WorldWideScience

Sample records for human afferent visual

  1. Anatomy and physiology of the afferent visual system.

    Science.gov (United States)

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Effects of periodontal afferent inputs on corticomotor excitability in humans

    DEFF Research Database (Denmark)

    Zhang, Y; Boudreau, S; Wang, M

    2010-01-01

    for the first dorsal interosseous (FDI) as an internal control. Burning pain intensity and mechanical sensitivity ratings to a von Frey filament applied to the application site were recorded on an electronic visual analogue scale (VAS). All subjects reported a decreased mechanical sensitivity (anova: P = 0......-injection for the LA (anovas: P > 0.22) or capsaicin (anovas: P > 0.16) sessions. These findings suggest that a transient loss or perturbation in periodontal afferent input to the brain from a single incisor is insufficient to cause changes in corticomotor excitability of the face MI, as measured by TMS in humans....

  3. Group Ia afferents likely contribute to short-latency interlimb reflexes in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Kamavuako, Ernest Nlandu; Geertsen, Svend Sparre

    2017-01-01

    amplitudes (4 vs. 8°) at the same 150°/s velocity (p’s > 0.08). Conclusion: Because fast conducting group Ia muscle spindle afferents are sensitive to changes in muscle stretch velocity, while group II spindle afferents are sensitive to changes in amplitude (Grey et al., JPhysiol., 2001; Matthews, Trends...... Neurosci., 1991), group Ia velocity sensitive muscle spindle afferents likely contribute to the short-latency crossed spinal reflexes in the cBF muscle following iKnee joint rotations. This supports the findings for the short-latency crossed responses in the human soleus muscle (Stubbs & Mrachacz...... neurons in humans, with primary contributions from group Ia muscle spindle afferents....

  4. Cross-Modal Calibration of Vestibular Afference for Human Balance.

    Directory of Open Access Journals (Sweden)

    Martin E Héroux

    Full Text Available To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8 stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.

  5. Detection thresholds of macaque otolith afferents.

    Science.gov (United States)

    Yu, Xiong-Jie; Dickman, J David; Angelaki, Dora E

    2012-06-13

    The vestibular system is our sixth sense and is important for spatial perception functions, yet the sensory detection and discrimination properties of vestibular neurons remain relatively unexplored. Here we have used signal detection theory to measure detection thresholds of otolith afferents using 1 Hz linear accelerations delivered along three cardinal axes. Direction detection thresholds were measured by comparing mean firing rates centered on response peak and trough (full-cycle thresholds) or by comparing peak/trough firing rates with spontaneous activity (half-cycle thresholds). Thresholds were similar for utricular and saccular afferents, as well as for lateral, fore/aft, and vertical motion directions. When computed along the preferred direction, full-cycle direction detection thresholds were 7.54 and 3.01 cm/s(2) for regular and irregular firing otolith afferents, respectively. Half-cycle thresholds were approximately double, with excitatory thresholds being half as large as inhibitory thresholds. The variability in threshold among afferents was directly related to neuronal gain and did not depend on spike count variance. The exact threshold values depended on both the time window used for spike count analysis and the filtering method used to calculate mean firing rate, although differences between regular and irregular afferent thresholds were independent of analysis parameters. The fact that minimum thresholds measured in macaque otolith afferents are of the same order of magnitude as human behavioral thresholds suggests that the vestibular periphery might determine the limit on our ability to detect or discriminate small differences in head movement, with little noise added during downstream processing.

  6. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Ladouceur, Michel; Andersen, Jacob B.

    2001-01-01

    1. The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. 2. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h(-1) with the left ankle...... = 0.007), whereas the short latency component was unchanged (P = 0.653). 7. An ankle block with lidocaine hydrochloride was performed to suppress the cutaneous afferents of the foot and ankle. Neither the short (P = 0.453) nor medium (P = 0.310) latency reflexes were changed. 8. Our results support...

  7. Bilateral sensory deprivation of trigeminal afferent fibers on corticomotor control of human tongue musculature: A preliminary study

    DEFF Research Database (Denmark)

    Kothari, Mohit; Baad-Hansen, Lene; Svensson, Peter

    2016-01-01

    Background: Transcranial magnetic stimulation (TMS) has demonstrated changes in motor evoked potentials (MEPs) in human limb muscles following modulation of sensory afferent inputs. Objective: The aim of the present study was to determine whether bilateral local anaesthesia (LA) of the lingual ne...

  8. Afferent neuronal control of type-I gonadotropin releasing hormone (GnRH neurons in the human

    Directory of Open Access Journals (Sweden)

    Erik eHrabovszky

    2013-09-01

    Full Text Available Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. Under various physiological and pathological conditions, hormonal and metabolic signals either regulate GnRH neurons directly or act on upstream neuronal circuitries to influence the pattern of pulsatile GnRH secretion into the hypophysial portal circulation. Neuronal afferents to GnRH cells convey important metabolic-, stress-, sex steroid-, lactational- and circadian signals to the reproductive axis, among other effects. This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and neurokinin B systems.

  9. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans

    Science.gov (United States)

    Cui, Jian; McQuillan, Patrick M.; Blaha, Cheryl; Kunselman, Allen R.

    2012-01-01

    We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects. PMID:22707559

  10. Liver afferents contribute to water drinking-induced sympathetic activation in human subjects: a clinical trial.

    Directory of Open Access Journals (Sweden)

    Marcus May

    Full Text Available Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups after 30-40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects.ClinicalTrials.gov NCT01237431.

  11. Liver Afferents Contribute to Water Drinking-Induced Sympathetic Activation in Human Subjects: A Clinical Trial

    Science.gov (United States)

    May, Marcus; Gueler, Faikah; Barg-Hock, Hannelore; Heiringhoff, Karl-Heinz; Engeli, Stefan; Heusser, Karsten; Diedrich, André; Brandt, André; Strassburg, Christian P.; Tank, Jens; Sweep, Fred C. G. J.; Jordan, Jens

    2011-01-01

    Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant) as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant) as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (pwater drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. Trial Registration ClinicalTrials.gov NCT01237431 PMID:22016786

  12. Role of capsaicin- and heat-sensitive afferents in stimulation of acupoint-induced pain and analgesia in humans.

    Science.gov (United States)

    Lei, Jing; Ye, Gang; Wu, Jiang-Tao; Pertovaara, Antti; You, Hao-Jun

    2017-09-01

    We investigated role of capsaicin-sensitive afferents within and without the areas of Zusanli (ST36)/Shangjuxu (ST37) acupoints along the stomach (ST) meridian in the perception and modulation of pain assessed by visual analog scale of pain and its distribution rated by subjects, pressure pain threshold (PPT), and heat pain threshold (HPT) in humans. Compared with the treatment of non-acupoint area, capsaicin (100µg/50µl) administered into either ST36 or ST37 acupoint caused the strongest pain intensity and the most extensive pain distribution, followed by rapid onset, bilateral, long-lasting secondary mechanical hyperalgesia and slower onset secondary heat hypoalgesia (1day after the capsaicin treatment). Between treatments of different acupoints, capsaicin administrated into the ST36 acupoint exhibited the stronger pain intensity and more widespread pain distribution compared with the treatment of ST37 acupoint. A period of 30- to 45-min, but not 15-min, 43°C heating-needle stimulation applied to the ST36 acupoint significantly enhanced the HPT, and had no effect on PPT. Upon trapezius muscle pain elicited by the i.m. injection of 5.8% saline, pre-emptive treatment of the contralateral ST36 acupoint with 43°C heating-needle stimulation alleviated the ongoing muscle pain, reduced painful area, and reversed the decrease in HPT. It is suggested that (1) pain elicited from the acupoint and non-acupoint areas differs significantly, which are supposed to be dependent on the different distributions and contributions of capsaicin-sensitive afferents. (2) Non-painful heat stimulation is a valid approach in prevention of ongoing muscle pain with associated post-effects of peripheral and central sensitization. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Anatomy and physiology of phrenic afferent neurons.

    Science.gov (United States)

    Nair, Jayakrishnan; Streeter, Kristi A; Turner, Sara M F; Sunshine, Michael D; Bolser, Donald C; Fox, Emily J; Davenport, Paul W; Fuller, David D

    2017-12-01

    Large-diameter myelinated phrenic afferents discharge in phase with diaphragm contraction, and smaller diameter fibers discharge across the respiratory cycle. In this article, we review the phrenic afferent literature and highlight areas in need of further study. We conclude that 1 ) activation of both myelinated and nonmyelinated phrenic sensory afferents can influence respiratory motor output on a breath-by-breath basis; 2 ) the relative impact of phrenic afferents substantially increases with diaphragm work and fatigue; 3 ) activation of phrenic afferents has a powerful impact on sympathetic motor outflow, and 4 ) phrenic afferents contribute to diaphragm somatosensation and the conscious perception of breathing. Much remains to be learned regarding the spinal and supraspinal distribution and synaptic contacts of myelinated and nonmyelinated phrenic afferents. Similarly, very little is known regarding the potential role of phrenic afferent neurons in triggering or modulating expression of respiratory neuroplasticity. Copyright © 2017 the American Physiological Society.

  14. Modulation of long-latency afferent inhibition by the amplitude of sensory afferent volley.

    Science.gov (United States)

    Turco, Claudia V; El-Sayes, Jenin; Fassett, Hunter J; Chen, Robert; Nelson, Aimee J

    2017-07-01

    Long-latency afferent inhibition (LAI) is the inhibition of the transcranial magnetic stimulation (TMS) motor-evoked potentials (MEP) by the sensory afferent volley following electrical stimulation of a peripheral nerve. It is unknown how the activation of sensory afferent fibers relates to the magnitude of LAI. This study investigated the relationship between LAI and the sensory nerve action potentials (SNAP) from the median nerve (MN) and the digital nerves (DN) of the second digit. LAI was obtained by delivering nerve stimulation 200 ms before a TMS pulse delivered over the motor cortex. Experiment 1 assessed the magnitude of LAI following stimulation of the contralateral MN or DN using nerve stimulus intensities relative to the maximum SNAP (SNAP max ) of that nerve and two TMS intensities (0.5- and 1-mV MEP). Results indicate that MN LAI is maximal at ~50% SNAP max , when presumably all sensory afferents are recruited for TMS of 0.5-mV MEP. For DN, LAI appears at ~50% SNAP max and does not increase with further recruitment of sensory afferents. Experiment 2 investigated the magnitude of LAI following ipsilateral nerve stimulation at intensities relative to SNAP max Results show minimal LAI evoked by ipsilateral MN and no LAI following ipsilateral DN stimulation. Implications for future studies investigating LAI include adjusting nerve stimulation to 50% SNAP max to obtain maximal LAI. Additionally, MN LAI can be used as a marker for neurological disease or injury by using a nerve stimulation intensity that can evoke a depth of LAI capable of increasing or decreasing. NEW & NOTEWORTHY This is the first investigation of the relationship between long-latency afferent inhibition (LAI) and the sensory afferent volley. Differences exist between median and digital nerve LAI. For the median nerve, LAI increases until all sensory fibers are presumably recruited. In contrast, digital nerve LAI does not increase with the recruitment of additional sensory fibers but

  15. Activation of lateral geniculate nucleus and primary visual cortex as detected by functional magnetic resonance imaging in normal subjects and in patients with visual disturbance

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Atsushi [Niigata Univ. (Japan). Graduate School of Medical and Dental Sciences

    2002-12-01

    Functional magnetic resonance imaging (fMRI) during visual stimulation can detect regional cerebral blood flow changes that reflect neural activity in the lateral geniculate nucleus and primary visual cortex, which are major relay points in the human afferent visual system. FMRI has been used in the clinical evaluation of visual disorders such as homonymous hemianopia and unilateral eye diseases (optic neuritis, amblyopia, and so on). Future development in the data acquisition and data analysis may facilitate the use of fMRI for the management of patients with visual deficits and understanding of the visual disorders. (author)

  16. Activation of lateral geniculate nucleus and primary visual cortex as detected by functional magnetic resonance imaging in normal subjects and in patients with visual disturbance

    International Nuclear Information System (INIS)

    Miki, Atsushi

    2002-01-01

    Functional magnetic resonance imaging (fMRI) during visual stimulation can detect regional cerebral blood flow changes that reflect neural activity in the lateral geniculate nucleus and primary visual cortex, which are major relay points in the human afferent visual system. FMRI has been used in the clinical evaluation of visual disorders such as homonymous hemianopia and unilateral eye diseases (optic neuritis, amblyopia, and so on). Future development in the data acquisition and data analysis may facilitate the use of fMRI for the management of patients with visual deficits and understanding of the visual disorders. (author)

  17. Afferent connectivity of the zebrafish habenulae

    Directory of Open Access Journals (Sweden)

    Katherine Jane Turner

    2016-04-01

    Full Text Available The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates.Here we describe the main afferents to the habenulae in larval and adult zebrafish.We observe afferents from the subpallium, nucleus rostrolateralis,posterior tuberculum, posterior hypothalamic lobe, median raphe, olfactory bulb to the right habenula and from the parapineal to the lefthabenula.In addition,we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus(vENT,confirming and extending observations of Amo et al.(2014.Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hpf.No afferents to the habenula were observed from the dorsal entopeduncular nucleus(dENT.Consequently,we confirm that the vENT(and not the dENT should be considered as the entopeduncular nucleus proper in zebrafish.Furthermore,comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus,being homologous to the entopeduncular nucleus of mammals(internal segment of the globus pallidus of primates by both embryonic origin and projections,as previously suggested by Amo et al.(2014.Key words: habenula,connections,afferents,entopeduncular nucleus,posterior tuberculum,basal ganglia,zebrafish

  18. Afferent Connectivity of the Zebrafish Habenulae

    Science.gov (United States)

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  19. Afferent innervation of the utricular macula in pigeons

    Science.gov (United States)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  20. Cooling reduces the cutaneous afferent firing response to vibratory stimuli in glabrous skin of the human foot sole.

    Science.gov (United States)

    Lowrey, Catherine R; Strzalkowski, Nicholas D J; Bent, Leah R

    2013-02-01

    Skin on the foot sole plays an important role in postural control. Cooling the skin of the foot is often used to induce anesthesia to determine the role of skin in motor and balance control. The effect of cooling on the four classes of mechanoreceptor in the skin is largely unknown, and thus the aim of the present study was to characterize the effects of cooling on individual skin receptors in the foot sole. Such insight will better isolate individual receptor contributions to balance control. Using microneurography, we recorded 39 single nerve afferents innervating mechanoreceptors in the skin of the foot sole in humans. Afferents were identified as fast-adapting (FA) or slowly adapting (SA) type I or II (FA I n = 16, FA II n = 7, SA I n = 6, SA II n = 11). Receptor response to vibration was compared before and after cooling of the receptive field (2-20 min). Overall, firing response was abolished in 30% of all receptors, and this was equally distributed across receptor type (P = 0.69). Longer cooling times were more likely to reduce firing response below 50% of baseline; however, some afferent responses were abolished with shorter cooling times (2-5 min). Skin temperature was not a reliable indicator of the level of receptor activation and often became uncoupled from receptor response levels, suggesting caution in the use of this parameter as an indicator of anesthesia. When cooled, receptors preferentially coded lower frequencies in response to vibration. In response to a sustained indentation, SA receptors responded more like FA receptors, primarily coding "on-off" events.

  1. Ultrasonography as a tool to study afferent feedback from the muscle-tendon complex during human walking

    DEFF Research Database (Denmark)

    Cronin, Neil J.; Klint, Richard af; Grey, Michael James

    2011-01-01

    In humans, one of the most common tasks in everyday life is walking, and sensory afferent feedback from peripheral receptors, particularly the muscle spindles and Golgi tendon organs (GTO), makes an important contribution to the motor control of this task. One factor that can complicate the ability...... with an examination of muscle activation to give a broader insight to neuromuscular interaction during walking. Despite the advances in understanding that these techniques have brought, there is clearly still a need for more direct methods to study both neural and mechanical parameters during human walking in order...... of these receptors to act as length, velocity and force transducers is the complex pattern of interaction between muscle and tendinous tissues, as tendon length is often considerably greater than muscle fibre length in the human lower limb. In essence, changes in muscle-tendon mechanics can influence the firing...

  2. [Acute pancreatitis and afferent loop syndrome. Case report].

    Science.gov (United States)

    Barajas-Fregoso, Elpidio Manuel; Romero-Hernández, Teodoro; Macías-Amezcua, Michel Dassaejv

    2013-01-01

    The afferent syndrome loop is a mechanic obstruction of the afferent limb before a Billroth II or Roux-Y reconstruction, secondary in most of case to distal or subtotal gastrectomy. Clinical case: Male 76 years old, with antecedent of cholecystectomy, gastric adenocarcinoma six years ago, with subtotal gastrectomy and Roux-Y reconstruction. Beginning a several abdominal pain, nausea and vomiting, abdominal distension, without peritoneal irritation sings. Amylase 1246 U/L, lipase 3381 U/L. Computed Tomography with thickness wall and dilatation of afferent loop, pancreas with diffuse enlargement diagnostic of acute pancreatitis secondary an afferent loop syndrome. The afferent loop syndrome is presented in 0.3%-1% in all cases with Billroth II reconstruction, with a mortality of up to 57%, the obstruction lead accumulation of bile, pancreatic and intestinal secretions, increasing the pressure and resulting in afferent limb, bile conduct and Wirsung conduct dilatation, triggering an inflammatory response that culminates in pancreatic inflammation. The severity of the presentation is related to the degree and duration of the blockage.

  3. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  4. Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Nielsen, Jens Bo

    2008-01-01

    immobilized the left foot and ankle joint for 2 weeks in 12 able-bodied subjects. Disynaptic reciprocal inhibition of soleus (SOL) motoneurones and presynaptic control of SOL group Ia afferents was measured before and after the immobilization as well as following 2 weeks of recovery. Following immobilization...... maximal voluntary plantar- and dorsiflexion torque (MVC) was significantly reduced and the maximal SOL H-reflex amplitude increased with no changes in Mmax. Decreased presynaptic inhibition of the Ia afferents likely contributed to the increase of the H-reflex size, since we observed a significant...... decrease in the long-latency depression of the SOL H-reflex evoked by peroneal nerve stimulation (D2 inhibition) and an increase in the size of the monosynaptic Ia facilitation of the SOL H-reflex evoked by femoral nerve stimulation. These two measures provide independent evidence of changes in presynaptic...

  5. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    Science.gov (United States)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  6. Convergence of cranial visceral afferents within the solitary tract nucleus.

    Science.gov (United States)

    McDougall, Stuart J; Peters, James H; Andresen, Michael C

    2009-10-14

    Primary afferent axons within the solitary tract (ST) relay homeostatic information via glutamatergic synapses directly to second-order neurons within the nucleus of the solitary tract (NTS). These primary afferents arise from multiple organ systems and relay multiple sensory modalities. How this compact network organizes the flow of primary afferent information will shape central homeostatic control. To assess afferent convergence and divergence, we recorded ST-evoked synaptic responses in pairs of medial NTS neurons in horizontal brainstem slices. ST shocks activated EPSCs along monosynaptic or polysynaptic pathways. Gradations in shock intensity discriminated multiple inputs and stimulus recruitment profiles indicated that each EPSC was unitary. In 24 pairs, 75% were second-order neurons with 64% receiving one direct ST input with the remainder receiving additional convergent ST afferent inputs (22% two; 14% three monosynaptic ST-EPSCs). Some (34%) second-order neurons received polysynaptic EPSCs. Neurons receiving only higher-order inputs were uncommon (13%). Most ST-EPSCs were completely independent, but 4 EPSCs of a total of 81 had equal thresholds, highly correlated latencies, and synchronized synaptic failures consistent with divergence from a single source ST axon or from a common interneuron producing a pair of polysynaptic EPSCs. We conclude that ST afferent inputs are remarkably independent with little evidence of substantial shared information. Individual cells receive highly focused information from the viscera. Thus, afferent excitation of second-order NTS neurons is generally dominated by single visceral afferents and therefore focused on a single afferent modality and/or organ region.

  7. Histological identification of phrenic afferent projections to the spinal cord.

    Science.gov (United States)

    Nair, Jayakrishnan; Bezdudnaya, Tatiana; Zholudeva, Lyandysha V; Detloff, Megan R; Reier, Paul J; Lane, Michael A; Fuller, David D

    2017-02-01

    Limited data are available regarding the spinal projections of afferent fibers in the phrenic nerve. We describe a method that robustly labels phrenic afferent spinal projections in adult rats. The proximal end of the cut phrenic nerve was secured in a microtube filled with a transganglionic tracer (cholera toxin β-subunit, CT-β, or Cascade Blue) and tissues harvested 96-h later. Robust CT-β labeling occurred in C3-C5 dorsal root ganglia cell bodies and phrenic afferent projections were identified in the mid-cervical dorsal horn (laminae I-III), intermediate grey matter (laminae IV, VII) and near the central canal (laminae X). Afferent fiber labeling was reduced or absent when CT-β was delivered to the intrapleural space or directly to the hemidiaphragm. Soaking the phrenic nerve with Cascade Blue also produced robust labeling of mid-cervical dorsal root ganglia cells bodies, and primary afferent fibers were observed in spinal grey matter and dorsal white matter. Our results show that the 'nerve soak' method effectively labels both phrenic motoneurons and phrenic afferent projections, and show that primary afferents project throughout the ipsilateral mid-cervical gray matter. Copyright © 2016. Published by Elsevier B.V.

  8. Afferent loop syndrome: Role of sonography and CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Ho; Lim, Jae Hoon; Ko, Young Tae [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1992-03-15

    Afferent loop syndrome(ALS) is caused by obstruction of the afferent loop after subtotal gastrectomy with Billroth II gastrojejunostomy. Prompt diagnosis of ALS is important as perforation of the loop occurs. The aim of study is to ascertain the sonography and CT to diagnose ALS. We describe the radiologic findings in ten patients with ALS. The cause of ALS, established at surgery, included cancer recurrence (n=4), internal hernia (n=4), marginal ulcer (n=1), and development of cancer at the anastomosis site (n=1). Abdominal X-ray and sonography were performed in all cases, upper GI series in five cases and computed tomography in two cases. The dilated afferent loop was detected in only two cases out often patients in retrospective review of abdominal X-ray. ALS with recurrence of cancer was diagnosed in three cases by upper GI series. Of the cases that had sonography, the afferent loop was seen in the upper abdomen crossing transversely over the midline in all ten patients. The cause of ALS were predicated on the basis of the sonograms in three of the five patients. In two cases of computed tomography, the dilated afferent loop and recurrent cancer at the remnant stomach were seen.Our experience suggests that the diagnosis of afferent syndrome can be made on the basis of the typical anatomic location and shape of the dilated bowel loop in both sonography and computed tomography.

  9. Afferent activity to necklace glomeruli is dependent on external stimuli

    Directory of Open Access Journals (Sweden)

    Munger Steven D

    2009-03-01

    Full Text Available Abstract Background The main olfactory epithelium (MOE is a complex organ containing several functionally distinct subpopulations of sensory neurons. One such subpopulation is distinguished by its expression of the guanylyl cyclase GC-D. The axons of GC-D-expressing (GC-D+ neurons innervate 9–15 "necklace" glomeruli encircling the caudal main olfactory bulb (MOB. Chemosensory stimuli for GC-D+ neurons include two natriuretic peptides, uroguanylin and guanylin, and CO2. However, the biologically-relevant source of these chemostimuli is unclear: uroguanylin is both excreted in urine, a rich source of olfactory stimuli for rodents, and expressed in human nasal epithelium; CO2 is present in both inspired and expired air. Findings To determine whether the principal source of chemostimuli for GC-D+ neurons is external or internal to the nose, we assessed the consequences of removing external chemostimuli for afferent activity to the necklace glomeruli. To do so, we performed unilateral naris occlusions in Gucy2d-Mapt-lacZ +/- mice [which express a β-galactosidase (β-gal reporter specifically in GC-D+ neurons] followed by immunohistochemistry for β-gal and a glomerular marker of afferent activity, tyrosine hydroxylase (TH. We observed a dramatic decrease in TH immunostaining, consistent with reduced or absent afferent activity, in both necklace and non-necklace glomeruli ipsilateral to the occluded naris. Conclusion Like other MOB glomeruli, necklace glomeruli exhibit a large decrease in afferent activity upon removal of external stimuli. Thus, we conclude that activity in GC-D+ neurons, which specifically innervate necklace glomeruli, is not dependent on internal stimuli. Instead, GC-D+ neurons, like other OSNs in the MOE, primarily sense the external world.

  10. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  11. Population coding of forelimb joint kinematics by peripheral afferents in monkeys.

    Directory of Open Access Journals (Sweden)

    Tatsuya Umeda

    Full Text Available Various peripheral receptors provide information concerning position and movement to the central nervous system to achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG neurons in cervical segments of monkeys. We applied the sparse linear regression (SLiR algorithm to the recordings, which selects useful input signals to reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2, respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint kinematics of non-human primates.

  12. Are Visual Peripheries Forever Young?

    Directory of Open Access Journals (Sweden)

    Kalina Burnat

    2015-01-01

    Full Text Available The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion is more affected by binocular visual deprivation than central visual processing (spatial resolution. In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.

  13. Are visual peripheries forever young?

    Science.gov (United States)

    Burnat, Kalina

    2015-01-01

    The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.

  14. Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat.

    Science.gov (United States)

    Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire

    2014-07-01

    The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.

  15. Tuning of spinal networks to frequency components of spike trains in individual afferents.

    Science.gov (United States)

    Koerber, H R; Seymour, A W; Mendell, L M

    1991-10-01

    Cord dorsum potentials (CDPs) evoked by primary afferent fiber stimulation reflect the response of postsynaptic dorsal horn neurons. The properties of these CDPs have been shown to vary in accordance with the type of primary afferent fiber stimulated. The purpose of the present study was to determine the relationships between frequency modulation of the afferent input trains, the amplitude modulation of the evoked CDPs, and the type of primary afferent stimulated. The somata of individual primary afferent fibers were impaled in the L7 dorsal root ganglion of alpha-chloralose-anesthetized cats. Action potentials (APs) were evoked in single identified afferents via the intracellular microelectrode while simultaneously recording the response of dorsal horn neurons as CDPs, or activity of individual target interneurons recorded extracellularly or intracellularly. APs were evoked in afferents using temporal patterns identical to the responses of selected afferents to natural stimulation of their receptive fields. Two such physiologically realistic trains, one recorded from a hair follicle and the other from a slowly adapting type 1 receptor, were chosen as standard test trains. Modulation of CDP amplitude in response to this frequency-modulated afferent activity varied according to the type of peripheral mechanoreceptor innervated. Dorsal horn networks driven by A beta afferents innervating hair follicles, rapidly adapting pad (Krause end bulb), and field receptors seemed "tuned" to amplify the onset of activity in single afferents. Networks driven by afferents innervating down hair follicles and pacinian corpuscles required more high-frequency activity to elicit their peak response. Dorsal horn networks driven by afferents innervating slowly adapting receptors including high-threshold mechanoreceptors exhibited some sensitivity to the instantaneous frequency, but in general they reproduced the activity in the afferent fiber much more faithfully. Responses of

  16. Evaluation of afferent pain pathways in adrenomyeloneuropathic patients.

    Science.gov (United States)

    Yagüe, Sara; Veciana, Misericordia; Casasnovas, Carlos; Ruiz, Montserrat; Pedro, Jordi; Valls-Solé, Josep; Pujol, Aurora

    2018-03-01

    Patients with adrenomyeloneuropathy may have dysfunctions of visual, auditory, motor and somatosensory pathways. We thought on examining the nociceptive pathways by means of laser evoked potentials (LEPs), to obtain additional information on the pathophysiology of this condition. In 13 adrenomyeloneuropathic patients we examined LEPs to leg, arm and face stimulation. Normative data were obtained from 10 healthy subjects examined in the same experimental conditions. We also examined brainstem auditory evoked potentials (BAEPs), pattern reversal full-field visual evoked potentials (VEPs), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs). Upper and lower limb MEPs and SEPs, as well as BAEPs, were abnormal in all patients, while VEPs were abnormal in 3 of them (23.1%). LEPs revealed abnormalities to stimulation of the face in 4 patients (30.7%), the forearm in 4 patients (30.7%) and the leg in 10 patients (76.9%). The pathologic process of adrenomyeloneuropathy is characterized by a preferential involvement of auditory, motor and somatosensory tracts and less severely of the visual and nociceptive pathways. This non-inflammatory distal axonopathy preferably damages large myelinated spinal tracts but there is also partial involvement of small myelinated fibres. LEPs studies can provide relevant information about afferent pain pathways involvement in adrenomyeloneuropathic patients. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing

    2012-06-01

    Full Text Available Abstract Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD model with the conditioned place avoidance (CPA paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK, which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593. The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change

  18. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats.

    Science.gov (United States)

    Cao, Bing; Zhang, Xu; Yan, Ni; Chen, Shengliang; Li, Ying

    2012-06-09

    Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes.In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK), which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change the nociceptive response (visceral pain

  19. Modeling human comprehension of data visualizations

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Laura E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haass, Michael Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Divis, Kristin Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Andrew T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This project was inspired by two needs. The first is a need for tools to help scientists and engineers to design effective data visualizations for communicating information, whether to the user of a system, an analyst who must make decisions based on complex data, or in the context of a technical report or publication. Most scientists and engineers are not trained in visualization design, and they could benefit from simple metrics to assess how well their visualization's design conveys the intended message. In other words, will the most important information draw the viewer's attention? The second is the need for cognition-based metrics for evaluating new types of visualizations created by researchers in the information visualization and visual analytics communities. Evaluating visualizations is difficult even for experts. However, all visualization methods and techniques are intended to exploit the properties of the human visual system to convey information efficiently to a viewer. Thus, developing evaluation methods that are rooted in the scientific knowledge of the human visual system could be a useful approach. In this project, we conducted fundamental research on how humans make sense of abstract data visualizations, and how this process is influenced by their goals and prior experience. We then used that research to develop a new model, the Data Visualization Saliency Model, that can make accurate predictions about which features in an abstract visualization will draw a viewer's attention. The model is an evaluation tool that can address both of the needs described above, supporting both visualization research and Sandia mission needs.

  20. Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice

    DEFF Research Database (Denmark)

    Oppermann, Mona; Hansen, Pernille B; Castrop, Hayo

    2007-01-01

    Loop diuretics like furosemide have been shown to cause renal vasodilatation in dogs and humans, an effect thought to result from both a direct vascular dilator effect and from inhibition of tubuloglomerular feedback. In isolated perfused afferent arterioles preconstricted with angiotensin II or ...

  1. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses.

    Science.gov (United States)

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T; Wangsawihardja, Felix; Ricci, Anthony J; Mustapha, Mirna

    2016-01-01

    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    Science.gov (United States)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  3. Interactions between visceral afferent signaling and stimulus processing

    Directory of Open Access Journals (Sweden)

    Hugo D Critchley

    2015-08-01

    Full Text Available Visceral afferent signals to the brain influence thoughts, feelings and behaviour. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body, to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated physiological arousal to emotional, social and motivational behaviours, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain’s representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed.

  4. Central projections and entries of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Della Torre, G; Lucchi, M L; Brunetti, O; Pettorossi, V E; Clavenzani, P; Bortolami, R

    1996-03-25

    The entry pathway and central distribution of A delta and C muscle afferents within the central nervous system (CNS) were investigated by combining electron microscopy and electrophysiological analysis after intramuscular injection of capsaicin. The drug was injected into the rat lateral gastrocnemius (LG) and extraocular (EO) muscles. The compound action potentials of LG nerve and the evoked field potentials recorded in semilunar ganglion showed an immediate and permanent reduction in A delta and C components. The morphological data revealed degenerating unmyelinated axons and terminals in the inner sublamina II and in the border of laminae I-II of the dorsal horn at L4-L5 and C1-C2 (subnucleus caudalis trigemini) spinal cord segments. Most degenerating terminals were the central bouton (C) of type I and II synaptic glomeruli. Furthermore, degenerating peripheral axonal endings (V2) presynaptic to normal C were found. Since V2 were previously found degenerated after cutting the oculomotor nerve (ON) or L4 ventral root, we conclude that some A delta and C afferents from LG and EO muscles entering the CNS by ON or ventral roots make axoaxonic synapses on other primary afferents to promote an afferent control of sensory input.

  5. Voluntarily controlled but not merely observed visual feedback affects postural sway

    Science.gov (United States)

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  6. TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.

    Directory of Open Access Journals (Sweden)

    James H Peters

    Full Text Available TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS. TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs under whole cell voltage clamp conditions from neurons of the medial subnucleus. Electrical shocks to the ST produced fixed latency EPSCs (jitter<200 µs that identified direct ST afferent innervation. Graded increases in shock intensity often recruited more than one ST afferent and ST-EPSCs had consistent threshold intensity, latency to onset, and unique EPSC waveforms that characterized each unitary ST afferent contact. The TRPV1 agonist capsaicin (100 nM blocked the evoked TRPV1+ ST-EPSCs and defined them as either TRPV1+ or TRPV1- inputs. No partial responses to capsaicin were observed so that in NTS neurons that received one or multiple (2-5 direct ST afferent inputs--all were either blocked by capsaicin or were unaltered. Since TRPV1 mediates asynchronous release following TRPV1+ ST-evoked EPSCs, we likewise found that recruiting more than one ST afferent further augmented the asynchronous response and was eliminated by capsaicin. Thus, TRPV1+ and TRPV1- afferents are completely segregated to separate NTS neurons. As a result, the TRPV1 receptor augments glutamate release only within unmyelinated afferent pathways in caudal medial NTS and our work indicates a complete separation of C-type from A-type afferent information at these first central neurons.

  7. Does metabosensitive afferent fibers activity differ from slow- and fast-twitch muscles?

    Science.gov (United States)

    Caron, Guillaume; Decherchi, Patrick; Marqueste, Tanguy

    2015-09-01

    This study was designed to investigate the metabosensitive afferent response evoked by electrically induced fatigue (EIF), lactic acid (LA) and potassium chloride (KCl) in three muscle types. We recorded the activity of groups III-IV afferents originating from soleus, gastrocnemius and tibialis anterior muscles. Our data showed a same pattern of response in the three muscles after chemical injections, i.e., a bell curve with maximal discharge rate at 1 mM for LA injections and a linear relationship between KCl concentrations and the afferent discharge rate. Furthermore, a stronger response was recorded after EIF in the gastrocnemius muscle compared to the two other muscles. The change in afferent discharge after 1 mM LA injection was higher for the gastrocnemius muscle compared to the response obtained with the corresponding concentration applied in the two other muscles, whereas changes to KCl injections did not dramatically differ between the three muscles. We conclude that anatomical (mass, phenotype, vascularization, receptor and afferent density…) and functional (flexor vs. extensor) differences between muscles could explain the amplitude of these responses.

  8. The role of the renal afferent and efferent nerve fibres in heart failure

    Directory of Open Access Journals (Sweden)

    Lindsea C Booth

    2015-10-01

    Full Text Available Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibres. In heart failure (HF there is an increase in renal sympathetic nerve activity, which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibres, afferent renal nerve fibres, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF.

  9. The role of the renal afferent and efferent nerve fibers in heart failure

    Science.gov (United States)

    Booth, Lindsea C.; May, Clive N.; Yao, Song T.

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF. PMID:26483699

  10. Subcortical orientation biases explain orientation selectivity of visual cortical cells.

    Science.gov (United States)

    Vidyasagar, Trichur R; Jayakumar, Jaikishan; Lloyd, Errol; Levichkina, Ekaterina V

    2015-04-01

    The primary visual cortex of carnivores and primates shows an orderly progression of domains of neurons that are selective to a particular orientation of visual stimuli such as bars and gratings. We recorded from single-thalamic afferent fibers that terminate in these domains to address the issue whether the orientation sensitivity of these fibers could form the basis of the remarkable orientation selectivity exhibited by most cortical cells. We first performed optical imaging of intrinsic signals to obtain a map of orientation domains on the dorsal aspect of the anaesthetized cat's area 17. After confirming using electrophysiological recordings the orientation preferences of single neurons within one or two domains in each animal, we pharmacologically silenced the cortex to leave only the afferent terminals active. The inactivation of cortical neurons was achieved by the superfusion of either kainic acid or muscimol. Responses of single geniculate afferents were then recorded by the use of high impedance electrodes. We found that the orientation preferences of the afferents matched closely with those of the cells in the orientation domains that they terminated in (Pearson's r = 0.633, n = 22, P = 0.002). This suggests a possible subcortical origin for cortical orientation selectivity. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. MR features of a case of afferent loop syndrome presenting as obstructive jaundice

    International Nuclear Information System (INIS)

    Chevallier, P.; Souci, J.; Oddo, F.; Diaine, B.; Padovani, B.; Gueyffier, C.

    2001-01-01

    The afferent loop syndrome corresponds to an acute or chronic obstruction of the afferent loop following a partial gastrectomy with Billroth II gastro-jejunal anastomosis. We describe the case of a 77-year-old man with history of partial gastrectomy for peptic ulcer disease performed 31 years ago and currently admitted for jaundice and poor general status. MR imaging showed dilatation of biliary and pancreatic ducts and showed a soft tissue mass between the afferent loop and the residual stomach. Endoscopy showed complete obstruction of the afferent loop by a biopsy-proven adenocarcinoma. The patient died of sepsis shortly after endoscopy of septicemia. (authors)

  12. Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky, Y P

    1991-01-01

    Systematic quantitative analysis of changes in the spinal scratching generator motor activity evoked by tonic and phasic peripheral afferent signals during "fictitious" scratching was carried out in the cat. Correlations between the kinematics of hindlimb scratching movement, sensory inflow, and primary afferent depolarization were investigated. Reliable correlations between the parameters of generator motor activity during fictitious scratching were revealed: they depended on tonic peripheral afferent inflow. The functional role of these dependencies consists of providing stability for aiming the hindlimb to the itch site. It was shown that scratching generator reaction to a phasic sensory signal depended significantly on afferent input, signal intensity, and its arrival phase in the cycle of motor activity. Phase correction of "scratching" rhythm was performed by inhibition of the current stage of "scratching" cycle, the inhibition magnitude depending on the intensity of a sensory signal run along high threshold afferent fibers. The moments in the scratching cycle, in which the afferent signal caused no rearrangement in scratching generator activity, were discovered for all investigated afferent inputs. These moments corresponded to the transitions from one scratching cycle phase to another. Integral afferent activity was distributed unevenly in the cycle during real scratching. The main part of it was observed just in that scratching cycle part which included the above mentioned no rearrangement phase points. The data obtained allowed us to conclude that the scratching generator should be considered as a working program for the motor optimal control system containing the intrinsic model of the controlled object dynamics (e.g. hindlimb scratching movement dynamics), which produces an inner analog of peripheral flow. This inner flow interacts with peripheral afferent inflow just as one of the latter components. Centrally originated modulation of primary afferent

  13. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  14. Afferent nerves regulating the cough reflex: Mechanisms and Mediators of Cough in Disease

    Science.gov (United States)

    Canning, Brendan J.

    2010-01-01

    Bronchopulmonary C-fibers and acid-sensitive, capsaicin-insensitive mechanoreceptors innervating the larynx, trachea and large bronchi regulate the cough reflex. These vagal afferent nerves may interact centrally with sensory input arising from afferent nerves innervating the intrapulmonary airways or even extrapulmonary afferents such as those innervating the nasal mucosa and esophagus to produce chronic cough or enhanced cough responsiveness. The mechanisms of cough initiation in health and in disease are briefly described. PMID:20172253

  15. Image Visual Realism: From Human Perception to Machine Computation.

    Science.gov (United States)

    Fan, Shaojing; Ng, Tian-Tsong; Koenig, Bryan L; Herberg, Jonathan S; Jiang, Ming; Shen, Zhiqi; Zhao, Qi

    2017-08-30

    Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and CNN-learned features to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.

  16. Functional magnetic resonance imaging of the human primary visual cortex during visual stimulation

    International Nuclear Information System (INIS)

    Miki, Atsushi; Abe, Haruki; Nakajima, Takashi; Fujita, Motoi; Watanabe, Hiroyuki; Kuwabara, Takeo; Naruse, Shoji; Takagi, Mineo.

    1995-01-01

    Signal changes in the human primary visual cortex during visual stimulation were evaluated using non-invasive functional magnetic resonance imaging (fMRI). The experiments were performed on 10 normal human volunteers and 2 patients with homonymous hemianopsia, including one who was recovering from the exacerbation of multiple sclerosis. The visual stimuli were provided by a pattern generator using the checkerboard pattern for determining the visual evoked potential of full-field and hemifield stimulation. In normal volunteers, a signal increase was observed on the bilateral primary visual cortex during the full-field stimulation and on the contra-lateral cortex during hemifield stimulation. In the patient with homonymous hemianopsia after cerebral infarction, the signal change was clearly decreased on the affected side. In the other patient, the one recovering from multiple sclerosis with an almost normal visual field, the fMRI was within normal limits. These results suggest that it is possible to visualize the activation of the visual cortex during visual stimulation, and that there is a possibility of using this test as an objective method of visual field examination. (author)

  17. Monocular Visual Deprivation Suppresses Excitability in Adult Human Visual Cortex

    DEFF Research Database (Denmark)

    Lou, Astrid Rosenstand; Madsen, Kristoffer Hougaard; Paulson, Olaf Bjarne

    2011-01-01

    The adult visual cortex maintains a substantial potential for plasticity in response to a change in visual input. For instance, transcranial magnetic stimulation (TMS) studies have shown that binocular deprivation (BD) increases the cortical excitability for inducing phosphenes with TMS. Here, we...... of visual deprivation has a substantial impact on experience-dependent plasticity of the human visual cortex.......The adult visual cortex maintains a substantial potential for plasticity in response to a change in visual input. For instance, transcranial magnetic stimulation (TMS) studies have shown that binocular deprivation (BD) increases the cortical excitability for inducing phosphenes with TMS. Here, we...... employed TMS to trace plastic changes in adult visual cortex before, during, and after 48 h of monocular deprivation (MD) of the right dominant eye. In healthy adult volunteers, MD-induced changes in visual cortex excitability were probed with paired-pulse TMS applied to the left and right occipital cortex...

  18. Visual Culture, Art History and the Humanities

    Science.gov (United States)

    Castaneda, Ivan

    2009-01-01

    This essay will discuss the need for the humanities to address visual culture studies as part of its interdisciplinary mission in today's university. Although mostly unnoticed in recent debates in the humanities over historical and theoretical frameworks, the relatively new field of visual culture has emerged as a corrective to a growing…

  19. Morphological dissociation between visual pathways and cortex: MRI of visually-deprived patients with congenital peripheral blindness

    International Nuclear Information System (INIS)

    Breitenseher, M.; Prayer Wimberger, D.; Trattnig, S.; Kramer, J.; Uhl, F.; Deecke, L.

    1998-01-01

    MRI was used to study possible morphological changes in the visual system in 12 patients suffering from congenital blindness of peripheral (ocular) origin. While their optical pathways showed degeneration, hypoplasia or atrophy in 7 out of 12 cases, the occipital cortex appeared normal in all cases. This dissociation between afferent pathways and the cortex is contrary to the assumption that visually deprived cortex may undergo degeneration. The finding is congruent with evidence that the occipital cortex is used for other, nonvisual functions. (orig.)

  20. Age-related changes of neurochemically different subpopulations of cardiac spinal afferent neurons in rats.

    Science.gov (United States)

    Guić, Maja Marinović; Runtić, Branka; Košta, Vana; Aljinović, Jure; Grković, Ivica

    2013-08-01

    This study investigated the effect of aging on cardiac spinal afferent neurons in the rat. A patch loaded with retrograde tracer Fast Blue (FB) was applied to all chambers of the rat heart. Morphological and neurochemical characteristics of labeled cardiac spinal afferent neurons were assessed in young (2 months) and old (2 years) rats using markers for likely unmyelinated (isolectin B4; IB4) and myelinated (neurofilament 200; N52) neurons. The number of cardiac spinal afferent neurons decreased in senescence to 15% of that found in young rats (1604 vs. 248). The size of neuronal soma as well as proportion of IB4+ neurons increased significantly, whereas the proportion of N52+ neurons decreased significantly in senescence. Unlike somatic spinal afferents, neurochemically different populations of cardiac spinal afferent neurons experience morphological and neurochemical changes related to aging. A major decrease in total number of cardiac spinal afferent neurons occurs in senescence. The proportion of N52+ neurons decreased in senescence, but it seems that nociceptive innervation is preserved due to increased proportion and size of IB4+ unmyelinated neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Information analysis of posterior canal afferents in the turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Rowe, Michael H; Neiman, Alexander B

    2012-01-24

    We have used sinusoidal and band-limited Gaussian noise stimuli along with information measures to characterize the linear and non-linear responses of morpho-physiologically identified posterior canal (PC) afferents and to examine the relationship between mutual information rate and other physiological parameters. Our major findings are: 1) spike generation in most PC afferents is effectively a stochastic renewal process, and spontaneous discharges are fully characterized by their first order statistics; 2) a regular discharge, as measured by normalized coefficient of variation (cv*), reduces intrinsic noise in afferent discharges at frequencies below the mean firing rate; 3) coherence and mutual information rates, calculated from responses to band-limited Gaussian noise, are jointly determined by gain and intrinsic noise (discharge regularity), the two major determinants of signal to noise ratio in the afferent response; 4) measures of optimal non-linear encoding were only moderately greater than optimal linear encoding, indicating that linear stimulus encoding is limited primarily by internal noise rather than by non-linearities; and 5) a leaky integrate and fire model reproduces these results and supports the suggestion that the combination of high discharge regularity and high discharge rates serves to extend the linear encoding range of afferents to higher frequencies. These results provide a framework for future assessments of afferent encoding of signals generated during natural head movements and for comparison with coding strategies used by other sensory systems. This article is part of a Special Issue entitled: Neural Coding. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans

    DEFF Research Database (Denmark)

    Perez, Monica A.; Lungholt, Bjarke K.S.; Nielsen, Jens Bo

    2005-01-01

    Sensory information continuously converges on the spinal cord during a variety of motor behaviours. Here, we examined presynaptic control of group Ia afferents in relation to acquisition of a novel motor skill. We tested whether repetition of two motor tasks with different degrees of difficulty......, a novel visuo-motor task involving the ankle muscles, and a control task involving simple voluntary ankle movements, would induce changes in the size of the soleus H-reflex. The slope of the H-reflex recruitment curve and the H-max/M-max ratio were depressed after repetition of the visuo-motor skill task...... of the monosynaptic Ia facilitation of the soleus H-reflex evoked by femoral nerve stimulation. The D1 inhibition was increased and the femoral nerve facilitation was decreased following the visuo-motor skill task, suggesting an increase in presynaptic inhibition of Ia afferents. No changes were observed...

  3. Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity

    OpenAIRE

    Feng, Bin; La, Jun-ho; Schwartz, Erica S.; Tanaka, Takahiro; McMurray, Timothy P.; Gebhart, G. F.

    2012-01-01

    Afferent input contributes significantly to the pain and colorectal hypersensitivity that characterize irritable bowel syndrome. In the present study, we investigated the contributions of mechanically sensitive and mechanically insensitive afferents (MIAs; or silent afferents) to colorectal hypersensitivity. The visceromotor response to colorectal distension (CRD; 15–60 mmHg) was recorded in mice before and for weeks after intracolonic treatment with zymosan or saline. After CRD tests, the di...

  4. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.

    Science.gov (United States)

    Egerod, Kristoffer L; Petersen, Natalia; Timshel, Pascal N; Rekling, Jens C; Wang, Yibing; Liu, Qinghua; Schwartz, Thue W; Gautron, Laurent

    2018-06-01

    G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Na v 1.8-expressing afferents. GPCRs for gut hormones that were the most enriched in Na v 1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Na v 1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Na v 1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution.

    Science.gov (United States)

    Leung, Felix W

    2008-07-04

    This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral

  6. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    Science.gov (United States)

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  7. Giant renin secretory granules in beige mouse renal afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Rasch, Ruth; Nyengaard, Jens Randel

    1997-01-01

    The mutant beige mouse (C57BL/6 bg) has a disease characterised by abnormally enlarged cytoplasmic granules in a variety of cells. With the purpose of establishing a suitable cellular model for studying renin secretion, the present study was undertaken to compare renin granule morphology in beige...... (average granular volume 0.681 microm3), whereas 1-2 large granules were present per cell in beige mice. The volume of afferent arteriole that contained secretory granules was lower in the beige mice. We conclude that the beige mouse synthesizes, stores and releases active renin. Renin secretory granules...... in beige mice are grossly enlarged with 1-2 granules per juxtaglomerular cell. Compared with control mice, a similar amount of total renin granule volume per afferent arteriole is contained in a smaller part of beige mouse afferent arteriole. Granular cells from beige mice could therefore be a valuable...

  8. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    Science.gov (United States)

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    Science.gov (United States)

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  10. Alterations of the visual pathways in congenital blindness

    DEFF Research Database (Denmark)

    Ptito, Maurice; Schneider, Fabien C G; Paulson, Olaf B

    2008-01-01

    /19 and the middle temporal cortex (MT) showing volume reductions of up to 20%. Additional significant white matter alterations were observed in the inferior longitudinal tract and in the posterior part of the corpus callosum, which links the visual areas of both hemispheres. Our data indicate that the afferent...... projections to the visual cortex in CB are largely atrophied. Despite the massive volume reductions in the occipital lobes, there is compelling evidence from the literature (reviewed in Noppeney 2007; Ptito and Kupers 2005) that blind subjects activate their visual cortex when performing tasks that involve...

  11. Afferent loop syndrome - a case report

    International Nuclear Information System (INIS)

    Borges, Ana Karina Nascimento; Pinheiro, Marco Antonio Lopes; Galvao, Cristine Norwig

    2000-01-01

    The afferent loop syndrome occurs in patients with previous gastric surgery for tumor, when there is anastomotic edema, use of inappropriate reconstruction technique for gastro jejunostomy or recurrent gastric cancer. Complaints such jaundice, intermittent abdominal distension associated with pain, and vomiting should be investigated in order to rule out this syndrome. (author)

  12. Morphological dissociation between visual pathways and cortex: MRI of visually-deprived patients with congenital peripheral blindness

    Energy Technology Data Exchange (ETDEWEB)

    Breitenseher, M.; Prayer Wimberger, D.; Trattnig, S.; Kramer, J. [MR-Institute of the Medical Faculty and Clinic for Diagnostic Radiology, University of Vienna (Austria); Uhl, F.; Deecke, L. [Department of Neurology, University of Vienna (Austria)

    1998-07-01

    MRI was used to study possible morphological changes in the visual system in 12 patients suffering from congenital blindness of peripheral (ocular) origin. While their optical pathways showed degeneration, hypoplasia or atrophy in 7 out of 12 cases, the occipital cortex appeared normal in all cases. This dissociation between afferent pathways and the cortex is contrary to the assumption that visually deprived cortex may undergo degeneration. The finding is congruent with evidence that the occipital cortex is used for other, nonvisual functions. (orig.) With 3 figs., 1 tab., 23 refs.

  13. Acute cholangitis due to afferent loop syndrome after a Whipple procedure: a case report.

    Science.gov (United States)

    Spiliotis, John; Karnabatidis, Demetrios; Vaxevanidou, Archodoula; Datsis, Anastasios C; Rogdakis, Athanasios; Zacharis, Georgios; Siamblis, Demetrios

    2009-08-25

    Patients with resection of stomach and especially with Billroth II reconstruction (gastro jejunal anastomosis), are more likely to develop afferent loop syndrome which is a rare complication. When the afferent part is obstructed, biliary and pancreatic secretions accumulate and cause the distention of this part. In the case of a complete obstruction (rare), there is a high risk developing necrosis and perforation. This complication has been reported once in the literature. A 54-year-old Greek male had undergone a pancreato-duodenectomy (Whipple procedure) one year earlier due to a pancreatic adenocarcinoma. Approximately 10 months after the initial operation, the patient started having episodes of cholangitis (fever, jaundice) and abdominal pain. This condition progressively worsened and the suspicion of local recurrence or stenosis of the biliary-jejunal anastomosis was discussed. A few days before his admission the patient developed signs of septic cholangitis. Our case demonstrates a rare complication with serious clinical manifestation of the afferent loop syndrome. This advanced form of afferent loop syndrome led to the development of huge enterobiliary reflux, which had a serious clinical manifestation as cholangitis and systemic sepsis, due to bacterial overgrowth, which usually present in the afferent loop. The diagnosis is difficult and the interventional radiology gives all the details to support the therapeutic decision making. A variety of factors can contribute to its development including adhesions, kinking and angulation of the loop, stenosis of gastro-jejunal anastomosis and internal herniation. In order to decompress the afferent loop dilatation due to adhesions, a lateral-lateral jejunal anastomosis was performed between the afferent loop and a small bowel loop.

  14. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Marg, E.

    1988-01-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  15. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just

  16. Sensitivity to the visual field origin of natural image patches in human low-level visual cortex

    Directory of Open Access Journals (Sweden)

    Damien J. Mannion

    2015-06-01

    Full Text Available Asymmetries in the response to visual patterns in the upper and lower visual fields (above and below the centre of gaze have been associated with ecological factors relating to the structure of typical visual environments. Here, we investigated whether the content of the upper and lower visual field representations in low-level regions of human visual cortex are specialised for visual patterns that arise from the upper and lower visual fields in natural images. We presented image patches, drawn from above or below the centre of gaze of an observer navigating a natural environment, to either the upper or lower visual fields of human participants (n = 7 while we used functional magnetic resonance imaging (fMRI to measure the magnitude of evoked activity in the visual areas V1, V2, and V3. We found a significant interaction between the presentation location (upper or lower visual field and the image patch source location (above or below fixation; the responses to lower visual field presentation were significantly greater for image patches sourced from below than above fixation, while the responses in the upper visual field were not significantly different for image patches sourced from above and below fixation. This finding demonstrates an association between the representation of the lower visual field in human visual cortex and the structure of the visual input that is likely to be encountered below the centre of gaze.

  17. Modulation of the masseteric reflex by gastric vagal afferents.

    Science.gov (United States)

    Pettorossi, V E

    1983-04-01

    Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.

  18. Neuronal thresholds and choice-related activity of otolith afferent fibers during heading perception.

    Science.gov (United States)

    Yu, Xiong-jie; Dickman, J David; DeAngelis, Gregory C; Angelaki, Dora E

    2015-05-19

    How activity of sensory neurons leads to perceptual decisions remains a challenge to understand. Correlations between choices and single neuron firing rates have been found early in vestibular processing, in the brainstem and cerebellum. To investigate the origins of choice-related activity, we have recorded from otolith afferent fibers while animals performed a fine heading discrimination task. We find that afferent fibers have similar discrimination thresholds as central cells, and the most sensitive fibers have thresholds that are only twofold or threefold greater than perceptual thresholds. Unlike brainstem and cerebellar nuclei neurons, spike counts from afferent fibers do not exhibit trial-by-trial correlations with perceptual decisions. This finding may reflect the fact that otolith afferent responses are poorly suited for driving heading perception because they fail to discriminate self-motion from changes in orientation relative to gravity. Alternatively, if choice probabilities reflect top-down inference signals, they are not relayed to the vestibular periphery.

  19. Is orbital volume associated with eyeball and visual cortex volume in humans?

    Science.gov (United States)

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.

  20. Inhibition of micturition reflex by activation of somatic afferents in posterior femoral cutaneous nerve.

    Science.gov (United States)

    Tai, Changfeng; Shen, Bing; Mally, Abhijith D; Zhang, Fan; Zhao, Shouguo; Wang, Jicheng; Roppolo, James R; de Groat, William C

    2012-10-01

    This study determined if activation of somatic afferents in posterior femoral cutaneous nerve (PFCN) could modulate the micturition reflex recorded under isovolumetric conditions in α-chloralose anaesthetized cats. PFCN stimulation inhibited reflex bladder activity and significantly (P acid (AA). The optimal frequency for PFCN stimulation-induced bladder inhibition was between 3 and 10 Hz, and a minimal stimulation intensity of half of the threshold for inducing anal twitching was required. Bilateral pudendal nerve transection eliminated PFCN stimulation-induced anal twitching but did not change the stimulation-induced bladder inhibition, excluding the involvement of pudendal afferent or efferent axons in PFCN afferent inhibition.Mechanical or electrical stimulation on the skin surface in the PFCN dermatome also inhibited bladder activity. Prolonged (2 × 30 min) PFCN stimulation induced a post-stimulation inhibition that persists for at least 2 h. This study revealed a new cutaneous-bladder reflex activated by PFCN afferents. Although the mechanisms and physiological functions of this cutaneous-bladder reflex need to be further studied, our data raise the possibility that stimulation of PFCN afferents might be useful clinically for the treatment of overactive bladder symptoms.

  1. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.

    Science.gov (United States)

    Peters, James H; Gallaher, Zachary R; Ryu, Vitaly; Czaja, Krzysztof

    2013-10-15

    Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery. Copyright © 2013 Wiley Periodicals, Inc.

  2. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    Science.gov (United States)

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  3. The development of human visual cortex and clinical implications

    Directory of Open Access Journals (Sweden)

    Siu CR

    2018-04-01

    Full Text Available Caitlin R Siu,1 Kathryn M Murphy1,2 1McMaster Integrative Neuroscience Discovery and Study (MiNDS Program, McMaster University, Hamilton, ON, Canada; 2Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada Abstract: The primary visual cortex (V1 is the first cortical area that processes visual information. Normal development of V1 depends on binocular vision during the critical period, and age-related losses of vision are linked with neurobiological changes in V1. Animal studies have provided important details about the neurobiological mechanisms in V1 that support normal vision or are changed by visual diseases. There is very little information, however, about those neurobiological mechanisms in human V1. That lack of information has hampered the translation of biologically inspired treatments from preclinical models to effective clinical treatments. We have studied human V1 to characterize the expression of neurobiological mechanisms that regulate visual perception and neuroplasticity. We have identified five stages of development for human V1 that start in infancy and continue across the life span. Here, we describe these stages, compare them with visual and anatomical milestones, and discuss implications for translating treatments for visual disorders that depend on neuroplasticity of V1 function. Keywords: development, human visual cortex, amblyopia, synaptic plasticity, glutamatergic, GABAergic, receptors

  4. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  5. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  6. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...

  7. Visualizing Human Migration Trhough Space and Time

    Science.gov (United States)

    Zambotti, G.; Guan, W.; Gest, J.

    2015-07-01

    Human migration has been an important activity in human societies since antiquity. Since 1890, approximately three percent of the world's population has lived outside of their country of origin. As globalization intensifies in the modern era, human migration persists even as governments seek to more stringently regulate flows. Understanding this phenomenon, its causes, processes and impacts often starts from measuring and visualizing its spatiotemporal patterns. This study builds a generic online platform for users to interactively visualize human migration through space and time. This entails quickly ingesting human migration data in plain text or tabular format; matching the records with pre-established geographic features such as administrative polygons; symbolizing the migration flow by circular arcs of varying color and weight based on the flow attributes; connecting the centroids of the origin and destination polygons; and allowing the user to select either an origin or a destination feature to display all flows in or out of that feature through time. The method was first developed using ArcGIS Server for world-wide cross-country migration, and later applied to visualizing domestic migration patterns within China between provinces, and between states in the United States, all through multiple years. The technical challenges of this study include simplifying the shapes of features to enhance user interaction, rendering performance and application scalability; enabling the temporal renderers to provide time-based rendering of features and the flow among them; and developing a responsive web design (RWD) application to provide an optimal viewing experience. The platform is available online for the public to use, and the methodology is easily adoptable to visualizing any flow, not only human migration but also the flow of goods, capital, disease, ideology, etc., between multiple origins and destinations across space and time.

  8. Cortico-Cortical Receptive Field Estimates in Human Visual Cortex

    Directory of Open Access Journals (Sweden)

    Koen V Haak

    2012-05-01

    Full Text Available Human visual cortex comprises many visual areas that contain a map of the visual field (Wandell et al 2007, Neuron 56, 366–383. These visual field maps can be identified readily in individual subjects with functional magnetic resonance imaging (fMRI during experimental sessions that last less than an hour (Wandell and Winawer 2011, Vis Res 718–737. Hence, visual field mapping with fMRI has been, and still is, a heavily used technique to examine the organisation of both normal and abnormal human visual cortex (Haak et al 2011, ACNR, 11(3, 20–21. However, visual field mapping cannot reveal every aspect of human visual cortex organisation. For example, the information processed within a visual field map arrives from somewhere and is sent to somewhere, and visual field mapping does not derive these input/output relationships. Here, we describe a new, model-based analysis for estimating the dependence between signals in distinct cortical regions using functional magnetic resonance imaging (fMRI data. Just as a stimulus-referred receptive field predicts the neural response as a function of the stimulus contrast, the neural-referred receptive field predicts the neural response as a function of responses elsewhere in the nervous system. When applied to two cortical regions, this function can be called the cortico-cortical receptive field (CCRF. We model the CCRF as a Gaussian-weighted region on the cortical surface and apply the model to data from both stimulus-driven and resting-state experimental conditions in visual cortex.

  9. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine

    Directory of Open Access Journals (Sweden)

    Zhao J

    2017-12-01

    Full Text Available Jingbo Zhao,1 Jian Yang,1 Donghua Liao,1 Hans Gregersen2 1Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; 2Giome Center, Department of Surgery, Chinese University of Hong Kong and Prince of Wales Hospital, Shatin, Hong Kong Background: Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective: We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design: Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR, and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results: Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05. The stress relaxed less in the diabetic intestinal segment (P<0.05. Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion: Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients. Keywords: afferents, spike rate, stress–strain, creep

  10. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine.

    Science.gov (United States)

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.

  11. Interplay between mast cells, enterochromaffin cells, and sensory signaling in the aging human bowel.

    Science.gov (United States)

    Yu, Y; Daly, D M; Adam, I J; Kitsanta, P; Hill, C J; Wild, J; Shorthouse, A; Grundy, D; Jiang, W

    2016-10-01

    Advanced age is associated with a reduction in clinical visceral pain perception. However, the underlying mechanisms remain largely unknown. Previous studies have suggested that an abnormal interplay between mast cells, enterochromaffin (EC) cells, and afferent nerves contribute to nociception in gastrointestinal disorders. The aim of this study was to investigate how aging affects afferent sensitivity and neuro-immune association in the human bowel. Mechanical and chemical sensitivity of human bowel afferents were examined by ex vivo afferent nerve recordings. Age-related changes in the density of mast cells, EC cells, sensory nerve terminals, and mast cell-nerve micro-anatomical association were investigated by histological and immune staining. Human afferents could be broadly classified into subpopulations displaying mechanical and chemical sensitivity, adaptation, chemo-sensitization, and recruitment. Interestingly human bowel afferent nerve sensitivity was attenuated with age. The density of substance P-immunoreactive (SP-IR) nerve varicosities was also reduced with age. In contrast, the density of ileal and colonic mucosal mast cells was increased with age, as was ileal EC cell number. An increased proportion of mast cells was found in close apposition to SP-IR nerves. Afferent sensitivity in human bowel was reduced with advancing age. Augmentation of mast cells and EC cell numbers and the mast cell-nerve association suggest a compensatory mechanism for sensory neurodegeneration. © 2016 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  12. On the nature of the afferent fibers of oculomotor nerve.

    Science.gov (United States)

    Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L

    1989-03-01

    The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve.

  13. Heat pulse excitability of vestibular hair cells and afferent neurons.

    Science.gov (United States)

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in protein biophysics and manipulate cellular excitability. Copyright © 2016 the American Physiological Society.

  14. Mapping visual cortex in monkeys and humans using surface-based atlases

    Science.gov (United States)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  15. The visceromotor and somatic afferent nerves of the penis.

    Science.gov (United States)

    Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeanine; Ba, Nathalie; Allodji, Rodrigue Sètchéou; Benoit, Gérard; Bedretdinova, Dina; Bessede, Thomas

    2015-05-01

    Innervation of the penis supports erectile and sensory functions. This article aims to study the efferent autonomic (visceromotor) and afferent somatic (sensory) nervous systems of the penis and to investigate how these systems relate to vascular pathways. Penises obtained from five adult cadavers were studied via computer-assisted anatomic dissection (CAAD). The number of autonomic and somatic nerve fibers was compared using the Kruskal-Wallis test. Proximally, penile innervation was mainly somatic in the extra-albugineal sector and mainly autonomic in the intracavernosal sector. Distally, both sectors were almost exclusively supplied by somatic nerve fibers, except the intrapenile vascular anastomoses that accompanied both somatic and autonomic (nitrergic) fibers. From this point, the neural immunolabeling within perivascular nerve fibers was mixed (somatic labeling and autonomic labeling). Accessory afferent, extra-albugineal pathways supplied the outer layers of the penis. There is a major change in the functional type of innervation between the proximal and distal parts of the intracavernosal sector of the penis. In addition to the pelvis and the hilum of the penis, the intrapenile neurovascular routes are the third level where the efferent autonomic (visceromotor) and the afferent somatic (sensory) penile nerve fibers are close. Intrapenile neurovascular pathways define a proximal penile segment, which guarantees erectile rigidity, and a sensory distal segment. © 2015 International Society for Sexual Medicine.

  16. Thermal detection thresholds of Aδ- and C-fibre afferents activated by brief CO2 laser pulses applied onto the human hairy skin.

    Directory of Open Access Journals (Sweden)

    Maxim Churyukanov

    Full Text Available Brief high-power laser pulses applied onto the hairy skin of the distal end of a limb generate a double sensation related to the activation of Aδ- and C-fibres, referred to as first and second pain. However, neurophysiological and behavioural responses related to the activation of C-fibres can be studied reliably only if the concomitant activation of Aδ-fibres is avoided. Here, using a novel CO(2 laser stimulator able to deliver constant-temperature heat pulses through a feedback regulation of laser power by an online measurement of skin temperature at target site, combined with an adaptive staircase algorithm using reaction-time to distinguish between responses triggered by Aδ- and C-fibre input, we show that it is possible to estimate robustly and independently the thermal detection thresholds of Aδ-fibres (46.9±1.7°C and C-fibres (39.8±1.7°C. Furthermore, we show that both thresholds are dependent on the skin temperature preceding and/or surrounding the test stimulus, indicating that the Aδ- and C-fibre afferents triggering the behavioural responses to brief laser pulses behave, at least partially, as detectors of a change in skin temperature rather than as pure level detectors. Most importantly, our results show that the difference in threshold between Aδ- and C-fibre afferents activated by brief laser pulses can be exploited to activate C-fibres selectively and reliably, provided that the rise in skin temperature generated by the laser stimulator is well-controlled. Our approach could constitute a tool to explore, in humans, the physiological and pathophysiological mechanisms involved in processing C- and Aδ-fibre input, respectively.

  17. Visual dictionaries as intermediate features in the human brain

    Directory of Open Access Journals (Sweden)

    Kandan eRamakrishnan

    2015-01-01

    Full Text Available The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2 and V3. However BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain.

  18. Cellular mechanisms for presynaptic inhibition of sensory afferents

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; delgado-lezama, rodolfo; Christensen, Rasmus Kordt

    It is well established that presynaptic inhibition of primary afferents involves the activation of GABAA receptors located on presynaptic terminals. However, the source of GABA remains unknown. In an integrated preparation of the spinal cord of the adult turtle, we evoked dorsal root potentials...

  19. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus

    Directory of Open Access Journals (Sweden)

    Michael C. Andresen

    2013-01-01

    Full Text Available The brainstem nucleus of the solitary tract (NTS holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current (EPSC often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g. hypothalamus neuron sources. Presynaptic receptors for angiotensin (AT1, vasopressin (V1a, oxytocin (OT, opioid (MOR, ghrelin (GHSR1 and cholecystokinin (CCK differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 (TRPV1 and the cannabinoid receptor (CB1 that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.

  20. Limitations of Human Visual Working Memory

    OpenAIRE

    Wesenick, Maria-Barbara

    2004-01-01

    The present empirical study investigates limitations of human visual working memory (VWM). The experiments of the present work involve the experimental paradigm of change detection using simple geometrical objects in the form of rectangles of different colour, length, and orientation. It can be shown, that a limited performance in the temporary storage of visual information has multiple sources. Limitations of VWM can be attributed to a limited capacity or a limited duration, but also to limi...

  1. Afferent projections to the deep mesencephalic nucleus in the rat

    International Nuclear Information System (INIS)

    Veazey, R.B.; Severin, C.M.

    1982-01-01

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist

  2. Common Visual Preference for Curved Contours in Humans and Great Apes.

    Science.gov (United States)

    Munar, Enric; Gómez-Puerto, Gerardo; Call, Josep; Nadal, Marcos

    2015-01-01

    Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans' preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans' visual preference for curved objects evolved from earlier primate species' visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features.

  3. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Science.gov (United States)

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  4. C-tactile afferent stimulating touch carries a positive affective value.

    Science.gov (United States)

    Pawling, Ralph; Cannon, Peter R; McGlone, Francis P; Walker, Susannah C

    2017-01-01

    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major-smile muscle, positive affect & corrugator supercilii-frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli

  5. C-tactile afferent stimulating touch carries a positive affective value.

    Directory of Open Access Journals (Sweden)

    Ralph Pawling

    Full Text Available The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs, which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography and autonomic arousal (heart rate to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major-smile muscle, positive affect & corrugator supercilii-frown muscle, negative affect while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec, on two skin sites (CT innervated forearm & non-CT innervated palm. On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all

  6. Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model.

    Science.gov (United States)

    Nikolaou, Sia; Hu, Liangjun; Cornwall, Roger

    2015-10-01

    We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Pharmacologic modulation of ErbB signaling, which is being investigated as a

  7. Heat pulse excitability of vestibular hair cells and afferent neurons

    Science.gov (United States)

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  8. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    Science.gov (United States)

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  9. Trying to Move Your Unseen Static Arm Modulates Visually-Evoked Kinesthetic Illusion

    Science.gov (United States)

    Metral, Morgane; Blettery, Baptiste; Bresciani, Jean-Pierre; Luyat, Marion; Guerraz, Michel

    2013-01-01

    Although kinesthesia is known to largely depend on afferent inflow, recent data suggest that central signals originating from volitional control (efferent outflow) could also be involved and interact with the former to build up a coherent percept. Evidence derives from both clinical and experimental observations where vision, which is of primary importance in kinesthesia, was systematically precluded. The purpose of the present experiment was to assess the role of volitional effort in kinesthesia when visual information is available. Participants (n=20) produced isometric contraction (10-20% of maximal voluntary force) of their right arm while their left arm, which image was reflected in a mirror, either was passively moved into flexion/extension by a motorized manipulandum, or remained static. The contraction of the right arm was either congruent with or opposite to the passive displacements of the left arm. Results revealed that in most trials, kinesthetic illusions were visually driven, and their occurrence and intensity were modulated by whether volitional effort was congruent or not with visual signals. These results confirm the impact of volitional effort in kinesthesia and demonstrate for the first time that these signals interact with visual afferents to offer a coherent and unified percept. PMID:24348909

  10. Trying to move your unseen static arm modulates visually-evoked kinesthetic illusion.

    Directory of Open Access Journals (Sweden)

    Morgane Metral

    Full Text Available Although kinesthesia is known to largely depend on afferent inflow, recent data suggest that central signals originating from volitional control (efferent outflow could also be involved and interact with the former to build up a coherent percept. Evidence derives from both clinical and experimental observations where vision, which is of primary importance in kinesthesia, was systematically precluded. The purpose of the present experiment was to assess the role of volitional effort in kinesthesia when visual information is available. Participants (n=20 produced isometric contraction (10-20% of maximal voluntary force of their right arm while their left arm, which image was reflected in a mirror, either was passively moved into flexion/extension by a motorized manipulandum, or remained static. The contraction of the right arm was either congruent with or opposite to the passive displacements of the left arm. Results revealed that in most trials, kinesthetic illusions were visually driven, and their occurrence and intensity were modulated by whether volitional effort was congruent or not with visual signals. These results confirm the impact of volitional effort in kinesthesia and demonstrate for the first time that these signals interact with visual afferents to offer a coherent and unified percept.

  11. Development of fusimotor innervation correlates with group Ia afferents but is independent of neurotrophin-3

    NARCIS (Netherlands)

    Ringstedt, T; Copray, S; Walro, J; Kucera, J

    1998-01-01

    Fusimotor neurons, group Ia afferents and muscle spindles are absent in mutant mice lacking the gene for neurotrophin-3 (NT3). To partition the effect of Ia afferent or spindle absence from that of NT3 deprivation on fusimotor neuron development, we examined the fusimotor system in a mutant mouse

  12. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    -Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...... antagonist diltiazem (10(-6) mol/L) abolished K+-induced contractions. Bicarbonate did not modify the sensitivity to chloride. Norepinephrine (10(-6) mol/L) induced full contraction in depolarized vessels even in the absence of chloride. Iodide and nitrate were substituted for chloride with no inhibitory...

  13. Visual graphics for human rights, social justice, democracy and the ...

    African Journals Online (AJOL)

    The value of human rights in a democratic South Africa is constantly threatened and often waived for nefarious reasons. We contend that the use of visual graphics among incoming university visual art students provides a mode of engagement that helps to inculcate awareness of human rights, social responsibility, and the ...

  14. Research on metallic material defect detection based on bionic sensing of human visual properties

    Science.gov (United States)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  15. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  16. From humans to computers cognition through visual perception

    CERN Document Server

    Alexandrov, Viktor Vasilievitch

    1991-01-01

    This book considers computer vision to be an integral part of the artificial intelligence system. The core of the book is an analysis of possible approaches to the creation of artificial vision systems, which simulate human visual perception. Much attention is paid to the latest achievements in visual psychology and physiology, the description of the functional and structural organization of the human perception mechanism, the peculiarities of artistic perception and the expression of reality. Computer vision models based on these data are investigated. They include the processes of external d

  17. How cortical neurons help us see: visual recognition in the human brain

    Science.gov (United States)

    Blumberg, Julie; Kreiman, Gabriel

    2010-01-01

    Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161

  18. How cortical neurons help us see: visual recognition in the human brain

    OpenAIRE

    Blumberg, Julie; Kreiman, Gabriel

    2010-01-01

    Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us under...

  19. Structure of the afferent terminals in terminal ganglion of a cricket and persistent homology.

    Directory of Open Access Journals (Sweden)

    Jacob Brown

    Full Text Available We use topological data analysis to investigate the three dimensional spatial structure of the locus of afferent neuron terminals in crickets Acheta domesticus. Each afferent neuron innervates a filiform hair positioned on a cercus: a protruding appendage at the rear of the animal. The hairs transduce air motion to the neuron signal that is used by a cricket to respond to the environment. We stratify the hairs (and the corresponding afferent terminals into classes depending on hair length, along with position. Our analysis uncovers significant structure in the relative position of these terminal classes and suggests the functional relevance of this structure. Our method is very robust to the presence of significant experimental and developmental noise. It can be used to analyze a wide range of other point cloud data sets.

  20. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    Directory of Open Access Journals (Sweden)

    Axel J. Fenwick

    2014-01-01

    Full Text Available Cranial visceral afferents contained within the solitary tract (ST contact second-order neurons in the nucleus of the solitary tract (NTS and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33˚ - 37˚C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  1. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses

    Science.gov (United States)

    Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.

    2014-01-01

    SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027

  2. Visual Positioning Indoors: Human Eyes vs. Smartphone Cameras.

    Science.gov (United States)

    Wu, Dewen; Chen, Ruizhi; Chen, Liang

    2017-11-16

    Artificial Intelligence (AI) technologies and their related applications are now developing at a rapid pace. Indoor positioning will be one of the core technologies that enable AI applications because people spend 80% of their time indoors. Humans can locate themselves related to a visually well-defined object, e.g., a door, based on their visual observations. Can a smartphone camera do a similar job when it points to an object? In this paper, a visual positioning solution was developed based on a single image captured from a smartphone camera pointing to a well-defined object. The smartphone camera simulates the process of human eyes for the purpose of relatively locating themselves against a well-defined object. Extensive experiments were conducted with five types of smartphones on three different indoor settings, including a meeting room, a library, and a reading room. Experimental results shown that the average positioning accuracy of the solution based on five smartphone cameras is 30.6 cm, while that for the human-observed solution with 300 samples from 10 different people is 73.1 cm.

  3. Finding the Correspondence of Audio-Visual Events by Object Manipulation

    Science.gov (United States)

    Nishibori, Kento; Takeuchi, Yoshinori; Matsumoto, Tetsuya; Kudo, Hiroaki; Ohnishi, Noboru

    A human being understands the objects in the environment by integrating information obtained by the senses of sight, hearing and touch. In this integration, active manipulation of objects plays an important role. We propose a method for finding the correspondence of audio-visual events by manipulating an object. The method uses the general grouping rules in Gestalt psychology, i.e. “simultaneity” and “similarity” among motion command, sound onsets and motion of the object in images. In experiments, we used a microphone, a camera, and a robot which has a hand manipulator. The robot grasps an object like a bell and shakes it or grasps an object like a stick and beat a drum in a periodic, or non-periodic motion. Then the object emits periodical/non-periodical events. To create more realistic scenario, we put other event source (a metronome) in the environment. As a result, we had a success rate of 73.8 percent in finding the correspondence between audio-visual events (afferent signal) which are relating to robot motion (efferent signal).

  4. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum

    OpenAIRE

    Feng, Bin; Brumovsky, Pablo R.; Gebhart, Gerald F.

    2010-01-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding charac...

  5. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    David L García-Ramírez

    Full Text Available Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD. PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT, dopamine (DA and noradrenaline (NA on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs or intracellular excitatory postsynaptic currents (EPSCs. The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75% but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic

  6. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  7. Influence of oculomotor nerve afferents on central endings of primary trigeminal fibers.

    Science.gov (United States)

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E; Draicchio, F

    1987-12-01

    Painful fibers running in the third nerve and originating from the ophthalmic trigeminal area send their central projections at level of substantia gelatinosa of nucleus caudalis trigemini. The central endings of these fibers form axoaxonic synapses with trigeminal fibers entering the brain stem through the trigeminal root. The effect of electrical stimulation of the third nerve central stump on the central endings of trigeminal afferent fibers consists in an increased excitability, possibly resulting in a presynaptic inhibition. This inhibitory influence is due to both direct and indirect connections of the third nerve afferent fibers with the trigeminal ones.

  8. Human primary visual cortex topography imaged via positron tomography

    International Nuclear Information System (INIS)

    Schwartz, E.L.; Christman, D.R.; Wolf, A.P.

    1984-01-01

    The visuotopic structure of primary visual cortex was studied in a group of 7 human volunteers using positron emission transaxial tomography (PETT) and 18 F-labeled 2-deoxy-2-fluoro-D-glucose ([ 18 F]DG). A computer animation was constructed with a spatial structure which was matched to estimates of human cortical magnification factor and to striate cortex stimulus preferences. A lateralized cortical 'checker-board' pattern of [ 18 F]DG was stimulated in primary visual cortex by having subjects view this computer animation following i.v. injection of [ 18 F]DG. The spatial structure of the stimulus was designed to produce an easily recognizable 'signature' in a series of 9 serial PETT scans obtained from each of a group of 7 volunteers. The predicted lateralized topographic 'signature' was observed in 6 of 7 subjects. Applications of this method for further PETT studies of human visual cortex are discussed. (Auth.)

  9. Ventromedial hypothalamic expression of Bdnf is required to establish normal patterns of afferent GABAergic connectivity and responses to hypoglycemia

    Directory of Open Access Journals (Sweden)

    Anna Kamitakahara

    2016-02-01

    Full Text Available Objective: The ventromedial nucleus of the hypothalamus (VMH controls energy and glucose homeostasis through direct connections to a distributed network of nuclei in the hypothalamus, midbrain, and hindbrain. Structural changes in VMH circuit morphology have the potential to alter VMH function throughout life, however, molecular signals responsible for specifying its neural connections are not fully defined. The VMH contains a high density of neurons that express brain-derived neurotrophic factor (BDNF, a potent neurodevelopmental effector known to regulate neuronal survival, growth, differentiation, and connectivity in a number of neural systems. In the current study, we examined whether BDNF impacts the afferent and efferent connections of the VMH, as well as energy homeostatic function. Methods: To determine if BDNF is required for VMH circuit formation, a transgenic mouse model was used to conditionally delete Bdnf from steroidogenic factor 1 (SF1 expressing neurons of the VMH prior to the onset of establishing neural connections with other regions. Projections of SF1 expressing neurons were visualized with a genetically targeted fluorescent label and immunofluorescence was used to measure the density of afferents to SF1 neurons in the absence of BDNF. Physiological changes in body weight and circulating blood glucose were also evaluated in the mutant mice. Results: Our findings suggest that BDNF is required to establish normal densities of GABAergic afferents onto SF1 neurons located in the ventrolateral part of the VMH. Furthermore, loss of BDNF from VMH SF1 neurons results in impaired physiological responses to insulin-induced hypoglycemia. Conclusion: The results of this study indicate that BDNF is required for formation and/or maintenance of inhibitory inputs to SF1 neurons, with enduring effects on glycemic control. Author Video: Author Video Watch what authors say about their articles Keywords: Ventromedial nucleus of the hypothalamus

  10. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    Science.gov (United States)

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

  11. The Renal Nerves in Chronic Heart Failure: Afferent and Efferent Mechanisms

    Directory of Open Access Journals (Sweden)

    Alicia Marie Schiller

    2015-08-01

    Full Text Available The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF. Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent

  12. Fine structure of primary afferent axon terminals projecting from rapidly adapting mechanoreceptors of the toe and foot pads of the cat.

    Science.gov (United States)

    Maxwell, D J; Bannatyne, B A; Fyffe, R E; Brown, A G

    1984-04-01

    Two Pacinian corpuscle afferents and two rapidly adapting afferents from Krause corpuscles were intra-axonally labelled with horseradish peroxidase in the lumbosacral enlargement of the cat's spinal cord. Tissue was prepared for combined light and electron microscopical analysis. Boutons from both classes of afferent had similar ultrastructural appearances. They both formed from one to three synaptic junctions with dendritic shafts and spines and received axo-axonic synapses. In addition, both categories of bouton were seen to be presynaptic to structures interpreted as vesicle-containing dendrites. It is concluded that both types of afferent fibre are subject to presynaptic control and that they synapse with dorsal horn neurones which are possibly interneurones involved in primary afferent depolarization and post-synaptic dorsal column neurones.

  13. Visualization tool for human-machine interface designers

    Science.gov (United States)

    Prevost, Michael P.; Banda, Carolyn P.

    1991-06-01

    As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.

  14. Real-time decreased sensitivity to an audio-visual illusion during goal-directed reaching.

    Directory of Open Access Journals (Sweden)

    Luc Tremblay

    Full Text Available In humans, sensory afferences are combined and integrated by the central nervous system (Ernst MO, Bülthoff HH (2004 Trends Cogn. Sci. 8: 162-169 and appear to provide a holistic representation of the environment. Empirical studies have repeatedly shown that vision dominates the other senses, especially for tasks with spatial demands. In contrast, it has also been observed that sound can strongly alter the perception of visual events. For example, when presented with 2 flashes and 1 beep in a very brief period of time, humans often report seeing 1 flash (i.e. fusion illusion, Andersen TS, Tiippana K, Sams M (2004 Brain Res. Cogn. Brain Res. 21: 301-308. However, it is not known how an unfolding movement modulates the contribution of vision to perception. Here, we used the audio-visual illusion to demonstrate that goal-directed movements can alter visual information processing in real-time. Specifically, the fusion illusion was linearly reduced as a function of limb velocity. These results suggest that cue combination and integration can be modulated in real-time by goal-directed behaviors; perhaps through sensory gating (Chapman CE, Beauchamp E (2006 J. Neurophysiol. 96: 1664-1675 and/or altered sensory noise (Ernst MO, Bülthoff HH (2004 Trends Cogn. Sci. 8: 162-169 during limb movements.

  15. GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Chemical stimulation of white adipose tissue (WAT induces adipose afferent reflex (AAR, and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA in PVN in regulating the AAR.Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.

  16. Afferent Loop Syndrome after Roux-en-Y Total Gastrectomy Caused by Volvulus of the Roux-Limb

    Directory of Open Access Journals (Sweden)

    Hideki Katagiri

    2016-01-01

    Full Text Available Afferent loop syndrome is a rare complication of gastric surgery. An obstruction of the afferent limb can present in various ways. A 73-year-old man presented with one day of persistent abdominal pain, gradually radiating to the back. He had a history of total gastrectomy with a Roux-en-Y reconstruction. Abdominal computed tomography scan revealed dilation of the duodenum and small intestine in the left upper quadrant. Exploratory laparotomy showed volvulus of the biliopancreatic limb that caused afferent loop syndrome. In this patient, the 50 cm long limb was the cause of volvulus. It is important to fashion a Roux-limb of appropriate length to prevent this complication.

  17. The modulation of visceral functions by somatic afferent activity.

    Science.gov (United States)

    Sato, A; Schmidt, R F

    1987-01-01

    We began by briefly reviewing the historical background of neurophysiological studies of the somato-autonomic reflexes and then discussed recent studies on somatic-visceral reflexes in combination with autonomic efferent nerve activity and effector organ responses. Most of the studies that have advanced our knowledge in this area have been carried out on anesthetized animals, thus eliminating emotional factors. We would like to emphasize again that the functions of many, or perhaps all visceral organs can be modulated by somato-sympathetic or somato-parasympathetic reflex activity induced by a appropriate somatic afferent stimulation in anesthetized animals. As mentioned previously, some autonomic nervous outflow, e.g. the adrenal sympathetic nerve activity, is involved in the control of hormonal secretion. John F. Fulton wrote in his famous textbook "Physiology of the Nervous System" (1949) that the posterior pituitary neurosecretion system (i.e. for oxytocin and vasopressin) could be considered a part of the parasympathetic nervous system. In the study of body homeostasis and environmental adaptation it would seem very important to further analyze the contribution of somatic afferent input to the autonomic nervous and hormonal regulation of visceral organ activity. Also, some immunological functions have been found to be influenced by autonomic nerves or hormones (e.g. adrenal cortical hormone and catecholamines). Finally, we must take into account, as we have briefly discussed, that visceral functions can be modulated by somatic afferent input via various degrees of integration of autonomic nerves, hormones, and immunological processes. We trust that such research will be expanded to higher species of mammals, and that ultimately this knowledge of somato-visceral reflexes obtained in the physiological laboratory will become clinically useful in influencing visceral functions.

  18. Systematic biases in human heading estimation.

    Directory of Open Access Journals (Sweden)

    Luigi F Cuturi

    Full Text Available Heading estimation is vital to everyday navigation and locomotion. Despite extensive behavioral and physiological research on both visual and vestibular heading estimation over more than two decades, the accuracy of heading estimation has not yet been systematically evaluated. Therefore human visual and vestibular heading estimation was assessed in the horizontal plane using a motion platform and stereo visual display. Heading angle was overestimated during forward movements and underestimated during backward movements in response to both visual and vestibular stimuli, indicating an overall multimodal bias toward lateral directions. Lateral biases are consistent with the overrepresentation of lateral preferred directions observed in neural populations that carry visual and vestibular heading information, including MSTd and otolith afferent populations. Due to this overrepresentation, population vector decoding yields patterns of bias remarkably similar to those observed behaviorally. Lateral biases are inconsistent with standard bayesian accounts which predict that estimates should be biased toward the most common straight forward heading direction. Nevertheless, lateral biases may be functionally relevant. They effectively constitute a perceptual scale expansion around straight ahead which could allow for more precise estimation and provide a high gain feedback signal to facilitate maintenance of straight-forward heading during everyday navigation and locomotion.

  19. Modeling and Visualization of Human Activities for Multicamera Networks

    Directory of Open Access Journals (Sweden)

    Aswin C. Sankaranarayanan

    2009-01-01

    Full Text Available Multicamera networks are becoming complex involving larger sensing areas in order to capture activities and behavior that evolve over long spatial and temporal windows. This necessitates novel methods to process the information sensed by the network and visualize it for an end user. In this paper, we describe a system for modeling and on-demand visualization of activities of groups of humans. Using the prior knowledge of the 3D structure of the scene as well as camera calibration, the system localizes humans as they navigate the scene. Activities of interest are detected by matching models of these activities learnt a priori against the multiview observations. The trajectories and the activity index for each individual summarize the dynamic content of the scene. These are used to render the scene with virtual 3D human models that mimic the observed activities of real humans. In particular, the rendering framework is designed to handle large displays with a cluster of GPUs as well as reduce the cognitive dissonance by rendering realistic weather effects and illumination. We envision use of this system for immersive visualization as well as summarization of videos that capture group behavior.

  20. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    Science.gov (United States)

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  1. Noninvasive studies of human visual cortex using neuromagnetic techniques

    International Nuclear Information System (INIS)

    Aine, C.J.; George, J.S.; Supek, S.; Maclin, E.L.

    1990-01-01

    The major goals of noninvasive studies of the human visual cortex are: to increase knowledge of the functional organization of cortical visual pathways; and to develop noninvasive clinical tests for the assessment of cortical function. Noninvasive techniques suitable for studies of the structure and function of human visual cortex include magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission tomography (SPECT), scalp recorded event-related potentials (ERPs), and event-related magnetic fields (ERFs). The primary challenge faced by noninvasive functional measures is to optimize the spatial and temporal resolution of the measurement and analytic techniques in order to effectively characterize the spatial and temporal variations in patterns of neuronal activity. In this paper we review the use of neuromagnetic techniques for this purpose. 8 refs., 3 figs

  2. Measurement of the relative afferent pupillary defect in retinal detachment.

    Science.gov (United States)

    Bovino, J A; Burton, T C

    1980-07-01

    A swinging flashlight test and calibrated neutral density filters were used to quantitate the depth of relative afferent pupillary defects in ten patients with retinal detachment. Postoperatively, the pupillary responses returned to normal in seven of nine patients with anatomically successful surgery.

  3. Visual exploration and analysis of human-robot interaction rules

    Science.gov (United States)

    Zhang, Hui; Boyles, Michael J.

    2013-01-01

    We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming

  4. [Myofibroblasts and afferent signalling in the urinary bladder. A concept].

    Science.gov (United States)

    Neuhaus, J; Scholler, U; Freick, K; Schwalenberg, T; Heinrich, M; Horn, L C; Stolzenburg, J U

    2008-09-01

    Afferent signal transduction in the urinary bladder is still not clearly understood. An increasing body of evidence supports the view of complex interactions between urothelium, suburothelial myofibroblasts, and sensory nerves. Bladder tissue from tumour patients was used in this study. Methods included confocal immunofluorescence, polymerase chain reaction, calcium imaging, and fluorescence recovery after photobleaching (FRAP).Myofibroblasts express muscarinic and purinergic receptors. They show constitutive spontaneous activity in calcium imaging, which completely depends on extracellular calcium. Stimulation with carbachol and ATP-evoked intracellular calcium transients also depend on extracellular calcium. The intensive coupling between the cells is significantly diminished by incubation with TGF-beta 1. Myofibroblasts form an important cellular element within the afferent signalling of the urinary bladder. They possess all features required to take part in the complex interactions with urothelial cells and sensory nerves. Modulation of their function by cytokines may provide a pathomechanism for bladder dysfunction.

  5. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system.

    Science.gov (United States)

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-03-17

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.

  6. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  7. Integration of visual and non-visual self-motion cues during voluntary head movements in the human brain.

    Science.gov (United States)

    Schindler, Andreas; Bartels, Andreas

    2018-05-15

    Our phenomenological experience of the stable world is maintained by continuous integration of visual self-motion with extra-retinal signals. However, due to conventional constraints of fMRI acquisition in humans, neural responses to visuo-vestibular integration have only been studied using artificial stimuli, in the absence of voluntary head-motion. We here circumvented these limitations and let participants to move their heads during scanning. The slow dynamics of the BOLD signal allowed us to acquire neural signal related to head motion after the observer's head was stabilized by inflatable aircushions. Visual stimuli were presented on head-fixed display goggles and updated in real time as a function of head-motion that was tracked using an external camera. Two conditions simulated forward translation of the participant. During physical head rotation, the congruent condition simulated a stable world, whereas the incongruent condition added arbitrary lateral motion. Importantly, both conditions were precisely matched in visual properties and head-rotation. By comparing congruent with incongruent conditions we found evidence consistent with the multi-modal integration of visual cues with head motion into a coherent "stable world" percept in the parietal operculum and in an anterior part of parieto-insular cortex (aPIC). In the visual motion network, human regions MST, a dorsal part of VIP, the cingulate sulcus visual area (CSv) and a region in precuneus (Pc) showed differential responses to the same contrast. The results demonstrate for the first time neural multimodal interactions between precisely matched congruent versus incongruent visual and non-visual cues during physical head-movement in the human brain. The methodological approach opens the path to a new class of fMRI studies with unprecedented temporal and spatial control over visuo-vestibular stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Visual and tactile interfaces for bi-directional human robot communication

    Science.gov (United States)

    Barber, Daniel; Lackey, Stephanie; Reinerman-Jones, Lauren; Hudson, Irwin

    2013-05-01

    Seamless integration of unmanned and systems and Soldiers in the operational environment requires robust communication capabilities. Multi-Modal Communication (MMC) facilitates achieving this goal due to redundancy and levels of communication superior to single mode interaction using auditory, visual, and tactile modalities. Visual signaling using arm and hand gestures is a natural method of communication between people. Visual signals standardized within the U.S. Army Field Manual and in use by Soldiers provide a foundation for developing gestures for human to robot communication. Emerging technologies using Inertial Measurement Units (IMU) enable classification of arm and hand gestures for communication with a robot without the requirement of line-of-sight needed by computer vision techniques. These devices improve the robustness of interpreting gestures in noisy environments and are capable of classifying signals relevant to operational tasks. Closing the communication loop between Soldiers and robots necessitates them having the ability to return equivalent messages. Existing visual signals from robots to humans typically require highly anthropomorphic features not present on military vehicles. Tactile displays tap into an unused modality for robot to human communication. Typically used for hands-free navigation and cueing, existing tactile display technologies are used to deliver equivalent visual signals from the U.S. Army Field Manual. This paper describes ongoing research to collaboratively develop tactile communication methods with Soldiers, measure classification accuracy of visual signal interfaces, and provides an integration example including two robotic platforms.

  9. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Science.gov (United States)

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353

  10. Kv1 channels and neural processing in vestibular calyx afferents

    Directory of Open Access Journals (Sweden)

    Frances L Meredith

    2015-06-01

    Full Text Available Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K+ channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K+ channels could help alleviate vestibular dysfunction on earth and in space.

  11. Kv1 channels and neural processing in vestibular calyx afferents.

    Science.gov (United States)

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

  12. Immunomodulation of afferent neurons in guinea-pig isolated airway.

    Science.gov (United States)

    Riccio, M M; Myers, A C; Undem, B J

    1996-03-01

    1. The trachea, larynx and main bronchi with the right vagus nerve and nodose ganglion were isolated from guinea-pigs passively immunized 24 h previously with serum containing anti-ovalbumin antibody. 2. The airways were placed in one compartment of a Perspex chamber for recording of isometric tension while the nodose ganglion and attached vagus nerve were pulled into another compartment. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in the ganglion. Mechanosensitivity of the nerve endings was quantified using calibrated von Frey filaments immediately before and after exposure to antigen (10 micrograms ml-1 ovalbumin). 3. Ten endings responded to the force exerted by the lowest filament (0.078 mN) and were not further investigated. In airways from thirteen immunized guinea-pigs, the mechanical sensitivity of A delta afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) was enhanced 4.1 +/- 0.9-fold following airway exposure to antigen (P action potential generation except in one instance when the receptive field was located over the smooth muscle. This ending also responded to methacholine suggesting that spatial changes in the receptive field, induced by muscle contraction, were responsible for the activation. 5. The mediators responsible for these effects are unknown, although histamine, prostaglandins, leukotrienes and tachykinins do not appear to be essential. The increase in mechanical responsiveness was not associated with the smooth muscle contraction since leukotriene C4, histamine and tachykinins, which all caused a similar contraction to antigen, did not affect mechanical thresholds. Moreover, the antigen-induced increases in excitability persisted beyond the duration of the smooth muscle contraction. 6. These results demonstrate that antigen-antibody-mediated inflammatory processes may enhance the excitability of vagal afferent

  13. Afferent projections to the pontine micturition center in the cat

    NARCIS (Netherlands)

    Kuipers, R; Mouton, LJ; Holstege, G; Kuiper, Rutger

    2006-01-01

    The pontine micturition center (PMC) or Barrington's nucleus controls micturition by way of its descending projections to the sacral spinal cord. However, little is known about the afferents to the PMC that control its function and may be responsible for dysfunction in patients with

  14. Video processing for human perceptual visual quality-oriented video coding.

    Science.gov (United States)

    Oh, Hyungsuk; Kim, Wonha

    2013-04-01

    We have developed a video processing method that achieves human perceptual visual quality-oriented video coding. The patterns of moving objects are modeled by considering the limited human capacity for spatial-temporal resolution and the visual sensory memory together, and an online moving pattern classifier is devised by using the Hedge algorithm. The moving pattern classifier is embedded in the existing visual saliency with the purpose of providing a human perceptual video quality saliency model. In order to apply the developed saliency model to video coding, the conventional foveation filtering method is extended. The proposed foveation filter can smooth and enhance the video signals locally, in conformance with the developed saliency model, without causing any artifacts. The performance evaluation results confirm that the proposed video processing method shows reliable improvements in the perceptual quality for various sequences and at various bandwidths, compared to existing saliency-based video coding methods.

  15. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C.; De Palma, F.; De Vito, L.; Stefanelli, A. [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell`Uomo

    1997-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  16. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C; De Palma, F; De Vito, L; Stefanelli, A [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell` Uomo

    1998-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  17. Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex.

    Science.gov (United States)

    Jonas, Jacques; Frismand, Solène; Vignal, Jean-Pierre; Colnat-Coulbois, Sophie; Koessler, Laurent; Vespignani, Hervé; Rossion, Bruno; Maillard, Louis

    2014-07-01

    Electrical brain stimulation can provide important information about the functional organization of the human visual cortex. Here, we report the visual phenomena evoked by a large number (562) of intracerebral electrical stimulations performed at low-intensity with depth electrodes implanted in the occipito-parieto-temporal cortex of 22 epileptic patients. Focal electrical stimulation evoked primarily visual hallucinations with various complexities: simple (spot or blob), intermediary (geometric forms), or complex meaningful shapes (faces); visual illusions and impairments of visual recognition were more rarely observed. With the exception of the most posterior cortical sites, the probability of evoking a visual phenomenon was significantly higher in the right than the left hemisphere. Intermediary and complex hallucinations, illusions, and visual recognition impairments were almost exclusively evoked by stimulation in the right hemisphere. The probability of evoking a visual phenomenon decreased substantially from the occipital pole to the most anterior sites of the temporal lobe, and this decrease was more pronounced in the left hemisphere. The greater sensitivity of the right occipito-parieto-temporal regions to intracerebral electrical stimulation to evoke visual phenomena supports a predominant role of right hemispheric visual areas from perception to recognition of visual forms, regardless of visuospatial and attentional factors. Copyright © 2013 Wiley Periodicals, Inc.

  18. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis

    DEFF Research Database (Denmark)

    Roos, Ewa M.; Herzog, Walter; Block, Joel A

    2011-01-01

    Lower-extremity muscle strength and afferent sensory dysfunction, such as reduced proprioceptive acuity, are potentially modifiable putative risk factors for knee osteoarthritis (OA). Findings from current studies suggest that muscle weakness is a predictor of knee OA onset, while there is confli...... with previous knee injuries) are easily identified, and may benefit from exercise interventions to prevent or delay OA onset....... there is conflicting evidence regarding the role of muscle weakness in OA progression. In contrast, the literature suggests a role for afferent sensory dysfunction in OA progression but not necessarily in OA onset. The few pilot exercise studies performed in patients who are at risk of incident OA indicate...... a possibility for achieving preventive structure or load modifications. In contrast, large randomized controlled trials of patients with established OA have failed to demonstrate beneficial effects of strengthening exercises. Subgroups of individuals who are at increased risk of knee OA (such as those...

  19. JPEG2000 COMPRESSION CODING USING HUMAN VISUAL SYSTEM MODEL

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang; Wu Chengke

    2005-01-01

    In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.

  20. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    Science.gov (United States)

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  1. Dynamic Stimuli And Active Processing In Human Visual Perception

    Science.gov (United States)

    Haber, Ralph N.

    1990-03-01

    Theories of visual perception traditionally have considered a static retinal image to be the starting point for processing; and has considered processing both to be passive and a literal translation of that frozen, two dimensional, pictorial image. This paper considers five problem areas in the analysis of human visually guided locomotion, in which the traditional approach is contrasted to newer ones that utilize dynamic definitions of stimulation, and an active perceiver: (1) differentiation between object motion and self motion, and among the various kinds of self motion (e.g., eyes only, head only, whole body, and their combinations); (2) the sources and contents of visual information that guide movement; (3) the acquisition and performance of perceptual motor skills; (4) the nature of spatial representations, percepts, and the perceived layout of space; and (5) and why the retinal image is a poor starting point for perceptual processing. These newer approaches argue that stimuli must be considered as dynamic: humans process the systematic changes in patterned light when objects move and when they themselves move. Furthermore, the processing of visual stimuli must be active and interactive, so that perceivers can construct panoramic and stable percepts from an interaction of stimulus information and expectancies of what is contained in the visual environment. These developments all suggest a very different approach to the computational analyses of object location and identification, and of the visual guidance of locomotion.

  2. Discourse with Visual Health Data: Design of Human-Data Interaction

    Directory of Open Access Journals (Sweden)

    Oluwakemi Ola

    2018-03-01

    Full Text Available Previous work has suggested that large repositories of data can revolutionize healthcare activities; however, there remains a disconnection between data collection and its effective usage. The way in which users interact with data strongly impacts their ability to not only complete tasks but also capitalize on the purported benefits of such data. Interactive visualizations can provide a means by which many data-driven tasks can be performed. Recent surveys, however, suggest that many visualizations mostly enable users to perform simple manipulations, thus limiting their ability to complete tasks. Researchers have called for tools that allow for richer discourse with data. Nonetheless, systematic design of human-data interaction for visualization tools is a non-trivial task. It requires taking into consideration a myriad of issues. Creation of visualization tools that incorporate rich human-data discourse would benefit from the use of design frameworks. In this paper, we examine and present a design process that is based on a conceptual human-data interaction framework. We discuss and describe the design of interaction for a visualization tool intended for sensemaking of public health data. We demonstrate the utility of systematic interaction design in two ways. First, we use scenarios to highlight how our design approach supports a rich and meaningful discourse with data. Second, we present results from a study that details how users were able to perform various tasks with health data and learn about global health trends.

  3. Visual Graphics for Human Rights, Social Justice, Democracy and the Public Good

    Science.gov (United States)

    Nanackchand, Vedant; Berman, Kim

    2012-01-01

    The value of human rights in a democratic South Africa is constantly threatened and often waived for nefarious reasons. We contend that the use of visual graphics among incoming university visual art students provides a mode of engagement that helps to inculcate awareness of human rights, social responsibility, and the public good in South African…

  4. Percutaneous Transhepatic Duodenal Drainage as an Alternative Approach in Afferent Loop Obstruction with Secondary Obstructive Jaundice in Recurrent Gastric Cancer

    International Nuclear Information System (INIS)

    Yao, N.-S.; Wu, C.-W.; Tiu, Chui-Mei; Liu, Jacqueline M.; Whang-Peng, Jacqueline; Chen, L.-T.

    1998-01-01

    Two cases are reported of chronic, partial afferent loop obstruction with resultant obstructive jaundice in recurrent gastric cancer. The diagnosis was made by characteristic clinical presentations, abdominal computed tomography, and cholescintigraphy. Percutaneous transhepatic duodenal drainage (PTDD) provided effective palliation for both afferent loop obstruction and biliary stasis. We conclude that cholescintigraphy is of value in making the diagnosis of partial afferent loop obstruction and in differentiating the cause of obstructive jaundice in such patients, and PTDD provides palliation for those patients in whom surgical intervention is not feasible

  5. Afferent Endocrine Control of Eating

    DEFF Research Database (Denmark)

    Langhans, Wolfgang; Holst, Jens Juul

    2016-01-01

    The afferent endocrine factors that control eating can be separated into different categories. One obvious categorization is by the time course of their effects, with long-term factors that signal adiposity and short-term factors that operate within the time frame of single meals. The second...... obvious categorization is by the origin of the endocrine signalling molecules. The level of knowledge concerning the physiological mechanisms and relevance of the hormones that are implicated in the control of eating is clearly different. With the accumulating knowledge about the hormones' actions......, various criteria have been developed for when the effect of a hormone can be considered 'physiologic'. This chapter treats the hormones separately and categorizes them by origin. It discusses ALL hormones that are implicated in eating control such as Gastrointestinal (GI) hormone and glucagon-like peptide...

  6. Light and electron microscopy of contacts between primary afferent fibres and neurones with axons ascending the dorsal columns of the feline spinal cord.

    Science.gov (United States)

    Maxwell, D J; Koerber, H R; Bannatyne, B A

    1985-10-01

    In addition to primary afferent fibres, the dorsal columns of the cat spinal cord contain ascending second-order axons which project to the dorsal column nuclei. The aim of the present study was to obtain morphological evidence that certain primary afferent axons form monosynaptic contacts with cells of origin of this postsynaptic dorsal column pathway. In ten adult cats, neurones with axons ascending the dorsal columns were retrogradely labelled with horseradish peroxidase using a pellet implantation method in the thoracic dorsal columns. In the lumbosacral regions of the same animals, primary afferent fibres were labelled intra-axonally with ionophoretic application of horseradish peroxidase. Tissue containing labelled axons was prepared for light and combined light and electron microscopy. Ultrastructural examination demonstrated that slowly adapting (Type I), hair follicle, Pacinian corpuscle and group Ia muscle spindle afferents formed monosynaptic contacts with labelled cells and light microscopical analysis suggested that they also received monosynaptic input from rapidly adapting (Krause) afferents. This evidence suggests that sensory information from large-diameter cutaneous and muscle spindle afferent fibres is conveyed disynaptically via the postsynaptic dorsal column pathway to the dorsal column nuclei. Some of the input to this pathway is probably modified in the spinal cord as the majority of primary afferent boutons forming monosynaptic contacts were postsynaptic to other axon terminals. The postsynaptic dorsal column system appears to constitute a major somatosensory pathway in the cat.

  7. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    to norepinephrine, angiotensin II (ANG II), and potassium were measured after chloride depletion and compared with controls. Chloride depletion did not change arteriolar diameters, but the response to norepinephrine was markedly reduced when chloride was substituted with gluconate (n = 6) or isethionate (n = 6......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses...

  8. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.

    Science.gov (United States)

    Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint

    2017-09-13

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the

  9. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size

    Science.gov (United States)

    Andersen, Lau Møller; Blicher, Jakob Udby

    2017-01-01

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the

  10. Primary afferent terminal sprouting after a cervical dorsal rootlet section in the macaque monkey.

    Science.gov (United States)

    Darian-Smith, Corinna

    2004-03-01

    We examined the role of primary afferent neurons in the somatosensory cortical "reactivation" that occurs after a localized cervical dorsal root lesion (Darian-Smith and Brown [2000] Nat. Neurosci. 3:476-481). After section of the dorsal rootlets that enervate the macaque's thumb and index finger (segments C6-C8), the cortical representation of these digits was initially silenced but then re-emerged for these same digits over 2-4 postlesion months. Cortical reactivation was accompanied by the emergence of physiologically detectable input from these same digits within dorsal rootlets bordering the lesion site. We investigated whether central axonal sprouting of primary afferents spared by the rhizotomy could mediate this cortical reactivation. The cortical representation of the hand was mapped electrophysiologically 15-25 weeks after the dorsal rootlet section to define this reactivation. Cholera toxin subunit B conjugated to horseradish peroxidase was then injected into the thumb and index finger pads bilaterally to label the central terminals of any neurons that innervated these digits. Primary afferent terminal proliferation was assessed in the spinal dorsal horn and cuneate nucleus at 7 days and 15-25 postlesion weeks. Labeled terminal bouton distributions were reconstructed and the "lesion" and control sides compared within each monkey. Distributions were significantly larger on the side of the lesion in the dorsal horn and cuneate nucleus at 15-25 weeks after the dorsal rootlet section, than those mapped only 7 days postlesion. Our results provide direct evidence for localized sprouting of spared (uninjured) primary afferent terminals in the dorsal horn and cuneate nucleus after a restricted dorsal root injury. Copyright 2004 Wiley-Liss, Inc.

  11. Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke

    DEFF Research Database (Denmark)

    Mazzaro, Nazarena; Nielsen, Jørgen Feldbæk; Grey, Michael James

    2007-01-01

    We investigated the contribution of afferent feedback to the soleus (SOL) muscle activity during the stance phase of walking in patients with spastic stroke. A total of 24 patients with hemiparetic spastic stroke and age-matched healthy volunteers participated in the study. A robotic actuator...... by the Ashworth score. These results indicate that although the stretch reflex response is facilitated during spastic gait, the contribution of afferent feedback to the ongoing locomotor SOL activity is depressed in patients with spastic stroke....

  12. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad

    Science.gov (United States)

    Birznieks, Ingvars; Redmond, Stephen J.

    2015-01-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866

  13. Persistent pain after spinal cord injury is maintained by primary afferent activity.

    Science.gov (United States)

    Yang, Qing; Wu, Zizhen; Hadden, Julia K; Odem, Max A; Zuo, Yan; Crook, Robyn J; Frost, Jeffrey A; Walters, Edgar T

    2014-08-06

    Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain. Copyright © 2014 the authors 0270-6474/14/3410765-05$15.00/0.

  14. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    Science.gov (United States)

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    2016-03-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  15. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Matthew W Self

    2016-03-01

    Full Text Available Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  16. Simultaneous chromatic and luminance human electroretinogram responses.

    Science.gov (United States)

    Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan

    2012-07-01

    The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats' ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing.

  17. Visual servo control for a human-following robot

    CSIR Research Space (South Africa)

    Burke, Michael G

    2011-03-01

    Full Text Available This thesis presents work completed on the design of control and vision components for use in a monocular vision-based human-following robot. The use of vision in a controller feedback loop is referred to as vision-based or visual servo control...

  18. Investigations of the human visual system using functional magnetic resonance imaging (FMRI)

    International Nuclear Information System (INIS)

    Kollias, Spyros S.

    2004-01-01

    The application of functional magnetic resonance imaging (fMRI) in studies of the visual system provided significant advancement in our understanding of the organization and functional properties of visual areas in the human cortex. Recent technological and methodological improvements allowed studies to correlate neuronal activity with visual perception and demonstrated the ability of fMRI to observe distributed neural systems and to explore modulation of neural activity during higher cognitive processes. Preliminary applications in patients with visual impairments suggest that this method provides a powerful tool for the assessment and management of brain pathologies. Recent research focuses on obtaining new information about the spatial localization, organization, functional specialization and participation in higher cognitive functions of visual cortical areas in the living human brain and in further establishment of the method as a useful clinical tool of diagnostic and prognostic significance for various pathologic processes affecting the integrity of the visual system. It is anticipated that the combined neuroimaging approach in patients with lesions and healthy controls will provide new insight on the topography and functional specialization of cortical visual areas and will further establish the clinical value of the method for improving diagnostic accuracy and treatment planning

  19. Afferent Neural Feedback Overrides the Modulating Effects of Arousal, Hypercapnia and Hypoxemia on Neonatal Cardio-respiratory Control.

    Science.gov (United States)

    Lumb, Kathleen J; Schneider, Jennifer M; Ibrahim, Thowfique; Rigaux, Anita; Hasan, Shabih U

    2018-04-20

    Evidence at whole animal, organ-system, and cellular and molecular levels suggests that afferent volume feedback is critical for establishment of adequate ventilation at birth. Due to the irreversible nature of vagal ablation studies to date, it was difficult to quantify the roles of afferent volume input, arousal and changes in blood gas tensions on neonatal respiratory control. During reversible perineural vagal block, profound apneas, and hypoxemia and hypercarbia were observed necessitating termination of perineural blockade. Respiratory depression and apneas were independent of the sleep states. We demonstrate that profound apneas and life-threatening respiratory failure in vagally denervated animals do not result from lack of arousal or hypoxemia. Change in sleep state and concomitant respiratory depression result from lack of afferent volume feedback, which appears to be critical for the maintenance of normal breathing patterns and adequate gas exchange during the early postnatal period. Afferent volume feedback plays a vital role in neonatal respiratory control. Mechanisms for the profound respiratory depression and life-threatening apneas observed in vagally denervated neonatal animals remain unclear. We investigated the roles of sleep states, hypoxic-hypercapnia and afferent volume feedback on respiratory depression using reversible perineural vagal block during early postnatal period. Seven lambs were instrumented during the first 48h of life to record/analyze sleep states, diaphragmatic electromyograph, arterial blood gas tensions, systemic arterial blood pressure and rectal temperature. Perineural cuffs were placed around the vagi to attain reversible blockade. Post-operatively, during the awake state, both vagi were blocked using 2% xylocaine for up to 30 minutes. Compared with baseline values, pHa, PaO 2 and SaO 2 decreased and PaCO 2 increased during perineural blockade (P Respiratory depression and apneas were independent of sleep states. This

  20. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    Science.gov (United States)

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  1. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    Science.gov (United States)

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  2. Blindness alters the microstructure of the ventral but not the dorsal visual stream

    DEFF Research Database (Denmark)

    Reislev, Nina L; Kupers, Ron; Siebner, Hartwig R

    2016-01-01

    Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher...... pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal......-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual...

  3. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Directory of Open Access Journals (Sweden)

    Joshua G.A Pinto

    2015-02-01

    Full Text Available Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin and found that synaptic development in human primary visual cortex continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the 4 proteins and include a stage during early development (<1 year when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the first year or two of life. A multidimensional analysis (principle component analysis showed that most of the variance was captured by the sum of the 4 synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.

  4. Visual Magnocellular Function in Perceptual Disorders

    Directory of Open Access Journals (Sweden)

    David P. Crewther

    2011-05-01

    Full Text Available Developmental disorders such as autism spectrum disorders (ASD, dyslexia, schizophrenia and dyscalculia have also been reported to show abnormal visual perception. Central to the four disorders are observations of altered global/local perception, motion sensation and grouping that are suggestive of a magnocellular abnormality(s. Such psychophysical observations do not easily yield neurophysiological mechanisms that can explain the altered perception/vision. Nonlinear visual evoked potentials have allowed the separation of magnocellular (M and parvocellular (P contributions to the VEP (Klistorner et al., 1997. Using these tools we compare the patterns of abnormality in groups with visual disorders. The second order kernel responses of the VEP in autistic tendency show interference between P and M nonlinearities at high contrast (Sutherland & Crewther, 2010 resulting in a delay of completion of firing. While afferent latencies of M and P cortical activation are not different in ASD, the delay in completion may allow a revision of the ideas surrounding the “magnocellular advantage” which relate to the alterations observed in global and local perception.

  5. Aversive learning shapes neuronal orientation tuning in human visual cortex.

    Science.gov (United States)

    McTeague, Lisa M; Gruss, L Forest; Keil, Andreas

    2015-07-28

    The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top-down projections as well as local inhibitory interactions.

  6. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat.

    Science.gov (United States)

    Pettorossi, V E; Della Torre, G; Bortolami, R; Brunetti, O

    1999-03-01

    1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.

  7. Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Otero-García, Marcos; Martínez-García, Fernando; Lanuza, Enrique

    2016-03-01

    The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.

  8. Thyroid hormone is required for the pruning of afferent type II spiral ganglion neurons in the mouse cochlea

    Science.gov (United States)

    Sundaresan, Srividya; Balasubbu, Suganthalakshmi; Mustapha, Mirna

    2015-01-01

    Afferent connections to the sensory inner and outer hair cells in the cochlea refine and functionally mature during the thyroid hormone (TH)- critical period of inner ear development that occurs perinatally in rodents. In this study, we investigated the effects of hypothyroidism on afferent type II innervation to outer hair cells (OHCs) using the Snell dwarf mouse (Pit1dw). Using a transgenic approach to specifically label type II spiral ganglion neurons, we found that a lack of TH causes persistence of excess type II SGN connections to the OHCs, as well as continued expression of the hair cell functional marker, otoferlin, in the OHCs beyond the maturation period. We also observed a concurrent delay in efferent attachment to the OHCs. Supplementing with TH during the early postnatal period from postnatal day (P) 3 to P4 reversed the defect in type II SGN pruning but did not alter otoferlin expression. Our results show that hypothyroidism causes a defect in the large-scale pruning of afferent type II spiral ganglion neurons in the cochlea, and a delay in efferent attachment and the maturation of otoferlin expression. Our data suggest that the state of maturation of hair cells, as determined by otoferlin expression, may not regulate the pruning of their afferent innervation. PMID:26592716

  9. Na+-independent, nifedipine-resistant rat afferent arteriolar Ca2+ responses to noradrenaline

    DEFF Research Database (Denmark)

    Salomonsson, Max; Braunstein, Thomas Hartig; von Holstein-Rathlou, Niels-Henrik

    2010-01-01

    Abstract Aim: In rat afferent arterioles we investigated the role of Na(+) entry in noradrenaline (NA)-induced depolarization and voltage-dependent Ca(2+) entry together with the importance of the transient receptor potential channel (TRPC) subfamily for non-voltage-dependent Ca(2+) entry. Methods...

  10. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    Science.gov (United States)

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitude, pH sensitivity, the kinetics of desensitization and recovery from desensitization, and pharmacological modulation) in isolated, labeled mouse muscle afferents from wild-type (C57BL/6J) and specific ASIC−/− mice. We found that ASIC-like currents in wild-type muscle afferents displayed fast desensitization, indicating that they are carried by heteromeric channels. Currents from ASIC1a−/− muscle afferents were less pH-sensitive and displayed faster recovery, currents from ASIC2−/− mice showed diminished potentiation by zinc, and currents from ASIC3−/− mice displayed slower desensitization than those from wild-type mice. Finally, ASIC-like currents were absent from triple-null mice lacking ASIC1a, ASIC2a, and ASIC3. We conclude that ASIC1a, ASIC2a, and ASIC3 heteromers are the principle channels in skeletal muscle afferents. These results will help us understand the role of ASICs in exercise physiology and provide a molecular target for potential drug therapies to treat muscle pain.—Gautam, M., Benson, C. J. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. PMID:23109675

  11. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss

    Science.gov (United States)

    Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde

    2015-01-01

    The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788

  12. Visual gravitational motion and the vestibular system in humans

    Directory of Open Access Journals (Sweden)

    Francesco eLacquaniti

    2013-12-01

    Full Text Available The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  13. Visual gravitational motion and the vestibular system in humans.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-12-26

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  14. Chicken (Gallus domesticus) inner ear afferents

    Science.gov (United States)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  15. Two eyes, one vision: binocular motion perception in human visual cortex

    NARCIS (Netherlands)

    Barendregt, M.

    2016-01-01

    An important aspect of human vision is the fact that it is binocular, i.e. that we have two eyes. As a result, the brain nearly always receives two slightly different images of the same visual scene. Yet, we only perceive a single image and thus our brain has to actively combine the binocular visual

  16. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli.

    Science.gov (United States)

    Kim, Elmer K; Wellnitz, Scott A; Bourdon, Sarah M; Lumpkin, Ellen A; Gerling, Gregory J

    2012-07-23

    The next generation of prosthetic limbs will restore sensory feedback to the nervous system by mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin, utilizes few free model parameters for parsimony, and separates parameter fitting and model validation. Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday task of contacting and holding an object. This systems integration effort computationally replicates the neural firing behavior for a slowly adapting type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI interspike intervals (ISI) before validating the model to assess its performance. Model-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms. Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to 15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate increased, as is observed in afferent recordings. Finally, the SAI afferent's characteristic response

  17. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Jelsing, Jacob; van de Wall, Esther H E M

    2009-01-01

    The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R...... blockade is still debated. In the present study we examined rimonabant-induced anorexia in male C57BL/6J mice with subdiaphragmatic vagotomy (VGX) as well as in male Sprague-Dawley rats subjected to either subdiaphragmatic vagal deafferentation (SDA) alone or in combination with a complete celiac...... system, are required for rimonabant to inhibit food intake leading to the hypothesis that centrally located CB1 receptors are the prime mediators of rimonabant-induced anorexia....

  18. Characterization of spinal afferent neurons projecting to different chambers of the rat heart.

    Science.gov (United States)

    Guić, Maja Marinović; Kosta, Vana; Aljinović, Jure; Sapunar, Damir; Grković, Ivica

    2010-01-29

    The pattern of distribution of spinal afferent neurons (among dorsal root ganglia-DRGs) that project to anatomically and functionally different chambers of the rat heart, as well as their morphological and neurochemical characteristics were investigated. Retrograde tracing using a patch loaded with Fast blue (FB) was applied to all four chambers of the rat heart and labeled cardiac spinal afferents were characterized by using three neurochemical markers. The majority of cardiac projecting neurons were found from T1 to T4 DRGs, whereas the peak was at T2 DRG. There was no difference in the total number of FB-labeled neurons located in ipsilateral and contralateral DRGs regardless of the chambers marked with the patch. However, significantly more FB-labeled neurons projected to the ventricles compared to the atria (859 vs. 715). The proportion of isolectin B(4) binding in FB-labeled neurons was equal among all neurons projecting to different heart chambers (2.4%). Neurofilament 200 positivity was found in greater proportions in DRG neurons projecting to the left side of the heart, whereas calretinin-immunoreactivity was mostly represented in neurons projecting to the left atrium. Spinal afferent neurons projecting to different chambers of the rat heart exhibit a variety of neurochemical phenotypes depending on binding capacity for isolectin B(4) and immunoreactivity for neurofilament 200 and calretinin, and thus represent important baseline data for future studies. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  19. Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2017-09-01

    The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical amygdala that receives afferent projections from both the main and accessory olfactory bulbs. The role of this structure is unknown, partially due to a lack of knowledge of its connectivity. In this work, we describe the pattern of afferent and efferent projections of the ACo by using fluorogold and biotinylated dextranamines as retrograde and anterograde tracers, respectively. The results show that the ACo is reciprocally connected with the olfactory system and basal forebrain, as well as with the chemosensory and basomedial amygdala. In addition, it receives dense projections from the midline and posterior intralaminar thalamus, and moderate projections from the posterior bed nucleus of the stria terminalis, mesocortical structures and the hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the lateral hypothalamus. Finally, minor connections are present with some midbrain and brainstem structures. The afferent projections of the ACo indicate that this nucleus might play a role in emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. The efferent projections confirm this view and, given its direct output to the medial part of the central amygdala and the hypothalamic 'aggression area', suggest that the ACo can initiate defensive and aggressive responses elicited by olfactory or, to a lesser extent, vomeronasal stimuli. © 2017 Wiley Periodicals, Inc.

  20. A functional magnetic resonance imaging investigation of visual hallucinations in the human striate cortex.

    Science.gov (United States)

    Abid, Hina; Ahmad, Fayyaz; Lee, Soo Y; Park, Hyun W; Im, Dongmi; Ahmad, Iftikhar; Chaudhary, Safee U

    2016-11-29

    Human beings frequently experience fear, phobia, migraine and hallucinations, however, the cerebral mechanisms underpinning these conditions remain poorly understood. Towards this goal, in this work, we aim to correlate the human ocular perceptions with visual hallucinations, and map them to their cerebral origins. An fMRI study was performed to examine the visual cortical areas including the striate, parastriate and peristriate cortex in the occipital lobe of the human brain. 24 healthy subjects were enrolled and four visual patterns including hallucination circle (HCC), hallucination fan (HCF), retinotopy circle (RTC) and retinotopy cross (RTX) were used towards registering their impact in the aforementioned visual related areas. One-way analysis of variance was used to evaluate the significance of difference between induced activations. Multinomial regression and and K-means were used to cluster activation patterns in visual areas of the brain. Significant activations were observed in the visual cortex as a result of stimulus presentation. The responses induced by visual stimuli were resolved to Brodmann areas 17, 18 and 19. Activation data clustered into independent and mutually exclusive clusters with HCC registering higher activations as compared to HCF, RTC and RTX. We conclude that small circular objects, in rotation, tend to leave greater hallucinating impressions in the visual region. The similarity between observed activation patterns and those reported in conditions such as epilepsy and visual hallucinations can help elucidate the cortical mechanisms underlying these conditions. Trial Registration 1121_GWJUNG.

  1. The Relation of Visual Signs In The Narrative Structure of MTV Exit Human Trafficking Campaign Video

    Directory of Open Access Journals (Sweden)

    Winny Gunarti

    2013-08-01

    Full Text Available Human trafficking is a violation of the human rights. One of the campaign to fight against this crime takes the form of a digital campaign that aired on television and internet.   This study discusses the narrative structure of human trafficking campaign video from non-profit organization MTV Exit in 2012. This video campaign combines art collage and graphic art in its narrative structure. Nonverbal visual elements displayed in the form of a digital photo collage with animated illustrations setting. We consider this video campaign quite interesting as it is visually inform the public about the importance of safe migration through the visual signs in the narrative structure. This study analyzes qualitatively the relation of nonverbal visual signs in the narrative collage and illustration. Denotative and connotative analysis with structural semiotics approach is needed to understand the meaning of visual signs in the context of humans as cultural beings in their communities. This study is expected to be a model example of visual communication campaigns that can foster public awareness of the issue of human trafficking, especially for young women and children as young generation.

  2. Metabolic mapping of the brain's response to visual stimulation: studies in humans

    International Nuclear Information System (INIS)

    Phelps, M.E.; Kuhl, D.E.; Mazziotta, J.C.

    1981-01-01

    These studies demonstrated increasing glucose metabolic rates in the human primary (PVC) and associative (AVC) visual cortex as the complexity of visual scenes increased. The metabolic response of the AVC increased more rapidly with scene complexity than that of the PVC, indicating the greater involvement of the higher order AVC for complex visual interpretations. Increases in local metabolic activity by as much as a factor of 2 above that of control subjects with eyes closed indicate the wide range and metabolic reserve of the visual cortex

  3. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    Energy Technology Data Exchange (ETDEWEB)

    Haxby, J.V.; Grady, C.L.; Horwitz, B.; Ungerleider, L.G.; Mishkin, M.; Carson, R.E.; Herscovitch, P.; Schapiro, M.B.; Rapoport, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas.

  4. Human visual system automatically represents large-scale sequential regularities.

    Science.gov (United States)

    Kimura, Motohiro; Widmann, Andreas; Schröger, Erich

    2010-03-04

    Our brain recordings reveal that large-scale sequential regularities defined across non-adjacent stimuli can be automatically represented in visual sensory memory. To show that, we adopted an auditory paradigm developed by Sussman, E., Ritter, W., and Vaughan, H. G. Jr. (1998). Predictability of stimulus deviance and the mismatch negativity. NeuroReport, 9, 4167-4170, Sussman, E., and Gumenyuk, V. (2005). Organization of sequential sounds in auditory memory. NeuroReport, 16, 1519-1523 to the visual domain by presenting task-irrelevant infrequent luminance-deviant stimuli (D, 20%) inserted among task-irrelevant frequent stimuli being of standard luminance (S, 80%) in randomized (randomized condition, SSSDSSSSSDSSSSD...) and fixed manners (fixed condition, SSSSDSSSSDSSSSD...). Comparing the visual mismatch negativity (visual MMN), an event-related brain potential (ERP) index of memory-mismatch processes in human visual sensory system, revealed that visual MMN elicited by deviant stimuli was reduced in the fixed compared to the randomized condition. Thus, the large-scale sequential regularity being present in the fixed condition (SSSSD) must have been represented in visual sensory memory. Interestingly, this effect did not occur in conditions with stimulus-onset asynchronies (SOAs) of 480 and 800 ms but was confined to the 160-ms SOA condition supporting the hypothesis that large-scale regularity extraction was based on perceptual grouping of the five successive stimuli defining the regularity. 2010 Elsevier B.V. All rights reserved.

  5. Symbolic modeling of human anatomy for visualization and simulation

    Science.gov (United States)

    Pommert, Andreas; Schubert, Rainer; Riemer, Martin; Schiemann, Thomas; Tiede, Ulf; Hoehne, Karl H.

    1994-09-01

    Visualization of human anatomy in a 3D atlas requires both spatial and more abstract symbolic knowledge. Within our 'intelligent volume' model which integrates these two levels, we developed and implemented a semantic network model for describing human anatomy. Concepts for structuring (abstraction levels, domains, views, generic and case-specific modeling, inheritance) are introduced. Model, tools for generation and exploration and applications in our 3D anatomical atlas are presented and discussed.

  6. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Yong Seek; Park, Cheung-Seog [Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Jin, Young-Ho, E-mail: jinyh@khu.ac.kr [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  7. Preprocessing of emotional visual information in the human piriform cortex.

    Science.gov (United States)

    Schulze, Patrick; Bestgen, Anne-Kathrin; Lech, Robert K; Kuchinke, Lars; Suchan, Boris

    2017-08-23

    This study examines the processing of visual information by the olfactory system in humans. Recent data point to the processing of visual stimuli by the piriform cortex, a region mainly known as part of the primary olfactory cortex. Moreover, the piriform cortex generates predictive templates of olfactory stimuli to facilitate olfactory processing. This study fills the gap relating to the question whether this region is also capable of preprocessing emotional visual information. To gain insight into the preprocessing and transfer of emotional visual information into olfactory processing, we recorded hemodynamic responses during affective priming using functional magnetic resonance imaging (fMRI). Odors of different valence (pleasant, neutral and unpleasant) were primed by images of emotional facial expressions (happy, neutral and disgust). Our findings are the first to demonstrate that the piriform cortex preprocesses emotional visual information prior to any olfactory stimulation and that the emotional connotation of this preprocessing is subsequently transferred and integrated into an extended olfactory network for olfactory processing.

  8. Physiological properties of afferents to the rat cerebellum during normal development and after postnatal x irradiation

    International Nuclear Information System (INIS)

    Puro, D.G.

    1975-01-01

    The consequences of an altered cerebellar cortical development on afferent transmission and terminal organization were analyzed in adult rats which had received x irradiation to the cerebellum postnatally. Rats, anesthetized with 0.5 percent halothane, were studied in various ages from day 3 to adult. The ascending mossy and climbing fiber systems were activated by electrical stimulation of the limbs with needle electrodes. Stimulation of the motor cortex activated the descending climbing fiber pathways. Extracellular responses from cerebellar Purkinje cells were observed on an oscilloscope as poststimulus time histograms were constructed ''on-line''. Conclusions and assertions include: (1) Synaptogenesis between incoming afferent fibers and target neurons takes place early in cerebellar cortical development. (2) Mossy fiber transmission is mature before the bulk of cerebellar synaptogenesis occurs. (3) The ascending and descending components of the climbing fiber system mature, with respect to latency, in synchrony. (4) The terminal synaptic organization has little effect on the development of transmission characteristics in these afferent systems. (5) One possible mechanism by which an adult neural structure can have an abnormal synaptic organization is to maintain immature synaptic relationships due to the neonatal loss of interneurons

  9. Central vagal sensory and motor connections: human embryonic and fetal development.

    Science.gov (United States)

    Cheng, Gang; Zhou, Xiangtian; Qu, Jia; Ashwell, Ken W S; Paxinos, G

    2004-07-30

    The embryonic and fetal development of the nuclear components and pathways of vagal sensorimotor circuits in the human has been studied using Nissl staining and carbocyanine dye tracing techniques. Eight fetal brains ranging from 8 to 28 weeks of development had DiI (1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate) inserted into either the thoracic vagus nerve at the level of the sternal angle (two specimens of 8 and 9 weeks of gestation) or into vagal rootlets at the surface of the medulla (at all other ages), while a further five were used for study of cytoarchitectural development. The first central labeling resulting from peripheral application of DiI to the thoracic vagus nerve was seen at 8 weeks. By 9 weeks, labeled bipolar cells at the ventricular surface around the sulcus limitans (sl) were seen after DiI application to the thoracic vagus nerve. Subnuclear organization as revealed by both Nissl staining and carbocyanine dye tracing was found to be advanced at a relatively early fetal age, with afferent segregation in the medial Sol apparent at 13 weeks and subnuclear organization of efferent magnocellular divisions of dorsal motor nucleus of vagus nerve noticeable at the same stage. The results of the present study also confirm that vagal afferents are distributed to the dorsomedial subnuclei of the human nucleus of the solitary tract, with particular concentrations of afferent axons in the gelatinosus subnucleus. These vagal afferents appeared to have a restricted zone of termination from quite early in development (13 weeks) suggesting that there is no initial exuberance in the termination field of vagal afferents in the developing human nucleus of the solitary tract. On the other hand, the first suggestion of afferents invading 10N from the medial Sol was not seen until 20 weeks and was not well developed until 24 weeks, suggesting that direct monosynaptic connections between the sensory and effector components of the vagal

  10. On the network-based emulation of human visual search

    NARCIS (Netherlands)

    Gerrissen, J.F.

    1991-01-01

    We describe the design of a computer emulator of human visual search. The emulator mechanism is eventually meant to support ergonomic assessment of the effect of display structure and protocol on search performance. As regards target identification and localization, it mimics a number of

  11. Volumetric Visualization of Human Skin

    Science.gov (United States)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  12. Effects of intra-articular hyaluronic acid injection on immunohistochemical characterization of joint afferents in a rat model of knee osteoarthritis.

    Science.gov (United States)

    Ikeuchi, M; Izumi, M; Aso, K; Sugimura, N; Kato, T; Tani, T

    2015-03-01

    Intra-articular hyaluronic acid (HA) injection, known as viscosupplementation, is a widely used therapy for pain relief in knee osteoarthritis (OA). Long-term clinical efficacy of HA has been reported in spite of a relatively short residence time. Herein, we evaluated our hypothesis that intra-articular HA injection could reduce the OA-associated changes in joint afferents. OA was induced by intra-articular injection of mono-iodoacetate in rats. Animals in the OA + HA group were given three weekly intra-articular HA injections. Pain-related behaviours, including weight-bearing asymmetry and mechanical hyperalgesia of the paw, knee joint histology and immunohistochemistry of joint afferents identified by retrograde labelling, were compared between groups (naïve, OA and OA + HA). OA rats showed pain-related behaviours and up-regulation of pain-related neurochemical markers [calcitonin gene-related peptide (CGRP), tyrosine receptor kinase A (TrkA) and acid-sensing ion channel 3 (ASIC3)] in joint afferents. HA injections reduced not only the severity of OA and pain behaviours but also OA-associated neurochemical changes in joint afferents. The differences between OA and OA + HA were statistically significant in CGRP (61 ± 10% vs. 51 ± 10%; p = 0.0406) but not significant in TrkA (62 ± 10% vs. 54 ± 9%; p = 0.0878) and ASIC3 (38 ± 9% vs. 32 ± 8%; p = 0.3681). Intra-articular HA injections reduced the severity of OA, decreased mechanical hyperalgesia of the paw, but not weight-bearing asymmetry, and attenuated OA-associated up-regulation of CGRP, but not TrkA and ASIC3, in joint afferents. The modulatory effects of HA on joint afferents is one of the underlying mechanisms of the gap between HA residence time and duration of clinical efficacy. © 2014 European Pain Federation - EFIC®

  13. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    Science.gov (United States)

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  14. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction.

    Science.gov (United States)

    Sultemeier, David R; Hoffman, Larry F

    2017-01-01

    Although the effects of aminoglycoside antibiotics on hair cells have been investigated for decades, their influences on the dendrites of primary afferent neurons have not been widely studied. This is undoubtedly due to the difficulty in disassociating pathology to dendritic processes from that resulting from loss of the presynaptic hair cell. This was overcome in the present investigation through development of a preparation using Chinchilla laniger that enabled direct perilymphatic infusion. Through this strategy we unmasked gentamicin's potential effects on afferent calyces. The pathophysiology of the vestibular neuroepithelia after post-administration durations of 0.5 through 6 months was assessed using single-neuron electrophysiology, immunohistochemistry, and confocal microscopy. Hair cell densities within cristae central zones (0.5-, 1-, 2-, and 6-months) and utricle peri- and extrastriola (6-months) regions were determined, and damage to calretinin-immunoreactive calyces was quantified. Gentamicin-induced hair cell loss exhibited a profile that reflected elimination of a most-sensitive group by 0.5-months post-administration (18.2%), followed by loss of a second group (20.6%) over the subsequent 5.5 months. The total hair cell loss with this gentamicin dose (approximately 38.8%) was less than the estimated fraction of type I hair cells in the chinchilla's crista central zone (approximately 60%), indicating that viable type I hair cells remained. Extensive lesions to afferent calyces were observed at 0.5-months, though stimulus-evoked modulation was intact at this post-administration time. Widespread compromise to calyx morphology and severe attenuation of stimulus-evoked afferent discharge modulation was found at 1 month post-administration, a condition that persisted in preparations examined through the 6-month post-administration interval. Spontaneous discharge was robust at all post-administration intervals. All calretinin-positive calyces had retracted

  15. V-MitoSNP: visualization of human mitochondrial SNPs

    Directory of Open Access Journals (Sweden)

    Tsui Ke-Hung

    2006-08-01

    Full Text Available Abstract Background Mitochondrial single nucleotide polymorphisms (mtSNPs constitute important data when trying to shed some light on human diseases and cancers. Unfortunately, providing relevant mtSNP genotyping information in mtDNA databases in a neatly organized and transparent visual manner still remains a challenge. Amongst the many methods reported for SNP genotyping, determining the restriction fragment length polymorphisms (RFLPs is still one of the most convenient and cost-saving methods. In this study, we prepared the visualization of the mtDNA genome in a way, which integrates the RFLP genotyping information with mitochondria related cancers and diseases in a user-friendly, intuitive and interactive manner. The inherent problem associated with mtDNA sequences in BLAST of the NCBI database was also solved. Description V-MitoSNP provides complete mtSNP information for four different kinds of inputs: (1 color-coded visual input by selecting genes of interest on the genome graph, (2 keyword search by locus, disease and mtSNP rs# ID, (3 visualized input of nucleotide range by clicking the selected region of the mtDNA sequence, and (4 sequences mtBLAST. The V-MitoSNP output provides 500 bp (base pairs flanking sequences for each SNP coupled with the RFLP enzyme and the corresponding natural or mismatched primer sets. The output format enables users to see the SNP genotype pattern of the RFLP by virtual electrophoresis of each mtSNP. The rate of successful design of enzymes and primers for RFLPs in all mtSNPs was 99.1%. The RFLP information was validated by actual agarose electrophoresis and showed successful results for all mtSNPs tested. The mtBLAST function in V-MitoSNP provides the gene information within the input sequence rather than providing the complete mitochondrial chromosome as in the NCBI BLAST database. All mtSNPs with rs number entries in NCBI are integrated in the corresponding SNP in V-MitoSNP. Conclusion V-MitoSNP is a web

  16. Afferent thermosensory function in relapsing-remitting multiple sclerosis following exercise-induced increases in body temperature.

    Science.gov (United States)

    Filingeri, Davide; Chaseling, Georgia; Hoang, Phu; Barnett, Michael; Davis, Scott L; Jay, Ollie

    2017-08-01

    What is the central question of this study? Between 60 and 80% of multiple sclerosis (MS) patients experience transient worsening of symptoms with increased body temperature (heat sensitivity). As sensory abnormalities are common in MS, we asked whether afferent thermosensory function is altered in MS following exercise-induced increases in body temperature. What is the main finding and its importance? Increases in body temperature of as little as ∼0.4°C were sufficient to decrease cold, but not warm, skin thermosensitivity (∼10%) in MS, across a wider temperature range than in age-matched healthy individuals. These findings provide new evidence on the impact of heat sensitivity on afferent function in MS, which could be useful for clinical evaluation of this neurological disease. In multiple sclerosis (MS), increases in body temperature result in transient worsening of clinical symptoms (heat sensitivity or Uhthoff's phenomenon). Although the impact of heat sensitivity on efferent physiological function has been investigated, the effects of heat stress on afferent sensory function in MS are unknown. Hence, we quantified afferent thermosensory function in MS following exercise-induced increases in body temperature with a new quantitative sensory test. Eight relapsing-remitting MS patients (three men and five women; 51.4 ± 9.1 years of age; Expanded Disability Status Scale score 2.8 ± 1.1) and eight age-matched control (CTR) subjects (five men and three women; 47.4 ± 9.1 years of age) rated the perceived magnitude of two cold (26 and 22°C) and two warm stimuli (34 and 38°C) applied to the dorsum of the hand before and after 30 min cycling in the heat (30°C air; 30% relative humidity). Exercise produced similar increases in mean body temperature in MS [+0.39°C (95% CI: +0.21, +0.53) P = 0.001] and CTR subjects [+0.41°C (95% CI: +0.25, +0.58) P = 0.001]. These changes were sufficient to decrease thermosensitivity significantly to all cold [26

  17. Mouth and Voice: A Relationship between Visual and Auditory Preference in the Human Superior Temporal Sulcus.

    Science.gov (United States)

    Zhu, Lin L; Beauchamp, Michael S

    2017-03-08

    Cortex in and around the human posterior superior temporal sulcus (pSTS) is known to be critical for speech perception. The pSTS responds to both the visual modality (especially biological motion) and the auditory modality (especially human voices). Using fMRI in single subjects with no spatial smoothing, we show that visual and auditory selectivity are linked. Regions of the pSTS were identified that preferred visually presented moving mouths (presented in isolation or as part of a whole face) or moving eyes. Mouth-preferring regions responded strongly to voices and showed a significant preference for vocal compared with nonvocal sounds. In contrast, eye-preferring regions did not respond to either vocal or nonvocal sounds. The converse was also true: regions of the pSTS that showed a significant response to speech or preferred vocal to nonvocal sounds responded more strongly to visually presented mouths than eyes. These findings can be explained by environmental statistics. In natural environments, humans see visual mouth movements at the same time as they hear voices, while there is no auditory accompaniment to visual eye movements. The strength of a voxel's preference for visual mouth movements was strongly correlated with the magnitude of its auditory speech response and its preference for vocal sounds, suggesting that visual and auditory speech features are coded together in small populations of neurons within the pSTS. SIGNIFICANCE STATEMENT Humans interacting face to face make use of auditory cues from the talker's voice and visual cues from the talker's mouth to understand speech. The human posterior superior temporal sulcus (pSTS), a brain region known to be important for speech perception, is complex, with some regions responding to specific visual stimuli and others to specific auditory stimuli. Using BOLD fMRI, we show that the natural statistics of human speech, in which voices co-occur with mouth movements, are reflected in the neural architecture of

  18. Visual graphics for human rights, social justice, democracy and the ...

    African Journals Online (AJOL)

    Keywords: art, democracy, human rights, social justice, the public good, visual graphics. Introduction ..... in industry and global communications pay scant regard to their effect on the environment. The ..... Upper Saddle River, NJ: Pearson/Merril.

  19. Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex

    Science.gov (United States)

    Liu, Hesheng; Agam, Yigal; Madsen, Joseph R.; Kreiman, Gabriel

    2010-01-01

    Summary The difficulty of visual recognition stems from the need to achieve high selectivity while maintaining robustness to object transformations within hundreds of milliseconds. Theories of visual recognition differ in whether the neuronal circuits invoke recurrent feedback connections or not. The timing of neurophysiological responses in visual cortex plays a key role in distinguishing between bottom-up and top-down theories. Here we quantified at millisecond resolution the amount of visual information conveyed by intracranial field potentials from 912 electrodes in 11 human subjects. We could decode object category information from human visual cortex in single trials as early as 100 ms post-stimulus. Decoding performance was robust to depth rotation and scale changes. The results suggest that physiological activity in the temporal lobe can account for key properties of visual recognition. The fast decoding in single trials is compatible with feed-forward theories and provides strong constraints for computational models of human vision. PMID:19409272

  20. Representation of visual gravitational motion in the human vestibular cortex.

    Science.gov (United States)

    Indovina, Iole; Maffei, Vincenzo; Bosco, Gianfranco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco

    2005-04-15

    How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain.

  1. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    OpenAIRE

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.; Gebhart, G. F.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined chann...

  2. Comparison of dogs and humans in visual scanning of social interaction

    OpenAIRE

    Törnqvist, Heini; Somppi, Sanni; Koskela, Aija; Krause, Christina M.; Vainio, Outi; Kujala, Miiamaaria V.

    2015-01-01

    Previous studies have demonstrated similarities in gazing behaviour of dogs and humans, but comparisons under similar conditions are rare, and little is known about dogs' visual attention to social scenes. Here, we recorded the eye gaze of dogs while they viewed images containing two humans or dogs either interacting socially or facing away: the results were compared with equivalent data measured from humans. Furthermore, we compared the gazing behaviour of two dog and two human populations w...

  3. Chewing-induced hypertension in afferent baroreflex failure: a sympathetic response?

    Science.gov (United States)

    Fuente Mora, Cristina; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto; Kaufmann, Horacio

    2015-11-01

    What is the central question of this study? Our goal was to understand the autonomic responses to eating in patients with congenital afferent baroreflex failure, by documenting changes in blood pressure and heart rate with chewing, swallowing and stomach distension. What is the main finding and its importance? Patients born with lesions in the afferent baroreceptor pathways have an exaggerated pressor response to food intake. This appears to be a sympathetically mediated response, triggered by chewing, that occurs independently of swallowing or distension of the stomach. The chewing-induced pressor response may be useful as a counter-manoeuvre to prevent orthostatic hypotension in these patients. Familial dysautonomia (FD) is a rare genetic disease with extremely labile blood pressure resulting from baroreflex deafferentation. Patients have marked surges in sympathetic activity, frequently surrounding meals. We conducted an observational study to document the autonomic responses to eating in patients with FD and to determine whether sympathetic activation was caused by chewing, swallowing or stomach distension. Blood pressure and R-R intervals were measured continuously while chewing gum (n = 15), eating (n = 20) and distending the stomach by percutaneous endoscopic gastrostomy tube feeding (n = 9). Responses were compared with those of normal control subjects (n = 10) and of patients with efferent autonomic failure (n = 10) who have chronically impaired sympathetic outflow. In patients with FD, eating was associated with a marked but transient pressor response (P Chewing gum evoked a similar increase in blood pressure that was higher in patients with FD than in control subjects (P = 0.0001), but was absent in patients with autonomic failure. In patients with FD, distending the stomach by percutaneous endoscopic gastrostomy tube feeding failed to elicit a pressor response. The results provide indirect evidence that chewing triggers sympathetic

  4. Organization of diencephalic and brainstem afferent projections to the lateral septum in the rat

    NARCIS (Netherlands)

    Luiten, Paul G.M.; Kuipers, Folkert; Schuitmaker, Hans

    1982-01-01

    Ascending diencephalic and brainstem afferents to the lateral septal column were studied by retrograde transport of horseradish peroxidase following microiontophoretic injections in the various subdivisions of the lateral septal area. Predominantly ispilateral cells, of which several coincide with

  5. Visualization of Fiber Structure in the Left and Right Ventricle of a Human Heart

    International Nuclear Information System (INIS)

    Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

    2006-01-01

    The human heart is composed of a helical network of muscle fibers. Anisotropic least squares filtering followed by fiber tracking techniques were applied to Diffusion Tensor Magnetic Resonance Imaging(DTMRI) data of the excised human heart. The fiber configuration was visualized by using thin tubes to increase 3-dimensional visual perception of the complex structure. All visualizations were performed using the high-quality ray-tracing software POV-Ray. The fibers are shown within the left and right ventricles. Both ventricles exhibit similar fiber architecture and some bundles of fibers are shown linking right and left ventricles on the posterior region of the heart

  6. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    Science.gov (United States)

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. Copyright © 2014 the American Physiological Society.

  7. Preliminary Investigation of Visual Attention to Human Figures in Photographs: Potential Considerations for the Design of Aided AAC Visual Scene Displays

    Science.gov (United States)

    Wilkinson, Krista M.; Light, Janice

    2011-01-01

    Purpose: Many individuals with complex communication needs may benefit from visual aided augmentative and alternative communication systems. In visual scene displays (VSDs), language concepts are embedded into a photograph of a naturalistic event. Humans play a central role in communication development and might be important elements in VSDs.…

  8. Right-hemispheric dominance for visual remapping in humans.

    Science.gov (United States)

    Pisella, L; Alahyane, N; Blangero, A; Thery, F; Blanc, S; Pelisson, D

    2011-02-27

    We review evidence showing a right-hemispheric dominance for visuo-spatial processing and representation in humans. Accordingly, visual disorganization symptoms (intuitively related to remapping impairments) are observed in both neglect and constructional apraxia. More specifically, we review findings from the intervening saccade paradigm in humans--and present additional original data--which suggest a specific role of the asymmetrical network at the temporo-parietal junction (TPJ) in the right hemisphere in visual remapping: following damage to the right dorsal posterior parietal cortex (PPC) as well as part of the corpus callosum connecting the PPC to the frontal lobes, patient OK in a double-step saccadic task exhibited an impairment when the second saccade had to be directed rightward. This singular and lateralized deficit cannot result solely from the patient's cortical lesion and, therefore, we propose that it is due to his callosal lesion that may specifically interrupt the interhemispheric transfer of information necessary to execute accurate rightward saccades towards a remapped target location. This suggests a specialized right-hemispheric network for visuo-spatial remapping that subsequently transfers target location information to downstream planning regions, which are symmetrically organized.

  9. Neuro-ocular damage in pediatric oncology patients: predictor of long-term visual disability or tool for limiting toxicity

    International Nuclear Information System (INIS)

    Newman, N.M.; Donaldson, S.; de Wit, S.; King, O.; Wilbur, J.R.

    1986-01-01

    We present a group of eight pediatric cancer patients with a spectrum of visual afferent pathway abnormalities. Changes include decreased visual acuity, visual field alterations, abnormal visual evoked potentials, changes in the optic disc and nerve fiber layer of the retina, radiation retinopathy, and CNS injury. These changes occur in long term survivors of pediatric malignancy (especially those with prolonged, multimodal, and multicourse therapy), but they may be minimally symptomatic. The changes appear to be analogous to the CNS changes (leukoencephalopathy) described in patients with leukemia and attributed to multimodal therapy. By taking advantage of opportunities to detect adverse effects earlier in the treatment course, the present excellent cure rate may be improved by refinements in therapy that also improve the quality of survival

  10. Neuropsychiatry of complex visual hallucinations.

    Science.gov (United States)

    Mocellin, Ramon; Walterfang, Mark; Velakoulis, Dennis

    2006-09-01

    To describe the phenomenology and pathophysiology of complex visual hallucinations (CVH) in various organic states, in particular Charles Bonnet syndrome and peduncular hallucinosis. Three cases of CVH in the setting of pontine infarction, thalamic infarction and temporoparietal epileptiform activity are presented and the available psychiatric, neurological and biological literature on the structures of the central nervous system involved in producing hallucinatory states is reviewed. Complex visual hallucinations can arise from a variety of processes involving the retinogeniculocalcarine tract, or ascending brainstem modulatory structures. The cortical activity responsible for hallucinations results from altered or reduced input into these regions, or a loss of ascending inhibition of their afferent pathways. A significant degree of overlaps exists between the concepts of Charles Bonnet syndrome and peduncular hallucinosis. The fluidity of these eponymous syndromes reduces their validity and meaning, and may result in an inappropriate attribution of the underlying pathology. An understanding of how differing pathologies may produce CVH allows for the appropriate tailoring of treatment, depending on the site and nature of the lesion and content of perceptual disturbance.

  11. Safety and efficacy of subretinal visual implants in humans: methodological aspects.

    Science.gov (United States)

    Stingl, Katarina; Bach, Michael; Bartz-Schmidt, Karl-Ulrich; Braun, Angelika; Bruckmann, Anna; Gekeler, Florian; Greppmaier, Udo; Hörtdörfer, Gernot; Kusnyerik, Akos; Peters, Tobias; Wilhelm, Barbara; Wilke, Robert; Zrenner, Eberhart

    2013-01-01

    Replacing the function of visual pathway neurons by electronic implants is a novel approach presently explored by various groups in basic research and clinical trials. The novelty raises unexplored methodological aspects of clinical trial design that may require adaptation and validation. We present procedures of efficacy and safety testing for subretinal visual implants in humans, as developed during our pilot trial 2005 to 2009 and multi-centre clinical trial since 2010. Planning such a trial requires appropriate inclusion and exclusion criteria. For subretinal electronic visual implants, patients with photoreceptor degeneration are the target patient group, whereas presence of additional diseases affecting clear optic media or the visual pathway must be excluded. Because sham surgery is not possible, a masked study design with implant power ON versus OFF is necessary. Prior to the efficacy testing by psychophysical tests, the implant's technical characteristics have to be controlled via electroretinography (ERG). Moreover the testing methods require adaptation to the particular technology. We recommend standardised tasks first to determine the light perception thresholds, light localisation and movement detection, followed by grating acuity and vision acuity test via Landolt C rings. A laboratory setup for assessing essential activities of daily living is presented. Subjective visual experiences with the implant in a natural environment, as well as questionnaires and psychological counselling are further important aspects. A clinical trial protocol for artificial vision in humans, which leads a patient from blindness to the state of very low vision is a challenge and cannot be defined completely prior to the study. Available tests of visual function may not be sufficiently suited for efficacy testing of artificial vision devices. A protocol based on experience with subretinal visual implants in 22 patients is presented that has been found adequate to monitor

  12. Development of Glutamatergic Proteins in Human Visual Cortex across the Lifespan.

    Science.gov (United States)

    Siu, Caitlin R; Beshara, Simon P; Jones, David G; Murphy, Kathryn M

    2017-06-21

    Traditionally, human primary visual cortex (V1) has been thought to mature within the first few years of life, based on anatomical studies of synapse formation, and establishment of intracortical and intercortical connections. Human vision, however, develops well beyond the first few years. Previously, we found prolonged development of some GABAergic proteins in human V1 (Pinto et al., 2010). Yet as >80% of synapses in V1 are excitatory, it remains unanswered whether the majority of synapses regulating experience-dependent plasticity and receptive field properties develop late, like their inhibitory counterparts. To address this question, we used Western blotting of postmortem tissue from human V1 (12 female, 18 male) covering a range of ages. Then we quantified a set of postsynaptic glutamatergic proteins (PSD-95, GluA2, GluN1, GluN2A, GluN2B), calculated indices for functional pairs that are developmentally regulated (GluA2:GluN1; GluN2A:GluN2B), and determined interindividual variability. We found early loss of GluN1, prolonged development of PSD-95 and GluA2 into late childhood, protracted development of GluN2A until ∼40 years, and dramatic loss of GluN2A in aging. The GluA2:GluN1 index switched at ∼1 year, but the GluN2A:GluN2B index continued to shift until ∼40 year before changing back to GluN2B in aging. We also identified young childhood as a stage of heightened interindividual variability. The changes show that human V1 develops gradually through a series of five orchestrated stages, making it likely that V1 participates in visual development and plasticity across the lifespan. SIGNIFICANCE STATEMENT Anatomical structure of human V1 appears to mature early, but vision changes across the lifespan. This discrepancy has fostered two hypotheses: either other aspects of V1 continue changing, or later changes in visual perception depend on extrastriate areas. Previously, we showed that some GABAergic synaptic proteins change across the lifespan, but most

  13. Lectin Ulex europaeus agglutinin I specifically labels a subset of primary afferent fibers which project selectively to the superficial dorsal horn of the spinal cord.

    Science.gov (United States)

    Mori, K

    1986-02-19

    To examine differential carbohydrate expression among different subsets of primary afferent fibers, several fluorescein-isothiocyanate conjugated lectins were used in a histochemical study of the dorsal root ganglion (DRG) and spinal cord of the rabbit. The lectin Ulex europaeus agglutinin I specifically labeled a subset of DRG cells and primary afferent fibers which projected to the superficial laminae of the dorsal horn. These results suggest that specific carbohydrates containing L-fucosyl residue is expressed selectively in small diameter primary afferent fibers which subserve nociception or thermoception.

  14. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    OpenAIRE

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and abo...

  15. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    OpenAIRE

    Joshua G.A Pinto; David G Jones; Kate eWilliams; Kathryn M Murphy; Kathryn M Murphy

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and a...

  16. Unveiling the mystery of visual information processing in human brain.

    Science.gov (United States)

    Diamant, Emanuel

    2008-08-15

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. Why was it overlooked in brain information processing research remains a conundrum. In this paper, I am trying to find a remedy for this bizarre situation. I propose an uncommon definition of "information", which can be derived from Kolmogorov's Complexity Theory and Chaitin's notion of Algorithmic Information. Embracing this new definition leads to an inevitable revision of traditional dogmas that shape the state of the art of brain information processing research. I hope this revision would better serve the challenging goal of human visual information processing modeling.

  17. Visual graphics for human rights, social justice, democracy and the ...

    African Journals Online (AJOL)

    Keywords: art, democracy, human rights, social justice, the public good, visual ..... (Figure 1), the symbolism is two-fold; firstly, the upper composition depicts the ... in industry and global communications pay scant regard to their effect on the ...

  18. Closing the mind's eye: incoming luminance signals disrupt visual imagery.

    Directory of Open Access Journals (Sweden)

    Rachel Sherwood

    Full Text Available Mental imagery has been associated with many cognitive functions, both high and low-level. Despite recent scientific advances, the contextual and environmental conditions that most affect the mechanisms of visual imagery remain unclear. It has been previously shown that the greater the level of background luminance the weaker the effect of imagery on subsequent perception. However, in these experiments it was unclear whether the luminance was affecting imagery generation or storage of a memory trace. Here, we report that background luminance can attenuate both mental imagery generation and imagery storage during an unrelated cognitive task. However, imagery generation was more sensitive to the degree of luminance. In addition, we show that these findings were not due to differential dark adaptation. These results suggest that afferent visual signals can interfere with both the formation and priming-memory effects associated with visual imagery. It follows that background luminance may be a valuable tool for investigating imagery and its role in various cognitive and sensory processes.

  19. Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration.

    Science.gov (United States)

    Shibata, E; Kaneko, F

    2013-04-29

    The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. MR features of a case of afferent loop syndrome presenting as obstructive jaundice; IRM d'un syndrome de l'anse afferente revele par un ictere obstructif

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, P.; Souci, J.; Oddo, F.; Diaine, B.; Padovani, B. [Centre Hospitalier Regional et Universitaire de Nice, Hopital Archet 2., Service d' Imagerie Medicale, 06 - Nice (France); Gueyffier, C. [Centre Hospitalier Regional de Cannes, Service d' Hepato-Gastro-enterologie, 06 - Cannes (France)

    2001-02-01

    The afferent loop syndrome corresponds to an acute or chronic obstruction of the afferent loop following a partial gastrectomy with Billroth II gastro-jejunal anastomosis. We describe the case of a 77-year-old man with history of partial gastrectomy for peptic ulcer disease performed 31 years ago and currently admitted for jaundice and poor general status. MR imaging showed dilatation of biliary and pancreatic ducts and showed a soft tissue mass between the afferent loop and the residual stomach. Endoscopy showed complete obstruction of the afferent loop by a biopsy-proven adenocarcinoma. The patient died of sepsis shortly after endoscopy of septicemia. (authors)

  1. Dog Breed Differences in Visual Communication with Humans.

    Science.gov (United States)

    Konno, Akitsugu; Romero, Teresa; Inoue-Murayama, Miho; Saito, Atsuko; Hasegawa, Toshikazu

    2016-01-01

    Domestic dogs (Canis familiaris) have developed a close relationship with humans through the process of domestication. In human-dog interactions, eye contact is a key element of relationship initiation and maintenance. Previous studies have suggested that canine ability to produce human-directed communicative signals is influenced by domestication history, from wolves to dogs, as well as by recent breed selection for particular working purposes. To test the genetic basis for such abilities in purebred dogs, we examined gazing behavior towards humans using two types of behavioral experiments: the 'visual contact task' and the 'unsolvable task'. A total of 125 dogs participated in the study. Based on the genetic relatedness among breeds subjects were classified into five breed groups: Ancient, Herding, Hunting, Retriever-Mastiff and Working). We found that it took longer time for Ancient breeds to make an eye-contact with humans, and that they gazed at humans for shorter periods of time than any other breed group in the unsolvable situation. Our findings suggest that spontaneous gaze behavior towards humans is associated with genetic similarity to wolves rather than with recent selective pressure to create particular working breeds.

  2. Afferent and Efferent Connections of the Optic Tectum in the Carp (Cyprinus carpio L.)

    NARCIS (Netherlands)

    Luiten, P.G.M.

    1981-01-01

    The afferent and efferent connections of the tectum opticum in the carp (Cyprinus carpio L.) were studied with the HRP method. Following iontophoretic peroxidase injections in several parts of the rectum anterograde transport of the enzyme revealed tectal projections to the lateral geniculate

  3. Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan

    Directory of Open Access Journals (Sweden)

    Joshua G A Pinto

    2010-06-01

    Full Text Available Functional maturation of visual cortex is linked with dynamic changes in synaptic expression of GABAergic mechanisms. These include setting the excitation-inhibition balance required for experience-dependent plasticity, as well as, intracortical inhibition underlying development and aging of receptive field properties. Animal studies have shown developmental regulation of GABAergic mechanisms in visual cortex. In this study, we show for the first time how these mechanisms develop in the human visual cortex across the lifespan. We used Western blot analysis of postmortem tissue from human primary visual cortex (n=30, range: 20 days to 80 years to quantify expression of 8 pre- and post-synaptic GABAergic markers. We quantified the inhibitory modulating cannabinoid receptor (CB1, GABA vesicular transporter (VGAT, GABA synthesizing enzymes (GAD65/GAD67, GABAA receptor anchoring protein (Gephyrin, and GABAA receptor subunits (GABAA∝1, GABAA∝2, GABAA∝3. We found a complex pattern of changes, many of which were prolonged and continued well into into the teen, young adult, and even older adult years. These included a monotonic increase or decrease (GABAA∝1, GABAA∝2, a biphasic increase then decrease (GAD65, Gephyrin, or multiple increases and decreases (VGAT, CB1 across the lifespan. Comparing the balances between the pre- and post-synaptic markers we found 3 main transitions (early childhood, early teen years, aging when there were rapid switches in the composition of the GABAergic signaling system, indicating that functioning of the GABAergic system must change as the visual cortex develops and ages. Furthermore, these results provide key information for translating therapies developed in animal models into effective treatments for amblyopia in humans.

  4. Human visual system-based color image steganography using the contourlet transform

    Science.gov (United States)

    Abdul, W.; Carré, P.; Gaborit, P.

    2010-01-01

    We present a steganographic scheme based on the contourlet transform which uses the contrast sensitivity function (CSF) to control the force of insertion of the hidden information in a perceptually uniform color space. The CIELAB color space is used as it is well suited for steganographic applications because any change in the CIELAB color space has a corresponding effect on the human visual system as is very important for steganographic schemes to be undetectable by the human visual system (HVS). The perceptual decomposition of the contourlet transform gives it a natural advantage over other decompositions as it can be molded with respect to the human perception of different frequencies in an image. The evaluation of the imperceptibility of the steganographic scheme with respect to the color perception of the HVS is done using standard methods such as the structural similarity (SSIM) and CIEDE2000. The robustness of the inserted watermark is tested against JPEG compression.

  5. Human rather than ape-like orbital morphology allows much greater lateral visual field expansion with eye abduction

    Science.gov (United States)

    Denion, Eric; Hitier, Martin; Levieil, Eric; Mouriaux, Frédéric

    2015-01-01

    While convergent, the human orbit differs from that of non-human apes in that its lateral orbital margin is significantly more rearward. This rearward position does not obstruct the additional visual field gained through eye motion. This additional visual field is therefore considered to be wider in humans than in non-human apes. A mathematical model was designed to quantify this difference. The mathematical model is based on published computed tomography data in the human neuro-ocular plane (NOP) and on additional anatomical data from 100 human skulls and 120 non-human ape skulls (30 gibbons; 30 chimpanzees / bonobos; 30 orangutans; 30 gorillas). It is used to calculate temporal visual field eccentricity values in the NOP first in the primary position of gaze then for any eyeball rotation value in abduction up to 45° and any lateral orbital margin position between 85° and 115° relative to the sagittal plane. By varying the lateral orbital margin position, the human orbit can be made “non-human ape-like”. In the Pan-like orbit, the orbital margin position (98.7°) was closest to the human orbit (107.1°). This modest 8.4° difference resulted in a large 21.1° difference in maximum lateral visual field eccentricity with eyeball abduction (Pan-like: 115°; human: 136.1°). PMID:26190625

  6. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Science.gov (United States)

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  7. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Directory of Open Access Journals (Sweden)

    Mingrui Xia

    Full Text Available The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI, we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/.

  8. Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.; Podmore, Robin

    2009-04-01

    This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.

  9. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Directory of Open Access Journals (Sweden)

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  10. Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents.

    Science.gov (United States)

    Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J; Morgan, David E; Bledsoe, Amber D; Jessop, Jacob E; Amann, Markus; Richardson, Russell S

    2017-12-01

    The purpose of this study was to investigate the role of the group III/IV muscle afferents in the bioenergetics of exercising skeletal muscle beyond constraining the magnitude of metabolic perturbation. Eight healthy men performed intermittent isometric knee-extensor exercise to task failure at ~58% maximal voluntary contraction under control conditions (CTRL) and with lumbar intrathecal fentanyl to attenuate group III/IV leg muscle afferents (FENT). Intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate (H2PO4), adenosine triphosphate (ATP), and pH were determined using phosphorous magnetic resonance spectroscopy (P-MRS). The magnitude of metabolic perturbation was significantly greater in FENT compared with CTRL for [Pi] (37.8 ± 16.8 vs 28.6 ± 8.6 mM), [H2PO4] (24.3 ± 12.2 vs 17.9 ± 7.1 mM), and [ATP] (75.8% ± 17.5% vs 81.9% ± 15.8% of baseline), whereas there was no significant difference in [PCr] (4.5 ± 2.4 vs 4.4 ± 2.3 mM) or pH (6.51 ± 0.10 vs 6.54 ± 0.14). The rate of perturbation in [PCr], [Pi], [H2PO4], and pH was significantly faster in FENT compared with CTRL. Oxidative ATP synthesis was not significantly different between conditions. However, anaerobic ATP synthesis, through augmented creatine kinase and glycolysis reactions, was significantly greater in FENT than in CTRL, resulting in a significantly greater ATP cost of contraction (0.049 ± 0.016 vs 0.038 ± 0.010 mM·min·N). Group III/IV muscle afferents not only constrain the magnitude of perturbation in intramuscular Pi, H2PO4, and ATP during small muscle mass exercise but also seem to play a role in maintaining efficient skeletal muscle contractile function in men.

  11. Stability of Kinesthetic Perception in Efferent-Afferent Spaces: The Concept of Iso-perceptual Manifold.

    Science.gov (United States)

    Latash, Mark L

    2018-02-21

    The main goal of this paper is to introduce the concept of iso-perceptual manifold for perception of body configuration and related variables (kinesthetic perception) and to discuss its relation to the equilibrium-point hypothesis and the concepts of reference coordinate and uncontrolled manifold. Hierarchical control of action is postulated with abundant transformations between sets of spatial reference coordinates for salient effectors at different levels. Iso-perceptual manifold is defined in the combined space of afferent and efferent variables as the subspace corresponding to a stable percept. Examples of motion along an iso-perceptual manifold (perceptually equivalent motion) are considered during various natural actions. Some combinations of afferent and efferent signals, in particular those implying a violation of body's integrity, give rise to variable percepts by artificial projection onto iso-perceptual manifolds. This framework is used to interpret unusual features of vibration-induced kinesthetic illusions and to predict new illusions not yet reported in the literature. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Ablation of capsaicin sensitive afferent nerves impairs defence but not rapid repair of rat gastric mucosa.

    Science.gov (United States)

    Pabst, M A; Schöninkle, E; Holzer, P

    1993-07-01

    Capsaicin sensitive afferent neurones have previously been reported to play a part in gastric mucosal protection. The aim of this study was to investigate whether these nociceptive neurones strengthen mucosal defence against injury or promote rapid repair of the damaged mucosa, or both. This hypothesis was examined in anaesthetised rats whose stomachs were perfused with ethanol (25 or 50% in saline, wt/wt) for 30 minutes. The gastric mucosa was inspected 0 and 180 minutes after ethanol had been given at the macroscopic, light, and scanning electron microscopic level. Rapid repair of the ethanol injured gastric mucosa (reduction of deep injury, partial re-epithelialisation of the denuded surface) took place in rats anaesthetised with phenobarbital, but not in those anaesthetised with urethane. Afferent nerve ablation as a result of treating rats with a neurotoxic dose of capsaicin before the experiment significantly aggravated ethanol induced damage as shown by an increase in the area and depth of mucosal erosions. Rapid repair of the injured mucosa, however, as seen in rats anesthetised with phenobarbital 180 minutes after ethanol was given, was similar in capsaicin and vehicle pretreated animals. Ablation of capsaicin sensitive afferent neurones was verified by a depletion of calcitonin gene related peptide from the gastric corpus wall. These findings indicate that nociceptive neurones control mechanisms of defence against acute injury but are not required for rapid repair of injured mucosa.

  13. A visual analytics design for studying rhythm patterns from human daily movement data

    Directory of Open Access Journals (Sweden)

    Wei Zeng

    2017-06-01

    Full Text Available Human’s daily movements exhibit high regularity in a space–time context that typically forms circadian rhythms. Understanding the rhythms for human daily movements is of high interest to a variety of parties from urban planners, transportation analysts, to business strategists. In this paper, we present an interactive visual analytics design for understanding and utilizing data collected from tracking human’s movements. The resulting system identifies and visually presents frequent human movement rhythms to support interactive exploration and analysis of the data over space and time. Case studies using real-world human movement data, including massive urban public transportation data in Singapore and the MIT reality mining dataset, and interviews with transportation researches were conducted to demonstrate the effectiveness and usefulness of our system.

  14. Breaking Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions.

    Science.gov (United States)

    Kawai, Nobuyuki; He, Hongshen

    2016-01-01

    Humans and non-human primates are extremely sensitive to snakes as exemplified by their ability to detect pictures of snakes more quickly than those of other animals. These findings are consistent with the Snake Detection Theory, which hypothesizes that as predators, snakes were a major source of evolutionary selection that favored expansion of the visual system of primates for rapid snake detection. Many snakes use camouflage to conceal themselves from both prey and their own predators, making it very challenging to detect them. If snakes have acted as a selective pressure on primate visual systems, they should be more easily detected than other animals under difficult visual conditions. Here we tested whether humans discerned images of snakes more accurately than those of non-threatening animals (e.g., birds, cats, or fish) under conditions of less perceptual information by presenting a series of degraded images with the Random Image Structure Evolution technique (interpolation of random noise). We find that participants recognize mosaic images of snakes, which were regarded as functionally equivalent to camouflage, more accurately than those of other animals under dissolved conditions. The present study supports the Snake Detection Theory by showing that humans have a visual system that accurately recognizes snakes under less discernible visual conditions.

  15. Breaking Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kawai

    Full Text Available Humans and non-human primates are extremely sensitive to snakes as exemplified by their ability to detect pictures of snakes more quickly than those of other animals. These findings are consistent with the Snake Detection Theory, which hypothesizes that as predators, snakes were a major source of evolutionary selection that favored expansion of the visual system of primates for rapid snake detection. Many snakes use camouflage to conceal themselves from both prey and their own predators, making it very challenging to detect them. If snakes have acted as a selective pressure on primate visual systems, they should be more easily detected than other animals under difficult visual conditions. Here we tested whether humans discerned images of snakes more accurately than those of non-threatening animals (e.g., birds, cats, or fish under conditions of less perceptual information by presenting a series of degraded images with the Random Image Structure Evolution technique (interpolation of random noise. We find that participants recognize mosaic images of snakes, which were regarded as functionally equivalent to camouflage, more accurately than those of other animals under dissolved conditions. The present study supports the Snake Detection Theory by showing that humans have a visual system that accurately recognizes snakes under less discernible visual conditions.

  16. Visual artificial grammar learning: comparative research on humans, kea (Nestor notabilis) and pigeons (Columba livia)

    Science.gov (United States)

    Stobbe, Nina; Westphal-Fitch, Gesche; Aust, Ulrike; Fitch, W. Tecumseh

    2012-01-01

    Artificial grammar learning (AGL) provides a useful tool for exploring rule learning strategies linked to general purpose pattern perception. To be able to directly compare performance of humans with other species with different memory capacities, we developed an AGL task in the visual domain. Presenting entire visual patterns simultaneously instead of sequentially minimizes the amount of required working memory. This approach allowed us to evaluate performance levels of two bird species, kea (Nestor notabilis) and pigeons (Columba livia), in direct comparison to human participants. After being trained to discriminate between two types of visual patterns generated by rules at different levels of computational complexity and presented on a computer screen, birds and humans received further training with a series of novel stimuli that followed the same rules, but differed in various visual features from the training stimuli. Most avian and all human subjects continued to perform well above chance during this initial generalization phase, suggesting that they were able to generalize learned rules to novel stimuli. However, detailed testing with stimuli that violated the intended rules regarding the exact number of stimulus elements indicates that neither bird species was able to successfully acquire the intended pattern rule. Our data suggest that, in contrast to humans, these birds were unable to master a simple rule above the finite-state level, even with simultaneous item presentation and despite intensive training. PMID:22688635

  17. Gambling in the visual periphery: a conjoint-measurement analysis of human ability to judge visual uncertainty.

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    Full Text Available Recent work in motor control demonstrates that humans take their own motor uncertainty into account, adjusting the timing and goals of movement so as to maximize expected gain. Visual sensitivity varies dramatically with retinal location and target, and models of optimal visual search typically assume that the visual system takes retinal inhomogeneity into account in planning eye movements. Such models can then use the entire retina rather than just the fovea to speed search. Using a simple decision task, we evaluated human ability to compensate for retinal inhomogeneity. We first measured observers' sensitivity for targets, varying contrast and eccentricity. Observers then repeatedly chose between targets differing in eccentricity and contrast, selecting the one they would prefer to attempt: e.g., a low contrast target at 2° versus a high contrast target at 10°. Observers knew they would later attempt some of their chosen targets and receive rewards for correct classifications. We evaluated performance in three ways. Equivalence: Do observers' judgments agree with their actual performance? Do they correctly trade off eccentricity and contrast and select the more discriminable target in each pair? Transitivity: Are observers' choices self-consistent? Dominance: Do observers understand that increased contrast improves performance? Decreased eccentricity? All observers exhibited patterned failures of equivalence, and seven out of eight observers failed transitivity. There were significant but small failures of dominance. All these failures together reduced their winnings by 10%-18%.

  18. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.

    Science.gov (United States)

    Contini, D; Zampini, V; Tavazzani, E; Magistretti, J; Russo, G; Prigioni, I; Masetto, S

    2012-12-27

    Mammalian vestibular organs contain two types of sensory receptors, named Type I and Type II hair cells. While Type II hair cells are contacted by several small afferent nerve terminals, the basolateral surface of Type I hair cells is almost entirely enveloped by a single large afferent nerve terminal, called calyx. Moreover Type I, but not Type II hair cells, express a low-voltage-activated outward K(+) current, I(K,L), which is responsible for their much lower input resistance (Rm) at rest as compared to Type II hair cells. The functional meaning of I(K,L) and associated calyx is still enigmatic. By combining the patch-clamp whole-cell technique with the mouse whole crista preparation, we have recorded the current- and voltage responses of in situ hair cells. Outward K(+) current activation resulted in K(+) accumulation around Type I hair cells, since it induced a rightward shift of the K(+) reversal potential the magnitude of which depended on the amplitude and duration of K(+) current flow. Since this phenomenon was never observed for Type II hair cells, we ascribed it to the presence of a residual calyx limiting K(+) efflux from the synaptic cleft. Intercellular K(+) accumulation added a slow (τ>100ms) depolarizing component to the cell voltage response. In a few cases we were able to record from the calyx and found evidence for intercellular K(+) accumulation as well. The resulting depolarization could trigger a discharge of action potentials in the afferent nerve fiber. Present results support a model where pre- and postsynaptic depolarization produced by intercellular K(+) accumulation cooperates with neurotransmitter exocytosis in sustaining afferent transmission arising from Type I hair cells. While vesicular transmission together with the low Rm of Type I hair cells appears best suited for signaling fast head movements, depolarization produced by intercellular K(+) accumulation could enhance signal transmission during slow head movements. Copyright

  19. Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells.

    Science.gov (United States)

    Zhang, Lichun; Engler, Sina; Koepcke, Lena; Steenken, Friederike; Köppl, Christine

    2018-07-01

    The Mongolian gerbil is a classic animal model for age-related hearing loss. As a prerequisite for studying age-related changes, we characterized cochlear afferent synaptic morphology in young adult gerbils, using immunolabeling and quantitative analysis of confocal microscopic images. Cochlear wholemounts were triple-labeled with a hair-cell marker, a marker of presynaptic ribbons, and a marker of postsynaptic AMPA-type glutamate receptors. Seven cochlear positions covering an equivalent frequency range from 0.5 - 32 kHz were evaluated. The spatial positions of synapses were determined in a coordinate system with reference to their individual inner hair cell. Synapse numbers confirmed previous reports for gerbils (on average, 20-22 afferents per inner hair cell). The volumes of presynaptic ribbons and postsynaptic glutamate receptor patches were positively correlated: larger ribbons associated with larger receptor patches and smaller ribbons with smaller patches. Furthermore, the volumes of both presynaptic ribbons and postsynaptic receptor patches co-varied along the modiolar-pillar and the longitudinal axes of their hair cell. The gradients in ribbon volume are consistent with previous findings in cat, guinea pig, mouse and rat and further support a role in differentiating the physiological properties of type I afferents. However, the positive correlation between the volumes of pre- and postsynaptic elements in the gerbil is different to the opposing gradients found in the mouse, suggesting species-specific differences in the postsynaptic AMPA receptors that are unrelated to the fundamental classes of type I afferents. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Intermittently-visual Tracking Experiments Reveal the Roles of Error-correction and Predictive Mechanisms in the Human Visual-motor Control System

    Science.gov (United States)

    Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji

    Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.

  1. Transmission between type II hair cells and bouton afferents in the turtle posterior crista.

    Science.gov (United States)

    Holt, Joseph C; Xue, Jin-Tang; Brichta, Alan M; Goldberg, Jay M

    2006-01-01

    Synaptic activity was recorded with sharp microelectrodes during rest and during 0.3-Hz sinusoidal stimulation from bouton afferents identified by their efferent-mediated inhibitory responses. A glutamate antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased quantal size (qsize) while lowering external Ca(2+) decreased quantal rate (qrate). Miniature excitatory postsynaptic potentials (mEPSPs) had effective durations (qdur) of 3.5-5 ms. Their timing was consistent with Poisson statistics. Mean qsizes ranged in different units from 0.25 to 0.73 mV and mean qrates from 200 to 1,500/s; there was an inverse relation across the afferent population between qrate and qsize. qsize distributions were consistent with the independent release of variable-sized quanta. Channel noise, measured during AMPA-induced depolarizations, was small compared with quantal noise. Excitatory responses were larger than inhibitory responses. Peak qrates, which could approach 3,000/s, led peak excitatory mechanical stimulation by 40 degrees . Quantal parameters varied with stimulation phase with qdur and qsize being maximal during inhibitory stimulation. Voltage modulation (vmod) was in phase with qrate and had a peak depolarization of 1.5-3 mV. On average, 80% of vmod was accounted for by quantal activity; the remaining 20% was a nonquantal component that persisted in the absence of quantal activity. The extracellular accumulation of glutamate and K(+) are potential sources of nonquantal transmission and may provide a basis for the inverse relation between qrate and qsize. Comparison of the phases of synaptic and spike activity suggests that both presynaptic and postsynaptic mechanisms contribute to variations across afferents in the timing of spikes during sinusoidal stimulation.

  2. A New Conceptualization of Human Visual Sensory-Memory

    OpenAIRE

    Öğmen, Haluk; Herzog, Michael H.

    2016-01-01

    Memory is an essential component of cognition and disorders of memory have significant individual and societal costs. The Atkinson-Shiffrin "modal model" forms the foundation of our understanding of human memory. It consists of three stores: Sensory Memory (SM), whose visual component is called iconic memory, Short-Term Memory (STM; also called working memory, WM), and Long-Term Memory (LTM). Since its inception, shortcomings of all three components of the modal model have been identified. Wh...

  3. Attentional load modulates responses of human primary visual cortex to invisible stimuli.

    Science.gov (United States)

    Bahrami, Bahador; Lavie, Nilli; Rees, Geraint

    2007-03-20

    Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.

  4. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  5. Transcranial focused ultrasound stimulation of human primary visual cortex

    Science.gov (United States)

    Lee, Wonhye; Kim, Hyun-Chul; Jung, Yujin; Chung, Yong An; Song, In-Uk; Lee, Jong-Hwan; Yoo, Seung-Schik

    2016-09-01

    Transcranial focused ultrasound (FUS) is making progress as a new non-invasive mode of regional brain stimulation. Current evidence of FUS-mediated neurostimulation for humans has been limited to the observation of subjective sensory manifestations and electrophysiological responses, thus warranting the identification of stimulated brain regions. Here, we report FUS sonication of the primary visual cortex (V1) in humans, resulting in elicited activation not only from the sonicated brain area, but also from the network of regions involved in visual and higher-order cognitive processes (as revealed by simultaneous acquisition of blood-oxygenation-level-dependent functional magnetic resonance imaging). Accompanying phosphene perception was also reported. The electroencephalo graphic (EEG) responses showed distinct peaks associated with the stimulation. None of the participants showed any adverse effects from the sonication based on neuroimaging and neurological examinations. Retrospective numerical simulation of the acoustic profile showed the presence of individual variability in terms of the location and intensity of the acoustic focus. With exquisite spatial selectivity and capability for depth penetration, FUS may confer a unique utility in providing non-invasive stimulation of region-specific brain circuits for neuroscientific and therapeutic applications.

  6. Increase of Universality in Human Brain during Mental Imagery from Visual Perception

    OpenAIRE

    Bhattacharya, Joydeep

    2009-01-01

    BACKGROUND: Different complex systems behave in a similar way near their critical points of phase transitions which leads to an emergence of a universal scaling behaviour. Universality indirectly implies a long-range correlation between constituent subsystems. As the distributed correlated processing is a hallmark of higher complex cognition, I investigated a measure of universality in human brain during perception and mental imagery of complex real-life visual object like visual art. METHODO...

  7. Characterization of dendritic cells subpopulations in skin and afferent lymph in the swine model.

    Directory of Open Access Journals (Sweden)

    Florian Marquet

    Full Text Available Transcutaneous delivery of vaccines to specific skin dendritic cells (DC subsets is foreseen as a promising strategy to induce strong and specific types of immune responses such as tolerance, cytotoxicity or humoral immunity. Because of striking histological similarities between human and pig skin, pig is recognized as the most suitable model to study the cutaneous delivery of medicine. Therefore improving the knowledge on swine skin DC subsets would be highly valuable to the skin vaccine field. In this study, we showed that pig skin DC comprise the classical epidermal langerhans cells (LC and dermal DC (DDC that could be divided in 3 subsets according to their phenotypes: (1 the CD163(neg/CD172a(neg, (2 the CD163(highCD172a(pos and (3 the CD163(lowCD172a(pos DDC. These subtypes have the capacity to migrate from skin to lymph node since we detected them in pseudo-afferent lymph. Extensive phenotyping with a set of markers suggested that the CD163(high DDC resemble the antibody response-inducing human skin DC/macrophages whereas the CD163(negCD172(low DDC share properties with the CD8(+ T cell response-inducing murine skin CD103(pos DC. This work, by showing similarities between human, mouse and swine skin DC, establishes pig as a model of choice for the development of transcutaneous immunisation strategies targeting DC.

  8. The Qumran Visualization Project: Prospects for Digital Humanities in Theological Libraries

    Directory of Open Access Journals (Sweden)

    Benjamin P. Murphy

    2012-05-01

    Full Text Available Digital Humanities are a hot topic in disciplines as varied as literature, history and cultural studies, but at present theology and religious studies departments seem to be lagging behind. This essay will offer a critical review of one Digital Humanities project that is relevant to theological libraries and Biblical Studies: the Qumran Visualization Project. The essay will discuss why theological libraries should start considering the Digital Humanities, and then offer some strategies for how libraries can support, promote or otherwise engage with this type of project.

  9. Steady-state visually evoked potential correlates of human body perception.

    Science.gov (United States)

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  10. Afferent Pathway-Mediated Effect of α1 Adrenergic Antagonist, Tamsulosin, on the Neurogenic Bladder After Spinal Cord Injury.

    Science.gov (United States)

    Han, Jin-Hee; Kim, Sung-Eun; Ko, Il-Gyu; Kim, Jayoung; Kim, Khae Hawn

    2017-09-01

    The functions of the lower urinary tract (LUT), such as voiding and storing urine, are dependent on complex central neural networks located in the brain, spinal cord, and peripheral ganglia. Thus, the functions of the LUT are susceptible to various neurologic disorders including spinal cord injury (SCI). SCI at the cervical or thoracic levels disrupts voluntary control of voiding and the normal reflex pathways coordinating bladder and sphincter functions. In this context, it is noteworthy that α1-adrenoceptor blockers have been reported to relieve voiding symptoms and storage symptoms in elderly men with benign prostatic hyperplasia (BPH). Tamsulosin, an α1-adrenoceptor blocker, is also considered the most effective regimen for patients with LUT symptoms such as BPH and overactive bladder (OAB). In the present study, the effects of tamsulosin on the expression of c-Fos, nerve growth factor (NGF), and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the afferent micturition areas, including the pontine micturition center (PMC), the ventrolateral periaqueductal gray matter (vlPAG), and the spinal cord (L5), of rats with an SCI were investigated. SCI was found to remarkably upregulate the expression of c-Fos, NGF, and NADPH-d in the afferent pathway of micturition, the dorsal horn of L5, the vlPAG, and the PMC, resulting in the symptoms of OAB. In contrast, tamsulosin treatment significantly suppressed these neural activities and the production of nitric oxide in the afferent pathways of micturition, and consequently, attenuated the symptoms of OAB. Based on these results, tamsulosin, an α1-adrenoceptor antagonist, could be used to attenuate bladder dysfunction following SCI. However, further studies are needed to elucidate the exact mechanism and effects of tamsulosin on the afferent pathways of micturition.

  11. Afferent loop syndrome - a case report; Sindrome da alca aferente - relato de um caso

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Ana Karina Nascimento; Pinheiro, Marco Antonio Lopes; Galvao, Cristine Norwig [Fundacao Pio XII - Hospital do Cancer de Barretos, SP (Brazil)

    2000-02-01

    The afferent loop syndrome occurs in patients with previous gastric surgery for tumor, when there is anastomotic edema, use of inappropriate reconstruction technique for gastro jejunostomy or recurrent gastric cancer. Complaints such jaundice, intermittent abdominal distension associated with pain, and vomiting should be investigated in order to rule out this syndrome. (author)

  12. Acuidade visual: Medidas e notações Visual acuity: Measurements and notations

    Directory of Open Access Journals (Sweden)

    Harley E. A. Bicas

    2002-06-01

    Full Text Available Avaliações da função visual são muito complexas por dependerem de mecanismos aferentes, eferentes e cognitivos, além de fatores externos à pessoa examinada, como o tipo de estímulo e o de sua apresentação. O exame da acuidade visual é discutido em seus aspectos formais de definições, quantificações (critérios de medição de um ângulo e tamanho dos optotipos, notações (decimal ou fracionárias, escalas (representando relações angulares, lineares, logarítmicas e unidades em que os valores são expressos (recíproca do minuto de arco, número puro, freqüência espacial, decibéis e oitavas. Como conseqüência, referências numéricas sobre a acuidade visual e operações que as envolvem (p.ex., cálculo de valores médios, determinação de variações, relações entre elas podem levar a interpretações muito diferentes e até opostas num mesmo estudo, dependendo dos critérios nele empregados.Evaluations of the visual function are very intricate since they depend on afferent, efferent and cognitive mechanisms, besides external factors of the examined subject, such as the type of the stimulus and of its presentation. Testing the visual acuity is discussed in its formal aspects related to definitions, quantifications (criteria for the measurements of an angle, size of optotypes, notations (decimal or fractionary, scales (representing angular, linear or logarithmic relationships and units in which the values are expressed (reciprocal of minutes of arc, pure number, spacial frequency, decibels, octaves. As a consequence, numerical references about visual acuity and respective operations (e.g., calculations of average values, determinations of variations, relationships between them may lead to very different interpretations of a study, sometimes even opposite, according to the criteria which are used.

  13. Integration of Visual and Proprioceptive Limb Position Information in Human Posterior Parietal, Premotor, and Extrastriate Cortex.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2016-03-02

    The brain constructs a flexible representation of the body from multisensory information. Previous work on monkeys suggests that the posterior parietal cortex (PPC) and ventral premotor cortex (PMv) represent the position of the upper limbs based on visual and proprioceptive information. Human experiments on the rubber hand illusion implicate similar regions, but since such experiments rely on additional visuo-tactile interactions, they cannot isolate visuo-proprioceptive integration. Here, we independently manipulated the position (palm or back facing) of passive human participants' unseen arm and of a photorealistic virtual 3D arm. Functional magnetic resonance imaging (fMRI) revealed that matching visual and proprioceptive information about arm position engaged the PPC, PMv, and the body-selective extrastriate body area (EBA); activity in the PMv moreover reflected interindividual differences in congruent arm ownership. Further, the PPC, PMv, and EBA increased their coupling with the primary visual cortex during congruent visuo-proprioceptive position information. These results suggest that human PPC, PMv, and EBA evaluate visual and proprioceptive position information and, under sufficient cross-modal congruence, integrate it into a multisensory representation of the upper limb in space. The position of our limbs in space constantly changes, yet the brain manages to represent limb position accurately by combining information from vision and proprioception. Electrophysiological recordings in monkeys have revealed neurons in the posterior parietal and premotor cortices that seem to implement and update such a multisensory limb representation, but this has been difficult to demonstrate in humans. Our fMRI experiment shows that human posterior parietal, premotor, and body-selective visual brain areas respond preferentially to a virtual arm seen in a position corresponding to one's unseen hidden arm, while increasing their communication with regions conveying visual

  14. Humans tend to walk in circles as directed by memorized visual locations at large distances

    OpenAIRE

    Consolo, Patricia; Holanda, Humberto C.; Fukusima, Sérgio S.

    2014-01-01

    Human veering while walking blindfolded or walking straight without any visual cues has been widely studied over the last 100 years, but the results are still controversial. The present study attempted to describe and understand the human ability to maintain the direction of a trajectory while walking without visual or audio cues with reference to a proposed mathematical model and using data collected by a global positioning system (GPS). Fifteen right-handed people of both genders, aged 18-3...

  15. Decoding conjunctions of direction-of-motion and binocular disparity from human visual cortex.

    Science.gov (United States)

    Seymour, Kiley J; Clifford, Colin W G

    2012-05-01

    Motion and binocular disparity are two features in our environment that share a common correspondence problem. Decades of psychophysical research dedicated to understanding stereopsis suggest that these features interact early in human visual processing to disambiguate depth. Single-unit recordings in the monkey also provide evidence for the joint encoding of motion and disparity across much of the dorsal visual stream. Here, we used functional MRI and multivariate pattern analysis to examine where in the human brain conjunctions of motion and disparity are encoded. Subjects sequentially viewed two stimuli that could be distinguished only by their conjunctions of motion and disparity. Specifically, each stimulus contained the same feature information (leftward and rightward motion and crossed and uncrossed disparity) but differed exclusively in the way these features were paired. Our results revealed that a linear classifier could accurately decode which stimulus a subject was viewing based on voxel activation patterns throughout the dorsal visual areas and as early as V2. This decoding success was conditional on some voxels being individually sensitive to the unique conjunctions comprising each stimulus, thus a classifier could not rely on independent information about motion and binocular disparity to distinguish these conjunctions. This study expands on evidence that disparity and motion interact at many levels of human visual processing, particularly within the dorsal stream. It also lends support to the idea that stereopsis is subserved by early mechanisms also tuned to direction of motion.

  16. Canine and human visual cortex intact and responsive despite early retinal blindness from RPE65 mutation.

    Directory of Open Access Journals (Sweden)

    Geoffrey K Aguirre

    2007-06-01

    Full Text Available RPE65 is an essential molecule in the retinoid-visual cycle, and RPE65 gene mutations cause the congenital human blindness known as Leber congenital amaurosis (LCA. Somatic gene therapy delivered to the retina of blind dogs with an RPE65 mutation dramatically restores retinal physiology and has sparked international interest in human treatment trials for this incurable disease. An unanswered question is how the visual cortex responds after prolonged sensory deprivation from retinal dysfunction. We therefore studied the cortex of RPE65-mutant dogs before and after retinal gene therapy. Then, we inquired whether there is visual pathway integrity and responsivity in adult humans with LCA due to RPE65 mutations (RPE65-LCA.RPE65-mutant dogs were studied with fMRI. Prior to therapy, retinal and subcortical responses to light were markedly diminished, and there were minimal cortical responses within the primary visual areas of the lateral gyrus (activation amplitude mean +/- standard deviation [SD] = 0.07% +/- 0.06% and volume = 1.3 +/- 0.6 cm(3. Following therapy, retinal and subcortical response restoration was accompanied by increased amplitude (0.18% +/- 0.06% and volume (8.2 +/- 0.8 cm(3 of activation within the lateral gyrus (p < 0.005 for both. Cortical recovery occurred rapidly (within a month of treatment and was persistent (as long as 2.5 y after treatment. Recovery was present even when treatment was provided as late as 1-4 y of age. Human RPE65-LCA patients (ages 18-23 y were studied with structural magnetic resonance imaging. Optic nerve diameter (3.2 +/- 0.5 mm was within the normal range (3.2 +/- 0.3 mm, and occipital cortical white matter density as judged by voxel-based morphometry was slightly but significantly altered (1.3 SD below control average, p = 0.005. Functional magnetic resonance imaging in human RPE65-LCA patients revealed cortical responses with a markedly diminished activation volume (8.8 +/- 1.2 cm(3 compared to controls

  17. Centre-surround organization of fast sensorimotor integration in human motor hand area

    DEFF Research Database (Denmark)

    Dubbioso, Raffaele; Raffin, Estelle; Karabanov, Anke

    2017-01-01

    Using the short-latency afferent inhibition (SAI) paradigm, transcranial magnetic stimulation (TMS) of the primary motor hand area (M1HAND) can probe how sensory input from limbs modulates corticomotor output in humans. Here we applied a novel TMS mapping approach to chart the spatial representat......Using the short-latency afferent inhibition (SAI) paradigm, transcranial magnetic stimulation (TMS) of the primary motor hand area (M1HAND) can probe how sensory input from limbs modulates corticomotor output in humans. Here we applied a novel TMS mapping approach to chart the spatial...... in M1HAND. Like homotopic SAI, heterotopic SAF was somatotopically expressed in M1HAND. Together, the results provide first-time evidence that fast sensorimotor integration involves centre-inhibition and surround-facilitation in human M1HAND....

  18. Collaborative Video Search Combining Video Retrieval with Human-Based Visual Inspection

    NARCIS (Netherlands)

    Hudelist, M.A.; Cobârzan, C.; Beecks, C.; van de Werken, Rob; Kletz, S.; Hürst, W.O.; Schoeffmann, K.

    2016-01-01

    We propose a novel video browsing approach that aims at optimally integrating traditional, machine-based retrieval methods with an interface design optimized for human browsing performance. Advanced video retrieval and filtering (e.g., via color and motion signatures, and visual concepts) on a

  19. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow.

    Science.gov (United States)

    Jensen, Elisa P; Poulsen, Steen S; Kissow, Hannelouise; Holstein-Rathlou, Niels-Henrik; Deacon, Carolyn F; Jensen, Boye L; Holst, Jens J; Sorensen, Charlotte M

    2015-04-15

    Glucagon-like peptide (GLP)-1 has a range of extrapancreatic effects, including renal effects. The mechanisms are poorly understood, but GLP-1 receptors have been identified in the kidney. However, the exact cellular localization of the renal receptors is poorly described. The aim of the present study was to localize renal GLP-1 receptors and describe GLP-1-mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and that activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using (125)I-labeled GLP-1, (125)I-labeled exendin-4 (GLP-1 analog), and (125)I-labeled exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1-mediated effects on blood pressure, renal blood flow (RBF), heart rate, renin secretion, urinary flow rate, and Na(+) and K(+) excretion were investigated in anesthetized rats. Effects of GLP-1 on afferent arterioles were investigated in isolated mouse kidneys. Specific binding of (125)I-labeled GLP-1, (125)I-labeled exendin-4, and (125)I-labeled exendin 9-39 was observed in the renal vasculature, including afferent arterioles. Infusion of GLP-1 increased blood pressure, RBF, and urinary flow rate significantly in rats. Heart rate and plasma renin concentrations were unchanged. Exendin 9-39 inhibited the increase in RBF. In isolated murine kidneys, GLP-1 and exendin-4 significantly reduced the autoregulatory response of afferent arterioles in response to stepwise increases in pressure. We conclude that GLP-1 receptors are located in the renal vasculature, including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases RBF in normotensive rats. Copyright © 2015 the American Physiological Society.

  20. [Visual Texture Agnosia in Humans].

    Science.gov (United States)

    Suzuki, Kyoko

    2015-06-01

    Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.

  1. Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine

    Directory of Open Access Journals (Sweden)

    Holzer Peter

    2009-06-01

    Full Text Available Abstract Background Lafutidine is a histamine H2 receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge. Methods Adult rats were treated with vehicle, lafutidine (10 – 30 mg/kg or cimetidine (10 mg/kg, and 30 min later their stomachs were exposed to exogenous HCl (0.25 M. During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry. Results Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H2 receptor antagonist cimetidine had similar but weaker effects. Conclusion These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H2 receptor antagonists can protect

  2. Robust selectivity to two-object images in human visual cortex

    Science.gov (United States)

    Agam, Yigal; Liu, Hesheng; Papanastassiou, Alexander; Buia, Calin; Golby, Alexandra J.; Madsen, Joseph R.; Kreiman, Gabriel

    2010-01-01

    SUMMARY We can recognize objects in a fraction of a second in spite of the presence of other objects [1–3]. The responses in macaque areas V4 and inferior temporal cortex [4–15] to a neuron’s preferred stimuli are typically suppressed by the addition of a second object within the receptive field (see however [16, 17]). How can this suppression be reconciled with rapid visual recognition in complex scenes? One option is that certain “special categories” are unaffected by other objects [18] but this leaves the problem unsolved for other categories. Another possibility is that serial attentional shifts help ameliorate the problem of distractor objects [19–21]. Yet, psychophysical studies [1–3], scalp recordings [1] and neurophysiological recordings [14, 16, 22–24], suggest that the initial sweep of visual processing contains a significant amount of information. We recorded intracranial field potentials in human visual cortex during presentation of flashes of two-object images. Visual selectivity from temporal cortex during the initial ~200 ms was largely robust to the presence of other objects. We could train linear decoders on the responses to isolated objects and decode information in two-object images. These observations are compatible with parallel, hierarchical and feed-forward theories of rapid visual recognition [25] and may provide a neural substrate to begin to unravel rapid recognition in natural scenes. PMID:20417105

  3. Expression of phosphorylated cAMP response element binding protein (p-CREB) in bladder afferent pathways in VIP-/- mice with cyclophosphamide (CYP)-induced cystitis

    DEFF Research Database (Denmark)

    Jensen, Dorthe G; Studeny, Simon; May, Victor

    2008-01-01

    The expression of phosphorylated cAMP response element binding protein (p-CREB) in dorsal root ganglia (DRG) with and without cyclophosphamide (CYP)-induced cystitis (150 mg/kg, i.p; 48 h) was determined in VIP(-/-) and wild-type (WT) mice. p-CREB immunoreactivity (IR) was determined in bladder...... (Fast blue) afferent cells. Nerve growth factor (NGF) bladder content was determined by enzyme-linked immunosorbent assays. Basal expression of p-CREB-IR in DRG of VIP(-/-) mice was (p DRG compared to WT mice. CYP treatment in WT mice increased (p ...-CREB-IR in L1, L2, L5-S1 DRG. CYP treatment in VIP(-/-) mice (p DRG compared to WT with CYP. In WT mice, bladder afferent cells (20-38%) in DRG expressed p-CREB-IR under basal conditions. With CYP, p-CREB-IR increased in bladder afferent cells (60...

  4. Human fMRI reveals that delayed action re-recruits visual perception.

    Science.gov (United States)

    Singhal, Anthony; Monaco, Simona; Kaufman, Liam D; Culham, Jody C

    2013-01-01

    Behavioral and neuropsychological research suggests that delayed actions rely on different neural substrates than immediate actions; however, the specific brain areas implicated in the two types of actions remain unknown. We used functional magnetic resonance imaging (fMRI) to measure human brain activation during delayed grasping and reaching. Specifically, we examined activation during visual stimulation and action execution separated by a 18-s delay interval in which subjects had to remember an intended action toward the remembered object. The long delay interval enabled us to unambiguously distinguish visual, memory-related, and action responses. Most strikingly, we observed reactivation of the lateral occipital complex (LOC), a ventral-stream area implicated in visual object recognition, and early visual cortex (EVC) at the time of action. Importantly this reactivation was observed even though participants remained in complete darkness with no visual stimulation at the time of the action. Moreover, within EVC, higher activation was observed for grasping than reaching during both vision and action execution. Areas in the dorsal visual stream were activated during action execution as expected and, for some, also during vision. Several areas, including the anterior intraparietal sulcus (aIPS), dorsal premotor cortex (PMd), primary motor cortex (M1) and the supplementary motor area (SMA), showed sustained activation during the delay phase. We propose that during delayed actions, dorsal-stream areas plan and maintain coarse action goals; however, at the time of execution, motor programming requires re-recruitment of detailed visual information about the object through reactivation of (1) ventral-stream areas involved in object perception and (2) early visual areas that contain richly detailed visual representations, particularly for grasping.

  5. Human fMRI reveals that delayed action re-recruits visual perception.

    Directory of Open Access Journals (Sweden)

    Anthony Singhal

    Full Text Available Behavioral and neuropsychological research suggests that delayed actions rely on different neural substrates than immediate actions; however, the specific brain areas implicated in the two types of actions remain unknown. We used functional magnetic resonance imaging (fMRI to measure human brain activation during delayed grasping and reaching. Specifically, we examined activation during visual stimulation and action execution separated by a 18-s delay interval in which subjects had to remember an intended action toward the remembered object. The long delay interval enabled us to unambiguously distinguish visual, memory-related, and action responses. Most strikingly, we observed reactivation of the lateral occipital complex (LOC, a ventral-stream area implicated in visual object recognition, and early visual cortex (EVC at the time of action. Importantly this reactivation was observed even though participants remained in complete darkness with no visual stimulation at the time of the action. Moreover, within EVC, higher activation was observed for grasping than reaching during both vision and action execution. Areas in the dorsal visual stream were activated during action execution as expected and, for some, also during vision. Several areas, including the anterior intraparietal sulcus (aIPS, dorsal premotor cortex (PMd, primary motor cortex (M1 and the supplementary motor area (SMA, showed sustained activation during the delay phase. We propose that during delayed actions, dorsal-stream areas plan and maintain coarse action goals; however, at the time of execution, motor programming requires re-recruitment of detailed visual information about the object through reactivation of (1 ventral-stream areas involved in object perception and (2 early visual areas that contain richly detailed visual representations, particularly for grasping.

  6. Regions of mid-level human visual cortex sensitive to the global coherence of local image patches.

    Science.gov (United States)

    Mannion, Damien J; Kersten, Daniel J; Olman, Cheryl A

    2014-08-01

    The global structural arrangement and spatial layout of the visual environment must be derived from the integration of local signals represented in the lower tiers of the visual system. This interaction between the spatially local and global properties of visual stimulation underlies many of our visual capacities, and how this is achieved in the brain is a central question for visual and cognitive neuroscience. Here, we examine the sensitivity of regions of the posterior human brain to the global coordination of spatially displaced naturalistic image patches. We presented observers with image patches in two circular apertures to the left and right of central fixation, with the patches drawn from either the same (coherent condition) or different (noncoherent condition) extended image. Using fMRI at 7T (n = 5), we find that global coherence affected signal amplitude in regions of dorsal mid-level cortex. Furthermore, we find that extensive regions of mid-level visual cortex contained information in their local activity pattern that could discriminate coherent and noncoherent stimuli. These findings indicate that the global coordination of local naturalistic image information has important consequences for the processing in human mid-level visual cortex.

  7. [Retinotopic mapping of the human visual cortex with functional magnetic resonance imaging - basic principles, current developments and ophthalmological perspectives].

    Science.gov (United States)

    Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B

    2011-07-01

    Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    Science.gov (United States)

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Encoding model of temporal processing in human visual cortex.

    Science.gov (United States)

    Stigliani, Anthony; Jeska, Brianna; Grill-Spector, Kalanit

    2017-12-19

    How is temporal information processed in human visual cortex? Visual input is relayed to V1 through segregated transient and sustained channels in the retina and lateral geniculate nucleus (LGN). However, there is intense debate as to how sustained and transient temporal channels contribute to visual processing beyond V1. The prevailing view associates transient processing predominately with motion-sensitive regions and sustained processing with ventral stream regions, while the opposing view suggests that both temporal channels contribute to neural processing beyond V1. Using fMRI, we measured cortical responses to time-varying stimuli and then implemented a two temporal channel-encoding model to evaluate the contributions of each channel. Different from the general linear model of fMRI that predicts responses directly from the stimulus, the encoding approach first models neural responses to the stimulus from which fMRI responses are derived. This encoding approach not only predicts cortical responses to time-varying stimuli from milliseconds to seconds but also, reveals differential contributions of temporal channels across visual cortex. Consistent with the prevailing view, motion-sensitive regions and adjacent lateral occipitotemporal regions are dominated by transient responses. However, ventral occipitotemporal regions are driven by both sustained and transient channels, with transient responses exceeding the sustained. These findings propose a rethinking of temporal processing in the ventral stream and suggest that transient processing may contribute to rapid extraction of the content of the visual input. Importantly, our encoding approach has vast implications, because it can be applied with fMRI to decipher neural computations in millisecond resolution in any part of the brain. Copyright © 2017 the Author(s). Published by PNAS.

  10. Multiple spatial frequency channels in human visual perceptual memory.

    Science.gov (United States)

    Nemes, V A; Whitaker, D; Heron, J; McKeefry, D J

    2011-12-08

    Current models of short-term visual perceptual memory invoke mechanisms that are closely allied to low-level perceptual discrimination mechanisms. The purpose of this study was to investigate the extent to which human visual perceptual memory for spatial frequency is based upon multiple, spatially tuned channels similar to those found in the earliest stages of visual processing. To this end we measured how performance on a delayed spatial frequency discrimination paradigm was affected by the introduction of interfering or 'memory masking' stimuli of variable spatial frequency during the delay period. Masking stimuli were shown to induce shifts in the points of subjective equality (PSE) when their spatial frequencies were within a bandwidth of 1.2 octaves of the reference spatial frequency. When mask spatial frequencies differed by more than this value, there was no change in the PSE from baseline levels. This selective pattern of masking was observed for different spatial frequencies and demonstrates the existence of multiple, spatially tuned mechanisms in visual perceptual memory. Memory masking effects were also found to occur for horizontal separations of up to 6 deg between the masking and test stimuli and lacked any orientation selectivity. These findings add further support to the view that low-level sensory processing mechanisms form the basis for the retention of spatial frequency information in perceptual memory. However, the broad range of transfer of memory masking effects across spatial location and other dimensions indicates more long range, long duration interactions between spatial frequency channels that are likely to rely contributions from neural processes located in higher visual areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Attraction of position preference by spatial attention throughout human visual cortex.

    Science.gov (United States)

    Klein, Barrie P; Harvey, Ben M; Dumoulin, Serge O

    2014-10-01

    Voluntary spatial attention concentrates neural resources at the attended location. Here, we examined the effects of spatial attention on spatial position selectivity in humans. We measured population receptive fields (pRFs) using high-field functional MRI (fMRI) (7T) while subjects performed an attention-demanding task at different locations. We show that spatial attention attracts pRF preferred positions across the entire visual field, not just at the attended location. This global change in pRF preferred positions systematically increases up the visual hierarchy. We model these pRF preferred position changes as an interaction between two components: an attention field and a pRF without the influence of attention. This computational model suggests that increasing effects of attention up the hierarchy result primarily from differences in pRF size and that the attention field is similar across the visual hierarchy. A similar attention field suggests that spatial attention transforms different neural response selectivities throughout the visual hierarchy in a similar manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. HPIminer: A text mining system for building and visualizing human protein interaction networks and pathways.

    Science.gov (United States)

    Subramani, Suresh; Kalpana, Raja; Monickaraj, Pankaj Moses; Natarajan, Jeyakumar

    2015-04-01

    The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Modification of visual function by early visual experience.

    Science.gov (United States)

    Blakemore, C

    1976-07-01

    Physiological experiments, involving recording from the visual cortex in young kittens and monkeys, have given new insight into human developmental disorders. In the visual cortex of normal cats and monkeys most neurones are selectively sensitive to the orientation of moving edges and they receive very similar signals from both eyes. Even in very young kittens without visual experience, most neurones are binocularly driven and a small proportion of them are genuinely orientation selective. There is no passive maturation of the system in the absence of visual experience, but even very brief exposure to patterned images produces rapid emergence of the adult organization. These results are compared to observations on humans who have "recovered" from early blindness. Covering one eye in a kitten or a monkey, during a sensitive period early in life, produces a virtually complete loss of input from that eye in the cortex. These results can be correlated with the production of "stimulus deprivation amblyopia" in infants who have had one eye patched. Induction of a strabismus causes a loss of binocularity in the visual cortex, and in humans it leads to a loss of stereoscopic vision and binocular fusion. Exposing kittens to lines of one orientation modifies the preferred orientations of cortical cells and there is an analogous "meridional amblyopia" in astigmatic humans. The existence of a sensitive period in human vision is discussed, as well as the possibility of designing remedial and preventive treatments for human developmental disorders.

  14. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons.

    Science.gov (United States)

    Xu, Bo; Zheng, Hong; Liu, Xuefei; Patel, Kaushik P

    2015-05-01

    Renal denervation for the treatment of hypertension has proven to be successful; however, the underlying mechanism/s are not entirely clear. To determine if preautonomic neurons in the paraventricular nucleus (PVN) respond to afferent renal nerve (ARN) stimulation, extracellular single-unit recording was used to investigate the contribution of the rostral ventrolateral medulla (RVLM)-projecting PVN (PVN-RVLM) neurons to the response elicited during stimulation of ARN. In 109 spontaneously active neurons recorded in the PVN of anesthetized rats, 25 units were antidromically activated from the RVLM. Among these PVN-RVLM neurons, 84% (21/25) were activated by ARN stimulation. The baseline discharge rate was significantly higher in these neurons than those PVN-RVLM neurons not activated by ARN stimulation (16%, 4/25). The responsiveness of these neurons to baroreflex activation induced by phenylephrine and activation of cardiac sympathetic afferent reflex (CSAR) was also examined. Almost all of the PVN neurons that responded to ARN stimulation were sensitive to baroreflex (95%) and CSAR (100%). The discharge characteristics for nonevoked neurons (not activated by RVLM antidromic stimulation) showed that 23% of these PVN neurons responded to ARN stimulation. All the PVN neurons that responded to ARN stimulation were activated by N-methyl-D-aspartate, and these responses were attenuated by the glutamate receptor blocker AP5. These experiments demonstrated that sensory information originating in the kidney is integrated at the level of preautonomic neurons within the PVN, providing a novel mechanistic insight for use of renal denervation in the modulation of sympathetic outflow in disease states such as hypertension and heart failure. Copyright © 2015 the American Physiological Society.

  15. Blindness alters the microstructure of the ventral but not the dorsal visual stream.

    Science.gov (United States)

    Reislev, Nina L; Kupers, Ron; Siebner, Hartwig R; Ptito, Maurice; Dyrby, Tim B

    2016-07-01

    Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.

  16. How plastic are human spinal cord motor circuitries?

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Lundbye-Jensen, Jesper; Perez, Monica A

    2017-01-01

    Human and animal studies have documented that neural circuitries in the spinal cord show adaptive changes caused by altered supraspinal and/or afferent input to the spinal circuitry in relation to learning, immobilization, injury and neurorehabilitation. Reversible adaptations following, e.g. the...

  17. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  18. Using a model of human visual perception to improve deep learning.

    Science.gov (United States)

    Stettler, Michael; Francis, Gregory

    2018-04-17

    Deep learning algorithms achieve human-level (or better) performance on many tasks, but there still remain situations where humans learn better or faster. With regard to classification of images, we argue that some of those situations are because the human visual system represents information in a format that promotes good training and classification. To demonstrate this idea, we show how occluding objects can impair performance of a deep learning system that is trained to classify digits in the MNIST database. We describe a human inspired segmentation and interpolation algorithm that attempts to reconstruct occluded parts of an image, and we show that using this reconstruction algorithm to pre-process occluded images promotes training and classification performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    OpenAIRE

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitu...

  20. Graphical Visualization of Human Exploration Capabilities

    Science.gov (United States)

    Rodgers, Erica M.; Williams-Byrd, Julie; Arney, Dale C.; Simon, Matthew A.; Williams, Phillip A.; Barsoum, Christopher; Cowan, Tyler; Larman, Kevin T.; Hay, Jason; Burg, Alex

    2016-01-01

    NASA's pioneering space strategy will require advanced capabilities to expand the boundaries of human exploration on the Journey to Mars (J2M). The Evolvable Mars Campaign (EMC) architecture serves as a framework to identify critical capabilities that need to be developed and tested in order to enable a range of human exploration destinations and missions. Agency-wide System Maturation Teams (SMT) are responsible for the maturation of these critical exploration capabilities and help formulate, guide and resolve performance gaps associated with the EMC-identified capabilities. Systems Capability Organization Reporting Engine boards (SCOREboards) were developed to integrate the SMT data sets into cohesive human exploration capability stories that can be used to promote dialog and communicate NASA's exploration investments. Each SCOREboard provides a graphical visualization of SMT capability development needs that enable exploration missions, and presents a comprehensive overview of data that outlines a roadmap of system maturation needs critical for the J2M. SCOREboards are generated by a computer program that extracts data from a main repository, sorts the data based on a tiered data reduction structure, and then plots the data according to specified user inputs. The ability to sort and plot varying data categories provides the flexibility to present specific SCOREboard capability roadmaps based on customer requests. This paper presents the development of the SCOREboard computer program and shows multiple complementary, yet different datasets through a unified format designed to facilitate comparison between datasets. Example SCOREboard capability roadmaps are presented followed by a discussion of how the roadmaps are used to: 1) communicate capability developments and readiness of systems for future missions, and 2) influence the definition of NASA's human exploration investment portfolio through capability-driven processes. The paper concludes with a description

  1. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.

    Science.gov (United States)

    Bosking, William H; Sun, Ping; Ozker, Muge; Pei, Xiaomei; Foster, Brett L; Beauchamp, Michael S; Yoshor, Daniel

    2017-07-26

    Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by

  2. Human locomotion through a multiple obstacle environment : Strategy changes as a result of visual field limitation

    NARCIS (Netherlands)

    Jansen, S.E.M.; Toet, A.; Werkhoven, P.J.

    2011-01-01

    This study investigated how human locomotion through an obstacle environment is influenced by visual field limitation. Participants were asked to walk at a comfortable pace to a target location while avoiding multiple vertical objects. During this task, they wore goggles restricting their visual

  3. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    Science.gov (United States)

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  4. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model

    OpenAIRE

    Zoulinakis, Georgios; Ferrer-Blasco, Teresa

    2017-01-01

    Purpose. To design an intraocular telescopic system (ITS) for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses’ placement in the eye model and their powers. Ray tracing in bot...

  5. A New Conceptualization of Human Visual Sensory-Memory.

    Science.gov (United States)

    Öğmen, Haluk; Herzog, Michael H

    2016-01-01

    Memory is an essential component of cognition and disorders of memory have significant individual and societal costs. The Atkinson-Shiffrin "modal model" forms the foundation of our understanding of human memory. It consists of three stores: Sensory Memory (SM), whose visual component is called iconic memory, Short-Term Memory (STM; also called working memory, WM), and Long-Term Memory (LTM). Since its inception, shortcomings of all three components of the modal model have been identified. While the theories of STM and LTM underwent significant modifications to address these shortcomings, models of the iconic memory remained largely unchanged: A high capacity but rapidly decaying store whose contents are encoded in retinotopic coordinates, i.e., according to how the stimulus is projected on the retina. The fundamental shortcoming of iconic memory models is that, because contents are encoded in retinotopic coordinates, the iconic memory cannot hold any useful information under normal viewing conditions when objects or the subject are in motion. Hence, half-century after its formulation, it remains an unresolved problem whether and how the first stage of the modal model serves any useful function and how subsequent stages of the modal model receive inputs from the environment. Here, we propose a new conceptualization of human visual sensory memory by introducing an additional component whose reference-frame consists of motion-grouping based coordinates rather than retinotopic coordinates. We review data supporting this new model and discuss how it offers solutions to the paradoxes of the traditional model of sensory memory.

  6. A New Conceptualization of Human Visual Sensory-Memory

    Science.gov (United States)

    Öğmen, Haluk; Herzog, Michael H.

    2016-01-01

    Memory is an essential component of cognition and disorders of memory have significant individual and societal costs. The Atkinson–Shiffrin “modal model” forms the foundation of our understanding of human memory. It consists of three stores: Sensory Memory (SM), whose visual component is called iconic memory, Short-Term Memory (STM; also called working memory, WM), and Long-Term Memory (LTM). Since its inception, shortcomings of all three components of the modal model have been identified. While the theories of STM and LTM underwent significant modifications to address these shortcomings, models of the iconic memory remained largely unchanged: A high capacity but rapidly decaying store whose contents are encoded in retinotopic coordinates, i.e., according to how the stimulus is projected on the retina. The fundamental shortcoming of iconic memory models is that, because contents are encoded in retinotopic coordinates, the iconic memory cannot hold any useful information under normal viewing conditions when objects or the subject are in motion. Hence, half-century after its formulation, it remains an unresolved problem whether and how the first stage of the modal model serves any useful function and how subsequent stages of the modal model receive inputs from the environment. Here, we propose a new conceptualization of human visual sensory memory by introducing an additional component whose reference-frame consists of motion-grouping based coordinates rather than retinotopic coordinates. We review data supporting this new model and discuss how it offers solutions to the paradoxes of the traditional model of sensory memory. PMID:27375519

  7. Decoding of faces and face components in face-sensitive human visual cortex

    Directory of Open Access Journals (Sweden)

    David F Nichols

    2010-07-01

    Full Text Available A great challenge to the field of visual neuroscience is to understand how faces are encoded and represented within the human brain. Here we show evidence from functional magnetic resonance imaging (fMRI for spatially distributed processing of the whole face and its components in face-sensitive human visual cortex. We used multi-class linear pattern classifiers constructed with a leave-one-scan-out verification procedure to discriminate brain activation patterns elicited by whole faces, the internal features alone, and the external head outline alone. Furthermore, our results suggest that whole faces are represented disproportionately in the fusiform cortex (FFA whereas the building blocks of faces are represented disproportionately in occipitotemporal cortex (OFA. Faces and face components may therefore be organized with functional clustering within both the FFA and OFA, but with specialization for face components in the OFA and the whole face in the FFA.

  8. Influence of visual feedback on human task performance in ITER remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Schropp, Gwendolijn Y.R., E-mail: g.schropp@heemskerk-innovative.nl [Utrecht University, Utrecht (Netherlands); Heemskerk Innovative Technology, Noordwijk (Netherlands); Heemskerk, Cock J.M. [Heemskerk Innovative Technology, Noordwijk (Netherlands); Kappers, Astrid M.L.; Tiest, Wouter M. Bergmann [Helmholtz Institute-Utrecht University, Utrecht (Netherlands); Elzendoorn, Ben S.Q. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM/FOM, Partner in the Trilateral Euregio Clusterand ITER-NL, PO box 1207, 3430 BE Nieuwegein (Netherlands); Bult, David [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM/FOM, Partner in the Trilateral Euregio Clusterand ITER-NL, PO box 1207, 3430 BE Nieuwegein (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The performance of human operators in an ITER-like test facility for remote handling. Black-Right-Pointing-Pointer Different sources of visual feedback influence how fast one can complete a maintenance task. Black-Right-Pointing-Pointer Insights learned could be used in design of operator work environment or training procedures. - Abstract: In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures. Additional verification and validation is based on simulation and hardware tests in 1:1 scale mockups. The Master Slave manipulator system (MS2) Benchmark Product was designed to implement a reference set of maintenance tasks representative for ITER remote handling. Experiments were performed with two versions of the Benchmark Product. In both experiments, the quality of visual feedback varied by exchanging direct view with indirect view (using video cameras) in order to measure and analyze its impact on human task performance. The first experiment showed that both experienced and novice RH operators perform a simple task significantly better with direct visual feedback than with camera feedback. A more complex task showed a large variation in results and could not be completed by many novice operators. Experienced operators commented on both the mechanical design and visual feedback. In a second experiment, a more elaborate task was tested on an improved Benchmark product. Again, the task was performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indicated that they regarded the lack of 3D perception as the primary factor hindering their performance.

  9. Influence of visual feedback on human task performance in ITER remote handling

    International Nuclear Information System (INIS)

    Schropp, Gwendolijn Y.R.; Heemskerk, Cock J.M.; Kappers, Astrid M.L.; Tiest, Wouter M. Bergmann; Elzendoorn, Ben S.Q.; Bult, David

    2012-01-01

    Highlights: ► The performance of human operators in an ITER-like test facility for remote handling. ► Different sources of visual feedback influence how fast one can complete a maintenance task. ► Insights learned could be used in design of operator work environment or training procedures. - Abstract: In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures. Additional verification and validation is based on simulation and hardware tests in 1:1 scale mockups. The Master Slave manipulator system (MS2) Benchmark Product was designed to implement a reference set of maintenance tasks representative for ITER remote handling. Experiments were performed with two versions of the Benchmark Product. In both experiments, the quality of visual feedback varied by exchanging direct view with indirect view (using video cameras) in order to measure and analyze its impact on human task performance. The first experiment showed that both experienced and novice RH operators perform a simple task significantly better with direct visual feedback than with camera feedback. A more complex task showed a large variation in results and could not be completed by many novice operators. Experienced operators commented on both the mechanical design and visual feedback. In a second experiment, a more elaborate task was tested on an improved Benchmark product. Again, the task was performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indicated that they regarded the lack of 3D perception as the primary factor hindering their performance.

  10. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    NARCIS (Netherlands)

    Self, Matthew W.; Peters, Judith C.; Possel, Jessy K.; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive

  11. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    NARCIS (Netherlands)

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive

  12. Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear.

    Science.gov (United States)

    Mendus, Diana; Sundaresan, Srividya; Grillet, Nicolas; Wangsawihardja, Felix; Leu, Rose; Müller, Ulrich; Jones, Sherri M; Mustapha, Mirna

    2014-04-01

    Thrombospondins (TSPs) constitute a family of secreted extracellular matrix proteins that have been shown to be involved in the formation of synapses in the central nervous system. In this study, we show that TSP1 and TSP2 are expressed in the cochlea, and offer the first description of their putative roles in afferent synapse development and function in the inner ear. We examined mice with deletions of TSP1, TSP2 and both (TSP1/TSP2) for inner ear development and function. Immunostaining for synaptic markers indicated a significant decrease in the number of formed afferent synapses in the cochleae of TSP2 and TSP1/TSP2 knockout (KO) mice at postnatal day (P)29. In functional studies, TSP2 and TSP1/TSP2 KO mice showed elevated auditory brainstem response (ABR) thresholds as compared with wild-type littermates, starting at P15, with the most severe phenotype being seen for TSP1/TSP2 KO mice. TSP1/TSP2 KO mice also showed reduced wave I amplitudes of ABRs and vestibular evoked potentials, suggesting synaptic dysfunction in both the auditory and vestibular systems. Whereas ABR thresholds in TSP1 KO mice were relatively unaffected at early ages, TSP1/TSP2 KO mice showed the most severe phenotype among all of the genotypes tested, suggesting functional redundancy between the two genes. On the basis of the above results, we propose that TSPs play an important role in afferent synapse development and function of the inner ear. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. NMClab, a model to assess the contributions of muscle visco-elasticity and afferent feedback to joint dynamics

    NARCIS (Netherlands)

    Schouten, Alfred Christiaan; Mugge, Winfred; van der Helm, F.C.T.

    2008-01-01

    The dynamic behavior of a neuromusculoskeletal system results from the complex mechanical interaction between muscle visco-elasticity resulting from (co-)contraction and afferent feedback from muscle spindles and Golgi tendon organs. As a result of the multiple interactions the individual effect of

  14. The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Voigt, Michael; Stevenson, Andrew James Thomas

    2017-01-01

    : 8-35 mAmp) or a passive ankle movement (amplitude and velocity matched to a normal gait cycle) was applied such that the first afferent inflow would coincide with the PN of the MRCP. The change in the output of the primary motor cortex (M1) was quantified by applying single transcranial magnetic...... compared these two interventions (BCIFES and BCIpassive) where the afferent input was timed to arrive at the motor cortex during the PN of the MRCP. Twelve healthy participants attended two experimental sessions. They were asked to perform 30 dorsiflexion movements timed to a cue while continuous...... stimuli to the area of M1 controlling the tibialis anterior (TA) muscle and measuring the motor evoked potential (MEP). Spinal changes were assessed pre and post by eliciting the TA stretch reflex. Both BCIFES and BCIpassive led to significant increases in the excitability of the cortical projections...

  15. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art.

    Science.gov (United States)

    Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko

    2010-03-10

    The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.

  16. Fine structural survey of the intermediate subnucleus of the nucleus tractus solitarii and its glossopharyngeal afferent terminals.

    Science.gov (United States)

    Hayakawa, Tetsu; Maeda, Seishi; Tanaka, Koichi; Seki, Makoto

    2005-10-01

    The intermediate subnucleus of the nucleus tractus solitarii (imNTS) receives somatosensory inputs from the soft palate and pharynx, and projects onto the nucleus ambiguus, thus serving as a relay nucleus for swallowing. The ultrastructure and synaptology of the rat imNTS, and its glossopharyngeal afferent terminals, have been examined with cholera toxin-conjugated horseradish peroxidase (CT-HRP) as an anterograde tracer. The imNTS contained oval or ellipsoid-shaped, small to medium-sized neurons (18.2 x 11.4 microm) with little cytoplasm, few cell organelles and an irregularly shaped nucleus. The cytoplasm often contained one or two nucleolus-like stigmoid bodies. The average number of axosomatic terminals was 1.8 per profile. About 83% of them contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), while about 17% contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). The neuropil contained small or large axodendritic terminals, and about 92% of them were Gray's type I. When CT-HRP was injected into the nodose ganglion, many labeled terminals were found in the imNTS. All anterogradely labeled terminals contacted dendrites but not somata. The labeled terminals were usually large (2.69+/-0.09 mum) and exclusively of Gray's type I. They often contacted more than two dendrites, were covered with glial processes, and formed synaptic glomeruli. A small unlabeled terminal occasionally made an asymmetric synaptic contact with a large labeled terminal. The large glossopharyngeal afferent terminals and the neurons containing stigmoid bodies characterized the imNTS neurons that received pharyngeal afferents.

  17. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles

    Science.gov (United States)

    Laine, Christopher M.; Valero-Cuevas, Francisco J.

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,‘common drive’), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary ‘isometric’ force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease. PMID:29309405

  18. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles.

    Science.gov (United States)

    Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.

  19. What is adapted in face adaptation? The neural representations of expression in the human visual system.

    Science.gov (United States)

    Fox, Christopher J; Barton, Jason J S

    2007-01-05

    The neural representation of facial expression within the human visual system is not well defined. Using an adaptation paradigm, we examined aftereffects on expression perception produced by various stimuli. Adapting to a face, which was used to create morphs between two expressions, substantially biased expression perception within the morphed faces away from the adapting expression. This adaptation was not based on low-level image properties, as a different image of the same person displaying that expression produced equally robust aftereffects. Smaller but significant aftereffects were generated by images of different individuals, irrespective of gender. Non-face visual, auditory, or verbal representations of emotion did not generate significant aftereffects. These results suggest that adaptation affects at least two neural representations of expression: one specific to the individual (not the image), and one that represents expression across different facial identities. The identity-independent aftereffect suggests the existence of a 'visual semantic' for facial expression in the human visual system.

  20. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Hao, Man-Zhao; Xu, Shao-Qin; Hu, Zi-Xiang; Xu, Fu-Liang; Niu, Chuan-Xin M; Xiao, Qin; Lan, Ning

    2017-07-14

    Recent study suggests that tremor signals are transmitted by way of multi-synaptic corticospinal pathway. Neurophysiological studies have also demonstrated that cutaneous afferents exert potent inhibition to descending motor commands by way of spinal interneurons. We hypothesize in this study that cutaneous afferents could also affect the transmission of tremor signals, thus, inhibit tremor in patients with PD. We tested this hypothesis by activating cutaneous afferents in the dorsal hand skin innervated by superficial radial nerve using transcutaneous electrical nerve stimulation (TENS). Eight patients with PD having tremor dominant symptom were recruited to participate in this study using a consistent experimental protocol for tremor inhibition. Resting tremor and electromyogram (EMG) of muscles in the upper extremity of these subjects with PD were recorded, while surface stimulation was applied to the dorsal skin of the hand. Fifteen seconds of data were recorded for 5 s prior to, during and post stimulation. Power spectrum densities (PSDs) of tremor and EMG signals were computed for each data segment. The peak values of PSDs in three data segments were compared to detect evidence of tremor inhibition. At stimulation intensity from 1.5 to 1.75 times of radiating sensation threshold, apparent suppressions of tremor at wrist, forearm and upper arm and in the EMGs were observed immediately at the onset of stimulation. After termination of stimulation, tremor and rhythmic EMG bursts reemerged gradually. Statistical analysis of peak spectral amplitudes showed a significant difference in joint tremors and EMGs during and prior to stimulation in all 8 subjects with PD. The average percentage of suppression was 61.56% in tremor across all joints of all subjects, and 47.97% in EMG of all muscles. The suppression appeared to occur mainly in distal joints and muscles. There was a slight, but inconsistent effect on tremor frequency in the 8 patients with PD tested. Our

  1. Plasticity in the Human Visual Cortex: An Ophthalmology-Based Perspective

    OpenAIRE

    Andreia Martins Rosa; Maria Fátima Silva; Sónia Ferreira; Joaquim Murta; Miguel Castelo-Branco

    2013-01-01

    Neuroplasticity refers to the ability of the brain to reorganize the function and structure of its connections in response to changes in the environment. Adult human visual cortex shows several manifestations of plasticity, such as perceptual learning and adaptation, working under the top-down influence of attention. Plasticity results from the interplay of several mechanisms, including the GABAergic system, epigenetic factors, mitochondrial activity, and structural remodeling of synaptic con...

  2. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    Science.gov (United States)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  3. A human visual model-based approach of the visual attention and performance evaluation

    Science.gov (United States)

    Le Meur, Olivier; Barba, Dominique; Le Callet, Patrick; Thoreau, Dominique

    2005-03-01

    In this paper, a coherent computational model of visual selective attention for color pictures is described and its performances are precisely evaluated. The model based on some important behaviours of the human visual system is composed of four parts: visibility, perception, perceptual grouping and saliency map construction. This paper focuses mainly on its performances assessment by achieving extended subjective and objective comparisons with real fixation points captured by an eye-tracking system used by the observers in a task-free viewing mode. From the knowledge of the ground truth, qualitatively and quantitatively comparisons have been made in terms of the measurement of the linear correlation coefficient (CC) and of the Kulback Liebler divergence (KL). On a set of 10 natural color images, the results show that the linear correlation coefficient and the Kullback Leibler divergence are of about 0.71 and 0.46, respectively. CC and Kl measures with this model are respectively improved by about 4% and 7% compared to the best model proposed by L.Itti. Moreover, by comparing the ability of our model to predict eye movements produced by an average observer, we can conclude that our model succeeds quite well in predicting the spatial locations of the most important areas of the image content.

  4. Visual languages and applications

    CERN Document Server

    Zhang, Kang

    2010-01-01

    Visual languages have long been a pursuit of effective communication between human and machine. With rapid advances of the Internet and Web technology, human-human communication through the Web or electronic mobile devices is becoming more and more prevalent. Visual Languages and Applications is a comprehensive introduction to diagrammatical visual languages. This book discusses what visual programming languages are, and how such languages and their underlying foundations can be usefully applied to other fields in computer science. It also covers a broad range of contents from the underlying t

  5. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    Science.gov (United States)

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  6. The effect of human engagement depicted in contextual photographs on the visual attention patterns of adults with traumatic brain injury.

    Science.gov (United States)

    Thiessen, Amber; Brown, Jessica; Beukelman, David; Hux, Karen

    2017-09-01

    Photographs are a frequently employed tool for the rehabilitation of adults with traumatic brain injury (TBI). Speech-language pathologists (SLPs) working with these individuals must select photos that are easily identifiable and meaningful to their clients. In this investigation, we examined the visual attention response to camera- (i.e., depicted human figure looking toward camera) and task-engaged (i.e., depicted human figure looking at and touching an object) contextual photographs for a group of adults with TBI and a group of adults without neurological conditions. Eye-tracking technology served to accurately and objectively measure visual fixations. Although differences were hypothesized given the cognitive deficits associated with TBI, study results revealed little difference in the visual fixation patterns of adults with and without TBI. Specifically, both groups of participants tended to fixate rapidly on the depicted human figure and fixate more on objects in which a human figure was task-engaged than when a human figure was camera-engaged. These results indicate that strategic placement of human figures in a contextual photograph may modify the way in which individuals with TBI visually attend to and interpret photographs. In addition, task-engagement appears to have a guiding effect on visual attention that may be of benefit to SLPs hoping to select more effective contextual photographs for their clients with TBI. Finally, the limited differences in visual attention patterns between individuals with TBI and their age and gender matched peers without neurological impairments indicates that these two groups find similar photograph regions to be worthy of visual fixation. Readers will gain knowledge regarding the photograph selection process for individuals with TBI. In addition, readers will be able to identify camera- and task-engaged photographs and to explain why task-engagement may be a beneficial component of contextual photographs. Copyright © 2017

  7. Persistent visual impairment in multiple sclerosis: prevalence, mechanisms and resulting disability.

    Science.gov (United States)

    Jasse, Laurence; Vukusic, Sandra; Durand-Dubief, Françoise; Vartin, Cristina; Piras, Carolina; Bernard, Martine; Pélisson, Denis; Confavreux, Christian; Vighetto, Alain; Tilikete, Caroline

    2013-10-01

    The objective of this article is to evaluate in multiple sclerosis (MS) patients the prevalence of persistent complaints of visual disturbances and the mechanisms and resulting functional disability of persistent visual complaints (PVCs). Firstly, the prevalence of PVCs was calculated in 303 MS patients. MS-related data of patients with or without PVCs were compared. Secondly, 70 patients with PVCs performed an extensive neuro-ophthalmologic assessment and a vision-related quality of life questionnaire, the National Eye Institute Visual Functionary Questionnaire (NEI-VFQ-25). PVCs were reported in 105 MS patients (34.6%). Patients with PVCs had more frequently primary progressive MS (30.5% vs 13.6%) and more neuro-ophthalmologic relapses (1.97 vs 1.36) than patients without PVCs. In the mechanisms/disability study, an afferent visual and an ocular-motor pathways dysfunction were respectively diagnosed in 41 and 59 patients, mostly related to bilateral optic neuropathy and bilateral internuclear ophthalmoplegia. The NEI-VFQ 25 score was poor and significantly correlated with the number of impaired neuro-ophthalmologic tests. Our study emphasizes the high prevalence of PVC in MS patients. Regarding the nature of neuro-ophthalmologic deficit, our results suggest that persistent optic neuropathy, as part of the progressive evolution of the disease, is not rare. We also demonstrate that isolated ocular motor dysfunctions induce visual disability in daily life.

  8. Visual and proprioceptive interaction in patients with bilateral vestibular loss.

    Science.gov (United States)

    Cutfield, Nicholas J; Scott, Gregory; Waldman, Adam D; Sharp, David J; Bronstein, Adolfo M

    2014-01-01

    Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular

  9. Visual assessment of the radiation distribution in the ISS Lab module: visualization in the human body

    Science.gov (United States)

    Saganti, P. B.; Zapp, E. N.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    The US Lab module of the International Space Station (ISS) is a primary working area where the crewmembers are expected to spend majority of their time. Because of the directionality of radiation fields caused by the Earth shadow, trapped radiation pitch angle distribution, and inherent variations in the ISS shielding, a model is needed to account for these local variations in the radiation distribution. We present the calculated radiation dose (rem/yr) values for over 3,000 different points in the working area of the Lab module and estimated radiation dose values for over 25,000 different points in the human body for a given ambient radiation environment. These estimated radiation dose values are presented in a three dimensional animated interactive visualization format. Such interactive animated visualization of the radiation distribution can be generated in near real-time to track changes in the radiation environment during the orbit precession of the ISS.

  10. ResistoMap-online visualization of human gut microbiota antibiotic resistome.

    Science.gov (United States)

    Yarygin, Konstantin S; Kovarsky, Boris A; Bibikova, Tatyana S; Melnikov, Damir S; Tyakht, Alexander V; Alexeev, Dmitry G

    2017-07-15

    We created ResistoMap—a Web-based interactive visualization of the presence of genetic determinants conferring resistance to antibiotics, biocides and heavy metals in human gut microbiota. ResistoMap displays the data on more than 1500 published gut metagenomes of world populations including both healthy subjects and patients. Multiparameter display filters allow visual assessment of the associations between the meta-data and proportions of resistome. The geographic map navigation layer allows to state hypotheses regarding the global trends of antibiotic resistance and correlates the gut resistome variations with the national clinical guidelines on antibiotics application. ResistoMap was implemented using AngularJS, CoffeeScript, D3.js and TopoJSON. The tool is publicly available at http://resistomap.rcpcm.org. yarygin@phystech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  11. Modulation of human exteroceptive jaw reflexes during simulated mastication

    NARCIS (Netherlands)

    Lobbezoo, F.; Sowman, P.F.; Türker, K.S.

    2009-01-01

    Objective: To investigate changes in synaptic input from lower lip afferents to human jaw muscle motoneurons during simulated mastication. Methods: The lower lip of 14 subjects was stimulated electrically under static and dynamic conditions. In the static condition, subjects bit at mid-open position

  12. Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization: Human Factors in Streaming Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Aritra [Pacific Northwest National Laboratory, Richland Washington USA; Arendt, Dustin L. [Pacific Northwest National Laboratory, Richland Washington USA; Franklin, Lyndsey R. [Pacific Northwest National Laboratory, Richland Washington USA; Wong, Pak Chung [Pacific Northwest National Laboratory, Richland Washington USA; Cook, Kristin A. [Pacific Northwest National Laboratory, Richland Washington USA

    2017-09-01

    Real-world systems change continuously and across domains like traffic monitoring, cyber security, etc., such changes occur within short time scales. This leads to a streaming data problem and produces unique challenges for the human in the loop, as analysts have to ingest and make sense of dynamic patterns in real time. In this paper, our goal is to study how the state-of-the-art in streaming data visualization handles these challenges and reflect on the gaps and opportunities. To this end, we have three contributions: i) problem characterization for identifying domain-specific goals and challenges for handling streaming data, ii) a survey and analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space, and iii) reflections on the perceptually motivated design challenges and potential research directions for addressing them.

  13. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report.

    Science.gov (United States)

    De Cicco, Vincenzo

    2012-09-03

    A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be useful in patients with asymmetric hemodynamics of cerebro-afferent

  14. Visual Field Defects and Retinal Ganglion Cell Losses in Human Glaucoma Patients

    Science.gov (United States)

    Harwerth, Ronald S.; Quigley, Harry A.

    2007-01-01

    Objective The depth of visual field defects are correlated with retinal ganglion cell densities in experimental glaucoma. This study was to determine whether a similar structure-function relationship holds for human glaucoma. Methods The study was based on retinal ganglion cell densities and visual thresholds of patients with documented glaucoma (Kerrigan-Baumrind, et al.) The data were analyzed by a model that predicted ganglion cell densities from standard clinical perimetry, which were then compared to histologic cell counts. Results The model, without free parameters, produced accurate and relatively precise quantification of ganglion cell densities associated with visual field defects. For 437 sets of data, the unity correlation for predicted vs. measured cell densities had a coefficient of determination of 0.39. The mean absolute deviation of the predicted vs. measured values was 2.59 dB, the mean and SD of the distribution of residual errors of prediction was -0.26 ± 3.22 dB. Conclusions Visual field defects by standard clinical perimetry are proportional to neural losses caused by glaucoma. Clinical Relevance The evidence for quantitative structure-function relationships provides a scientific basis of interpreting glaucomatous neuropathy from visual thresholds and supports the application of standard perimetry to establish the stage of the disease. PMID:16769839

  15. Effects of Viewing Displays from Different Distances on Human Visual System

    Directory of Open Access Journals (Sweden)

    Mohamed Z. Ramadan

    2017-11-01

    Full Text Available The current stereoscopic 3D displays have several human-factor issues including visual-fatigue symptoms such as eyestrain, headache, fatigue, nausea, and malaise. The viewing time and viewing distance are factors that considerably affect the visual fatigue associated with 3D displays. Hence, this study analyzes the effects of display type (2D vs. 3D and viewing distance on visual fatigue during a 60-min viewing session based on electroencephalogram (EEG relative beta power, and alpha/beta power ratio. In this study, twenty male participants watched four videos. The EEGs were recorded at two occipital lobes (O1 and O2 of each participant in the pre-session (3 min, post-session (3 min, and during a 60-min viewing session. The results showed that the decrease in relative beta power of the EEG and the increase in the alpha/beta ratio from the start until the end of the viewing session were significantly higher when watching the 3D display. When the viewing distance was increased from 1.95 m to 3.90 m, the visual fatigue was decreased in the case of the 3D-display, whereas the fatigue was increased in the case of the 2D-display. Moreover, there was approximately the same level of visual fatigue when watching videos in 2D or 3D from a long viewing distance (3.90 m.

  16. Non-visual biological effects of light on human cognition, alertness, and mood

    Science.gov (United States)

    Li, Huaye; Wang, Huihui; Shen, Junfei; Sun, Peng; Xie, Ting; Zhang, Siman; Zheng, Zhenrong

    2017-09-01

    Light exerts non-visual effects on a wide range of biological functions and behavior apart from the visual effect. Light can regulate human circadian rhythms, like the secretion of melatonin and cortisol. Light also has influence on body's physiological parameters, such as blood pressure, heart rate and body temperature. However, human cognitive performance, alertness and mood under different lighting conditions have not been considered thoroughly especially for the complicated visual task like surgical operating procedure. In this paper, an experiment was conducted to investigate the cognition, alertness and mood of healthy participants in a simulated operating room (OR) in the hospital. A LED surgical lamp was used as the light source, which is mixed by three color LEDs (amber, green and blue). The surgical lamp is flexible on both spectrum and intensity. Exposed to different light settings, which are varied from color temperature and luminance, participants were asked to take psychomotor vigilance task (PVT) for alertness measurement, alphabet test for cognitive performance measurement, positive and negative affect schedule (PANAS) for mood measurement. The result showed the participants' cognitive performance, alertness and mood are related to the color temperature and luminance of the LED light. This research will have a guidance for the surgical lighting environment, which can not only enhance doctors' efficiency during the operations, but also create a positive and peaceful surgical lighting environment.

  17. Estimation of the number of angiotensin II AT1 receptors in rat kidney afferent and efferent arterioles

    DEFF Research Database (Denmark)

    Razga, Zsolt; Nyengaard, Jens Randel

    2007-01-01

    of angiotensin II AT1 receptors along the length of the arterioles and per arteriole, we combined immunoelectron microscopy with stereology. RESULTS: The number of AT1 receptor molecules was significantly lower in the renin-positive smooth muscle cells (SMCs) than in the renin-negative SMCs of the afferent...

  18. Morphology of the utricular otolith organ in the toadfish, Opsanus tau.

    Science.gov (United States)

    Boyle, Richard; Ehsanian, Reza; Mofrad, Alireza; Popova, Yekaterina; Varelas, Joseph

    2018-06-15

    The utricle provides the vestibular reflex pathways with the sensory codes of inertial acceleration of self-motion and head orientation with respect to gravity to control balance and equilibrium. Here we present an anatomical description of this structure in the adult oyster toadfish and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning, and transmission electron microscopy techniques were applied to visualize the sensory epithelium at varying levels of detail, its neural innervation and its synaptic organization. Scanning electron microscopy was used to visualize otolith mass and morphological polarization patterns of hair cells. Afferent nerve fibers were visualized following labeling with biocytin, and light microscope images were used to make three-dimensional (3-D) reconstructions of individual labeled afferents to identify dendritic morphology with respect to epithelial location. Transmission electron micrographs were compiled to create a serial 3-D reconstruction of a labeled afferent over a segment of its dendritic field and to examine the cell-afferent synaptic contacts. Major observations are: a well-defined striola, medial and lateral extra-striolar regions with a zonal organization of hair bundles; prominent lacinia projecting laterally; dependence of hair cell density on macular location; narrow afferent dendritic fields that follow the hair bundle polarization; synaptic specializations issued by afferents are typically directed towards a limited number of 7-13 hair cells, but larger dendritic fields in the medial extra-striola can be associated with > 20 hair cells also; and hair cell synaptic bodies can be confined to only an individual afferent or can synapse upon several afferents. © 2018 Wiley Periodicals, Inc.

  19. Colour and luminance contrasts predict the human detection of natural stimuli in complex visual environments.

    Science.gov (United States)

    White, Thomas E; Rojas, Bibiana; Mappes, Johanna; Rautiala, Petri; Kemp, Darrell J

    2017-09-01

    Much of what we know about human colour perception has come from psychophysical studies conducted in tightly-controlled laboratory settings. An enduring challenge, however, lies in extrapolating this knowledge to the noisy conditions that characterize our actual visual experience. Here we combine statistical models of visual perception with empirical data to explore how chromatic (hue/saturation) and achromatic (luminant) information underpins the detection and classification of stimuli in a complex forest environment. The data best support a simple linear model of stimulus detection as an additive function of both luminance and saturation contrast. The strength of each predictor is modest yet consistent across gross variation in viewing conditions, which accords with expectation based upon general primate psychophysics. Our findings implicate simple visual cues in the guidance of perception amidst natural noise, and highlight the potential for informing human vision via a fusion between psychophysical modelling and real-world behaviour. © 2017 The Author(s).

  20. The cost of misremembering: Inferring the loss function in visual working memory.

    Science.gov (United States)

    Sims, Chris R

    2015-03-04

    Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets. © 2015 ARVO.

  1. Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human

    Science.gov (United States)

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape. PMID:25540777

  2. Visualization of human heart conduction system by means of fluorescence spectroscopy

    Science.gov (United States)

    Venius, Jonas; Bagdonas, Saulius; Žurauskas, Edvardas; Rotomskis, Ricardas

    2011-10-01

    The conduction system of the heart is a specific muscular tissue, where a heartbeat signal originates and initiates the depolarization of the ventricles. The muscular origin makes it complicated to distinguish the conduction system from the surrounding tissues. A surgical intervention can lead to the accidental harm of the conduction system, which may eventually result in a dangerous obstruction of the heart functionality. Therefore, there is an immense necessity for developing a helpful method to visualize the conduction system during the operation time. The specimens for the spectroscopic studies were taken from nine diverse human hearts. The localization of distinct types of the tissue was preliminary marked by the pathologist and approved histologically after the spectral measurements. Variations in intensity, as well as in shape, were detected in autofluorescence spectra of different heart tissues. The most distinct differences were observed between the heart conduction system and the surrounding tissues under 330 and 380 nm excitation. The spectral region around 460 nm appeared to be the most suitable for an unambiguous differentiation of the human conduction system avoiding the absorption peak of blood. The visualization method, based on the intensity ratios calculated for two excitation wavelengths, was also demonstrated.

  3. Comprehensive reconstruction and visualization of non-coding regulatory networks in human.

    Science.gov (United States)

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.

  4. Visual impairment from fibrous dysplasia in a middle-aged African man: a case report

    Directory of Open Access Journals (Sweden)

    Bekibele Charles O

    2009-01-01

    Full Text Available Abstract Introduction Fibrous dysplasia is a benign tumour of the bones and is a disease of unknown aetiology. This report discusses a case of proptosis and visual deterioration with associated bony mass involving the right orbit. Case presentation A 32-year-old Nigerian man of Yoruba ethnic origin presented to the eye clinic of our hospital with right-eye proptosis and visual deterioration of 7-year duration. Presentation was preceded by a history of trauma. Proptosis was preceded by trauma but was non-pulsatile with no thrill or bruit but was associated with bony orbital mass. The patient reported no weight loss. Examination of his right eye showed visual acuity of 6/60 with relative afferent pupillary defect. Fundal examination revealed optic atrophy. Computed tomography showed an expansile bony mass involving all the walls of the orbit. The bony orbital mass was diagnosed histologically as fibrous dysplasia. Treatment included orbital exploration and orbital shaping to create room for the globe and relieve pressure on the optic nerve. Conclusion Fibrous dysplasia should be considered in the differential diagnosis of slowly developing proptosis with associated visual loss in young adults.

  5. Astronomy Teaching through the Humanities: Literature, the Visual Arts and More

    Science.gov (United States)

    Fraknoi, A.; Greenstein, George

    2004-12-01

    We will examine how the humanities -- the visual arts, science fiction, poetry, music, etc. -- can be used in teaching introductory astronomy courses for non-science majors. A number of instructors have found innovative ways to show how astronomy has a deep influence on other areas of human culture and how the humanities can illuminate our students' understanding of the universe. A few astronomers are also making original contributions at the interface of astronomy and the humanities. The panel of speakers for the session will consists of: Gregory Benford (U. of California, Irvine): Using Science Fiction to Teach Astronomy: Promise and Pitfalls William Hartmann (Planetary Science Institute): Science and Art in the Classroom Andrew Fraknoi (Foothill College & A.S.P.): The Humanities in the Astronomy Classroom: Activities and Projects George Greenstein (Amherst College) will be the session moderator. Time will be set aside for brief summaries of the poster papers associated with this session and for discussion. Participants will receive a resource guide to using the humanities for astronomy teaching.

  6. Stimulation of renal afferent fibers leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata.

    Science.gov (United States)

    Nishi, Erika E; Martins, Beatriz S; Milanez, Maycon I O; Lopes, Nathalia R; de Melo, Jose F; Pontes, Roberto B; Girardi, Adriana C; Campos, Ruy R; Bergamaschi, Cássia T

    2017-05-01

    Presympathetic neurons in the rostral ventrolateral medulla (RVLM) including the adrenergic cell groups play a major role in the modulation of several reflexes required for the control of sympathetic vasomotor tone and blood pressure (BP). Moreover, sympathetic vasomotor drive to the kidneys influence natriuresis and diuresis by inhibiting the cAMP/PKA pathway and redistributing the Na + /H + exchanger isoform 3 (NHE3) to the body of the microvilli in the proximal tubules. In this study we aimed to evaluate the effects of renal afferents stimulation on (1) the neurochemical phenotype of Fos expressing neurons in the medulla oblongata and (2) the level of abundance and phosphorylation of NHE3 in the renal cortex. We found that electrical stimulation of renal afferents increased heart rate and BP transiently and caused activation of tyrosine hydroxylase (TH)-containing neurons in the RVLM and non-TH neurons in the NTS. Additionally, activation of the inhibitory renorenal reflex over a 30-min period resulted in increased natriuresis and diuresis associated with increased phosphorylation of NHE3 at serine 552, a surrogate for reduced activity of this exchanger, in the contralateral kidney. This effect was not dependent of BP changes considering that no effects on natriuresis or diuresis were found in the ipsilateral-stimulated kidney. Therefore, our data show that renal afferents leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata. When renorenal reflex is induced, NHE3 exchanger activity appears to be decreased, resulting in decreased sodium and water reabsorption in the contralateral kidney. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ultrastructure of the central subnucleus of the nucleus tractus solitarii and the esophageal afferent terminals in the rat.

    Science.gov (United States)

    Hayakawa, Tetsu; Takanaga, Akinori; Tanaka, Koichi; Maeda, Seishi; Seki, Makoto

    2003-03-01

    The central subnucleus of the nucleus tractus solitarii (ceNTS) receives afferent projections from the esophageal wall and projects to the nucleus ambiguus, thus serving as a relay nucleus for peristalsis of the esophagus. Here we examine the synaptic organization of the ceNTS, and its esophageal afferents by using transganglionic anterograde transport of cholera toxin-conjugated horseradish peroxidase (CT-HRP). When CT-HRP was injected into the subdiaphragmatic esophagus, many anterogradely labeled terminals were found only in the ceNTS. The ceNTS was composed of round or oval-shaped, small neurons (14.7x8.7 micro m) containing sparse organelles and an irregularly shaped nucleus. The average number of axosomatic terminals was only 1.3 per section cut through the nucleolus. Most of them (92%) contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), and a few (8%) contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). All anterogradely labeled terminals contacted dendrites but not the neuronal somata. The labeled terminals were large (2.55+/-0.07 micro m) and exclusively Gray's type I. More than half of them (60%) contacted small dendrites (less than 1 micro m in diameter), and contained dense-cored vesicles. More than 40% of the labeled terminals contacted two to four dendrites, thus forming a synaptic glomerulus. Sometimes a labeled terminal that contacted an unlabeled terminal by an adherent junction was found within the glomerulus. The large terminals and these complex synaptic relations appeared to characterize the esophageal afferent projections in the ceNTS.

  8. Afferent input selects NMDA receptor subtype to determine the persistency of hippocampal LTP in freely behaving mice

    Directory of Open Access Journals (Sweden)

    Jesús Javier Ballesteros

    2016-10-01

    Full Text Available The glutamatergic N-methyl-D-aspartate receptor (NMDAR is critically involved in many forms of hippocampus-dependent memory that may be enabled by synaptic plasticity. Behavioral studies with NMDAR antagonists and NMDAR subunit (GluN2 mutants revealed distinct contributions from GluN2A- and GluN2B-containing NMDARs to rapidly and slowly acquired memory performance. Furthermore, studies of synaptic plasticity, in genetically modified mice in vitro, suggest that GluN2A and GluN2B may contribute in different ways to the induction and longevity of synaptic plasticity. In contrast to the hippocampal slice preparation, in behaving mice, the afferent frequencies that induce synaptic plasticity are very restricted and specific. In fact, it is the stimulus pattern, and not variations in afferent frequency that determine the longevity of long-term potentiation (LTP. Here, we explored the contribution of GluN2A and GluN2B to LTP of differing magnitudes and persistencies in freely behaving mice. We applied differing high-frequency stimulation (HFS patterns at 100 Hz to the hippocampal CA1 region, to induce NMDAR-dependent LTP in wild-type (WT mice, that endured for 24h (late (L-LTP. In GluN2A-KO mice, E-LTP (HFS, 50 pulses was significantly reduced in magnitude and duration, whereas LTP (HFS, 2 x 50 pulses and L-LTP (HFS, 4 x 50 pulses were unaffected compared to responses in WT animals. By contrast, pharmacological antagonism of GluN2B in WT had no effect on E-LTP but significantly prevented LTP. E- LTP and LTP were significantly impaired by GluN2B antagonism in GluN2A-KO mice. These data indicate that the pattern of afferent stimulation is decisive for the recruitment of distinct GluN2A and GluN2B signaling pathways that in turn determine the persistency of hippocampal LTP. Whereas brief bursts of patterned stimulation preferentially recruit GluN2A and lead to weak and short-lived forms of LTP, prolonged, more intense, afferent activation recruits GluN2B

  9. Probabilistic Mapping of Human Visual Attention from Head Pose Estimation

    Directory of Open Access Journals (Sweden)

    Andrea Veronese

    2017-10-01

    Full Text Available Effective interaction between a human and a robot requires the bidirectional perception and interpretation of actions and behavior. While actions can be identified as a directly observable activity, this might not be sufficient to deduce actions in a scene. For example, orienting our face toward a book might suggest the action toward “reading.” For a human observer, this deduction requires the direction of gaze, the object identified as a book and the intersection between gaze and book. With this in mind, we aim to estimate and map human visual attention as directed to a scene, and assess how this relates to the detection of objects and their related actions. In particular, we consider human head pose as measurement to infer the attention of a human engaged in a task and study which prior knowledge should be included in such a detection system. In a user study, we show the successful detection of attention to objects in a typical office task scenario (i.e., reading, working with a computer, studying an object. Our system requires a single external RGB camera for head pose measurements and a pre-recorded 3D point cloud of the environment.

  10. Effects of adding Braun jejunojejunostomy to standard Whipple procedure on reduction of afferent loop syndrome - a randomized clinical trial.

    Science.gov (United States)

    Kakaei, Farzad; Beheshtirouy, Samad; Nejatollahi, Seyed Moahammad Reza; Rashidi, Iqbal; Asvadi, Touraj; Habibzadeh, Afshin; Oliaei-Motlagh, Mohammad

    2015-12-01

    Whipple surgery (pancreaticodeudenectomy) has a high complication rate. We aimed to evaluate whether adding Braun jejunojejunostomy (side-to-side anastomosis of afferent and efferent loops distal to the gastrojejunostomy site) to a standard Whipple procedure would reduce postoperative complications. We conducted a randomized clinical trial comparing patients who underwent standard Whipple surgery (standard group) and patients who underwent standard Whipple surgery with Braun jejunojejunostomy (Braun group). Patients were followed for 1 month after the procedure and postoperative complications were recorded. Our study included 30 patients: 15 in the Braun and 15 in the standard group. In the Braun group, 4 (26.7%) patients experienced 6 complications, whereas in the standard group, 7 (46.7%) patients experienced 11 complications (p = 0.14). Complications in the Braun group were gastrointestinal bleeding and wound infection (n = 1 each) and delayed gastric emptying and pulmonary infection (n = 2 each). Complications in the standard group were death, pancreatic anastomosis leak and biliary anastomosis leak (n = 1 each); gastrointestinal bleeding (n = 2); and afferent loop syndrome and delayed gastric emptying (n = 3 each). There was no significant difference between groups in the subtypes of complications. Our results showed that adding Braun jejunojejunostomy to standard Whipple procedure was associated with lower rates of afferent loop syndrome and delayed gastric emptying. However, more studies are needed to define the role of Braun jejunojejunostomy in this regard. IRCT2014020316473N1 (www.irct.ir).

  11. Attention modulates specific motor cortical circuits recruited by transcranial magnetic stimulation.

    Science.gov (United States)

    Mirdamadi, J L; Suzuki, L Y; Meehan, S K

    2017-09-17

    Skilled performance and acquisition is dependent upon afferent input to motor cortex. The present study used short-latency afferent inhibition (SAI) to probe how manipulation of sensory afference by attention affects different circuits projecting to pyramidal tract neurons in motor cortex. SAI was assessed in the first dorsal interosseous muscle while participants performed a low or high attention-demanding visual detection task. SAI was evoked by preceding a suprathreshold transcranial magnetic stimulus with electrical stimulation of the median nerve at the wrist. To isolate different afferent intracortical circuits in motor cortex SAI was evoked using either posterior-anterior (PA) or anterior-posterior (PA) monophasic current. In an independent sample, somatosensory processing during the same attention-demanding visual detection tasks was assessed using somatosensory-evoked potentials (SEP) elicited by median nerve stimulation. SAI elicited by AP TMS was reduced under high compared to low visual attention demands. SAI elicited by PA TMS was not affected by visual attention demands. SEPs revealed that the high visual attention load reduced the fronto-central P20-N30 but not the contralateral parietal N20-P25 SEP component. P20-N30 reduction confirmed that the visual attention task altered sensory afference. The current results offer further support that PA and AP TMS recruit different neuronal circuits. AP circuits may be one substrate by which cognitive strategies shape sensorimotor processing during skilled movement by altering sensory processing in premotor areas. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Attention and visual memory in visualization and computer graphics.

    Science.gov (United States)

    Healey, Christopher G; Enns, James T

    2012-07-01

    A fundamental goal of visualization is to produce images of data that support visual analysis, exploration, and discovery of novel insights. An important consideration during visualization design is the role of human visual perception. How we "see" details in an image can directly impact a viewer's efficiency and effectiveness. This paper surveys research on attention and visual perception, with a specific focus on results that have direct relevance to visualization and visual analytics. We discuss theories of low-level visual perception, then show how these findings form a foundation for more recent work on visual memory and visual attention. We conclude with a brief overview of how knowledge of visual attention and visual memory is being applied in visualization and graphics. We also discuss how challenges in visualization are motivating research in psychophysics.

  13. Hyper-arousal decreases human visual thresholds.

    Directory of Open Access Journals (Sweden)

    Adam J Woods

    Full Text Available Arousal has long been known to influence behavior and serves as an underlying component of cognition and consciousness. However, the consequences of hyper-arousal for visual perception remain unclear. The present study evaluates the impact of hyper-arousal on two aspects of visual sensitivity: visual stereoacuity and contrast thresholds. Sixty-eight participants participated in two experiments. Thirty-four participants were randomly divided into two groups in each experiment: Arousal Stimulation or Sham Control. The Arousal Stimulation group underwent a 50-second cold pressor stimulation (immersing the foot in 0-2° C water, a technique known to increase arousal. In contrast, the Sham Control group immersed their foot in room temperature water. Stereoacuity thresholds (Experiment 1 and contrast thresholds (Experiment 2 were measured before and after stimulation. The Arousal Stimulation groups demonstrated significantly lower stereoacuity and contrast thresholds following cold pressor stimulation, whereas the Sham Control groups showed no difference in thresholds. These results provide the first evidence that hyper-arousal from sensory stimulation can lower visual thresholds. Hyper-arousal's ability to decrease visual thresholds has important implications for survival, sports, and everyday life.

  14. Ia Afferent input alters the recruitment thresholds and firing rates of single human motor units.

    Science.gov (United States)

    Grande, G; Cafarelli, E

    2003-06-01

    Vibration of the patellar tendon recruits motor units in the knee extensors via excitation of muscle spindles and subsequent Ia afferent input to the alpha-motoneuron pool. Our first purpose was to determine if the recruitment threshold and firing rate of the same motor unit differed when recruited involuntarily via reflex or voluntarily via descending spinal pathways. Although Ia input is excitatory to the alpha-motoneuron pool, it has also been shown paradoxically to inhibit itself. Our second purpose was to determine if vibration of the patellar tendon during a voluntary knee extension causes a change in the firing rate of already recruited motor units. In the first protocol, 10 subjects voluntarily reproduced the same isometric force profile of the knee extensors that was elicited by vibration of the patellar tendon. Single motor unit recordings from the vastus lateralis (VL) were obtained with tungsten microelectrodes and unitary behaviour was examined during both reflex and voluntary knee extensions. Recordings from 135 single motor units showed that both recruitment thresholds and firing rates were lower during reflex contractions. In the second protocol, 7 subjects maintained a voluntary knee extension at 30 N for approximately 40-45 s. Three bursts of patellar tendon vibration were superimposed at regular intervals throughout the contraction and changes in the firing rate of already recruited motor units were examined. A total of 35 motor units were recorded and each burst of superimposed vibration caused a momentary reduction in the firing rates and recruitment of additional units. Our data provide evidence that Ia input modulates the recruitment thresholds and firing rates of motor units providing more flexibility within the neuromuscular system to grade force at low levels of force production.

  15. Walk-related mimic word activates the extrastriate visual cortex in the human brain: an fMRI study.

    Science.gov (United States)

    Osaka, Naoyuki

    2009-03-02

    I present an fMRI study demonstrating that a mimic word highly suggestive of human walking, heard by the ear with eyes closed, significantly activates the visual cortex located in extrastriate occipital region (BA19, 18) and superior temporal sulcus (STS) while hearing non-sense words that do not imply walk under the same task does not activate these areas in humans. I concluded that BA19 and 18 would be a critical region for generating visual images of walking and related intentional stance, respectively, evoked by an onomatopoeia word that implied walking.

  16. Visual image reconstruction from human brain activity: A modular decoding approach

    International Nuclear Information System (INIS)

    Miyawaki, Yoichi; Uchida, Hajime; Yamashita, Okito; Sato, Masa-aki; Kamitani, Yukiyasu; Morito, Yusuke; Tanabe, Hiroki C; Sadato, Norihiro

    2009-01-01

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2 100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  17. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  18. Human fMRI Reveals That Delayed Action Re-Recruits Visual Perception

    OpenAIRE

    Singhal, Anthony; Monaco, Simona; Kaufman, Liam D.; Culham, Jody C.

    2013-01-01

    Behavioral and neuropsychological research suggests that delayed actions rely on different neural substrates than immediate actions; however, the specific brain areas implicated in the two types of actions remain unknown. We used functional magnetic resonance imaging (fMRI) to measure human brain activation during delayed grasping and reaching. Specifically, we examined activation during visual stimulation and action execution separated by a 18-s delay interval in which subjects had to rememb...

  19. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene

    2007-01-01

    of calcium from the sarcoplasmic reticulum (SR), stimulated presumably by IP(3), is involved in the adenosine contraction mechanism of the afferent arteriole. In agreement with this notion is the observation that 2 aminoethoxydiphenyl borate (100 microM) blocked the adenosine-induced constriction whereas...... was abolished by IAA-94. Furthermore, the vasoconstriction caused by adenosine was significantly inhibited by 5 microM nifedipine (control 8.3 +/- 0.2 microM, ado 3.6 +/- 0.6 microM, ado + nifedipine 6.8 +/- 0.2 microM) suggesting involvement of voltage-dependent calcium channels. CONCLUSION: We conclude...

  20. Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Castrop, Hayo; Briggs, Josie

    2003-01-01

    -induced vasoconstriction was stable for up to 30 min and was most pronounced in the most distal part of the afferent arterioles. Adenosine did not cause vasoconstriction in arterioles from A1AR-/- mice. Pretreatment with pertussis toxin (PTX) (400 ng/ml) for 2 h blocked the vasoconstricting action of adenosine or N(6...

  1. Comparison of dogs and humans in visual scanning of social interaction.

    Science.gov (United States)

    Törnqvist, Heini; Somppi, Sanni; Koskela, Aija; Krause, Christina M; Vainio, Outi; Kujala, Miiamaaria V

    2015-09-01

    Previous studies have demonstrated similarities in gazing behaviour of dogs and humans, but comparisons under similar conditions are rare, and little is known about dogs' visual attention to social scenes. Here, we recorded the eye gaze of dogs while they viewed images containing two humans or dogs either interacting socially or facing away: the results were compared with equivalent data measured from humans. Furthermore, we compared the gazing behaviour of two dog and two human populations with different social experiences: family and kennel dogs; dog experts and non-experts. Dogs' gazing behaviour was similar to humans: both species gazed longer at the actors in social interaction than in non-social images. However, humans gazed longer at the actors in dog than human social interaction images, whereas dogs gazed longer at the actors in human than dog social interaction images. Both species also made more saccades between actors in images representing non-conspecifics, which could indicate that processing social interaction of non-conspecifics may be more demanding. Dog experts and non-experts viewed the images very similarly. Kennel dogs viewed images less than family dogs, but otherwise their gazing behaviour did not differ, indicating that the basic processing of social stimuli remains similar regardless of social experiences.

  2. Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex.

    Science.gov (United States)

    Raz, Aeyal; Grady, Sean M; Krause, Bryan M; Uhlrich, Daniel J; Manning, Karen A; Banks, Matthew I

    2014-01-01

    The mechanism of loss of consciousness (LOC) under anesthesia is unknown. Because consciousness depends on activity in the cortico-thalamic network, anesthetic actions on this network are likely critical for LOC. Competing theories stress the importance of anesthetic actions on bottom-up "core" thalamo-cortical (TC) vs. top-down cortico-cortical (CC) and matrix TC connections. We tested these models using laminar recordings in rat auditory cortex in vivo and murine brain slices. We selectively activated bottom-up vs. top-down afferent pathways using sensory stimuli in vivo and electrical stimulation in brain slices, and compared effects of isoflurane on responses evoked via the two pathways. Auditory stimuli in vivo and core TC afferent stimulation in brain slices evoked short latency current sinks in middle layers, consistent with activation of core TC afferents. By contrast, visual stimuli in vivo and stimulation of CC and matrix TC afferents in brain slices evoked responses mainly in superficial and deep layers, consistent with projection patterns of top-down afferents that carry visual information to auditory cortex. Responses to auditory stimuli in vivo and core TC afferents in brain slices were significantly less affected by isoflurane compared to responses triggered by visual stimuli in vivo and CC/matrix TC afferents in slices. At a just-hypnotic dose in vivo, auditory responses were enhanced by isoflurane, whereas visual responses were dramatically reduced. At a comparable concentration in slices, isoflurane suppressed both core TC and CC/matrix TC responses, but the effect on the latter responses was far greater than on core TC responses, indicating that at least part of the differential effects observed in vivo were due to local actions of isoflurane in auditory cortex. These data support a model in which disruption of top-down connectivity contributes to anesthesia-induced LOC, and have implications for understanding the neural basis of consciousness.

  3. Modulation of induced gamma band activity in the human EEG by attention and visual information processing.

    Science.gov (United States)

    Müller, M M; Gruber, T; Keil, A

    2000-12-01

    Here we present a series of four studies aimed to investigate the link between induced gamma band activity in the human EEG and visual information processing. We demonstrated and validated the modulation of spectral gamma band power by spatial selective visual attention. When subjects attended to a certain stimulus, spectral power was increased as compared to when the same stimulus was ignored. In addition, we showed a shift in spectral gamma band power increase to the contralateral hemisphere when subjects shifted their attention to one visual hemifield. The following study investigated induced gamma band activity and the perception of a Gestalt. Ambiguous rotating figures were used to operationalize the law of good figure (gute Gestalt). We found increased gamma band power at posterior electrode sites when subjects perceived an object. In the last experiment we demonstrated a differential hemispheric gamma band activation when subjects were confronted with emotional pictures. Results of the present experiments in combination with other studies presented in this volume are supportive for the notion that induced gamma band activity in the human EEG is closely related to visual information processing and attentional perceptual mechanisms.

  4. Humans use visual and remembered information about object location to plan pointing movements

    NARCIS (Netherlands)

    Brouwer, A.-M.; Knill, D.C.

    2009-01-01

    We investigated whether humans use a target's remembered location to plan reaching movements to targets according to the relative reliabilities of visual and remembered information. Using their index finger, subjects moved a virtual object from one side of a table to the other, and then went back to

  5. Meningeal norepinephrine produces headache behaviors in rats via actions both on dural afferents and fibroblasts.

    Science.gov (United States)

    Wei, Xiaomei; Yan, Jin; Tillu, Dipti; Asiedu, Marina; Weinstein, Nicole; Melemedjian, Ohannes; Price, Theodore; Dussor, Gregory

    2015-10-01

    Stress is commonly reported to contribute to migraine although mechanisms by which this may occur are not fully known. The purpose of these studies was to examine whether norepinephrine (NE), the primary sympathetic efferent transmitter, acts on processes in the meninges that may contribute to the pain of migraine. NE was applied to rat dura using a behavioral model of headache. Primary cultures of rat trigeminal ganglia retrogradely labeled from the dura mater and of rat dural fibroblasts were prepared. Patch-clamp electrophysiology, Western blot, and ELISA were performed to examine the effects of NE. Conditioned media from NE-treated fibroblast cultures was applied to the dura using the behavioral headache model. Dural injection both of NE and media from NE-stimulated fibroblasts caused cutaneous facial and hindpaw allodynia in awake rats. NE application to cultured dural afferents increased action potential firing in response to current injections. Application of NE to dural fibroblasts increased phosphorylation of ERK and caused the release of interleukin-6 (IL-6). These data demonstrate that NE can contribute to pro-nociceptive signaling from the meninges via actions on dural afferents and dural fibroblasts. Together, these actions of NE may contribute to the headache phase of migraine. © International Headache Society 2015.

  6. Gastric electrical stimulation decreases gastric distension-induced central nociception response through direct action on primary afferents.

    Directory of Open Access Journals (Sweden)

    Wassila Ouelaa

    Full Text Available BACKGROUND & AIMS: Gastric electrical stimulation (GES is an effective therapy to treat patients with chronic dyspepsia refractory to medical management. However, its mechanisms of action remain poorly understood. METHODS: Gastric pain was induced by performing gastric distension (GD in anesthetized rats. Pain response was monitored by measuring the pseudo-affective reflex (e.g., blood pressure variation, while neuronal activation was determined using c-fos immunochemistry in the central nervous system. Involvement of primary afferents was assessed by measuring phosphorylation of ERK1/2 in dorsal root ganglia. RESULTS: GES decreased blood pressure variation induced by GD, and prevented GD-induced neuronal activation in the dorsal horn of the spinal cord (T9-T10, the nucleus of the solitary tract and in CRF neurons of the hypothalamic paraventricular nucleus. This effect remained unaltered within the spinal cord when sectioning the medulla at the T5 level. Furthermore, GES prevented GD-induced phosphorylation of ERK1/2 in dorsal root ganglia. CONCLUSIONS: GES decreases GD-induced pain and/or discomfort likely through a direct modulation of gastric spinal afferents reducing central processing of visceral nociception.

  7. Stereoscopy and the Human Visual System

    Science.gov (United States)

    Banks, Martin S.; Read, Jenny C. A.; Allison, Robert S.; Watt, Simon J.

    2012-01-01

    Stereoscopic displays have become important for many applications, including operation of remote devices, medical imaging, surgery, scientific visualization, and computer-assisted design. But the most significant and exciting development is the incorporation of stereo technology into entertainment: specifically, cinema, television, and video games. In these applications for stereo, three-dimensional (3D) imagery should create a faithful impression of the 3D structure of the scene being portrayed. In addition, the viewer should be comfortable and not leave the experience with eye fatigue or a headache. Finally, the presentation of the stereo images should not create temporal artifacts like flicker or motion judder. This paper reviews current research on stereo human vision and how it informs us about how best to create and present stereo 3D imagery. The paper is divided into four parts: (1) getting the geometry right, (2) depth cue interactions in stereo 3D media, (3) focusing and fixating on stereo images, and (4) how temporal presentation protocols affect flicker, motion artifacts, and depth distortion. PMID:23144596

  8. A Model of Self-Organizing Head-Centered Visual Responses in Primate Parietal Areas

    Science.gov (United States)

    Mender, Bedeho M. W.; Stringer, Simon M.

    2013-01-01

    We present a hypothesis for how head-centered visual representations in primate parietal areas could self-organize through visually-guided learning, and test this hypothesis using a neural network model. The model consists of a competitive output layer of neurons that receives afferent synaptic connections from a population of input neurons with eye position gain modulated retinal receptive fields. The synaptic connections in the model are trained with an associative trace learning rule which has the effect of encouraging output neurons to learn to respond to subsets of input patterns that tend to occur close together in time. This network architecture and synaptic learning rule is hypothesized to promote the development of head-centered output neurons during periods of time when the head remains fixed while the eyes move. This hypothesis is demonstrated to be feasible, and each of the core model components described is tested and found to be individually necessary for successful self-organization. PMID:24349064

  9. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue.

    Science.gov (United States)

    Millet, Guillaume Y; Muthalib, Makii; Jubeau, Marc; Laursen, Paul B; Nosaka, Kazunori

    2012-04-01

    To test the hypothesis that hypoxia centrally affects performance independently of afferent feedback and peripheral fatigue, we conducted two experiments under complete vascular occlusion of the exercising muscle under different systemic O(2) environmental conditions. In experiment 1, 12 subjects performed repeated submaximal isometric contractions of the elbow flexor to exhaustion (RCTE) with inspired O(2) fraction fixed at 9% (severe hypoxia, SevHyp), 14% (moderate hypoxia, ModHyp), 21% (normoxia, Norm), or 30% (hyperoxia, Hyper). The number of contractions (performance), muscle (biceps brachii), and prefrontal near-infrared spectroscopy (NIRS) parameters and high-frequency paired-pulse (PS100) evoked responses to electrical muscle stimulation were monitored. In experiment 2, 10 subjects performed another RCTE in SevHyp and Norm conditions in which the number of contractions, biceps brachii electromyography responses to electrical nerve stimulation (M wave), and transcranial magnetic stimulation responses (motor-evoked potentials, MEP, and cortical silent period, CSP) were recorded. Performance during RCTE was significantly reduced by 10-15% in SevHyp (arterial O(2) saturation, SpO(2) = ∼75%) compared with ModHyp (SpO(2) = ∼90%) or Norm/Hyper (SpO(2) > 97%). Performance reduction in SevHyp occurred despite similar 1) metabolic (muscle NIRS parameters) and functional (changes in PS100 and M wave) muscle states and 2) MEP and CSP responses, suggesting comparable corticospinal excitability and spinal and cortical inhibition between SevHyp and Norm. It is concluded that, in SevHyp, performance and central drive can be altered independently of afferent feedback and peripheral fatigue. It is concluded that submaximal performance in SevHyp is partly reduced by a mechanism related directly to brain oxygenation.

  10. Frequency of gamma oscillations in humans is modulated by velocity of visual motion

    Science.gov (United States)

    Butorina, Anna V.; Sysoeva, Olga V.; Prokofyev, Andrey O.; Nikolaeva, Anastasia Yu.; Stroganova, Tatiana A.

    2015-01-01

    Gamma oscillations are generated in networks of inhibitory fast-spiking (FS) parvalbumin-positive (PV) interneurons and pyramidal cells. In animals, gamma frequency is modulated by the velocity of visual motion; the effect of velocity has not been evaluated in humans. In this work, we have studied velocity-related modulations of gamma frequency in children using MEG/EEG. We also investigated whether such modulations predict the prominence of the “spatial suppression” effect (Tadin D, Lappin JS, Gilroy LA, Blake R. Nature 424: 312-315, 2003) that is thought to depend on cortical center-surround inhibitory mechanisms. MEG/EEG was recorded in 27 normal boys aged 8–15 yr while they watched high-contrast black-and-white annular gratings drifting with velocities of 1.2, 3.6, and 6.0°/s and performed a simple detection task. The spatial suppression effect was assessed in a separate psychophysical experiment. MEG gamma oscillation frequency increased while power decreased with increasing velocity of visual motion. In EEG, the effects were less reliable. The frequencies of the velocity-specific gamma peaks were 64.9, 74.8, and 87.1 Hz for the slow, medium, and fast motions, respectively. The frequency of the gamma response elicited during slow and medium velocity of visual motion decreased with subject age, whereas the range of gamma frequency modulation by velocity increased with age. The frequency modulation range predicted spatial suppression even after controlling for the effect of age. We suggest that the modulation of the MEG gamma frequency by velocity of visual motion reflects excitability of cortical inhibitory circuits and can be used to investigate their normal and pathological development in the human brain. PMID:25925324

  11. Interactions between motion and form processing in the human visual system

    OpenAIRE

    Mather, G.; Pavan, A.; Bellacosa Marotti, R.; Campana, G.; Casco, C.

    2013-01-01

    The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form proce...

  12. Long-term visuo-gustatory appetitive and aversive conditioning potentiate human visual evoked potentials

    DEFF Research Database (Denmark)

    Christoffersen, Gert R.J.; Laugesen, Jakob L.; Møller, Per

    2017-01-01

    Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive...... and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared...... before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes...

  13. Effects of snow-reflected light levels on human visual comfort.

    Science.gov (United States)

    Yilmaz, Hasan; Demircioglu Yildiz, Nalan; Yilmaz, Sevgi

    2008-09-01

    The intensity of the sunlight reflected by the snow-covered surfaces is so high that it may disturb humans many times. This study aims to determine the reflected sunlight intensities from snow covered areas at points near (at a distance of 2 m) and under an individual tree and among trees (in the forest area) by accepting the open area as control; the reducing effects of the plant materials on reflected sunlight in percentage by comparing with the values of the open (control) area; and critical reflected sunlight threshold values for human visual comfort. The study was carried out over 22 clear and calm, i.e. sky was cloudless and wind was calm, days between the 1st and 31st days of January 2004, at 8:30 in the morning, at 12:30 at noon and at 14:30 in the afternoon in Erzurum. In order to determine the discomforting light intensity levels, 25 females and 26 male (totally 51) student subjects whose mean age was 20 and who had no visual disorders were selected. Considering the open area as control, mean reflected sunlight reducing effects were found to be 19.0, 66.0 and 82.7% for the 2 m near a tree, under a tree, and forest area, respectively. According to the responses of 51 subjects in the study, visually "very comfortable" range is between 5,000 and 8,000 lx; "comfortable" range is between 11,000 and 75,000 lx (mostly at 12,000 lx); "uncomfortable" condition is above the light intensity value of 43,000 lx and "very uncomfortable" condition is above the intensity of 80,000 lx. Great majority of the subjects (91%) found the value of 103,000 lx to be "very uncomfortable." As it is not an applicable way to use the great and dense tree masses in the cities, at least individual trees should be used along the main pedestrian axels in the cities having the same features with Erzurum to prevent the natural light pollution and discomforting effects of the snow-reflected sunlight.

  14. Attention Determines Contextual Enhancement versus Suppression in Human Primary Visual Cortex.

    Science.gov (United States)

    Flevaris, Anastasia V; Murray, Scott O

    2015-09-02

    Neural responses in primary visual cortex (V1) depend on stimulus context in seemingly complex ways. For example, responses to an oriented stimulus can be suppressed when it is flanked by iso-oriented versus orthogonally oriented stimuli but can also be enhanced when attention is directed to iso-oriented versus orthogonal flanking stimuli. Thus the exact same contextual stimulus arrangement can have completely opposite effects on neural responses-in some cases leading to orientation-tuned suppression and in other cases leading to orientation-tuned enhancement. Here we show that stimulus-based suppression and enhancement of fMRI responses in humans depends on small changes in the focus of attention and can be explained by a model that combines feature-based attention with response normalization. Neurons in the primary visual cortex (V1) respond to stimuli within a restricted portion of the visual field, termed their "receptive field." However, neuronal responses can also be influenced by stimuli that surround a receptive field, although the nature of these contextual interactions and underlying neural mechanisms are debated. Here we show that the response in V1 to a stimulus in the same context can either be suppressed or enhanced depending on the focus of attention. We are able to explain the results using a simple computational model that combines two well established properties of visual cortical responses: response normalization and feature-based enhancement. Copyright © 2015 the authors 0270-6474/15/3512273-08$15.00/0.

  15. Protection of visual functions by human neural progenitors in a rat model of retinal disease.

    Directory of Open Access Journals (Sweden)

    David M Gamm

    2007-03-01

    Full Text Available A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat.Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90-100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed.Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in

  16. Visual cues given by humans are not sufficient for Asian elephants (Elephas maximus to find hidden food.

    Directory of Open Access Journals (Sweden)

    Joshua M Plotnik

    Full Text Available Recent research suggests that domesticated species--due to artificial selection by humans for specific, preferred behavioral traits--are better than wild animals at responding to visual cues given by humans about the location of hidden food. \\Although this seems to be supported by studies on a range of domesticated (including dogs, goats and horses and wild (including wolves and chimpanzees animals, there is also evidence that exposure to humans positively influences the ability of both wild and domesticated animals to follow these same cues. Here, we test the performance of Asian elephants (Elephas maximus on an object choice task that provides them with visual-only cues given by humans about the location of hidden food. Captive elephants are interesting candidates for investigating how both domestication and human exposure may impact cue-following as they represent a non-domesticated species with almost constant human interaction. As a group, the elephants (n = 7 in our study were unable to follow pointing, body orientation or a combination of both as honest signals of food location. They were, however, able to follow vocal commands with which they were already familiar in a novel context, suggesting the elephants are able to follow cues if they are sufficiently salient. Although the elephants' inability to follow the visual cues provides partial support for the domestication hypothesis, an alternative explanation is that elephants may rely more heavily on other sensory modalities, specifically olfaction and audition. Further research will be needed to rule out this alternative explanation.

  17. Visual cues given by humans are not sufficient for Asian elephants (Elephas maximus) to find hidden food.

    Science.gov (United States)

    Plotnik, Joshua M; Pokorny, Jennifer J; Keratimanochaya, Titiporn; Webb, Christine; Beronja, Hana F; Hennessy, Alice; Hill, James; Hill, Virginia J; Kiss, Rebecca; Maguire, Caitlin; Melville, Beckett L; Morrison, Violet M B; Seecoomar, Dannah; Singer, Benjamin; Ukehaxhaj, Jehona; Vlahakis, Sophia K; Ylli, Dora; Clayton, Nicola S; Roberts, John; Fure, Emilie L; Duchatelier, Alicia P; Getz, David

    2013-01-01

    Recent research suggests that domesticated species--due to artificial selection by humans for specific, preferred behavioral traits--are better than wild animals at responding to visual cues given by humans about the location of hidden food. \\Although this seems to be supported by studies on a range of domesticated (including dogs, goats and horses) and wild (including wolves and chimpanzees) animals, there is also evidence that exposure to humans positively influences the ability of both wild and domesticated animals to follow these same cues. Here, we test the performance of Asian elephants (Elephas maximus) on an object choice task that provides them with visual-only cues given by humans about the location of hidden food. Captive elephants are interesting candidates for investigating how both domestication and human exposure may impact cue-following as they represent a non-domesticated species with almost constant human interaction. As a group, the elephants (n = 7) in our study were unable to follow pointing, body orientation or a combination of both as honest signals of food location. They were, however, able to follow vocal commands with which they were already familiar in a novel context, suggesting the elephants are able to follow cues if they are sufficiently salient. Although the elephants' inability to follow the visual cues provides partial support for the domestication hypothesis, an alternative explanation is that elephants may rely more heavily on other sensory modalities, specifically olfaction and audition. Further research will be needed to rule out this alternative explanation.

  18. Top-down modulation of human early visual cortex after stimulus offset supports successful postcued report.

    Science.gov (United States)

    Sergent, Claire; Ruff, Christian C; Barbot, Antoine; Driver, Jon; Rees, Geraint

    2011-08-01

    Modulations of sensory processing in early visual areas are thought to play an important role in conscious perception. To date, most empirical studies focused on effects occurring before or during visual presentation. By contrast, several emerging theories postulate that sensory processing and conscious visual perception may also crucially depend on late top-down influences, potentially arising after a visual display. To provide a direct test of this, we performed an fMRI study using a postcued report procedure. The ability to report a target at a specific spatial location in a visual display can be enhanced behaviorally by symbolic auditory postcues presented shortly after that display. Here we showed that such auditory postcues can enhance target-specific signals in early human visual cortex (V1 and V2). For postcues presented 200 msec after stimulus termination, this target-specific enhancement in visual cortex was specifically associated with correct conscious report. The strength of this modulation predicted individual levels of performance in behavior. By contrast, although later postcues presented 1000 msec after stimulus termination had some impact on activity in early visual cortex, this modulation no longer related to conscious report. These results demonstrate that within a critical time window of a few hundred milliseconds after a visual stimulus has disappeared, successful conscious report of that stimulus still relates to the strength of top-down modulation in early visual cortex. We suggest that, within this critical time window, sensory representation of a visual stimulus is still under construction and so can still be flexibly influenced by top-down modulatory processes.

  19. Visualization of migration of human cortical neurons generated from induced pluripotent stem cells.

    Science.gov (United States)

    Bamba, Yohei; Kanemura, Yonehiro; Okano, Hideyuki; Yamasaki, Mami

    2017-09-01

    Neuronal migration is considered a key process in human brain development. However, direct observation of migrating human cortical neurons in the fetal brain is accompanied by ethical concerns and is a major obstacle in investigating human cortical neuronal migration. We established a novel system that enables direct visualization of migrating cortical neurons generated from human induced pluripotent stem cells (hiPSCs). We observed the migration of cortical neurons generated from hiPSCs derived from a control and from a patient with lissencephaly. Our system needs no viable brain tissue, which is usually used in slice culture. Migratory behavior of human cortical neuron can be observed more easily and more vividly by its fluorescence and glial scaffold than that by earlier methods. Our in vitro experimental system provides a new platform for investigating development of the human central nervous system and brain malformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus

    Science.gov (United States)

    Affleck, V.S.; Coote, J.H.; Pyner, S.

    2012-01-01

    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine – BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold – FG or cholera toxin B subunit – CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS–PVN pathways. PMID:22698695

  1. HIV/AIDS in the visual arts: applying discipline-based art education (DBAE) to medical humanities.

    Science.gov (United States)

    Tapajos, Ricardo

    2003-06-01

    Health professions educators have been systematically attempting to insert the humanities into health professions curricula for over 4 decades, with various degrees of success. Among the several medical humanities, the visual arts seem particularly adequate for the teaching/learning of crucial aspects of medicine. Educational efforts in the arts require, however, a sound pedagogical philosophy of art education. Health professions educators need therefore to be aware of educational frameworks in the arts. Discipline-based art education (DBAE) is a recognised contemporary educational framework for the teaching/learning of the arts, which may be adapted to medical humanities. It is the ultimate objective of this essay to share the experience of applying this educational framework to a course in a medical curriculum. The author describes a course on the representations of HIV/AIDS in the visual arts, with explicit reference to its objectives, content, instructional features and student assessment in the light of DBAE, whose principles and characteristics are described in detail. Discipline-based art education may be applied to medical humanities courses in a medical curriculum. This essay throws light on how this structure may be particularly useful for designing other pedagogically sound art courses in health professions curricula.

  2. Afferent connections of nervus facialis and nervus glossopharyngeus in the pigeon (Columba livia) and their role in feeding behavior.

    Science.gov (United States)

    Dubbeldam, J L

    1984-01-01

    The afferent connections of the facial nerve and glossopharyngeal nerve in the pigeon have been studied with the Fink-Heimer I method after ganglion lesions. The nucleus ventrolateralis anterior of the solitary complex and an indistinct cell group S VII medial to the nucleus interpolaris of the descending trigeminal tract are the terminal fields for facial afferents. The n. ventrolateralis anterior also receives an important projection from the distal glossopharyngeal ganglion. Other projection areas of this ganglion are the n. presulcalis , n. centralis anterior, n. intermedius anterior and the parasolitary nucleus. Both ganglia have only ipsilateral projections. A lesion in the jugular ganglion complex causes degeneration throughout the ipsilateral solitary complex, in the contralateral n. commissuralis and n. centralis posterior and in the n. cuneatus externus. The lack of a substantial contribution to the trigeminal system is ascribed to the absence of mechanoreceptors in the tongue. The implications for the organization of neuronal pathways related to the feeding behavior are discussed.

  3. Early visual evoked potentials are modulated by eye position in humans induced by whole body rotations

    Directory of Open Access Journals (Sweden)

    Petit Laurent

    2004-09-01

    Full Text Available Abstract Background To reach and grasp an object in space on the basis of its image cast on the retina requires different coordinate transformations that take into account gaze and limb positioning. Eye position in the orbit influences the image's conversion from retinotopic (eye-centered coordinates to an egocentric frame necessary for guiding action. Neuroimaging studies have revealed eye position-dependent activity in extrastriate visual, parietal and frontal areas that is along the visuo-motor pathway. At the earliest vision stage, the role of the primary visual area (V1 in this process remains unclear. We used an experimental design based on pattern-onset visual evoked potentials (VEP recordings to study the effect of eye position on V1 activity in humans. Results We showed that the amplitude of the initial C1 component of VEP, acknowledged to originate in V1, was modulated by the eye position. We also established that putative spontaneous small saccades related to eccentric fixation, as well as retinal disparity cannot explain the effects of changing C1 amplitude of VEP in the present study. Conclusions The present modulation of the early component of VEP suggests an eye position-dependent activity of the human primary visual area. Our findings also evidence that cortical processes combine information about the position of the stimulus on the retinae with information about the location of the eyes in their orbit as early as the stage of primary visual area.

  4. Albinism: particular attention to the ocular motor system.

    Science.gov (United States)

    Hertle, Richard W

    2013-01-01

    The purpose of this report is to summarize an understanding of the ocular motor system in patients with albinism. Other than the association of vertical eccentric gaze null positions and asymmetric, (a) periodic alternating nystagmus in a large percentage of patients, the ocular motor system in human albinism does not contain unique pathology, rather has "typical" types of infantile ocular oscillations and binocular disorders. Both the ocular motor and afferent visual system are affected to varying degrees in patients with albinism, thus, combined treatment of both systems will maximize visual function.

  5. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.

    Science.gov (United States)

    Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T

    2012-04-01

    The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. TransVisuality : The Cultural Dimension of Visuality

    DEFF Research Database (Denmark)

    The Transvisuality Project In little more than a decade, visual culture has proven its status and commitment as an independent field of research, drawing on and continuing areas such as art history, cultural studies, semiotics and media research, as well as parts of visual sociology, visual...... for visual culture, transcending a number of disciplinary and geographical borders. The first volume, ‘Boundaries and Creative Openings’, explores the implications of a cultural dimension of ‘visuality’ when seen as a concept reflecting and challenging fundamental aspects of culture, from the arts to social...... anthropology and visual communication. Visual culture is now a well-established academic area of research and teaching, covering subjects in the humanities and social sciences. Readers and introductions have outlined the field, and research is mirrored in networks, journals and conferences on the national...

  7. Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex.

    Science.gov (United States)

    Rosenthal, Clive R; Andrews, Samantha K; Antoniades, Chrystalina A; Kennard, Christopher; Soto, David

    2016-03-21

    Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol-designed to induce activity in V1, without modulation from visual awareness-to test whether human V1 is implicated in human observers rapidly learning and then later (15-20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of "implicit" sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. How humans use visual optic flow to regulate stepping during walking.

    Science.gov (United States)

    Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B

    2017-09-01

    Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. How learning might strengthen existing visual object representations in human object-selective cortex.

    Science.gov (United States)

    Brants, Marijke; Bulthé, Jessica; Daniels, Nicky; Wagemans, Johan; Op de Beeck, Hans P

    2016-02-15

    Visual object perception is an important function in primates which can be fine-tuned by experience, even in adults. Which factors determine the regions and the neurons that are modified by learning is still unclear. Recently, it was proposed that the exact cortical focus and distribution of learning effects might depend upon the pre-learning mapping of relevant functional properties and how this mapping determines the informativeness of neural units for the stimuli and the task to be learned. From this hypothesis we would expect that visual experience would strengthen the pre-learning distributed functional map of the relevant distinctive object properties. Here we present a first test of this prediction in twelve human subjects who were trained in object categorization and differentiation, preceded and followed by a functional magnetic resonance imaging session. Specifically, training increased the distributed multi-voxel pattern information for trained object distinctions in object-selective cortex, resulting in a generalization from pre-training multi-voxel activity patterns to after-training activity patterns. Simulations show that the increased selectivity combined with the inter-session generalization is consistent with a training-induced strengthening of a pre-existing selectivity map. No training-related neural changes were detected in other regions. In sum, training to categorize or individuate objects strengthened pre-existing representations in human object-selective cortex, providing a first indication that the neuroanatomical distribution of learning effects depends upon the pre-learning mapping of visual object properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Social Class and the Motivational Relevance of Other Human Beings: Evidence From Visual Attention.

    Science.gov (United States)

    Dietze, Pia; Knowles, Eric D

    2016-11-01

    We theorize that people's social class affects their appraisals of others' motivational relevance-the degree to which others are seen as potentially rewarding, threatening, or otherwise worth attending to. Supporting this account, three studies indicate that social classes differ in the amount of attention their members direct toward other human beings. In Study 1, wearable technology was used to film the visual fields of pedestrians on city streets; higher-class participants looked less at other people than did lower-class participants. In Studies 2a and 2b, participants' eye movements were tracked while they viewed street scenes; higher class was associated with reduced attention to people in the images. In Study 3, a change-detection procedure assessed the degree to which human faces spontaneously attract visual attention; faces proved less effective at drawing the attention of high-class than low-class participants, which implies that class affects spontaneous relevance appraisals. The measurement and conceptualization of social class are discussed. © The Author(s) 2016.

  11. Explaining neural signals in human visual cortex with an associative learning model.

    Science.gov (United States)

    Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias

    2012-08-01

    "Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.

  12. Complex signal-based optical coherence tomography angiography enables in vivo visualization of choriocapillaris in human choroid

    Science.gov (United States)

    Chu, Zhongdi; Chen, Chieh-Li; Zhang, Qinqin; Pepple, Kathryn; Durbin, Mary; Gregori, Giovanni; Wang, Ruikang K.

    2017-12-01

    The choriocapillaris (CC) plays an essential role in maintaining the normal functions of the human eye. There is increasing interest in the community to develop an imaging technique for visualizing the CC, yet this remains underexplored due to technical limitations. We propose an approach for the visualization of the CC in humans via a complex signal-based optical microangiography (OMAG) algorithm, based on commercially available spectral domain optical coherence tomography (SD-OCT). We show that the complex signal-based OMAG was superior to both the phase and amplitude signal-based approaches in detailing the vascular lobules previously seen with histological analysis. With this improved ability to visualize the lobular vascular networks, it is possible to identify the feeding arterioles and draining venules around the lobules, which is important in understanding the role of the CC in the pathogenesis of ocular diseases. With built-in FastTrac™ and montage scanning capabilities, we also demonstrate wide-field SD-OCT angiograms of the CC with a field of view at 9×11 mm2.

  13. Plasticity in the Human Visual Cortex: An Ophthalmology-Based Perspective

    Science.gov (United States)

    Rosa, Andreia Martins; Silva, Maria Fátima; Murta, Joaquim

    2013-01-01

    Neuroplasticity refers to the ability of the brain to reorganize the function and structure of its connections in response to changes in the environment. Adult human visual cortex shows several manifestations of plasticity, such as perceptual learning and adaptation, working under the top-down influence of attention. Plasticity results from the interplay of several mechanisms, including the GABAergic system, epigenetic factors, mitochondrial activity, and structural remodeling of synaptic connectivity. There is also a downside of plasticity, that is, maladaptive plasticity, in which there are behavioral losses resulting from plasticity changes in the human brain. Understanding plasticity mechanisms could have major implications in the diagnosis and treatment of ocular diseases, such as retinal disorders, cataract and refractive surgery, amblyopia, and in the evaluation of surgical materials and techniques. Furthermore, eliciting plasticity could open new perspectives in the development of strategies that trigger plasticity for better medical and surgical outcomes. PMID:24205505

  14. Plasticity in the Human Visual Cortex: An Ophthalmology-Based Perspective

    Directory of Open Access Journals (Sweden)

    Andreia Martins Rosa

    2013-01-01

    Full Text Available Neuroplasticity refers to the ability of the brain to reorganize the function and structure of its connections in response to changes in the environment. Adult human visual cortex shows several manifestations of plasticity, such as perceptual learning and adaptation, working under the top-down influence of attention. Plasticity results from the interplay of several mechanisms, including the GABAergic system, epigenetic factors, mitochondrial activity, and structural remodeling of synaptic connectivity. There is also a downside of plasticity, that is, maladaptive plasticity, in which there are behavioral losses resulting from plasticity changes in the human brain. Understanding plasticity mechanisms could have major implications in the diagnosis and treatment of ocular diseases, such as retinal disorders, cataract and refractive surgery, amblyopia, and in the evaluation of surgical materials and techniques. Furthermore, eliciting plasticity could open new perspectives in the development of strategies that trigger plasticity for better medical and surgical outcomes.

  15. Motor sequence learning occurs despite disrupted visual and proprioceptive feedback

    Directory of Open Access Journals (Sweden)

    Boyd Lara A

    2008-07-01

    Full Text Available Abstract Background Recent work has demonstrated the importance of proprioception for the development of internal representations of the forces encountered during a task. Evidence also exists for a significant role for proprioception in the execution of sequential movements. However, little work has explored the role of proprioceptive sensation during the learning of continuous movement sequences. Here, we report that the repeated segment of a continuous tracking task can be learned despite peripherally altered arm proprioception and severely restricted visual feedback regarding motor output. Methods Healthy adults practiced a continuous tracking task over 2 days. Half of the participants experienced vibration that altered proprioception of shoulder flexion/extension of the active tracking arm (experimental condition and half experienced vibration of the passive resting arm (control condition. Visual feedback was restricted for all participants. Retention testing was conducted on a separate day to assess motor learning. Results Regardless of vibration condition, participants learned the repeated segment demonstrated by significant improvements in accuracy for tracking repeated as compared to random continuous movement sequences. Conclusion These results suggest that with practice, participants were able to use residual afferent information to overcome initial interference of tracking ability related to altered proprioception and restricted visual feedback to learn a continuous motor sequence. Motor learning occurred despite an initial interference of tracking noted during acquisition practice.

  16. Two Types of Visual Objects

    Directory of Open Access Journals (Sweden)

    Skrzypulec Błażej

    2015-06-01

    Full Text Available While it is widely accepted that human vision represents objects, it is less clear which of the various philosophical notions of ‘object’ adequately characterizes visual objects. In this paper, I show that within contemporary cognitive psychology visual objects are characterized in two distinct, incompatible ways. On the one hand, models of visual organization describe visual objects in terms of combinations of features, in accordance with the philosophical bundle theories of objects. However, models of visual persistence apply a notion of visual objects that is more similar to that endorsed in philosophical substratum theories. Here I discuss arguments that might show either that only one of the above notions of visual objects is adequate in the context of human vision, or that the category of visual objects is not uniform and contains entities properly characterized by different philosophical conceptions.

  17. Plasticity of the human visual system after retinal gene therapy in patients with Leber’s congenital amaurosis

    Science.gov (United States)

    Ashtari, Manzar; Zhang, Hui; Cook, Philip A.; Cyckowski, Laura L.; Shindler, Kenneth S.; Marshall, Kathleen A.; Aravand, Puya; Vossough, Arastoo; Gee, James C.; Maguire, Albert M.; Baker, Chris I.; Bennett, Jean

    2015-01-01

    Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in response to visual impairment, vision restoration, and environmental interactions comes from animal studies. We evaluated human brain plasticity in a group of patients with Leber’s congenital amaurosis (LCA), who regained vision through gene therapy. Using non-invasive multimodal neuroimaging methods, we demonstrated that reversing blindness with gene therapy promoted long-term structural plasticity in the visual pathways emanating from the treated retina of LCA patients. The data revealed improvements and normalization along the visual fibers corresponding to the site of retinal injection of the gene therapy vector carrying the therapeutic gene in the treated eye compared to the visual pathway for the untreated eye of LCA patients. After gene therapy, the primary visual pathways (for example, geniculostriate fibers) in the treated retina were similar to those of sighted control subjects, whereas the primary visual pathways of the untreated retina continued to deteriorate. Our results suggest that visual experience, enhanced by gene therapy, may be responsible for the reorganization and maturation of synaptic connectivity in the visual pathways of the treated eye in LCA patients. The interactions between the eye and the brain enabled improved and sustained long-term visual function in patients with LCA after gene therapy. PMID:26180100

  18. P1-32: Response of Human Visual System to Paranormal Stimuli Appearing in Three-Dimensional Display

    Directory of Open Access Journals (Sweden)

    Jisoo Hong

    2012-10-01

    Full Text Available Three-dimensional (3D display became one of indispensable features of commercial TVs in recent years. However, the 3D content displayed by 3D display may contain the abrupt change of depth when the scene changes, which might be considered as a paranormal stimulus. Because the human visual system is not accustomed to such paranormal stimuli in natural conditions, they can cause unexpected responses which usually induce discomfort. Following the change of depth expressed by 3D display, the eyeballs rotate to match the convergence to the new 3D image position. The amount of rotation varies according to the initial longitudinal location and depth displacement of 3D image. Because the change of depth is abrupt, there is delay in human visual system following the change and such delay can be a source of discomfort. To guarantee the safety in watching 3D TV, the acceptable level of displacement in the longitudinal direction should be revealed quantitatively. Additionally, the artificially generated scenes also can provide paranormal stimuli such as periodic depth variations. In the presentation, we investigate the response of human visual system to such paranormal stimuli given by 3D display system. Using the result of investigation, we can give guideline to creating the 3D content to minimize the discomfort coming from the paranormal stimuli.

  19. Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex.

    Directory of Open Access Journals (Sweden)

    Daniel P Spiegel

    Full Text Available Transcranial direct current stimulation (tDCS is a safe, non-invasive technique for transiently modulating the balance of excitation and inhibition within the human brain. It has been reported that anodal tDCS can reduce both GABA mediated inhibition and GABA concentration within the human motor cortex. As GABA mediated inhibition is thought to be a key modulator of plasticity within the adult brain, these findings have broad implications for the future use of tDCS. It is important, therefore, to establish whether tDCS can exert similar effects within non-motor brain areas. The aim of this study was to assess whether anodal tDCS could reduce inhibitory interactions within the human visual cortex. Psychophysical measures of surround suppression were used as an index of inhibition within V1. Overlay suppression, which is thought to originate within the lateral geniculate nucleus (LGN, was also measured as a control. Anodal stimulation of the occipital poles significantly reduced psychophysical surround suppression, but had no effect on overlay suppression. This effect was specific to anodal stimulation as cathodal stimulation had no effect on either measure. These psychophysical results provide the first evidence for tDCS-induced reductions of intracortical inhibition within the human visual cortex.

  20. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Gert R. J. Christoffersen

    2017-09-01

    Full Text Available Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs, specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject’s evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions—from primary visual areas and into the inferior temporal gyrus (ITG. These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US.

  1. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  2. Self-Control and Impulsiveness in Nondieting Adult Human Females: Effects of Visual Food Cues and Food Deprivation

    Science.gov (United States)

    Forzano, Lori-Ann B.; Chelonis, John J.; Casey, Caitlin; Forward, Marion; Stachowiak, Jacqueline A.; Wood, Jennifer

    2010-01-01

    Self-control can be defined as the choice of a larger, more delayed reinforcer over a smaller, less delayed reinforcer, and impulsiveness as the opposite. Previous research suggests that exposure to visual food cues affects adult humans' self-control. Previous research also suggests that food deprivation decreases adult humans' self-control. The…

  3. VISUAL PERCEPTION BASED AUTOMATIC RECOGNITION OF CELL MOSAICS IN HUMAN CORNEAL ENDOTHELIUMMICROSCOPY IMAGES

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2011-05-01

    Full Text Available The human corneal endothelium can be observed with two types of microscopes: classical optical microscope for ex-vivo imaging, and specular optical microscope for in-vivo imaging. The quality of the cornea is correlated to the endothelial cell density and morphometry. Automatic methods to analyze the human corneal endothelium images are still not totally efficient. Image analysis methods that focus only on cell contours do not give good results in presence of noise and of bad conditions of acquisition. More elaborated methods introduce regional informations in order to performthe cell contours completion, thus implementing the duality contour-region. Their good performance can be explained by their connections with several basic principles of human visual perception (Gestalt Theory and Marr's computational theory.

  4. [Influence of human body target's spectral characteristics on visual range of low light level image intensifiers].

    Science.gov (United States)

    Zhang, Jun-Ju; Yang, Wen-Bin; Xu, Hui; Liu, Lei; Tao, Yuan-Yaun

    2013-11-01

    To study the effect of different human target's spectral reflective characteristic on low light level (LLL) image intensifier's distance, based on the spectral characteristics of the night-sky radiation and the spectral reflective coefficients of common clothes, we established a equation of human body target's spectral reflective distribution, and analyzed the spectral reflective characteristics of different human targets wearing the clothes of different color and different material, and from the actual detection equation of LLL image intensifier distance, discussed the detection capability of LLL image intensifier for different human target. The study shows that the effect of different human target's spectral reflective characteristic on LLL image intensifier distance is mainly reflected in the average reflectivity rho(-) and the initial contrast of the target and the background C0. Reflective coefficient and spectral reflection intensity of cotton clothes are higher than polyester clothes, and detection capability of LLL image intensifier is stronger for the human target wearing cotton clothes. Experimental results show that the LLL image intensifiers have longer visual ranges for targets who wear cotton clothes than targets who wear same color but polyester clothes, and have longer visual ranges for targets who wear light-colored clothes than targets who wear dark-colored clothes. And in the full moon illumination conditions, LLL image intensifiers are more sensitive to the clothes' material.

  5. Audio-Visual Tibetan Speech Recognition Based on a Deep Dynamic Bayesian Network for Natural Human Robot Interaction

    Directory of Open Access Journals (Sweden)

    Yue Zhao

    2012-12-01

    Full Text Available Audio-visual speech recognition is a natural and robust approach to improving human-robot interaction in noisy environments. Although multi-stream Dynamic Bayesian Network and coupled HMM are widely used for audio-visual speech recognition, they fail to learn the shared features between modalities and ignore the dependency of features among the frames within each discrete state. In this paper, we propose a Deep Dynamic Bayesian Network (DDBN to perform unsupervised extraction of spatial-temporal multimodal features from Tibetan audio-visual speech data and build an accurate audio-visual speech recognition model under a no frame-independency assumption. The experiment results on Tibetan speech data from some real-world environments showed the proposed DDBN outperforms the state-of-art methods in word recognition accuracy.

  6. Associative learning in baboons (Papio papio) and humans (Homo sapiens): species differences in learned attention to visual features.

    Science.gov (United States)

    Fagot, J; Kruschke, J K; Dépy, D; Vauclair, J

    1998-10-01

    We examined attention shifting in baboons and humans during the learning of visual categories. Within a conditional matching-to-sample task, participants of the two species sequentially learned two two-feature categories which shared a common feature. Results showed that humans encoded both features of the initially learned category, but predominantly only the distinctive feature of the subsequently learned category. Although baboons initially encoded both features of the first category, they ultimately retained only the distinctive features of each category. Empirical data from the two species were analyzed with the 1996 ADIT connectionist model of Kruschke. ADIT fits the baboon data when the attentional shift rate is zero, and the human data when the attentional shift rate is not zero. These empirical and modeling results suggest species differences in learned attention to visual features.

  7. Visual feature extraction and establishment of visual tags in the intelligent visual internet of things

    Science.gov (United States)

    Zhao, Yiqun; Wang, Zhihui

    2015-12-01

    The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.

  8. Sensitization of dural afferents underlies migraine-related behavior following meningeal application of interleukin-6 (IL-6

    Directory of Open Access Journals (Sweden)

    Yan Jin

    2012-01-01

    Full Text Available Abstract Background Migraine headache is one of the most common neurological disorders, but the pathophysiology contributing to migraine is poorly understood. Intracranial interleukin-6 (IL-6 levels have been shown to be elevated during migraine attacks, suggesting that this cytokine may facilitate pain signaling from the meninges and contribute to the development of headache. Methods Cutaneous allodynia was measured in rats following stimulation of the dura with IL-6 alone or in combination with the MEK inhibitor, U0126. The number of action potentials and latency to the first action potential peak in response to a ramp current stimulus as well as current threshold were measured in retrogradely-labeled dural afferents using patch-clamp electrophysiology. These recordings were performed in the presence of IL-6 alone or in combination with U0126. Association between ERK1 and Nav1.7 following IL-6 treatment was also measured by co-immunoprecipitation. Results Here we report that in awake animals, direct application of IL-6 to the dura produced dose-dependent facial and hindpaw allodynia. The MEK inhibitor U0126 blocked IL-6-induced allodynia indicating that IL-6 produced this behavioral effect through the MAP kinase pathway. In trigeminal neurons retrogradely labeled from the dura, IL-6 application decreased the current threshold for action potential firing. In response to a ramp current stimulus, cells treated with IL-6 showed an increase in the numbers of action potentials and a decrease in latency to the first spike, an effect consistent with phosphorylation of the sodium channel Nav1.7. Pretreatment with U0126 reversed hyperexcitability following IL-6 treatment. Moreover, co-immunoprecipitation experiments demonstrated an increased association between ERK1 and Nav1.7 following IL-6 treatment. Conclusions Our results indicate that IL-6 enhances the excitability of dural afferents likely via ERK-mediated modulation of Nav1.7 and these responses

  9. Spinal cord stimulation paresthesia and activity of primary afferents.

    Science.gov (United States)

    North, Richard B; Streelman, Karen; Rowland, Lance; Foreman, P Jay

    2012-10-01

    A patient with failed back surgery syndrome reported paresthesia in his hands and arms during a spinal cord stimulation (SCS) screening trial with a low thoracic electrode. The patient's severe thoracic stenosis necessitated general anesthesia for simultaneous decompressive laminectomy and SCS implantation for chronic use. Use of general anesthesia gave the authors the opportunity to characterize the patient's unusual distribution of paresthesia. During SCS implantation, they recorded SCS-evoked antidromic potentials at physiologically relevant amplitudes in the legs to guide electrode placement and in the arms as controls. Stimulation of the dorsal columns at T-8 evoked potentials in the legs (common peroneal nerves) and at similar thresholds, consistent with the sensation of paresthesia in the arms, in the right ulnar nerve. The authors' electrophysiological observations support observations by neuroanatomical specialists that primary afferents can descend several (in this case, at least 8) vertebral segments in the spinal cord before synapsing or ascending. This report thus confirms a physiological basis for unusual paresthesia distribution associated with thoracic SCS.

  10. The visual development of hand-centered receptive fields in a neural network model of the primate visual system trained with experimentally recorded human gaze changes.

    Science.gov (United States)

    Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M

    2016-01-01

    Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.

  11. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow

    DEFF Research Database (Denmark)

    Jensen, Elisa Pouline; Poulsen, Steen Seier; Kissow, Hannelouise

    2015-01-01

    was to localize renal GLP-1 receptors and describe GLP-1 mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using 125I-GLP-1......, 125I-exendin-4 (GLP-1 analog) and 125I-exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1 mediated effects on blood pressure (BP), renal blood flow (RBF), heart rate (HR), renin secretion, urinary flow rate and Na+ and K+ excretion were...... conclude that GLP-1 receptors are located in the renal vasculature including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases renal blood flow in normotensive rats....

  12. Relativity of Visual Communication

    OpenAIRE

    Arto Mutanen

    2016-01-01

    Communication is sharing and conveying information. In visual communication especially visual messages have to be formulated and interpreted. The interpretation is relative to a method of information presentation method which is human construction. This holds also in the case of visual languages. The notions of syntax and semantics for visual languages are not so well founded as they are for natural languages. Visual languages are both syntactically and semantically dense. The density is conn...

  13. Visual Motion Perception and Visual Attentive Processes.

    Science.gov (United States)

    1988-04-01

    88-0551 Visual Motion Perception and Visual Attentive Processes George Spering , New YorkUnivesity A -cesson For DTIC TAB rant AFOSR 85-0364... Spering . HIPSt: A Unix-based image processing syslem. Computer Vision, Graphics, and Image Processing, 1984,25. 331-347. ’HIPS is the Human Information...Processing Laboratory’s Image Processing System. 1985 van Santen, Jan P. It, and George Spering . Elaborated Reichardt detectors. Journal of the Optical

  14. Evolutionary relevance facilitates visual information processing.

    Science.gov (United States)

    Jackson, Russell E; Calvillo, Dusti P

    2013-11-03

    Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  15. Direct visualization of lipid domains in human skin stratum corneum's lipid membranes

    DEFF Research Database (Denmark)

    Plasencia, I; Norlen, Lars; Bagatolli, Luis

    2007-01-01

    scanning calorimetry, fluorescence spectroscopy, and two-photon excitation and laser scanning confocal fluorescence microscopy. Here we show that hydrated bilayers of human skin stratum corneum lipids express a giant sponge-like morphology with dimensions corresponding to the global three......-dimensional morphology of the stratum corneum extracellular space. These structures can be directly visualized using the aforementioned fluorescence microscopy techniques. At skin physiological temperatures (28 degrees C-32 degrees C), the phase state of these hydrated bilayers correspond microscopically (radial...

  16. Man-systems evaluation of moving base vehicle simulation motion cues. [human acceleration perception involving visual feedback

    Science.gov (United States)

    Kirkpatrick, M.; Brye, R. G.

    1974-01-01

    A motion cue investigation program is reported that deals with human factor aspects of high fidelity vehicle simulation. General data on non-visual motion thresholds and specific threshold values are established for use as washout parameters in vehicle simulation. A general purpose similator is used to test the contradictory cue hypothesis that acceleration sensitivity is reduced during a vehicle control task involving visual feedback. The simulator provides varying acceleration levels. The method of forced choice is based on the theory of signal detect ability.

  17. New Standardised Visual Forms for Recording the Presence of Human Skeletal Elements in Archaeological and Forensic Contexts

    Directory of Open Access Journals (Sweden)

    Mirjana Roksandic

    2003-02-01

    Full Text Available Even though visual recording forms are commonly used among human osteologists, very few of them are published. Those that are lack either detail or manipulability. Most anthropologists have to adapt these or develop their own forms when they start working on skeletal material, or have to accompany the visual forms with detailed, often time consuming, textual inventories. Three recording forms are proposed here: for adult, subadult and newborn skeletons. While no two-dimensional form will fit the requirements of every human osteologist, these forms are sufficiently detailed and easy to use. Printed or downloaded, they are published here in the belief that, with feedback from the anthropological community at large, they have the potential to become standard tools in data recording.

  18. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    Directory of Open Access Journals (Sweden)

    Rongfeng Hu

    2016-10-01

    Full Text Available The basal forebrain cholinergic system (BFCS robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum (LS, central amygdala (CeA, paraventricular nucleus of hypothalamus (PVH, dorsal raphe (DRN and parabrachial nucleus (PBN. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal-hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function.

  19. Splitting Attention across the Two Visual Fields in Visual Short-Term Memory

    Science.gov (United States)

    Delvenne, Jean-Francois; Holt, Jessica L.

    2012-01-01

    Humans have the ability to attentionally select the most relevant visual information from their extrapersonal world and to retain it in a temporary buffer, known as visual short-term memory (VSTM). Research suggests that at least two non-contiguous items can be selected simultaneously when they are distributed across the two visual hemifields. In…

  20. Manipulation of pre-target activity on the right frontal eye field enhances conscious visual perception in humans.

    Directory of Open Access Journals (Sweden)

    Lorena Chanes

    Full Text Available The right Frontal Eye Field (FEF is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site's ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network.

  1. The spatiotemporal relationships between chondroitin sulfate proteoglycans and terminations of calcitonin gene related peptide and parvalbumin immunoreactive afferents in the spinal cord of mouse embryos.

    Science.gov (United States)

    Wang, Liqing; Yu, Chao; Wang, Jun; Zhao, Hui; Chan, Sun-On

    2017-08-10

    Chondroitin sulfate (CS) proteoglycans (PGs) are a family of complex molecules in the extracellular matrix and cell surface that regulate axon growth and guidance during development of the central nervous system. In this study, the expression of CSPGs was investigated in the mouse spinal cord at late embryonic and neonatal stages using CS-56 antibody. CS immunoreactivity was observed abundantly in ventral regions of spinal cord of embryonic day (E) 15 embryos. At E16 to E18, CS expression spread dorsally, but never reached the superficial layers of the dorsal horn. This pattern was maintained until postnatal day 4, the latest stage examined. Antibodies against calcitonin gene related peptide (CGRP) and parvalbumin (PV) were employed to label primary afferents from nociceptors and proprioceptors, respectively. CGRP-immunoreactive fibers terminated in the superficial regions of the dorsal horn where CSPGs were weakly expressed, whereas PV-immunoreactive fibers were found in CSPG-rich regions in the ventral horn. Therefore, we conclude that CS expression is spatiotemporally regulated in the spinal cord, which correlates to the termination of sensory afferents. This pattern suggests a role of CSPGs on patterning afferents in the spinal cord, probably through a differential response of axons to these growth inhibitory molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Functional Imaging of Audio–Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Muers, Ross S.; Salo, Emma; Slater, Heather; Petkov, Christopher I.

    2017-01-01

    Abstract The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. PMID:28419201

  3. Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.

    Science.gov (United States)

    Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F

    2016-04-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Visual narratives : free-hand sketch for visual search and navigation of video.

    OpenAIRE

    James, Stuart

    2016-01-01

    Humans have an innate ability to communicate visually; the earliest forms of communication were cave drawings, and children can communicate visual descriptions of scenes through drawings well before they can write. Drawings and sketches offer an intuitive and efficient means for communicating visual concepts. Today, society faces a deluge of digital visual content driven by a surge in the generation of video on social media and the online availability of video archives. Mobile devices are...

  5. Evolutionary Relevance Facilitates Visual Information Processing

    Directory of Open Access Journals (Sweden)

    Russell E. Jackson

    2013-07-01

    Full Text Available Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  6. Visual stimulation, {sup 1}H MR spectroscopy and fMRI of the human visual pathways

    Energy Technology Data Exchange (ETDEWEB)

    Boucard, Christine C.; Cornelissen, Frans W. [University of Groningen, Laboratory for Experimental Ophthalmology, Postbus 30001, Groningen (Netherlands); University of Groningen, BCN Neuro-imaging Center, Postbus 196, Groningen (Netherlands); Mostert, Jop P.; Keyser, Jacques De [University Hospital Groningen, Department of Neurology, Groningen (Netherlands); Oudkerk, Matthijs; Sijens, Paul E. [University Hospital Groningen, Department of Radiology, Groningen (Netherlands)

    2005-01-01

    The purpose was to assess changes in lactate content and other brain metabolites under visual stimulation in optical chiasm, optic radiations and occipital cortex using multiple voxel MR spectroscopy (MRS). {sup 1}H chemical shift imaging (CSI) examinations of transverse planes centered to include the above structures were performed in four subjects at an echo time of 135 ms. Functional MRI (fMRI) was used to confirm the presence of activity in the visual cortex during the visual stimulation. Spectral maps of optical chiasm were of poor quality due to field disturbances caused by nearby large blood vessels and/or eye movements. The optic radiations and the occipital lobe did not show any significant MR spectral change upon visual stimulation, i.e., the peak areas of inositol, choline, creatine, glutamate and N-acetylaspartate were not affected. Reproducible lactate signals were not observed. fMRI confirmed the presence of strong activations in stimulated visual cortex. Prolonged visual stimulation did not cause significant changes in MR spectra. Any signal observed near the 1.33 ppm resonance frequency of the lactate methyl-group was artifactual, originating from lipid signals from outside the volume of interest (VOI). Previous claims about changes in lactate levels in the visual cortex upon visual stimulation may have been based on such erroneous observations. (orig.)

  7. The diversity of the human hair colour assessed by visual scales and instrumental measurements. A worldwide survey.

    Science.gov (United States)

    Lozano, I; Saunier, J B; Panhard, S; Loussouarn, G

    2017-02-01

    To study (i) the diversity of the natural colour of the human hair through both visual assessment of hair tone levels and colorimetric measurements of hair strands collected from 2057 human male and female volunteers, from 23 regions of the world and (ii) the correlation between visual assessments and colorimetric measurements. Hair strands were analysed by a spectrocolorimeter under the L*, a*, b* referential system and scored in vivo by experts before sampling, through standardized visual reference scales based on a 1-10 range. Results show that from a typological aspect, black or dark brown hairs largely predominate among studied ethnic groups, whereas Caucasian or derived populations exhibit the widest palette of medium to fair shades, partly explaining some past interbreeding among populations. Instrumental measurements clearly confirm that a given colour of a pigmented hair, at the exclusion of red hairs, is mostly governed by two components, L* and b*, from the L*, a*, b* reference system. The comparisons between visual assessments and instrumental data show that these appear closely linked. Darker hairs show close or subtle variations in L*, a*, b* parameters, making their individual colour differentiation calling for technical improvements in colorimetric measurements. The latter are likely governed by other physical factors such as shape, diameter and shine. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. Modulation of high-frequency vestibuloocular reflex during visual tracking in humans

    Science.gov (United States)

    Das, V. E.; Leigh, R. J.; Thomas, C. W.; Averbuch-Heller, L.; Zivotofsky, A. Z.; Discenna, A. O.; Dell'Osso, L. F.

    1995-01-01

    1. Humans may visually track a moving object either when they are stationary or in motion. To investigate visual-vestibular interaction during both conditions, we compared horizontal smooth pursuit (SP) and active combined eye-head tracking (CEHT) of a target moving sinusoidally at 0.4 Hz in four normal subjects while the subjects were either stationary or vibrated in yaw at 2.8 Hz. We also measured the visually enhanced vestibuloocular reflex (VVOR) during vibration in yaw at 2.8 Hz over a peak head velocity range of 5-40 degrees/s. 2. We found that the gain of the VVOR at 2.8 Hz increased in all four subjects as peak head velocity increased (P modulation in vestibuloocular reflex gain occurred with increasing peak head velocity during a control condition when subjects were rotated in darkness. 3. During both horizontal SP and CEHT, tracking gains were similar, and the mean slip speed of the target's image on the retina was held below 5.5 degrees/s whether subjects were stationary or being vibrated at 2.8 Hz. During both horizontal SP and CEHT of target motion at 0.4 Hz, while subjects were vibrated in yaw, VVOR gain for the 2.8-Hz head rotations was similar to or higher than that achieved during fixation of a stationary target. This is in contrast to the decrease of VVOR gain that is reported while stationary subjects perform CEHT.(ABSTRACT TRUNCATED AT 250 WORDS).

  9. Rethinking Visual Analytics for Streaming Data Applications

    Energy Technology Data Exchange (ETDEWEB)

    Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris

    2017-01-01

    In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between the two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive

  10. A food-predictive cue attributed with incentive salience engages subcortical afferents and efferents of the paraventricular nucleus of the thalamus.

    Science.gov (United States)

    Haight, Joshua L; Fuller, Zachary L; Fraser, Kurt M; Flagel, Shelly B

    2017-01-06

    The paraventricular nucleus of the thalamus (PVT) has been implicated in behavioral responses to reward-associated cues. However, the precise role of the PVT in these behaviors has been difficult to ascertain since Pavlovian-conditioned cues can act as both predictive and incentive stimuli. The "sign-tracker/goal-tracker" rat model has allowed us to further elucidate the role of the PVT in cue-motivated behaviors, identifying this structure as a critical component of the neural circuitry underlying individual variation in the propensity to attribute incentive salience to reward cues. The current study assessed differences in the engagement of specific PVT afferents and efferents in response to presentation of a food-cue that had been attributed with only predictive value or with both predictive and incentive value. The retrograde tracer fluorogold (FG) was injected into the PVT or the nucleus accumbens (NAc) of rats, and cue-induced c-Fos in FG-labeled cells was quantified. Presentation of a predictive stimulus that had been attributed with incentive value elicited c-Fos in PVT afferents from the lateral hypothalamus, medial amygdala (MeA), and the prelimbic cortex (PrL), as well as posterior PVT efferents to the NAc. PVT afferents from the PrL also showed elevated c-Fos levels following presentation of a predictive stimulus alone. Thus, presentation of an incentive stimulus results in engagement of subcortical brain regions; supporting a role for the hypothalamic-thalamic-striatal axis, as well as the MeA, in mediating responses to incentive stimuli; whereas activity in the PrL to PVT pathway appears to play a role in processing the predictive qualities of reward-paired stimuli. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Bradykinin Contributes to Sympathetic and Pressor Responses Evoked by Activation of Skeletal Muscle Afferents P2X in Heart Failure

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-11-01

    Full Text Available Background/Aims: Published data suggest that purinergic P2X receptors of muscle afferent nerves contribute to the enhanced sympathetic nervous activity (SNA and blood pressure (BP responses during static exercise in heart failure (HF. In this study, we examined engagement of bradykinin (BK in regulating responses of SNA and BP evoked by P2X stimulation in rats with HF. We further examined cellular mechanisms responsible for BK. We hypothesized that BK potentiates P2X currents of muscle dorsal root ganglion (DRG neurons, and this effect is greater in HF due to upregulation of BK kinin B2 and P2X3 receptor. As a result, BK amplifies muscle afferents P2X-mediated SNA and BP responses. Methods: Renal SNA and BP responses were recorded in control rats and rats with HF. Western Blot analysis and patch-clamp methods were employed to examine the receptor expression and function of DRG neurons involved in the effects of BK. Results: BK injected into the arterial blood supply of the hindlimb muscles heightened the reflex SNA and BP responses induced by P2X activation with α,β-methylene ATP to a greater degree in HF rats. In addition, HF upregulated the protein expression of kinin B2 and P2X3 in DRG and the prior application of BK increased the magnitude of α,β-methylene ATP-induced currents in muscle DRG neurons from HF rats. Conclusion: BK plays a facilitating role in modulating muscle afferent P2X-engaged reflex sympathetic and pressor responses. In HF, P2X responsivness is augmented due to increases in expression of kinin B2 and P2X3 receptors and P2X current activity.

  12. Cortical networks involved in visual awareness independent of visual attention

    OpenAIRE

    Webb, Taylor W.; Igelström, Kajsa M.; Schurger, Aaron; Graziano, Michael S. A.

    2016-01-01

    Do specific areas of the brain participate in subjective visual experience? We measured brain activity in humans using fMRI. Participants were aware of a visual stimulus in one condition and unaware of it in another condition. The two conditions were balanced for their effect on visual attention. Specific brain areas were more active in the aware than in the unaware condition, suggesting they were involved in subjective awareness independent of attention. The largest cluster of activity was f...

  13. Abdominal and internal intercostal motoneurones are strong synergists for expiration but are not synergists for Group I monosynaptic afferent inputs

    DEFF Research Database (Denmark)

    Ford, Tim W; Meehan, Claire Francesca; Kirkwood, Peter

    2014-01-01

    , 9 being in Group B Dist motoneurones. The complete absence of heteronymous monosynaptic Group I reflex excitation between muscles that are synergistically activated in expiration leads us to conclude that such connections from muscle spindle afferents of the thoracic nerves have little role...... in controlling expiratory movements but, where present, support other motor acts....

  14. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle.

    Directory of Open Access Journals (Sweden)

    Guillaume Caron

    Full Text Available The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1 untreated animals acting as control and 2 treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i no recovery (B0, ii 50% recovery (B50 and iii full recovery (B100. Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl and lactic acid injections and Electrically-Induced Fatigue (EIF, and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.

  15. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle.

    Science.gov (United States)

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2015-01-01

    The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.

  16. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Rinne, Teemu; Muers, Ross S; Salo, Emma; Slater, Heather; Petkov, Christopher I

    2017-06-01

    The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio-visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio-visual selective attention modulates the primate brain, identify sources for "lost" attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. © The Author 2017. Published by Oxford University Press.

  17. The effects of ultraviolet-A radiation on visual evoked potentials in the young human eye

    International Nuclear Information System (INIS)

    Sanford, B.E.; Beacham, S.; Hanifin, J.P.; Hannon, P.; Streletz, L.; Sliney, D.; Brainard, G.C.

    1996-01-01

    A recent study from this laboratory using visual evoked potentials (VEPs) demonstrated that children's eyes are capable of detecting ultraviolet radiation. The aim of this study was to compare dose-response relationships in two age groups, 6-10 years (n=10) and 20-25 years (n=10). Under photopic viewing conditions (550 lux), exposures of monochromatic UV-A (339 nm) and visible radiation (502 nm) were correlated to VEPs. The results demonstrate that monochromatic UV-A can elicit age and dose dependent responses in the human visual system, suggesting that the eyes of children are more responsive to UV stimuli than the eyes of young adults. (au) 17 refs

  18. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas

    Science.gov (United States)

    Mao, Yu-Ting; Hua, Tian-Miao

    2011-01-01

    Sensory neocortex is capable of considerable plasticity after sensory deprivation or damage to input pathways, especially early in development. Although plasticity can often be restorative, sometimes novel, ectopic inputs invade the affected cortical area. Invading inputs from other sensory modalities may compromise the original function or even take over, imposing a new function and preventing recovery. Using ferrets whose retinal axons were rerouted into auditory thalamus at birth, we were able to examine the effect of varying the degree of ectopic, cross-modal input on reorganization of developing auditory cortex. In particular, we assayed whether the invading visual inputs and the existing auditory inputs competed for or shared postsynaptic targets and whether the convergence of input modalities would induce multisensory processing. We demonstrate that although the cross-modal inputs create new visual neurons in auditory cortex, some auditory processing remains. The degree of damage to auditory input to the medial geniculate nucleus was directly related to the proportion of visual neurons in auditory cortex, suggesting that the visual and residual auditory inputs compete for cortical territory. Visual neurons were not segregated from auditory neurons but shared target space even on individual target cells, substantially increasing the proportion of multisensory neurons. Thus spatial convergence of visual and auditory input modalities may be sufficient to expand multisensory representations. Together these findings argue that early, patterned visual activity does not drive segregation of visual and auditory afferents and suggest that auditory function might be compromised by converging visual inputs. These results indicate possible ways in which multisensory cortical areas may form during development and evolution. They also suggest that rehabilitative strategies designed to promote recovery of function after sensory deprivation or damage need to take into

  19. Is It Me or My Hormones? Neuroendocrine Activation Profiles to Visual Food Stimuli Across the Menstrual Cycle.

    Science.gov (United States)

    Arnoni-Bauer, Yardena; Bick, Atira; Raz, Noa; Imbar, Tal; Amos, Shoshana; Agmon, Orly; Marko, Limor; Levin, Netta; Weiss, Ram

    2017-09-01

    Homeostatic energy balance is controlled via the hypothalamus, whereas regions controlling reward and cognitive decision-making are critical for hedonic eating. Eating varies across the menstrual cycle peaking at the midluteal phase. To test responses of females with regular cycles during midfollicular and midluteal phase and of users of monophasic oral contraception pills (OCPs) to visual food cues. Participants performed a functional magnetic resonance imaging while exposed to visual food cues in four time points: fasting and fed conditions in midfollicular and midluteal phases. Twenty females with regular cycles and 12 on monophasic OCP, aged 18 to 35 years. Activity in homeostatic (hypothalamus), reward (amygdala, putamen and insula), frontal (anterior cingulate cortex, dorsolateral prefrontal cortex), and visual regions (calcarine and lateral occipital cortex). Tertiary hospital. In females with regular cycles, brain regions associated with homeostasis but also the reward system, executive frontal areas, and afferent visual areas were activated to a greater degree during the luteal compared with the follicular phase. Within the visual areas, a dual effect of hormonal and prandial state was seen. In females on monophasic OCPs, characterized by a permanently elevated progesterone concentration, activity reminiscent of the luteal phase was found. Androgen, cortisol, testosterone, and insulin levels were significantly correlated with reward and visual region activation. Hormonal mechanisms affect the responses of women's homeostatic, emotional, and attentional brain regions to food cues. The relation of these findings to eating behavior throughout the cycle needs further investigation. Copyright © 2017 Endocrine Society

  20. Characterization of visual percepts evoked by noninvasive stimulation of the human posterior parietal cortex.

    Directory of Open Access Journals (Sweden)

    Peter J Fried

    Full Text Available Phosphenes are commonly evoked by transcranial magnetic stimulation (TMS to study the functional organization, connectivity, and excitability of the human visual brain. For years, phosphenes have been documented only from stimulating early visual areas (V1-V3 and a handful of specialized visual regions (V4, V5/MT+ in occipital cortex. Recently, phosphenes were reported after applying TMS to a region of posterior parietal cortex involved in the top-down modulation of visuo-spatial processing. In the present study, we systematically characterized parietal phosphenes to determine if they are generated directly by local mechanisms or emerge through indirect activation of other visual areas. Using technology developed in-house to record the subjective features of phosphenes, we found no systematic differences in the size, shape, location, or frame-of-reference of parietal phosphenes when compared to their occipital counterparts. In a second experiment, discrete deactivation by 1 Hz repetitive TMS yielded a double dissociation: phosphene thresholds increased at the deactivated site without producing a corresponding change at the non-deactivated location. Overall, the commonalities of parietal and occipital phosphenes, and our ability to independently modulate their excitability thresholds, lead us to conclude that they share a common neural basis that is separate from either of the stimulated regions.

  1. Calculation of color difference and measurement of the spectrum of aerosol based on human visual system

    Science.gov (United States)

    Dai, Mengyan; Liu, Jianghai; Cui, Jianlin; Chen, Chunsheng; Jia, Peng

    2017-10-01

    In order to solve the problem of the quantitative test of spectrum and color of aerosol, the measurement method of spectrum of aerosol based on human visual system was proposed. The spectrum characteristics and color parameters of three different aerosols were tested, and the color differences were calculated according to the CIE1976-L*a*b* color difference formula. Three tested powders (No 1# No 2# and No 3# ) were dispersed in a plexglass box and turned into aerosol. The powder sample was released by an injector with different dosages in each experiment. The spectrum and color of aerosol were measured by the PRO 6500 Fiber Optic Spectrometer. The experimental results showed that the extinction performance of aerosol became stronger and stronger with the increase of concentration of aerosol. While the chromaticity value differences of aerosols in the experiment were so small, luminance was verified to be the main influence factor of human eye visual perception and contributed most in the three factors of the color difference calculation. The extinction effect of No 3# aerosol was the strongest of all and caused the biggest change of luminance and color difference which would arouse the strongest human visual perception. According to the sensation level of chromatic color by Chinese, recognition color difference would be produced when the dosage of No 1# powder was more than 0.10 gram, the dosage of No 2# powder was more than 0.15 gram, and the dosage of No 3# powder was more than 0.05 gram.

  2. Object representations in visual memory: evidence from visual illusions.

    Science.gov (United States)

    Ben-Shalom, Asaf; Ganel, Tzvi

    2012-07-26

    Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.

  3. Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.

    Science.gov (United States)

    Byers, Anna; Serences, John T

    2014-09-01

    Learning to better discriminate a specific visual feature (i.e., a specific orientation in a specific region of space) has been associated with plasticity in early visual areas (sensory modulation) and with improvements in the transmission of sensory information from early visual areas to downstream sensorimotor and decision regions (enhanced readout). However, in many real-world scenarios that require perceptual expertise, observers need to efficiently process numerous exemplars from a broad stimulus class as opposed to just a single stimulus feature. Some previous data suggest that perceptual learning leads to highly specific neural modulations that support the discrimination of specific trained features. However, the extent to which perceptual learning acts to improve the discriminability of a broad class of stimuli via the modulation of sensory responses in human visual cortex remains largely unknown. Here, we used functional MRI and a multivariate analysis method to reconstruct orientation-selective response profiles based on activation patterns in the early visual cortex before and after subjects learned to discriminate small offsets in a set of grating stimuli that were rendered in one of nine possible orientations. Behavioral performance improved across 10 training sessions, and there was a training-related increase in the amplitude of orientation-selective response profiles in V1, V2, and V3 when orientation was task relevant compared with when it was task irrelevant. These results suggest that generalized perceptual learning can lead to modified responses in the early visual cortex in a manner that is suitable for supporting improved discriminability of stimuli drawn from a large set of exemplars. Copyright © 2014 the American Physiological Society.

  4. Computed tomographic features of afferent loop syndrome: pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Zissin, R. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Hertz, M. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Paran, H. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Surgery ' A' , Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Osadchy, A. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Gayer, G. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Assaf Harofe Medical Center, Zrifin, Sackler Faculty of Medicine, Tel Aviv (Israel)

    2005-04-15

    This pictorial essay reviews the computed tomography (CT) findings of afferent loop syndrome (ALS) in various pathological conditions to demonstrate the contribution of a common imaging modality-that is, abdominal CT, used nowadays for various abdominal complaints-to the diagnosis of ALS. ALS is caused by obstruction of the duodenum and jejunum proximal to a gastrojejunostomy anastomosis. It is a rare complication after Billroth II subtotal gastrectomy and even more rare after total or subtotal gastrectomy with Roux-en-Y reconstruction. Although currently advanced medical treatment and endoscopic interventions have dramatically decreased the necessity of surgery for peptic ulcer disease, ALS may appear years after previously common operations. Alternatively, the use of surgical resection for early gastric cancer nowadays leads to an increasing rate of malignancy-related ALS. Clinically, ALS may be difficult to diagnose as its presentation may be vague and nonspecific, but it has a characteristic appearance on CT. Clinicians and radiologists should therefore be familiar with this rare complication. Prompt recognition and correct diagnosis of this syndrome and its probable etiology are important as a guide for treatment. This review illustrates the CT features of ALS in various conditions. (author)

  5. Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition.

    Directory of Open Access Journals (Sweden)

    Na Shu

    Full Text Available Humans can easily understand other people's actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1, and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model.

  6. Supporting Clinical Cognition: A Human-Centered Approach to a Novel ICU Information Visualization Dashboard.

    Science.gov (United States)

    Faiola, Anthony; Srinivas, Preethi; Duke, Jon

    2015-01-01

    Advances in intensive care unit bedside displays/interfaces and electronic medical record (EMR) technology have not adequately addressed the topic of visual clarity of patient data/information to further reduce cognitive load during clinical decision-making. We responded to these challenges with a human-centered approach to designing and testing a decision-support tool: MIVA 2.0 (Medical Information Visualization Assistant, v.2). Envisioned as an EMR visualization dashboard to support rapid analysis of real-time clinical data-trends, our primary goal originated from a clinical requirement to reduce cognitive overload. In the study, a convenience sample of 12 participants were recruited, in which quantitative and qualitative measures were used to compare MIVA 2.0 with ICU paper medical-charts, using time-on-task, post-test questionnaires, and interviews. Findings demonstrated a significant difference in speed and accuracy with the use of MIVA 2.0. Qualitative outcomes concurred, with participants acknowledging the potential impact of MIVA 2.0 for reducing cognitive load and enabling more accurate and quicker decision-making.

  7. Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells.

    Science.gov (United States)

    Lecca, Salvatore; Melis, Miriam; Luchicchi, Antonio; Ennas, Maria Grazia; Castelli, Maria Paola; Muntoni, Anna Lisa; Pistis, Marco

    2011-02-01

    Recent findings have underlined the rostromedial tegmental nucleus (RMTg), a structure located caudally to the ventral tegmental area, as an important site involved in the mechanisms of aversion. RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding midbrain dopamine (DA) neurons. One of the key features of drug addiction is the perseverance of drug seeking in spite of negative and unpleasant consequences, likely mediated by response suppression within neural pathways mediating aversion. To investigate whether the RMTg has a function in the mechanisms of addicting drugs, we studied acute effects of morphine, cocaine, the cannabinoid agonist WIN55212-2 (WIN), and nicotine on putative RMTg neurons. We utilized single unit extracellular recordings in anesthetized rats and whole-cell patch-clamp recordings in brain slices to identify and characterize putative RMTg neurons and their responses to drugs of abuse. Morphine and WIN inhibited both firing rate in vivo and excitatory postsynaptic currents (EPSCs) evoked by stimulation of rostral afferents in vitro, whereas cocaine inhibited discharge activity without affecting EPSC amplitude. Conversely, nicotine robustly excited putative RMTg neurons and enhanced EPSCs, an effect mediated by α7-containing nicotinic acetylcholine receptors. Our results suggest that activity of RMTg neurons is profoundly influenced by drugs of abuse and, as important inhibitory afferents to midbrain DA neurons, they might take place in the complex interplay between the neural circuits mediating aversion and reward.

  8. Visualization of Penile Suspensory Ligamentous System Based on Visible Human Data Sets

    Science.gov (United States)

    Chen, Xianzhuo; Wu, Yi; Tao, Ling; Yan, Yan; Pang, Jun; Zhang, Shaoxiang; Li, Shirong

    2017-01-01

    Background The aim of this study was to use a three-dimensional (3D) visualization technology to illustrate and describe the anatomical features of the penile suspensory ligamentous system based on the Visible Human data sets and to explore the suspensory mechanism of the penis for the further improvement of the penis-lengthening surgery. Material/Methods Cross-sectional images retrieved from the first Chinese Visible Human (CVH-1), third Chinese Visible Human (CVH-3), and Visible Human Male (VHM) data sets were used to segment the suspensory ligamentous system and its adjacent structures. The magnetic resonance imaging (MRI) images of this system were studied and compared with those from the Visible Human data sets. The 3D models reconstructed from the Visible Human data sets were used to provide morphological features of the penile suspensory ligamentous system and its related structures. Results The fundiform ligament was a superficial, loose, fibro-fatty tissue which originated from Scarpa’s fascia superiorly and continued to the scrotal septum inferiorly. The suspensory ligament and arcuate pubic ligament were dense fibrous connective tissues which started from the pubic symphysis and terminated by attaching to the tunica albuginea of the corpora cavernosa. Furthermore, the arcuate pubic ligament attached to the inferior rami of the pubis laterally. Conclusions The 3D model based on Visible Human data sets can be used to clarify the anatomical features of the suspensory ligamentous system, thereby contributing to the improvement of penis-lengthening surgery. PMID:28530218

  9. Selective attention reduces physiological noise in the external ear canals of humans. II: Visual attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    Human subjects performed in several behavioral conditions requiring, or not requiring, selective attention to visual stimuli. Specifically, the attentional task was to recognize strings of digits that had been presented visually. A nonlinear version of the stimulus-frequency otoacoustic emission (SFOAE), called the nSFOAE, was collected during the visual presentation of the digits. The segment of the physiological response discussed here occurred during brief silent periods immediately following the SFOAE-evoking stimuli. For all subjects tested, the physiological-noise magnitudes were substantially weaker (less noisy) during the tasks requiring the most visual attention. Effect sizes for the differences were >2.0. Our interpretation is that cortico-olivo influences adjusted the magnitude of efferent activation during the SFOAE-evoking stimulation depending upon the attention task in effect, and then that magnitude of efferent activation persisted throughout the silent period where it also modulated the physiological noise present. Because the results were highly similar to those obtained when the behavioral conditions involved auditory attention, similar mechanisms appear to operate both across modalities and within modalities. Supplementary measurements revealed that the efferent activation was spectrally global, as it was for auditory attention. PMID:24732070

  10. Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors.

    Science.gov (United States)

    Wang, Y; Smallwood, P M; Cowan, M; Blesh, D; Lawler, A; Nathans, J

    1999-04-27

    This study examines the mechanism of mutually exclusive expression of the human X-linked red and green visual pigment genes in their respective cone photoreceptors by asking whether this expression pattern can be produced in a mammal that normally carries only a single X-linked visual pigment gene. To address this question, we generated transgenic mice that carry a single copy of a minimal human X chromosome visual pigment gene array in which the red and green pigment gene transcription units were replaced, respectively, by alkaline phosphatase and beta-galactosidase reporters. As determined by histochemical staining, the reporters are expressed exclusively in cone photoreceptor cells. In 20 transgenic mice carrying any one of three independent transgene insertion events, an average of 63% of expressing cones have alkaline phosphatase activity, 10% have beta-galactosidase activity, and 27% have activity for both reporters. Thus, mutually exclusive expression of red and green pigment transgenes can be achieved in a large fraction of cones in a dichromat mammal, suggesting a facile evolutionary path for the development of trichromacy after visual pigment gene duplication. These observations are consistent with a model of visual pigment expression in which stochastic pairing occurs between a locus control region and either the red or the green pigment gene promotor.

  11. Morphological changes in different populations of bladder afferent neurons detected by herpes simplex virus (HSV) vectors with cell-type-specific promoters in mice with spinal cord injury.

    Science.gov (United States)

    Shimizu, Nobutaka; Doyal, Mark F; Goins, William F; Kadekawa, Katsumi; Wada, Naoki; Kanai, Anthony J; de Groat, William C; Hirayama, Akihide; Uemura, Hirotsugu; Glorioso, Joseph C; Yoshimura, Naoki

    2017-11-19

    Functional and morphological changes in C-fiber bladder afferent pathways are reportedly involved in neurogenic detrusor overactivity (NDO) after spinal cord injury (SCI). This study examined the morphological changes in different populations of bladder afferent neurons after SCI using replication-defective herpes simplex virus (HSV) vectors encoding the mCherry reporter driven by neuronal cell-type-specific promoters. Spinal intact (SI) and SCI mice were injected into the bladder wall with HSV mCherry vectors driven by the cytomegalovirus (CMV) promoter, CGRP promoter, TRPV1 promoter or neurofilament 200 (NF200) promoter. Two weeks after vector inoculation into the bladder wall, L1 and L6 dorsal root ganglia (DRG) were removed bilaterally for immunofluorescent staining using anti-mCherry antibody. The number of CMV promoter vector-labeled neurons was not altered after SCI. The number of CGRP and TRPV1 promoter vector-labeled neurons was significantly increased whereas the number of NF200 vector-labeled neurons was decreased in L6 DRG after SCI. The median size of CGRP promoter-labeled C-fiber neurons was increased from 247.0 in SI mice to 271.3μm 2 in SCI mice whereas the median cell size of TRPV1 promoter vector-labeled neurons was decreased from 245.2 in SI mice to 216.5μm 2 in SCI mice. CGRP and TRPV1 mRNA levels of laser-captured bladder afferent neurons labeled with Fast Blue were significantly increased in SCI mice compared to SI mice. Thus, using a novel HSV vector-mediated neuronal labeling technique, we found that SCI induces expansion of the CGRP- and TRPV1-expressing C-fiber cell population, which could contribute to C-fiber afferent hyperexcitability and NDO after SCI. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Tuning and sensitivity of the human vestibular system to low-frequency vibration.

    Science.gov (United States)

    Todd, Neil P McAngus; Rosengren, Sally M; Colebatch, James G

    2008-10-17

    Mechanoreceptive hair-cells of the vertebrate inner ear have a remarkable sensitivity to displacement, whether excited by sound, whole-body acceleration or substrate-borne vibration. In response to seismic or substrate-borne vibration, thresholds for vestibular afferent fibre activation have been reported in anamniotes (fish and frogs) in the range -120 to -90 dB re 1g. In this article, we demonstrate for the first time that the human vestibular system is also extremely sensitive to low-frequency and infrasound vibrations by making use of a new technique for measuring vestibular activation, via the vestibulo-ocular reflex (VOR). We found a highly tuned response to whole-head vibration in the transmastoid plane with a best frequency of about 100 Hz. At the best frequency we obtained VOR responses at intensities of less than -70 dB re 1g, which was 15 dB lower than the threshold of hearing for bone-conducted sound in humans at this frequency. Given the likely synaptic attenuation of the VOR pathway, human receptor sensitivity is probably an order of magnitude lower, thus approaching the seismic sensitivity of the frog ear. These results extend our knowledge of vibration-sensitivity of vestibular afferents but also are remarkable as they indicate that the seismic sensitivity of the human vestibular system exceeds that of the cochlea for low-frequencies.

  13. Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5.

    Science.gov (United States)

    Walsh, V; Ellison, A; Battelli, L; Cowey, A

    1998-03-22

    Transcranial magnetic stimulation (TMS) can be used to simulate the effects of highly circumscribed brain damage permanently present in some neuropsychological patients, by reversibly disrupting the normal functioning of the cortical area to which it is applied. By using TMS we attempted to recreate deficits similar to those reported in a motion-blind patient and to assess the specificity of deficits when TMS is applied over human area V5. We used six visual search tasks and showed that subjects were impaired in a motion but not a form 'pop-out' task when TMS was applied over V5. When motion was present, but irrelevant, or when attention to colour and form were required, TMS applied to V5 enhanced performance. When attention to motion was required in a motion-form conjunction search task, irrespective of whether the target was moving or stationary, TMS disrupted performance. These data suggest that attention to different visual attributes involves mutual inhibition between different extrastriate visual areas.

  14. Visual Working Memory Enhances the Neural Response to Matching Visual Input.

    Science.gov (United States)

    Gayet, Surya; Guggenmos, Matthias; Christophel, Thomas B; Haynes, John-Dylan; Paffen, Chris L E; Van der Stigchel, Stefan; Sterzer, Philipp

    2017-07-12

    Visual working memory (VWM) is used to maintain visual information available for subsequent goal-directed behavior. The content of VWM has been shown to affect the behavioral response to concurrent visual input, suggesting that visual representations originating from VWM and from sensory input draw upon a shared neural substrate (i.e., a sensory recruitment stance on VWM storage). Here, we hypothesized that visual information maintained in VWM would enhance the neural response to concurrent visual input that matches the content of VWM. To test this hypothesis, we measured fMRI BOLD responses to task-irrelevant stimuli acquired from 15 human participants (three males) performing a concurrent delayed match-to-sample task. In this task, observers were sequentially presented with two shape stimuli and a retro-cue indicating which of the two shapes should be memorized for subsequent recognition. During the retention interval, a task-irrelevant shape (the probe) was briefly presented in the peripheral visual field, which could either match or mismatch the shape category of the memorized stimulus. We show that this probe stimulus elicited a stronger BOLD response, and allowed for increased shape-classification performance, when it matched rather than mismatched the concurrently memorized content, despite identical visual stimulation. Our results demonstrate that VWM enhances the neural response to concurrent visual input in a content-specific way. This finding is consistent with the view that neural populations involved in sensory processing are recruited for VWM storage, and it provides a common explanation for a plethora of behavioral studies in which VWM-matching visual input elicits a stronger behavioral and perceptual response. SIGNIFICANCE STATEMENT Humans heavily rely on visual information to interact with their environment and frequently must memorize such information for later use. Visual working memory allows for maintaining such visual information in the mind

  15. Influence of vestibular activation on respiration in humans

    Science.gov (United States)

    Monahan, Kevin D.; Sharpe, Melissa K.; Drury, Daniel; Ertl, Andrew C.; Ray, Chester A.

    2002-01-01

    The purpose of this study was to determine the effects of the semicircular canals and otolith organs on respiration in humans. On the basis of animal studies, we hypothesized that vestibular activation would elicit a vestibulorespiratory reflex. To test this hypothesis, respiratory measures, arterial blood pressure, and heart rate were measured during engagement of semicircular canals and/or otolith organs. Dynamic upright pitch and roll (15 cycles/min), which activate the otolith organs and semicircular canals, increased respiratory rate (Delta2 +/- 1 and Delta3 +/- 1 breaths/min, respectively; P < 0.05). Dynamic yaw and lateral pitch (15 cycles/min), which activate the semicircular canals, increased respiration similarly (Delta3 +/- 1 and Delta2 +/- 1, respectively; P < 0.05). Dynamic chair rotation (15 cycles/min), which mimics dynamic yaw but eliminates neck muscle afferent, increased respiration (Delta3 +/- 1; P < 0.05) comparable to dynamic yaw (15 cycles/min). Increases in respiratory rate were graded as greater responses occurred during upright (Delta5 +/- 2 breaths/min) and lateral pitch (Delta4 +/- 1) and roll (Delta5 +/- 1) performed at 30 cycles/min. Increases in breathing frequency resulted in increases in minute ventilation during most interventions. Static head-down rotation, which activates otolith organs, did not alter respiratory rate (Delta1 +/- 1 breaths/min). Collectively, these data indicate that semicircular canals, but not otolith organs or neck muscle afferents, mediate increased ventilation in humans and support the concept that vestibular activation alters respiration in humans.

  16. Architecture for Teraflop Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, A.R.; Haynes, R.A.

    1999-04-09

    Sandia Laboratories' computational scientists are addressing a very important question: How do we get insight from the human combined with the computer-generated information? The answer inevitably leads to using scientific visualization. Going one technology leap further is teraflop visualization, where the computing model and interactive graphics are an integral whole to provide computing for insight. In order to implement our teraflop visualization architecture, all hardware installed or software coded will be based on open modules and dynamic extensibility principles. We will illustrate these concepts with examples in our three main research areas: (1) authoring content (the computer), (2) enhancing precision and resolution (the human), and (3) adding behaviors (the physics).

  17. Monosynaptic Ia projections from intrinsic hand muscles to forearm motoneurones in humans.

    Science.gov (United States)

    Marchand-Pauvert, V; Nicolas, G; Pierrot-Deseilligny, E

    2000-05-15

    Heteronymous Ia excitatory projections from intrinsic hand muscles to human forearm motoneurones (MNs) were investigated. Changes in firing probability of single motor units (MUs) in the flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), extensor carpi radialis (ECR), extensor carpi ulnaris (ECU) and extensor digitorum communis (EDC) were studied after electrical stimuli were applied to the median and ulnar nerve at wrist level and to the corresponding homonymous nerve at elbow level. Homonymous facilitation, occurring at the same latency as the H reflex, and therefore attributed to monosynaptic Ia EPSPs, was found in all the sampled units. In many MUs an early facilitation was also evoked by heteronymous low-threshold afferents from intrinsic hand muscles. The low threshold (between 0.5 and 0.6 times motor threshold (MT)) and the inability of a pure cutaneous stimulation to reproduce this effect indicate that it is due to stimulation of group I muscle afferents. Evidence for a similar central delay (monosynaptic) in heteronymous as in homonymous pathways was accepted when the difference in latencies of the homonymous and heteronymous peaks did not differ from the estimated supplementary afferent conduction time from wrist to elbow level by more than 0.5 ms (conduction velocity in the fastest Ia afferents between wrist and elbow levels being equal to 69 m s-1). A statistically significant heteronymous monosynaptic Ia excitation from intrinsic hand muscles supplied by both median and ulnar nerves was found in MUs belonging to all forearm motor nuclei tested (although not in ECU MUs after ulnar stimulation). It was, however, more often found in flexors than in extensors, in wrist than in finger muscles and in muscles operating in the radial than in the ulnar side. It is argued that the connections of Ia afferents from intrinsic hand muscles to forearm MNs, which are stronger and more widely distributed than in the cat

  18. Human alteration of the rural landscape: Variations in visual perception

    International Nuclear Information System (INIS)

    Cloquell-Ballester, Vicente-Agustín; Carmen Torres-Sibille, Ana del; Cloquell-Ballester, Víctor-Andrés; Santamarina-Siurana, María Cristina

    2012-01-01

    The objective of this investigation is to evaluate how visual perception varies as the rural landscape is altered by human interventions of varying character. An experiment is carried out using Semantic Differential Analysis to analyse the effect of the character and the type of the intervention on perception. Interventions are divided into elements of “permanent industrial character”, “elements of permanent rural character” and “elements of temporary character”, and these categories are sub-divided into smaller groups according to the type of development. To increase the reliability of the results, the Intraclass Correlation Coefficient tool, is applied to validate the semantic space of the perceptual responses and to determine the number of subjects required for a reliable evaluation of the scenes.

  19. Human alteration of the rural landscape: Variations in visual perception

    Energy Technology Data Exchange (ETDEWEB)

    Cloquell-Ballester, Vicente-Agustin, E-mail: cloquell@dpi.upv.es; Carmen Torres-Sibille, Ana del; Cloquell-Ballester, Victor-Andres; Santamarina-Siurana, Maria Cristina

    2012-01-15

    The objective of this investigation is to evaluate how visual perception varies as the rural landscape is altered by human interventions of varying character. An experiment is carried out using Semantic Differential Analysis to analyse the effect of the character and the type of the intervention on perception. Interventions are divided into elements of 'permanent industrial character', 'elements of permanent rural character' and 'elements of temporary character', and these categories are sub-divided into smaller groups according to the type of development. To increase the reliability of the results, the Intraclass Correlation Coefficient tool, is applied to validate the semantic space of the perceptual responses and to determine the number of subjects required for a reliable evaluation of the scenes.

  20. Functional size of human visual area V1: a neural correlate of top-down attention.

    Science.gov (United States)

    Verghese, Ashika; Kolbe, Scott C; Anderson, Andrew J; Egan, Gary F; Vidyasagar, Trichur R

    2014-06-01

    Heavy demands are placed on the brain's attentional capacity when selecting a target item in a cluttered visual scene, or when reading. It is widely accepted that such attentional selection is mediated by top-down signals from higher cortical areas to early visual areas such as the primary visual cortex (V1). Further, it has also been reported that there is considerable variation in the surface area of V1. This variation may impact on either the number or specificity of attentional feedback signals and, thereby, the efficiency of attentional mechanisms. In this study, we investigated whether individual differences between humans performing attention-demanding tasks can be related to the functional area of V1. We found that those with a larger representation in V1 of the central 12° of the visual field as measured using BOLD signals from fMRI were able to perform a serial search task at a faster rate. In line with recent suggestions of the vital role of visuo-spatial attention in reading, the speed of reading showed a strong positive correlation with the speed of visual search, although it showed little correlation with the size of V1. The results support the idea that the functional size of the primary visual cortex is an important determinant of the efficiency of selective spatial attention for simple tasks, and that the attentional processing required for complex tasks like reading are to a large extent determined by other brain areas and inter-areal connections. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T

    2001-05-01

    Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.

  2. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model.

    Science.gov (United States)

    Zoulinakis, Georgios; Ferrer-Blasco, Teresa

    2017-01-01

    Purpose. To design an intraocular telescopic system (ITS) for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses' placement in the eye model and their powers. Ray tracing in both centered and decentered situations was carried out for both ITS while visual Strehl ratio (VSOTF) was computed using custom-made MATLAB code. Results. The results show that between 0.4 and 0.8 mm of decentration, the VSOTF does not change much either for far or near target distances. The image projection for these decentrations is in the parafoveal zone, and the quality of the image projected is quite similar. Conclusion. Both systems display similar quality while they differ in size; therefore, the choice between them would need to take into account specific parameters from the patient's eye. Quality does not change too much between 0.4 and 0.8 mm of decentration for either system which gives flexibility to the clinician to adjust decentration to avoid areas of retinal damage.

  3. Experiences in using DISCUS for visualizing human communication

    Science.gov (United States)

    Groehn, Matti; Nieminen, Marko; Haho, Paeivi; Smeds, Riitta

    2000-02-01

    In this paper, we present further improvement to the DISCUS software that can be used to record and analyze the flow and constants of business process simulation session discussion. The tool was initially introduced in 'visual data exploration and analysis IV' conference. The initial features of the tool enabled the visualization of discussion flow in business process simulation sessions and the creation of SOM analyses. The improvements of the tool consists of additional visualization possibilities that enable quick on-line analyses and improved graphical statistics. We have also created the very first interface to audio data and implemented two ways to visualize it. We also outline additional possibilities to use the tool in other application areas: these include usability testing and the possibility to use the tool for capturing design rationale in a product development process. The data gathered with DISCUS may be used in other applications, and further work may be done with data ming techniques.

  4. Reorganization of the human central nervous system.

    Science.gov (United States)

    Schalow, G; Zäch, G A

    2000-10-01

    The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns

  5. Reduced Prefrontal Short—Latency Afferent Inhibition in Older Adults and Its Relation to Executive Function: A TMS-EEG Study

    Directory of Open Access Journals (Sweden)

    Daniel M. Blumberger

    2017-05-01

    Full Text Available Combining transcranial magnetic stimulation (TMS with electroencephalography (EEG allows for the assessment of various neurophysiological processes in the human cortex. One of these paradigms, short-latency afferent inhibition (SAI, is thought to be a sensitive measure of cholinergic activity. In a previous study, we demonstrated the temporal pattern of this paradigm from both the motor (M1 and dorsolateral prefrontal cortex (DLPFC using simultaneous TMS–EEG recording. The SAI paradigm led to marked modulations at N100. In this study, we aimed to investigate the age-related effects on TMS-evoked potentials (TEPs with the SAI from M1 and the DLPFC in younger (18–59 years old and older (≥60 years old participants. Older participants showed significantly lower N100 modulation in M1–SAI as well as DLPFC–SAI compared to the younger participants. Furthermore, the modulation of N100 by DLPFC–SAI in the older participants correlated with executive function as measured with the Trail making test. This paradigm has the potential to non-invasively identify cholinergic changes in cortical regions related to cognition in older participants.

  6. Visual detection of the human metapneumovirus using reverse transcription loop-mediated isothermal amplification with hydroxynaphthol blue dye

    Directory of Open Access Journals (Sweden)

    Wang Xiang

    2012-07-01

    Full Text Available Abstract Background Human metapneumovirus (hMPV is a major cause of acute respiratory infections ranging from wheezing to bronchiolitis and pneumonia in children worldwide. The objective of this study is to develop a visual reverse transcription loop-mediated isothermal amplification (RT-LAMP assay for the detection of hMPV and applied to the clinical samples. Results In this study, visual RT-LAMP assay for hMPV was performed in one step with the addition of hydroxynaphthol blue (HNB, and were used to detect respiratory samples. Six primers, including two outer primers (F3 and B3, two inner primers (FIP, BIP and two loop primers (LF and LB, were designed for hMPV N gene by the online software. Moreover, the RT-LAMP assay showed good specificity and no cross-reactivity was observed with human rhinovirus (HRV, human respiratory syncytial Virus (RSV, or influenza virus A/PR/8/34 (H1N1. The detection limit of the RT-LAMP assay was approximately ten viral RNA copies, lower than that of traditional reverse transcriptase polymerase chain reaction (RT-PCR 100 RNA copies. In the 176 nasopharyngeal samples, 23 (13.1% were conformed as hMPV positive by RT-LAMP, but 18 (10.2% positive by RT-PCR. Conclusion Compared with conventional RT-PCR, the visual hMPV RT-LAMP assay performed well in the aspect of detect time, sensitivity, specificity and visibility. It is anticipated that the RT-LAMP will be used for clinical tests in hospital or field testing during outbreaks and in emergency.

  7. The role of human ventral visual cortex in motion perception

    Science.gov (United States)

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  8. Immunocytochemical expression of monocarboxylate transporters in the human visual cortex at midgestation.

    Science.gov (United States)

    Fayol, Laurence; Baud, Olivier; Monier, Anne; Pellerin, Luc; Magistretti, Pierre; Evrard, Philippe; Verney, Catherine

    2004-01-31

    Lactate and the other monocarboxylates are a major energy source for the developing brain. We investigated the immunocytochemical expression of two monocarboxylate transporters, MCT1 and MCT2, in the human visual cortex between 13 and 26 post-ovulatory weeks. We used immunoperoxidase and immunofluorescence techniques to determine whether these transporters co-localized with markers for blood vessels (CD34), neurons (microtubule-associated protein 2 [MAP2], SMI 311), radial glia (vimentin), or astrocytes (glial fibrillary acidic protein [GFAP], S100beta protein). MCT1 immunoreactivity was visible in blood vessel walls as early as the 13th week of gestation mainly in the cortical plate and subplate. At this stage, less than 10% of vessels in the ventricular layer expressed MCT1, whereas all blood vessels walls showed this immunoreactivity at the 26th gestational week. Starting at the 19th week of gestation, sparse MCT1 positive cell bodies were detected, some of them co-localized with MAP2 immunoreactivity. MCT2 immunoreactivity was noted in astrocytic cell bodies from week 19 and spread subsequently to the astrocyte end-feet in contact with blood vessels. MCTs immunoreactivities were most marked in the subplate and deep cortical plate, where the most differentiated neurons were located. Our findings suggest that monocarboxylate trafficking between vessels (MCT1), astrocytes (MCT2) and some postmitotic neurons (MCT1) could develop gradually toward 20 gestational weeks (g.w.). These data suggest that lactate or other monocarboxylates could represent a significant energy source for the human visual cortex at this early stage.

  9. Visual Working Memory Storage Recruits Sensory Processing Areas

    NARCIS (Netherlands)

    Gayet, Surya; Paffen, Chris L E; Van der Stigchel, Stefan

    Human visual processing is subject to a dynamic influx of visual information. Visual working memory (VWM) allows for maintaining relevant visual information available for subsequent behavior. According to the dominating view, VWM recruits sensory processing areas to maintain this visual information

  10. Visual working memory storage recruits sensory processing areas

    NARCIS (Netherlands)

    Gayet, S.; Paffen, C.L.E.; Stigchel, S. van der

    2018-01-01

    Human visual processing is subject to a dynamic influx of visual information. Visual working memory (VWM) allows for maintaining relevant visual information available for subsequent behavior. According to the dominating view, VWM recruits sensory processing areas to maintain this visual information

  11. Patient-tailored multimodal neuroimaging, visualization and quantification of human intra-cerebral hemorrhage

    Science.gov (United States)

    Goh, Sheng-Yang M.; Irimia, Andrei; Vespa, Paul M.; Van Horn, John D.

    2016-03-01

    In traumatic brain injury (TBI) and intracerebral hemorrhage (ICH), the heterogeneity of lesion sizes and types necessitates a variety of imaging modalities to acquire a comprehensive perspective on injury extent. Although it is advantageous to combine imaging modalities and to leverage their complementary benefits, there are difficulties in integrating information across imaging types. Thus, it is important that efforts be dedicated to the creation and sustained refinement of resources for multimodal data integration. Here, we propose a novel approach to the integration of neuroimaging data acquired from human patients with TBI/ICH using various modalities; we also demonstrate the integrated use of multimodal magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) data for TBI analysis based on both visual observations and quantitative metrics. 3D models of healthy-appearing tissues and TBIrelated pathology are generated, both of which are derived from multimodal imaging data. MRI volumes acquired using FLAIR, SWI, and T2 GRE are used to segment pathology. Healthy tissues are segmented using user-supervised tools, and results are visualized using a novel graphical approach called a `connectogram', where brain connectivity information is depicted within a circle of radially aligned elements. Inter-region connectivity and its strength are represented by links of variable opacities drawn between regions, where opacity reflects the percentage longitudinal change in brain connectivity density. Our method for integrating, analyzing and visualizing structural brain changes due to TBI and ICH can promote knowledge extraction and enhance the understanding of mechanisms underlying recovery.

  12. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1996-01-01

    or without ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] and DIDS were not additive. In the absence of chloride, basal renin release was suppressed and the stimulatory effect of DIDS was abolished. The DIDS-induced enhancement of renin release was not dependent on bicarbonate....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...

  13. Spatiotopic coding of BOLD signal in human visual cortex depends on spatial attention.

    Directory of Open Access Journals (Sweden)

    Sofia Crespi

    Full Text Available The neural substrate of the phenomenological experience of a stable visual world remains obscure. One possible mechanism would be to construct spatiotopic neural maps where the response is selective to the position of the stimulus in external space, rather than to retinal eccentricities, but evidence for these maps has been inconsistent. Here we show, with fMRI, that when human subjects perform concomitantly a demanding attentive task on stimuli displayed at the fovea, BOLD responses evoked by moving stimuli irrelevant to the task were mostly tuned in retinotopic coordinates. However, under more unconstrained conditions, where subjects could attend easily to the motion stimuli, BOLD responses were tuned not in retinal but in external coordinates (spatiotopic selectivity in many visual areas, including MT, MST, LO and V6, agreeing with our previous fMRI study. These results indicate that spatial attention may play an important role in mediating spatiotopic selectivity.

  14. Visual Attention and Applications in Multimedia Technologies

    OpenAIRE

    Le Callet, Patrick; Niebur, Ernst

    2013-01-01

    Making technological advances in the field of human-machine interactions requires that the capabilities and limitations of the human perceptual system are taken into account. The focus of this report is an important mechanism of perception, visual selective attention, which is becoming more and more important for multimedia applications. We introduce the concept of visual attention and describe its underlying mechanisms. In particular, we introduce the concepts of overt and covert visual atte...

  15. Human Homeostatic Control Matrix in Norm

    Directory of Open Access Journals (Sweden)

    Alexander G. Kruglov

    2016-09-01

    Full Text Available We undertook our research to study and systemize the relationship between hemodynamics and biochemical parameters of arterial and venous blood in healthy people. Hemodynamic and biochemical characteristics were obtained through a probe by using catheterization in various vascular areas (aorta, brain, heart, lungs, and liver. Correlation and factor analyses were conducted to study the relationship between the obtained characteristics of the regional and systemic blood flow. Due to the nature of the correlation analysis, the significant (p<0.05 relation signs (+, 0, - without regard to their power were considered. The obtained results suggested that there are sets of both intra-organ and system regulatory relationships between metabolic and hemodynamic characteristics. The complex of relationships among the studied parameters makes it possible to maintain the homeostatic equilibrium in the body. The psychophysiological control system includes the subsystems we described: 1 the cardiac-hepatic-pulmonary complex having properties of the metabolic and hemodynamic information field providing biological stability of the homeostasis; any significant imbalance of its elements triggers afferent information flows actualizing an afferent synthesis; 2 the mind forming gradient patterns of targeted behavior to eliminate metabolic imbalance, to achieve goals both as coded biological parameters and as the highest forms of behavior, to reach the ultimate goal: parametric, homeostatic equilibrium in the “biosphere” of the human body. By using the results of our research and the complex of dynamic relationships in human homeostasis, we built a homeostatic control matrix (HCM.

  16. High-intensity Erotic Visual Stimuli De-activate the Primary Visual Cortex in Women

    NARCIS (Netherlands)

    Huynh, Hieu K.; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Schultz, Willibrord Weijmar; Holstege, Gert

    Introduction. The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the

  17. High-intensity Erotic Visual Stimuli De-activate the Primary Visual Cortex in Women

    NARCIS (Netherlands)

    Huynh, Hieu K.; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert

    2012-01-01

    Introduction. The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the

  18. First comparative approach to touchscreen-based visual object-location paired-associates learning in humans (Homo sapiens) and a nonhuman primate (Microcebus murinus).

    Science.gov (United States)

    Schmidtke, Daniel; Ammersdörfer, Sandra; Joly, Marine; Zimmermann, Elke

    2018-05-10

    A recent study suggests that a specific, touchscreen-based task on visual object-location paired-associates learning (PAL), the so-called Different PAL (dPAL) task, allows effective translation from animal models to humans. Here, we adapted the task to a nonhuman primate (NHP), the gray mouse lemur, and provide first evidence for the successful comparative application of the task to humans and NHPs. Young human adults reach the learning criterion after considerably less sessions (one order of magnitude) than young, adult NHPs, which is likely due to faster and voluntary rejection of ineffective learning strategies in humans and almost immediate rule generalization. At criterion, however, all human subjects solved the task by either applying a visuospatial rule or, more rarely, by memorizing all possible stimulus combinations and responding correctly based on global visual information. An error-profile analysis in humans and NHPs suggests that successful learning in NHPs is comparably based either on the formation of visuospatial associative links or on more reflexive, visually guided stimulus-response learning. The classification in the NHPs is further supported by an analysis of the individual response latencies, which are considerably higher in NHPs classified as spatial learners. Our results, therefore, support the high translational potential of the standardized, touchscreen-based dPAL task by providing first empirical and comparable evidence for two different cognitive processes underlying dPAL performance in primates. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions.

    Science.gov (United States)

    Ansorge, Ulrich; Francis, Gregory; Herzog, Michael H; Oğmen, Haluk

    2008-07-15

    The 1990s, the "decade of the brain," witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this "steady-state approach," more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness.

  20. Attention to Color Sharpens Neural Population Tuning via Feedback Processing in the Human Visual Cortex Hierarchy.

    Science.gov (United States)

    Bartsch, Mandy V; Loewe, Kristian; Merkel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Tsotsos, John K; Hopf, Jens-Max

    2017-10-25

    Attention can facilitate the selection of elementary object features such as color, orientation, or motion. This is referred to as feature-based attention and it is commonly attributed to a modulation of the gain and tuning of feature-selective units in visual cortex. Although gain mechanisms are well characterized, little is known about the cortical processes underlying the sharpening of feature selectivity. Here, we show with high-resolution magnetoencephalography in human observers (men and women) that sharpened selectivity for a particular color arises from feedback processing in the human visual cortex hierarchy. To assess color selectivity, we analyze the response to a color probe that varies in color distance from an attended color target. We find that attention causes an initial gain enhancement in anterior ventral extrastriate cortex that is coarsely selective for the target color and transitions within ∼100 ms into a sharper tuned profile in more posterior ventral occipital cortex. We conclude that attention sharpens selectivity over time by attenuating the response at lower levels of the cortical hierarchy to color values neighboring the target in color space. These observations support computational models proposing that attention tunes feature selectivity in visual cortex through backward-propagating attenuation of units less tuned to the target. SIGNIFICANCE STATEMENT Whether searching for your car, a particular item of clothing, or just obeying traffic lights, in everyday life, we must select items based on color. But how does attention allow us to select a specific color? Here, we use high spatiotemporal resolution neuromagnetic recordings to examine how color selectivity emerges in the human brain. We find that color selectivity evolves as a coarse to fine process from higher to lower levels within the visual cortex hierarchy. Our observations support computational models proposing that feature selectivity increases over time by attenuating the

  1. What would 5-HT do? Regional diversity of 5-HT1 receptor modulation of primary afferent neurotransmission

    OpenAIRE

    Connor, Mark

    2012-01-01

    5-HT (serotonin) is a significant modulator of sensory input to the CNS, but the only analgesics that selectively target G-protein-coupled 5-HT receptors are highly specific for treatment of headache. Two recent papers in BJP shed light on this puzzling situation by showing that primary afferent neurotransmission to the superficial layers of the spinal and trigeminal dorsal is inhibited by different subtypes of the 5-HT1 receptor – 5-HT1B(and 1D) in the trigeminal dorsal horn and 5-HT1A in th...

  2. Activity in human visual and parietal cortex reveals object-based attention in working memory.

    Science.gov (United States)

    Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph

    2015-02-25

    Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception. Copyright © 2015 the authors 0270-6474/15/353360-10$15.00/0.

  3. Anormalidades do potencial evocado visual por padrão reverso em pacientes com esclerose múltipla definida Pattern reversal visual evoked potential abnormalities in patients with defined multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Vítor Tumas

    1995-12-01

    severity of visual involvement. The findings showed uneven distribution of lesions in visual pathway, affecting preferentially the central vision afferents.

  4. Relativity of Visual Communication

    Directory of Open Access Journals (Sweden)

    Arto Mutanen

    2016-03-01

    Full Text Available Communication is sharing and conveying information. In visual communication especially visual messages have to be formulated and interpreted. The interpretation is relative to a method of information presentation method which is human construction. This holds also in the case of visual languages. The notions of syntax and semantics for visual languages are not so well founded as they are for natural languages. Visual languages are both syntactically and semantically dense. The density is connected to the compositionality of the (pictorial languages. In the paper Charles Sanders Peirce’s theory of signs will be used in characterizing visual languages. This allows us to relate visual languages to natural languages. The foundation of information presentation methods for visual languages is the logic of perception, but only if perception is understood as propositional perception. This allows us to understand better the relativity of information presentation methods, and hence to evaluate the cultural relativity of visual communication.

  5. A library based fitting method for visual reflectance spectroscopy of human skin

    International Nuclear Information System (INIS)

    Verkruysse, Wim; Zhang Rong; Choi, Bernard; Lucassen, Gerald; Svaasand, Lars O; Nelson, J Stuart

    2005-01-01

    The diffuse reflectance spectrum of human skin in the visible region (400-800 nm) contains information on the concentrations of chromophores such as melanin and haemoglobin. This information may be extracted by fitting the reflectance spectrum with an optical diffusion based analytical expression applied to a layered skin model. With the use of the analytical expression, it is assumed that light transport is dominated by scattering. For port wine stain (PWS) and highly pigmented human skin, however, this assumption may not be valid resulting in a potentially large error in visual reflectance spectroscopy (VRS). Monte Carlo based techniques can overcome this problem but are currently too computationally intensive to be combined with previously used fitting procedures. The fitting procedure presented herein is based on a library search which enables the use of accurate reflectance spectra based on forward Monte Carlo simulations or diffusion theory. This allows for accurate VRS to characterize chromophore concentrations in PWS and highly pigmented human skin. The method is demonstrated using both simulated and measured reflectance spectra. An additional advantage of the method is that the fitting procedure is very fast

  6. A library based fitting method for visual reflectance spectroscopy of human skin

    Energy Technology Data Exchange (ETDEWEB)

    Verkruysse, Wim [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States); Zhang Rong [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States); Choi, Bernard [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States); Lucassen, Gerald [Personal Care Institute, Philips Research, Prof Holstlaan 4, Eindhoven (Netherlands); Svaasand, Lars O [Department of Physical Electronics Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Nelson, J Stuart [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States)

    2005-01-07

    The diffuse reflectance spectrum of human skin in the visible region (400-800 nm) contains information on the concentrations of chromophores such as melanin and haemoglobin. This information may be extracted by fitting the reflectance spectrum with an optical diffusion based analytical expression applied to a layered skin model. With the use of the analytical expression, it is assumed that light transport is dominated by scattering. For port wine stain (PWS) and highly pigmented human skin, however, this assumption may not be valid resulting in a potentially large error in visual reflectance spectroscopy (VRS). Monte Carlo based techniques can overcome this problem but are currently too computationally intensive to be combined with previously used fitting procedures. The fitting procedure presented herein is based on a library search which enables the use of accurate reflectance spectra based on forward Monte Carlo simulations or diffusion theory. This allows for accurate VRS to characterize chromophore concentrations in PWS and highly pigmented human skin. The method is demonstrated using both simulated and measured reflectance spectra. An additional advantage of the method is that the fitting procedure is very fast.

  7. A library based fitting method for visual reflectance spectroscopy of human skin

    Science.gov (United States)

    Verkruysse, Wim; Zhang, Rong; Choi, Bernard; Lucassen, Gerald; Svaasand, Lars O.; Nelson, J. Stuart

    2005-01-01

    The diffuse reflectance spectrum of human skin in the visible region (400-800 nm) contains information on the concentrations of chromophores such as melanin and haemoglobin. This information may be extracted by fitting the reflectance spectrum with an optical diffusion based analytical expression applied to a layered skin model. With the use of the analytical expression, it is assumed that light transport is dominated by scattering. For port wine stain (PWS) and highly pigmented human skin, however, this assumption may not be valid resulting in a potentially large error in visual reflectance spectroscopy (VRS). Monte Carlo based techniques can overcome this problem but are currently too computationally intensive to be combined with previously used fitting procedures. The fitting procedure presented herein is based on a library search which enables the use of accurate reflectance spectra based on forward Monte Carlo simulations or diffusion theory. This allows for accurate VRS to characterize chromophore concentrations in PWS and highly pigmented human skin. The method is demonstrated using both simulated and measured reflectance spectra. An additional advantage of the method is that the fitting procedure is very fast.

  8. Visual Image Sensor Organ Replacement

    Science.gov (United States)

    Maluf, David A.

    2014-01-01

    This innovation is a system that augments human vision through a technique called "Sensing Super-position" using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks. Three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. Because the human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns, the translation of images into sounds reduces the risk of accidentally filtering out important clues. The VISOR device was developed to augment the current state-of-the-art head-mounted (helmet) display systems. It provides the ability to sense beyond the human visible light range, to increase human sensing resolution, to use wider angle visual perception, and to improve the ability to sense distances. It also allows compensation for movement by the human or changes in the scene being viewed.

  9. Visual working memory is more tolerant than visual long-term memory.

    Science.gov (United States)

    Schurgin, Mark W; Flombaum, Jonathan I

    2018-05-07

    Human visual memory is tolerant, meaning that it supports object recognition despite variability across encounters at the image level. Tolerant object recognition remains one capacity in which artificial intelligence trails humans. Typically, tolerance is described as a property of human visual long-term memory (VLTM). In contrast, visual working memory (VWM) is not usually ascribed a role in tolerant recognition, with tests of that system usually demanding discriminatory power-identifying changes, not sameness. There are good reasons to expect that VLTM is more tolerant; functionally, recognition over the long-term must accommodate the fact that objects will not be viewed under identical conditions; and practically, the passive and massive nature of VLTM may impose relatively permissive criteria for thinking that two inputs are the same. But empirically, tolerance has never been compared across working and long-term visual memory. We therefore developed a novel paradigm for equating encoding and test across different memory types. In each experiment trial, participants saw two objects, memory for one tested immediately (VWM) and later for the other (VLTM). VWM performance was better than VLTM and remained robust despite the introduction of image and object variability. In contrast, VLTM performance suffered linearly as more variability was introduced into test stimuli. Additional experiments excluded interference effects as causes for the observed differences. These results suggest the possibility of a previously unidentified role for VWM in the acquisition of tolerant representations for object recognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model

    Directory of Open Access Journals (Sweden)

    Georgios Zoulinakis

    2017-01-01

    Full Text Available Purpose. To design an intraocular telescopic system (ITS for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses’ placement in the eye model and their powers. Ray tracing in both centered and decentered situations was carried out for both ITS while visual Strehl ratio (VSOTF was computed using custom-made MATLAB code. Results. The results show that between 0.4 and 0.8 mm of decentration, the VSOTF does not change much either for far or near target distances. The image projection for these decentrations is in the parafoveal zone, and the quality of the image projected is quite similar. Conclusion. Both systems display similar quality while they differ in size; therefore, the choice between them would need to take into account specific parameters from the patient’s eye. Quality does not change too much between 0.4 and 0.8 mm of decentration for either system which gives flexibility to the clinician to adjust decentration to avoid areas of retinal damage.

  11. Primary afferent depolarization and changes in extracellular potassium concentration induced by L-glutamate and L-proline in the isolated spinal cord of the frog.

    Science.gov (United States)

    Vyklický, L; Vyskocil, F; Kolaj, M; Jastreboff, P

    1982-10-08

    To test the hypothesis that L-proline acts as an antagonist on glutamate receptors [17, 18], the interaction between L-glutamate and L-proline was studied in the isolated spinal cord of the frog. Glutamate at concentrations of 10(-6) -5 x 10(-3) mol/l depolarized the primary afferent fibres and increased extracellular potassium concentration, [K+]e, by 0.3-4 mmol/l. Repeated applications lead to inactivation of the response. L-Proline at 5 x 10(-3) -10(-2) mol/l, also depolarized the primary afferents and increased [K+]e by 0.5-2 mmol/l, but there was only a slight decrease of the effects after repeated application. The effects were additive when the amino acids were applied simultaneously. The effect of L-proline was still present when it was applied during inactivation of the glutamate receptors. This suggests that L-glutamate and L-proline act on different receptors.

  12. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling.

    Science.gov (United States)

    Ronveaux, Charlotte C; Tomé, Daniel; Raybould, Helen E

    2015-04-01

    Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments. © 2015 American Society for Nutrition.

  13. Attention improves encoding of task-relevant features in the human visual cortex

    Science.gov (United States)

    Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank

    2011-01-01

    When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942

  14. A human centered GeoVisualization framework to facilitate visual exploration of telehealth data: a case study.

    Science.gov (United States)

    Joshi, Ashish; de Araujo Novaes, Magdala; Machiavelli, Josiane; Iyengar, Sriram; Vogler, Robert; Johnson, Craig; Zhang, Jiajie; Hsu, Chiehwen E

    2012-01-01

    Public health data is typically organized by geospatial units. Routine geographic monitoring of health data enables an understanding of the spatial patterns of events in terms of causes and controls. GeoVisualization (GeoVis) allows users to see information hidden both visually and explicitly on a map. Despite the applicability of GeoVis in public health, it is still underused for visualizing public health data. The objective of this study is to examine the perception of telehealth users' to utilize GeoVis as a proof of concept to facilitate visual exploration of telehealth data in Brazil using principles of human centered approach and cognitive fit theory. A mixed methods approach combining qualitative and quantitative assessments was utilized in this cross sectional study conducted at the Telehealth Center of the Federal University of Pernambuco (NUTE-UFPE), Recife, Brazil. A convenient sample of 20 participants currently involved in NUTES was drawn during a period of Sep-Oct 2011. Data was gathered using previously tested questionnaire surveys and in-person interviews. Socio-demographic Information such as age, gender, prior education, familiarity with the use of computer and GeoVis was gathered. Other information gathered included participants' prior spatial analysis skills, level of motivation and use of GeoVis in telehealth. Audio recording was done for all interviews conducted in both English and Portuguese, and transcription of the audio content to English was done by a certified translator. Univariate analysis was performed and means and standard deviations were reported for the continuous variables and frequency distributions for the categorical variables. For the open-ended questions, we utilized a grounded theory to identify themes and their relationship as they emerge from the data. Analysis of the quantitative data was performed using SAS V9.1 and qualitative data was performed using NVivo9. The average age of participants was 28 years (SD=7), a

  15. Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment

    Science.gov (United States)

    Frische, F.; Osterloh, J.-P.; Luedtke, A.

    2011-01-01

    This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.

  16. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance.

    Science.gov (United States)

    Goense, J B M; Ratnam, R

    2003-10-01

    An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add approximately 1 spike to a baseline of approximately 300 spikes s(-1). The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10-15 ms, achieving near ideal detection performance (80-95%) at false alarm rates of 1-2 Hz, while trial-based testing resulted in only 30-35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.

  17. Visual cues for data mining

    Science.gov (United States)

    Rogowitz, Bernice E.; Rabenhorst, David A.; Gerth, John A.; Kalin, Edward B.

    1996-04-01

    This paper describes a set of visual techniques, based on principles of human perception and cognition, which can help users analyze and develop intuitions about tabular data. Collections of tabular data are widely available, including, for example, multivariate time series data, customer satisfaction data, stock market performance data, multivariate profiles of companies and individuals, and scientific measurements. In our approach, we show how visual cues can help users perform a number of data mining tasks, including identifying correlations and interaction effects, finding clusters and understanding the semantics of cluster membership, identifying anomalies and outliers, and discovering multivariate relationships among variables. These cues are derived from psychological studies on perceptual organization, visual search, perceptual scaling, and color perception. These visual techniques are presented as a complement to the statistical and algorithmic methods more commonly associated with these tasks, and provide an interactive interface for the human analyst.

  18. A comparative psychophysical approach to visual perception in primates.

    Science.gov (United States)

    Matsuno, Toyomi; Fujita, Kazuo

    2009-04-01

    Studies on the visual processing of primates, which have well developed visual systems, provide essential information about the perceptual bases of their higher-order cognitive abilities. Although the mechanisms underlying visual processing are largely shared between human and nonhuman primates, differences have also been reported. In this article, we review psychophysical investigations comparing the basic visual processing that operates in human and nonhuman species, and discuss the future contributions potentially deriving from such comparative psychophysical approaches to primate minds.

  19. Loss of calretinin immunoreactive fibers in subcortical visual recipient structures of the RCS dystrophic rat.

    Science.gov (United States)

    Vugler, Anthony A; Coffey, Peter J

    2003-11-01

    The retinae of dystrophic Royal College of Surgeons (RCS) rats exhibit progressive photoreceptor degeneration accompanied by pathology of ganglion cells. To date, little work has examined the consequences of retinal degeneration for central visual structures in dystrophic rats. Here, we use immunohistochemistry for calretinin (CR) to label retinal afferents in the superior colliculus (SC), lateral geniculate nucleus, and olivary pretectal nucleus of RCS rats aged between 2 and 26 months of age. Early indications of fiber loss in the medial dystrophic SC were apparent between 9 and 13 months. Quantitative methods reveal a significant reduction in the level of CR immunoreactivity in visual layers of the medial dystrophic SC at 13 months (P animals aged 19-26 months the loss of CR fibers in SC was dramatic, with well-defined patches of fiber degeneration predominating in medial aspects of the structure. This fiber degeneration in SC was accompanied by increased detection of cells immunoreactive for CR. In several animals, regions of fiber loss were also found to contain strongly parvalbumin-immunoreactive cells. Loss of CR fibers was also observed in the lateral geniculate nucleus and olivary pretectal nucleus. Patterns of fiber loss in the dystrophic SC compliment reports of ganglion cell degeneration in these animals and the response of collicular neurons to degeneration is discussed in terms of plasticity of the dystrophic visual system and properties of calcium binding proteins.

  20. Effect of neonatal capsaicin treatment on neural activity in the medullary dorsal horn of neonatal rats evoked by electrical stimulation to the trigeminal afferents: an optical, electrophysiological, and quantitative study.

    Science.gov (United States)

    Takuma, S

    2001-07-06

    To elucidate which glutamate receptors, NMDA or non-NMDA, have the main role in synaptic transmission via unmyelinated afferents in the trigeminal subnucleus caudalis (the medullary dorsal horn), and to examine the early functional effects of neonatal capsaicin treatment to the subnucleus caudalis, optical recording, field potential recording, and quantitative study using electron micrographs were employed. A medulla oblongata isolated from a rat 5--7 days old was sectioned horizontally 400-microm thick or parasagittally and stained with a voltage-sensitive dye, RH482 or RH795. Single-pulse stimulation with high intensity to the trigeminal afferents evoked optical responses mainly in the subnucleus caudalis. The optical signals were composed of two phases, a fast component followed by a long-lasting component. The spatiotemporal properties of the optical signals were well correlated to those of the field potentials recorded simultaneously. The fast component was eliminated by 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; 10 microM), while the long-lasting component was not. The latter increased in amplitude under a condition of low Mg(2+) but was significantly reduced by DL-2-amino-5-phosphonovaleric acid (AP5; 30 microM). Neonatal capsaicin treatment also reduced the long-lasting component markedly. In addition, the decreases in the ratio of unmyelinated axons to myelinated axons and in the ratio of unmyelinated axons to Schwann cell subunits of trigeminal nerve roots both showed significant differences (P<0.05, Student's t-test) between the control group and the neonatal capsaicin treatment group. This line of evidence indirectly suggests that synaptic transmission via unmyelinated afferents in the subnucleus caudalis is mediated substantially by NMDA glutamate receptors and documented that neonatal capsaicin treatment induced a functional alteration of the neural transmission in the subnucleus caudalis as well as a morphological alteration of primary afferents