta subunit, in selected enteroendocrine cells, in acinar cells of sweat glands, in podocytes, in macula densa cells and epithelium of collecting ducts in the kidney. The high expression of AZIN2 in various cells with secretory or vesicle transport activity indicates that the polyamine metabolism regulated by AZIN2 is more significantly involved in these events than previously appreciated.

  4. The effect of PLC-γ2 inhibitors on the growth of human tumour cells.

    Science.gov (United States)

    Feng, Linda; Reynisdóttir, Inga; Reynisson, Jóhannes

    2012-08-01

    The phosphoinositide specific-phospholipase C-γ (PLC-γ1 and 2) enzymes are plausible anticancer targets implicated in cell motility important to invasion and dissemination of tumour cells. A host of known PLC-γ2 inhibitors were tested against the NCI60 panel of human tumour cell lines as well as their commercially available structural derivatives. A class of thieno[2,3-b]pyridines showed excellent growth arrest with derivative 3 giving GI(50) = 58 nM for the melanoma MDA-MB-435 cell line. The PLC-γ2 is uniquely expressed in haematopoietic cells and the leukaemia tumour cell lines were growth restricted on average GI(50) = 275 nM by derivative 3 indicating a specific interaction with this isoform. Furthermore, a moderate growth inhibition was found for compound classes of indoles and 1H-pyrazoles. It is likely that the active compounds do not only inhibit the PLC-γ2 isoform but other PLCs as well due to their conserved binding site. The compounds tested were identified by applying the tools of chemoinformatics, which supports the use of in silico methods in drug design.

  5. Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation

    Science.gov (United States)

    Bu, Li-Jia; Yu, Han-Qing; Fan, Lu-Lu; Li, Xiao-Qiu; Wang, Fang; Liu, Jia-Tao; Zhong, Fei; Zhang, Cong-Jun; Wei, Wei; Wang, Hua; Sun, Guo-Ping

    2017-01-01

    AIM To clarify the mechanisms involved in the critical endoplasmic reticulum (ER) stress initiating unfolded protein response pathway modified by melatonin. METHODS Hepatoma cells, HepG2, were cultured in vitro. Flow cytometry and TUNEL assay were used to measure HepG2 cell apoptosis. Western blotting and quantitative reverse transcription-polymerase chain reaction methods were used to determine the protein and messenger RNA levels of ER stress and apoptosis related genes’ expression, respectively. Tissue microarray construction from patients was verified by immunohistochemical analysis. RESULTS In the present study, we first identified that melatonin selectively blocked activating transcription factor 6 (ATF-6) and then inhibited cyclooxygenase-2 (COX-2) expression, leading to enhanced liver cancer cell apoptosis under ER stress condition. Dramatically increased CCAAT-enhancer-binding protein homologous protein level, suppressed COX-2 and decreased Bcl-2/Bax ratio by melatonin or ATF-6 siRNA contributed the enhanced HepG2 cell apoptosis under tunicamycin (an ER stress inducer) stimulation. In clinical hepatocellular carcinoma patients, the close relationship between ATF-6 and COX-2 was further confirmed. CONCLUSION These findings indicate that melatonin as a novel selective ATF-6 inhibitor can sensitize human hepatoma cells to ER stress inducing apoptosis. PMID:28246472

  6. Selective Serotonin Reuptake Inhibitors in Human Pregnancy: To Treat or Not to Treat?

    Directory of Open Access Journals (Sweden)

    Orna Diav-Citrin

    2012-01-01

    Full Text Available Selective serotonin reuptake inhibitors (SSRIs are increasingly prescribed during pregnancy. The purpose of the present paper is to summarize and evaluate the current evidence for the risk/benefit analysis of SSRI use in human pregnancy. The literature has been inconsistent. Although most studies have not shown an increase in the overall risk of major malformations, several studies have suggested that SSRIs may be associated with a small increased risk for cardiovascular malformations. Others have noted associations between SSRIs and specific types of rare major malformations. In some studies, there appears to be a small increased risk for miscarriages, which may be associated with the underlying maternal condition. Neonatal effects have been described in up to 30% of neonates exposed to SSRIs late in pregnancy. Persistent pulmonary hypertension of the newborn has also been described with an absolute risk of <1%. The risk associated with treatment discontinuation, for example, higher frequency of relapse and increased risk of preterm delivery, should also be considered. The overall benefit of treatment seems to outweigh the potential risks.

  7. Biophysical and physicochemical methods differentiate highly ligand-efficient human D-amino acid oxidase inhibitors.

    Science.gov (United States)

    Lange, Jos H M; Venhorst, Jennifer; van Dongen, Maria J P; Frankena, Jurjen; Bassissi, Firas; de Bruin, Natasja M W J; den Besten, Cathaline; de Beer, Stephanie B A; Oostenbrink, Chris; Markova, Natalia; Kruse, Chris G

    2011-10-01

    Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage.

  8. Inhibitory Effects of Fenofibrate on Plasminogen Activator Inhibitor-1 Expression in Human Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    DONG Chunxia; HU Yu; WANG Huafang; SUN Chunyan; WANG Yadan; HE Wenjuan; ZHANG Xiaoping

    2006-01-01

    The effects of fenofibrate on plasminogen activator inhibitor-1 (PAI-1) expression in human umbilical endothelial cell-derived transformed cell line-ECV 304 cells were investigated. ECV 304 cells were incubated with different concentrations of fenofibrate (0, 10, 50, 100 μmol/L) for 24 h. PAI-1 mRNA and protein was detected by reverse transcription-polymerase chain reaction (RT-PCR) and Westernblot respectively. PAI-1 antigenic content of endothelial cells was measured by using ELISA. Fenofibrate could inhibit the PAI-1 mRNA and protein expression and reduce PAI-1 antigenic content dependently. After treatment with fenofibrate (10 μmol/L), the expression levels of PAI-1 mRNA and protein were 0.65±0.05 and 0.96±0.11 respectively, significantly lower than in the control group (0.78±0.03 and 1.21±0.15, respectively, P<0.05). PAI-1 antigenie contents (24.52±8.39) in ECV304 cells treated with 10 μmol/L fenofibrate were significantly lower than those in the control group (6.98±5.12, P<0.05). It was concluded that fenofibrate inhibited the expression of PAI-1 mRNA in ECV304 cells, and reduce the protein expression and the antigenic content of PAI-1, suggesting that fenofibrate may have an antiatherosclerotic effect on endothelial cells by PAI-1 pathway.

  9. Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation.

    Science.gov (United States)

    Bu, Li-Jia; Yu, Han-Qing; Fan, Lu-Lu; Li, Xiao-Qiu; Wang, Fang; Liu, Jia-Tao; Zhong, Fei; Zhang, Cong-Jun; Wei, Wei; Wang, Hua; Sun, Guo-Ping

    2017-02-14

    To clarify the mechanisms involved in the critical endoplasmic reticulum (ER) stress initiating unfolded protein response pathway modified by melatonin. Hepatoma cells, HepG2, were cultured in vitro. Flow cytometry and TUNEL assay were used to measure HepG2 cell apoptosis. Western blotting and quantitative reverse transcription-polymerase chain reaction methods were used to determine the protein and messenger RNA levels of ER stress and apoptosis related genes' expression, respectively. Tissue microarray construction from patients was verified by immunohistochemical analysis. In the present study, we first identified that melatonin selectively blocked activating transcription factor 6 (ATF-6) and then inhibited cyclooxygenase-2 (COX-2) expression, leading to enhanced liver cancer cell apoptosis under ER stress condition. Dramatically increased CCAAT-enhancer-binding protein homologous protein level, suppressed COX-2 and decreased Bcl-2/Bax ratio by melatonin or ATF-6 siRNA contributed the enhanced HepG2 cell apoptosis under tunicamycin (an ER stress inducer) stimulation. In clinical hepatocellular carcinoma patients, the close relationship between ATF-6 and COX-2 was further confirmed. These findings indicate that melatonin as a novel selective ATF-6 inhibitor can sensitize human hepatoma cells to ER stress inducing apoptosis.

  10. Structure-based virtual screening for the discovery of natural inhibitors for human rhinovirus coat protein.

    Science.gov (United States)

    Rollinger, Judith M; Steindl, Theodora M; Schuster, Daniela; Kirchmair, Johannes; Anrain, Kathrin; Ellmerer, Ernst P; Langer, Thierry; Stuppner, Hermann; Wutzler, Peter; Schmidtke, Michaela

    2008-02-28

    Inhibitors of the human rhinovirus (HRV) coat protein are promising candidates to treat and prevent a number of upper respiratory diseases. The aim of this study was to find antiviral compounds from nature, focusing on the HRV coat protein. Through computational structure-based screening of an in-house 3D database containing 9676 individual plant metabolites from ancient herbal medicines, combined with knowledge from traditional use, we selected sesquiterpene coumarins from the gum resin asafetida as promising natural products. Chromatographic separation steps resulted in the isolation of microlobidene (1), farnesiferol C (2), farnesiferol B (3), and kellerin (4). Determination of the inhibition of the HRV-induced cytopathic effect for serotypes 1A, 2, 14, and 16 revealed a dose-dependent and selective antirhinoviral activity against serotype 2 for asafetida (IC50 = 11.0 microg/mL) and its virtually predicted constituents 2 (IC50 = 2.5 microM) and 3 (IC50 = 2.6 microM). Modeling studies helped to rationalize the retrieved results.

  11. Knockin mouse with mutant Gα11 mimics human inherited hypocalcemia and is rescued by pharmacologic inhibitors

    Science.gov (United States)

    Roszko, Kelly L.; Bi, Ruiye; Gorvin, Caroline M.; Xiong, Xiao-Feng; Inoue, Asuka; Thakker, Rajesh V.; Strømgaard, Kristian; Gardella, Thomas

    2017-01-01

    Heterotrimeric G proteins play critical roles in transducing extracellular signals generated by 7-transmembrane domain receptors. Somatic gain-of-function mutations in G protein α subunits are associated with a variety of diseases. Recently, we identified gain-of-function mutations in Gα11 in patients with autosomal-dominant hypocalcemia type 2 (ADH2), an inherited disorder of hypocalcemia, low parathyroid hormone (PTH), and hyperphosphatemia. We have generated knockin mice harboring the point mutation GNA11 c.C178T (p.Arg60Cys) identified in ADH2 patients. The mutant mice faithfully replicated human ADH2. They also exhibited low bone mineral density and increased skin pigmentation. Treatment with NPS 2143, a negative allosteric modulator of the calcium-sensing receptor (CASR), increased PTH and calcium concentrations in WT and mutant mice, suggesting that the gain-of-function effect of GNA11R6OC is partly dependent on coupling to the CASR. Treatment with the Gα11/q-specific inhibitor YM-254890 increased blood calcium in heterozygous but not in homozygous GNA11R60C mice, consistent with published crystal structure data showing that Arg60 forms a critical contact with YM-254890. This animal model of ADH2 provides insights into molecular mechanism of this G protein–related disease and potential paths toward new lines of therapy. PMID:28194446

  12. Apoptosis inhibitor 5 (API-5; AAC-11; FIF) is upregulated in human carcinomas in vivo.

    Science.gov (United States)

    Koci, Lenka; Chlebova, Katarina; Hyzdalova, Martina; Hofmanova, Jirina; Jira, Miroslav; Kysela, Petr; Kozubik, Alois; Kala, Zdenek; Krejci, Pavel

    2012-04-01

    Apoptosis inhibitor 5 (API-5) is a 55 kDa nuclear protein with potent anti-apoptotic signaling in tumor cells in vitro. In this study, we analyzed the expression of the API-5 protein in vivo in a broad spectrum of human carcinomas, including those of the colon, lung, liver, kidney, pancreas, stomach and esophagus using tumor tissues obtained during tumor resection. The results showed significant upregulation of API-5 expression in biopsies of lung (23%, n=13) and colorectal tumors (33%, n=27) in comparison with biopsies from the adjacent normal tissue. Colon cancer biopsies were used to study the cell populations with an upregulated level of expression of API-5 more closely. Using a magnetic bead-based selection for the epithelial cell marker EpCAM, we purified epithelial cells from the tumor and control tissues and analyzed these cells for API-5 expression by western immunoblotting. We observed that EpCAM-positive tumor cells expressed API-5 in all three colorectal cancer cases tested, in contrast to the control EpCAM-positive and EpCAM-negative cells isolated from the control or tumor tissues. These data suggest that the expression of the API-5 protein is upregulated in tumor epithelial cells and may serve as a prognostic marker in colorectal cancer.

  13. Main: C1GMAUX28 [PLACE

    Lifescience Database Archive (English)

    Full Text Available C1GMAUX28 S000326 7-Sep-2000 (last modified) seki C1; DNase I protected sequence fo...und in the soybean (G.m.) auxin responsive gene, Aux28, promoter; Located between -463 and -448; A/T-rich sequence; Auxin; Aux28; soybean (Glycine max) TGAAAACAGTGAGTTA ...

  14. C1 neurons: the body's EMTs

    Science.gov (United States)

    Stornetta, Ruth L.; Bochorishvili, Genrieta; DePuy, Seth D.; Burke, Peter G. R.; Abbott, Stephen B. G.

    2013-01-01

    The C1 neurons reside in the rostral and intermediate portions of the ventrolateral medulla (RVLM, IVLM). They use glutamate as a fast transmitter and synthesize catecholamines plus various neuropeptides. These neurons regulate the hypothalamic pituitary axis via direct projections to the paraventricular nucleus and regulate the autonomic nervous system via projections to sympathetic and parasympathetic preganglionic neurons. The presympathetic C1 cells, located in the RVLM, are probably organized in a roughly viscerotopic manner and most of them regulate the circulation. C1 cells are variously activated by hypoglycemia, infection or inflammation, hypoxia, nociception, and hypotension and contribute to most glucoprivic responses. C1 cells also stimulate breathing and activate brain stem noradrenergic neurons including the locus coeruleus. Based on the various effects attributed to the C1 cells, their axonal projections and what is currently known of their synaptic inputs, subsets of C1 cells appear to be differentially recruited by pain, hypoxia, infection/inflammation, hemorrhage, and hypoglycemia to produce a repertoire of stereotyped autonomic, metabolic, and neuroendocrine responses that help the organism survive physical injury and its associated cohort of acute infection, hypoxia, hypotension, and blood loss. C1 cells may also contribute to glucose and cardiovascular homeostasis in the absence of such physical stresses, and C1 cell hyperactivity may contribute to the increase in sympathetic nerve activity associated with diseases such as hypertension. PMID:23697799

  15. Thermodynamic parameters for binding of some halogenated inhibitors of human protein kinase CK2

    Energy Technology Data Exchange (ETDEWEB)

    Winiewska, Maria; Makowska, Małgorzata [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Maj, Piotr [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Nencki Institute of Experimental Biology PAS, Warszawa (Poland); Wielechowska, Monika; Bretner, Maria [Warsaw University of Technology, Faculty of Chemistry, Warszawa (Poland); Poznański, Jarosław, E-mail: jarek@ibb.waw.pl [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Shugar, David [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland)

    2015-01-02

    Highlights: • Two new compounds being potential human CK2a inhibitors are studied. • Their IC50 values were determined in vitro. • The heats of binding and kbind were estimated using DSC. • The increased stability of protein–ligand complexes was followed by fluorescence. • Methylated TBBt derivative (MeBr3Br) is almost as active as TBBt. - Abstract: The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC{sub 50}) and biophysical methods (thermal stability of protein–ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein–ligand complexes shows that the heat of ligand binding (H{sub bind}) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between H{sub bind} and ligand pK{sub a}. Screening, based on fluorescence-monitored thermal unfolding of protein–ligand complexes, gave comparable results, clearly identifying ligands that most strongly bind to the protein. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly, relative to possible intermolecular halogen bonding, in binding of the ligands to the CK2α ATP-binding site.

  16. An integrated in silico approach to design specific inhibitors targeting human poly(a-specific ribonuclease.

    Directory of Open Access Journals (Sweden)

    Dimitrios Vlachakis

    Full Text Available Poly(A-specific ribonuclease (PARN is an exoribonuclease/deadenylase that degrades 3'-end poly(A tails in almost all eukaryotic organisms. Much of the biochemical and structural information on PARN comes from the human enzyme. However, the existence of PARN all along the eukaryotic evolutionary ladder requires further and thorough investigation. Although the complete structure of the full-length human PARN, as well as several aspects of the catalytic mechanism still remain elusive, many previous studies indicate that PARN can be used as potent and promising anti-cancer target. In the present study, we attempt to complement the existing structural information on PARN with in-depth bioinformatics analyses, in order to get a hologram of the molecular evolution of PARNs active site. In an effort to draw an outline, which allows specific drug design targeting PARN, an unequivocally specific platform was designed for the development of selective modulators focusing on the unique structural and catalytic features of the enzyme. Extensive phylogenetic analysis based on all the publicly available genomes indicated a broad distribution for PARN across eukaryotic species and revealed structurally important amino acids which could be assigned as potentially strong contributors to the regulation of the catalytic mechanism of PARN. Based on the above, we propose a comprehensive in silico model for the PARN's catalytic mechanism and moreover, we developed a 3D pharmacophore model, which was subsequently used for the introduction of DNP-poly(A amphipathic substrate analog as a potential inhibitor of PARN. Indeed, biochemical analysis revealed that DNP-poly(A inhibits PARN competitively. Our approach provides an efficient integrated platform for the rational design of pharmacophore models as well as novel modulators of PARN with therapeutic potential.

  17. Determination of triapine, a ribonucleotide reductase inhibitor, in human plasma by liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Feng, Ye; Kunos, Charles A; Xu, Yan

    2015-09-01

    Triapine is an inhibitor of ribonucleotide reductase (RNR). Studies have shown that triapine significantly decreases the activity of RNR and enhanced the radiation-mediated cytotoxicity in cervical and colon cancer. In this work, we have developed and validated a selective and sensitive LC-MS/MS method for the determination of triapine in human plasma. In this method, 2-[(3-fluoro-2-pyridinyl)methylene] hydrazinecarbothioamide (NSC 266749) was used as the internal standard (IS); plasma samples were prepared by deproteinization with acetonitrile; tripaine and the IS were separated on a Waters Xbridge Shield RP18 column (3.5 µm; 2.1 × 50 mm) using a mobile phase containing 25.0% methanol and 75.0% ammonium bicarbonate buffer (10.0 mM, pH 8.50; v/v); column eluate was monitored by positive turbo-ionspray tandem mass spectrometry; and quantitation of triapine was carried out in multiple-reaction-monitoring mode. The method developed had a linear calibration range of 0.250-50.0 ng/mL with correlation coefficient of 0.999 for triapine in human plasma. The IS-normalized recovery and the IS-normalized matrix factor of triapine were 101-104% and 0.89-1.05, respectively. The accuracy expressed as percentage error and precision expressed as coefficient of variation were ≤±6 and ≤8%, respectively. The validated LC-MS/MS method was applied to the measurement of triapine in patient samples from a phase I clinical trial.

  18. Stimulation of human formyl peptide receptors by calpain inhibitors: homology modeling of receptors and ligand docking simulation.

    Science.gov (United States)

    Fujita, Hisakazu; Kato, Takayuki; Watanabe, Norifumi; Takahashi, Tatsuji; Kitagawa, Seiichi

    2011-12-15

    Calpain inhibitors, including peptide aldehydes (N-acetyl-Leu-Leu-Nle-CHO and N-acetyl-Leu-Leu-Met-CHO) and α-mercapto-acrylic acid derivatives (PD150606 and PD151746), have been shown to stimulate phagocyte functions via activation of human formyl peptide receptor (hFPR) and/or hFPR-like 1 (hFPRL1). Using the homology modeling of the receptors and the ligand docking simulation, here we show that these calpain inhibitors could bind to the putative N-formyl-Met-Leu-Phe (fMLF) binding site on hFPR and/or hFPRL1. The studies with HEK-293 cells stably expressing hFPR or hFPRL1 showed that the concentrations of calpain inhibitors required to induce an increase in cytoplasmic free Ca(2+) ([Ca(2+)](i)) was much higher (>100 folds) than those of fMLF and Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm). HEK-293 cells expressing hFPR or hFPRL1 with the mutated fMLF binding site never exhibited the [Ca(2+)](i) response to calpain inhibitors. When the optimal concentrations of each stimulus were used, pretreatment of cells with fMLF or WKYMVm abolished an increase in [Ca(2+)](i) induced by calpain inhibitors as well as the same stimulus, whereas pretreatment of cells with calpain inhibitors significantly suppressed, but never abolished, the [Ca(2+)](i) response induced by fMLF or WKYMVm, suggesting that the binding affinity of the inhibitors to the putative fMLF binding site may be lower than that of fMLF or WKYMVm. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    Science.gov (United States)

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  20. Potent inhibitors for the deamination of cytosine arabinoside and 5-aza-2'-deoxycytidine by human cytidine deaminase.

    Science.gov (United States)

    Laliberté, J; Marquez, V E; Momparler, R L

    1992-01-01

    Deamination of the nucleoside analogues ARA-C and 5-AZA-CdR by CR deaminase results in a loss of antileukemic activity. To prevent the inactivation of these analogues, inhibitors of CR deaminase may prove to be useful agents. In the present study we investigated the effects of the deaminase inhibitors Zebularine, 5-F-Zebularine, and diazepinone riboside on the deamination of CR, ARA-C, and 5-AZA-CdR using highly purified human CR deaminase (EC 3.5.4.5). These inhibitors produced a competitive type of inhibition with each substrate, the potency of which followed the patterns diazepinone riboside greater than 5-F-Zebularine and THU greater than Zebularine. 5-AZA-CdR was more sensitive than ARA-C to the inhibition produced by these deaminase inhibitors. The inhibition constants for diazepinone riboside lay in the range of 5-15 nM, suggesting that this inhibitor could be an excellent candidate for use in combination chemotherapy with either ARA-C or 5-AZA-CdR in patients with leukemia.

  1. Establishment of a selective evaluation method for DPP4 inhibitors based on recombinant human DPP8 and DPP9 proteins

    Directory of Open Access Journals (Sweden)

    Jinglong Liu

    2014-04-01

    Full Text Available Dipeptidyl peptidase 4 (DPP4 is recognised as an attractive anti-diabetic drug target, and several DPP4 inhibitors are already on the market. As members of the same gene family, dipeptidyl peptidase 8 (DPP8 and dipeptidyl peptidase 9 (DPP9 share high sequence and structural homology as well as functional activity with DPP4. However, the inhibition of their activities was reported to cause severe toxicities. Thus, the development of DPP4 inhibitors that do not have DPP8 and DPP9 inhibitory activity is critical for safe anti-diabetic therapy. To achieve this goal, we established a selective evaluation method for DPP4 inhibitors based on recombinant human DPP8 and DPP9 proteins expressed by Rosetta cells. In this method, we used purified recombinant 120 kDa DPP8 or DPP9 protein from the Rosetta expression system. The optimum concentrations of the recombinant DPP8 and DPP9 proteins were 30 ng/mL and 20 ng/mL, respectively, and the corresponding concentrations of their substrates were both 0.2 mmol/L. This method was highly reproducible and reliable for the evaluation of the DPP8 and DPP9 selectivity for DPP4 inhibitor candidates, which would provide valuable guidance in the development of safe DPP4 inhibitors.

  2. Histone deacetylase inhibitor MS-275 alone or combined with bortezomib or sorafenib exhibits strong antiproliferative action in human cholangiocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Viola Baradari; Michael H(o)pfner; Alexander Huether; Detlef Schuppan; Hans Scherübl

    2007-01-01

    AIM: To investigate the antiproliferative effect of the histone deacetylase (HDAC) inhibitor MS-275 on cholangiocarcinoma cells alone and in combination with conventional cytostatic drugs (gemcitabine or doxorubicin)or the novel anticancer agents sorafenib or bortezomib.METHODS: Two human bile duct adenocarcinoma cell lines (EGI-1 and TFK-1) were studied. Crystal violet staining was used for detection of cell number changes.Cytotoxicity was determined by measuring the release of the cytoplasmic enzyme lactate dehydrogenase (LDH).Apoptosis was determined by measuring the enzyme activity of caspase-3. Cell cycle status reflected by the DNA content was detected by flow cytometry.RESULTS: MS-275 treatment potently inhibited the proliferation of EGI-1 and TFK-1 cholangiocarcinoma cells by inducing apoptosis and cell cycle arrest. MS-275-induced apoptosis was characterized by activation of caspase-3, up-regulation of Bax and down-regulation of Bcl-2. Cell cycle was predominantly arrested at the G1/S checkpoint, which was associated with induction of the cyclin-dependent kinase inhibitor p21Waf/CIP1. Furthermore,additive anti-neoplastic effects were observed when MS-275 treatment was combined with gemcitabine or doxorubicin, while combination with the multikinase inhibitor sorafenib or the proteasome inhibitor bortezomib resulted in overadditive anti-neoplastic effects.CONCLUSION: The growth of human cholangiocarcinoma cells can be potently inhibited by MS-275 alone or in combination with conventional cytostatic drugs or new,targeted anticancer agents.

  3. A selective reversible azapeptide inhibitor of human neutrophil proteinase 3 derived from a high affinity FRET substrate.

    Science.gov (United States)

    Epinette, Christophe; Croix, Cécile; Jaquillard, Lucie; Marchand-Adam, Sylvain; Kellenberger, Christine; Lalmanach, Gilles; Cadene, Martine; Viaud-Massuard, Marie-Claude; Gauthier, Francis; Korkmaz, Brice

    2012-03-15

    The biological functions of human neutrophil proteinase 3 (PR3) remain unclear because of its close structural resemblance to neutrophil elastase and its apparent functional redundancy with the latter. Thus, all natural inhibitors of PR3 preferentially target neutrophil elastase. We have designed a selective PR3 inhibitor based on the sequence of one of its specific, sensitive FRET substrates. This azapeptide, azapro-3, inhibits free PR3 in solution, PR3 bound to neutrophil membranes, and the PR3 found in crude lung secretions from patients with chronic inflammatory pulmonary diseases. But it does not inhibit significantly neutrophil elastase or cathepsin G. Unlike most of azapeptides, this inhibitor does not form a stable acyl-enzyme complex; it is a reversible competitive inhibitor with a K(i) comparable to the K(m) of the parent substrate. Low concentrations (60 μM) of azapro-3 totally inhibited the PR3 secreted by triggered human neutrophils (200,000 cells/100 μL) and the PR3 in neutrophil homogenates and in lung secretions of patients with lung inflammation for hours. Azapro-3 also resisted proteolysis by all proteases contained in these samples for at least 2h.

  4. HSP90 Inhibitors, Geldanamycin and Radicicol, Enhance Fisetin-Induced Cytotoxicity via Induction of Apoptosis in Human Colonic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ming-Shun Wu

    2013-01-01

    Full Text Available We revealed the cytotoxic effect of the flavonoid, fisetin (FIS, on human COLO205 colon cancer cells in the presence and absence of the HSP90 inhibitors, geldanamycin (GA and radicicol (RAD. Compared to FIS treatment alone of COLO205 cells, GA and RAD significantly enhanced FIS-induced cytotoxicity, increased expression of cleaved caspase-3 and the PAPR protein, and produced a greater density of DNA ladder formation. GA and RAD also reduced the MMPs with induction of caspase-9 protein cleavage in FIS-treated COLO205 cells. Increased caspase-3 and -9 activities were detected in COLO205 cells treated with FIS+GA or FIS+RAD, and the intensity of DNA ladder formation induced by FIS+GA was reduced by adding the caspase-3 inhibitor, DEVD-FMK. A decrease in Bcl-2 but not Bcl-XL or Bax protein by FIS+GA or FIS+RAD was identified in COLO205 cells by Western blotting. A reduction in p53 protein with increased ubiquitin-tagged proteins was observed in COLO205 cells treated with FIS+GA or FIS+RAD. Furthermore, GA and RAD reduced the stability of the p53 protein in COLO205 cells under FIS stimulation. The evidence supports HSP90 inhibitors possibly sensitizing human colon cancer cells to FIS-induced apoptosis, and treating colon cancer by combining HSP90 inhibitors with FIS deserves further in vivo study.

  5. Histone Deacetylase Inhibitors Stimulate Dedifferentiation of Human Breast Cancer Cells through WNT/β-catenin Signaling

    Science.gov (United States)

    Debeb, Bisrat G; Lacerda, Lara; Xu, Wei; Larson, Richard; Solley, Travis; Atkinson, Rachel; Sulman, Erik P.; Ueno, Naoto T; Krishnamurthy, Savitri; Reuben, James M; Buchholz, Thomas A; Woodward, Wendy A

    2015-01-01

    Recent studies have shown that differentiated cancer cells can de-differentiate into cancer stem cells (CSCs) although to date no studies have reported whether this transition is influenced by systemic anti-cancer agents. Valproic acid (VA) is a histone deacetylase (HDAC) inhibitor that promotes self renewal and expansion of hematopietic stem cells and facilitates the generation of induced pluripotent stem cells from somatic cells and is currently being investigated in breast cancer clinical trials. We hypothesized that HDAC inhibitors reprogram differentiated cancer cells towards the more resistant stem cell-like state. Two highly aggressive breast cancer cell lines, SUM159 and MDA-231, were FACS-sorted based on ALDH activity and subsequently ALDH-negative and ALDH-positive cells were treated with one of two known HDAC inhibitors, VA or SAHA (suberoylanilide hydroxamic acid). In addition, primary tumor cells from patients with metastatic breast cancer were evaluated for ALDH activity following treatment with HDAC inhibitors. We demonstrate that single cell sorted ALDH- negative cells spontaneously generated ALDH-positive cells in vitro. Treatment of ALDH-negative cells with HDAC inhibitors promoted the expansion of ALDH-positive cells and increased mammosphere forming efficiency. Most importantly, it significantly increased the tumor-initiating capacity of ALDH- negative cells in limiting dilution outgrowth assays. Moreover, while HDAC inhibitors upregulated β-catenin expression and significantly increased WNT reporter activity, a TCF4 dominant negative construct abolished HDAC-inhibitor induced expansion of CSCs. These results demonstrate that HDAC inhibitors promote the expansion of breast CSCs through dedifferentiation and have important clinical implications for the use of HDAC inhibitors in the treatment of cancer. PMID:22961641

  6. Structure-based design of irreversible, tripeptidyl human rhinovirus 3C protease inhibitors containing N-methyl amino acids.

    Science.gov (United States)

    Dragovich, P S; Webber, S E; Prins, T J; Zhou, R; Marakovits, J T; Tikhe, J G; Fuhrman, S A; Patick, A K; Matthews, D A; Ford, C E; Brown, E L; Binford, S L; Meador, J W; Ferre, R A; Worland, S T

    1999-08-02

    Tripeptide-derived molecules incorporating N-methyl amino acid residues and C-terminal Michael acceptor moieties were evaluated as irreversible inhibitors of the cysteine-containing human rhinovirus 3C protease (3CP). Such compounds displayed good 3CP inhibition activity (k(obs)/[I] up to 610,000 M(-1) s(-1)) and potent in vitro antiviral properties (EC50 approaching 0.03 microM) when tested against HRV serotype-14.

  7. Pharmacophore-based design, synthesis, and biological evaluation of novel chloro-pyridazine piperazines as human rhinovirus (HRV-3) inhibitors.

    Science.gov (United States)

    Wang, Hongliang; Xiao, Junhai; Gao, Dapeng; Zhang, Xian; Yan, Hui; Gong, Zehui; Sun, Tinmin; Li, Song

    2011-02-01

    A series of chloro-pyridazine piperazines were developed based on the structure of human rhinovirus (HRV) capsid-binding inhibitors with proven activity using a pharmacophore model. A preliminary evaluation demonstrated potent activity against HRV-3 with low cytotoxicity. A docking analysis indicated that 8a could fit into, and form tight interactions (e.g., H-bonds, σ-π effect) with the active site in VP1.

  8. Reduced human herpesvirus-8 oropharyngeal shedding associated with protease inhibitor-based antiretroviral therapy.

    Science.gov (United States)

    Gantt, Soren; Cattamanchi, Ashok; Krantz, Elizabeth; Magaret, Amalia; Selke, Stacy; Kuntz, Steven R; Huang, Meei-Li; Corey, Lawrence; Wald, Anna; Casper, Corey

    2014-06-01

    Human herpesvirus 8 (HHV-8) replication increases the risk of Kaposi sarcoma (KS). Highly-active antiretroviral therapy (HAART) reduces the incidence of KS, and regimens that contain protease inhibitors (PIs) may be particularly effective. To determine whether PI-based HAART regimens may more effectively inhibit HHV-8 shedding compared to regimens without PIs. Prospective, observational study of 142 HIV-1 and HHV-8 co-infected men conducted in Seattle, Washington. Quantitative HHV-8 PCR testing was performed on daily swabs of the oropharynx, the primary site of HHV-8 replication. Associations between antiretroviral regimen and detection of HHV-8 DNA in swabs were evaluated using generalized estimating equations. HHV-8 DNA was detected in 3016 (26%) of 11,608 specimens collected. PI-based HAART was associated with a statistically significantly lower frequency of detection (RR 0.2; 95% CI 0.1-0.5) compared to ART-naïve persons, whereas HAART without a PI was not (RR 0.7; 95% CI 0.4-1.3). Compared to ART-naïve persons, there was also a trend toward lower quantities of HHV-8 detected during treatment with HAART regimens that contained a PI. These associations between PIs and measures of HHV-8 shedding could not be attributed to use of nelfinavir, which inhibits HHV-8 replication in vitro, and were independent of CD4 count and HIV plasma viral load (VL). HAART regimens that contain PIs appear to decrease HHV-8 shedding compared to NNRTIs. Further study of PI-based HAART is warranted to determine the optimal regimens for prevention and treatment of KS. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Aminopeptidase N (APN/CD13 inhibitor, Ubenimex, enhances radiation sensitivity in human cervical cancer

    Directory of Open Access Journals (Sweden)

    Nawa Akihiro

    2008-03-01

    Full Text Available Abstract Background Radiotherapy can be used to treat all stages of cervical cancer. For improving local control via radiotherapy, it is important to use additional antitumor agents. Aminopeptidase N (APN/CD13, a 150-kDa metalloproteinase, is a multifunctional cell surface aminopeptidase with ubiquitous expression. Recent studies have suggested that APN/CD13 plays an important role in tumor progression in several human malignancies. Methods We investigated whether the suppression of APN/CD13 using Ubenimex, an inhibitor of APN/CD13 activity, may affect tumor radiosensitivity in cervical cancer cells both in vitro and in vivo. Cell surface APN/CD13 activity in HeLa cells was calculated using alanine-p-nitroanilido as a substrate. For colony formation assays, single-dose radiation and/or Ubenimex were administered to each dish of HeLa cells, and these dishes were cultured for 14 days. Molecular changes of apoptosis were determined by Western blot. Apoptosis was evaluated by Annexin-V PI staining (flow cytometry analysis and the Tunel method. Moreover, we investigated the effect of combining Ubenimex and low-dose radiation on tumor growth using nude mice. Results We demonstrated that Ubenimex enhanced the effectiveness of radiotherapy, acting as a radiosensitizer both in vitro and in vivo. In colony formation assays, a significant decline in clonogenic survival was observed in Ubenimex-treated cells. Mice treated with a combination of radiation and Ubenimex showed a significant prolongation of the tumor-doubling time compared with the control, Ubenimex, or radiation-alone groups. We also showed that ubenimex enhanced radiation-induced apoptosis in vitro and in vivo. Conclusion Although further studies are needed, this report suggests that Ubeniemx acts as a radiosensitizer in cervical cancer treatment, and that the inhibition of APN/CD13 activity may represent a new approach for improving the therapeutic efficacy of radiotherapy for uterine

  10. Effect of Human Flavin-Containing Monooxygenase 3 Polymorphism on the Metabolism of Aurora Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Sheila J. Sadeghi

    2013-01-01

    Full Text Available Aurora kinases were recently identified as a potential target in anticancer therapy and, amongst their available inhibitors, Tozasertib (VX-680 and Danusertib (PHA-739358 have been indicated as possible substrates of human flavin-containing monooxygenase 3 (hFMO3. Here we report the in vitro rate of oxidation of these drugs by wild-type hFMO3 and its polymorphic variant V257M. The conversion of Tozasertib and Danusertib to their corresponding metabolites, identified by LC-MS, by the purified wild-type and V257M hFMO3 show significant differences. In the case of Tozasertib, the V257M variant shows a catalytic efficiency, expressed as kcat/Km, similar to the wild-type: 0.39 ± 0.06 min−1µM−1 for V257M compared to 0.33 ± 0.04 min−1µM−1 for the wild type. On the other hand, in the case of Danusertib, V257M shows a 3.4× decrease in catalytic efficiency with kcat/Km values of 0.05 ± 0.01 min−1µM−1 for V257M and 0.17 ± 0.03 min−1µM−1 for the wild type. These data reveal how a simple V257M substitution ascribed to a single nucleotide polymorphism affects the N-oxidation of relevant anticancer drugs, with important outcome in their therapeutic effects. These findings demonstrate that codon 257 is important for activity of the hFMO3 gene and the codon change V to M has an effect on the catalytic efficiency of this enzyme.

  11. Direct activation of human phospholipase C by its well known inhibitor u73122.

    Science.gov (United States)

    Klein, Ryan R; Bourdon, David M; Costales, Chester L; Wagner, Craig D; White, Wendy L; Williams, Jon D; Hicks, Stephanie N; Sondek, John; Thakker, Dhiren R

    2011-04-08

    Phospholipase C (PLC) enzymes are an important family of regulatory proteins involved in numerous cellular functions, primarily through hydrolysis of the polar head group from inositol-containing membrane phospholipids. U73122 (1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione), one of only a few small molecules reported to inhibit the activity of these enzymes, has been broadly applied as a pharmacological tool to implicate PLCs in diverse experimental phenotypes. The purpose of this study was to develop a better understanding of molecular interactions between U73122 and PLCs. Hence, the effects of U73122 on human PLCβ3 (hPLCβ3) were evaluated in a cell-free micellar system. Surprisingly, U73122 increased the activity of hPLCβ3 in a concentration- and time-dependent manner; up to an 8-fold increase in enzyme activity was observed with an EC50=13.6±5 μm. Activation of hPLCβ3 by U73122 required covalent modification of cysteines as evidenced by the observation that enzyme activation was attenuated by thiol-containing nucleophiles, l-cysteine and glutathione. Mass spectrometric analysis confirmed covalent reaction with U73122 at eight cysteines, although maximum activation was achieved without complete alkylation; the modified residues were identified by LC/MS/MS peptide sequencing. Interestingly, U73122 (10 μm) also activated hPLCγ1 (>10-fold) and hPLCβ2 (∼2-fold); PLCδ1 was neither activated nor inhibited. Therefore, in contrast to its reported inhibitory potential, U73122 failed to inhibit several purified PLCs. Most of these PLCs were directly activated by U73122, and a simple mechanism for the activation is proposed. These results strongly suggest a need to re-evaluate the use of U73122 as a general inhibitor of PLC isozymes.

  12. A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase.

    Science.gov (United States)

    Fook, J M S L L; Macedo, L L P; Moura, G E D D; Teixeira, F M; Oliveira, A S; Queiroz, A F S; Sales, M P

    2005-05-01

    Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors.

  13. Synthetic peptides and fluorogenic substrates related to the reactive site sequence of Kunitz-type inhibitors isolated from Bauhinia: interaction with human plasma kallikrein.

    Science.gov (United States)

    Oliva, M L; Santomauro-Vaz, E M; Andrade, S A; Juliano, M A; Pott, V J; Sampaio, M U; Sampaio, C A

    2001-01-01

    We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.

  14. Regeneration of human epidermis on acellular dermis is impeded by small-molecule inhibitors of EGF receptor tyrosine kinase.

    Science.gov (United States)

    Forsberg, Sofi; Ostman, Arne; Rollman, Ola

    2008-10-01

    The family of human epidermal growth factor receptors (EGFR, HER2-4) exerts key functions in normal and malignant epithelial cells. Both EGFR and HER2 are valuable targets for anti-cancer drugs by interfering with ligand binding, receptor dimerization, or tyrosine kinase activity. A similar therapeutic strategy has been advocated for chronic psoriasis since plaque lesions overexpress EGFR and its ligands. Our aim was to characterize EGFR/HER2 protein expression in skin cultures and to evaluate the effects of tyrosine kinase inhibitors on epidermal outgrowth, morphology, and EGFR activation. Human skin explants were established on cell-free dermis and cultured at the air-liquid interface. The impact of small-molecule HER inhibitors on outgrowth was assayed by fluorescence-based image analysis and histometry. Effects of a dual EGFR/HER2 kinase inhibitor, PKI166, on neoepidermis were studied by immunohistochemistry and Western blot. Receptor immunostaining showed in vivo-like distributions with highest EGFR intensity in the proliferative layers whereas HER2 was mainly expressed by suprabasal keratinocytes. Reepithelialization was associated with EGFR autophosphorylation irrespective of exogenous ligand stimulation. PKI166 inhibited neoepidermal EGFR activation, keratinocyte proliferation, and outgrowth from normal and psoriatic skin explants. The rate of epidermalization in presence of other HER inhibitors varied suggesting that drug specificity, potency, and reversibility determine the dynamic outcome. Overall, agents predominantly targeting EGFR kinase were more efficient inhibitors of epidermal regeneration than an HER2-selective drug. The study illustrates the usefulness of a dynamic skin model and emphasizes the potential of HER-directed approaches to control epidermal growth in hyperproliferative skin disorders.

  15. Limited efficacy of COX-2 inhibitors on nerve growth factor and metalloproteinases expressions in human synovial fibroblasts.

    Science.gov (United States)

    Yorifuji, Makiko; Sawaji, Yasunobu; Endo, Kenji; Kosaka, Taiichi; Yamamoto, Kengo

    2016-05-01

    Nerve growth factor (NGF) is associated with arthritic pain and metalloproteinases are implicated in collagen and aggrecan degradation. Although selective COX-2 inhibitors are recommended for the treatment of arthritic diseases, their effects on NGF and metalloproteinases remain unclear. This study investigated the regulations of NGF and metalloproteinases by selective COX-2 inhibitors in isolated human synovial cells. The isolated human synovial cells were stimulated with IL-1β in the presence of selective COX-2 inhibitors (NS-398 or celecoxib) with or without exogenous PGE2 or its receptor (EP1-4) agonists. The expressions of NGF, MMP-1, -3, -13, ADAMTS-4, and -5 were quantified by real-time PCR and their proteins were determined by Western blotting. The amount of PGE2 released was measured by enzyme-linked immunosorbent assay (ELISA). The IL-1β inductions of NGF and MMP-1 and MMP-13 were augmented by the COX-2 inhibitors, whereas the inductions of ADAMTS-4 and ADAMTS-5 were inhibited. These actions were reversed by supplementing PGE2 or the EP4 agonist exogenously. Our comprehensive analysis revealed that COX-2 inhibitors may be beneficial for suppressing aggrecan degradation and for reducing inflammatory pain by inhibiting PGE2 release, although they may have limited efficacy in suppressing collagen degradation and nerve growth. This study suggests the feedback roles of PGE2 in the negative regulation of NGF and MMP-1 and MMP-13 and the positive regulation of ADAMTS-4 and ADAMTS-5. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  16. String Interactions in c=1 Matrix Model

    CERN Document Server

    De Boer, J; Verlinde, E; Yee, J T; Boer, Jan de; Sinkovics, Annamaria; Verlinde, Erik; Yee, Jung-Tay

    2004-01-01

    We study string interactions in the fermionic formulation of the c=1 matrix model. We give a precise nonperturbative description of the rolling tachyon state in the matrix model, and discuss S-matrix elements of the c=1 string. As a first step to study string interactions, we compute the interaction of two decaying D0-branes in terms of free fermions. This computation is compared with the string theory cylinder diagram using the rolling tachyon ZZ boundary states.

  17. Total synthesis of (-)-CP2-disorazole C1.

    Science.gov (United States)

    Hopkins, Chad D; Schmitz, John C; Chu, Edward; Wipf, Peter

    2011-08-05

    The total synthesis of a bis-cyclopropane analog of the antimitotic natural product (-)-disorazole C(1) was accomplished in 23 steps and 1.1% overall yield. A vinyl cyclopropane cross-metathesis reaction generated a key (E)-alkene segment of the target molecule. IC(50) determinations of (-)-CP(2)-disorazole C(1) in human colon cancer cell lines indicated low nanomolar cytotoxic properties. Accordingly, this synthetic bioisostere represents the first biologically active disorazole analog not containing a conjugated diene or polyene substructure element.

  18. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis.

    Science.gov (United States)

    Tahtouh, Muriel; Garçon-Bocquet, Annelise; Croq, Françoise; Vizioli, Jacopo; Sautière, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Nagnan-le Meillour, Patricia; Pestel, Joël; Lefebvre, Christophe

    2012-02-22

    In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech.

  19. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis

    Directory of Open Access Journals (Sweden)

    Tahtouh Muriel

    2012-02-01

    Full Text Available Abstract Background In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR, which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Methods Recombinant HmC1q (rHmC1q was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. Results rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. Conclusions A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal

  20. CGP 53437, an orally bioavailable inhibitor of human immunodeficiency virus type 1 protease with potent antiviral activity.

    Science.gov (United States)

    Alteri, E; Bold, G; Cozens, R; Faessler, A; Klimkait, T; Lang, M; Lazdins, J; Poncioni, B; Roesel, J L; Schneider, P

    1993-10-01

    CGP 53437 is a peptidomimetic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease containing a hydroxyethylene isostere. The compound inhibited recombinant HIV-1 protease with a Ki of 0.2 nM. The inhibition constant versus human cathepsin D and human cathepsin E was 4 nM. Human pepsin and gastricsin were inhibited with Kis of 8 and 500 nM, respectively, and human renin was inhibited with a Ki of 190 microM. The replication of HIV-1/LAV, HIV-1/Z-84, and HIV-1/pLAI was inhibited with a 90% effective dose of 0.1 microM in acutely infected MT-2 cells. The 50% cytotoxic dose was 100 microM. Similar antiviral activity was observed when the compound was added up to 10 h after infection. At the effective concentration, processing of Gag precursor protein p55 was greatly reduced, confirming an action on the late stage of the virus life cycle, as expected. The efficacy of the inhibitor was also demonstrated by using primary human peripheral blood lymphocytes infected with the HIV-1/LAV strain, low-passage clinical isolates obtained from HIV-1-seropositive individuals (including a zidovudine-resistant strain), and HIV-2/ROD. In these cells, CGP 53437 delayed the onset of HIV replication in a dose-dependent fashion (substantial effects with concentrations of > or = 0.1 microM) as long as the inhibitor was maintained in the culture. CGP 53437 was orally bioavailable in mice. Concentrations in plasma 10-fold in excess of the in vitro antiviral 90% effective dose could be sustained for several hours after oral application of 120 mg/kg. Therefore, CGP 53437 has the potential to be a therapeutically useful anti-HIV agent for the treatment of AIDS.

  1. Organic cadmium complexes as proteasome inhibitors and apoptosis inducers in human breast cancer cells.

    Science.gov (United States)

    Zhang, Zhen; Bi, Caifeng; Buac, Daniela; Fan, Yuhua; Zhang, Xia; Zuo, Jian; Zhang, Pengfei; Zhang, Nan; Dong, Lili; Dou, Q Ping

    2013-06-01

    Although cadmium (Cd) is a widespread environmental contaminant and human carcinogen, our studies indicate an organic Cd complex to be a potent inhibitor of proteasomal chymotrypsin-like (CT-like) activity, further capable of inducing apoptosis in a cancer cell-specific manner. It has been reported that the ligands indole-3-butyric acid (L1) and indole-3-propionic acid (L2) have cancer-fighting effects when tested in a rat carcinoma model. In addition, 3, 5-diaminobenzoic acid o-vanillin Schiff bases (L3) have high antimicrobial activity and a large number of Schiff base complexes have been reported to have proteasome-inhibitory activity. We therefore hypothesized that synthetic forms of Cd in combination with L1, L2 and L3 may have proteasome-inhibitory and apoptosis-inducing activities, which would be cancer cell-specific. To test this hypothesis, we have synthesized three novel Cd-containing complexes: [Cd2(C12H12O2N)4(H2O)2]·2H2O (Cd1), [Cd2(C11H10O2N)4(H2O)2]·2H2O (Cd2) and [Cd(C7H4N2O2)(C8H6O2)2]·2H2O (Cd3), by using these three ligands. We sought out to characterize and assess the proteasome-inhibitory and anti-proliferative properties of these three Cd complexes in human breast cancer cells. Cd1, Cd2 and Cd3 were found to effectively inhibit the chymotrypsin-like activity of purified 20S proteasome with IC50 values of 2.6, 3.0 and 3.3 μΜ, respectively. Moreover, inhibition of cancer cell proliferation also correlated with this effect. As a result of proteasomal shutdown, the accumulation of ubiquitinated proteins and the proteasome target IκB-α protein as well as induction of apoptosis were observed. To account for the cancer specificity of this effect, immortalized, non-tumorigenic breast MCF10A cells were used under the same experimental conditions. Our results indicate that MCF10A cells are much less sensitive to the Cd1, Cd2 and Cd3 complexes when compared to MDA MB 231 breast cancer cells. Therefore, our study suggests that these Cd organic

  2. Theoretical studies of interaction models of human acetylcholine esterase with different inhibitors

    Institute of Scientific and Technical Information of China (English)

    ZHENG QingChuan; CHU HuiYing; NIU RuiJuan; SUN ChiaChung

    2009-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and one of the most common causes of dementia in the elderly.Acetyicholine esterase inhibitors (AChEl) are the main drugs used in the treatment of AD.In this work,docking studies have been performed in order to understand the interaction between a number of inhibitors (tacrine,rivastigmine,huperzine A,TV-3326 (ladostigil),donepezil and anseculin) and acetylcholine esterase (AChE).The calculated binding affinities between inhibitors and AChE increase in the order tacrine<rivastigmine<huperzine A<TV-3326<donepezil<anseculin,which reflects the experimental inhibitory activity expressed in terms of the half maximal inhibitory concentration (the IC50 value).Of the above inhibitors,anseculin is the most useful drug for the treatment of dementia.

  3. Theoretical studies of interaction models of human acetylcholine esterase with different inhibitors

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Alzheimer’s disease(AD) is a progressive neurodegenerative disorder and one of the most common causes of dementia in the elderly.Acetylcholine esterase inhibitors(AChEI) are the main drugs used in the treatment of AD.In this work,docking studies have been performed in order to understand the interaction between a number of inhibitors(tacrine,rivastigmine,huperzine A,TV-3326(ladostigil),donepezil and anseculin) and acetylcholine esterase(AChE).The calculated binding affinities between inhibitors and AChE increase in the order tacrineinhibitors,anseculin is the most useful drug for the treatment of dementia.

  4. Combinatorial Optimization of Cystine-Knot Peptides towards High-Affinity Inhibitors of Human Matriptase-1

    Science.gov (United States)

    Weber, Niklas; Fabritz, Sebastian; Tomaszowski, Michael; Fittler, Heiko; Christmann, Andreas; Avrutina, Olga; Kolmar, Harald

    2013-01-01

    Cystine-knot miniproteins define a class of bioactive molecules with several thousand natural members. Their eponymous motif comprises a rigid structured core formed by six disulfide-connected cysteine residues, which accounts for its exceptional stability towards thermic or proteolytic degradation. Since they display a remarkable sequence tolerance within their disulfide-connected loops, these molecules are considered promising frameworks for peptide-based pharmaceuticals. Natural open-chain cystine-knot trypsin inhibitors of the MCoTI (Momordica cochinchinensis trypsin inhibitor) and SOTI (Spinacia oleracea trypsin inhibitor) families served as starting points for the generation of inhibitors of matriptase-1, a type II transmembrane serine protease with possible clinical relevance in cancer and arthritic therapy. Yeast surface-displayed libraries of miniproteins were used to select unique and potent matriptase-1 inhibitors. To this end, a knowledge-based library design was applied that makes use of detailed information on binding and folding behavior of cystine-knot peptides. Five inhibitor variants, four of the MCoTI family and one of the SOTI family, were identified, chemically synthesized and oxidatively folded towards the bioactive conformation. Enzyme assays revealed inhibition constants in the low nanomolar range for all candidates. One subnanomolar binder (Ki = 0.83 nM) with an inverted selectivity towards trypsin and matriptase-1 was identified. PMID:24146945

  5. Cell-free expression of human glucosamine 6-phosphate N-acetyltransferase (HsGNA1) for inhibitor screening.

    Science.gov (United States)

    Ma, Yi; Ghoshdastider, Umesh; Wang, Jufang; Ye, Wei; Dötsch, Volker; Filipek, Slawomir; Bernhard, Frank; Wang, Xiaoning

    2012-12-01

    Glucosamine 6-phosphate N-acetyltransferase (GNA1; EC 2.3.1.4) is required for the de novo synthesis of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6P), which is an essential precursor in Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) biosynthesis pathway. Therefore, GNA1 is indispensable for the viability of organisms. Here, a novel cell-free expression strategy was developed to efficiently produce large amounts of human GNA1(HsGNA1) and HsGNA1-sGFP for throughput inhibitor screening. The binding site of inhibitor glucose-6-phosphate (G6P) to hGNA was identified by simulated annealing. Subtle differences to the binding site of Aspergillius GNA1(AfGNA1) can be harnessed for inhibitor design. HsGNA1 may be also useful as an antimicrobial and chemotherapeutic target against cancer. Additionally HsGNA1 inhibitors/modulators can possibly be administered with other drugs in the next generation of personalized medicine.

  6. NADH: ubiquinone oxidoreductase inhibitors block induction of ornithine decarboxylase activity in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Rowlands, J C; Casida, J E

    1998-11-01

    Rotenone is the classical inhibitor of NADH: ubiquinone oxidoreductase and its analogue deguelin is a potent inhibitor of 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ornithine decarboxylase mRNA steady state level and enzyme activity in mouse 308 cells (Gerhäuser et al. 1995). In MCF-7 human breast cancer cells, rotenone, deguelin and two structurally-unrelated miticides (pyridaben and fenazaquin) inhibit not only NADH: ubiquinone oxidoreductase but also induced ornithine decarboxylase activity with IC50 values of < 1 to 70 nM. Rotenone inhibits ornithine decarboxylase activity equally well as induced by TPA, insulin-like growth factor I and 17 beta-oestradiol. Pyridaben is the most potent of the four inhibitors not only for NADH: ubiquinone oxidoreductase activity (bovine heart enzyme) and TPA-induced ornithine decarboxylase activity and mRNA steady state level but also for TPA-induced reactive oxygen species. It is therefore proposed that NADH: ubiquinone oxidoreductase inhibitors block multiple and possibly reactive oxygen species-modulated pathways which regulate ornithine decarboxylase activity.

  7. Double layer structure-based virtual screening reveals 3'-Hydroxy-A-Naphthoflavone as novel inhibitor candidate of human acetylcholinesterase

    Science.gov (United States)

    Ichsan, Mochammad; Pangastuti, Ardini; Habibi, Mohammad Wildan; Juliana, Kartika

    2016-03-01

    One of the most effective target for Alzheimer's disease's (AD) treatment is the inhibition of human acetylcholinesterase (hAChE) eventhough it has many side effects. So that, this study was aimed to discover a new candidate of hAChE's inhibitor that has more negative binding affinity than existing drugs. hAChE's 3D model used in this study has a good quality according to its number of residues in most favoured regions (92%), three bad contacts, >50 ERRAT's score (85,870) and successfully passed the VERIFY 3D threshold (>80%). Based on the first layer of SBVS againts more than 12.180.630 ligands, we discovered 11.806 hits and then we found 359 hits from the second layer of SBVS. Based on our previous steps, we found that 3'-Hydroxy-a-Naphthoflavone was the only one candidate, that directly interacted with Trp286 via hydrogen bond and hydrophobic interactions and also has the most negative binding affinity (-10,6 kcal/mol) and also has more negative than existing hAChE's inhibitors, such as tacrine, donepezil, etc. 3'-Hydroxy-a-Naphthoflavone is the best candidate of hAChE's inhibitor based on its binding affinity (-10,6 kcal/mol) that is more negative than existing hAChE's inhibitors, such as tacrine, donepezil, etc.

  8. Histone deacetylase inhibitor valproic acid promotes the differentiation of human induced pluripotent stem cells into hepatocyte-like cells.

    Directory of Open Access Journals (Sweden)

    Yuki Kondo

    Full Text Available In this study, we aimed to elucidate the effects and mechanism of action of valproic acid on hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells. Human induced pluripotent stem cells were differentiated into endodermal cells in the presence of activin A and then into hepatic progenitor cells using dimethyl sulfoxide. Hepatic progenitor cells were matured in the presence of hepatocyte growth factor, oncostatin M, and dexamethasone with valproic acid that was added during the maturation process. After 25 days of differentiation, cells expressed hepatic marker genes and drug-metabolizing enzymes and exhibited drug-metabolizing enzyme activities. These expression levels and activities were increased by treatment with valproic acid, the timing and duration of which were important parameters to promote differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells into hepatocytes. Valproic acid inhibited histone deacetylase activity during differentiation of human induced pluripotent stem cells, and other histone deacetylase inhibitors also enhanced differentiation into hepatocytes. In conclusion, histone deacetylase inhibitors such as valproic acid can be used to promote hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells.

  9. Combinatorial clustering of residue position subsets predicts inhibitor affinity across the human kinome.

    Directory of Open Access Journals (Sweden)

    Drew H Bryant

    Full Text Available The protein kinases are a large family of enzymes that play fundamental roles in propagating signals within the cell. Because of the high degree of binding site similarity shared among protein kinases, designing drug compounds with high specificity among the kinases has proven difficult. However, computational approaches to comparing the 3-dimensional geometry and physicochemical properties of key binding site residue positions have been shown to be informative of inhibitor selectivity. The Combinatorial Clustering Of Residue Position Subsets (ccorps method, introduced here, provides a semi-supervised learning approach for identifying structural features that are correlated with a given set of annotation labels. Here, ccorps is applied to the problem of identifying structural features of the kinase atp binding site that are informative of inhibitor binding. ccorps is demonstrated to make perfect or near-perfect predictions for the binding affinity profile of 8 of the 38 kinase inhibitors studied, while only having overall poor predictive ability for 1 of the 38 compounds. Additionally, ccorps is shown to identify shared structural features across phylogenetically diverse groups of kinases that are correlated with binding affinity for particular inhibitors; such instances of structural similarity among phylogenetically diverse kinases are also shown to not be rare among kinases. Finally, these function-specific structural features may serve as potential starting points for the development of highly specific kinase inhibitors.

  10. Combinatorial clustering of residue position subsets predicts inhibitor affinity across the human kinome.

    Science.gov (United States)

    Bryant, Drew H; Moll, Mark; Finn, Paul W; Kavraki, Lydia E

    2013-01-01

    The protein kinases are a large family of enzymes that play fundamental roles in propagating signals within the cell. Because of the high degree of binding site similarity shared among protein kinases, designing drug compounds with high specificity among the kinases has proven difficult. However, computational approaches to comparing the 3-dimensional geometry and physicochemical properties of key binding site residue positions have been shown to be informative of inhibitor selectivity. The Combinatorial Clustering Of Residue Position Subsets (ccorps) method, introduced here, provides a semi-supervised learning approach for identifying structural features that are correlated with a given set of annotation labels. Here, ccorps is applied to the problem of identifying structural features of the kinase atp binding site that are informative of inhibitor binding. ccorps is demonstrated to make perfect or near-perfect predictions for the binding affinity profile of 8 of the 38 kinase inhibitors studied, while only having overall poor predictive ability for 1 of the 38 compounds. Additionally, ccorps is shown to identify shared structural features across phylogenetically diverse groups of kinases that are correlated with binding affinity for particular inhibitors; such instances of structural similarity among phylogenetically diverse kinases are also shown to not be rare among kinases. Finally, these function-specific structural features may serve as potential starting points for the development of highly specific kinase inhibitors.

  11. Phenothiazine-based CaaX competitive inhibitors of human farnesyltransferase bearing a cysteine, methionine, serine or valine moiety as a new family of antitumoral compounds.

    Science.gov (United States)

    Dumitriu, Gina-Mirabela; Bîcu, Elena; Belei, Dalila; Rigo, Benoît; Dubois, Joëlle; Farce, Amaury; Ghinet, Alina

    2015-10-15

    A new family of CaaX competitive inhibitors of human farnesyltransferase based on phenothiazine and carbazole skeleton bearing a l-cysteine, l-methionine, l-serine or l-valine moiety was designed, synthesized and biologically evaluated. Phenothiazine derivatives proved to be more active than carbazole-based compounds. Phenothiazine 1b with cysteine residue was the most promising inhibitor of human farnesyltransferase in the current study.

  12. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Sung Kook [Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873 (Korea, Republic of); Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Chung, Sooyoung [Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 136-705 (Korea, Republic of); Kim, Hee-Dae [Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Lee, Ju Hyung [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of); Jang, Jaebong [College of Pharmacy, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Jeongah; Kim, Doyeon [Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873 (Korea, Republic of); Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Son, Gi Hoon [Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 136-705 (Korea, Republic of); Oh, Young J. [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of); Suh, Young-Ger [College of Pharmacy, Seoul National University, Seoul, 151-742 (Korea, Republic of); Lee, Cheol Soon [Gachon Clinical Trials Center, Gachon University, Incheon, 417-842 (Korea, Republic of); and others

    2015-11-13

    Disruption of circadian rhythm is a major cause of breast cancer in humans. Cryptochrome (CRY), a circadian transcription factor, is a risk factor for initiation of breast cancer, and it is differentially expressed between normal and breast cancer tissues. Here, we evaluated the anti-proliferative and pro-apoptotic activity of KS15, a recently discovered small-molecule inhibitor of CRY, in human breast cancer cells. First, we investigated whether KS15 treatment could promote E-box-mediated transcription by inhibiting the activity of CRY in MCF-7 human breast cancer cells. Protein and mRNA levels of regulators of cell cycle and apoptosis, as well as core clock genes, were differentially modulated in response to KS15. Next, we investigated whether KS15 could inhibit proliferation and increase sensitivity to anti-tumor drugs in MCF-7 cells. We found that KS15 decreased the speed of cell growth and increased the chemosensitivity of MCF-7 cells to doxorubicin and tamoxifen, but had no effect on MCF-10A cells. These findings suggested that pharmacological inhibition of CRY by KS15 exerts an anti-proliferative effect and increases sensitivity to anti-tumor drugs in a specific type of breast cancer. - Highlights: • Cryptochrome inhibitor (KS15) has anti-tumor activity to human breast cancer cells. • KS15 induces differential changes in cell cycle regulators and pro-apoptotic genes. • KS15 inhibits MCF-7 cell growth and enhances susceptibility to anti-tumor drugs.

  13. Human rhinovirus 3C protease: generation of pharmacophore models for peptidic and nonpeptidic inhibitors and their application in virtual screening.

    Science.gov (United States)

    Steindl, Theodora; Laggner, Christian; Langer, Thierry

    2005-01-01

    Three-dimensional pharmacophore models for peptidic and small organic nonpeptidic inhibitors of the human rhinovirus 3C protease were generated in a structure-based as well as in a ligand-based approach, using the software package Catalyst. The inhibitors possess an electrophilic moiety, often a Michael acceptor function, which covalently binds to a cysteine in the active site of the enzyme. Since this process presents the key step for virus inactivation, the creation of a new function in Catalyst was required in order to include this decisive functionality into the pharmacophore models. In the present study we focus on this feature definition process because it presents an innovative strategy to expand the pharmacophore description ability of the Catalyst software to also include covalent bonds between ligand and binding site. The resulting hypotheses were then used for virtual screening of 3D databases in order to verify their quality and to search for structurally diverse, possible new lead substances.

  14. Biochemical analysis of leishmanial and human GDP-Mannose Pyrophosphorylases and selection of inhibitors as new leads.

    Science.gov (United States)

    Mao, Wei; Daligaux, Pierre; Lazar, Noureddine; Ha-Duong, Tâp; Cavé, Christian; van Tilbeurgh, Herman; Loiseau, Philippe M; Pomel, Sébastien

    2017-04-07

    Leishmaniases are an ensemble of diseases caused by the protozoan parasite of the genus Leishmania. Current antileishmanial treatments are limited and present main issues of toxicity and drug resistance emergence. Therefore, the generation of new inhibitors specifically directed against a leishmanial target is an attractive strategy to expand the chemotherapeutic arsenal. GDP-Mannose Pyrophosphorylase (GDP-MP) is a prominent therapeutic target involved in host-parasite recognition which has been described to be essential for parasite survival. In this work, we produced and purified GDP-MPs from L. mexicana (LmGDP-MP), L. donovani (LdGDP-MP), and human (hGDP-MP), and compared their enzymatic properties. From a rationale design of 100 potential inhibitors, four compounds were identified having a promising and specific inhibitory effect on parasite GDP-MP and antileishmanial activities, one of them exhibits a competitive inhibition on LdGDP-MP and belongs to the 2-substituted quinoline series.

  15. Gibberellin biosynthetic inhibitors make human malaria parasite Plasmodium falciparum cells swell and rupture to death.

    Directory of Open Access Journals (Sweden)

    Tomoko Toyama

    Full Text Available Malaria remains as one of the most devastating infectious disease, and continues to exact an enormous toll in medical cost and days of labor lost especially in the tropics. Effective malaria control and eventual eradication remain a huge challenge, with efficacious antimalarials as important intervention/management tool. Clearly new alternative drugs that are more affordable and with fewer side effects are desirable. After preliminary in vitro assays with plant growth regulators and inhibitors, here, we focus on biosynthetic inhibitors of gibberellin, a plant hormone with many important roles in plant growth, and show their inhibitory effect on the growth of both apicomplexa, Plasmodium falciparum and Toxoplasma gondii. Treatment of P. falciparum cultures with the gibberellin biosynthetic inhibitors resulted in marked morphological changes that can be reversed to a certain degree under hyperosmotic environment. These unique observations suggest that changes in the parasite membrane permeability may explain the pleiotropic effects observed within the intracellular parasites.

  16. On Orientifolds of c=1 Orbifolds

    CERN Document Server

    Dijkstra, T P T; Riccioni, F; Schellekens, Adrian Norbert

    2003-01-01

    The aim of this paper is to study orientifolds of c=1 conformal field theories. A systematic analysis of the allowed orientifold projections for c=1 orbifold conformal field theories is given. We compare the Klein bottle amplitudes obtained at rational points with the orientifold projections that we claim to be consistent for any value of the orbifold radius. We show that the recently obtained Klein bottle amplitudes corresponding to exceptional modular invariants, describing bosonic string theories at fractional square radius, are also in agreement with those orientifold projections.

  17. c=1 String as a Topological Model

    CERN Document Server

    Ishikawa, H

    1994-01-01

    The discrete states in the $c=1$ string are shown to be the physical states of a certain topological sigma model. We define a set of new fields directly from $c=1$ variables, in terms of which the BRST charge and energy-momentum tensor are rewritten as those of the topological sigma model. Remarkably, ground ring generator $x$ turns out to be a coordinate of the sigma model. All of the discrete states realize a graded ring which contains ground ring as a subset.

  18. Myricetin is a novel inhibitor of human inosine 5′-monophosphate dehydrogenase with anti-leukemia activity

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huiling; Hu, Qian; Wang, Jingyuan; Liu, Zehui; Wu, Dang [Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237 (China); Lu, Weiqiang, E-mail: wqlu@bio.ecnu.edu.cn [Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Huang, Jin, E-mail: huangjin@ecust.edu.cn [Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237 (China)

    2016-09-02

    Human inosine 5′-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC{sub 50} values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanning fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity. - Highlights: • Myricetin, a common dietary flavonoid, is a novel inhibitor of hIMPDH1/2. • Myricetin directly binds with hIMPDH1/2 and induces cell cycle arrest and apoptosis of leukemia cells. • The cytotoxicity of myricetin on K562 cells is markedly attenuated by exogenous addition of guanosine.

  19. Binding site residues control inhibitor selectivity in the human norepinephrine transporter but not in the human dopamine transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ringsted, Kristoffer B; Bang-Andersen, Benny

    2015-01-01

    . Changing the six diverging residues in the central binding site of NET to the complementary residues in DAT transferred a DAT-like pharmacology to NET, showing that non-conserved binding site residues in NET are critical determinants for inhibitor selectivity. In contrast, changing the equivalent residues...

  20. Anti-C1q autoantibodies

    NARCIS (Netherlands)

    Kallenberg, Cees G. M.

    2008-01-01

    Autoantibodies to complement components are associated with various diseases. Anti-C1q antibodies are present in all patients with hypocomplementemic urticarial vasculitis, but also, with varying prevalence, in other conditions. In SLE, these antibodies are neither sensitive nor specific for this co

  1. Identification of substituted 2-thio-6-oxo-1,6-dihydropyrimidines as inhibitors of human lactate dehydrogenase.

    Science.gov (United States)

    Dragovich, Peter S; Fauber, Benjamin P; Corson, Laura B; Ding, Charles Z; Eigenbrot, Charles; Ge, HongXiu; Giannetti, Anthony M; Hunsaker, Thomas; Labadie, Sharada; Liu, Yichin; Malek, Shiva; Pan, Borlan; Peterson, David; Pitts, Keith; Purkey, Hans E; Sideris, Steve; Ultsch, Mark; VanderPorten, Erica; Wei, BinQing; Xu, Qing; Yen, Ivana; Yue, Qin; Zhang, Huihui; Zhang, Xuying

    2013-06-01

    A novel 2-thio-6-oxo-1,6-dihydropyrimidine-containing inhibitor of human lactate dehydrogenase (LDH) was identified by high-throughput screening (IC50=8.1 μM). Biochemical, surface plasmon resonance, and saturation transfer difference NMR experiments indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of the screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50=0.48 μM). A crystal structure of an optimized compound bound to human LDHA was obtained and explained many of the observed structure-activity relationships. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Binding of natural and synthetic inhibitors to human heat shock protein 90 and their clinical application.

    Science.gov (United States)

    Petrikaitė, Vilma; Matulis, Daumantas

    2011-01-01

    This review describes the recent progress in the field of heat shock protein 90 (Hsp90) inhibitor design. Hsp90 is a heat shock protein with a molecular weight of approximately 90 kDa. Hsp90 is considered a good anticancer target because its inhibition leads to inactivation of its numerous client proteins participating in various signaling and other processes involved in cancer progression. Numerous Hsp90 inhibitors-leads currently tested in clinical trials are presented in this review. Furthermore, this review emphasizes the application of biophysical binding assays in the development of Hsp90 inhibitors. The binding of designed lead compounds to various Hsp90 constructs is measured by isothermal titration calorimetry and thermal shift assay. These assays provide a detailed energetic insight of the binding reaction, including the enthalpy, entropy, heat capacity, and the Gibbs free energy. A detailed description of the binding energetics helps to extend our knowledge of structure-activity relationships in the design of more potent inhibitors. The most active compounds are then tested for their absorption, distribution, metabolism, elimination, toxicity, and activity against cancer cell lines.

  3. Novel, potent, selective, and orally bioavailable human betaII-tryptase inhibitors.

    Science.gov (United States)

    Sperandio, David; Tai, Vincent W-F; Lohman, Julia; Hirschbein, Bernie; Mendonca, Rohan; Lee, Chang-Sun; Spencer, Jeffrey R; Janc, James; Nguyen, Margaret; Beltman, Jerlyn; Sprengeler, Paul; Scheerens, Heleen; Lin, Tong; Liu, Liang; Gadre, Ashwini; Kellogg, Alisha; Green, Michael J; McGrath, Mary E

    2006-08-01

    The synthesis of novel [1,2,4]oxadiazoles and their structure-activity relationship (SAR) for the inhibition of tryptase and related serine proteases is presented. Elaboration of the P'-side afforded potent, selective, and orally bioavailable tryptase inhibitors.

  4. The age-dependent effects of selective serotonin reuptake inhibitors in humans and rodents : A review

    NARCIS (Netherlands)

    Olivier, J D A; Blom, T; Arentsen, T; Homberg, J R

    2011-01-01

    The selective serotonin reuptake inhibitor (SSRI) Prozac® (fluoxetine) is widely prescribed for the treatment of depression and anxiety-related disorders. While extensive research has established that fluoxetine is safe for adults, safety is not guaranteed for (unborn) children and adolescents. Some

  5. Localization of Tissue Inhibitor of Metalloproteinases 1 (TIMP-1) in Human Colorectal Adenoma and Adenocarcinoma

    DEFF Research Database (Denmark)

    Holten-Andersen, Mads N.; Hansen, Ulla; Brünner, Nils

    2005-01-01

    Tissue inhibitor of matrix metalloproteases 1 (TIMP-1) inhibits the proteolytic activity of matrix metalloproteases and hereby prevents cancer invasion. However, TIMP-1 also possesses other functions such as inhibition of apoptosis, induction of malignant transformation and stimulation of cell-gr...

  6. Comparison of responses of human melanoma cell lines to MEK and BRAF inhibitors.

    Science.gov (United States)

    Stones, Clare J; Kim, Ji Eun; Joseph, Wayne R; Leung, Euphemia; Marshall, Elaine S; Finlay, Graeme J; Shelling, Andrew N; Baguley, Bruce C

    2013-01-01

    The NRAS and BRAF genes are frequently mutated in melanoma, suggesting that the NRAS-BRAF-MEK-ERK signaling pathway is an important target for therapy. Two classes of drugs, one targeting activated BRAF and one targeting MEK, are currently undergoing clinical evaluation. We have analysed the NRAS and BRAF mutational status of a series of 44 early passage lines developed from New Zealand patients with metastatic melanoma. 41% of the lines analysed had BRAF mutations, 23% had NRAS mutations, and 36% had neither. We then determined IC50 values (drug concentrations for 50% growth inhibition) for CI-1040, a commonly used inhibitor of MEK kinase; trametinib, a clinical agent targeting MEK kinase; and vemurafenib, an inhibitor of mutant BRAF kinase. Cell lines with activating BRAF mutations were significantly more sensitive to vemurafenib than lines with NRAS mutations or lines lacking either mutation (p < 0.001). IC50 values for CI-1040 and trametinib were strongly correlated (r = 0.98) with trametinib showing ~100-fold greater potency. Cell lines sensitive to vemurafenib were also sensitive to CI-1040 and trametinib, but there was no relationship between IC50 values and NRAS mutation status. A small number of lines lacking a BRAF mutation were sensitive to CI-1040 but resistant to vemurafenib. We used western blotting to investigate the effect on ERK phosphorylation of CI-1040 in four lines, of vemurafenib in two lines and of trametinib in two lines. The results support the view that MEK inhibitors might be combined with BRAF inhibitors in the treatment of melanomas with activated BRAF. The high sensitivity to trametinib of some lines with wildtype BRAF status also suggests that MEK inhibitors could have a therapeutic effect against some melanomas as single agents.

  7. A combination of receptor-based pharmacophore modeling & QM techniques for identification of human chymase inhibitors.

    Directory of Open Access Journals (Sweden)

    Mahreen Arooj

    Full Text Available Inhibition of chymase is likely to divulge therapeutic ways for the treatment of cardiovascular diseases, and fibrotic disorders. To find novel and potent chymase inhibitors and to provide a new idea for drug design, we used both ligand-based and structure-based methods to perform the virtual screening(VS of commercially available databases. Different pharmacophore models generated from various crystal structures of enzyme may depict diverse inhibitor binding modes. Therefore, multiple pharmacophore-based approach is applied in this study. X-ray crystallographic data of chymase in complex with different inhibitors were used to generate four structure-based pharmacophore models. One ligand-based pharmacophore model was also developed from experimentally known inhibitors. After successful validation, all pharmacophore models were employed in database screening to retrieve hits with novel chemical scaffolds. Drug-like hit compounds were subjected to molecular docking using GOLD and AutoDock. Finally four structurally diverse compounds with high GOLD score and binding affinity for several crystal structures of chymase were selected as final hits. Identification of final hits by three different pharmacophore models necessitates the use of multiple pharmacophore-based approach in VS process. Quantum mechanical calculation is also conducted for analysis of electrostatic characteristics of compounds which illustrates their significant role in driving the inhibitor to adopt a suitable bioactive conformation oriented in the active site of enzyme. In general, this study is used as example to illustrate how multiple pharmacophore approach can be useful in identifying structurally diverse hits which may bind to all possible bioactive conformations available in the active site of enzyme. The strategy used in the current study could be appropriate to design drugs for other enzymes as well.

  8. A Combination of Receptor-Based Pharmacophore Modeling & QM Techniques for Identification of Human Chymase Inhibitors

    Science.gov (United States)

    Arooj, Mahreen; Sakkiah, Sugunadevi; Kim, Songmi; Arulalapperumal, Venkatesh; Lee, Keun Woo

    2013-01-01

    Inhibition of chymase is likely to divulge therapeutic ways for the treatment of cardiovascular diseases, and fibrotic disorders. To find novel and potent chymase inhibitors and to provide a new idea for drug design, we used both ligand-based and structure-based methods to perform the virtual screening(VS) of commercially available databases. Different pharmacophore models generated from various crystal structures of enzyme may depict diverse inhibitor binding modes. Therefore, multiple pharmacophore-based approach is applied in this study. X-ray crystallographic data of chymase in complex with different inhibitors were used to generate four structure–based pharmacophore models. One ligand–based pharmacophore model was also developed from experimentally known inhibitors. After successful validation, all pharmacophore models were employed in database screening to retrieve hits with novel chemical scaffolds. Drug-like hit compounds were subjected to molecular docking using GOLD and AutoDock. Finally four structurally diverse compounds with high GOLD score and binding affinity for several crystal structures of chymase were selected as final hits. Identification of final hits by three different pharmacophore models necessitates the use of multiple pharmacophore-based approach in VS process. Quantum mechanical calculation is also conducted for analysis of electrostatic characteristics of compounds which illustrates their significant role in driving the inhibitor to adopt a suitable bioactive conformation oriented in the active site of enzyme. In general, this study is used as example to illustrate how multiple pharmacophore approach can be useful in identifying structurally diverse hits which may bind to all possible bioactive conformations available in the active site of enzyme. The strategy used in the current study could be appropriate to design drugs for other enzymes as well. PMID:23658661

  9. Comparison of responses of human melanoma cell lines to MEK and BRAF inhibitors

    Directory of Open Access Journals (Sweden)

    Clare Judith Stones

    2013-05-01

    Full Text Available The NRAS and BRAF genes are frequently mutated in melanoma, suggesting that the NRAS-BRAF-MEK-ERK signalling pathway is an important target for therapy. Two classes of drugs, one targeting activated BRAF and one targeting MEK, are currently undergoing clinical evaluation. We have analysed the NRAS and BRAF mutational status of a series of 44 early passage lines developed from New Zealand patients with metastatic melanoma. 41% of the lines analysed had BRAF mutations, 23% had NRAS mutations and 36% had neither. We then determined IC50 values (drug concentrations for 50% growth inhibition for CI-1040, a commonly used inhibitor of MEK kinase; trametinib, a clinical agent targeting MEK kinase; and vemurafenib, an inhibitor of mutant BRAF kinase. Cell lines with activating BRAF mutations were significantly more sensitive to vemurafenib than lines with NRAS mutations or lines lacking either mutation (p < 0.001. IC50 values for CI-1040 and trametinib were strongly correlated (r = 0.98 with trametinib showing ~100-fold greater potency. Cell lines sensitive to vemurafenib were also sensitive to CI-1040 and trametinib, but there was no relationship between IC50 values and NRAS mutation status. A small number of lines lacking a BRAF mutation were sensitive to CI-1040 but resistant to vemurafenib. We used western blotting to investigate the effect on ERK phosphorylation of CI-1040 in four lines, of vemurafenib in two lines and of trametinib in two lines. The results support the view that MEK inhibitors might be combined with BRAF inhibitors in the treatment melanomas of with activated BRAF. The high sensitivity to trametinib of some lines with wild-type BRAF status also suggests that MEK inhibitors could have a therapeutic effect against some melanomas as single agents.

  10. Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines.

    Science.gov (United States)

    Mohammed, M Z; Vyjayanti, V N; Laughton, C A; Dekker, L V; Fischer, P M; Wilson, D M; Abbotts, R; Shah, S; Patel, P M; Hickson, I D; Madhusudan, S

    2011-02-15

    Modulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy. An industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses. Several specific APE1 inhibitors were isolated by this approach. The IC(50) for APE1 inhibition ranged between 30 nM and 50 μM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines. Our study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma.

  11. The effects of metal ion PCR inhibitors on results obtained with the Quantifiler(®) Human DNA Quantification Kit.

    Science.gov (United States)

    Combs, Laura Gaydosh; Warren, Joseph E; Huynh, Vivian; Castaneda, Joanna; Golden, Teresa D; Roby, Rhonda K

    2015-11-01

    Forensic DNA samples may include the presence of PCR inhibitors, even after extraction and purification. Studies have demonstrated that metal ions, co-purified at specific concentrations, inhibit DNA amplifications. Metal ions are endogenous to sample types, such as bone, and can be introduced from environmental sources. In order to examine the effect of metal ions as PCR inhibitors during quantitative real-time PCR, 2800 M DNA was treated with 0.0025-18.750 mM concentrations of aluminum, calcium, copper, iron, nickel, and lead. DNA samples, both untreated and metal-treated, were quantified using the Quantifiler(®) Human DNA Quantification Kit. Quantification cycle (Cq) values for the Quantifiler(®) Human DNA and internal PCR control (IPC) assays were measured and the estimated concentrations of human DNA were obtained. Comparisons were conducted between metal-treated and control DNA samples to determine the accuracy of the quantification estimates and to test the efficacy of the IPC inhibition detection. This kit is most resistant to the presence of calcium as compared to all metals tested; the maximum concentration tested does not affect the amplification of the IPC or quantification of the sample. This kit is most sensitive to the presence of aluminum; concentrations greater than 0.0750 mM negatively affected the quantification, although the IPC assay accurately assessed the presence of PCR inhibition. The Quantifiler(®) Human DNA Quantification Kit accurately quantifies human DNA in the presence of 0.5000 mM copper, iron, nickel, and lead; however, the IPC does not indicate the presence of PCR inhibition at this concentration of these metals. Unexpectedly, estimates of DNA quantity in samples treated with 18.750 mM copper yielded values in excess of the actual concentration of DNA in the samples; fluorescence spectroscopy experiments indicated this increase was not a direct interaction between the copper metal and 6-FAM dye used to label the probe that

  12. The Effects of a Novel MEK Inhibitor PD184161 on MEK-ERK Signaling and Growth in Human Liver Cancer

    Directory of Open Access Journals (Sweden)

    Patrick J. Klein

    2006-01-01

    Full Text Available The MEK-ERK growth signaling pathway is important in human hepatocellular carcinoma (HCC. To evaluate the targeting of this pathway in HCC, we characterized a novel, orally-active MEK inhibitor, PD184161, using human HCC cells (HepG2, Hep3B, PLC, and SKHep and in vivo human tumor xenografts. PD184161 inhibited MEK activity (IC50 = 10-100 nM in a time- and concentrationdependent manner more effectively than PD098059 or U0126. PD184161 inhibited cell proliferation and induced apoptosis at concentrations of ≥ 1.0 µM in a time- and concentration-dependent manner. In vivo, tumor xenograft P-ERK levels were significantly reduced 3 to 12 hours after an oral dose of PD184161 (P< .05. Contrarily, tumor xenograft P-ERK levels following long-term (24 days daily dosing of PD184161 were refractory to this signaling effect. PD184161 significantly suppressed tumor engraftment and initial growth (P<.0001; however, established tumors were not significantly affected. In conclusion, PD184161 has antitumor effects in HCC in vitro and in vivo that appear to correlate with suppression of MEK activity. These studies demonstrate that PD184161 is unable to suppress MEK activity in HCC xenografts in the long term. Thus, we speculate that the degree of success of MEKtargeted treatment in HCC and other cancers may, in part, depend on the discovery of mechanisms governing MEK inhibitor signaling resistance.

  13. Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes

    Directory of Open Access Journals (Sweden)

    Peraldi Pascal

    2008-02-01

    Full Text Available Abstract Background Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue. Results Our results showed that GSK3 inhibitors inhibited proliferation and clonogenicity of human stem cells, strongly suggesting that GSK3 inhibitors could be potent regulators of the pool of adipocyte precursors in adipose tissue. The impact of GSK3 inhibition on differentiation of hMADS cells was also investigated. Adipogenic and osteogenic differentiations were inhibited upon hMADS treatment with BIO. Whereas a chronic treatment was required to inhibit osteogenesis, a treatment that was strictly restricted to the early step of differentiation was sufficient to inhibit adipogenesis. Conclusion These results demonstrated the feasibility of a pharmacological approach to regulate adipose-derived stem cell function and that GSK3 could represent a potential target for controlling adipocyte precursor pool under conditions where fat tissue formation is impaired.

  14. Treatment of human pre-B acute lymphoblastic leukemia with the Aurora kinase inhibitor PHA-739358 (Danusertib

    Directory of Open Access Journals (Sweden)

    Fei Fei

    2012-06-01

    Full Text Available Abstract Background Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemias (Ph-positive ALL with clinically approved inhibitors of the Bcr/Abl tyrosine kinase frequently results in the emergence of a leukemic clone carrying the T315I mutation in Bcr/Abl, which confers resistance to these drugs. PHA-739358, an Aurora kinase inhibitor, was reported to inhibit the Bcr/Abl T315I mutant in CML cells but no preclinical studies have examined this in detail in human ALL. Results We compared the sensitivity of human Bcr/Abl T315I, Bcr/Abl wild type and non-Bcr/Abl ALL cells to this drug. PHA-739358 inhibited proliferation and induced apoptosis independently of Bcr/Abl, the T315I mutation, or presence of the tumor suppressor p53, but the degree of effectiveness varied between different ALL samples. Since short-term treatment with a single dose of drug only transiently inhibited proliferation, we tested combination treatments of PHA-739358 with the farnesyltransferase inhibitor Lonafarnib, with vincristine and with dasatinib. All combinations reduced viability and cell numbers compared to treatment with a single drug. Clonogenic assays showed that 25 nM PHA-739358 significantly reduced the colony growth potential of Ph-positive ALL cells, and combined treatment with a second drug abrogated colony growth in this assay. PHA-739358 further effectively blocked Bcr/Abl tyrosine kinase activity and Aurora kinase B in vivo, and mice transplanted with human Bcr/Abl T315I ALL cells treated with a 3x 7-day cycle of PHA-739358 as mono-treatment had significantly longer survival. Conclusions PHA-739358 represents an alternative drug for the treatment of both Ph-positive and negative ALL, although combined treatment with a second drug may be needed to eradicate the leukemic cells.

  15. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina

    2015-01-01

    is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E......) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced...

  16. Immunological changes in human immunodeficiency virus (HIV)-infected individuals during HIV-specific protease inhibitor treatment

    DEFF Research Database (Denmark)

    Ullum, H; Katzenstein, T; Aladdin, H;

    1999-01-01

    The present study examines the influence of effective anti-retroviral treatment on immune function, evaluated by a broad array of immunological tests. We followed 12 individuals infected with human immunodeficiency virus (HIV) for 6 months after initiation of combination anti-retroviral treatment...... Vaccinia virus was increased after 3-6 months, whereas the specific HIV-directed CTL activity and the concentration and lytic activity of natural killer (NK) cells were unchanged during follow-up. These results demonstrate that the initiation of a treatment including an HIV protease inhibitor is followed...

  17. Monoamine oxidase inhibitors l-deprenyl and clorgyline protect nonmalignant human cells from ionising radiation and chemotherapy toxicity.

    LENUS (Irish Health Repository)

    Seymour, C B

    2003-11-17

    l-Deprenyl (R-(-)-deprenyl, selegiline) is an inhibitor of monoamine oxidase-B (MAO-B) that is known to protect nerve cells from a variety of chemical and physical insults. As apoptosis is a common mechanism of radiation-induced cell death, the effect of l-deprenyl on the survival of cultured cells and tissue explants was studied following exposure to gamma radiation. The results obtained were compared with the effects of the less-selective MAO-B inhibitor pargyline and the MAO-A inhibitor clorgyline. l-Deprenyl at a concentration of 10(-9) M protected the nontumorigenic cell line (HaCaT) and normal human urothelial explants from the effects of cobalt-60 gamma radiation, but did not protect tumorigenic human cell lines HaCaT-ras, HPV-transfected human keratinocytes (HPV-G cells), or PC3. Human bladder carcinoma explants were not protected. Clorgyline showed a smaller protective effect of normal cells, whereas pargyline had no effect. Radiation-induced delayed effects (genomic instability measured as delayed cell death) were prevented in normal cells by l-deprenyl but, interestingly, deprenyl appeared to increase the amount of delayed death in the tumorigenic cell lines. Studies using l-deprenyl prior to the exposure of nonmalignant cells to cisplatin showed that cell death due to this agent was also reduced. Treatment of cultures of nontumorigenic cells with l-deprenyl or clorgyline significantly increased the levels of the protein Bcl-2 following irradiation, but there was no such effect on the already-elevated levels of this protein in the tumour samples. Since the Bcl-2 has been shown to be an inhibitor of apoptosis or programmed cell death, this would imply that the protective effects of l-deprenyl and clorgyline involve activation of antiapoptotic pathways within the normal cell. This hypothesis is supported by data showing reduced levels of apoptosis in HaCAT cells and in normal bladder explant cultures following treatment with l-deprenyl.

  18. Several human cyclin-dependent kinase inhibitors, structurally related to roscovitine, are new anti-malarial agents.

    Science.gov (United States)

    Houzé, Sandrine; Hoang, Nha-Thu; Lozach, Olivier; Le Bras, Jacques; Meijer, Laurent; Galons, Hervé; Demange, Luc

    2014-09-23

    In Africa, malaria kills one child each minute. It is also responsible for about one million deaths worldwide each year. Plasmodium falciparum, is the protozoan responsible for the most lethal form of the disease, with resistance developing against the available anti-malarial drugs. Among newly proposed anti-malaria targets, are the P. falciparum cyclin-dependent kinases (PfCDKs). There are involved in different stages of the protozoan growth and development but share high sequence homology with human cyclin-dependent kinases (CDKs). We previously reported the synthesis of CDKs inhibitors that are structurally-related to (R)-roscovitine, a 2,6,9-trisubstituted purine, and they showed activity against neuronal diseases and cancers. In this report, we describe the synthesis and the characterization of new CDK inhibitors, active in reducing the in vitro growth of P. falciparum (3D7 and 7G8 strains). Six compounds are more potent inhibitors than roscovitine, and three exhibited IC50 values close to 1 µM for both 3D7 and 7G8 strains. Although, such molecules do inhibit P. falciparum growth, they require further studies to improve their selectivity for PfCDKs.

  19. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals.

    Science.gov (United States)

    Amat-Ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD.

  20. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals.

    Directory of Open Access Journals (Sweden)

    Hafsa Amat-Ur-Rasool

    Full Text Available Alzheimer's disease (AD, a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh. The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE, an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals and self-drawn ligands were compared with Food and Drug Administration (FDA approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD.

  1. Identification of a Potent Allosteric Inhibitor of Human Protein Kinase CK2 by Bacterial Surface Display Library Screening.

    Science.gov (United States)

    Nienberg, Christian; Garmann, Claudia; Gratz, Andreas; Bollacke, Andre; Götz, Claudia; Jose, Joachim

    2017-01-05

    Human protein kinase CK2 has emerged as promising target for the treatment of neoplastic diseases. The vast majority of kinase inhibitors known today target the ATP binding site, which is highly conserved among kinases and hence leads to limited selectivity. In order to identify non-ATP competitive inhibitors, a 12-mer peptide library of 6 × 10⁵ variants was displayed on the surface of E. coli by autodisplay. Screening of this peptide library on variants with affinity to CK2 was performed by fluorophore-conjugated CK2 and subsequent flow cytometry. Single cell sorting of CK2-bound E. coli yielded new peptide variants, which were tested on inhibition of CK2 by a CE-based assay. Peptide B2 (DCRGLIVMIKLH) was the most potent inhibitor of both, CK2 holoenzyme and the catalytic CK2α subunit (IC50 = 0.8 µM). Using different ATP concentrations and different substrate concentrations for IC50 determination, B2 was shown to be neither ATP- nor substrate competitive. By microscale thermophoresis (MST) the KD value of B2 with CK2α was determined to be 2.16 µM, whereas no binding of B2 to CK2β-subunit was detectable. To our surprise, besides inhibition of enzymatic activity, B2 also disturbed the interaction of CK2α with CK2β at higher concentrations (≥25 µM).

  2. Identification of a Potent Allosteric Inhibitor of Human Protein Kinase CK2 by Bacterial Surface Display Library Screening

    Directory of Open Access Journals (Sweden)

    Christian Nienberg

    2017-01-01

    Full Text Available Human protein kinase CK2 has emerged as promising target for the treatment of neoplastic diseases. The vast majority of kinase inhibitors known today target the ATP binding site, which is highly conserved among kinases and hence leads to limited selectivity. In order to identify non-ATP competitive inhibitors, a 12-mer peptide library of 6 × 105 variants was displayed on the surface of E. coli by autodisplay. Screening of this peptide library on variants with affinity to CK2 was performed by fluorophore-conjugated CK2 and subsequent flow cytometry. Single cell sorting of CK2-bound E. coli yielded new peptide variants, which were tested on inhibition of CK2 by a CE-based assay. Peptide B2 (DCRGLIVMIKLH was the most potent inhibitor of both, CK2 holoenzyme and the catalytic CK2α subunit (IC50 = 0.8 µM. Using different ATP concentrations and different substrate concentrations for IC50 determination, B2 was shown to be neither ATP- nor substrate competitive. By microscale thermophoresis (MST the KD value of B2 with CK2α was determined to be 2.16 µM, whereas no binding of B2 to CK2β-subunit was detectable. To our surprise, besides inhibition of enzymatic activity, B2 also disturbed the interaction of CK2α with CK2β at higher concentrations (≥25 µM.

  3. Discovery of a new type inhibitor of human glyoxalase I by myricetin-based 4-point pharmacophore.

    Science.gov (United States)

    Takasawa, Ryoko; Tao, Akinobu; Saeki, Kazunori; Shionozaki, Nobuhiro; Tanaka, Ryo; Uchiro, Hiromi; Takahashi, Satoshi; Yoshimori, Atsushi; Tanuma, Sei-Ichi

    2011-07-15

    The human glyoxalase I (hGLO I), which is a rate-limiting enzyme in the pathway for detoxification of apoptosis-inducible methylglyoxal (MG), has been expected as an attractive target for the development of new anti-cancer drugs. We have previously identified a natural compound myricetin as a substrate transition-state (Zn(2+)-bound MG-glutathione (GSH) hemithioacetal) mimetic inhibitor of hGLO I. Here, we constructed a hGLO I/inhibitor 4-point pharmacophore based on the binding mode of myricetin to hGLO I. Using this pharmacophore, in silico screening of chemical library was performed by docking study. Consequently, a new type of compound, which has a unique benzothiazole ring with a carboxyl group, named TLSC702, was found to inhibit hGLO I more effectively than S-p-bromobenzylglutathione (BBG), a well-known GSH analog inhibitor. The computational simulation of the binding mode indicates the contribution of Zn(2+)-chelating carboxyl group of TLSC702 to the hGLO I inhibitory activity. This implies an important scaffold-hopping of myricetin to TLSC702. Thus, TLSC702 may be a valuable seed compound for the generation of a new lead of anti-cancer pharmaceuticals targeting hGLO I. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. One novel quinoxaline derivative as a potent human cyclophilin A inhibitor shows highly inhibitory activity against mouse spleen cell proliferation.

    Science.gov (United States)

    Li, Jian; Chen, Jing; Zhang, Li; Wang, Feng; Gui, Chunshan; Zhang, Li; Qin, Yu; Xu, Qiang; Liu, Hong; Nan, Fajun; Shen, Jingkang; Bai, Donglu; Chen, Kaixian; Shen, Xu; Jiang, Hualiang

    2006-08-15

    Cyclophilin A (CypA) is a ubiquitous cellular enzyme playing critical roles in many biological processes, and its inhibitor has been reported to have potential immunosuppressive activity. In this work, we reported a novel quinoxaline derivative, 2,3-di(furan-2-yl)-6-(3-N,N-diethylcarbamoyl-piperidino)carbonylamino quinoxaline (DC838, 3), which was confirmed to be a potent inhibitor against human CypA. By using the surface plasmon resonance (SPR) and fluorescence titration techniques, the kinetic analysis of CypA/DC838 interaction was quantitatively performed. CypA peptidyl prolyl cis-trans isomerase (PPIase) activity inhibition assay showed that DC838 demonstrated highly CypA PPIase inhibitory activity. In vivo assay results showed that DC838 could inhibit mouse spleen cell proliferation induced by concanavalin A (Con A). Molecular docking simulation further elucidated the specific DC838 binding to CypA at the atomic level. The current work should provide useful information in the discovery of immunosuppressor based on CypA inhibitor.

  5. Substituted benzamide inhibitors of human rhinovirus 3C protease: structure-based design, synthesis, and biological evaluation.

    Science.gov (United States)

    Reich, S H; Johnson, T; Wallace, M B; Kephart, S E; Fuhrman, S A; Worland, S T; Matthews, D A; Hendrickson, T F; Chan, F; Meador, J; Ferre, R A; Brown, E L; DeLisle, D M; Patick, A K; Binford, S L; Ford, C E

    2000-05-04

    A series of nonpeptide benzamide-containing inhibitors of human rhinovirus (HRV) 3C protease was identified using structure-based design. The design, synthesis, and biological evaluation of these inhibitors are reported. A Michael acceptor was combined with a benzamide core mimicking the P1 recognition element of the natural 3CP substrate. alpha,beta-Unsaturated cinnamate esters irreversibly inhibited the 3CP and displayed antiviral activity (EC(50) 0.60 microM, HRV-16 infected H1-HeLa cells). On the basis of cocrystal structure information, a library of substituted benzamide derivatives was prepared using parallel synthesis on solid support. A 1.9 A cocrystal structure of a benzamide inhibitor in complex with the 3CP revealed a binding mode similar to that initially modeled wherein covalent attachment of the nucleophilic cysteine residue is observed. Unsaturated ketones displayed potent reversible inhibition but were inactive in the cellular antiviral assay and were found to react with nucleophilic thiols such as DTT.

  6. Several Human Cyclin-Dependent Kinase Inhibitors, Structurally Related to Roscovitine, As New Anti-Malarial Agents

    Directory of Open Access Journals (Sweden)

    Sandrine Houzé

    2014-09-01

    Full Text Available In Africa, malaria kills one child each minute. It is also responsible for about one million deaths worldwide each year. Plasmodium falciparum, is the protozoan responsible for the most lethal form of the disease, with resistance developing against the available anti-malarial drugs. Among newly proposed anti-malaria targets, are the P. falciparum cyclin-dependent kinases (PfCDKs. There are involved in different stages of the protozoan growth and development but share high sequence homology with human cyclin-dependent kinases (CDKs. We previously reported the synthesis of CDKs inhibitors that are structurally-related to (R-roscovitine, a 2,6,9-trisubstituted purine, and they showed activity against neuronal diseases and cancers. In this report, we describe the synthesis and the characterization of new CDK inhibitors, active in reducing the in vitro growth of P. falciparum (3D7 and 7G8 strains. Six compounds are more potent inhibitors than roscovitine, and three exhibited IC50 values close to 1 µM for both 3D7 and 7G8 strains. Although, such molecules do inhibit P. falciparum growth, they require further studies to improve their selectivity for PfCDKs.

  7. Structure of human Eg5 in complex with a new monastrol-based inhibitor bound in the R configuration.

    Science.gov (United States)

    Garcia-Saez, Isabel; DeBonis, Salvatore; Lopez, Roman; Trucco, Fernando; Rousseau, Bernard; Thuéry, Pierre; Kozielski, Frank

    2007-03-30

    Drugs that target mitotic spindle proteins have been proven useful for tackling tumor growth. Eg5, a kinesin-5 family member, represents a potential target, since its inhibition leads to prolonged mitotic arrest through the activation of the mitotic checkpoint and apoptotic cell death. Monastrol, a specific dihydropyrimidine inhibitor of Eg5, shows stereo-specificity, since predominantly the (S)-, but not the (R)-, enantiomer has been shown to be the biologically active compound in vitro and in cell-based assays. Here, we solved the crystal structure (2.7A) of the complex between human Eg5 and a new keto derivative of monastrol (named mon-97), a potent antimitotic inhibitor. Surprisingly, we identified the (R)-enantiomer bound in the active site, and not, as for monastrol, the (S)-enantiomer. The absolute configuration of this more active (R)-enantiomer has been unambiguously determined via chemical correlation and x-ray analysis. Unexpectedly, both the R- and the S-forms inhibit Eg5 ATPase activity with IC(50) values of 110 and 520 nM (basal assays) and 150 nm and 650 nm (microtubule-stimulated assays), respectively. However, the difference was large enough for the protein to select the (R)- over the (S)-enantiomer. Taken together, these results show that in this new monastrol family, both (R)- and (S)-enantiomers can be active as Eg5 inhibitors. This considerably broadens the alternatives for rational drug design.

  8. Pattern secretion of matrix Metalloproteinases and their biological tissue inhibitors by human glomerular mesangial cells in culture

    Directory of Open Access Journals (Sweden)

    "Hosseini R

    2001-08-01

    Full Text Available The glomerular mesangial cells (GMC play a central role in the synthesis and turnover of the glomerular mesangial matrix. The breakdown of the matrix likely depends on the balance between of a variety of proteinases including matrix metalloproteinases and their biological inhibitors secreted by the GMC, and any disturbance in the balance may result in appearance of various pathological states such as glomerulosclerosis. We therefore studied pattern secretion of matrix metalloproteinases (MMPs, MMP-1, MMP-2, MMP-3, MMP-9 and their biological tissue inhibitor of matrix metalloproteinases (TIMPs, TIMP-1 and TIMP-2 by cultured human GMC. We also measured MMP-1/TIMP-1 complex level in the cell culture supernatants. For this purpose, the GMC were incubated under serum-free conditions with medium (RPMI-1640 alone or in combination with TNF-α (30 ng/ml or phorbol myristate acetate (PMA (50 ng/ml for exactly 24, 48 and 72 hours. The above parameters were assayed by established ELISA techniques. Our results showed that the lowest and largest secretions were related to MMP-9 and MMP-2, respectively. The results indicated that the MMPs and TIMPs secretion were increased by TNF-α (MMP-1, MMP-2, TIMP-1 and TIMP-2 and PMA (MMP-2, TIMP-1 and TIMP-2, significantly (P<0.05. These results suggest that the GMC can synthesis and release various MMPs and their inhibitors (TIMPs that, in part, control turnover of extracellular matrix proteins.

  9. A first-in-human study of DS-1040, an inhibitor of the activated form of thrombin-activatable fibrinolysis inhibitor, in healthy subjects.

    Science.gov (United States)

    Zhou, J; Kochan, J; Yin, O; Warren, V; Zamora, C; Atiee, G; Pav, J; Orihashi, Y; Vashi, V; Dishy, V

    2017-05-01

    Essentials DS-1040 inhibits the activated form of thrombin-activatable fibrinolysis inhibitor (TAFIa). Infusion of DS-1040 was safe and well tolerated in healthy young and elderly subjects. DS-1040 substantially decreased TAFIa activity but had no impact on bleeding time. DS-1040 may provide an option of safer thrombolytic therapy. Background Current treatments for acute ischemic stroke and venous thromboembolism, such as recombinant tissue-type plasminogen activator and thrombectomy, are limited by a narrow time window and the risk of bleeding. DS-1040 is a novel low molecular weight compound that inhibits the activated form of thrombin-activatable fibrinolysis inhibitor (TAFIa), and was developed as a fibrinolysis enhancer for the treatment of thromboembolic diseases. Objectives This first-in-human, randomized, placebo-controlled, three-part, phase 1 study was conducted to evaluate the safety, pharmacokinetics and pharmacodynamics of DS-1040 in healthy subjects. Subjects/Methods Young (18-45 years) or elderly (65-75 years) subjects (N = 103) were randomized to receive single ascending doses of DS-1040 ranging from 0.1 mg to 40 mg, or placebo, administered either as a 0.5-h intravenous infusion or as a 24-h continuous infusion. Results All doses of DS-1040 were tolerated, and no serious adverse events (AEs) or discontinuations resulting from AEs occurred during the study. Bleeding time remained within the normal range for all doses tested in all subjects. Plasma exposure of DS-1040 increased proportionally with increase in dose. Elderly subjects had higher exposures to DS-1040 and prolonged elimination times, probably because of decreased renal clearance. DS-1040 caused a substantial dose-dependent and time-dependent decrease in TAFIa activity and in 50% clot lysis time. The levels of D-dimer, indicative of endogenous fibrinolysis, increased in some individuals following DS-1040 treatment. No effects of DS-1040 on coagulation parameters or platelet

  10. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2.

    Science.gov (United States)

    Hsu, A L; Ching, T T; Wang, D S; Song, X; Rangnekar, V M; Chen, C S

    2000-04-14

    This study investigates the apoptotic activity of the cyclooxygenase-2 (COX-2) inhibitor celecoxib in prostate carcinoma cells. COX-2 is constitutively expressed in androgen-responsive LNCaP and androgen-nonresponsive PC-3 cells. Exposure of these cells to celecoxib induces characteristic features of apoptosis, including morphological changes, DNA laddering, and caspase-3 activation, whereas piroxicam, a COX-1-specific inhibitor, displays no appreciable effect on either cancer cell line even after prolonged exposure. Moreover, the potency of celecoxib in apoptosis induction is significantly higher than that of other COX-2 inhibitors examined despite the observation that these inhibitors exhibit similar IC(50) in COX-2 inhibition. It is noteworthy that normal human prostate epithelial cells, expressing a marginally detectable level of COX-2, are insensitive to the induction of apoptosis by celecoxib. These data suggest a correlation between COX-2 expression and sensitivity to the apoptotic effect of the COX-2 inhibitor. In an effort to delineate the underlying mechanism, we examined the effect of celecoxib on the expression of Bcl-2 as well as the activation of the key anti-apoptotic kinase Akt. In contrast to an earlier report that attributed the apoptotic activity of NS398 in LNCaP cells to Bcl-2 down-regulation, we provide evidence that the induction of apoptosis by celecoxib in LNCaP and PC-3 cells is independent of Bcl-2. First, treatment with celecoxib does not alter the cellular Bcl-2 level in both cell lines. Second, enforced Bcl-2 expression in PC-3 cells does not confer protection against the induction of apoptosis by celecoxib. Our data show that celecoxib treatment blocks the phosphorylation of Akt. This correlation is supported by studies showing that overexpression of constitutively active Akt protects PC-3 cells from celecoxib-induced apoptosis. Nevertheless, how celecoxib down-regulates Akt is not clear because the drug does not adversely affect

  11. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  12. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia.

    Science.gov (United States)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-13

    Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of iPS cell technology to biomedical research.

  13. Structural optimization of a retrograde trafficking inhibitor that protects cells from infections by human polyoma- and papillomaviruses.

    Science.gov (United States)

    Carney, Daniel W; Nelson, Christian D S; Ferris, Bennett D; Stevens, Julia P; Lipovsky, Alex; Kazakov, Teymur; DiMaio, Daniel; Atwood, Walter J; Sello, Jason K

    2014-09-01

    Human polyoma- and papillomaviruses are non-enveloped DNA viruses that cause severe pathologies and mortalities. Under circumstances of immunosuppression, JC polyomavirus causes a fatal demyelinating disease called progressive multifocal leukoencephalopathy (PML) and the BK polyomavirus is the etiological agent of polyomavirus-induced nephropathy and hemorrhagic cystitis. Human papillomavirus type 16, another non-enveloped DNA virus, is associated with the development of cancers in tissues like the uterine cervix and oropharynx. Currently, there are no approved drugs or vaccines to treat or prevent polyomavirus infections. We recently discovered that the small molecule Retro-2(cycl), an inhibitor of host retrograde trafficking, blocked infection by several human and monkey polyomaviruses. Here, we report diversity-oriented syntheses of Retro-2(cycl) and evaluation of the resulting analogs using an assay of human cell infections by JC polyomavirus. We defined structure-activity relationships and also discovered analogs with significantly improved potency as suppressors of human polyoma- and papillomavirus infection in vitro. Our findings represent an advance in the development of drug candidates that can broadly protect humans from non-enveloped DNA viruses and toxins that exploit retrograde trafficking as a means for cell entry.

  14. Histone Deacetylase Inhibitors Stimulate Dedifferentiation of Human Breast Cancer Cells through WNT/β-catenin Signaling

    OpenAIRE

    2012-01-01

    Recent studies have shown that differentiated cancer cells can de-differentiate into cancer stem cells (CSCs) although to date no studies have reported whether this transition is influenced by systemic anti-cancer agents. Valproic acid (VA) is a histone deacetylase (HDAC) inhibitor that promotes self renewal and expansion of hematopietic stem cells and facilitates the generation of induced pluripotent stem cells from somatic cells and is currently being investigated in breast cancer clinical ...

  15. Effects of alpha-glucosidase inhibitors on mouth to caecum transit time in humans.

    OpenAIRE

    Ladas, S D; Frydas, A; Papadopoulos, A.; S. A. Raptis

    1992-01-01

    The alpha-glucosidase inhibitors acarbose and miglitol have been successfully used to control postprandial hyperglycaemia in diabetics. They probably work by slowing carbohydrate digestion and absorption, but their effect on mouth to caecum transit time has not been studied. The effect acarbose (100 mg), miglitol (100 mg), and placebo on mouth to caecum transit time (380 kcal breakfast with 20 g of lactulose) was investigated in 18 normal volunteers using breath hydrogen analysis. Both miglit...

  16. Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2 inhibitors

    Directory of Open Access Journals (Sweden)

    Alshafie Galal A

    2006-01-01

    Full Text Available Abstract Background Epidemiologic and laboratory investigations suggest that nonsteroidal anti-inflammatory drugs (NSAIDs have chemopreventive effects against breast cancer due to their activity against cyclooxygenase-2 (COX-2, the rate-limiting enzyme of the prostaglandin cascade. Methods We conducted a case control study of breast cancer designed to compare effects of selective and non-selective COX-2 inhibitors. A total of 323 incident breast cancer patients were ascertained from the James Cancer Hospital, Columbus, Ohio, during 2003–2004 and compared with 649 cancer free controls matched to the cases at a 2:1 ratio on age, race, and county of residence. Data on the past and current use of prescription and over the counter medications and breast cancer risk factors were ascertained using a standardized risk factor questionnaire. Effects of COX-2 inhibiting agents were quantified by calculating odds ratios (OR and 95% confidence intervals. Results Results showed significant risk reductions for selective COX-2 inhibitors as a group (OR = 0.29, 95% CI = 0.14–0.59, regular aspirin (OR = 0.49, 95% CI = 0.26–0.94, and ibuprofen or naproxen (0.36, 95% CI = 0.18–0.72. Acetaminophen, a compound with negligible COX-2 activity and low dose aspirin (81 mg produced no significant change in the risk of breast cancer. Conclusion Selective COX-2 inhibitors (celecoxib and rofecoxib were only recently approved for use in 1999, and rofecoxib (Vioxx was withdrawn from the marketplace in 2004. Nevertheless, even in the short window of exposure to these compounds, the selective COX-2 inhibitors produced a significant (71% reduction in the risk of breast cancer, underscoring their strong potential for breast cancer chemoprevention.

  17. Cooperative Research in C1 Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2000-10-27

    C1 chemistry refers to the conversion of simple carbon-containing materials that contain one carbon atom per molecule into valuable products. The feedstocks for C1 chemistry include natural gas, carbon dioxide, carbon monoxide, methanol and synthesis gas (a mixture of carbon monoxide and hydrogen). Synthesis gas, or syngas, is produced primarily by the reaction of natural gas, which is principally methane, with steam. It can also be produced by gasification of coal, petroleum coke, or biomass. The availability of syngas from coal gasification is expected to increase significantly in the future because of increasing development of integrated gasification combined cycle (IGCC) power generation. Because of the abundance of remote natural gas, the advent of IGCC, and environmental advantages, C1 chemistry is expected to become a major area of interest for the transportation fuel and chemical industries in the relatively near future. The CFFLS will therefore perform a valuable national service by providing science and engineering graduates that are trained in this important area. Syngas is the source of most hydrogen. Approximately 10 trillion standard cubic feet (SCF) of hydrogen are manufactured annually in the world. Most of this hydrogen is currently used for the production of ammonia and in a variety of refining and chemical operations. However, utilization of hydrogen in fuel cells is expected to grow significantly in the next century. Syngas is also the feedstock for all methanol and Fischer-Tropsch plants. Currently, world consumption of methanol is over 25 million tons per year. There are many methanol plants in the U.S. and throughout the world. Methanol and oxygenated transportation fuel products play a significant role in the CFFLS C1 program. Currently, the only commercial Fischer-Tropsch plants are overseas, principally in South Africa (SASOL). However, new plants are being built or planned for a number of locations. One possible location for future F

  18. Protein Kinase Inhibitors CK59 and CID755673 Alter Primary Human NK Cell Effector Functions

    Science.gov (United States)

    Scheiter, Maxi; Bulitta, Björn; van Ham, Marco; Klawonn, Frank; König, Sebastian; Jänsch, Lothar

    2013-01-01

    Natural killer (NK) cells are part of the innate immune response and play a crucial role in the defense against tumors and virus-infected cells. Their effector functions include the specific killing of target cells, as well as the modulation of other immune cells by cytokine release. Kinases constitute a relevant part in signaling, are prime targets in drug research and the protein kinase inhibitor Dasatinib is already used for immune-modulatory therapies. In this study, we tested the effects of the kinase inhibitors CK59 and CID755673. These inhibitors are directed against calmodulin kinase II (CaMKII; CK59) and PKD family kinases (CID755673) that were previously suggested as novel components of NK activation pathways. Here, we use a multi-parameter, FACS-based assay to validate the influence of CK59 and CID755673 on the effector functions of primary NK cells. Treatment with CK59 and CID755673 indeed resulted in a significant dose-dependent reduction of NK cell degranulation markers and cytokine release in freshly isolated Peripheral blood mononuclear cell populations from healthy blood donors. These results underline the importance of CaMKII for NK cell signaling and suggest protein kinase D2 as a novel signaling component in NK cell activation. Notably, kinase inhibition studies on pure NK cell populations indicate significant donor variations. PMID:23508354

  19. Protein kinase inhibitors CK59 and CID755673 alter primary human NK cell effector functions

    Directory of Open Access Journals (Sweden)

    Maxi eScheiter

    2013-03-01

    Full Text Available Natural killer (NK cells are part of the innate immune response and play a crucial role in the defense against tumors and virus-infected cells. Their effector functions include the specific killing of target cells, as well as the modulation of other immune cells by cytokine release. Kinases constitute a relevant part in signaling, are prime targets in drug research and the protein kinase inhibitor Dasatinib is already used for immune-modulatory theraphies. In this study, we have tested the effects of the kinase inhibitors CK59 and CID755673. These inhibitors are directed against CaMKII (CK59 and PKD family kinases (CID755673 that were previously suggested as novel components of NK activation pathways. Here, we use a multi-parameter, FACS-based assay to validate the influence of CK59 and CID755673 on the effector functions of primary NK cells. Dose dependent treatment with CK59 and CID755673 indeed results in a significant reduction of NK cell degranulation markers and cytokine release in freshly isolated PBMC populations from healthy blood donors. These results underline the importance of CaMKII for NK cell signaling and suggest PKD2 as a novel signaling component in NK cell activation. Notably, kinase inhibition studies on pure NK cell populations indicate significant donor variations.

  20. EFFECTS OF p53 GENE THERAPY COMBINED WITH CYCLOOXYGENASE-2 INHIBITOR ON CYCLOOXYGENASE-2 GENE EXPRESSION AND GROWTH INHIBITION OF HUMAN LUNG CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-Xia; LU Bin-Bin; WANG Teng; YIN Yong-Mei; DE Wei; SHU Yong-Qian

    2007-01-01

    Background Gene therapy by adenovirus-mediated wild-type p53 gene transfer has been shown to inhibit lung cancer growth in vitro, in animal models, and in human clinical trials. The antitumor effect of selective cyclooxygenase (COX)-2 inhibitors has been demonstrated in preclinical studies. However, no information is available on the effects of p53 gene therapy combined with selective COX-2 inhibitor on COX-2 gene expression and growth inhibition of human lung cancer cells. Methods We evaluated the effects of recombinant adenovirus-p53 (Ad-p53) gene therapy combined with selective COX-2 inhibitor on the proliferation, apoptosis, cell cycle arrest of human lung adenocarcinoma A549 cell line, and the effects of tumor suppressor exogenous wild type p53 on COX-2 gene expression. Results Ad-p53 gene therapy combined with selective COX-2 inhibitor celecoxib shows significant synergistic inhibition effects on the growth of human lung adenocarcinoma A549 cell line. Exogenous p53 gene can suppress COX-2 gene expression. Conclusions Significant synergistic inhibition effects of A549 cell line by the combined Ad-p53 and selective COX-2 inhibitor celecoxib may be achieved by enhancement of growth inhibition, apoptosis induction and suppression of COX-2 gene expression. This study provides first evidence that the administration of p53 gene therapy in combination with COX-2 inhibitors might be a new clinical strategy for the treatment or prevention of NSCLC.

  1. The danish protease inhibitor study: a randomized study comparing the virological efficacy of 3 protease inhibitor-containing regimens for the treatment of human immunodeficiency virus type 1 infection

    DEFF Research Database (Denmark)

    Katzenstein, T L; Kirk, O; Pedersen, C;

    2000-01-01

    The Danish Protease Inhibitor (PI) Study has enrolled 318 human immunodeficiency virus (HIV)-infected, PI-naive patients for the purpose of comparing 3 PI-containing regimens for the treatment of HIV infection. The regimens include 2 nucleoside analogues in combination with indinavir (Idr...

  2. The danish protease inhibitor study: a randomized study comparing the virological efficacy of 3 protease inhibitor-containing regimens for the treatment of human immunodeficiency virus type 1 infection

    DEFF Research Database (Denmark)

    Katzenstein, TL; Kirk, O; Pedersen, C;

    2000-01-01

    The Danish Protease Inhibitor (PI) Study has enrolled 318 human immunodeficiency virus (HIV)-infected, PI-naive patients for the purpose of comparing 3 PI-containing regimens for the treatment of HIV infection. The regimens include 2 nucleoside analogues in combination with indinavir (Idr), riton...

  3. PDE5 expression in human thyroid tumors and effects of PDE5 inhibitors on growth and migration of cancer cells.

    Science.gov (United States)

    Sponziello, Marialuisa; Verrienti, Antonella; Rosignolo, Francesca; De Rose, Roberta Francesca; Pecce, Valeria; Maggisano, Valentina; Durante, Cosimo; Bulotta, Stefania; Damante, Giuseppe; Giacomelli, Laura; Di Gioia, Cira Rosaria Tiziana; Filetti, Sebastiano; Russo, Diego; Celano, Marilena

    2015-11-01

    Recent studies have revealed in normal thyroid tissue the presence of the transcript of several phosphodiesterases (PDEs), enzymes responsible for the hydrolysis of cyclic nucleotides. In this work, we analyzed the expression of PDE5 in a series of human papillary thyroid carcinomas (PTCs) presenting or not BRAF V600E mutation and classified according to ATA risk criteria. Furthermore, we tested the effects of two PDE5 inhibitors (sildenafil, tadalafil) against human thyroid cancer cells. PDE5 gene and protein expression were analyzed in two different cohorts of PTCs by real-time PCR using a TaqMan micro-fluid card system and Western blot. MTT and migration assay were used to evaluate the effects of PDE5 inhibitors on proliferation and migration of TPC-1, BCPAP, and 8505C cells. In a first series of 36 PTCs, we found higher expression levels of PDE5A in tumors versus non-tumor (normal) tissues. PTCs with BRAF mutation showed higher levels of mRNA compared with those without mutation. No significant differences were detected between subgroups with low and intermediate ATA risk. Upregulation of PDE5 was also detected in tumor tissue proteins. Similar results were obtained analyzing the second cohort of 50 PTCs. Moreover, all tumor tissues with high PDE5 levels showed reduction of Thyroglobulin, TSH receptor, Thyroperoxidase, and NIS transcripts. In thyroid cancer cells in vitro, sildenafil and tadalafil determined a reduction of proliferation and cellular migration. Our findings demonstrate for the first time an overexpression of PDE5 in PTCs, and the ability of PDE5 inhibitors to block the proliferation of thyroid cancer cells in culture, therefore, suggesting that specific inhibition of PDE5 may be proposed for the treatment of these tumors.

  4. Metabolic Characterization of a Tripeptide Human Immunodeficiency Virus Type 1 Protease Inhibitor, KNI-272, in Rat Liver Microsomes

    Science.gov (United States)

    Kiriyama, Akiko; Nishiura, Tomoyuki; Yamaji, Hirokazu; Takada, Kanji

    1999-01-01

    KNI-272 is a tripeptide protease inhibitor for treating human immunodeficiency virus type 1 (HIV-1). In in vitro stability studies using rat tissue homogenates, KNI-272 concentrations in the liver, kidney, and brain decreased significantly with time. Moreover, in tissue distribution studies, KNI-272 distributed highly to the liver, kidney, and small intestine in vivo. From these results and reported physiological parameters such as the tissue volume and tissue blood flow rate, we considered the liver to be the main organ which takes part in the metabolic elimination of KNI-272. Then the hepatic metabolism of KNI-272 was more thoroughly investigated by using rat liver microsomes. KNI-272 was metabolized in the rat liver microsomes, and five metabolites were found. The initial metabolic rate constant (kmetabolism) tended to decrease when the KNI-272 concentration in microsomal suspensions increased. The calculated Michaelis-Menten constant (Km) and the maximum velocity of KNI-272 metabolism (Vmax), after correction for the unbound drug concentration, were 1.12 ± 0.09 μg/ml (1.68 ± 0.13 μM) and 0.372 ± 0.008 μg/mg of protein/min (0.558 ± 0.012 nmol/mg of protein per min), respectively. The metabolic clearance (CLint,metabo), calculated as Vmax/Km, was 0.332 ml/mg of protein per min. Moreover, by using selective cytochrome P-450 inhibitors and recombinant human CYP3A4 fractions, KNI-272 was determined to be metabolized mainly by the CYP3A isoform. In addition, ketoconazole, a representative CYP3A inhibitor, inhibited KNI-272 metabolism competitively, and the inhibition constant (Ki) was 4.32 μM. PMID:10049266

  5. Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase.

    Science.gov (United States)

    Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke

    2015-11-15

    Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore.

  6. Evaluation of antitumor activity of a TGF-beta receptor I inhibitor (SD-208) on human colon adenocarcinoma.

    Science.gov (United States)

    Akbari, Abolfazl; Amanpour, Saeid; Muhammadnejad, Samad; Ghahremani, Mohammad Hossein; Ghaffari, Seyed Hamidollah; Dehpour, Ahmad Reza; Mobini, Gholam Reza; Shidfar, Fatemeh; Abastabar, Mahdi; Khoshzaban, Ahad; Faghihloo, Ebrahim; Karimi, Abbas; Heidari, Mansour

    2014-06-05

    Transforming growth factor-β (TGF-β) pathway is involved in primary tumor progression and in promoting metastasis in a considerable proportion of human cancers such as colorectal cancer (CRC). Therefore, blockage of TGF-β pathway signaling via an inhibitor could be a valuable tool in CRC treatment. To evaluate the efficacy of systemic targeting of the TGF-β pathway for therapeutic effects on CRC, we investigated the effects of a TGβRI (TGF-β receptor 1) or TβRI kinase inhibitor, SD-208, on SW-48, colon adenocarcinoma cells. In this work, in vitro cell proliferation was studied by methyl thiazolyl tetrazolium (MTT) and bromo-2'-deoxyuridine (BrdU) assays. Also, the histopathological and immunohistochemical evaluations were conducted by hematoxylin and eosin, and Ki-67 and CD34 markers were stained, respectively. Our results showed no significant reduction in cell proliferation and vessel formation (170 ± 70 and 165 ± 70, P > 0.05) in treated SW-48 cells with SD-208 compared to controls. Our data suggested that SD-208 could not significantly reduce tumor growth and angiogenesis in human colorectal cancer model at least using SW-48 cells.

  7. Lersivirine, a nonnucleoside reverse transcriptase inhibitor with activity against drug-resistant human immunodeficiency virus type 1.

    Science.gov (United States)

    Corbau, Romuald; Mori, Julie; Phillips, Chris; Fishburn, Lesley; Martin, Alex; Mowbray, Charles; Panton, Wendy; Smith-Burchnell, Caroline; Thornberry, Adele; Ringrose, Heather; Knöchel, Thorsten; Irving, Steve; Westby, Mike; Wood, Anthony; Perros, Manos

    2010-10-01

    The nonnucleoside reverse transcriptase inhibitors (NNRTIs) are key components of highly active antiretroviral therapy (HAART) for the treatment of human immunodeficiency virus type 1 (HIV-1). A major problem with the first approved NNRTIs was the emergence of mutations in the HIV-1 reverse transcriptase (RT), in particular K103N and Y181C, which led to resistance to the entire class. We adopted an iterative strategy to synthesize and test small molecule inhibitors from a chemical series of pyrazoles against wild-type (wt) RT and the most prevalent NNRTI-resistant mutants. The emerging candidate, lersivirine (UK-453,061), binds the RT enzyme in a novel way (resulting in a unique resistance profile), inhibits over 60% of viruses bearing key RT mutations, with 50% effective concentrations (EC(50)s) within 10-fold of those for wt viruses, and has excellent selectivity against a range of human targets. Altogether lersivirine is a highly potent and selective NNRTI, with excellent efficacy against NNRTI-resistant viruses.

  8. Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a]quinoxaline derivatives as inhibitors of the human protein kinase CK2.

    Science.gov (United States)

    Guillon, Jean; Le Borgne, Marc; Rimbault, Charlotte; Moreau, Stéphane; Savrimoutou, Solène; Pinaud, Noël; Baratin, Sophie; Marchivie, Mathieu; Roche, Séverine; Bollacke, Andre; Pecci, Adali; Alvarez, Lautaro; Desplat, Vanessa; Jose, Joachim

    2013-07-01

    Herein we describe the synthesis and properties of substituted phenylaminopyrrolo[1,2-a]quinoxaline-carboxylic acid derivatives as a novel class of potent inhibitors of the human protein kinase CK2. A set of 15 compounds was designed and synthesized using convenient and straightforward synthesis protocols. The compounds were tested for inhibition of human protein kinase CK2, which is a potential drug target for many diseases including inflammatory disorders and cancer. New inhibitors with IC50 in the micro- and sub-micromolar range were identified. The most promising compound, the 4-[(3-chlorophenyl)amino]pyrrolo[1,2-a]quinoxaline-3-carboxylic acid 1c inhibited human CK2 with an IC50 of 49 nM. Our findings indicate that pyrrolo[1,2-a]quinoxalines are a promising starting scaffold for further development and optimization of human protein kinase CK2 inhibitors.

  9. Development of an on-line high performance liquid chromatography detection system for human cytochrome P450 1A2 inhibitors in extracts of natural products

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Claassen, F.W.; Havlik, J.; Bouwmans, E.E.; Cnubben, N.H.P.; Sudhölter, E.J.R.; Rietjens, I.M.C.M.; Beek, T.A. van

    2007-01-01

    An on-line HPLC screening method for detection of inhibitors of human cytochrome P450 1A2 in extracts was developed. HPLC separation of extracts is connected to a continuous methoxyresorufin-O-demethylation (MROD) assay in which recombinant human P450 1A2 converts methoxyresorufin to its fluorescent

  10. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    Science.gov (United States)

    Li, Lihua; Yang, Huanjie; Chen, Di; Cui, Cindy; Dou, Q. Ping

    2013-01-01

    The ubiquitinproteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF–Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 32 μmol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF–Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF–Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF–Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd. PMID:18304598

  11. In vitro hepatic metabolism of cediranib, a potent vascular endothelial growth factor tyrosine kinase inhibitor: interspecies comparison and human enzymology.

    Science.gov (United States)

    Schulz-Utermoehl, Timothy; Spear, Michael; Pollard, Christopher R J; Pattison, Christine; Rollison, Helen; Sarda, Sunil; Ward, Michelle; Bushby, Nick; Jordan, Angela; Harrison, Mike

    2010-10-01

    The in vitro metabolism of cediranib (4-[(4-fluoro-2-methyl-1H-indol-5-yl)oxy]-6-methoxy-7-[3-(1-pyrrolidinyl)propoxy]quinazoline), a vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor (TKI) of all three VEGF receptors in late-stage development for the treatment of colorectal cancer and recurrent glioblastoma was investigated in hepatic proteins from preclinical species and humans using radiolabeled material. In human hepatocyte cultures, oxidative and conjugative metabolic pathways were identified, with pyrrolidine N(+)-glucuronidation being the major route. The primary oxidative pathways were di-and trioxidations and pyrrolidine N-oxidation. All metabolites with the exception of the N(+)-glucuronide metabolite were observed in rat and cynomolgus monkey hepatocyte preparations. Additional metabolism studies in liver microsomes from these or other preclinical species (CD-1 mouse, Han Wistar rat, Dunkin Hartley guinea pig, Göttingen mini-pig, New Zealand White rabbit, beagle dog, and cynomolgus and rhesus monkey) indicated that the N(+)-glucuronide metabolite was not formed in these additional species. Incubations with recombinant flavin-containing monooxygenase (FMO) and UDP-glucuronosyltransferase (UGT) enzymes and inhibition studies using the nonselective cytochrome P450 (P450) chemical inhibitor 1-aminobenzotriazole in human hepatocytes indicated that FMO1 and FMO3 contributed to cediranib N-oxidation, whereas UGT1A4 had a major role in cediranib N(+)-glucuronidation. P450 enzymes had only a minor role in the metabolism of cediranib. In conclusion, species differences in the formation of the N(+)-glucuronide metabolite of cediranib were observed. All other metabolites of cediranib found in humans were also detected in rat and cynomolgus monkey. Non-P450 enzymes are predominantly involved in the metabolism of cediranib, and this suggests that clinical drug interactions involving other coadministered drugs are unlikely.

  12. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells.

    Science.gov (United States)

    Li, Lihua; Yang, Huanjie; Chen, Di; Cui, Cindy; Dou, Q Ping

    2008-06-01

    The ubiquitin-proteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF-Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC(50) value of 32 micromol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF-Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF-Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF-Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd.

  13. Metalloprotein-inhibitor binding: human carbonic anhydrase II as a model for probing metal-ligand interactions in a metalloprotein active site.

    Science.gov (United States)

    Martin, David P; Hann, Zachary S; Cohen, Seth M

    2013-11-01

    An ever-increasing number of metalloproteins are being discovered that play essential roles in physiological processes. Inhibitors of these proteins have significant potential for the treatment of human disease, but clinical success of these compounds has been limited. Herein, zinc(II)-dependent metalloprotein inhibitors in clinical use are reviewed, and the potential for using novel metal-binding groups (MBGs) in the design of these inhibitors is discussed. By using human carbonic anhydrase II as a model system, the nuances of MBG-metal interactions in the context of a protein environment can be probed. Understanding how metal coordination influences inhibitor binding may help in the design of new therapeutics targeting metalloproteins.

  14. Virulence of Group A Streptococci Is Enhanced by Human Complement Inhibitors

    DEFF Research Database (Denmark)

    Ermert, David; Shaughnessy, Jutamas; Joeris, Thorsten;

    2015-01-01

    Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and c...... in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy.......Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement...

  15. Novel irreversible EGFR tyrosine kinase inhibitor 324674 sensitizes human colon carcinoma HT29 and SW480 cells to apoptosis by blocking the EGFR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiwei; Cui, Binbin; Jin, Yinghu; Chen, Haipeng [Division of Colorectal Surgery, Third Affiliated Hospital of Harbin Medical University, Harbin (China); Wang, Xishan, E-mail: wxshan_oncologist@yahoo.com.cn [Division of Colorectal Surgery, Third Affiliated Hospital of Harbin Medical University, Harbin (China)

    2011-08-12

    Highlights: {yields} This article described the effects of the EGFR tyrosine kinase inhibitor on the cell proliferation and the apoptosis induction of the colon carcinoma cell lines. {yields} Demonstrated that 326474 is a more potent EGFR inhibitor on colon cancer cells than other three TKIs. {yields} It can be important when considering chemotherapy for colonic cancer patients. -- Abstract: Background: Epidermal growth factor receptor (EGFR) is widely expressed in multiple solid tumors including colorectal cancer by promoting cancer cell growth and proliferation. Therefore, the inhibition of EGFR activity may establish a clinical strategy of cancer therapy. Methods: In this study, using human colon adenocarcinoma HT29 and SW480 cells as research models, we compared the efficacy of four EGFR inhibitors in of EGFR-mediated pathways, including the novel irreversible inhibitor 324674, conventional reversible inhibitor AG1478, dual EGFR/HER2 inhibitor GW583340 and the pan-EGFR/ErbB2/ErbB4 inhibitor. Cell proliferation was assessed by MTT analysis, and apoptosis was evaluated by the Annexin-V binding assay. EGFR and its downstream signaling effectors were examined by western blotting analysis. Results: Among the four inhibitors, the irreversible EGFR inhibitor 324674 was more potent at inhibiting HT29 and SW480 cell proliferation and was able to efficiently induce apoptosis at lower concentrations. Western blotting analysis revealed that AG1478, GW583340 and pan-EGFR/ErbB2/ErbB4 inhibitors failed to suppress EGFR activation as well as the downstream mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR (AKT) pathways. In contrast, 324674 inhibited EGFR activation and the downstream AKT signaling pathway in a dose-dependent manner. Conclusion: Our studies indicated that the novel irreversible EGFR inhibitor 324674 may have a therapeutic application in colon cancer therapy.

  16. Interaction of human TNF and beta2-microglobulin with Tanapox virus-encoded TNF inhibitor, TPV-2L.

    Science.gov (United States)

    Rahman, Masmudur M; Jeng, David; Singh, Rajkumari; Coughlin, Jake; Essani, Karim; McFadden, Grant

    2009-04-10

    Tanapox virus (TPV) encodes and expresses a secreted TNF-binding protein, TPV-2L or gp38, that displays inhibitory properties against TNF from diverse mammalian species, including human, monkey, canine and rabbit. TPV-2L also has sequence similarity with the MHC-class I heavy chain and interacts differently with human TNF as compared to the known cellular TNF receptors or any of the known virus-encoded TNF receptor homologs derived from many poxviruses. In order to determine the TNF binding region in TPV-2L, various TPV-2L C-terminal truncations and internal deletions were created and the muteins were expressed using recombinant baculovirus vectors. C-terminal deletions from TPV-2L resulted in reduced binding affinity for human TNF and specific mutants of TNF that discriminate between TNF-R1 and TNF-R2. However, deletion of C-terminal 42 amino acid residues totally abolished the binding of human TNF and its mutants. Removal of any of the predicted internal domains resulted in a mutant TPV-2L protein incapable of binding to human TNF. Deletion of C-terminal residues also affected the ability of TPV-2L to block TNF-induced cellular cytotoxicity. In addition to TNF, TPV-2L can also form complexes with human beta2-microglobulin to form a novel macromolecular complex. In summary, the TPV-2L protein is a bona fide MHC-1 heavy chain family member that binds and inhibits human TNF in a fashion very distinct from other known poxvirus-encoded TNF inhibitors, and also can form a novel complex with the human MHC-1 light chain, beta2-microglobulin.

  17. Noninvasive Magnetic Resonance Spectroscopic Pharmacodynamic Markers of a Novel Histone Deacetylase Inhibitor, LAQ824, in Human Colon Carcinoma Cells and Xenografts1

    OpenAIRE

    2008-01-01

    The aim of this work was to use phosphorus magnetic resonance spectroscopy (31P MRS) to investigate the pharmacodynamic effects of LAQ824, a histone deacetylase (HDAC) inhibitor. Human HT29 colon carcinoma cells were examined by 31P MRS after treatment with LAQ824 and another HDAC inhibitor, suberoylanilide hydroxamic acid. HT29 xenografts and tumor extracts were also examined using 31P MRS, pre- and post-LAQ824 treatment. Histone H3 acetylation was determined using Western blot analysis, and...

  18. Noninvasive Magnetic Resonance Spectroscopic Pharmacodynamic Markers of a Novel Histone Deacetylase Inhibitor, LAQ824, in Human Colon Carcinoma Cells and Xenografts

    OpenAIRE

    2008-01-01

    The aim of this work was to use phosphorus magnetic resonance spectroscopy (31P MRS) to investigate the pharmacodynamic effects of LAQ824, a histone deacetylase (HDAC) inhibitor. Human HT29 colon carcinoma cells were examined by 31P MRS after treatment with LAQ824 and another HDAC inhibitor, suberoylanilide hydroxamic acid. HT29 xenografts and tumor extracts were also examined using 31P MRS, pre- and post-LAQ824 treatment. Histone H3 acetylation was determined using Western blot analysis, and...

  19. Identification of Small Molecule Inhibitors of Human Cytochrome c Oxidase That Target Chemoresistant Glioma Cells.

    Science.gov (United States)

    Oliva, Claudia R; Markert, Tahireh; Ross, Larry J; White, E Lucile; Rasmussen, Lynn; Zhang, Wei; Everts, Maaike; Moellering, Douglas R; Bailey, Shannon M; Suto, Mark J; Griguer, Corinne E

    2016-11-11

    The enzyme cytochrome c oxidase (CcO) or complex IV (EC 1.9.3.1) is a large transmembrane protein complex that serves as the last enzyme in the respiratory electron transport chain of eukaryotic mitochondria. CcO promotes the switch from glycolytic to oxidative phosphorylation (OXPHOS) metabolism and has been associated with increased self-renewal characteristics in gliomas. Increased CcO activity in tumors has been associated with tumor progression after chemotherapy failure, and patients with primary glioblastoma multiforme and high tumor CcO activity have worse clinical outcomes than those with low tumor CcO activity. Therefore, CcO is an attractive target for cancer therapy. We report here the characterization of a CcO inhibitor (ADDA 5) that was identified using a high throughput screening paradigm. ADDA 5 demonstrated specificity for CcO, with no inhibition of other mitochondrial complexes or other relevant enzymes, and biochemical characterization showed that this compound is a non-competitive inhibitor of cytochrome c When tested in cellular assays, ADDA 5 dose-dependently inhibited the proliferation of chemosensitive and chemoresistant glioma cells but did not display toxicity against non-cancer cells. Furthermore, treatment with ADDA 5 led to significant inhibition of tumor growth in flank xenograft mouse models. Importantly, ADDA 5 in