WorldWideScience

Sample records for human a3 adenosine

  1. Different efficacy of adenosine and NECA derivatives at the human A3 adenosine receptor: insight into the receptor activation switch.

    Science.gov (United States)

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Kachler, Sonja; Falgner, Nico; Marucci, Gabriella; Thomas, Ajiroghene; Cristalli, Gloria; Volpini, Rosaria; Klotz, Karl-Norbert

    2014-01-15

    A3 Adenosine receptors are promising drug targets for a number of diseases and intense efforts are dedicated to develop selective agonists and antagonists of these receptors. A series of adenosine derivatives with 2-(ar)-alkynyl chains, with high affinity and different degrees of selectivity for human A3 adenosine receptors was tested for the ability to inhibit forskolin-stimulated adenylyl cyclase. All these derivatives are partial agonists at A3 adenosine receptors; their efficacy is not significantly modified by the introduction of small alkyl substituents in the N(6)-position. In contrast, the adenosine-5'-N-ethyluronamide (NECA) analogs of 2-(ar)-alkynyladenosine derivatives are full A3 agonists. Molecular modeling analyses were performed considering both the conformational behavior of the ligands and the impact of 2- and 5'-substituents on ligand-target interaction. The results suggest an explanation for the different agonistic behavior of adenosine and NECA derivatives, respectively. A sub-pocket of the binding site was analyzed as a crucial interaction domain for receptor activation.

  2. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling.

    Science.gov (United States)

    Rudich, Noam; Dekel, Ornit; Sagi-Eisenberg, Ronit

    2015-05-01

    Adenosine activated mast cells have been long implicated in allergic asthma and studies in rodent mast cells have assigned the A3 adenosine receptor (A3R) a primary role in mediating adenosine responses. Here we analyzed the functional impact of A3R activation on genes that are implicated in tissue remodeling in severe asthma in the human mast cell line HMC-1 that shares similarities with lung derived human mast cells. Quantitative real time PCR demonstrated upregulation of IL6, IL8, VEGF, amphiregulin and osteopontin. Moreover, further upregulation of these genes was noted upon the addition of dexamethasone. Unexpectedly, activated A3R down regulated its own expression and knockdown of the receptor replicated the pattern of agonist induced gene upregulation. This study therefore identifies the human mast cell A3R as regulator of tissue remodeling gene expression in human mast cells and demonstrates a heretofore-unrecognized mode of feedback regulation that is exerted by this receptor.

  3. Triazoloquinazolines as Human A3 Adenosine Receptor Antagonists: A QSAR Study

    Directory of Open Access Journals (Sweden)

    Dae-Sil Lee

    2006-11-01

    Full Text Available Multiple linear regression analysis was performed on the quantitative structure-activity relationships (QSAR of the triazoloquinazoline adenosine antagonists for human A3receptors. The data set used for the QSAR analysis encompassed the activities of 33triazoloquinazoline derivatives and 72 physicochemical descriptors. A template moleculewas derived using the known molecular structure for one of the compounds when bound tothe human A2B receptor, in which the amide bond was in a cis-conformation. All the testcompounds were aligned to the template molecule. In order to identify a reasonable QSARequation to describe the data set, we developed a multiple linear regression program thatexamined every possible combination of descriptors. The QSAR equation derived from thisanalysis indicates that the spatial and electronic effects is greater than that of hydrophobiceffects in binding of the antagonists to the human A3 receptor. It also predicts that a largesterimol length parameter is advantageous to activity, whereas large sterimol widthparameters and fractional positive partial surface areas are nonadvatageous.

  4. Mast cell adenosine receptors function: a focus on the A3 adenosine receptor and inflammation

    Directory of Open Access Journals (Sweden)

    Noam eRudich

    2012-06-01

    Full Text Available Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease (COPD patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells, as an attractive drug candidate. Four subtypes (A1, A2a, A2b and A3 of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R in mediating hyper responsiveness to adenosine in mast cells, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human mast cells. The relevance of mouse studies to the human is discussed.

  5. A3 Adenosine Receptors Modulate Hypoxia-inducible Factor-1a Expression in Human A375 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Stefania Merighi

    2005-10-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% 02, adenosine upregulates HIF-1α protein expression in a dose-dependent and timedependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2 protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1a and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells.

  6. The A3 adenosine receptor: history and perspectives.

    Science.gov (United States)

    Borea, Pier Andrea; Varani, Katia; Vincenzi, Fabrizio; Baraldi, Pier Giovanni; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania

    2015-01-01

    By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.

  7. Topological sub-structural molecular design (TOPS-MODE): a useful tool to explore key fragments of human A3 adenosine receptor ligands.

    Science.gov (United States)

    Saíz-Urra, Liane; Teijeira, Marta; Rivero-Buceta, Virginia; Helguera, Aliuska Morales; Celeiro, Maria; Terán, Ma Carmen; Besada, Pedro; Borges, Fernanda

    2016-02-01

    Adenosine regulates tissue function by activating four G-protein-coupled adenosine receptors (ARs). Selective agonists and antagonists for A3 ARs have been investigated for the treatment of a variety of immune disorders, cancer, brain, and heart ischemic conditions. We herein present a QSAR study based on a Topological sub-structural molecular design (TOPS-MODE) approach, intended to predict the A3 ARs of a diverse dataset of 124 (94 training set/ 30 prediction set) adenosine derivatives. The final model showed good fit and predictive capability, displaying 85.1 % of the experimental variance. The TOPS-MODE approach afforded a better understanding and interpretation of the developed model based on the useful information extracted from the analysis of the contribution of different molecular fragments to the affinity.

  8. 2-Arylpyrazolo[4,3-d]pyrimidin-7-amino derivatives as new potent and selective human A3 adenosine receptor antagonists. Molecular modeling studies and pharmacological evaluation.

    Science.gov (United States)

    Squarcialupi, Lucia; Colotta, Vittoria; Catarzi, Daniela; Varano, Flavia; Filacchioni, Guido; Varani, Katia; Corciulo, Carmen; Vincenzi, Fabrizio; Borea, Pier Andrea; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Ciancetta, Antonella; Moro, Stefano

    2013-03-28

    On the basis of our previously reported 2-arylpyrazolo[4,3-d]pyrimidin-7-ones, a set of 2-arylpyrazolo[4,3-d]pyrimidin-7-amines were designed as new human (h) A3 adenosine receptor (AR) antagonists. Lipophilic groups with different steric bulk were introduced at the 5-position of the bicyclic scaffold (R5 = Me, Ph, CH2Ph), and different acyl and carbamoyl moieties (R7) were appended on the 7-amino group, as well as a para-methoxy group inserted on the 2-phenyl ring. The presence of acyl groups turned out to be of paramount importance for an efficient and selective binding at the hA3 AR. In fact, most of the 7-acylamino derivatives showed low nanomolar affinity (Ki = 2.5-45 nM) and high selectivity toward this receptor. A few selected pyrazolo[4,3-d]pyrimidin-7-amides were effective in counteracting oxaliplatin-induced apoptosis in rat astrocyte cell cultures, an in vitro model of neurotoxicity. Through an in silico receptor-driven approach the obtained binding data were rationalized and the molecular bases of the observed hA3 AR affinity and hA3 versus hA2A AR selectivity were explained.

  9. Structural refinement of pyrazolo[4,3-d]pyrimidine derivatives to obtain highly potent and selective antagonists for the human A3 adenosine receptor.

    Science.gov (United States)

    Squarcialupi, Lucia; Catarzi, Daniela; Varano, Flavia; Betti, Marco; Falsini, Matteo; Vincenzi, Fabrizio; Ravani, Annalisa; Ciancetta, Antonella; Varani, Katia; Moro, Stefano; Colotta, Vittoria

    2016-01-27

    In previous research, we identified some 7-oxo- and 7-acylamino-substituted pyrazolo[4,3-d]pyrimidine derivatives as potent and selective human (h) A3 adenosine receptor (AR) antagonists. Herein we report on the structural refinement of this class of antagonists aimed at achieving improved receptor-ligand recognition. Hence, substituents with different steric bulk, flexibility and lipophilicity (Me, Ar, heteroaryl, CH2Ph) were introduced at the 5- and 2-positions of the bicyclic scaffold of both the 7-oxo and 7-amino derivatives, and acyl residues were appended on the 7-amino group of the latter. All the 2-phenylpyrazolo[4,3-d]pyrimidin-7-amines and 7-acylamines bearing a 4-methoxyphenyl- or a 2-thienyl group at the 5-position showed high hA3 affinity and selectivity. In particular, the 2-phenyl-5-(2-thienyl)-pyrazolo[4,3-d]pyrimidin-7-(4-methoxybenzoyl)amine 25 (Ki = 0.027 nM) is one of the most potent and selective hA3 antagonists reported so far. By using an in silico receptor-driven approach the obtained binding data were rationalized and the molecular bases of the observed hA3 AR affinities were critically described.

  10. Role of A3 adenosine receptor in diabetic neuropathy.

    Science.gov (United States)

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.

  11. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    Science.gov (United States)

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  12. Exploring the 7-oxo-thiazolo[5,4-d]pyrimidine core for the design of new human adenosine A3 receptor antagonists. Synthesis, molecular modeling studies and pharmacological evaluation.

    Science.gov (United States)

    Varano, Flavia; Catarzi, Daniela; Squarcialupi, Lucia; Betti, Marco; Vincenzi, Fabrizio; Ravani, Annalisa; Varani, Katia; Dal Ben, Diego; Thomas, Ajiroghene; Volpini, Rosaria; Colotta, Vittoria

    2015-01-01

    A new series of 5-methyl-thiazolo[5,4-d]pyrimidine-7-ones bearing different substituents at position 2 (aryl, heteroaryl and arylamino groups) was synthesized and evaluated in radioligand binding assays to determine their affinities at the human (h) A1, A2A, and A3 adenosine receptors (ARs). Efficacy at the hA(2B) and antagonism of selected ligands at the hA3 were also assessed through cAMP experiments. Some of the new derivatives exhibited good to high hA3AR affinity and selectivity versus all the other AR subtypes. Compound 2-(4-chlorophenyl)-5-methyl-thiazolo[5,4-d]pyrimidine-7-one 4 was found to be the most potent and selective ligand of the series (K(I) hA3 = 18 nM). Molecular docking studies of the reported derivatives were carried out to depict their hypothetical binding mode in our hA3 receptor model.

  13. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.

    Science.gov (United States)

    Galvao, Joana; Elvas, Filipe; Martins, Tiago; Cordeiro, M Francesca; Ambrósio, António Francisco; Santiago, Ana Raquel

    2015-11-01

    Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases.

  14. Deficiency of polycystic kidney disease-1 gene (PKD1) expression increases A(3) adenosine receptors in human renal cells: implications for cAMP-dependent signalling and proliferation of PKD1-mutated cystic cells.

    Science.gov (United States)

    Aguiari, Gianluca; Varani, Katia; Bogo, Marco; Mangolini, Alessandra; Vincenzi, Fabrizio; Durante, Chiara; Gessi, Stefania; Sacchetto, Valeria; Catizone, Luigi; Harris, Peter; Rizzuto, Rosario; Borea, Pier Andrea; Del Senno, Laura

    2009-06-01

    Cyst growth and expansion in autosomal dominant polycystic kidney disease (ADPKD) has been attributed to numerous factors, including ATP, cAMP and adenosine signalling. Although the role of ATP and cAMP has been widely investigated in PKD1-deficient cells, no information is currently available on adenosine-mediated signalling. Here we investigate for the first time the impact of abnormalities of polycystin-1 (PC1) on the expression and functional activity of adenosine receptors, members of the G-protein-coupled receptor superfamily. Pharmacological, molecular and biochemical findings show that a siRNA-dependent PC1-depletion in HEK293 cells and a PKD1-nonsense mutation in cyst-derived cell lines result in increased expression of the A(3) adenosine receptor via an NFkB-dependent mechanism. Interestingly, A(3) adenosine receptor levels result higher in ADPKD than in normal renal tissues. Furthermore, the stimulation of this receptor subtype with the selective agonist Cl-IB-MECA causes a reduction in both cytosolic cAMP and cell proliferation in both PC1-deficient HEK293 cells and cystic cells. This reduction is associated with increased expression of p21(waf) and reduced activation not only of ERK1/2, but also of S6 kinase, the main target of mTOR signalling. In the light of these findings, the ability of Cl-IB-MECA to reduce disease progression in ADPKD should be further investigated. Moreover, our results suggest that NFkB, which is markedly activated in PC1-deficient and cystic cells, plays an important role in modulating A(3)AR expression in cystic cells.

  15. 75 FR 8981 - Prospective Grant of Exclusive License: Treatment of Glaucoma by Administration of Adenosine A3...

    Science.gov (United States)

    2010-02-26

    ... Glaucoma by Administration of Adenosine A3 Antagonists AGENCY: National Institutes of Health, Public Health.../092,292, entitled ``A3 Adenosine Receptor Antagonists,'' filed July 10, 1998 , PCT Application PCT/US99/ 15562, entitled''A3 Adenosine Receptor Antagonists,'' filed July 2, 1999 , U.S. Patent...

  16. Hide and seek: a comparative autoradiographic in vitro investigation of the adenosine A3 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, D.; Fuchshuber, F.; Girschele, F.; Hacker, M.; Wadsak, W.; Mitterhauser, Markus [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Grassinger, L. [University of Applied Sciences Wiener Neustadt, Department of Biomedical Analytics, Wiener Neustadt (Austria); Hoerleinsberger, W.J. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); University of Vienna, Cognitive Science Research Platform, Vienna (Austria); Hoeftberger, R.; Leisser, I. [Medical University of Vienna, Institute of Neurology, Vienna (Austria); Shanab, K.; Spreitzer, H. [University of Vienna, Department of Drug and Natural Product Synthesis, Vienna (Austria); Gerdenitsch, W. [Medical University of Vienna, Institute of Biomedicinal Research, Vienna (Austria)

    2015-05-01

    Since the adenosine A3 receptor (A3R) is considered to be of high clinical importance in the diagnosis and treatment of ischaemic conditions (heart and brain), glaucoma, asthma, arthritis, cancer and inflammation, a suitable and selective A3R PET tracer such as [{sup 18}F]FE rate at SUPPY would be of high clinical value for clinicians as well as patients. A3R was discovered in the late 1990s, but there is still little known regarding its distribution in the CNS and periphery. Hence, in autoradiographic experiments the distribution of A3R in human brain and rat tissues was investigated and the specific binding of the A3R antagonist FE rate at SUPPY and MRS1523 compared. Immunohistochemical staining (IHC) experiments were also performed to validate the autoradiographic findings. For autoradiographic competition experiments human post-mortem brain and rat tissues were incubated with [{sup 125}I]AB-MECA and highly selective compounds to block the other adenosine receptor subtypes. Additionally, IHC was performed with an A3 antibody. Specific A3R binding of MRS1523 and FE rate at SUPPY was found in all rat peripheral tissues examined with the highest amounts in the spleen (44.0 % and 46.4 %), lung (44.5 % and 45.0 %), heart (39.9 % and 42.9 %) and testes (27.4 % and 29.5 %, respectively). Low amounts of A3R were found in rat brain tissues (5.9 % and 5.6 %, respectively) and human brain tissues (thalamus 8.0 % and 9.1 %, putamen 7.8 % and 8.2 %, cerebellum 6.0 % and 7.8 %, hippocampus 5.7 % and 5.6 %, caudate nucleus 4.9 % and 6.4 %, cortex 4.9 % and 6.3 %, respectively). The outcome of the A3 antibody staining experiments complemented the results of the autoradiographic experiments. The presence of A3R protein was verified in central and peripheral tissues by autoradiography and IHC. The specificity and selectivity of FE rate at SUPPY was confirmed by direct comparison with MRS1523, providing further evidence that [{sup 18}F]FE rate at SUPPY may be a suitable A3 PET

  17. Inhibition of uptake of adenosine into human blood platelets

    NARCIS (Netherlands)

    Lips, J.P.M.; Sixma, J.J.; Trieschnigg, A.C.

    1980-01-01

    Adenosine transport into human blood platelets is mediated by two independent systems with different affinities. Both systems transport only purine nucleosides and no pyrimidine nucleosides. In experiments with differently substituted purine nucleosides, purines and analogues, differences in carrier

  18. Rational design of sulfonated A3 adenosine receptor-selective nucleosides as pharmacological tools to study chronic neuropathic pain.

    Science.gov (United States)

    Paoletta, Silvia; Tosh, Dilip K; Finley, Amanda; Gizewski, Elizabeth T; Moss, Steven M; Gao, Zhan-Guo; Auchampach, John A; Salvemini, Daniela; Jacobson, Kenneth A

    2013-07-25

    (N)-Methanocarba(bicyclo[3.1.0]hexane)adenosine derivatives were probed for sites of charged sulfonate substitution, which precludes diffusion across biological membranes, e.g., blood-brain barrier. Molecular modeling predicted that sulfonate groups on C2-phenylethynyl substituents would provide high affinity at both mouse (m) and human (h) A3 adenosine receptors (ARs), while a N(6)-p-sulfophenylethyl substituent would determine higher hA3AR vs mA3AR affinity. These modeling predictions, based on steric fitting of the binding cavity and crucial interactions with key residues, were confirmed by binding/efficacy studies of synthesized sulfonates. N(6)-3-Chlorobenzyl-2-(3-sulfophenylethynyl) derivative 7 (MRS5841) bound selectively to h/m A3ARs (Ki(hA3AR) = 1.9 nM) as agonist, while corresponding p-sulfo isomer 6 (MRS5701) displayed mixed A1/A3AR agonism. Both nucleosides administered ip reduced mouse chronic neuropathic pain that was ascribed to either A3AR or A1/A3AR using A3AR genetic deletion. Thus, rational design methods based on A3AR homology models successfully predicted sites for sulfonate incorporation, for delineating adenosine's CNS vs peripheral actions.

  19. The A3 adenosine receptor (A3AR): therapeutic target and predictive biological marker in rheumatoid arthritis.

    Science.gov (United States)

    Fishman, Pnina; Cohen, Shira

    2016-09-01

    The Gi protein-associated A3 adenosine receptor (A3AR) is over-expressed in inflammatory cells, and this high expression is also reflected in the peripheral blood mononuclear cells of patients with autoimmune inflammatory diseases such as rheumatoid arthritis, psoriasis, and Crohn's disease. CF101, a selective agonist with high affinity to the A3AR, is known to induce robust anti-inflammatory effect in experimental animal models of adjuvant-, collagen-, and tropomyosin-induced arthritis. The effect is mediated via a definitive molecular mechanism entailing deregulation of the nuclear factor-κB (NF-κB) and the Wnt signal transduction pathways resulting in apoptosis of inflammatory cells. CF101 was found to be safe and well tolerated in all preclinical, phase I, and phase II human clinical studies. In two phase II clinical studies where CF101 was administered to rheumatoid arthritis (RA) patients as a stand-alone drug, a significant anti-rheumatic effect and a direct significant correlation were found between receptor expression at baseline and patients' response to the drug, suggesting that A3AR may be utilized as a predictive biomarker. The A3AR is a promising therapeutic target in rheumatoid arthritis and can be used also as a biological marker to predict patients' response to CF101. This is a unique type of a personalized medicine approach which may pave the way for a safe and efficacious treatment for this patient population.

  20. Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics.

    Science.gov (United States)

    Janes, K; Symons-Liguori, A M; Jacobson, K A; Salvemini, D

    2016-04-01

    Chronic pain negatively impacts the quality of life in a variety of patient populations. The current therapeutic repertoire is inadequate in managing patient pain and warrants the development of new therapeutics. Adenosine and its four cognate receptors (A1 , A2A , A2B and A3 ) have important roles in physiological and pathophysiological states, including chronic pain. Preclinical and clinical studies have revealed that while adenosine and agonists of the A1 and A2A receptors have antinociceptive properties, their therapeutic utility is limited by adverse cardiovascular side effects. In contrast, our understanding of the A3 receptor is only in its infancy, but exciting preclinical observations of A3 receptor antinociception, which have been bolstered by clinical trials of A3 receptor agonists in other disease states, suggest pain relief without cardiovascular side effects and with sufficient tolerability. Our goal herein is to briefly discuss adenosine and its receptors in the context of pathological pain and to consider the current data regarding A3 receptor-mediated antinociception. We will highlight recent findings regarding the impact of the A3 receptor on pain pathways and examine the current state of selective A3 receptor agonists used for these studies. The adenosine-to-A3 receptor pathway represents an important endogenous system that can be targeted to provide safe, effective pain relief from chronic pain.

  1. Functional expression of adenosine A2A and A3 receptors in the mouse dendritic cell line XS-106.

    Science.gov (United States)

    Dickenson, John M; Reeder, Steve; Rees, Bob; Alexander, Steve; Kendall, Dave

    2003-08-01

    There is increasing evidence to suggest that adenosine receptors can modulate the function of cells involved in the immune system. For example, human dendritic cells derived from blood monocytes have recently been described to express functional adenosine A1, A2A and A3 receptors. Therefore, in the present study, we have investigated whether the recently established murine dendritic cell line XS-106 expresses functional adenosine receptors. The selective adenosine A3 receptor agonist 1-[2-chloro-6[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-D-ribofuranuronamide (2-Cl-IB-MECA) inhibited forskolin-mediated [3H]cyclic AMP accumulation and stimulated concentration-dependent increases in p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation. The selective adenosine A2A receptor agonist 4-[2-[[-6-amino-9-(N-ethyl-beta-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzene-propanoic acid (CGS 21680) stimulated a robust increase in [3H]cyclic AMP accumulation and p42/p44 MAPK phosphorylation. In contrast, the selective adenosine A1 receptor agonist CPA (N6-cyclopentyladenosine) did not inhibit forskolin-mediated [3H]cyclic AMP accumulation or stimulate increases in p42/p44 MAPK phosphorylation. These observations suggest that XS-106 cells express functional adenosine A2A and A3 receptors. The non-selective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) inhibited lipopolysaccharide-induced tumour necrosis factor-alpha (TNF-alpha) release from XS-106 cells in a concentration-dependent fashion. Furthermore, treatment with Cl-IB-MECA (1 microM) or CGS 21680 (1 microM) alone produced a partial inhibition of lipopolysaccharide-induced TNF-alpha release (when compared to NECA), whereas a combination of both agonists resulted in the inhibition of TNF-alpha release comparable to that observed with NECA alone. Treatment of cells with the adenosine A2A receptor selective antagonists 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a

  2. A3 Adenosine receptors mediate oligodendrocyte death and ischemic damage to optic nerve.

    Science.gov (United States)

    González-Fernández, Estíbaliz; Sánchez-Gómez, María Victoria; Pérez-Samartín, Alberto; Arellano, Rogelio O; Matute, Carlos

    2014-02-01

    Adenosine receptor activation is involved in myelination and in apoptotic pathways linked to neurodegenerative diseases. In this study, we investigated the effects of adenosine receptor activation in the viability of oligodendrocytes of the rat optic nerve. Selective activation of A3 receptors in pure cultures of oligodendrocytes caused concentration-dependent apoptotic and necrotic death which was preceded by oxidative stress and mitochondrial membrane depolarization. Oligodendrocyte apoptosis induced by A3 receptor activation was caspase-dependent and caspase-independent. In addition to dissociated cultures, incubation of optic nerves ex vivo with adenosine and the A3 receptor agonist 2-CI-IB-MECA(1-[2-Chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide)-induced caspase-3 activation, oligodendrocyte damage, and myelin loss, effects which were prevented by the presence of caffeine and the A3 receptor antagonist MRS 1220 (N-[9-Chloro-2-(2-furanyl)[1,2,4]-triazolo [1,5-c]quinazolin-5-yl]benzene acetamide). Finally, ischemia-induced injury and functional loss to the optic nerve was attenuated by blocking A3 receptors. Together, these results indicate that adenosine may trigger oligodendrocyte death via activation of A3 receptors and suggest that this mechanism contributes to optic nerve and white matter ischemic damage.

  3. Identification and function of adenosine A3 receptor in afferent arterioles.

    Science.gov (United States)

    Lu, Yan; Zhang, Rui; Ge, Ying; Carlstrom, Mattias; Wang, Shaohui; Fu, Yiling; Cheng, Liang; Wei, Jin; Roman, Richard J; Wang, Lei; Gao, Xichun; Liu, Ruisheng

    2015-05-01

    Adenosine plays an important role in regulation of renal microcirculation. All receptors of adenosine, A1, A2A, A2B, and A3, have been found in the kidney. However, little is known about the location and function of the A3 receptor in the kidney. The present study determined the expression and role of A3 receptors in mediating the afferent arteriole (Af-Art) response and studied the interaction of A3 receptors with angiotensin II (ANG II), A1 and A2 receptors on the Af-Art. We found that the A3 receptor expressed in microdissected isolated Af-Art and the mRNA levels of A3 receptor were 59% of A1. In the isolated microperfused Af-Art, A3 receptor agonist IB-MECA did not have a constrictive effect. Activation of A3 receptor dilated the preconstricted Af-Art by norepinephrine and blunted the vasoconstrictive effect of both adenosine A1 receptor activation and ANG II on the Af-Art, respectively. Selective A2 receptor antagonist (both A2A and A2B) had no effect on A3 receptor agonist-induced vasodilation, indicating that the dilatory effect of A3 receptor activation is not mediated by activation of A2 receptor. We conclude that the A3 receptor is expressed in the Af-Art, and activation of the A3 receptor dilates the Af-Art.

  4. Correlation between blood adenosine metabolism and sleep in humans.

    Science.gov (United States)

    Díaz-Muñoz, M; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yááñez, L; Aguilar-Roblero, R; Rosenthal, L; Villalobos, L; Fernández-Cancino, F; Drucker-Colín, R; Chagoya De Sanchez, V

    1999-01-01

    Blood adenosine metabolism, including metabolites and metabolizing enzymes, was studied during the sleep period in human volunteers. Searching for significant correlations among biochemical parameters found: adenosine with state 1 of slow-wave sleep (SWS); activity of 5'-nucleotidase with state 2 of SWS; inosine and AMP with state 3-4 of SWS; and activity of 5'-nucleotidase and lactate with REM sleep. The correlations were detected in all of the subjects that presented normal hypnograms, but not in those who had fragmented sleep the night of the experiment. The data demonstrate that it is possible to obtain information of complex brain operations such as sleep by measuring biochemical parameters in blood. The results strengthen the notion of a role played by adenosine, its metabolites and metabolizing enzymes, during each of the stages that constitute the sleep process in humans.

  5. Enhanced A3 adenosine receptor selectivity of multivalent nucleoside-dendrimer conjugates

    Directory of Open Access Journals (Sweden)

    Shainberg Asher

    2008-10-01

    Full Text Available Abstract Background An approach to use multivalent dendrimer carriers for delivery of nucleoside signaling molecules to their cell surface G protein-coupled receptors (GPCRs was recently introduced. Results A known adenosine receptor (AR agonist was conjugated to polyamidoamine (PAMAM dendrimer carriers for delivery of the intact covalent conjugate to on the cell surface. Depending on the linking moiety, multivalent conjugates of the N6-chain elongated functionalized congener ADAC (N6-[4-[[[4-[[[(2-aminoethylamino]carbonyl]methyl]anilino]carbonyl]methyl]phenyl]-adenosine achieved unanticipated high selectivity in binding to the cytoprotective human A3 AR, a class A GPCR. The key to this selectivity of > 100-fold in both radioreceptor binding (Ki app = 2.4 nM and functional assays (EC50 = 1.6 nM in inhibition of adenylate cyclase was maintaining a free amino group (secondary in an amide-linked chain. Attachment of neutral amide-linked chains or thiourea-containing chains preserved the moderate affinity and efficacy at the A1 AR subtype, but there was no selectivity for the A3 AR. Since residual amino groups on dendrimers are associated with cytotoxicity, the unreacted terminal positions of this A3 AR-selective G2.5 dendrimer were present as carboxylate groups, which had the further benefit of increasing water-solubility. The A3 AR selective G2.5 dendrimer was also visualized binding the membrane of cells expressing the A3 receptor but did not bind cells that did not express the receptor. Conclusion This is the first example showing that it is feasible to modulate and even enhance the pharmacological profile of a ligand of a GPCR based on conjugation to a nanocarrier and the precise structure of the linking group, which was designed to interact with distal extracellular regions of the 7 transmembrane-spanning receptor. This ligand tool can now be used in pharmacological models of tissue rescue from ischemia and to probe the existence of A3 AR

  6. Impairment of adenosine A3 receptor activity disrupts neutrophil migratory capacity and impacts innate immune function in vivo.

    Science.gov (United States)

    Butler, Matt; Sanmugalingam, Devika; Burton, Victoria J; Wilson, Tammy; Pearson, Ruth; Watson, Robert P; Smith, Philip; Parkinson, Scott J

    2012-12-01

    Adenosine possesses potent anti-inflammatory properties which are partly mediated by G(i) -coupled adenosine A3 receptors (A3Rs). A3R agonists have shown clinical benefit in a number of inflammatory conditions although some studies in A3R-deficient mice suggest a pro-inflammatory role. We hypothesised that, in addition to cell signalling effects, A3R compounds might inhibit neutrophil chemotaxis by disrupting the purinergic feedback loop controlling leukocyte migration. Human neutrophil activation triggered rapid upregulation of surface A3R expression which was disrupted by pre-treatment with either agonist (Cl-IB-MECA) or antagonist (MRS1220). Both compounds reduced migration velocity and neutrophil transmigration capacity without impacting the response to chemokines per se. Similar effects were observed in murine neutrophils, while cells from A3R-deficient mice displayed a constitutively impaired migratory phenotype indicating compound-induced desensitisation and genetic ablation had the same functional outcome. In a dextran sodium sulphate-induced colitis model, A3R-deficient mice exhibited reduced colon pathology and decreased tissue myeloperoxidase levels at day 8 - consistent with reduced neutrophil recruitment. However, A3R-deficient mice were unable to resolve the dextran sodium sulphate-induced inflammation and had elevated numbers of tissue-associated bacteria by day 21. Our data indicate that A3Rs play a role in neutrophil migration and disrupting this function has the potential to adversely affect innate immune responses.

  7. Rosuvastatin increases extracellular adenosine formation in humans in vivo: a new perspective on cardiovascular protection.

    OpenAIRE

    Meijer, P; Oyen, W.J.G.; Dekker, D.; Broek, P.H.H. van den; Wouters, C.W.; Boerman, O.C.; Scheffer, G. J.; Smits, P; Rongen, G.A.P.J.M.

    2009-01-01

    OBJECTIVE: Statins may increase extracellular adenosine formation from adenosine monophosphate by enhancing ecto-5'-nucleotidase activity. This theory was tested in humans using dipyridamole-induced vasodilation as a read-out for local adenosine formation. Dipyridamole inhibits the transport of extracellular adenosine into the cytosol resulting in increased extracellular adenosine and subsequent vasodilation. In addition, we studied the effect of statin therapy in a forearm model of ischemia-...

  8. 1,2,4-Triazolo[1,5-a]quinoxaline as a versatile tool for the design of selective human A3 adenosine receptor antagonists: synthesis, biological evaluation, and molecular modeling studies of 2-(hetero)aryl- and 2-carboxy-substituted derivatives.

    Science.gov (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Lenzi, Ombretta; Filacchioni, Guido; Trincavelli, Letizia; Martini, Claudia; Montopoli, Christian; Moro, Stefano

    2005-12-15

    A number of 4-oxo-substituted 1,2,4-triazolo[1,5-a]quinoxaline derivatives bearing at position-2 the claimed (hetero)aryl moiety (compounds 1-15) but also a carboxylate group (16-28, 32-36) or a hydrogen atom (29-31) were designed as human A3 (hA3) adenosine receptor (AR) antagonists. This study produced some interesting compounds and among them the 2-(4-methoxyphenyl)-1,2,4-triazolo[1,5-a]quinoxalin-4-one (8), which can be considered one of the most potent and selective hA3 adenosine receptor antagonists reported till now. Moreover, as a new finding, replacement of the classical 2-(hetero)aryl moiety with a 2-carboxylate function (compounds 16-28 and 32-36) maintained good hA3 AR binding activity but, most importantly and interestingly, produced a large increase in hA3 versus hA1 selectivity. A receptor-based SAR analysis provided new interesting insights about the steric and electrostatic requirements that are important for the anchoring of these derivatives at the hA3 receptor recognition site, thus highlighting the versatility of the triazoloquinoxaline scaffold for obtaining potent and selective hA3 AR antagonists.

  9. Effects of synthetic A3 adenosine receptor agonists on cell proliferation and viability are receptor independent at micromolar concentrations.

    Science.gov (United States)

    Mlejnek, Petr; Dolezel, Petr; Frydrych, Ivo

    2013-09-01

    The question as to whether A3 adenosine receptor (A3AR) agonists, N (6)-(3-iodobenzyl)-adenosine-5'-N- methyluronamide (IB-MECA) and 2-chloro-N (6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), could exert cytotoxic effects at high concentrations with or without the involvement of A3AR has been a controversial issue for a long time. The initial findings suggesting that A3AR plays a crucial role in the induction of cell death upon treatment with micromolar concentrations of IB-MECA or Cl-IB-MECA were revised, however, the direct and unequivocal evidence is still missing. Therefore, the sensitivity of Chinese hamster ovary (CHO) cells transfected with human recombinant A3AR (A3-CHO) and their counter partner wild-type CHO cells, which do not express any of adenosine receptors, to micromolar concentrations of IB-MECA and Cl-IB-MECA was studied. We observed that IB-MECA and Cl-IB-MECA exhibited a strong inhibitory effect on cell proliferation due to the blockage of cell cycle progression at G1/S and G2/M transitions in both A3-CHO and CHO cells. Further analysis revealed that IB-MECA and Cl-IB-MECA attenuated the Erk1/2 signalling irrespectively to A3AR expression. In addition, Cl-IB-MECA induced massive cell death mainly with hallmarks of a necrosis in both cell lines. In contrast, IB-MECA affected cell viability only slightly independently of A3AR expression. IB-MECA induced cell death that exhibited apoptotic hallmarks. In general, the sensitivity of A3-CHO cells to micromolar concentrations of IB-MECA and Cl-IB-MECA was somewhat, but not significantly, higher than that observed in the CHO cells. These results strongly suggest that IB-MECA and Cl-IB-MECA exert cytotoxic effects at micromolar concentrations independently of A3AR expression.

  10. Expression of human adenosine deaminase in murine hematopoietic cells.

    Science.gov (United States)

    Belmont, J W; MacGregor, G R; Wager-Smith, K; Fletcher, F A; Moore, K A; Hawkins, D; Villalon, D; Chang, S M; Caskey, C T

    1988-01-01

    Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells. Images PMID:3072474

  11. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    Science.gov (United States)

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  12. Adenosine receptors in post-mortem human brain.

    Science.gov (United States)

    James, S; Xuereb, J H; Askalan, R; Richardson, P J

    1992-01-01

    1. Adenosine A2-like binding sites were characterized in post-mortem human brain membranes by examining several compounds for their ability to displace [3H]-CGS 21680 (2[p-(2 carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine) binding. 2. Two A2-like binding sites were identified in the striatum. 3. The more abundant striatal site was similar to the A2a receptor previously described in rat striatum, both in its pharmacological profile and striatal localization. 4. The less abundant striatal site had a pharmacological profile similar to that of the binding site characterized in the other brain regions examined. This was intermediate in character between A1 and A2 and may represent another adenosine receptor subtype. 5. The co-purification of [3H]-CGS 21680 binding during immunoisolation of human striatal cholinergic membranes was used to assess the possible cholinergic localization of A2-like binding sites in the human striatum. Only the more abundant striatal site co-purified with cholinergic membranes. This suggests that this A2a-like site is present on cholinergic neurones in the human striatum.

  13. Adenosine A3 Receptor: A promising therapeutic target in cardiovascular disease.

    Science.gov (United States)

    Nishat, Shamama; Khan, Luqman A; Ansari, Zafar M; Basir, Seemi F

    2016-01-01

    Cardiovascular complications are one of the major factors for early mortality in the present worldwide scenario and have become a major challenge in both developing and developed nations. It has thus become of immense importance to look for different therapeutic possibilities and treatments for the growing burden of cardiovascular diseases. Recent advancements in research have opened various means for better understanding of the complication and treatment of the disease. Adenosine receptors have become tool of choice in understanding the signaling mechanism which might lead to the cardiovascular complications. Adenosine A3 receptor is one of the important receptor which is extensively studied as a therapeutic target in cardiovascular disorder. Recent studies have shown that A3AR is involved in the amelioration of cardiovascular complications by altering the expression of A3R. This review focuses towards the therapeutic potential of A3AR involved in cardiovascular disease and it might help in better understanding of mechanism by which this receptor may prove useful in improving the complications arising due to various cardiovascular diseases. Understanding of A3AR signaling may also help to develop newer agonists and antagonists which might be prove helpful in the treatment of cardiovascular disorder.

  14. The synthesis of a series of adenosine A3 receptor agonists.

    Science.gov (United States)

    Broadley, Kenneth J; Burnell, Erica; Davies, Robin H; Lee, Alan T L; Snee, Stephen; Thomas, Eric J

    2016-04-12

    A series of 1'-(6-aminopurin-9-yl)-1'-deoxy-N-methyl-β-d-ribofuranuronamides that were characterised by 2-dialkylamino-7-methyloxazolo[4,5-b]pyridin-5-ylmethyl substituents on N6 of interest for screening as selective adenosine A3 receptor agonists, have been synthesised. This work involved the synthesis of 2-dialkylamino-5-aminomethyl-7-methyloxazolo[4,5-b]pyridines and analogues that were coupled with the known 1'-(6-chloropurin-9-yl)-1'-deoxy-N-methyl-β-d-ribofuranuronamide. The oxazolo[4,5-b]pyridines were synthesized by regioselective functionalisation of 2,4-dimethylpyridine N-oxides. The regioselectivities of these reactions were found to depend upon the nature of the heterocycle with 2-dimethylamino-5,7-dimethyloxazolo[4,5-b]pyridine-N-oxide undergoing regioselective functionalisation at the 7-methyl group on reaction with trifluoroacetic anhydride in contrast to the reaction of 4,6-dimethyl-3-hydroxypyridine-N-oxide with acetic anhydride that resulted in functionalisation of the 6-methyl group. To optimise selectivity for the A3 receptor, 5-aminomethyl-7-bromo-2-dimethylamino-4-[(3-methylisoxazol-5-yl)methoxy]benzo[d]oxazole was synthesised and coupled with the 1'-(6-chloropurin-9-yl)-1'-deoxy-N-methyl-β-d-ribofuranuronamide. The products were active as selective adenosine A3 agonists.

  15. Adenosine and adenosine receptors: Newer therapeutic perspective

    Directory of Open Access Journals (Sweden)

    Manjunath S

    2009-01-01

    Full Text Available Adenosine, a purine nucleoside has been described as a ′retaliatory metabolite′ by virtue of its ability to function in an autocrine manner and to modify the activity of a range of cell types, following its extracellular accumulation during cell stress or injury. These effects are largely protective and are triggered by binding of adenosine to any of the four adenosine receptor subtypes namely A1, A2a, A2b, A3, which have been cloned in humans, and are expressed in most of the organs. Each is encoded by a separate gene and has different functions, although overlapping. For instance, both A1 and A2a receptors play a role in regulating myocardial oxygen consumption and coronary blood flow. It is a proven fact that adenosine plays pivotal role in different physiological functions, such as induction of sleep, neuroprotection and protection against oxidative stress. Until now adenosine was used for certain conditions like paroxysmal supraventricular tachycardia (PSVT and Wolff Parkinson White (WPW syndrome. Now there is a growing evidence that adenosine receptors could be promising therapeutic targets in a wide range of conditions including cardiac, pulmonary, immunological and inflammatory disorders. After more than three decades of research in medicinal chemistry, a number of selective agonists and antagonists of adenosine receptors have been discovered and some have been clinically evaluated, although none has yet received regulatory approval. So this review focuses mainly on the newer potential role of adenosine and its receptors in different clinical conditions.

  16. Adenosine A(3) receptor-induced CCL2 synthesis in cultured mouse astrocytes

    NARCIS (Netherlands)

    Wittendorp, MC; Boddeke, HWGM; Biber, K

    2004-01-01

    During neuropathological conditions, high concentrations of adenosine are released, stimulating adenosine receptors in neurons and glial cells. It has recently been shown that stimulation of adenosine receptors in glial cells induces the release of neuroprotective substances such as NGF, S-100beta,

  17. Purine (N)-Methanocarba Nucleoside Derivatives Lacking an Exocyclic Amine as Selective A3 Adenosine Receptor Agonists.

    Science.gov (United States)

    Tosh, Dilip K; Ciancetta, Antonella; Warnick, Eugene; O'Connor, Robert; Chen, Zhoumou; Gizewski, Elizabeth; Crane, Steven; Gao, Zhan-Guo; Auchampach, John A; Salvemini, Daniela; Jacobson, Kenneth A

    2016-04-14

    Purine (N)-methanocarba-5'-N-alkyluronamidoriboside A3 adenosine receptor (A3AR) agonists lacking an exocyclic amine resulted from an unexpected reaction during a Sonogashira coupling and subsequent aminolysis. Because the initial C6-Me and C6-styryl derivatives had unexpectedly high A3AR affinity, other rigid nucleoside analogues lacking an exocyclic amine were prepared. Of these, the C6-Me-(2-phenylethynyl) and C2-(5-chlorothienylethynyl) analogues were particularly potent, with human A3AR Ki values of 6 and 42 nM, respectively. Additionally, the C2-(5-chlorothienyl)-6-H analogue was potent and selective at A3AR (MRS7220, Ki 60 nM) and also completely reversed mouse sciatic nerve mechanoallodynia (in vivo, 3 μmol/kg, po). The lack of a C6 H-bond donor while maintaining A3AR affinity and efficacy could be rationalized by homology modeling and docking of these hypermodified nucleosides. The modeling suggests that a suitable combination of stabilizing features can partially compensate for the lack of an exocyclic amine, an otherwise important contributor to recognition in the A3AR binding site.

  18. An STS in the human adenosine deaminase gene (located 20q12-q13. 11)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, B.C.; States, J.C. (Wayne State Univ., Detroit, MI (United States))

    1991-09-25

    The human adenosine deaminase gene has been characterized in detail. The adenosine gene product, as part of the purine catabolic pathway, catalyzes the irreversible deamination of adenosine and deoxyadenosine. Deficiency of this activity in humans is associated with an autosomal recessive form of severe combined immunodeficiency disease. Recently, this genetic deficiency disease has been targeted for the first attempts at gene therapy in humans. Using the polymerase chain reaction (PCR), a fragment of the expected size (160 bp) was amplified from human genomic DNA.

  19. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Shira Cohen

    2014-01-01

    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  20. Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Thaning, Pia;

    2010-01-01

    One major unresolved issue in muscle blood flow regulation is that of the role of circulating versus interstitial vasodilatory compounds. The present study determined adenosine-induced formation of NO and prostacyclin in the human muscle interstitium versus in femoral venous plasma to elucidate....... In young healthy humans, microdialysate was collected at rest, during arterial infusion of adenosine, and during interstitial infusion of adenosine through microdialysis probes inserted into musculus vastus lateralis. Muscle interstitial NO and prostacyclin increased with arterial and interstitial infusion...... levels. These findings provide novel insight into the role of adenosine in skeletal muscle blood flow regulation and vascular function by revealing that both interstitial and plasma adenosine have a stimulatory effect on NO and prostacyclin formation. In addition, both skeletal muscle and microvascular...

  1. The effects of the adenosine A3 receptor agonist IB-MECA on sodium taurocholate-induced experimental acute pancreatitis.

    Science.gov (United States)

    Prozorow-Krol, Beata; Korolczuk, Agnieszka; Czechowska, Grazyna; Slomka, Maria; Madro, Agnieszka; Celinski, Krzysztof

    2013-09-01

    The role of adenosine A3 receptors and their distribution in the gastrointestinal tract have been widely investigated. Most of the reports discuss their role in intestinal inflammations. However, the role of adenosine A3 receptor agonist in pancreatitis has not been well established. The aim of this study is [corrected] to evaluate the effects of the adenosine A3 receptor agonist on the course of sodium taurocholate-induced experimental acute pancreatitis (EAP). The experiments were performed on 80 male Wistar rats, 58 of which survived, subdivided into 3 groups: C--control rats, I--EAP group, and II--EAP group treated with the adenosine A3 receptor agonist IB-MECA (1-deoxy-1-6[[(3-iodophenyl) methyl]amino]-9H-purin-9-yl)-N-methyl-B-D-ribofuronamide at a dose of 0.75 mg/kg b.w. i.p. at 48, 24, 12 and 1 h before and 1 h after the injection of 5% sodium taurocholate solution into the biliary-pancreatic duct. Serum for α-amylase and lipase determinations and tissue samples for morphological examinations were collected at 2, 6, and 24 h of the experiment. In the IB-MECA group, α-amylase activity was decreased with statistically high significance compared to group I. The activity of lipase was not significantly different among the experimental groups but higher than in the control group. The administration of IB-MECA attenuated the histological parameters of inflammation as compared to untreated animals. The use of A3 receptor agonist IB-MECA attenuates EAP. Our findings suggest that stimulation of adenosine A3 receptors plays a positive role in the sodium taurocholate-induced EAP in rats.

  2. Temporal variations of adenosine metabolism in human blood.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yáñez, L; Aguilar-Roblero, R; Oksenberg, A; Vega-González, A; Villalobos, L; Rosenthal, L; Fernández-Cancino, F; Drucker-Colín, R; Díaz-Muñoz, M

    1996-08-01

    Eight diurnally active (06:00-23:00 h) subjects were adapted for 2 days to the room conditions where the experiments were performed. Blood sampling for adenosine metabolites and metabolizing enzymes was done hourly during the activity span and every 30 min during sleep. The results showed that adenosine and its catabolites (inosine, hypoxanthine, and uric acid), adenosine synthesizing (S-adenosylhomocysteine hydrolase and 5'-nucleotidase), degrading (adenosine deaminase) and nucleotide-forming (adenosine kinase) enzymes as well as adenine nucleotides (AMP, ADP, and ATP) undergo statistically significant fluctuations (ANOVA) during the 24 h. However, energy charge was invariable. Glucose and lactate chronograms were determined as metabolic indicators. The same data analyzed by the chi-square periodogram and Fourier series indicated ultradian oscillatory periods for all the metabolites and enzymatic activities determined, and 24-h oscillatory components for inosine, hypoxanthine, adenine nucleotides, glucose, and the activities of SAH-hydrolase, 5'-nucleotidase, and adenosine kinase. The single cosinor method showed significant oscillatory components exclusively for lactate. As a whole, these results suggest that adenosine metabolism may play a role as a biological oscillator coordinating and/or modulating the energy homeostasis and physiological status of erythrocytes in vivo and could be an important factor in the distribution of purine rings for the rest of the organism.

  3. Equilibrium and kinetic selectivity profiling on the human adenosine receptors.

    Science.gov (United States)

    Guo, Dong; Dijksteel, Gabrielle S; van Duijl, Tirsa; Heezen, Maxime; Heitman, Laura H; IJzerman, Adriaan P

    2016-04-01

    Classical evaluation of target selectivity is usually undertaken by measuring the binding affinity of lead compounds against a number of potential targets under equilibrium conditions, without considering the kinetics of the ligand-receptor interaction. In the present study we propose a combined strategy including both equilibrium- and kinetics-based selectivity profiling. The adenosine receptor (AR) was chosen as a prototypical drug target. Six in-house AR antagonists were evaluated in a radioligand displacement assay for their affinity and in a competition association assay for their binding kinetics on three AR subtypes. One of the compounds with a promising kinetic selectivity profile was also examined in a [(35)S]-GTPγS binding assay for functional activity. We found that XAC and LUF5964 were kinetically more selective for the A1R and A3R, respectively, although they are non-selective in terms of their affinity. In comparison, LUF5967 displayed a strong equilibrium-based selectivity for the A1R over the A2AR, yet its kinetic selectivity thereon was less pronounced. In a GTPγS assay, LUF5964 exhibited insurmountable antagonism on the A3R while having a surmountable effect on the A1R, consistent with its kinetic selectivity profile. This study provides evidence that equilibrium and kinetic selectivity profiling can both be important in the early phases of the drug discovery process. Our proposed combinational strategy could be considered for future medicinal chemistry efforts and aid the design and discovery of different or even better leads for clinical applications.

  4. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells.

    Science.gov (United States)

    Zhang, Mei; Hu, Huiling; Zhang, Xiulan; Lu, Wennan; Lim, Jason; Eysteinsson, Thor; Jacobson, Kenneth A; Laties, Alan M; Mitchell, Claire H

    2010-01-01

    The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.

  5. Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist.

    Science.gov (United States)

    Stoddart, Leigh A; Vernall, Andrea J; Briddon, Stephen J; Kellam, Barrie; Hill, Stephen J

    2015-11-01

    Fluorescence based probes provide a novel way to study the dynamic internalization process of G protein-coupled receptors (GPCRs). Recent advances in the rational design of fluorescent ligands for GPCRs have been used here to generate new fluorescent agonists containing tripeptide linkers for the adenosine A3 receptor. The fluorescent agonist BY630-X-(D)-A-(D)-A-G-ABEA was found to be a highly potent agonist at the adenosine A3 receptor in both reporter gene (pEC50 = 8.48 ± 0.09) and internalization assays (pEC50 = 7.47 ± 0.11). Confocal imaging studies showed that BY630-X-(D)-A-(D)-A-G-ABEA was internalized with A3 linked to yellow fluorescent protein, which was blocked by the competitive antagonist MRS1220. Internalization of untagged adenosine A3 could also be visualized with BY630-X-(D)-A-(D)-A-G-ABEA treatment. Further, BY630-X-(D)-A-(D)-A-G-ABEA stimulated the formation of receptor-arrestin3 complexes and was found to localize with these intracellular complexes. This highly potent agonist with excellent imaging properties should be a valuable tool to study receptor internalization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.

  6. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Maclean, D.; Rådegran, G.

    1998-01-01

    effect remain unanswered. METHODS AND RESULTS: The interstitial adenosine concentration was determined in the vastus lateralis muscle of healthy humans via dialysis probes inserted in the muscle. The probes were perfused with buffer, and the dialysate samples were collected at rest and during graded knee...... and demonstrates that adenosine and its precursors increase in the exercising muscle interstitium, at a rate associated with intensity of muscle contraction and the magnitude of muscle blood flow....

  7. Effect of insulin and glucose on adenosine metabolizing enzymes in human B lymphocytes.

    Science.gov (United States)

    Kocbuch, Katarzyna; Sakowicz-Burkiewicz, Monika; Grden, Marzena; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2009-01-01

    In diabetes several aspects of immunity are altered, including the immunomodulatory action of adenosine. Our study was undertaken to investigate the effect of different glucose and insulin concentrations on activities of adenosine metabolizing enzymes in human B lymphocytes line SKW 6.4. The activity of adenosine deaminase in the cytosolic fraction was very low and was not affected by different glucose concentration, but in the membrane fraction of cells cultured with 25 mM glucose it was decreased by about 35% comparing to the activity in cells maintained in 5 mM glucose, irrespective of insulin concentration. The activities of 5'-nucleotidase (5'-NT) and ecto-5'-NT in SKW 6.4 cells depended on insulin concentration, but not on glucose. Cells cultured with 10(-8) M insulin displayed an about 60% lower activity of cytosolic 5'-NT comparing to cells maintained at 10(-11) M insulin. The activity of ecto-5'-NT was decreased by about 70% in cells cultured with 10(-8) M insulin comparing to cells grown in 10(-11) M insulin. Neither insulin nor glucose had an effect on adenosine kinase (AK) activity in SKW 6.4 cells or in human B cells isolated from peripheral blood. The extracellular level of adenosine and inosine during accelerated catabolism of cellular ATP depended on glucose, but not on insulin concentration. Concluding, our study demonstrates that glucose and insulin differentially affect the activities of adenosine metabolizing enzymes in human B lymphocytes, but changes in those activities do not correlate with the adenosine level in cell media during accelerated ATP catabolism, implying that nucleoside transport is the primary factor determining the extracellular level of adenosine.

  8. Adenosine as a Multi-Signalling Guardian Angel in Human Diseases: When, Where and How Does it Exert its Protective Effects?

    Science.gov (United States)

    Borea, Pier Andrea; Gessi, Stefania; Merighi, Stefania; Varani, Katia

    2016-06-01

    The importance of adenosine for human health cannot be overstated. Indeed, this ubiquitous nucleoside is an integral component of ATP, and regulates the function of every tissue and organ in the body. Acting via receptor-dependent and -independent mechanisms [the former mediated via four G-protein-coupled receptors (GPCRs), A1, A2A, A2B, and A3,], it has a significant role in protecting against cell damage in areas of increased tissue metabolism, and combating organ dysfunction in numerous pathological states. Accordingly, raised levels of adenosine have been demonstrated in epilepsy, ischaemia, pain, inflammation, and cancer, in which its behaviour can be likened to that of a guardian angel, even though there are instances in which overproduction of adenosine is pathological. In this review, we condense the current body of knowledge on the issue, highlighting when, where, and how adenosine exerts its protective effects in both the brain and the periphery.

  9. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka;

    2007-01-01

    ) muscles during exercise, measured using positron emission tomography. In six healthy young women, BF was measured at rest and then during three incremental low and moderate intermittent isometric one-legged knee-extension exercise intensities without and with theophylline-induced nonselective adenosine...... exercise intensity in the QF muscle group. Adenosine seems to play a role in muscle BF heterogeneity even in the absence of changes in bulk BF at low and moderate one-leg intermittent isometric exercise intensities.......Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...

  10. Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Gérard Jean-Louis

    2010-07-01

    Full Text Available Abstract Background Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. Methods We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz. After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyltheophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation between the groups by a variance analysis and post hoc test. Results Desflurane 6% (84 ± 6% of baseline enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P N-mercaptopropionylglycine (54 ± 3% of baseline, 8-(p-Sulfophenyltheophylline (62 ± 9% of baseline, HOE140 (58 ± 6% of baseline abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline and bradykinin (83 ± 4% of baseline induced postconditioning (P vs control, N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively. Conclusions In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin

  11. Investigation of the Interaction between Adenosine and Human Serum Albumin by Fluorescent Spectroscopy and Molecular Modeling

    Institute of Scientific and Technical Information of China (English)

    CUI Feng-Ling; WANG Jun-Li; LI Fang; FAN Jing; QU Gui-Rong; YAO Xiao-Jun; LEI Bei-Lei

    2008-01-01

    The binding interaction of adenosine with human serum albumin (HSA) was investigated under simulative physiological conditions by fluorescence spectroscopy in combination with a molecular modeling method. A strong fluorescence quenching reaction of adenosine to HSA was observed and the quenching mechanism was suggested as static quenching according to the Stern-Volmer equation. The binding constants (K) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated according to relevant fluorescent data and Vant'Hoff equation. The hydrophobic interaction was a predominant intermolecular force in order to stabilize the complex, which was in agreement with the results of molecular modeling study.

  12. Allosteric modulators affect the internalization of human adenosine A1 receptors.

    NARCIS (Netherlands)

    Klaasse, E.C.; Hout, G. van den; Roerink, S.F.; Grip, W.J. de; IJzerman, A.P.; Beukers, M.W.

    2005-01-01

    To study the effect of allosteric modulators on the internalization of human adenosine A(1) receptors, the receptor was equipped with a C-terminal yellow fluorescent protein tag. The introduction of this tag did not affect the radioligand binding properties of the receptor. CHO cells stably expressi

  13. The effect of ticlopidine administration to humans on the binding of adenosine diphosphate to blood platelets

    NARCIS (Netherlands)

    Lips, J.P.M.; Sixma, J.J.; Schiphorst, M.E.

    1980-01-01

    Administration of Ticlopidine to human volunteers resulted in a prolonged bleeding time and decreased or absent aggregation of platelets with collagen and epinephrine. Adenosine diphosphate (ADP) induced platelet aggregation was initiated by a normal shape change, but the rate of the first wave of a

  14. Synthesis of novel pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives: potent and selective adenosine A3 receptor antagonists.

    Science.gov (United States)

    Banda, Veeraswamy; Chandrasekaran, Balakumar; Köse, Meryem; Vielmuth, Christin; Müller, Christa E; Chavva, Kurumurthy; Gautham, Santhosh Kumar; Pillalamarri, Sambasivarao; Mylavaram, Raghuprasad; Akkinepally, Raghuramarao; Pamulaparthy, Shanthanrao; Banda, Narsaiah

    2013-10-01

    A series of novel pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives 5 was prepared from 2-amino-3-cyano-4-trifluoromethyl-6-phenylpyridine 1 in two steps via formation of iminoether 3 followed by reaction with different aroylhydrazides 4. Representative products 5 were evaluated for their affinity towards all four subtypes of human adenosine receptors. Compounds 2-(3-fluorophenyl)-8-phenyl-10-(trifluoromethyl)pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine (5b), 2-(furan-2-yl)-8-phenyl-10-(trifluoromethyl)pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine (5d), and 2-(furan-2-yl)-5-methyl-8-phenyl-10-(trifluoromethyl)pyrido[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine (5j) showed high affinity for the A3 receptors, with Ki values of 8.1, 10.4, and 12.1 nM, respectively, and were >1000-fold selective versus all other adenosine receptor subtypes.

  15. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.; Miller, A.D.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vector containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.

  16. Extended N(6) substitution of rigid C2-arylethynyl nucleosides for exploring the role of extracellular loops in ligand recognition at the A3 adenosine receptor.

    Science.gov (United States)

    Tosh, Dilip K; Paoletta, Silvia; Chen, Zhoumou; Moss, Steven M; Gao, Zhan-Guo; Salvemini, Daniela; Jacobson, Kenneth A

    2014-08-01

    2-Arylethynyl-(N)-methanocarba adenosine 5'-methyluronamides containing rigid N(6)-(trans-2-phenylcyclopropyl) and 2-phenylethynyl groups were synthesized as agonists for probing structural features of the A3 adenosine receptor (AR). Radioligand binding confirmed A3AR selectivity and N(6)-1S,2R stereoselectivity for one diastereomeric pair. The environment of receptor-bound, conformationally constrained N(6) groups was explored by docking to an A3AR homology model, indicating specific hydrophobic interactions with the second extracellular loop able to modulate the affinity profile. 2-Pyridylethynyl derivative 18 was administered orally in mice to reduce chronic neuropathic pain in the chronic constriction injury model.

  17. Adenosine triphosphate-binding cassette member A3 gene mutation in children from one family from Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Gawahir Mohamed Ahmed Mukhtar

    2016-01-01

    Full Text Available Mutation in ABCA3, which is adenosine triphosphate-binding cassette member A3, a member of protein transporter family for phospholipids into the lamellar bodies during synthesis of surfactant, can cause lung disease related to surfactant dysfunction with autosomal recessive pattern. We reported three cases from same family with ABCA3 mutation, their gene, clinical course, and outcomes mentioning that one patient had successful lung transplantation, one started the process of the lung transplantation while the third one died during infancy. We concluded that the patients with ABCA3 gene mutations are increasing in numbers may be due to the availability of the genetic testing and high index of suspicion among physicians. Lung transplantation is the definitive treatment, but availability is limited in our region.

  18. Discovery of novel A3 adenosine receptor ligands based on chromone scaffold.

    Science.gov (United States)

    Gaspar, Alexandra; Reis, Joana; Kachler, Sonja; Paoletta, Silvia; Uriarte, Eugenio; Klotz, Karl-Norbert; Moro, Stefano; Borges, Fernanda

    2012-07-01

    A project focused on the discovery of new chemical entities (NCEs) as AR ligands that incorporate a benzo-γ-pyrone [(4H)-1-benzopyran-4-one] substructure has been developed. Accordingly, two series of novel chromone carboxamides placed at positions C2 (compounds 2-13) and C3 (compounds 15-26) of the γ-pyrone ring were synthesized using chromone carboxylic acids (compounds 1 or 14) as starting materials. From this study and on the basis of the obtained structure-activity relationships it was concluded that the chromone carboxamide scaffold represent a novel class of AR ligands. The most remarkable chromones were compounds 21 and 26 that present a better affinity for A3AR (Ki = 3680 nM and Ki = 3750 nM, respectively). Receptor-driven molecular modeling studies provide information on the binding/selectivity data of the chromone. The data so far acquired are instrumental for future optimization of chromone carboxamide as a selective A3AR antagonist. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Role of nitric oxide in adenosine-induced vasodilation in humans

    Science.gov (United States)

    Costa, F.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    1998-01-01

    Vasodilation is one of the most prominent effects of adenosine and one of the first to be recognized, but its mechanism of action is not completely understood. In particular, there is conflicting information about the potential contribution of endothelial factors. The purpose of this study was to explore the role of nitric oxide in the vasodilatory effect of adenosine. Forearm blood flow responses to intrabrachial adenosine infusion (125 microg/min) were assessed with venous occlusion plethysmography during intrabrachial infusion of saline or the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) (12.5 mg/min). Intrabrachial infusions of acetylcholine (50 microg/min) and nitroprusside (3 microg/min) were used as a positive and negative control, respectively. These doses were chosen to produce comparable levels of vasodilation. In a separate study, a second saline infusion was administered instead of L-NMMA to rule out time-related effects. As expected, pretreatment with L-NMMA reduced acetylcholine-induced vasodilation; 50 microg/min acetylcholine increased forearm blood flow by 150+/-43% and 51+/-12% during saline and L-NMMA infusion, respectively (Pvasodilation is not mediated by nitric oxide in the human forearm.

  20. Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.M.; Danos, O.; Grossman, M.; Raulet, D.H.; Mulligan, R.C. (Massachusetts Institute of Technology, Cambridge (USA))

    1990-01-01

    Recombinant retroviruses encoding human adenosine deaminase have been used to infect murine hematopoietic stem cells. In bone marrow transplant recipients reconstituted with the genetically modified cells, human ADA was detected in peripheral blood mononuclear cells of the recipients for at least 6 months after transplantation. In animals analyzed in detail 4 months after transplantation, human ADA and proviral sequences were detected in all hematopoietic lineages; in several cases, human ADA activity exceeded the endogenous activity. These studies demonstrate the feasibility of introducing a functional human ADA gene into hematopoietic stem cells and obtaining expression in multiple hematopoietic lineages long after transplantation. This approach should be helpful in designing effective gene therapies for severe combined immunodeficiency syndromes in humans.

  1. The Binding Site of Human Adenosine Deaminase for Cd26/Dipeptidyl Peptidase IV

    Science.gov (United States)

    Richard, Eva; Arredondo-Vega, Francisco X.; Santisteban, Ines; Kelly, Susan J.; Patel, Dhavalkumar D.; Hershfield, Michael S.

    2000-01-01

    Human, but not murine, adenosine deaminase (ADA) forms a complex with the cell membrane protein CD26/dipeptidyl peptidase IV. CD26-bound ADA has been postulated to regulate extracellular adenosine levels and to modulate the costimulatory function of CD26 on T lymphocytes. Absence of ADA–CD26 binding has been implicated in causing severe combined immunodeficiency due to ADA deficiency. Using human–mouse ADA hybrids and ADA point mutants, we have localized the amino acids critical for CD26 binding to the helical segment 126–143. Arg142 in human ADA and Gln142 in mouse ADA largely determine the capacity to bind CD26. Recombinant human ADA bearing the R142Q mutation had normal catalytic activity per molecule, but markedly impaired binding to a CD26+ ADA-deficient human T cell line. Reduced CD26 binding was also found with ADA from red cells and T cells of a healthy individual whose only expressed ADA has the R142Q mutation. Conversely, ADA with the E217K active site mutation, the only ADA expressed by a severely immunodeficient patient, showed normal CD26 binding. These findings argue that ADA binding to CD26 is not essential for immune function in humans. PMID:11067872

  2. Selective and potent adenosine A3 receptor antagonists by methoxyaryl substitution on the N-(2,6-diarylpyrimidin-4-yl)acetamide scaffold.

    Science.gov (United States)

    Yaziji, Vicente; Rodríguez, David; Coelho, Alberto; García-Mera, Xerardo; El Maatougui, Abdelaziz; Brea, José; Loza, María Isabel; Cadavid, María Isabel; Gutiérrez-de-Terán, Hugo; Sotelo, Eddy

    2013-01-01

    The influence of diverse methoxyphenyl substitution patterns on the N-(2,6-diarylpyrimidin-4-yl)acetamide scaffold is herein explored in order to modulate the A(3) adenosine receptor antagonistic profile. As a result, novel ligands exhibiting excellent potency (K(i) on A(3) AR < 20 nM) and selectivity profiles (above 100-fold within the adenosine receptors family) are reported. Moreover, our joint theoretical and experimental approach allows the identification of novel pharmacophoric elements conferring A(3)AR selectivity, first established by a robust computational model and thereafter characterizing the most salient features of the structure-activity and structure-selectivity relationships in this series.

  3. Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport

    DEFF Research Database (Denmark)

    Novak, Ivana; Hede, Susanne; Hansen, Mette

    2007-01-01

    these could be involved in secretory processes, which involve cystic fibrosis transmembrane regulator (CFTR) Cl(-) channels or Ca(2+)-activated Cl(-) channels and [Formula: see text] transporters. Reverse transcriptase polymerase chain reaction analysis on rat pancreatic ducts and human duct cell......, plasma membrane of many PANC-1 cells, but only a few CFPAC-1 cells. Taken together, our data indicate that A(2A) receptors open Cl(-) channels in pancreatic ducts cells with functional CFTR. We propose that adenosine can stimulate pancreatic secretion and, thereby, is an active player in the acini...

  4. Mast cells are directly activated by contact with cancer cells by a mechanism involving autocrine formation of adenosine and autocrine/paracrine signaling of the adenosine A3 receptor.

    Science.gov (United States)

    Gorzalczany, Yaara; Akiva, Eyal; Klein, Ofir; Merimsky, Ofer; Sagi-Eisenberg, Ronit

    2017-07-01

    Mast cells (MCs) constitute an important part of the tumor microenvironment (TME). However, their underlying mechanisms of activation within the TME remain poorly understood. Here we show that recapitulating cell-to-cell contact interactions by exposing MCs to membranes derived from a number of cancer cell types, results in MC activation, evident by the increased phosphorylation of the ERK1/2 MAP kinases and Akt, in a phosphatidylinositol 3-kinase dependent fashion. Activation is unidirectional since MC derived membranes do not activate cancer cells. Stimulated ERK1/2 phosphorylation is strictly dependent on the ecto enzyme CD73 that mediates autocrine formation of adenosine, and is inhibited by knockdown of the A3 adenosine receptor (A3R) as well as by an A3R antagonist or by agonist-stimulated down-regulation of the A3R. We also show that cancer cell mediated triggering upregulates expression and stimulates secretion of interleukin 8 from the activated MCs. These findings provide evidence for a novel mode of unidirectional crosstalk between MCs and cancer cells implicating direct activation by cancer cells in MC reprogramming into a pro tumorigenic profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. CF101, An Agonist to the A3 Adenosine Receptor, Enhances the Chemotherapeutic Effect of 5-Fluorouracil in a Colon Carcinoma Murine Model

    Directory of Open Access Journals (Sweden)

    Sara Bar-Yehuda

    2005-01-01

    Full Text Available NF-κB and the upstream kinase PKB/Akt are highly expressed in chemoresistance tumor cells and may hamper the apoptotic pathway. CF101, a specific agonist to the A3 adenosine receptor, inhibits the development of colon carcinoma growth in cell cultures and xenograft murine models. Because CF101 has been shown to downregulate PKB/Akt and NF-κB protein expression level, we presumed that its combination with chemotherapy will enhance the antitumor effect of the cytotoxic drug. In this study, we utilized 3-[4,5Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT and colony formation assays and a colon carcinoma xenograft model. It has been shown that a combined treatment of CF101 and 5-fluorouracil (5-FU enhanced the cytotoxic effect of the latter on HCT-116 human colon carcinoma growth. Downregulation of PKB/Akt, NF-κB, and cyclin D1, and upregulation of caspase-3 protein expression level were observed in cells and tumor lesions on treatment with a combination of CF101 and 5-FU. Moreover, in mice treated with the combined therapy, myelotoxicity was prevented as was evidenced by normal white blood cell and neutrophil counts. These results show that CF101 potentiates the cytotoxic effect of 5-FU, thus preventing drug resistance. The myeloprotective effect of CF101 suggests its development as an add-on treatment to 5-FU.

  6. [{sup 18}F]FE rate at SUPPY: a suitable PET tracer for the adenosine A3 receptor? An in vivo study in rodents

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, Daniela; Zeilinger, Markus; Wadsak, Wolfgang; Hacker, Marcus; Mitterhauser, Markus [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); Kuntner, Claudia; Wanek, Thomas; Langer, Oliver [AIT Austrian Institute of Technology GmbH, Biomedical Systems, Health and Environment Department, Seibersdorf (Austria); Nics, Lukas [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); University of Vienna, Department of Nutritional Sciences, Vienna (Austria); Savli, Markus; Lanzenberger, Rupert R. [Medical University of Vienna, Department of Psychiatry and Psychotherapy, Vienna (Austria); Karagiannis, Panagiotis [King' s College London, Cutaneous Medicine and Immunotherapy, St. John' s Institute of Dermatology, Division of Genetics and Molecular Medicine King' s College London School of Medicine, Guy' s Hospital, London (United Kingdom); Shanab, Karem; Spreitzer, Helmut [University of Vienna, Department of Drug and Natural Product Synthesis, Vienna (Austria)

    2015-04-01

    The adenosine A{sub 3} receptor (A3R) is involved in cardiovascular, neurological and tumour-related pathologies and serves as an exceptional pharmaceutical target in the clinical setting. A3R antagonists are considered antiinflammatory, antiallergic and anticancer agents, and to have potential for the treatment of asthma, COPD, glaucoma and stroke. Hence, an appropriate A3R PET tracer would be highly beneficial for the diagnosis and therapy monitoring of these diseases. Therefore, in this preclinical in vivo study we evaluated the potential as a PET tracer of the A3R antagonist [{sup 18}F]FE rate at SUPPY. Rats were injected with [{sup 18}F]FE rate at SUPPY for baseline scans and blocking scans (A3R with MRS1523 or FE rate at SUPPY, P-gp with tariquidar; three animals each). Additionally, metabolism was studied in plasma and brain. In a preliminary experiment in a mouse xenograft model (mice injected with cells expressing the human A3R; three animals), the animals received [{sup 18}F]FE rate at SUPPY and [{sup 18}F]FDG. Dynamic PET imaging was performed (60 min in rats, 90 min in xenografted mice). In vitro stability of [{sup 18}F]FE rate at SUPPY in human and rat plasma was also evaluated. [{sup 18}F]FE rate at SUPPY showed high uptake in fat-rich regions and low uptake in the brain. Pretreatment with MRS1523 led to a decrease in [{sup 18}F]FE rate at SUPPY uptake (p = 0.03), and pretreatment with the P-gp inhibitor tariquidar led to a 1.24-fold increase in [{sup 18}F]FE rate at SUPPY uptake (p = 0.09) in rat brain. There was no significant difference in metabolites in plasma and brain in the treatment groups. However, plasma concentrations of [{sup 18}F]FE rate at SUPPY were reduced to levels similar to those in rat brain after blocking. In contrast to [{sup 18}F]FDG uptake (p = 0.12), the xenograft model showed significantly increased uptake of [{sup 18}F]FE rate at SUPPY in the tissue masses from CHO cells expressing the human A3R (p = 0.03). [{sup 18}F

  7. An adenosine A3 receptor agonist inhibits DSS-induced colitis in mice through modulation of the NF-κB signaling pathway

    Science.gov (United States)

    Ren, Tianhua; Tian, Ting; Feng, Xiao; Ye, Shicai; Wang, Hao; Wu, Weiyun; Qiu, Yumei; Yu, Caiyuan; He, Yanting; Zeng, Juncheng; Cen, Junwei; Zhou, Yu

    2015-01-01

    The role of the adenosine A3 receptor (A3AR) in experimental colitis is controversial. The A3AR agonist N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been shown to have a clinical benefit, although studies in A3AR-deficient mice suggest a pro-inflammatory role. However, there are no studies on the effect of 2-Cl-IB-MECA and the molecular mechanism of action of A3AR in murine colitis models in vivo. Is it the same as that observed in vitro? The interaction between 2-CL-IB-MECA and A3AR in a murine colitis model and the signaling pathways associated with this interaction remain unclear. Here we demonstrate a role for the NF-κB signaling pathway and its effect on modifying the activity of proinflammatory factors in A3AR-mediated biological processes. Our results demonstrated that A3AR activation possessed marked effects on experimental colitis through the NF-κB signaling pathway. PMID:25762375

  8. An adenosine A3 receptor agonist inhibits DSS-induced colitis in mice through modulation of the NF-κB signaling pathway.

    Science.gov (United States)

    Ren, Tianhua; Tian, Ting; Feng, Xiao; Ye, Shicai; Wang, Hao; Wu, Weiyun; Qiu, Yumei; Yu, Caiyuan; He, Yanting; Zeng, Juncheng; Cen, Junwei; Zhou, Yu

    2015-03-12

    The role of the adenosine A3 receptor (A3AR) in experimental colitis is controversial. The A3AR agonist N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been shown to have a clinical benefit, although studies in A3AR-deficient mice suggest a pro-inflammatory role. However, there are no studies on the effect of 2-Cl-IB-MECA and the molecular mechanism of action of A3AR in murine colitis models in vivo. Is it the same as that observed in vitro? The interaction between 2-CL-IB-MECA and A3AR in a murine colitis model and the signaling pathways associated with this interaction remain unclear. Here we demonstrate a role for the NF-κB signaling pathway and its effect on modifying the activity of proinflammatory factors in A3AR-mediated biological processes. Our results demonstrated that A3AR activation possessed marked effects on experimental colitis through the NF-κB signaling pathway.

  9. Influences of dibutyryl cyclic adenosine monophosphate and forskolin on human sperm motility in vitro

    Institute of Scientific and Technical Information of China (English)

    Ji-HongLIU; YangLI; Zheng-GuoCAO; Zhang-QunYE

    2003-01-01

    Aim: To study the influences of dibutyryl cyclic adenosine monophosphate (dbcAMP) and forskolin on human sperm motility in vitro. Methods: Semen samples, aseptically obtained by masturbation and prepared by swim-up technique from 20 fertile men, were incubated with different concenlrations of dbcAMP and forskolin at 37℃. Measurements were carried out after l0 min, 20 min, 30 min and 60 min incubation. Motility parameters were estimated by using an automatic analyzing system. Results: Treatment with dbcAMP or forskolin resulted in a significant increase in sperm motility and progressive motility. The larger the concenlrations of dbcAMP or forskolin,the greater the effect appeared. The straight linear velocity and curvilinear velocity were not affected by both agents.Conclusion: dbcAMP and forskolin increase the motility and progressive motility of human sperm in vitro. ( Asian J Androl 2003 Jun; 5: 113-115)

  10. Robust aptamer sol-gel solid phase microextraction of very polar adenosine from human plasma.

    Science.gov (United States)

    Mu, Li; Hu, Xiangang; Wen, Jianping; Zhou, Qixing

    2013-03-01

    Conventional solid phase microextraction (SPME) has a limited capacity to extract very polar analytes, such as adenosine. To solve this problem, aptamer conjugating sol-gel methodology was coupled with an SPME fiber. According to the authors' knowledge, this is the first reported use of aptamer SPME. The fiber of aptamer sol-gel SPME with a mesoporous structure has high porosity, large surface area, and small water contact angle. Rather than employing direct entrapment, covalent immobilization was the dominant method of aptamer loading in sol-gel. Aptamer sol-gel fiber captured a specified analyte from among the analog molecules, thereby, exhibiting an excellent selective property. Compared with commercial SPME fibers, this aptamer fiber was suitable for extracting adenosine, presenting an extraction efficiency higher than 20-fold. The values of repeatability and reproducibility expressed by relative standard deviation were low (9.4%). Interestingly, the sol-gel network enhanced the resistance of aptamer SPME to both nuclease and nonspecific proteins. Furthermore, the aptamer sol-gel fiber was applied in human plasma with LOQ 1.5 μg/L, which is an acceptable level. This fiber also demonstrates durability and regeneration over 20-cycles without significant loss of efficiency. Given the various targets (from metal ions to biomacromolecules and cells) of aptamers, this methodology will extend the multi-domain applications of SPME.

  11. Growth inhibitory effect and apoptosis induced by extracellular ATP and adenosine on human gastric carcinoma cells: involvement of intracellular uptake of adenosine

    Institute of Scientific and Technical Information of China (English)

    Ming-xia WANG; Lei-ming REN

    2006-01-01

    Aim: To study the growth inhibitory and apoptotic effects of adenosine triphosphate (ATP) and adenosine (ADO) on human gastric carcinoma (HGC)-27 cells in vitro and the mechanisms related to the actions of ATP and ADO. Methods: MTT assay was used to determine the reduction of cell viability. The morphological changes of HGC-27 cells induced by ATP or ADO were observed under fluorescence light microscope by acridine orange/ethidium bromide double-stained cells. The internucleosomal fragmentation of genomic DNA was detected by agarose gel electrophoresis. The apoptotic rate and cell-cycle analysis after treatment with ATP or ADO was determined by flow cytometry. Results: ATP, ADO and the intermediate metabolites, ADP and AMP, and the agonist of purinergic receptors, reduced cell viability of HGC-27 cells at doses of 0.3 and 1.0 mmol·L-1. The distribution of cell cycle phase and proliferation index (PI) value of HGC-27 cells changed when exposed to ATP or ADO at the concentrations of 0.1,0.3 and 1 mmol/L for 48 h. ATP and ADO both altered the distribution of cell cycle phase via Go/G1-phase arrest and significantly decreased PI value. Under light microscope, the tumor cells exposed to 0.3 mmol·L-1 ATP or ADO displayed morphological changes of apoptosis; a ladder-like pattern of DNA fragmentation obtained from HGC-27 cells treated with 0.1-1 mmol·L-1 ATP or ADO appeared in agarose gel electrophoresis; ATP and ADO induced the apoptosis of HGC-27 cells in a dose-dependent manner at concentrations between 0.03-1 mmol·L-1. The maximum apoptotic rate of HGC-27 cells exposed to ATP or ADO for 48 h was 13.53% or 15.9%, respectively. HGC-27 cell death induced by ATP or ADO was significantly inhibited by dipy-ridamole (10 mmol·L-1), an inhibitor of adenosine transporter, but was not affected by aminophylline, a broad inhibitor of PI receptors and pyridoxal-phosphate-6-azophenyl-2, 4-disulphonic acid tetrasodium salt (30 nmol·L-1), a non-selective antagonist of P2

  12. ATP induced vasodilatation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins and adenosine

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Gonzalez-Alonso, Jose; Bune, Laurids

    2009-01-01

    Plasma adenosine-5'-triphosphate (ATP) is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study...... investigated: 1) the role of nitric oxide (NO), prostaglandins and adenosine as mediators of ATP induced limb vasodilation and 2) the expression and distribution of purinergic P2 receptors in human skeletal muscle. Systemic and leg hemodynamics were measured before and during 5-7 min of femoral intra......-arterial infusion of ATP (0.45-2.45 micromol/min; mean+/-SEM) in 19 healthy, male subjects with and without co-infusion of NG-mono-methyl-L-arginine (L-NMMA; NO formation inhibitor; 12.3+/-0.3 mg/min), indomethacin (INDO; prostaglandin formation blocker; 613+/-12 microg/min) and/or theophylline (adenosine receptor...

  13. Lipopolysaccharide-induced serotonin transporter up-regulation involves PKG-I and p38MAPK activation partially through A3 adenosine receptor.

    Science.gov (United States)

    Zhao, Rui; Wang, Shoubao; Huang, Zhonglin; Zhang, Li; Yang, Xiuying; Bai, Xiaoyu; Zhou, Dan; Qin, Zhizhen; Du, Guanhua

    2015-12-01

    Serotonin transporter (SERT) is a critical determinant of synaptic serotonin (5-hydroxytryptamine, 5-HT) inactivation which plays a critical role in the pathology of depression and other mood disorders. Lipopolysaccharide (LPS), a potent activator of the inflammatory system, has been reported to cause depression symptoms by the modulation of SERT in vivo and in vitro. This study is aimed to investigate the underlying mechanism of LPS-induced SERT modulation. The 4-(4-(dimethylamino) styryl)-N-methylpyridinium iodide (ASP) assay was used to detect dynamic 5-HT uptake as read out of SERT activities in RBL-2H3 cells, and cytosol Ca(2+) concentrations ([Ca(2+)]i) and nitric oxide (NO) were examined. Using specific cyclic GMP-dependent protein kinase type I (PKG-I), p38 mitogen-activated protein kinases (p38MAPK) and A3 adenosine receptor (A3AR) inhibitors, SERT expression was evaluated by western blot and immunofluorescence analysis. Results showed that 24 h treatment with LPS stimulated 5-HT transport and up-regulate plasma membrane distribution of SERT in RBL-2H3 cells. LPS treatment increased NO and [Ca(2+)]i, and led to significant increases in levels of phosphorylated calcium/calmodulin-dependent protein kinase type II (CaMK-II), inducible NOS (iNOS) and PKG-I as well as active p38 MAPK. Moreover, PKG-I inhibitor KT5823 or p38MAPK inhibitor SB203580 respectively impaired SERT activation and transposition to plasma membrane by LPS. Notably, A3 adenosine receptor inhibitor MRS1191 also hindered SERT stimulation by LPS. In conclusion, LPS-induced 5-HT uptake and transposition to plasma membrane of SERT in RBL-2H3 cells involves CaMK-II/iNOS/PKG-I and p38 MAPK activation, which may be partially mediated by A3 adenosine receptor activation. This finding provides a novel insight into the interrelationship between LPS and depression.

  14. Circulating adenosine increases during human experimental endotoxemia but blockade of its receptor does not influence the immune response and subsequent organ injury

    NARCIS (Netherlands)

    Ramakers, B.P.C.; Riksen, N.P.; Broek, P.H.H. van den; Franke, B.; Peters, W.H.M.; Hoeven, J.G. van der; Smits, P.; Pickkers, P.

    2011-01-01

    INTRODUCTION: Preclinical studies have shown that the endogenous nucleoside adenosine prevents excessive tissue injury during systemic inflammation. We aimed to study whether endogenous adenosine also limits tissue injury in a human in vivo model of systemic inflammation. In addition, we studied whe

  15. Inhibitory effects of benzodiazepines on the adenosine A(2B) receptor mediated secretion of interleukin-8 in human mast cells.

    Science.gov (United States)

    Hoffmann, Kristina; Xifró, Rosa Altarcheh; Hartweg, Julia Lisa; Spitzlei, Petra; Meis, Kirsten; Molderings, Gerhard J; von Kügelgen, Ivar

    2013-01-30

    The activation of adenosine A(2B) receptors in human mast cells causes pro-inflammatory responses such as the secretion of interleukin-8. There is evidence for an inhibitory effect of benzodiazepines on mast cell mediated symptoms in patients with systemic mast cell activation disease. Therefore, we investigated the effects of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast cell leukaemia (HMC1) cells by an enzyme linked immunosorbent assay. The adenosine analogue N-ethylcarboxamidoadenosine (NECA, 0.3-3 μM) increased interleukin-8 production about 5-fold above baseline. This effect was attenuated by the adenosine A(2B) receptor antagonist MRS1754 (N-(4-cyanophenyl)-2-{4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy}-acetamide) 1 μM. In addition, diazepam, 4'-chlorodiazepam and flunitrazepam (1-30 μM) markedly reduced NECA-induced interleukin-8 production in that order of potency, whereas clonazepam showed only a modest inhibition. The inhibitory effect of diazepam was not altered by flumazenil 10 μM or PK11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) 10 μM. Diazepam attenuated the NECA-induced expression of mRNA encoding for interleukin-8. Moreover, diazepam and flunitrazepam reduced the increasing effects of NECA on cAMP-response element- and nuclear factor of activated t-cells-driven luciferase reporter gene activities in HMC1 cells. Neither diazepam nor flunitrazepam affected NECA-induced increases in cellular cAMP levels in CHO Flp-In cells stably expressing recombinant human adenosine A(2B) receptors, excluding a direct action of benzodiazepines on human adenosine A(2B) receptors. In conclusion, this is the first study showing an inhibitory action of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast (HMC1) cells. The rank order of potency indicates the involvement of an atypical benzodiazepine binding site.

  16. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H.A.; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2010-01-01

    femoral artery infusion of adenosine (1 mg * min(-1) * litre thigh volume(-1)), which has previously been shown to induce maximal whole thigh blood flow of ~8 L/min. This response was compared to the blood flow induced by moderate-high intensity one-leg dynamic knee extension exercise. Adenosine increased...... muscle. Additionally, it remains to be determined what proportion of adenosine-induced flow elevation is specifically directed to muscle only. In the present study we measured thigh muscle capillary nutritive blood flow in nine healthy young men using positron emission tomography at rest and during...... muscle blood flow on average to 40 +/- 7 ml. min(-1) per 100g(-1) of muscle and an aggregate value of 2.3 +/- 0.6 L * min(-1) for the whole thigh musculature. Adenosine also induced a substantial change in blood flow distribution within individuals. Muscle blood flow during adenosine infusion...

  17. Inhibition by adenosine of histamine and leukotriene release from human basophils.

    Science.gov (United States)

    Peachell, P T; Lichtenstein, L M; Schleimer, R P

    1989-06-01

    Adenosine inhibited the release of histamine and leukotriene C4 (LTC4) from immunologically-activated basophils in a dose-dependent manner. Structural congeners of adenosine also attenuated the elaboration of these two mediators from stimulated basophils and a rank order of potency for the inhibition was observed following the sequence 2-chloroadenosine greater than or equal to N-ethylcarboxamidoadenosine (NECA) greater than adenosine greater than or equal to R-phenylisopropyladenosine (R-PIA) greater than or equal to S-PIA. These same nucleosides modulated the generation of LTC4 more potently than the release of histamine. A number of methylxanthines, which are antagonists of cell surface adenosine receptors, reversed the inhibition by adenosine and its congeners of the release of both histamine and LTC4 to varying extents. Dipyridamole and nitrobenzylthioinosine (NBTI), agents that block the intracellular uptake of adenosine, antagonized the inhibition of histamine release by adenosine (and 2-chloroadenosine) but failed to reverse the attenuation of LTC4 generation by the nucleoside. These same uptake blockers were unable to antagonize the inhibitory effects of NECA on either histamine or LTC4 release. In purified basophils, NECA and R-PIA, and in that order of decreasing reactivity, increased total cell cyclic adenosine monophosphate (cAMP) levels and inhibited the stimulated release of mediators. In total, these results suggest that the basophil possesses a cell surface adenosine receptor which, on the basis of both pharmacological and biochemical criteria, most closely conforms to an A2/Ra-like receptor. However, in addition to an interaction at the cell surface, studies with agents that block the intracellular uptake of adenosine suggest that the nucleoside may also exert intracellular effects when countering the release of histamine (but not LTC4).

  18. Adenosine Triphosphate stimulates differentiation and mineralization in human osteoblast-like Saos-2 cells.

    Science.gov (United States)

    Cutarelli, Alessandro; Marini, Mario; Tancredi, Virginia; D'Arcangelo, Giovanna; Murdocca, Michela; Frank, Claudio; Tarantino, Umberto

    2016-05-01

    In the last years adenosine triphosphate (ATP) and subsequent purinergic system activation through P2 receptors were investigated highlighting their pivotal role in bone tissue biology. In osteoblasts ATP can regulate several activities like cell proliferation, cell death, cell differentiation and matrix mineralization. Since controversial results exist, in this study we analyzed the ATP effects on differentiation and mineralization in human osteoblast-like Saos-2 cells. We showed for the first time the altered functional activity of ATP receptors. Despite that, we found that ATP can reduce cell proliferation and stimulate osteogenic differentiation mainly in the early stages of in vitro maturation as evidenced by the enhanced expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and Osteocalcin (OC) genes and by the increased ALP activity. Moreover, we found that ATP can affect mineralization in a biphasic manner, at low concentrations ATP always increases mineral deposition while at high concentrations it always reduces mineral deposition. In conclusion, we show the osteogenic effect of ATP on both early and late stage activities like differentiation and mineralization, for the first time in human osteoblastic cells.

  19. Discovery and optimization of potent and selective functional antagonists of the human adenosine A2B receptor.

    Science.gov (United States)

    Bedford, Simon T; Benwell, Karen R; Brooks, Teresa; Chen, Ijen; Comer, Mike; Dugdale, Sarah; Haymes, Tim; Jordan, Allan M; Kennett, Guy A; Knight, Anthony R; Klenke, Burkhard; LeStrat, Loic; Merrett, Angela; Misra, Anil; Lightowler, Sean; Padfield, Anthony; Poullennec, Karine; Reece, Mark; Simmonite, Heather; Wong, Melanie; Yule, Ian A

    2009-10-15

    We herein report the discovery of a novel class of antagonists of the human adenosine A2B receptor. This low molecular weight scaffold has been optimized to offer derivatives with potential utility for the alleviation of conditions associated with this receptor subtype, such as nociception, diabetes, asthma and COPD. Furthermore, preliminary pharmacokinetic analysis has revealed compounds with profiles suitable for either inhaled or systemic routes of administration.

  20. Site-directed mutagenesis and bacterial expression of human adenosine deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Danton, M.J.; Leonardo, J.; Riley, L.; Coleman, M.S.

    1987-05-01

    Adenosine deaminase (ADA) is a purine salvage pathway enzyme, the absence of which is associated with severe combined immunodeficiency disease. Time-resolved fluorescence studies, in the presence of enzyme inhibitors, indicate that at least one of the four tryptophans present in the protein molecule is close to (or in) the active site. To investigate the role of these tryptophan residues in enzyme function, they have cloned ADA cDNA into a vector in which expression is directed by the lambda P/sub R/ promoter. E. coli cells deficient in ADA were transformed with the vector construct and were shown to synthesize catalytically active human ADA. Site directed mutagenesis, coupled with a uracil selection technique for generating mutants with high efficiency, was used to construct mutant alleles of the cloned ADA. Eight mutants were obtained with base substitutions converting each of the four tryptophans to arginine or glycine. The correlation between these specific mutations and the functional expression of ADA has been examined in the ADA deficient bacterial host.

  1. Effects of oral adenosine 5'-triphosphate and adenosine in enteric-coated capsules on indomethacin-induced permeability changes in the human small intestine: a randomized cross-over study

    Directory of Open Access Journals (Sweden)

    Bours Martijn JL

    2007-06-01

    Full Text Available Abstract Background It is well-known that nonsteroidal anti-inflammatory drugs (NSAIDs can cause damage to the small bowel associated with disruption of mucosal barrier function. In healthy human volunteers, we showed previously that topical administration of adenosine 5'-triphosphate (ATP by naso-intestinal tube attenuated a rise in small intestinal permeability induced by short-term challenge with the NSAID indomethacin. This finding suggested that ATP may be involved in the preservation of intestinal barrier function. Our current objective was to corroborate the favourable effect of ATP on indomethacin-induced permeability changes in healthy human volunteers when ATP is administered via enteric-coated capsules, which is a more practically feasible mode of administration. Since ATP effects may have been partly mediated through its breakdown to adenosine, effects of encapsulated adenosine were tested also. Methods By ingesting a test drink containing 5 g lactulose and 0.5 g L-rhamnose followed by five-hour collection of total urine, small intestinal permeability was assessed in 33 healthy human volunteers by measuring the urinary lactulose/rhamnose excretion ratio. Urinary excretion of lactulose and L-rhamnose was determined by fluorescent detection high-pressure liquid chromatography (HPLC. Basal permeability of the small intestine was assessed as a control condition (no indomethacin, no ATP/adenosine. As a model of increased small intestinal permeability, two dosages of indomethacin were ingested at 10 h (75 mg and 1 h (50 mg before ingesting the lactulose/rhamnose test drink. At 1.5 h before indomethacin ingestion, two dosages of placebo, ATP (2 g per dosage or adenosine (1 g per dosage were administered via enteric-coated hydroxypropyl methylcellulose (HPMC capsules with Eudragit© L30D-55. Results Median urinary lactulose/rhamnose excretion ratio (g/g in the control condition was 0.032 (interquartile range: 0.022–0.044. Compared to the

  2. Caffeine, Through Adenosine A3 Receptor-Mediated Actions, Suppresses Amyloid-β Protein Precursor Internalization and Amyloid-β Generation.

    Science.gov (United States)

    Li, Shanshan; Geiger, Nicholas H; Soliman, Mahmoud L; Hui, Liang; Geiger, Jonathan D; Chen, Xuesong

    2015-01-01

    Intraneuronal accumulation and extracellular deposition of amyloid-β (Aβ) protein continues to be implicated in the pathogenesis of Alzheimer's disease (AD), be it familial in origin or sporadic in nature. Aβ is generated intracellularly following endocytosis of amyloid-β protein precursor (AβPP), and, consequently, factors that suppress AβPP internalization may decrease amyloidogenic processing of AβPP. Here we tested the hypothesis that caffeine decreases Aβ generation by suppressing AβPP internalization in primary cultured neurons. Caffeine concentration-dependently blocked low-density lipoprotein (LDL) cholesterol internalization and a specific adenosine A3 receptor (A3R) antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on neuronal internalization of LDL cholesterol. Further implicating A3Rs were findings that a specific A3R agonist increased neuronal internalization of LDL cholesterol. In addition, caffeine as well as siRNA knockdown of A3Rs blocked the ability of LDL cholesterol to increase Aβ levels. Furthermore, caffeine blocked LDL cholesterol-induced decreases in AβPP protein levels in neuronal plasma membranes, increased surface expression of AβPP on neurons, and the A3R antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on AβPP surface expression. Moreover, the A3R agonist decreased neuronal surface expression of AβPP. Our findings suggest that caffeine exerts protective effects against amyloidogenic processing of AβPP at least in part by suppressing A3R-mediated internalization of AβPP.

  3. Adenosine deaminase enhances the immunogenicity of human dendritic cells from healthy and HIV-infected individuals.

    Directory of Open Access Journals (Sweden)

    Víctor Casanova

    Full Text Available ADA is an enzyme implicated in purine metabolism, and is critical to ensure normal immune function. Its congenital deficit leads to severe combined immunodeficiency (SCID. ADA binding to adenosine receptors on dendritic cell surface enables T-cell costimulation through CD26 crosslinking, which enhances T-cell activation and proliferation. Despite a large body of work on the actions of the ecto-enzyme ADA on T-cell activation, questions arise on whether ADA can also modulate dendritic cell maturation. To this end we investigated the effects of ADA on human monocyte derived dendritic cell biology. Our results show that both the enzymatic and non-enzymatic activities of ADA are implicated in the enhancement of CD80, CD83, CD86, CD40 and CCR7 expression on immature dendritic cells from healthy and HIV-infected individuals. These ADA-mediated increases in CD83 and costimulatory molecule expression is concomitant to an enhanced IL-12, IL-6, TNF-α, CXCL8(IL-8, CCL3(MIP1-α, CCL4(MIP-1β and CCL5(RANTES cytokine/chemokine secretion both in healthy and HIV-infected individuals and to an altered apoptotic death in cells from HIV-infected individuals. Consistently, ADA-mediated actions on iDCs are able to enhance allogeneic CD4 and CD8-T-cell proliferation, globally yielding increased iDC immunogenicity. Taken together, these findings suggest that ADA would promote enhanced and correctly polarized T-cell responses in strategies targeting asymptomatic HIV-infected individuals.

  4. Synthesis and anti-renal fibrosis activity of conformationally locked truncated 2-hexynyl-N(6)-substituted-(N)-methanocarba-nucleosides as A3 adenosine receptor antagonists and partial agonists.

    Science.gov (United States)

    Nayak, Akshata; Chandra, Girish; Hwang, Inah; Kim, Kyunglim; Hou, Xiyan; Kim, Hea Ok; Sahu, Pramod K; Roy, Kuldeep K; Yoo, Jakyung; Lee, Yoonji; Cui, Minghua; Choi, Sun; Moss, Steven M; Phan, Khai; Gao, Zhan-Guo; Ha, Hunjoo; Jacobson, Kenneth A; Jeong, Lak Shin

    2014-02-27

    Truncated N(6)-substituted-(N)-methanocarba-adenosine derivatives with 2-hexynyl substitution were synthesized to examine parallels with corresponding 4'-thioadenosines. Hydrophobic N(6) and/or C2 substituents were tolerated in A3AR binding, but only an unsubstituted 6-amino group with a C2-hexynyl group promoted high hA2AAR affinity. A small hydrophobic alkyl (4b and 4c) or N(6)-cycloalkyl group (4d) showed excellent binding affinity at the hA3AR and was better than an unsubstituted free amino group (4a). A3AR affinities of 3-halobenzylamine derivatives 4f-4i did not differ significantly, with Ki values of 7.8-16.0 nM. N(6)-Methyl derivative 4b (Ki = 4.9 nM) was a highly selective, low efficacy partial A3AR agonist. All compounds were screened for renoprotective effects in human TGF-β1-stimulated mProx tubular cells, a kidney fibrosis model. Most compounds strongly inhibited TGF-β1-induced collagen I upregulation, and their A3AR binding affinities were proportional to antifibrotic effects; 4b was most potent (IC50 = 0.83 μM), indicating its potential as a good therapeutic candidate for treating renal fibrosis.

  5. Kinetic analysis of antagonist-occupied adenosine-A3 receptors within membrane microdomains of individual cells provides evidence of receptor dimerization and allosterism.

    Science.gov (United States)

    Corriden, Ross; Kilpatrick, Laura E; Kellam, Barrie; Briddon, Stephen J; Hill, Stephen J

    2014-10-01

    In our previous work, using a fluorescent adenosine-A3 receptor (A3AR) agonist and fluorescence correlation spectroscopy (FCS), we demonstrated high-affinity labeling of the active receptor (R*) conformation. In the current study, we used a fluorescent A3AR antagonist (CA200645) to study the binding characteristics of antagonist-occupied inactive receptor (R) conformations in membrane microdomains of individual cells. FCS analysis of CA200645-occupied A3ARs revealed 2 species, τD2 and τD3, that diffused at 2.29 ± 0.35 and 0.09 ± 0.03 μm(2)/s, respectively. FCS analysis of a green fluorescent protein (GFP)-tagged A3AR exhibited a single diffusing species (0.105 μm(2)/s). The binding of CA200645 to τD3 was antagonized by nanomolar concentrations of the A3 antagonist MRS 1220, but not by the agonist NECA (up to 300 nM), consistent with labeling of R. CA200645 normally dissociated slowly from the A3AR, but inclusion of xanthine amine congener (XAC) or VUF 5455 during washout markedly accelerated the reduction in the number of particles exhibiting τD3 characteristics. It is notable that this effect was accompanied by a significant increase in the number of particles with τD2 diffusion. These data show that FCS analysis of ligand-occupied receptors provides a unique means of monitoring ligand A3AR residence times that are significantly reduced as a consequence of allosteric interaction across the dimer interface

  6. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  7. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Nyberg, Michael; Thaning, Pia

    2009-01-01

    /min); (2) whether adenosine-induced vasodilation is mediated via formation of prostaglandins and/or NO; and (3) the femoral arterial and venous plasma adenosine concentrations during leg exercise with the microdialysis technique in a total of 24 healthy, male subjects. Inhibition of adenosine receptors......+/-8%, and 66+/-8%, respectively (Pplasma adenosine concentrations were similar at rest and during exercise. These results suggest that adenosine contributes to the regulation of skeletal muscle blood flow by stimulating prostaglandin and NO synthesis.......Adenosine can induce vasodilation in skeletal muscle, but to what extent adenosine exerts its effect via formation of other vasodilators and whether there is redundancy between adenosine and other vasodilators remain unclear. We tested the hypothesis that adenosine, prostaglandins, and NO act...

  8. A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways.

    Science.gov (United States)

    Janes, Kali; Esposito, Emanuela; Doyle, Timothy; Cuzzocrea, Salvatore; Tosh, Dillip K; Jacobson, Kenneth A; Salvemini, Daniela

    2014-12-01

    Chemotherapy-induced peripheral neuropathy accompanied by chronic neuropathic pain is the major dose-limiting toxicity of several anticancer agents including the taxane paclitaxel (Taxol). A critical mechanism underlying paclitaxel-induced neuropathic pain is the increased production of peroxynitrite in spinal cord generated in response to activation of the superoxide-generating enzyme, NADPH oxidase. Peroxynitrite in turn contributes to the development of neuropathic pain by modulating several redox-dependent events in spinal cord. We recently reported that activation of the Gi/Gq-coupled A3 adenosine receptor (A3AR) with selective A3AR agonists (ie, IB-MECA) blocked the development of chemotherapy induced-neuropathic pain evoked by distinct agents, including paclitaxel, without interfering with anticancer effects. The mechanism or mechanisms of action underlying these beneficial effects has yet to be explored. We now demonstrate that IB-MECA attenuates the development of paclitaxel-induced neuropathic pain by inhibiting the activation of spinal NADPH oxidase and two downstream redox-dependent systems. The first relies on inhibition of the redox-sensitive transcription factor (NFκB) and mitogen activated protein kinases (ERK and p38) resulting in decreased production of neuroexcitatory/proinflammatory cytokines (TNF-α, IL-1β) and increased formation of the neuroprotective/anti-inflammatory IL-10. The second involves inhibition of redox-mediated posttranslational tyrosine nitration and modification (inactivation) of glia-restricted proteins known to play key roles in regulating synaptic glutamate homeostasis: the glutamate transporter GLT-1 and glutamine synthetase. Our results unravel a mechanistic link into biomolecular signaling pathways employed by A3AR activation in neuropathic pain while providing the foundation to consider use of A3AR agonists as therapeutic agents in patients with chemotherapy-induced peripheral neuropathy. Copyright © 2014

  9. Adenosine A2B receptor: from cell biology to human diseases

    Science.gov (United States)

    Sun, Ying; Huang, Pingbo

    2016-08-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR’s functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.

  10. Effects of aqueous extract from Silybum marianum on adenosine deaminase activity in cancerous and noncancerous human gastric and colon tissues

    Directory of Open Access Journals (Sweden)

    Bahadır Öztürk

    2015-01-01

    Full Text Available Objective: Investigation of possible effects of Silybum marianum extract (SME on adenosine deaminase (ADA activity in cancerous and noncancerous human gastric and colon tissues to obtain information about possible mechanism of anticancer action of S. marianum. Materials and Methods: Cancerous and noncancerous human gastric and colon tissues removed from patients by surgical operations were used in the studies. The extract was prepared in distilled water. Before and after treatment with the extract, ADA activities in the samples were measured. Results: ADA activity was found to be lowered significantly in cancerous gastric tissues but not in noncancerous gastric tissues after treatment with the SME. In the colon tissues, ADA activities were however found to increase after the treatment of SME. Conclusion: Our results suggest that the aqueous extract from S. marianum inhibits ADA activity in cancerous gastric tissues significantly. It is suggested that in addition to other proposed mechanisms, accumulated adenosine due to the inhibition of ADA might also play a part in the anticancer properties of the S. marianum.

  11. Comparison of human recombinant adenosine A2B receptor function assessed by Fluo-3-AM fluorometry and microphysiometry.

    Science.gov (United States)

    Patel, H; Porter, R H P; Palmer, A M; Croucher, M J

    2003-02-01

    1. The aim of this study was to establish the utility of a fluorometric imaging plate reader (FLIPR) assay to assess human adenosine A(2B) receptor function by characterizing its receptor pharmacology and comparing this profile to that obtained using a microphysiometer. 2. FLIPR was used, in conjunction with a Ca(2+)-sensitive dye (Fluo-3-AM), to measure rapid rises in intracellular calcium in a Chinese Hamster Ovary (CHO-K1) cell line stably transfected with both the human A(2B) receptor and a promiscuous G(alpha16) protein. Microphysiometry was used to measure rapid changes in the rate of extracellular acidification in a Human Embryonic Kidney (HEK-293) cell line also stably transfected with human A(2B) receptor. 3. Activation of A(2B) receptors by various ligands caused a concentration-dependent increase in both the intracellular calcium concentration and the extracellular acidification rate in the cells tested, with a similar rank order of potency for agonists: NECA > N(6)-Benzyl NECA > adenosine > or = R-PIA > CPA > S-PIA > CHA > CGS 21680. No comparable effects were observed in the non-transfected control cell lines. 4. The rank order of potency of the agonists examined was the same in all studies, whereas absolute potency and efficacy varied. Thus, all compounds exhibited greater potency in FLIPR than the microphysiometer and the efficacies obtained with CHO-K1 + G(alpha16) + A(2B) cell line and FLIPR were greater than those obtained with HEK-293 + A(2B) cell line in the microphysiometer. 5. ZM-241385 was the most potent of a range of adenosine antagonists tested with a pA(2) of 8.0 in both the FLIPR and microphysiometer assays. 6. In conclusion, the profile of the responses to both A(2B) receptor agonists and antagonists in FLIPR were similar to those obtained by the microphysiometer, although both potency and efficacy values were higher in the FLIPR assay. With this caveat in mind, this study shows that FLIPR coupled with a cell line transfected with both

  12. New chromene scaffolds for adenosine A(2A) receptors: synthesis, pharmacology and structure-activity relationships.

    Science.gov (United States)

    Areias, Filipe; Costa, Marta; Castro, Marián; Brea, José; Gregori-Puigjané, Elisabet; Proença, M Fernanda; Mestres, Jordi; Loza, María I

    2012-08-01

    In silico screening of a collection of 1584 academic compounds identified a small molecule hit for the human adenosine A(2A) receptor (pK(i) = 6.2) containing a novel chromene scaffold (3a). To explore the structure-activity relationships of this new chemical series for adenosine receptors, a focused library of 43 2H-chromene-3-carboxamide derivatives was synthesized and tested in radioligand binding assays at human adenosine A(1), A(2A), A(2B) and A(3) receptors. The series was found to be enriched with bioactive compounds for adenosine receptors, with 14 molecules showing submicromolar affinity (pK(i) ≥ 6.0) for at least one adenosine receptor subtype. These results provide evidence that the chromene scaffold, a core structure present in natural products from a wide variety of plants, vegetables, and fruits, constitutes a valuable source for novel therapeutic agents. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors.

    Science.gov (United States)

    Dennis, Siobhan H; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G; Henley, Jeremy M; Mellor, Jack R

    2011-08-17

    Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca(2+), resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A(3) receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca(2+) also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A(3) receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection.

  14. Human mitochondrial Hsp70 (mortalin): shedding light on ATPase activity, interaction with adenosine nucleotides, solution structure and domain organization.

    Science.gov (United States)

    Dores-Silva, Paulo R; Barbosa, Leandro R S; Ramos, Carlos H I; Borges, Júlio C

    2015-01-01

    The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor compound screenings.

  15. Human mitochondrial Hsp70 (mortalin: shedding light on ATPase activity, interaction with adenosine nucleotides, solution structure and domain organization.

    Directory of Open Access Journals (Sweden)

    Paulo R Dores-Silva

    Full Text Available The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor

  16. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum.

    Science.gov (United States)

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2015-06-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions.

  17. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    Science.gov (United States)

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.

  18. Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans

    DEFF Research Database (Denmark)

    Langberg, H; Bjørn, C; Boushel, Robert Christopher

    2002-01-01

    increased both in muscle (from 0.48 +/- 0.07 micromol l(-1) to 1.59 +/- 0.35 micromol l(-1); P muscular activity increases the interstitial concentrations...... of bradykinin and adenosine in both skeletal muscle and the connective tissue around its adjacent tendon. These findings support a role for bradykinin and adenosine in exercise-induced hyperaemia in skeletal muscle and suggest that bradykinin and adenosine are potential regulators of blood flow in peritendinous...

  19. Adenosine deaminase acting on RNA-1 (ADAR1 inhibits HIV-1 replication in human alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Michael D Weiden

    Full Text Available While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1 in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro. Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages.

  20. Regulation of adenosine levels during cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Stephanie CHU; Wei XIONG; Dali ZHANG; Hanifi SOYLU; Chao SUN; Benedict C ALBENSI; Fiona E PARKINSON

    2013-01-01

    Adenosine is a neuromodulator with its level increasing up to 100-fold during ischemic events,and attenuates the excitotoxic neuronal injury.Adenosine is produced both intracellularly and extracellularly,and nucleoside transport proteins transfer adenosine across plasma membranes.Adenosine levels and receptor-mediated effects of adenosine are regulated by intracellular ATP consumption,cellular release of ATP,metabolism of extracellular ATP (and other adenine nucleotides),adenosine influx,adenosine efflux and adenosine metabolism.Recent studies have used genetically modified mice to investigate the relative contributions of intra-and extracellular pathways for adenosine formation.The importance of cortical or hippocampal neurons as a source or a sink of adenosine under basal and hypoxic/ischemic conditions was addressed through the use of transgenic mice expressing human equilibrative nucleoside transporter 1 (hENT1) under the control of a promoter for neuron-specific enolase.From these studies,we conclude that ATP consumption within neurons is the primary source of adenosine in neuronal cultures,but not in hippocampal slices or in vivo mice exposed to ischemic conditions.

  1. Mutations in the human adenosine deaminase gene that affect protein structure and RNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, A.L.; Wiginton, D.A.; States, C.J.; Perme, C.M.; Dusing, M.R.; Hutton, J.J.

    1987-08-01

    Adenosine deaminase deficiency is one cause of the genetic disease severe combined immunodeficiency. To identify mutations responsible for ADA deficiency, the authors synthesized cDNAs to ADA mRNAs from two cell lines, GM2756 and GM2825A, derived from ADA-deficient immunodeficient patients. Sequence analysis of GM2756 cDNA clones revealed a different point mutation in each allele that causes amino acid changes of alanine to valine and arginine to histidine. One allele of GM2825A also has a point mutation that causes an alanine to valine substitution. The other allele of GM2825A was found to produce an mRNA in which exon 4 had been spliced out but had no other detrimental mutations. S1 nuclease mapping of GM2825A mRNA showed equal abundance of the full-length ADA mRNA and the ADA mRNA that was missing exon 4. Several of the ADA cDNA clones extended 5' of the major initiation start site, indicating multiple start sites for ADA transcription. The point mutations in GM2756 and GM2825A and the absence of exon 4 in GM2825A appear to be directly responsible for the ADA deficiency. Comparison of a number of normal and mutant ADA cDNA sequences showed a number of changes in the third base of codons. These change do not affect the amino acid sequence. Analyses of ADA cDNAs from different cell lines detected aberrant RNA species that either included intron 7 or excluded exon 7. Their presence is a result of aberrant splicing of pre-mRNAs and is not related to mutations that cause ADA deficiency.

  2. Adenosine stimulates the migration of human endothelial progenitor cells. Role of CXCR4 and microRNA-150.

    Directory of Open Access Journals (Sweden)

    Magali Rolland-Turner

    Full Text Available BACKGROUND: Administration of endothelial progenitor cells (EPC represents a promising option to regenerate the heart after myocardial infarction, but is limited because of low recruitment and engraftment in the myocardium. Mobilization and migration of EPC are mainly controlled by stromal cell-derived factor 1α (SDF-1α and its receptor CXCR4. We hypothesized that adenosine, a cardioprotective molecule, may improve the recruitment of EPC to the heart. METHODS: EPC were obtained from peripheral blood mononuclear cells of healthy volunteers. Expression of chemokines and their receptors was evaluated using microarrays, quantitative PCR, and flow cytometry. A Boyden chamber assay was used to assess chemotaxis. Recruitment of EPC to the infarcted heart was evaluated in rats after permanent occlusion of the left anterior descending coronary artery. RESULTS: Microarray analysis revealed that adenosine modulates the expression of several members of the chemokine family in EPC. Among these, CXCR4 was up-regulated by adenosine, and this result was confirmed by quantitative PCR (3-fold increase, P<0.001. CXCR4 expression at the cell surface was also increased. This effect involved the A(2B receptor. Pretreatment of EPC with adenosine amplified their migration towards recombinant SDF-1α or conditioned medium from cardiac fibroblasts. Both effects were abolished by CXCR4 blocking antibodies. Adenosine also increased CXCR4 under ischemic conditions, and decreased miR-150 expression. Binding of miR-150 to the 3' untranslated region of CXCR4 was verified by luciferase assay. Addition of pre-miR-150 blunted the effect of adenosine on CXCR4. Administration of adenosine to rats after induction of myocardial infarction stimulated EPC recruitment to the heart and enhanced angiogenesis. CONCLUSION: Adenosine increases the migration of EPC. The mechanism involves A(2B receptor activation, decreased expression of miR-150 and increased expression of CXCR4. These

  3. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  4. Adenosine and Prostaglandin E2 Production by Human Inducible Regulatory T cells (iTreg in Health and Disease

    Directory of Open Access Journals (Sweden)

    Theresa L Whiteside

    2013-07-01

    Full Text Available Regulatory T cells (Treg play a key role in maintaining the balance of immune responses in human health and in disease. Treg come in many flavors and can utilize a variety of mechanisms to modulate immune responses. In cancer, inducible (i or adaptive Treg expand, accumulate in tissues and peripheral blood of patients and represent a functionally-prominent component of CD4+ T lymphocytes. Phenotypically and functionally, iTreg are distinct from natural (n Treg. A subset of iTreg expressing ectonucleotidases CD39 and CD73 is able to hydrolyze ATP to 5’-AMP and adenosine (ADO and thus mediate suppression of those immune cells which express ADO receptors. iTeg can also produce prostaglandin E2 (PGE2. The mechanisms responsible for iTeg-mediated suppression involve binding of ADO and PGE2 produced by iTreg to their respective receptors expressed on Teff, leading to the up-regulation of adenylate cyclase and cAMP activities in Teff and to their functional inhibition. The potential for regulating these mechanisms by the use of pharmacologic inhibitors to relieve iTreg-mediated suppression in cancer suggests the development of therapeutic strategies targeting the ADO and PGE2 pathways.

  5. Exposure of Human Lung Cancer Cells to 8-Chloro-Adenosine Induces G2/M Arrest and Mitotic Catastrophe

    Directory of Open Access Journals (Sweden)

    Hong-Yu Zhang

    2004-11-01

    Full Text Available 8-Chloro-adenosine (8-CI-Ado is a potent chemotherapeutic agent whose cytotoxicity in a variety of tumor cell lines has been widely investigated. However, the molecular mechanisms are uncertain. In this study, we found that exposure of human lung cancer cell lines A549 (p53-wt and H1299 (p53-depleted to 8-CI-Ado induced cell arrest in the G2/M phase, which was accompanied by accumulation of binucleated and polymorphonucleated cells resulting from aberrant mitosis and failed cytokinesis. Western blotting showed the loss of phosphorylated forms of Cdc2 and Cdc25C that allowed progression into mitosis. Furthermore, the increase in Ser10-phosphorylated histone H3-positive cells revealed by fluorescence-activated cell sorting suggested that the agent-targeted cells were able to exit the G2 phase and enter the M phase. Immunocytochemistry showed that microtubule and microfilament arrays were changed in exposed cells, indicating that the dynamic instability of microtubules and microfilaments was lost, which may correlate with mitotic dividing failure. Aberrant mitosis resulted in mitotic catastrophe followed by varying degrees of apoptosis, depending on the cell lines. Thus, 8-CI-Ado appears to exert its cytotoxicity toward cells in culture by inducing mitotic catastrophe.

  6. Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate

    Institute of Scientific and Technical Information of China (English)

    Jyun-Yi Wu; Chia-Hsin Chen; Li-Yin Yeh; Ming-Long Yeh; Chun-Chan Ting; Yan-Hsiung Wang

    2013-01-01

    Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cells were irradiated (660 nm) daily with doses of 0, 1, 2 or 4 J?cm22. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J?cm22 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J?cm22 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration.

  7. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3'- 5'-diphosphate (PAP)

    Energy Technology Data Exchange (ETDEWEB)

    Dombrovski, Luidmila; Dong, Aiping; Bochkarev, Alexey; Plotnikov, Alexander N. (Toronto)

    2008-09-17

    Cytosolic sulfotransferases (SULTs), often referred as Phase II enzymes of chemical defense, are a superfamily of enzymes that catalyze the transfer of a sulfonate group from 3{prime}-phosphoadenosine 5{prime}-phosphosulfate (PAPS) to an acceptor group of substrates. This reaction modulates the activities of a large array of small endogenous and foreign chemicals including drugs, toxic compounds, steroid hormones, and neurotransmitters. In some cases, however, SULTs activate certain food and environmental compounds to mutagenenic and carcinogenic metabolites. Twelve human SULTs have been identified, which are partitioned into three families: SULT1, SULT2 and SULT4. The SULT1 family is further divided in four subfamilies, A, B, C, and E, and comprises eight members (1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, and 1E1). Despite sequence and structural similarity among the SULTs, the family and subfamily members appear to have different biological function. SULT1 family shows substrate-binding specificity for simple phenols, estradiol, and thyroid hormones, as well as environmental xenobiotics and drugs. Human SULT1B1 is expressed in liver, colon, small intestine, and blood leukocytes, and shows substrate-binding specificity to thyroid hormones and benzylic alcohols. Human SULT1C1 is expressed in the adult stomach, kidney, and thyroid, as well as in fetal kidney and liver. SULT1C1 catalyzes the sulfonation of p-nitrophenol and N-hydroxy-2-acetylaminofluorene in vitro. However, the in vivo function of the enzyme remains unknown. We intend to solve the structures for all of the SULTs for which structural information is not yet available, and compare the structural and functional features of the entire SULT superfamily. Here we report the structures of two members of SULT1 family, SULT1B1 and SULT1C1, both in complex with the product of the PAPS cofactor, adenosine-3{prime}-5{prime}-diphosphate (PAP).

  8. Characterization of an adenosine deaminase-deficient human histiocytic lymphoma cell line (DHL-9) and selection of mutants deficient in adenosir kinase and deoxycytidine kinase.

    Science.gov (United States)

    Kubota, M; Kamatani, N; Daddona, P E; Carson, D A

    1983-06-01

    The association of adenosine deaminase (ADA) deficiency with immunodeficiency disease has emphasized the importance of this purine metabolic enzyme for human lymphocyte growth and function. This report describes the natural occurrence of ADA deficiency in a human histiocytic lymphoma cell line, DHL-9. The minimal ADA activity in DHL-9 extracts, 0.028 nmol/min/mg protein, was less than 50% of the activity in two B-lymphoblastoid cell lines from ADA-deficient patients and was resistant to the potent ADA inhibitor deoxycoformycin. A sensitive radioimmunoassay failed to detect immunoreactive ADA in DHL-9 cells. Moreover, in DHL-9 cells, deoxycoformycin did not augment either the growth-inhibitory effects of adenosine and deoxyadenosine or the accumulation of deoxyadenosine triphosphate from deoxyadenosine. When compared to six other human hematopoietic cell lines, DHL-9 had 5.6-fold-higher levels of adenosylhomocysteinase. Chromosome 20, which bears the structural gene for ADA and adenosylhomocysteinase, was diploid and had a normal Giemsa banding pattern. The parental DHL-9 cell line was used for the selection and cloning of secondary mutants deficient in deoxycytidine kinase and adenosine kinase.

  9. Pathologic overproduction: the bad side of adenosine.

    Science.gov (United States)

    Borea, Pier Andrea; Gessi, Stefania; Merighi, Stefania; Vincenzi, Fabrizio; Varani, Katia

    2017-03-02

    Adenosine is an endogenous ubiquitous purine nucleoside, increased by hypoxia, ischemia and tissue damage that mediates a number of physiopathological effects by interacting with four G-protein-coupled receptors, identified as A1 , A2A , A2B , and A3 . Physiological and acutely-increased adenosine is associated with beneficial effects mostly including vasodilation and decrease of inflammation. In contrast chronic overproduction of adenosine occurs in important pathological states, where long lasting increases in the nucleoside levels are responsible for the bad side of adenosine associated with chronic inflammation, fibrosis and organ damage. In this review we describe and critically discuss the pathologic overproduction of adenosine analysing when, where and how adenosine exerts its detrimental effects through the body.

  10. Release of Periplasmic Nucleotidase Induced by Human Antimicrobial Peptide in E. coli Causes Accumulation of the Immunomodulator Adenosine.

    Directory of Open Access Journals (Sweden)

    Andreia Bergamo Estrela

    Full Text Available Previous work by our group described that human β-defensin-2 induces accumulation of extracellular adenosine (Ado in E. coli cultures through a non-lytic mechanism causing severe plasmolysis. Here, we investigate the presence of AMP as a direct precursor and the involvement of a bacterial enzyme in the generation of extracellular Ado by treated bacteria. Following hBD-2 treatment, metabolites were quantified in the supernatants using targeted HPLC-MS/MS analysis. Microbial growth was monitored by optical density and cell viability was determined by colony forming units counts. Phosphatase activity was measured using chromogenic substrate pNPP. The results demonstrate that defensin-treated E. coli strain W releases AMP in the extracellular space, where it is converted to Ado by a bacterial soluble factor. An increase in phosphatase activity in the supernatant was observed after peptide treatment, similar to the effect of sucrose-induced osmotic stress, suggesting that the periplasmic 5'nucleotidase (5'-NT is released following the plasmolysis event triggered by the peptide. Ado accumulation was enhanced in the presence of Co2+ ion and inhibited by EDTA, further supporting the involvement of a metallo-phosphatase such as 5'-NT in extracellular AMP conversion into Ado. The comparative analysis of hBD-induced Ado accumulation in different E. coli strains and in Pseudomonas aeruginosa revealed that the response is not correlated to the peptide's effect on cell viability, but indicates it might be dependent on the subcellular distribution of the nucleotidase. Taken together, these data shed light on a yet undescribed mechanism of host-microbial interaction: a human antimicrobial peptide inducing selective release of a bacterial enzyme (E. coli 5'-NT, leading to the formation of a potent immunomodulator metabolite (Ado.

  11. ADENOSINE-TRIPHOSPHATE DEPENDENT TAUROCHOLATE TRANSPORT IN HUMAN LIVER PLASMA-MEMBRANES

    NARCIS (Netherlands)

    WOLTERS, H; KUIPERS, F; SLOOFF, MJH; VONK, RJ

    1992-01-01

    Transport systems involved in uptake and biliary secretion of bile salts have been extensively studied in rat liver; however, little is known about these systems in the human liver. In this study, we investigated taurocholate (TC) transport in canalicular and basolateral plasma membrane vesicles iso

  12. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Inagaki, A.; Novak, Ivana;

    2016-01-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl− chann...

  13. Seed specific expression and analysis of recombinant human adenosine deaminase (hADA) in three host plant species.

    Science.gov (United States)

    Doshi, Ketan M; Loukanina, Natalia N; Polowick, Patricia L; Holbrook, Larry A

    2016-10-01

    The plant seed is a leading platform amongst plant-based storage systems for the production of recombinant proteins. In this study, we compared the activity of human adenosine deaminase (hADA) expressed in transgenic seeds of three different plant species: pea (Pisum sativum L.), Nicotiana benthamiana L. and tarwi (Lupinus mutabilis Sweet). All three species were transformed with the same expression vector containing the hADA gene driven by the seed-specific promoter LegA2 with an apoplast targeting pinII signal peptide. During the study, several independent transgenic lines were generated and screened from each plant species and only lines with a single copy of the gene of interest were used for hADA expression analysis. A stable transgenic canola line expressing the ADA protein, under the control of 35S constitutive promoter was used as both as a positive control and for comparative study with the seed specific promoter. Significant differences were detected in the expression of hADA. The highest activity of the hADA enzyme (Units/g seed) was reported in tarwi (4.26 U/g) followed by pea (3.23 U/g) and Nicotiana benthamiana (1.69 U/g). The expression of mouse ADA in canola was very low in both seed and leaf tissue compared to other host plants, confirming higher activity of seed specific promoter. Altogether, these results suggest that tarwi could be an excellent candidate for the production of valuable recombinant proteins.

  14. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model.

    Science.gov (United States)

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-01-01

    During the cell communication process, endogenous and exogenous signaling affect normal as well as pathological developmental conditions. Exogenous influences such as extra-low-frequency electromagnetic field (EMF) have been shown to effect pain and inflammation by modulating G-protein receptors, down-regulating cyclooxygenase-2 activity, and affecting the calcium/calmodulin/nitric oxide pathway. Investigators have reported changes in opioid receptors and second messengers, such as cyclic adenosine monophosphate (cAMP), in opiate tolerance and dependence by showing how repeated exposure to morphine decreases adenylate cyclase activity causing cAMP to return to control levels in the tolerant state, and increase above control levels during withdrawal. Resonance responses to biological systems using exogenous EMF signals suggest that frequency response characteristics of the target can determine the EMF biological response. In our past research we found significant down regulation of inflammatory markers tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NFκB) using 5 Hz EMF frequency. In this study cAMP was stimulated in Chinese Hamster Ovary (CHO) cells transfected with human mu-opioid receptors, then exposed to 5 Hz EMF, and outcomes were compared with morphine treatment. Results showed a 23% greater inhibition of cAMP-treating cells with EMF than with morphine. In order to test our results for frequency specific effects, we ran identical experiments using 13 Hz EMF, which produced results similar to controls. This study suggests the use of EMF as a complementary or alternative treatment to morphine that could both reduce pain and enhance patient quality of life without the side-effects of opiates.

  15. Cordycepin and N6-(2-hydroxyethyl-adenosine from Cordyceps pruinosa and their interaction with human serum albumin.

    Directory of Open Access Journals (Sweden)

    Zebin Meng

    Full Text Available Cordyceps pruinosa (CP is often used as Traditional Chinese Medicine, but the substance basis of its medicinal properties is unclear. In this study, two compounds were isolated from CP cultures by column chromatography, and identified as cordycepin and N6-(2-hydroxyethyl-adenosine (HEA by Nuclear Magnetic Resonance. In order to understand the efficacy of these two substances as potential therapeutic agents, it is necessary to explore their binding with proteins. The molecular mechanisms of interaction between cordycepin, HEA and human serum albumin (HSA were studied using UV and fluorescence spectroscopy. The bingding constants between HSA and cordycepin were 4.227, 3.573 and 3.076 × 10(3·at 17, 27 and 37°C respectively, and that of HSA and HEA were 27.102, 19.409 and 13.002 × 10(3·at the three tempretures respectively. Both cordycepin and HEA can quench the intrinsic fluorescence of HSA via static quenching, and they can bind with HSA to form complexes with a single binding site. The interaction forces between cordycepin and HSA were determined as electrostatic and hydrophobic, and those of HEA and HSA were hydrogen bonding and van der Waals forces. Using Foster's equation, the distance between fluorophores of cordycepin and HSA, and HEA and HSA are estimated to be 5.31 nm and 4.98 nm, respectively. In this study, cordycepin was isolated for the first time from CP, and will provide a new source of cordycepin and expand the use of this taxon. The interaction mechanisms between cordycepin and HSA was studied for the first time, which will provide a useful guide for the clinical application of cordycepin. The pharmacological importance of this study is to understand the interaction of HSA with cordycepin and HEA, which will be essential for the future designing of drugs based on the two compounds.

  16. Cordycepin and N6-(2-Hydroxyethyl)-Adenosine from Cordyceps pruinosa and Their Interaction with Human Serum Albumin

    Science.gov (United States)

    Meng, Zebin; Kang, Jichuan; Wen, Tingchi; Lei, Bangxing; Hyde, Kevin David

    2015-01-01

    Cordyceps pruinosa (CP) is often used as Traditional Chinese Medicine, but the substance basis of its medicinal properties is unclear. In this study, two compounds were isolated from CP cultures by column chromatography, and identified as cordycepin and N6-(2-hydroxyethyl)-adenosine (HEA) by Nuclear Magnetic Resonance. In order to understand the efficacy of these two substances as potential therapeutic agents, it is necessary to explore their binding with proteins. The molecular mechanisms of interaction between cordycepin, HEA and human serum albumin (HSA) were studied using UV and fluorescence spectroscopy. The bingding constants between HSA and cordycepin were 4.227, 3.573 and 3.076 × 103·at 17, 27 and 37°C respectively, and that of HSA and HEA were 27.102, 19.409 and 13.002 × 103·at the three tempretures respectively. Both cordycepin and HEA can quench the intrinsic fluorescence of HSA via static quenching, and they can bind with HSA to form complexes with a single binding site. The interaction forces between cordycepin and HSA were determined as electrostatic and hydrophobic, and those of HEA and HSA were hydrogen bonding and van der Waals forces. Using Foster's equation, the distance between fluorophores of cordycepin and HSA, and HEA and HSA are estimated to be 5.31 nm and 4.98 nm, respectively. In this study, cordycepin was isolated for the first time from CP, and will provide a new source of cordycepin and expand the use of this taxon. The interaction mechanisms between cordycepin and HSA was studied for the first time, which will provide a useful guide for the clinical application of cordycepin. The pharmacological importance of this study is to understand the interaction of HSA with cordycepin and HEA, which will be essential for the future designing of drugs based on the two compounds. PMID:25811172

  17. Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures

    Directory of Open Access Journals (Sweden)

    Strange Philip G

    2008-10-01

    Full Text Available Abstract Background The large-scale production of G-protein coupled receptors (GPCRs for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml with moderate cell densities (OD600 ~15. The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A2AR in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures. Results Bioreactor cultures yielded an approximately five times increase in cell density (OD600 ~75 compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A2AR, and therefore more suitable for further functional and structural studies. Conclusion Large-scale expression of the A2AR in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.

  18. Effect in vitro of the Phenobarbital on the Activity of the Enzyme Adenosine Triphosphatase (ATPase of Sodium and Potassium Dependent in Human Placenta.

    Directory of Open Access Journals (Sweden)

    María De Jesús Sánchez Bouza

    2007-12-01

    Full Text Available Background: Most of the drugs can pass to the fetus through the placenta, conditioning alterations of the development and fetal growth. Objective: To evaluate the effect in vitro of Phenobarbital on the activity of adenosine triphosphatase of sodium and potassium dependent in human placenta. Method: A study in vitro was carried out, in total homogenizes of placentas coming from 30 mothers that were assisted in the Gynecological and Obstetric Educational Provincial Hospital ¨Mariana Grajales¨, in Santa Clara, during the period March-July 1993. Phenobarbital was administered in concentrations of 0,1 mg/ml, 0,15 mg/ml and 0,2 mg/ml, keeping in mind the therapeutic dose to which was prescribed. The analyzed variables were: enzymatic activity and inhibition type. Results: The enzymatic activity of the adenosine triphosphatase of sodium and potassium dependent, diminished in a significant way, proportionally with the diminishment of the administered concentration of Phenobarbital. The inhibitory effect of the drug also turned out to be dependent of the concentration, presenting a major inhibition as the dose was increased. Conclusion: Phenobarbital produced highly significant decrease in the activity of adenosine triphosphatase of sodium and dependent potassium. This inhibition is of competitive type.

  19. Adenosine A2A receptor and ecto-5'-nucleotidase/CD73 are upregulated in hippocampal astrocytes of human patients with mesial temporal lobe epilepsy (MTLE).

    Science.gov (United States)

    Barros-Barbosa, Aurora R; Ferreirinha, Fátima; Oliveira, Ângela; Mendes, Marina; Lobo, M Graça; Santos, Agostinho; Rangel, Rui; Pelletier, Julie; Sévigny, Jean; Cordeiro, J Miguel; Correia-de-Sá, Paulo

    2016-12-01

    Refractoriness to existing medications of up to 80 % of the patients with mesial temporal lobe epilepsy (MTLE) prompts for finding new antiepileptic drug targets. The adenosine A2A receptor emerges as an interesting pharmacological target since its excitatory nature partially counteracts the dominant antiepileptic role of endogenous adenosine acting via inhibitory A1 receptors. Gain of function of the excitatory A2A receptor has been implicated in a significant number of brain pathologies commonly characterized by neuronal excitotoxicity. Here, we investigated changes in the expression and cellular localization of the A2A receptor and of the adenosine-generating enzyme, ecto-5'-nucleotidase/CD73, in the hippocampus of control individuals and MTLE human patients. Western blot analysis indicates that the A2A receptor is more abundant in the hippocampus of MTLE patients compared to control individuals. Immunoreactivity against the A2A receptor predominates in astrocytes staining positively for the glial fibrillary acidic protein (GFAP). No co-localization was observed between the A2A receptor and neuronal cell markers, like synaptotagmin 1/2 (nerve terminals) and neurofilament 200 (axon fibers). Hippocampal astrogliosis observed in MTLE patients was accompanied by a proportionate increase in A2A receptor and ecto-5'-nucleotidase/CD73 immunoreactivities. Given our data, we hypothesize that selective blockade of excessive activation of astrocytic A2A receptors and/or inhibition of surplus adenosine formation by membrane-bound ecto-5'-nucleotidase/CD73 may reduce neuronal excitability, thus providing a novel therapeutic target for drug-refractory seizures in MTLE patients.

  20. Effects of IL-4 and IL-13 on adenosine receptor expression and responsiveness of the human mast cell line 1

    NARCIS (Netherlands)

    Versluis, Mieke; Postma, Dirkje S.; Timens, Wim; Hylkema, Machteld N.

    2008-01-01

    Background: Inhalation of adenosine-5'-monophosphate (AMP) causes bronchoconstriction in asthma but not in healthy subjects. Bronchoconstriction upon AMP inhalation is thought to occur by histamine release and subsequent binding to receptors on airway smooth muscle cells. Methods: To explain enhance

  1. Comparison of Effects on Gene Expression Activity of Low-Molecular-Weight Lychee Fruit Polyphenol (Oligonol®, Adenosine, and Minoxidil in Human Dermal Papilla Cells

    Directory of Open Access Journals (Sweden)

    Koji Wakame

    2017-06-01

    Full Text Available Background: Oligonol® (OLG is a functional food product and ingredient for cosmetics derived from a lychee fruit polyphenol. It has been reported to act on the skin as an anti-inflammatory and prevent UVB-induced skin damage. Aim: In this study, with the aim of exploring new functionalities of OLG on the scalp, we investigated the effect of OLG on human dermal papilla cells by comparing with adenosine and minoxidil at the genetic level. Method: OLG, adenosine, and minoxidil were applied to human dermal papilla cell lines for 24 h, after which VEGF, FGF-7, WNT5a, and WNT10a mRNA expressions were measured by real-time PCR analysis. Additionally, using DNA microarrays, we investigated the effect on 205 inflammation-related genes. Result: Consequently, in human dermal papilla cell lines, FGF-7 and WNT10a mRNA expression were observed in 100 µg/mL OLG-supplemented cells. The results of the DNA microarray analysis showed that 10 genes were suppressed by OLG. Conclusions: OLG may be expected to affect function of human dermal papilla cell by regulating the expression of genes related to cell proliferation and inflammation.

  2. A 3-Dimensional Atlas of Human Tongue Muscles

    Science.gov (United States)

    SANDERS, IRA; MU, LIANCAI

    2013-01-01

    The human tongue is one of the most important yet least understood structures of the body. One reason for the relative lack of research on the human tongue is its complex anatomy. This is a real barrier to investigators as there are few anatomical resources in the literature that show this complex anatomy clearly. As a result, the diagnosis and treatment of tongue disorders lags behind that for other structures of the head and neck. This report intended to fill this gap by displaying the tongue’s anatomy in multiple ways. The primary material used in this study was serial axial images of the male and female human tongue from the Visible Human (VH) Project of the National Library of Medicine. In addition, thick serial coronal sections of three human tongues were rendered translucent. The VH axial images were computer reconstructed into serial coronal sections and each tongue muscle was outlined. These outlines were used to construct a 3-dimensional computer model of the tongue that allows each muscle to be seen in its in vivo anatomical position. The thick coronal sections supplement the 3-D model by showing details of the complex interweaving of tongue muscles throughout the tongue. The graphics are perhaps the clearest guide to date to aid clinical or basic science investigators in identifying each tongue muscle in any part of the human tongue. PMID:23650264

  3. AMP is an adenosine A1 receptor agonist.

    Science.gov (United States)

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  4. Adenosine: An immune modulator of inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Jeff Huaqing Ye; Vazhaikkurichi M Rajendran

    2009-01-01

    Inflammatory bowel disease (IBD) is a common and lifelong disabling gastrointestinal disease. Emerging treatments are being developed to target inflammatory cytokines which initiate and perpetuate the immune response. Adenosine is an important modulator of inflammation and its anti-inflammatory effects have been well established in humans as well as in animal models. High extracellular adenosine suppresses and resolves chronic inflammation in IBD models. High extracellular adenosine levels could be achieved by enhanced adenosine absorption and increased de novo synthesis. Increased adenosine concentration leads to activation of the A2a receptor on the cell surface of immune and epithelial cells that would be a potential therapeutic target for chronic intestinal inflammation. Adenosine is transported via concentrative nucleoside transporter and equilibrative nucleoside transporter transporters that are localized in apical and basolateral membranes of intestinal epithelial cells, respectively. Increased extracellular adenosine levels activate the A2a receptor, which would reduce cytokines responsible for chronic inflammation.

  5. Human Gingiva-Derived Mesenchymal Stem Cells Inhibit Xeno-Graft-versus-Host Disease via CD39–CD73–Adenosine and IDO Signals

    Science.gov (United States)

    Huang, Feng; Chen, Maogen; Chen, Weiqian; Gu, Jian; Yuan, Jia; Xue, Yaoqiu; Dang, Junlong; Su, Wenru; Wang, Julie; Zadeh, Homayoun H.; He, Xiaoshun; Rong, Limin; Olsen, Nancy; Zheng, Song Guo

    2017-01-01

    Mesenchymal stem cells have the capacity to maintain immune homeostasis and prevent autoimmunity. We recently reported that human-derived gingival mesenchymal stem cells (GMSCs) have strong capacity to suppress immune responses and T cell-mediated collagen-induced arthritis in animals. However, it is unclear whether these cells can suppress human T cell-mediated diseases. Here, we used a xenogenic GVHD model in the NOD/SCID mouse, which is a useful preclinical construct for evaluating the therapeutic and translational potential of this approach for applications in human disease. We found that GMSCs potently suppressed the proliferation of PBMC and T cells in vitro. Co-transfer of GMSC with human PBMC significantly suppressed human cell engraftment and markedly prolonged the mouse survival. Moreover, we demonstrated that GMSCs inhibited human PBMC-initiated xenogenic responses via CD39/CD73/adenosine and IDO signals. These findings suggest the potential for GMSCs to suppress human immune responses in immune system-mediated diseases, offering a potential clinical option to be used for modulating GVHD and autoimmune diseases. PMID:28210258

  6. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved.

    Science.gov (United States)

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo

    2003-12-01

    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  7. Selective deletion of the A1 adenosine receptor abolishes heart-rate slowing effects of intravascular adenosine in vivo.

    Directory of Open Access Journals (Sweden)

    Michael Koeppen

    Full Text Available OBJECTIVE: Intravenous adenosine induces temporary bradycardia. This is due to the activation of extracellular adenosine receptors (ARs. While adenosine can signal through any of four ARs (A1AR, A2AAR, A2BAR, A3AR, previous ex vivo studies implicated the A1AR in the heart-rate slowing effects. Here, we used comparative genetic in vivo studies to address the contribution of individual ARs to the heart-rate slowing effects of intravascular adenosine. METHODS AND RESULTS: We studied gene-targeted mice for individual ARs to define their in vivo contribution to the heart-rate slowing effects of adenosine. Anesthetized mice were treated with a bolus of intravascular adenosine, followed by measurements of heart-rate and blood pressure via a carotid artery catheter. These studies demonstrated dose-dependent slowing of the heart rate with adenosine treatment in wild-type, A2AAR(-/-, A2BAR(-/-, or A3AR(-/- mice. In contrast, adenosine-dependent slowing of the heart-rate was completely abolished in A1AR(-/- mice. Moreover, pre-treatment with a specific A1AR antagonist (DPCPX attenuated the heart-rate slowing effects of adenosine in wild-type, A2AAR(-/-, or A2BAR(-/- mice, but did not alter hemodynamic responses of A1AR(-/- mice. CONCLUSIONS: The present studies combine pharmacological and genetic in vivo evidence for a selective role of the A1AR in slowing the heart rate during adenosine bolus injection.

  8. Adenosine A{sub 1} receptors in human sleep regulation studied by electroencephalography (EEG) and positron emission tomography (PET)[Dissertation 17227

    Energy Technology Data Exchange (ETDEWEB)

    Geissler, E

    2007-07-01

    Sleep is an essential physiological process. However, the functions of sleep and the endogenous mechanisms involved in sleep regulation are only partially understood. Convergent lines of evidence support the hypothesis that the build-up of sleep propensity during wakefulness and its decline during sleep are associated with alterations in brain adenosine levels and adenosine receptor concentrations. The non-selective A{sub 1} and A{sub 2A} adenosine receptor antagonist caffeine stimulates alertness and is known to attenuate changes in the waking and sleep electroencephalogram (EEG) typically observed after prolonged waking. Several findings point to an important function of the adenosine A{sub 1} receptor (A{sub 1}AR) in the modulation of vigilance states. The A{sub 1}AR is densely expressed in brain regions involved in sleep regulation, and pharmacological manipulations affecting the A{sub 1}AR were shown to influence sleep propensity and sleep depth. However, an involvement of the A{sub 2A} adenosine receptor (A{sub 2A}AR) is also assumed. The distinct functions of the A{sub 1} and A{sub 2A} receptor subtypes in sleep-wake regulation and in mediating the effects of caffeine have not been identified so far. The selective adenosine A{sub 1} receptor antagonist, 8-cyclopentyl-3-(3-{sup 18}Ffluoropropyl)- 1-propylxanthine ({sup 18}F-CPFPX), offers the opportunity to get further insights into adenosinergic mechanisms by in vivo imaging of the A{sub 1}AR subtype with positron emission tomography (PET). The aim of this thesis was to elucidate the role of adenosine A{sub 1} receptors in human sleep regulation, combining {sup 18}F-CPFPX PET brain imaging and EEG recordings, the gold standard in sleep research. It was hypothesized that sleep deprivation would induce adenosine accumulation and/or changes in A{sub 1}AR density. Thus, the question was addressed whether these effects of prolonged wakefulness can be visualized by altered {sup 18}F-CPFPX binding. Moreover, it was

  9. Caffeine reduces 11β-hydroxysteroid dehydrogenase type 2 expression in human trophoblast cells through the adenosine A(2B receptor.

    Directory of Open Access Journals (Sweden)

    Saina Sharmin

    Full Text Available Maternal caffeine consumption is associated with reduced fetal growth, but the underlying molecular mechanisms are unknown. Since there is evidence that decreased placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2 is linked to fetal growth restriction, we hypothesized that caffeine may inhibit fetal growth partly through down regulating placental 11β-HSD2. As a first step in examining this hypothesis, we studied the effects of caffeine on placental 11β-HSD2 activity and expression using our established primary human trophoblast cells as an in vitro model system. Given that maternal serum concentrations of paraxanthine (the primary metabolite of caffeine were greater in women who gave birth to small-for-gestational age infants than to appropriately grown infants, we also studied the effects of paraxanthine. Our main findings were: (1 both caffeine and paraxanthine decreased placental 11β-HSD2 activity, protein and mRNA in a concentration-dependent manner; (2 this inhibitory effect was mediated by the adenosine A(2B receptor, since siRNA-mediated knockdown of this receptor prevented caffeine- and paraxanthine-induced inhibition of placental 11β-HSD2; and (3 forskolin (an activator of adenyl cyclase and a known stimulator of 11β-HSD2 abrogated the inhibitory effects of both caffeine and paraxanthine, which provides evidence for a functional link between exposure to caffeine and paraxanthine, decreased intracellular levels of cAMP and reduced placental 11β-HSD2. Taken together, these findings reveal that placental 11β-HSD2 is a novel molecular target through which caffeine may adversely affect fetal growth. They also uncover a previously unappreciated role for the adenosine A(2B receptor signaling in regulating placental 11β-HSD2, and consequently fetal development.

  10. The Skin Deformation of a 3D Virtual Human

    Institute of Scientific and Technical Information of China (English)

    Xiao-Jing Zhou; Zheng-Xu Zhao

    2009-01-01

    This paper presents a skin deformation algorithm for creating 3D characters or virtual human models. The algorithm can be applied to rigid deformation, joint dependent localized deformation, skeleton driven deformation, cross contour deformation, and free-form deformation (FFD). These deformations are computed and demonstrated with examples and the algorithm is applied to overcome the difficulties in mechanically simulating the motion of the human body by club-shape models. The techniques described in this article enables the reconstruction of dynamic human models that can be used in defining and representing the geometrical and kinematical characteristics of human motion.

  11. Adenosine receptor targeting in health and disease.

    Science.gov (United States)

    Gessi, Stefania; Merighi, Stefania; Fazzi, Debora; Stefanelli, Angela; Varani, Katia; Borea, Pier Andrea

    2011-12-01

    The adenosine receptors A(1), A(2A), A(2B) and A(3) are important and ubiquitous mediators of cellular signaling that play vital roles in protecting tissues and organs from damage. In particular, adenosine triggers tissue protection and repair by different receptor-mediated mechanisms, including increasing the oxygen supply:demand ratio, pre-conditioning, anti-inflammatory effects and the stimulation of angiogenesis. The state of the art of the role of adenosine receptors which have been proposed as targets for drug design and discovery, in health and disease, and an overview of the ligands for these receptors in clinical development. Selective ligands of A(1), A(2A), A(2B) and A(3) adenosine receptors are likely to find applications in the treatment of pain, ischemic conditions, glaucoma, asthma, arthritis, cancer and other disorders in which inflammation is a feature. The aim of this review is to provide an overview of the present knowledge regarding the role of these adenosine receptors in health and disease.

  12. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Inagaki, A.; Novak, Ivana

    2016-01-01

    by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased Isc and whole-cell Cl− currents through CFTR Cl− channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor....... These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl− channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion....

  13. Adenosine receptor neurobiology: overview.

    Science.gov (United States)

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.

  14. Pulsed electromagnetic fields increased the anti-inflammatory effect of A₂A and A₃ adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts.

    Directory of Open Access Journals (Sweden)

    Fabrizio Vincenzi

    Full Text Available Adenosine receptors (ARs have an important role in the regulation of inflammation and their activation is involved in the inhibition of pro-inflammatory cytokine release. The effects of pulsed electromagnetic fields (PEMFs on inflammation have been reported and we have demonstrated that PEMFs increased A2A and A3AR density and functionality in different cell lines. Chondrocytes and osteoblasts are two key cell types in the skeletal system that play important role in cartilage and bone metabolism representing an interesting target to study the effect of PEMFs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-inflammatory effect of A2A and/or A3ARs in T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. Immunofluorescence, mRNA analysis and saturation binding assays revealed that PEMF exposure up-regulated A2A and A3AR expression. A2A and A3ARs were able to modulate cAMP production and cell proliferation. The activation of A2A and A3ARs resulted in the decrease of some of the most relevant pro-inflammatory cytokine release such as interleukin (IL-6 and IL-8, following the treatment with IL-1β as an inflammatory stimuli. In human chondrocyte and osteoblast cell lines, the inhibitory effect of A2A and A3AR stimulation on the release of prostaglandin E2 (PGE2, an important lipid inflammatory mediator, was observed. In addition, in T/C-28a2 cells, the activation of A2A or A3ARs elicited an inhibition of vascular endothelial growth factor (VEGF secretion. In hFOB 1.19 osteoblasts, PEMF exposure determined an increase of osteoprotegerin (OPG production. The effect of the A2A or A3AR agonists in the examined cells was enhanced in the presence of PEMFs and completely blocked by using well-known selective antagonists. These results demonstrated that PEMF exposure significantly increase the anti-inflammatory effect of A2A or A3ARs suggesting their potential therapeutic use in the therapy of inflammatory bone and joint

  15. Selective protection of human liver tissue in TNF-targeting of cancers of the liver by transient depletion of adenosine triphosphate.

    Directory of Open Access Journals (Sweden)

    Timo Weiland

    Full Text Available BACKGROUND: Tumor necrosis factor alpha (TNF is able to kill cancer cells via receptor-mediated cell death requiring adenosine triphosphate (ATP. Clinical usage of TNF so far is largely limited by its profound hepatotoxicity. Recently, it was found in the murine system that specific protection of hepatocytes against TNF's detrimental effects can be achieved by fructose-mediated ATP depletion therein. Before employing this quite attractive selection principle in a first clinical trial, we here comprehensively investigated the interdependence between ATP depletion and TNF hepatotoxicity in both in vitro and ex vivo experiments based on usage of primary patient tissue materials. METHODS: Primary human hepatocytes, and both non-tumorous and tumorous patient-derived primary liver tissue slices were used to elucidate fructose-induced ATP depletion and TNF-induced cytotoxicity. RESULTS: PHH as well as tissue slices prepared from non-malignant human liver specimen undergoing a fructose-mediated ATP depletion were both demonstrated to be protected against TNF-induced cell death. In contrast, due to tumor-specific overexpression of hexokinase II, which imposes a profound bypass on hepatocytic-specific fructose catabolism, this was not the case for human tumorous liver tissues. CONCLUSION: Normal human liver tissues can be protected transiently against TNF-induced cell death by systemic pretreatment with fructose used in non-toxic/physiologic concentrations. Selective TNF-targeting of primary and secondary tumors of the liver by transient and specific depletion of hepatocytic ATP opens up a new clinical avenue for the TNF-based treatment of liver cancers.

  16. Molecular docking studies of 1-(substituted phenyl)-3-(naphtha [1, 2-d] thiazol-2-yl) urea/thiourea derivatives with human adenosine A(2A) receptor.

    Science.gov (United States)

    Azam, Faizul; Prasad, Medapati Vijaya Vara; Thangavel, Neelaveni; Ali, Hamed Ismail

    2011-01-01

    Computational assessment of the binding interactions of drugs is an important component of computer-aided drug design paradigms. In this perspective, a set of 30 1-(substituted phenyl)-3-(naphtha[1, 2-d] thiazol-2-yl) urea/thiourea derivatives showing antiparkinsonian activity were docked into inhibitor binding cavity of human adenosine A(2A) receptor (AA2AR) to understand their mode of binding interactions in silico. Lamarckian genetic algorithm methodology was employed for docking simulations using AutoDock 4.2 program. The results signify that the molecular docking approach is reliable and produces a good correlation coefficient (r(2) = 0.483) between docking score and antiparkinsonian activity (in terms of % reduction in catalepsy score). Potent antiparkinsonian agents carried methoxy group in the phenyl ring, exhibited both hydrophilic and lipophilic interactions with lower energy of binding at the AA(2A)R. These molecular docking analyses should, in our view, contribute for further development of selective AA(2A)R antagonists for the treatment of Parkinson's disease.

  17. Molecular docking studies of 1-(substituted phenyl)-3-(naphtha [1, 2-d] thiazol-2-yl) urea/thiourea derivatives with human adenosine A2A receptor

    Science.gov (United States)

    Azam, Faizul; Prasad, Medapati Vijaya Vara; Thangavel, Neelaveni; Ali, Hamed Ismail

    2011-01-01

    Computational assessment of the binding interactions of drugs is an important component of computer-aided drug design paradigms. In this perspective, a set of 30 1-(substituted phenyl)-3-(naphtha[1, 2-d] thiazol-2-yl) urea/thiourea derivatives showing antiparkinsonian activity were docked into inhibitor binding cavity of human adenosine A2A receptor (AA2AR) to understand their mode of binding interactions in silico. Lamarckian genetic algorithm methodology was employed for docking simulations using AutoDock 4.2 program. The results signify that the molecular docking approach is reliable and produces a good correlation coefficient (r2 = 0.483) between docking score and antiparkinsonian activity (in terms of % reduction in catalepsy score). Potent antiparkinsonian agents carried methoxy group in the phenyl ring, exhibited both hydrophilic and lipophilic interactions with lower energy of binding at the AA2AR. These molecular docking analyses should, in our view, contribute for further development of selective AA2AR antagonists for the treatment of Parkinson's disease. PMID:21814389

  18. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    Science.gov (United States)

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  19. Pyrazolo Derivatives as Potent Adenosine Receptor Antagonists: An Overview on the Structure-Activity Relationships

    Directory of Open Access Journals (Sweden)

    Siew Lee Cheong

    2011-01-01

    Full Text Available In the past few decades, medicinal chemistry research towards potent and selective antagonists of human adenosine receptors (namely, A1, A2A, A2B, and A3 has been evolving rapidly. These antagonists are deemed therapeutically beneficial in several pathological conditions including neurological and renal disorders, cancer, inflammation, and glaucoma. Up to this point, many classes of compounds have been successfully synthesized and identified as potent human adenosine receptor antagonists. In this paper, an overview of the structure-activity relationship (SAR profiles of promising nonxanthine pyrazolo derivatives is reported and discussed. We have emphasized the SAR for some representative structures such as pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines; pyrazolo-[3,4-c] or -[4,3-c]quinolines; pyrazolo-[4,3-d]pyrimidinones; pyrazolo-[3,4-d]pyrimidines and pyrazolo-[1,5-a]pyridines. This overview not only clarifies the structural requirements deemed essential for affinity towards individual adenosine receptor subtypes, but it also sheds light on the rational design and optimization of existing structural templates to allow us to conceive new, more potent adenosine receptor antagonists.

  20. Adenosine and sleep

    Energy Technology Data Exchange (ETDEWEB)

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  1. A 3D surface imaging system for assessing human obesity

    Science.gov (United States)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  2. Biodistribution and radiation dosimetry of the A{sub 1} adenosine receptor ligand {sup 18}F-CPFPX determined from human whole-body PET

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Hans; Elmenhorst, David; Winz, Oliver [Forschungszentrum Juelich GmbH, Institute of Neuroscience and Biophysics - Medicine, Juelich (Germany); Bauer, Andreas [Forschungszentrum Juelich GmbH, Institute of Neuroscience and Biophysics - Medicine, Juelich (Germany); University Hospital Duesseldorf, Department of Neurology, Duesseldorf (Germany)

    2008-08-15

    {sup 18}F-8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ({sup 18}F-CPFPX) is a potent radioligand to study human cerebral A{sub 1} adenosine receptors and their neuromodulatory and neuroprotective functions with positron emission tomography (PET). The purpose of this study was to determine the biodistribution and the radiation dose of {sup 18}F-CPFPX by whole-body scans in humans. Six normal volunteers were examined with 12 whole-body PET scans from 1.5 min to 4.5 h after injection. Volumes of interest were defined over all visually identifiable organs, i.e. liver, gallbladder, kidneys, small intestines, heart, and brain to obtain the organs' volumes and time-activity curves (TACs). TACs were fitted with exponential functions, extrapolated, multiplied with the physical decay and normalized to injected activities so that the residence times could be computed as area under the curve. Radiation doses were calculated using the OLINDA/EXM software for internal dose assessment in nuclear medicine. The liver uptake shows peak values (decay-corrected) of up to 35% of the injected radioactivity. About 30% is eliminated by bladder voiding. The highest radiation dose is received by the gallbladder (136.2 {+-} 66.1 {mu}Sv/MBq), followed by the liver (84.4 {+-} 10.6 {mu}Sv/MBq) and the urinary bladder (78.3 {+-} 7.1 {mu}Sv/MBq). The effective dose was 17.6 {+-} 0.5 {mu}Sv/MBq. With 300 MBq of injected {sup 18}F-CPFPX a subject receives an effective dose (ICRP 60) of 5.3 mSv. Thus the effective dose of an {sup 18}F-CPFPX study is comparable to that of other {sup 18}F-labelled neuroreceptor ligands. (orig.)

  3. Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia.

    Science.gov (United States)

    Iriyama, Takayuki; Sun, Kaiqi; Parchim, Nicholas F; Li, Jessica; Zhao, Cheng; Song, Anren; Hart, Laura A; Blackwell, Sean C; Sibai, Baha M; Chan, Lee-Nien L; Chan, Teh-Sheng; Hicks, M John; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-02-24

    Preeclampsia is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be caused by placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways that lead to impaired placentas and maternal disease development remain elusive. Using 2 independent animal models of preeclampsia (genetically engineered pregnant mice with elevated adenosine exclusively in placentas and a pathogenic autoantibody-induced preeclampsia mouse model), we demonstrated that chronically elevated placental adenosine was sufficient to induce hallmark features of preeclampsia, including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacological approaches revealed that elevated placental adenosine coupled with excessive A₂B adenosine receptor (ADORA2B) signaling contributed to the development of these features of preeclampsia. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to preeclampsia. We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for preeclampsia. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of preeclampsia, and thereby, we highlight novel therapeutic targets. © 2014 American Heart Association, Inc.

  4. Quantification of adenosine A{sub 2A} receptors in the human brain using [{sup 11}C]TMSX and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Naganawa, Mika [Tokyo Metropolitan Institute of Gerontology, Positron Medical Center, Tokyo (Japan); Japan Society for the Promotion of Science, Tokyo (Japan); Kimura, Yuichi; Oda, Keiichi; Ishii, Kenji; Ishiwata, Kiichi [Tokyo Metropolitan Institute of Gerontology, Positron Medical Center, Tokyo (Japan); Mishina, Masahiro [Nippon Medical School Chiba-Hokusoh Hospital, Neurological Institute, Chiba (Japan); Manabe, Yoshitsugu; Chihara, Kunihiro [Nara Institute of Science and Technology, Graduate School of Information Science, Nara (Japan)

    2007-05-15

    [7-methyl-{sup 11}C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([{sup 11}C]TMSX) is a positron-emitting adenosine A{sub 2A} receptor (A2AR) antagonist for visualisation of A2AR distribution by positron emission tomography (PET). The aims of this paper were to use a kinetic model to analyse the behaviour of [{sup 11}C]TMSX in the brain and to examine the applicability of the Logan plot. We also studied the applicability of a simplified Logan plot by omitting metabolite correction and arterial blood sampling. The centrum semiovale was used as a reference region on the basis of a post-mortem study showing that it has a negligibly low density of A2ARs. Compartmental analysis was performed in five normal subjects. Parametric images of A2AR binding potential (BP) were also generated using a Logan plot with or without metabolite correction and with or without arterial blood sampling. To omit arterial blood sampling, we applied a method to extract the plasma-related information using independent component analysis (EPICA). The estimated K{sub 1}/k{sub 2} was confirmed to be common in the centrum semiovale and main cortices. The three-compartment model was well fitted to the other regions using the fixed value of K{sub 1}/k{sub 2} estimated from the centrum semiovale. The estimated BPs using the Logan plot matched those derived from compartment analysis. Without the metabolite correction, the estimate of BP underestimated the true value by 5%. The estimated BPs agreed regardless of arterial blood sampling. A three-compartment model with a reference region, the centrum semiovale, describes the kinetic behaviour of [{sup 11}C]TMSX PET images. A2ARs in the human brain can be visualised as a BP image using [{sup 11}C]TMSX PET without arterial blood sampling. (orig.)

  5. Globular adiponectin protects human umbilical vein endothelial cells against apoptosis through adiponectin receptor 1/adenosine monophosphate-activated protein kinase pathway

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-yu; ZHAO Min; YI Tong-ning; ZHANG Jin

    2011-01-01

    Background Endothelial dysfunction is a key event in the onset and progression of atherosclerosis in diabetic patients.Apoptosis may lead to endothelial dysfunction and contribute to vascular complications. However, no study has addressed apoptosis in human umbilical vein endothelial cells (HUVECs) induced by an intermittent high-glucose media and its association with adiponectin receptor 1 (adipoR1), adipoR2, or adenosine monophosphate (AMP)-activated protein kinase (AMPK).Methods HUVECs were cultured in continuous normal glucose (5.5 mmol/L), continuous high glucose (25 mmol/L),alternating normal and high glucose and mannitol. In the alternating normal and high-glucose media, HUVECs were treated under different conditions. First, cells were transfected with the adipoR1-specific small-interfering RNA (siRNA)and then stimulated with globular adiponectin (gAD). Second, cells were cultured in both gAD and the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Third, cells were cultured in the AMPK inhibitor adenine-9-β-D-arabino-furanoside (araA), gAD, and in AICAR.Results HUVEC apoptosis increased more significantly in an intermittent high-glucose medium than in a constant high-glucose medium. HUVEC apoptosis induced by an intermittent high-glucose medium was inhibited when the cells were pretreated with 3 μg/ml gAD, which rapidly activated AMPK and adipoR1 in HUVECs. However, adipoR2 was not activated.Conclusions We found that adipoR1, not adipoR2, is involved in mediating intermittent high-concentration glucoseevoked apoptosis in endothelial cells. gAD activated AMPK through adipoR1, leads to the partial inhibition of HUVEC apoptosis. A fluctuating glucose medium is more harmful than a constant high-glucose medium to endothelial cells.

  6. Increased Cortical Extracellular Adenosine Correlates with Seizure Termination

    Science.gov (United States)

    Van Gompel, Jamie J.; Bower, Mark R.; Worrell, Gregory A.; Stead, Matt; Chang, Su-Youne; Goerss, Stephan J.; Kim, Inyong; Bennet, Kevin E.; Meyer, Fredric B.; Marsh, W. Richard; Blaha, Charles D.; Lee, Kendall H.

    2014-01-01

    Objective Seizures are currently defined by their electrographic features. However, neuronal networks are intrinsically dependent upon neurotransmitters of which little is known regarding their peri-ictal dynamics. Evidence supports adenosine as having a prominent role in seizure termination, as its administration can terminate and reduce seizures in animal models. Further, microdialysis studies in humans suggest adenosine is elevated peri-ictally, but the relationship to the seizure is obscured by its temporal measurement limitations. Because electrochemical techniques can provide vastly superior temporal resolution, we test the hypothesis that extracellular adenosine concentrations rise during seizure termination in an animal model and humans using electrochemistry. Methods White farm swine (n=45) were used in an acute cortical model of epilepsy and 10 human epilepsy patients were studied during intraoperative electrocorticography (Ecog). Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) based fast scan cyclic voltametry (FSCV) and fixed potential amperometry were obtained utilizing an adenosine specific triangular waveform or biosensors respectively. Results Simultaneous Ecog and electrochemistry demonstrated an average adenosine rise of 260% compared to baseline at 7.5 ± 16.9 seconds with amperometry (n=75 events) and 2.6 ± 11.2 seconds with FSCV (n=15 events) prior to electrographic seizure termination. In agreement with these animal data, adenosine elevation prior to seizure termination in a human patient utilizing FSCV was also seen. Significance Simultaneous Ecog and electrochemical recording supports the hypothesis that adenosine rises prior to seizure termination, suggesting that adenosine itself may be responsible for seizure termination. Future work using intraoperative WINCS based FSCV recording may help to elucidate the precise relationship between adenosine and seizure termination. PMID:24483230

  7. Leptin interferes with 3',5'-Cyclic Adenosine Monophosphate (cAMP signaling to inhibit steroidogenesis in human granulosa cells

    Directory of Open Access Journals (Sweden)

    HoYuen Basil

    2009-10-01

    Full Text Available Abstract Background Obesity has been linked to an increased risk of female infertility. Leptin, an adipocytokine which is elevated during obesity, may influence gonadal function through modulating steroidogenesis in granulosa cells. Methods The effect of leptin on progesterone production in simian virus 40 immortalized granulosa (SVOG cells was examined by Enzyme linked immunosorbent assay (ELISA. The effect of leptin on the expression of the steroidogenic enzymes (StAR, P450scc, 3betaHSD in SVOG cells was examined by real-time PCR and Western blotting. The mRNA expression of leptin receptor isoforms in SVOG cells were examined by using PCR. SVOG cells were co-treated with leptin and specific pharmacological inhibitors to identify the signaling pathways involved in leptin-reduced progesterone production. Silencing RNA against leptin receptor was used to determine that the inhibition of leptin on cAMP-induced steroidogenesis acts in a leptin receptor-dependent manner. Results and Conclusion In the present study, we investigated the cellular mechanisms underlying leptin-regulated steroidogenesis in human granulosa cells. We show that leptin inhibits 8-bromo cAMP-stimulated progesterone production in a concentration-dependent manner. Furthermore, we show that leptin inhibits expression of the cAMP-stimulated steroidogenic acute regulatory (StAR protein, the rate limiting de novo protein in progesterone synthesis. Leptin induces the activation of ERK1/2, p38 and JNK but only the ERK1/2 (PD98059 and p38 (SB203580 inhibitors attenuate the leptin-induced inhibition of cAMP-stimulated StAR protein expression and progesterone production. These data suggest that the leptin-induced MAPK signal transduction pathway interferes with cAMP/PKA-stimulated steroidogenesis in human granulosa cells. Moreover, siRNA mediated knock-down of the endogenous leptin receptor attenuates the effect of leptin on cAMP-induced StAR protein expression and progesterone

  8. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    Energy Technology Data Exchange (ETDEWEB)

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  9. Adenosine 5 '-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    NARCIS (Netherlands)

    Arts, I.C.W.; Coolen, E.J.C.M.; Bours, M.J.L.; Huyghebaert, N.; Cohen Stuart, M.A.; Bast, A.; Dagnelie, P.C.

    2012-01-01

    Background: Nutritional supplements designed to increase adenosine 5'-triphosphate (ATP) concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity

  10. Adenosine 5 '-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    NARCIS (Netherlands)

    Arts, I.C.W.; Coolen, E.J.C.M.; Bours, M.J.L.; Huyghebaert, N.; Cohen Stuart, M.A.; Bast, A.; Dagnelie, P.C.

    2012-01-01

    Background: Nutritional supplements designed to increase adenosine 5'-triphosphate (ATP) concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity

  11. Hemodynamic and neurohumoral effects of various grades of selective adenosine transport inhibition in humans. Implications for its future role in cardioprotection.

    Science.gov (United States)

    Rongen, G A; Smits, P; Ver Donck, K; Willemsen, J J; De Abreu, R A; Van Belle, H; Thien, T

    1995-02-01

    In 12 healthy male volunteers (27-53 yr), a placebo-controlled randomized double blind cross-over trial was performed to study the effect of the intravenous injection of 0.25, 0.5, 1, 2, 4, and 6 mg draflazine (a selective nucleoside transport inhibitor) on hemodynamic and neurohumoral parameters and ex vivo nucleoside transport inhibition. We hypothesized that an intravenous draflazine dosage without effect on hemodynamic and neurohumoral parameters would still be able to augment the forearm vasodilator response to intraarterially infused adenosine. Heart rate (electrocardiography), systolic blood pressure (Dinamap 1846 SX; Critikon, Portanje Electronica BV, Utrecht, The Netherlands) plasma norepinephrine and epinephrine increased dose-dependently and could almost totally be abolished by caffeine pretreatment indicating the involvement of adenosine receptors. Draflazine did not affect forearm blood flow (venous occlusion plethysmography). Intravenous injection of 0.5 mg draflazine did not affect any of the measured hemodynamic parameters but still induced a significant ex vivo nucleoside-transport inhibition of 31.5 +/- 4.1% (P < 0.05 vs placebo). In a subgroup of 10 subjects the brachial artery was cannulated to infuse adenosine (0.15, 0.5, 1.5, 5, 15, and 50 micrograms/100 ml forearm per min) before and after intravenous injection of 0.5 mg draflazine. Forearm blood flow amounted 1.9 +/- 0.3 ml/100 ml forearm per min for placebo and 1.8 +/- 0.2, 2.0 +/- 0.3, 3.8 +/- 0.9, 6.3 +/- 1.2, 11.3 +/- 2.2, and 19.3 +/- 3.9 ml/100 ml forearm per min for the six incremental adenosine dosages, respectively. After the intravenous draflazine infusion, these values were 1.6 +/- 0.2 ml/100 ml forearm per min for placebo and 2.1 +/- 0.3, 3.3 +/- 0.6, 5.8 +/- 1.1, 6.9 +/- 1.4, 14.4 +/- 2.9, and 23.5 +/- 4.0 ml/100 ml forearm per min, respectively (Friedman ANOVA: P < 0.05 before vs after draflazine infusion). In conclusion, a 30-50% inhibition of adenosine transport significantly

  12. Transport of A1 adenosine receptor agonist tecadenoson by human and mouse nucleoside transporters: evidence for blood-brain barrier transport by murine equilibrative nucleoside transporter 1 mENT1.

    Science.gov (United States)

    Lepist, Eve-Irene; Damaraju, Vijaya L; Zhang, Jing; Gati, Wendy P; Yao, Sylvia Y M; Smith, Kyla M; Karpinski, Edward; Young, James D; Leung, Kwan H; Cass, Carol E

    2013-04-01

    The high density of A1 adenosine receptors in the brain results in significant potential for central nervous system (CNS)-related adverse effects with A1 agonists. Tecadenoson is a selective A1 adenosine receptor agonist with close similarity to adenosine. We studied the binding and transmembrane transport of tecadenoson by recombinant human equilibrative nucleoside transporters (hENTs) hENT1 and hENT2, and human concentrative nucleoside transporters (hCNTs) hCNT1, hCNT2, and hCNT3 in vitro and by mouse mENT1 in vivo. Binding affinities of the five recombinant human nucleoside transporters for tecadenoson differed (hENT1 > hCNT1 > hCNT3 > hENT2 > hCNT2), and tecadenoson was transported largely by hENT1. Pretreatment of mice with a phosphorylated prodrug of nitrobenzylmercaptopurine riboside, an inhibitor of mENT1, significantly decreased brain exposure to tecadenoson compared with that of the untreated (control) group, suggesting involvement of mENT1 in transport of tecadenoson across the blood-brain barrier (BBB). In summary, ENT1 was shown to mediate the transport of tecadenoson in vitro with recombinant and native human protein and in vivo with mice. The micromolar apparent Km value of tecadenoson for transport by native hENT1 in cultured cells suggests that hENT1 will not be saturated at clinically relevant (i.e., nanomolar) concentrations of tecadenoson, and that hENT1-mediated passage across the BBB may contribute to the adverse CNS effects observed in clinical trials. In contrast, in cases in which a CNS effect is desired, the present results illustrate that synthetic A1 agonists that are transported by hENT1 could be used to target CNS disorders because of enhanced delivery to the brain.

  13. Adenosine improves cardiomyocyte respiratory efficiency.

    Science.gov (United States)

    Babsky, A M; Doliba, M M; Doliba, N M; Osbakken, M D

    1998-01-01

    The role of adenosine on the regulation of mitochondrial function has been studied. In order to evaluate this the following experiments were done in isolated rat cardiomyocites and mitochondria using polarographic techniques. Cardiomyocyte oxygen consumption (MVO2) and mitochondrial respiratory function (State 3 and State 4, respiratory control index, and ADP/O ratio) were evaluated after exposure to adenosine. Cardiomyocyte MVO2 was significantly lower in cells previously exposed to adenosine (10 microM, 15 min or 30 min cell incubation) than in cells not exposed to adenosine (control). Addition of dipyridamole (10 microM) or 8-(p-Sulfophenyl) theophylline (50 microM) to cardiomyocytes before adenosine incubation prevented the adenosine-induced changes in MVO2. Mitochondria obtained from isolated perfused beating heart previously perfused with adenosine (10 microM, 30 min heart perfusion) also resulted in significant increases in ADP/O and respiratory control index compared to matching control. Mitochondria isolated from cardiomyocytes previously exposed to adenosine (10 microM, 15 min or 30 min cell incubation) resulted in a significant increase in mitochondrial ADP/O ratio compared to control. Adenosine-induced decrease in cardiomyocyte MVO2 may be related to an increase in efficiency of mitochondrial oxidative phosphorylation, and more economical use of oxygen, which is necessary for survival under ischemic stress.

  14. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  15. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  16. Effects of adenosine on lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Bénédicte Lenoir

    Full Text Available BACKGROUND: The lymphatic system controls tissue homeostasis by draining protein-rich lymph to the vascular system. Lymphangiogenesis, the formation of lymphatic vessels, is a normal event in childhood but promotes tumor spread and metastasis during adulthood. Blocking lymphangiogenesis may therefore be of therapeutic interest. Production of adenosine is enhanced in the tumor environment and contributes to tumor progression through stimulation of angiogenesis. In this study, we determined whether adenosine affects lymphangiogenesis. METHODS: Lymphatic endothelial cells (HMVEC-dLy were cultured in presence of adenosine and their proliferation, migration and tube formation was assessed. Gelatin sponges embedded with the stable analogue of adenosine 2-chloro adenosine were implanted in mice ear and lymphangiogenesis was quantified. Mice were intravenously injected with adenoviruses containing expression vector for 5'-endonucleotidase, which plays a major role in the formation of adenosine. RESULTS: In vitro, we observed that adenosine decreased the proliferation of lymphatic endothelial cells, their migration and tube formation. However, in vivo, gelatin sponges containing 2-chloro adenosine and implanted in mice ear displayed an elevated level of lymphangiogenesis (2.5-fold, p<0.001. Adenovirus-mediated over-expression of cytosolic 5'-nucleotidase IA stimulated lymphangiogenesis and the recruitment of macrophages in mouse liver. Proliferation of lymphatic endothelial cells was enhanced (2-fold, p<0.001 when incubated in the presence of conditioned medium from murine macrophages. CONCLUSION: We have shown that adenosine stimulates lymphangiogenesis in vivo, presumably through a macrophage-mediated mechanism. This observation suggests that blockade of adenosine receptors may help in anti-cancer therapies.

  17. Studies on adenosine triphosphate transphosphorylases. Human isoenzymes of adenylate kinase: isolation and physicochemical comparison of the crystalline human ATP-AMP transphosphorylases from muscle and liver.

    Science.gov (United States)

    Kuby, S A; Fleming, G; Frischat, A; Cress, M C; Hamada, M

    1983-02-10

    Procedures are described for the isolation, in crystalline form, of the adenylate kinases from autopsy samples of human muscle and from human liver. Weight average molecular weights were determined by sedimentation equilibrium to be 22,000 (+/- 700) and 25,450 (+/- 160) for the human muscle and liver isoenzymes, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, their molecular weights were estimated to be 21,700 and 26,500 for the muscle and liver enzymes, respectively. Both isoenzymes are accordingly monomeric proteins in their native state. Amino acid analyses are reported here for the normal human liver, calf liver, and rabbit liver adenylate kinases and compared with the normal human muscle, calf muscle, and rabbit muscle myokinases. The liver types as a group and the muscle types as a group show a great deal of homology, but some distinct differences are evident between the liver and muscle enzyme groups, especially in the number of residues of His, Pro, half-cystine, and the presence of tryptophan in the liver enzymes. The normal human liver adenylate kinase, as isolated in this report, has proved to be similar in its properties, if not identical, to the adenylate kinase isolated directly from human liver mitochondria (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S. A. (1982) J. Biol. Chem. 257, 13120-13128). Therefore, the liver-type adenylate kinase may be considered a mitochondrial type.

  18. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...... and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent....

  19. Imaging Adenosine Triphosphate (ATP).

    Science.gov (United States)

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.

  20. Electroacupuncture improves neuropathic pain Adenosine,adenosine 5'-triphosphate disodium and their receptors perhaps change simultaneously

    Institute of Scientific and Technical Information of China (English)

    Wen Ren; Wenzhan Tu; Songhe Jiang; Ruidong Cheng; Yaping Du

    2012-01-01

    Applying a stimulating current to acupoints through acupuncture needles-known as electroacupuncture-has the potential to produce analgesic effects in human subjects and experimental animals.When acupuncture was applied in a rat model,adenosine 5'-triphosphate disodium in the extracellular space was broken down into adenosine,which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process.Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture.The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves.In neuropathic pain,there is upregulation of P2X purinoceptor 3(P2X3)receptor expression in dorsal root ganglion neurons.Conversely,the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated.The pathways upon which electroacupuncture appear to act are interwoven with pain pathways,and electroacupuncture stimuli converge with impulses originating from painful areas.Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.

  1. Some neural effects of adenosin.

    Science.gov (United States)

    Haulică, I; Brănişteanu, D D; Petrescu, G H

    1978-01-01

    The possible neural effects of adenosine were investigated by using electrophysiological techniques at the level of some central and peripheral synapses. The evoked potentials in the somatosensorial cerebral cortex are influenced according to both the type of administration and the level of the electrical stimulation. While the local application does not induce significant alterations, the intrathalamic injections and the perfusion of the IIIrd cerebral ventricle do change the distribution of activated units at the level of different cortical layers especially during the peripheral stimulation. The frequency of spontaneous miniature discharges intracellularly recorded in the neuromuscular junction (mepp) is significantly depressed by adenosine. This effect is calcium- and dose-dependent. The end plate potentials (EPP) were also depressed. The statistical binomial analysis of the phenomenon indicated that adenosine induces a decrease if the presynaptic pool of the available transmitter. The data obtained demonstrate a presynaptic inhibitory action of adenosine beside its known vascular and metaholic effects.

  2. Human platelets utilize cycloxygenase-1 to generate dioxolane A3, a neutrophil activating eicosanoid

    OpenAIRE

    Hinz, Christine; Aldrovandi, MacEler; Alam, Saydul; Slatter, David; Lauder, Sarah Nicol; Allen-Redpath, Keith; Collins, Peter William; Thomas, Christopher P.; O'Donnell, Valerie Bridget

    2016-01-01

    Eicosanoids are important mediators of fever, pain, and inflammation that modulate cell signaling during acute and chronic disease. We show by using lipidomics that thrombin-activated human platelets generate a new type of eicosanoid that both stimulates and primes human neutrophil integrin (Mac-1) expression, in response to formylmethionylleucylphenylalanine. Detailed characterization proposes a dioxolane structure, 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (dioxolane A3, DXA3). The lip...

  3. Heterologous expression of active human uridine diphosphate glucuronosyltransferase 1A3 in Chinese hamster lung cells

    Institute of Scientific and Technical Information of China (English)

    Ya-Kun Chen; Xin Li; Shu-Qing Chen; Su Zeng

    2005-01-01

    AIM: To obtain the active human recombinant uridine diphosphate glucuronosyltransferase 1A3 (UGT1A3) enzyme from Chinese hamster lung (CHL) cells.METHODS: The full-length UGT1A3 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR)using total RNA from human liver as template. The correct fragment confirmed by sequencing was subcloned into the mammalian expression vector pcDNA3.1 (+), and the recombinant vector was transfected into CHL cells using a calcium phosphate method. Expressed UGT1A3 protein was prepared from CHL cells resistant to neomycin (G418). Then the protein was added into a reaction mixture for glucuronidation of quercetin. The glucuronidation activity of UGT1A3 was determined by reverse phase-high performance liquid chromatography (RP-HPLC) coupled with a diode array detector (DAD). The quercetin glucuronide was confirmed by hydrolysis with β-glucuronidase. Control experiments were performed in parallel. The transcriptions of recombinants were also determined by RT-PCR.RESULTS: The gene was confirmed to be an allele (UGT1A3-3) of UGT1A3 by DNA sequencing. The fragment was introduced into pcDNA3.1 (+) successfully. Several colonies were obtained under the selection pressure of G418.The result of RT-PCR showed transcription of recombinants in mRNA level. Glucuronidation assay and HPLC analysis indicated UGT1A3 expressed heterologously in CHL cells was in an active form, and one of the gulcuronides corresponding to quercetin was also detected.CONCLUSION: Correct sequence of UGT1A3 gene can be obtained, and active UGT1A3 enzyme is expressed heterologously in CHL cells.

  4. EVALUATION OF CHROMOMYCIN A3 ASSAY IN HUMAN SPERM AFTER SIMULATED OVERNIGHT SHIPMENT

    Science.gov (United States)

    EVALUATION OF CHROMOMYCIN A3ASSAY IN HUMAN SPERM AFTER SIMULATED OVERNIGHT SHIPMENT. SC Jeffay1, R Morris Buus1, LF Strader1, AF Olshan2, DP Evenson3, SD Perreault1. 1US EPA/ORD, RTP, NC;2UNC-CH, Chapel Hill, NC;3SDSU, Brookings, SD.Semen collection kits that allow ...

  5. Synthesis of an important intermediate of antagonists of the human A2A adenosine receptor%A 2A腺苷受体拮抗剂中间体与抗结剂合成方法研究

    Institute of Scientific and Technical Information of China (English)

    屠美玲; 俞卫平; 冯涛; 贾继宁; 张云; 张建庭

    2016-01-01

    基于官能化的三唑并[4,5‐d]嘧啶类拮抗剂对人体内 A2A腺苷受体拮抗作用的干预治疗,能有效缓解帕金森综合征的临床症状.该类拮抗剂可以提高多巴胺神经元对纹状体多巴胺的敏感度.重点研究了三唑并[4,5‐d ]嘧啶类拮抗剂合成所需的重要中间体4‐氯‐1H‐[1,2,3]三唑并[d]嘧啶‐6‐胺的合成、表征及应用.并对该中间体进行活性拼接,制备了含呋喃基的三唑并[4,5‐d]嘧啶类拮抗剂8.%Antagonism of the human A2A receptor has been implicated as a point of therapeutic intervention in the alleviation of the symptoms associated with Parkinson's disease .That is to say ,at least in part ,this kind of antago‐nists can improve the sensitivity of the dopaminergic neurons to the residual ,and deplete levels of striatal dopamine . Herein ,we reported a novel synthesis strategy of an important intermediate (4‐chloro‐1H‐benzo[d][1 ,2 ,3]triazol‐6‐amine) of antagonists of the human A2A adenosine receptor .Additionally ,we had also prepared the adenosine receptor 8 .

  6. Photomodulation of G protein-coupled adenosine receptors by a novel light-switchable ligand.

    Science.gov (United States)

    Bahamonde, María Isabel; Taura, Jaume; Paoletta, Silvia; Gakh, Andrei A; Chakraborty, Saibal; Hernando, Jordi; Fernández-Dueñas, Víctor; Jacobson, Kenneth A; Gorostiza, Pau; Ciruela, Francisco

    2014-10-15

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N(6) substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities.

  7. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    Science.gov (United States)

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)).

  8. Retrieval and Clustering from a 3D Human Database based on Body and Head Shape

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper, we describe a framework for similarity based retrieval and clustering from a 3D human database. Our technique is based on both body and head shape representation and the retrieval is based on similarity of both of them. The 3D human database used in our study is the CAESAR anthropometric database which contains approximately 5000 bodies. We have developed a web-based interface for specifying the queries to interact with the retrieval system. Our approach performs the similarity based retrieval in a reasonable amount of time and is a practical approach.

  9. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar

    2014-01-01

    hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A...... of A2A receptors or injection of lentiviral vectors expressing the A2A receptor into white fat induces brown-like cells-so-called beige adipocytes. Importantly, mice fed a high-fat diet and treated with an A2A agonist are leaner with improved glucose tolerance. Taken together, our results demonstrate...... that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies....

  10. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. I. Measurement of concentration and size of single platelets and aggregates.

    Science.gov (United States)

    Bell, D N; Spain, S; Goldsmith, H L

    1989-11-01

    A double infusion flow system and particle sizing technique were developed to study the effect of time and shear rate on adenosine diphosphate-induced platelet aggregation in Poiseuille flow. Citrated platelet-rich plasma, PRP, and 2 microM ADP were simultaneously infused into a 40-microliters cylindrical mixing chamber at a fixed flow ratio, PRP/ADP = 9:1. After rapid mixing by a rotating magnetic stirbar, the platelet suspension flowed through 1.19 or 0.76 mm i.d. polyethylene tubing for mean transit times, t, from 0.1 to 86 s, over a range of mean tube shear rate, G, from 41.9 to 1,000 s-1. Known volumes of suspension were collected into 0.5% buffered glutaraldehyde, and all particles in the volume range 1-10(5) microns 3 were counted and sized using a model ZM particle counter (Coulter Electronics Inc., Hialeah, FL) and a logarithmic amplifier. The decrease in the single platelet concentration served as an overall index of aggregation. The decrease in the total particle concentration was used to calculate the collision capture efficiency during the early stages of aggregation, and aggregate growth was followed by changes in the volume fraction of particles of successively increasing size. Preliminary results demonstrate that both collision efficiency and particle volume fraction reveal important aspects of the aggregation process not indicated by changes in the single platelet concentration alone.

  11. Mapping of the ATP-binding domain of human fructosamine 3-kinase-related protein by affinity labelling with 5'-[p-(fluorosulfonyl)benzoyl]adenosine.

    Science.gov (United States)

    Payne, Leo S; Brown, Peter M; Middleditch, Martin; Baker, Edward; Cooper, Garth J S; Loomes, Kerry M

    2008-12-01

    The modification of proteins by reducing sugars through the process of non-enzymatic glycation is one of the principal mechanisms by which hyperglycaemia may precipitate the development of diabetic complications. Fn3K (fructosamine 3-kinase) and Fn3KRP (Fn3K-related protein) are two recently discovered enzymes that may play roles in metabolizing early glycation products. However, although the activity of these enzymes towards various glycated substrates has been established, very little is known about their structure-function relationships or their respective mechanisms of action. Furthermore, their only structural similarities noted to date with members of other kinase families has been with the bacterial aminoglycoside kinases. In the present study, we employed affinity labelling with the ATP analogue FSBA {5'-p-[(fluorosulfonyl)benzoyl]adenosine} to probe the active-site topology of Fn3KRP as an example of this enigmatic family of kinases. FSBA was found to modify Fn3KRP at five distinct sites; four of these were predicted to be localized in close proximity to its ATP-binding site, based on alignments with the aminoglycoside kinase APH(3')-IIIa, and examination of its published tertiary structure. The results of the present studies provide evidence that Fn3KRP possesses an ATP-binding domain that is structurally related to that of both the aminoglycoside kinases and eukaryotic protein kinases.

  12. No role of interstitial adenosine in insulin-mediated vasodilation

    DEFF Research Database (Denmark)

    Dela, F; Stallknecht, B

    1999-01-01

    The mechanisms behind the vasodilatory effect of insulin are not fully understood, but nitric oxide plays an important role. We have investigated the possibility that insulin mediates vasodilatation in the human skeletal muscle via an increase in extracellular adenosine concentrations. In eight h...

  13. The ischemic preconditioning effect of adenosine in patients with ischemic heart disease

    Directory of Open Access Journals (Sweden)

    Berglund Margareta

    2009-11-01

    Full Text Available Abstract Introduction In vivo and in vitro evidence suggests that adenosine and its agonists play key roles in the process of ischemic preconditioning. The effects of low-dose adenosine infusion on ischemic preconditioning have not been thoroughly studied in humans. Aims We hypothesised that a low-dose adenosine infusion could reduce the ischemic burden evoked by physical exercise and improve the regional left ventricular (LV systolic function. Materials and methods We studied nine severely symptomatic male patients with severe coronary artery disease. Myocardial ischemia was induced by exercise on two separate occasions and quantified by Tissue Doppler Echocardiography. Prior to the exercise test, intravenous low-dose adenosine or placebo was infused over ten minutes according to a randomized, double blind, cross-over protocol. The LV walls were defined as ischemic if a reduction, no increment, or an increment of Results PSV increased from baseline to maximal exercise in non-ischemic walls both during placebo (P = 0.0001 and low-dose adenosine infusion (P = 0.0009. However, in the ischemic walls, PSV increased only during low-dose adenosine infusion (P = 0.001, while no changes in PSV occurred during placebo infusion (P = NS. Conclusion Low-dose adenosine infusion reduced the ischemic burden and improved LV regional systolic function in the ischemic walls of patients with exercise-induced myocardial ischemia, confirming that adenosine is a potential preconditioning agent in humans.

  14. Targeting the inflammasome and adenosine type-3 receptors improves outcome of antibiotic therapy in murine anthrax

    OpenAIRE

    Popov, Serguei G.; Popova, Taissia G.; Kashanchi, Fatah; Bailey, Charles

    2011-01-01

    AIM: To establish whether activation of adenosine type-3 receptors (A3Rs) and inhibition of interleukin-1β-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challenged with anthrax spores.

  15. Human Platelets Utilize Cycloxygenase-1 to Generate Dioxolane A3, a Neutrophil-activating Eicosanoid.

    Science.gov (United States)

    Hinz, Christine; Aldrovandi, Maceler; Uhlson, Charis; Marnett, Lawrence J; Longhurst, Hilary J; Warner, Timothy D; Alam, Saydul; Slatter, David A; Lauder, Sarah N; Allen-Redpath, Keith; Collins, Peter W; Murphy, Robert C; Thomas, Christopher P; O'Donnell, Valerie B

    2016-06-24

    Eicosanoids are important mediators of fever, pain, and inflammation that modulate cell signaling during acute and chronic disease. We show by using lipidomics that thrombin-activated human platelets generate a new type of eicosanoid that both stimulates and primes human neutrophil integrin (Mac-1) expression, in response to formylmethionylleucylphenylalanine. Detailed characterization proposes a dioxolane structure, 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (dioxolane A3, DXA3). The lipid is generated in nanogram amounts by platelets from endogenous arachidonate during physiological activation, with inhibition by aspirin in vitro or in vivo, implicating cyclooxygenase-1 (COX). Pharmacological and genetic studies on human/murine platelets revealed that DXA3 formation requires protease-activated receptors 1 and 4, cytosolic phospholipase A2 (cPLA2), Src tyrosine kinases, p38 MAPK, phospholipase C, and intracellular calcium. From data generated by purified COX isoforms and chemical oxidation, we propose that DXA3 is generated by release of an intermediate from the active site followed by oxygenation at C8. In summary, a new neutrophil-activating platelet-derived lipid generated by COX-1 is presented that can activate or prime human neutrophils, suggesting a role in innate immunity and acute inflammation.

  16. Human Platelets Utilize Cycloxygenase-1 to Generate Dioxolane A3, a Neutrophil-activating Eicosanoid*

    Science.gov (United States)

    Hinz, Christine; Aldrovandi, Maceler; Uhlson, Charis; Marnett, Lawrence J.; Longhurst, Hilary J.; Warner, Timothy D.; Alam, Saydul; Slatter, David A.; Lauder, Sarah N.; Allen-Redpath, Keith; Collins, Peter W.; Murphy, Robert C.; Thomas, Christopher P.; O'Donnell, Valerie B.

    2016-01-01

    Eicosanoids are important mediators of fever, pain, and inflammation that modulate cell signaling during acute and chronic disease. We show by using lipidomics that thrombin-activated human platelets generate a new type of eicosanoid that both stimulates and primes human neutrophil integrin (Mac-1) expression, in response to formylmethionylleucylphenylalanine. Detailed characterization proposes a dioxolane structure, 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (dioxolane A3, DXA3). The lipid is generated in nanogram amounts by platelets from endogenous arachidonate during physiological activation, with inhibition by aspirin in vitro or in vivo, implicating cyclooxygenase-1 (COX). Pharmacological and genetic studies on human/murine platelets revealed that DXA3 formation requires protease-activated receptors 1 and 4, cytosolic phospholipase A2 (cPLA2), Src tyrosine kinases, p38 MAPK, phospholipase C, and intracellular calcium. From data generated by purified COX isoforms and chemical oxidation, we propose that DXA3 is generated by release of an intermediate from the active site followed by oxygenation at C8. In summary, a new neutrophil-activating platelet-derived lipid generated by COX-1 is presented that can activate or prime human neutrophils, suggesting a role in innate immunity and acute inflammation. PMID:27129261

  17. Adenosine 5′-triphosphate (ATP supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    Directory of Open Access Journals (Sweden)

    Arts Ilja CW

    2012-04-01

    Full Text Available Abstract Background Nutritional supplements designed to increase adenosine 5′-triphosphate (ATP concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity exercise. Oral ATP supplements have beneficial effects in some but not all studies examining physical performance. One of the remaining questions is whether orally administered ATP is bioavailable. We investigated whether acute supplementation with oral ATP administered as enteric-coated pellets led to increased concentrations of ATP or its metabolites in the circulation. Methods Eight healthy volunteers participated in a cross-over study. Participants were given in random order single doses of 5000 mg ATP or placebo. To prevent degradation of ATP in the acidic environment of the stomach, the supplement was administered via two types of pH-sensitive, enteric-coated pellets (targeted at release in the proximal or distal small intestine, or via a naso-duodenal tube. Blood ATP and metabolite concentrations were monitored by HPLC for 4.5 h (naso-duodenal tube or 7 h (pellets post-administration. Areas under the concentration vs. time curve were calculated and compared by paired-samples t-tests. Results ATP concentrations in blood did not increase after ATP supplementation via enteric-coated pellets or naso-duodenal tube. In contrast, concentrations of the final catabolic product of ATP, uric acid, were significantly increased compared to placebo by ~50% after administration via proximal-release pellets (P = 0.003 and naso-duodenal tube (P = 0.001, but not after administration via distal-release pellets. Conclusions A single dose of orally administered ATP is not bioavailable, and this may explain why several studies did not find ergogenic effects of oral ATP supplementation. On the other hand, increases in uric acid after release of

  18. Novel aspects of extracellular adenosine dynamics revealed by adenosine sensor cells

    Directory of Open Access Journals (Sweden)

    Kunihiko Yamashiro

    2017-01-01

    Full Text Available Adenosine modulates diverse physiological and pathological processes in the brain, including neuronal activities, blood flow, and inflammation. However, the mechanisms underlying the dynamics of extracellular adenosine are not fully understood. We have recently developed a novel biosensor, called an adenosine sensor cell, and we have characterized the neuronal and astrocytic pathways for elevating extracellular adenosine. In this review, the physiological implications and therapeutic potential of the pathways revealed by the adenosine sensor cells are discussed. We propose that the multiple pathways regulating extracellular adenosine allow for the diverse functions of this neuromodulator, and their malfunctions cause various neurological and psychiatric disorders.

  19. Feasibility of a 3D human airway epithelial model to study respiratory absorption.

    Science.gov (United States)

    Reus, Astrid A; Maas, Wilfred J M; Jansen, Harm T; Constant, Samuel; Staal, Yvonne C M; van Triel, Jos J; Kuper, C Frieke

    2014-03-01

    The respiratory route is an important portal for human exposure to a large variety of substances. Consequently, there is an urgent need for realistic in vitro strategies for evaluation of the absorption of airborne substances with regard to safety and efficacy assessment. The present study investigated feasibility of a 3D human airway epithelial model to study respiratory absorption, in particular to differentiate between low and high absorption of substances. Bronchial epithelial models (MucilAir™), cultured at the air-liquid interface, were exposed to eight radiolabeled model substances via the apical epithelial surface. Absorption was evaluated by measuring radioactivity in the apical compartment, the epithelial cells and the basolateral culture medium. Antipyrine, caffeine, naproxen and propranolol were highly transported across the epithelial cell layer (>5%), whereas atenolol, mannitol, PEG-400 and insulin were limitedly transported (absorption. The intra-experimental reproducibility of the results was considered adequate based on an average coefficient of variation (CV) of 15%. The inter-experimental reproducibility of highly absorbed compounds was in a similar range (CV of 15%), but this value was considerably higher for those compounds that were limitedly absorbed. No statistical significant differences between different donors and experiments were observed. The present study provides a simple method transposable in any lab, which can be used to rank the absorption of chemicals and pharmaceuticals, and is ready for further validation with respect to reproducibility and capacity of the method to predict respiratory transport in humans.

  20. A 3D human neural cell culture system for modeling Alzheimer’s disease

    Science.gov (United States)

    Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894

  1. A 3D in vitro bone organ model using human progenitor cells

    Directory of Open Access Journals (Sweden)

    A Papadimitropoulos

    2011-05-01

    Full Text Available Three-dimensional (3D organotypic culture models based on human cells may reduce the use of complex and costly animal models, while gaining clinical relevance. This study aimed at developing a 3D osteoblastic-osteoclastic-endothelial cell co-culture system, as an in vitro model to mimic the process of bone turnover. Osteoprogenitor and endothelial lineage cells were isolated from the stromal vascular fraction (SVF of human adipose tissue, whereas CD14+ osteoclast progenitors were derived from human peripheral blood. Cells were co-cultured within 3D porous ceramic scaffolds using a perfusion-based bioreactor device, in the presence of typical osteoclastogenic factors. After 3 weeks, the scaffolds contained cells with endothelial (2.0 ±0.3%, pre/osteoclastic (14.0 ±1.4% and mesenchymal/osteoblastic (44.0 ±8.4% phenotypes, along with tartrate-resistant acid phosphatase-positive (TRAP+ osteoclastic cells in contact with deposited bone-like matrix. Supernatant analysis demonstrated sustained matrix deposition (by C-terminus procollagen-I propeptides, resorption (by N-terminus collagen-I telopeptides and phosphate levels and osteoclastic activity (by TRAP-5b only when SVF and CD14+ cells were co-cultured. Scanning electron microscopy and magnetic resonance imaging confirmed the pattern of matrix deposition and resorption. The effectiveness of Vitamin D in replacing osteoclastogenic factors indicated a functional osteoblast-osteoclast coupling in the system. The formation of human-origin bone-like tissue, blood vessels and osteoclasts upon ectopic implantation validated the functionality of the developed cell types. The 3D co-culture system and the associated non-invasive analytical tools can be used as an advanced model to capture some aspects of the functional coupling of bone-like matrix deposition and resorption and could be exploited toward the engineering of multi-functional bone substitute implants.

  2. Adenosine for postoperative analgesia: A systematic review and meta-analysis

    Science.gov (United States)

    2017-01-01

    Purpose Perioperative infusion of adenosine has been suggested to reduce the requirement for inhalation anesthetics, without causing serious adverse effects in humans. We conducted a meta-analysis of randomized controlled trials evaluating the effect of adenosine on postoperative analgesia. Methods We retrieved articles in computerized searches of Scopus, Web of Science, PubMed, EMBASE, and Cochrane Library databases, up to July 2016. We used adenosine, postoperative analgesia, and postoperative pain(s) as key words, with humans, RCT, and CCT as filters. Data of eligible studies were extracted, which included pain scores, cumulative opioid consumption, adverse reactions, and vital signs. Overall incidence rates, relative risk (RR), and 95% confidence intervals (CI) were calculated employing fixed-effects or random-effects models, depending on the heterogeneity of the included trials. Results In total, 757 patients from 9 studies were included. The overall effect of adenosine on postoperative VAS/VRS scores and postoperative opioid consumption was not significantly different from that of controls (P >0.1). The occurrence of PONV and pruritus was not statistically significantly different between an adenosine and nonremifentanil subgroup (P >0.1), but the rate of PONV occurrence was greater in the remifentanil subgroup (P 0.1). Conclusion Adenosine has no analgesic effect or prophylactic effect against PONV, but reduce systolic blood pressure and heart rates. Adenosine may benefit patients with hypertension, ischemic heart disease, and tachyarrhythmia, thereby improving cardiac function. PMID:28333936

  3. Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix.

    Science.gov (United States)

    Panorchan, Porntula; Lee, Jerry S H; Kole, Thomas P; Tseng, Yiider; Wirtz, Denis

    2006-11-01

    Cell function is profoundly affected by the geometry of the extracellular environment confining the cell. Whether and how cells plated on a two-dimensional matrix or embedded in a three-dimensional (3D) matrix mechanically sense the dimensionality of their environment is mostly unknown, partly because individual cells in an extended matrix are inaccessible to conventional cell-mechanics probes. Here we develop a functional assay based on multiple particle tracking microrheology coupled with ballistic injection of nanoparticles to measure the local intracellular micromechanical properties of individual cells embedded inside a matrix. With our novel assay, we probe the mechanical properties of the cytoplasm of individual human umbilical vein endothelial cells (HUVECs) embedded in a 3D peptide hydrogel in the presence or absence of vascular endothelial growth factor (VEGF). We found that VEGF treatment, which enhances endothelial migration, increases the compliance and reduces the elasticity of the cytoplasm of HUVECs in a matrix. This VEGF-induced softening response of the cytoplasm is abrogated by specific Rho-kinase (ROCK) inhibition. These results establish combined particle-tracking microrheology and ballistic injection as the first method able to probe the micromechanical properties and mechanical response to agonists and/or drug treatments of individual cells inside a matrix. These results suggest that ROCK plays an essential role in the regulation of the intracellular mechanical response to VEGF of endothelial cells in a 3D matrix.

  4. Adenine arabinoside inhibition of adenovirus replication enhanced by an adenosine deaminase inhibitor.

    Science.gov (United States)

    Wigand, R

    1979-01-01

    The inhibition of adenovirus multiplication by adenine arabinoside was determined by yield reduction in one-step multiplication cycle. Inhibition was greatly enhanced by an adenosine deaminase inhibitor (2-deoxycoformycin) in concentrations down to 10 ng/ml. Adenovirus types from four subgroups showed similar results. However, the enhancing effect of adenosine deaminase inhibitor was great in HeLa cells, moderate in human fibroblasts, and negligible in Vero cells. This difference could be explained by different concentrations of adenosine deaminase found in cell homogenates.

  5. Vif Proteins from Diverse Human Immunodeficiency Virus/Simian Immunodeficiency Virus Lineages Have Distinct Binding Sites in A3C.

    Science.gov (United States)

    Zhang, Zeli; Gu, Qinyong; Jaguva Vasudevan, Ananda Ayyappan; Jeyaraj, Manimehalai; Schmidt, Stanislaw; Zielonka, Jörg; Perković, Mario; Heckel, Jens-Ove; Cichutek, Klaus; Häussinger, Dieter; Smits, Sander H J; Münk, Carsten

    2016-11-15

    Lentiviruses have evolved the Vif protein to counteract APOBEC3 (A3) restriction factors by targeting them for proteasomal degradation. Previous studies have identified important residues in the interface of human immunodeficiency virus type 1 (HIV-1) Vif and human APOBEC3C (hA3C) or human APOBEC3F (hA3F). However, the interaction between primate A3C proteins and HIV-1 Vif or natural HIV-1 Vif variants is still poorly understood. Here, we report that HIV-1 Vif is inactive against A3Cs of rhesus macaques (rhA3C), sooty mangabey monkeys (smmA3C), and African green monkeys (agmA3C), while HIV-2, African green monkey simian immunodeficiency virus (SIVagm), and SIVmac Vif proteins efficiently mediate the depletion of all tested A3Cs. We identified that residues N/H130 and Q133 in rhA3C and smmA3C are determinants for this HIV-1 Vif-triggered counteraction. We also found that the HIV-1 Vif interaction sites in helix 4 of hA3C and hA3F differ. Vif alleles from diverse HIV-1 subtypes were tested for degradation activities related to hA3C. The subtype F-1 Vif was identified to be inactive for degradation of hA3C and hA3F. The residues that determined F-1 Vif inactivity in the degradation of A3C/A3F were located in the C-terminal region (K167 and D182). Structural analysis of F-1 Vif revealed that impairing the internal salt bridge of E171-K167 restored reduction capacities to A3C/A3F. Furthermore, we found that D101 could also form an internal interaction with K167. Replacing D101 with glycine and R167 with lysine in NL4-3 Vif impaired its counteractivity to A3F and A3C. This finding indicates that internal interactions outside the A3 binding region in HIV-1 Vif influence the capacity to induce degradation of A3C/A3F.

  6. Adenosine receptors and stress : Studies using methylmercury, caffeine and hypoxia

    OpenAIRE

    Björklund, Olga

    2008-01-01

    Brain development is a precisely organized process that can be disturbed by various stress factors present in the diet (e.g. exposure to xenobiotics) as well as insults such as decreased oxygen supply. The consequent adverse changes in nervous system function may not necessarily be apparent until a critical age when neurodevelopmental defects may be unmasked by a subsequent challenge. Adenosine and its receptors (AR) (A1, A2A, A2B and A3) which participate in the brain stres...

  7. Synthesis of novel chromene scaffolds for adenosine receptors.

    Science.gov (United States)

    Costa, Marta; Areias, Filipe; Castro, Marian; Brea, Jose; Loza, María I; Proença, Fernanda

    2011-06-07

    A one-pot procedure was developed for the synthesis of novel 3-[amino(methoxy)methylene]-2-oxo-3,4-dihydro-2H-chromen-4-yl)-3-cyanoacetamides and chromeno[3,4-c]pyridine-1-carbonitriles from the reaction of 2-oxo-2H-chromene-3-carbonitriles and cyanoacetamides. These chromene derivatives were identified as new scaffolds for adenosine receptors and the hits 3a, 3c, 5a, and 5b were found.

  8. Adenosine, Energy Metabolism, and Sleep

    Directory of Open Access Journals (Sweden)

    Tarja Porkka-Heiskanen

    2003-01-01

    Full Text Available While the exact function of sleep remains unknown, it is evident that sleep was developed early in phylogenesis and represents an ancient and vital strategy for survival. Several pieces of evidence suggest that the function of sleep is associated with energy metabolism, saving of energy, and replenishment of energy stores. Prolonged wakefulness induces signs of energy depletion in the brain, while experimentally induced, local energy depletion induces increase in sleep, similarly as would a period of prolonged wakefulness. The key molecule in the induction of sleep appears to be adenosine, which induces sleep locally in the basal forebrain.

  9. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  10. DioxolaneA3-phosphatidylethanolamines are generated by human platelets and stimulate neutrophil integrin expression

    Directory of Open Access Journals (Sweden)

    Maceler Aldrovandi

    2017-04-01

    Full Text Available Activated platelets generate an eicosanoid proposed to be 8-hydroxy-9,10-dioxolane A3 (DXA3. Herein, we demonstrate that significant amounts of DXA3 are rapidly attached to phosphatidylethanolamine (PE forming four esterified eicosanoids, 16:0p, 18:0p, 18:1p and 18:0a/DXA3-PEs that can activate neutrophil integrin expression. These lipids comprise the majority of DXA3 generated by platelets, are formed in ng amounts (24.3±6.1 ng/2×108 and remain membrane bound. Pharmacological studies revealed DXA3-PE formation involves cyclooxygenase-1 (COX, protease-activated receptors (PAR 1 and 4, cytosolic phospholipase A2 (cPLA2, phospholipase C and intracellular calcium. They are generated primarily via esterification of newly formed DXA3, but can also be formed in vitro via co-oxidation of PE during COX-1 co-oxidation of arachidonate. All four DXA3-PEs were detected in human clots. Purified platelet DXA3-PE activated neutrophil Mac-1 expression, independently of its hydrolysis to the free eicosanoid. This study demonstrates the structures and cellular synthetic pathway for a family of leukocyte-activating platelet phospholipids generated on acute activation, adding to the growing evidence that enzymatic PE oxidation is a physiological event in innate immune cells.

  11. Adenosine receptor control of cognition in normal and disease.

    Science.gov (United States)

    Chen, Jiang-Fan

    2014-01-01

    Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles

  12. Smoke Extract Impairs Adenosine Wound Healing. Implications of Smoke-Generated Reactive Oxygen Species

    Science.gov (United States)

    Zimmerman, Matthew C.; Zhang, Hui; Castellanos, Glenda; O’Malley, Jennifer K.; Alvarez-Ramirez, Horacio; Kharbanda, Kusum; Sisson, Joseph H.; Wyatt, Todd A.

    2013-01-01

    Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 μM adenosine or the specific A2A receptor agonist, 5′-(N-cyclopropyl)–carboxamido–adenosine (CPCA; 10 μM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract–mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate–dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species–dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of

  13. Isoform-specific regulation of the Na+-K+ pump by adenosine in guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Zhe ZHANG; Hui-cai GUO; Li-nan ZHANG; Yong-li WANG

    2009-01-01

    Aim: The present study investigated the effect of adenosine on Na+-K+ pumps in acutely isolated guinea pig (C, avia sp.) ven-tricular myocytes.Methods: The whole-cell, patch-damp technique was used to record the Na+-K+ pump current (Ip) in acutely isolated guinea pig ventricular myocytes.Results: Adenosine inhibited the high DHO-affinity pump current (Ih) in a concentration-dependent manner, which was blocked by the selective adenosine A1 receptor antagonist DPCPX and the general protein kinase C (PKC) antagonists stau-rosporine, GF 109203X or the specific δ isoform antagonist rottlerin. In addition, the inhibitory action of adenosine was mimicked by a selective A1 receptor agonist CCPA and a specific activator peptide of PKC-δ, PP114. In contrast, the selec-tive A2A receptor agonist CGS21680 and A3 receptor agonist Cl-IB-MECA did not affect lb. Application of the selective A2A receptor antagonist SCH58261 and A3 receptor antagonist MRS1191 also failed to block the effect of adenosine. Further-more, H89, a selective protein kinase A (PKA) antagonist, did not exert any effect on adenosine-induced Ih inhibition.Conclusion: The present study provides the electrophysiological evidence that adenosine can induce significant inhibition of Ih via adenosine A1 receptors and the PKC-δ isoform.

  14. Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling.

    Science.gov (United States)

    So, Wing Yan; Leung, Po Sing

    2016-09-01

    Irisin is a newly identified myokine that promotes the browning of white adipose tissue, enhances glucose uptake in skeletal muscle and modulates hepatic metabolism. However, the signaling pathways involved in the effects on hepatic glucose and lipid metabolism have not been resolved. This study aimed to examine the role of irisin in the regulation of hepatic glucose/lipid metabolism and cell survival, and whether adenosine monophosphate-activated protein kinase (AMPK), a master metabolic regulator in the liver, is involved in irisin's actions. Human liver-derived HepG2 cells were cultured in normal glucose-normal insulin (NGNI) or high glucose-high insulin (HGHI/insulin-resistant) condition. Hepatic glucose and lipid metabolism was evaluated by glucose output and glycogen content or triglyceride accumulation assays, respectively. Our results showed that irisin stimulated phosphorylation of AMPK and acetyl-CoA-carboxylase (ACC) via liver kinase B1 (LKB1) rather than Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) in HepG2 cells. Irisin ameliorated hepatic insulin resistance induced by HGHI condition. Irisin reduced hepatic triglyceride content and glucose output, but increased glycogen content, with those effects reversed by dorsomorphin, an AMPK inhibitor. Furthermore, irisin also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and promoted cell survival in an AMPK-dependent manner. In conclusion, our data indicate that irisin ameliorates dysregulation of hepatic glucose/lipid metabolism and cell death in insulin-resistant states via AMPK activation. These findings reveal a novel irisin-mediated protective mechanism in hepatic metabolism which provides a scientific basis for irisin as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes mellitus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Kim, Chan-Hee; Ryu, Kyoung-Hwa;

    2011-01-01

    In this study, we attempted to isolate novel mast cell-stimulating molecules from Staphylococcus aureus. Water-soluble extract of S. aureus cell lysate strongly induced human interleukin- 8 in human mast cell line-1 and mouse interleukin-6 in mouse bone marrow-derived mast cells. The active...... adenosine receptor blocker, verified that purified adenosine can induce interleukin-8 production via adenosine receptors on mast cells. Moreover, adenosine was purified from S. aureusengulfed RAW264.7 cells, a murine macrophage cell line, used to induce phagocytosis of S. aureus. These results show a novel...

  16. Prognostic value of coexistence of abnormal expression of micro-RNA-200b and cyclic adenosine monophosphate-responsive element-binding protein 1 in human astrocytoma.

    Science.gov (United States)

    Zhang, Jun-qing; Yao, Qing-he; Kuang, Yong-qin; Ma, Yuan; Yang, Li-bin; Huang, Hai-dong; Cheng, Jing-ming; Yang, Tao; Liu, En-yu; Liang, Liang; Fan, Ke-xia; Zhao, Kai; Xia, Xun; Gu, Jian-wen

    2014-10-01

    Our aim was to investigate the expression of micro-RNA-200b (miR-200b) and cAMP-responsive element-binding protein 1 (CREB-1) in astrocytoma and its efficacy for predicting outcome. Both miR-200b and CREB-1 messenger RNA expression was measured in 122 astrocytomas and 30 nonneoplastic brain specimens by quantitative real-time polymerase chain reaction. Expression of miR-200b was significantly lower in astrocytoma than in nonneoplastic brain (P RNA expression was significantly elevated in the tumors (P < .001). Both miR-200b down-regulation and CREB-1 up-regulation were significantly associated with advanced pathologic grade (P = .002 and P = .006, respectively). Low miR-200b expression correlated negatively with Karnofsky performance score (P = .03), and high CREB-1 expression correlated positively with mean tumor diameter (P = .03). By Kaplan-Meier analysis, low miR-200b, high CREB-1, and coexistence of abnormal miR-200b and CREB-1 expression (low miR-200b/high CREB-1) were predictive of shorter progression-free survival and overall survival in both grade III and grade IV astrocytoma. By multivariate analysis, only low miR-200b/high CREB-1 expression was an independent prognostic factor for poor prognosis in astrocytoma of advanced grade. Both miR-200b and CREB-1 may play important cooperative roles in the progression of human astrocytoma. The efficacy of miR-200b and CREB-1 together as a predictor of prognosis in astrocytoma patients is shown for the first time. Copyright © 2014. Published by Elsevier Inc.

  17. Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase.

    Science.gov (United States)

    Diógenes, Maria José; Neves-Tomé, Raquel; Fucile, Sergio; Martinello, Katiuscia; Scianni, Maria; Theofilas, Panos; Lopatár, Jan; Ribeiro, Joaquim A; Maggi, Laura; Frenguelli, Bruno G; Limatola, Cristina; Boison, Detlev; Sebastião, Ana M

    2014-01-01

    Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.

  18. Discovery of Potent and Highly Selective A2B Adenosine Receptor Antagonist Chemotypes.

    Science.gov (United States)

    El Maatougui, Abdelaziz; Azuaje, Jhonny; González-Gómez, Manuel; Miguez, Gabriel; Crespo, Abel; Carbajales, Carlos; Escalante, Luz; García-Mera, Xerardo; Gutiérrez-de-Terán, Hugo; Sotelo, Eddy

    2016-03-10

    Three novel families of A2B adenosine receptor antagonists were identified in the context of the structural exploration of the 3,4-dihydropyrimidin-2(1H)-one chemotype. The most appealing series contain imidazole, 1,2,4-triazole, or benzimidazole rings fused to the 2,3-positions of the parent diazinone core. The optimization process enabled identification of a highly potent (3.49 nM) A2B ligand that exhibits complete selectivity toward A1, A2A, and A3 receptors. The results of functional cAMP experiments confirmed the antagonistic behavior of representative ligands. The main SAR trends identified within the series were substantiated by a molecular modeling study based on a receptor-driven docking model constructed on the basis of the crystal structure of the human A2A receptor.

  19. Cultivation of human neural progenitor cells in a 3-dimensional self-assembling peptide hydrogel.

    Science.gov (United States)

    Liedmann, Andrea; Rolfs, Arndt; Frech, Moritz J

    2012-01-11

    The influence of 3-dimensional (3D) scaffolds on growth, proliferation and finally neuronal differentiation is of great interest in order to find new methods for cell-based and standardised therapies in neurological disorders or neurodegenerative diseases. 3D structures are expected to provide an environment much closer to the in vivo situation than 2D cultures. In the context of regenerative medicine, the combination of biomaterial scaffolds with neural stem and progenitor cells holds great promise as a therapeutic tool. Culture systems emulating a three dimensional environment have been shown to influence proliferation and differentiation in different types of stem and progenitor cells. Herein, the formation and functionalisation of the 3D-microenviroment is important to determine the survival and fate of the embedded cells. Here we used PuraMatrix (RADA16, PM), a peptide based hydrogel scaffold, which is well described and used to study the influence of a 3D-environment on different cell types. PuraMatrix can be customised easily and the synthetic fabrication of the nano-fibers provides a 3D-culture system of high reliability, which is in addition xeno-free. Recently we have studied the influence of the PM-concentration on the formation of the scaffold. In this study the used concentrations of PM had a direct impact on the formation of the 3D-structure, which was demonstrated by atomic force microscopy. A subsequent analysis of the survival and differentiation of the hNPCs revealed an influence of the used concentrations of PM on the fate of the embedded cells. However, the analysis of survival or neuronal differentiation by means of immunofluorescence techniques posses some hurdles. To gain reliable data, one has to determine the total number of cells within a matrix to obtain the relative number of e.g. neuronal cells marked by βIII-tubulin. This prerequisites a technique to analyse the scaffolds in all 3-dimensions by a confocal microscope or a comparable

  20. Repeated administration of adenosine increases its cardiovascular effects in rats.

    Science.gov (United States)

    Vidrio, H; García-Márquez, F; Magos, G A

    1987-01-20

    Hypotensive and negative chronotropic responses to adenosine in anesthetized rats increased after previous administration of the nucleoside. Bradycardia after adenosine in the isolated perfused rat heart was also potentiated after repeated administration at short intervals. This self-potentiation could be due to extracellular accumulation of adenosine and persistent stimulation of receptors caused by saturation or inhibition of cellular uptake of adenosine.

  1. Chromosome distribution in human sperm – a 3D multicolor banding-study

    Directory of Open Access Journals (Sweden)

    Mrasek Kristin

    2008-11-01

    Full Text Available Abstract Background Nuclear architecture studies in human sperm are sparse. By now performed ones were practically all done on flattened nuclei. Thus, studies close at the in vivo state of sperm, i.e. on three-dimensionally conserved interphase cells, are lacking by now. Only the position of 14 chromosomes in human sperm was studied. Results Here for the first time a combination of multicolor banding (MCB and three-dimensional analysis of interphase cells was used to characterize the position and orientation of all human chromosomes in sperm cells of a healthy donor. The interphase nuclei of human sperm are organized in a non-random way, driven by the gene density and chromosome size. Conclusion Here we present the first comprehensive results on the nuclear architecture of normal human sperm. Future studies in this tissue type, e.g. also in male patients with unexplained fertility problems, may characterize yet unknown mechanisms of infertility.

  2. The glucocorticoid receptor 1A3 promoter correlates with high sensitivity to glucocorticoid-induced apoptosis in human lymphocytes.

    Science.gov (United States)

    Liddicoat, Douglas R; Kyparissoudis, Konstantinos; Berzins, Stuart P; Cole, Timothy J; Godfrey, Dale I

    2014-11-01

    Glucocorticoids (GCs) are powerful inhibitors of inflammation and immunity. Although glucocorticoid-induced cell death (GICD) is an important part of GCs actions, the cell types and molecular mechanisms involved are not well understood. Untranslated exon 1A3 of the human glucocorticoid receptor (GR) gene is a major determinant of GICD in GICD-sensitive human cancer cell lines, operating to dynamically upregulate GR levels in response to GCs. We measured the GICD sensitivity of freshly isolated peripheral blood mononuclear cells and thymocytes to dexamethasone in vitro, relating this to GR exon 1A3 expression. A clear GICD sensitivity hierarchy was detected: B cells>thymocytes/natural killer (NK) cells>peripheral T cells. Within thymocyte populations, GICD sensitivity decreased with maturation. Interestingly, NK cell subsets were differentially sensitive to GICD, with CD16(+)CD56(int) (cytotoxic) NK cells being highly resistant to GICD, whereas CD16(-)CD56(hi) (cytokine producing) NK cells were highly sensitive (similar to B cells). B-cell GICD was rescued by co-culture with interleukin-4. Strikingly, although no significant increases in GR protein were observed during 48 h of culture of GICD-sensitive and -resistant cells alike, GR 1A3 expression was increased over pre-culture levels in a manner directly proportional to the GICD sensitivity of each cell type. Accordingly, this is the first evidence that the GR exon 1A3 promoter is differentially regulated during thymic development and maturation of human T cells. Furthermore, human peripheral blood B cells are exquisitely GICD-sensitive in vitro, giving new insight into how GCs may downregulate immunity. Collectively, these data show that GR 1A3 expression is tied with GICD sensitivity in human lymphocytes, underscoring the potential for GR 1A3 expression to be used as a biomarker for sensitivity to GICD.

  3. In vivo effects of adenosine 5´-triphosphate on rat preneoplastic liver

    Directory of Open Access Journals (Sweden)

    Ana V. Frontini

    2011-04-01

    Full Text Available The utilization of adenosine 5´-triphosphate (ATP infusions to inhibit the growth of some human and animals tumors was based on the anticancer activity observed in in vitro and in vivo experiments, but contradictory results make the use of ATP in clinical practice rather controversial. Moreover, there is no literature regarding the use of ATP infusions to treat hepatocarcinomas. The purpose of this study was to investigate whether ATP prevents in vivo oncogenesis in very-early-stage cancer cells in a well characterized two-stage model of hepatocarcinogenesis in the rat. As we could not preclude the possible effect due to the intrinsic properties of adenosine, a known tumorigenic product of ATP hydrolysis, the effect of the administration of adenosine was also studied. Animals were divided in groups: rats submitted to the two stage preneoplasia initiation/promotion model of hepatocarcinogenesis, rats treated with intraperitoneal ATP or adenosine during the two phases of the model and appropriate control groups. The number and volume of preneoplastic foci per liver identified by the expression of glutathione S-transferase placental type and the number of proliferating nuclear antigen positive cells significantly increased in ATP and adenosine treated groups. Taken together, these results indicate that in this preneoplastic liver model, ATP as well as adenosine disturb the balance between apoptosis and proliferation contributing to malignant transformation.

  4. Femoral curvature in Neanderthals and modern humans: a 3D geometric morphometric analysis.

    Science.gov (United States)

    De Groote, Isabelle

    2011-05-01

    Since their discovery, Neanderthals have been described as having a marked degree of anteroposterior curvature of the femoral shaft. Although initially believed to be pathological, subsequent discoveries of Neanderthal remains lead femoral curvature to be considered as a derived Neanderthal feature. A recent study on Neanderthals and middle and early Upper Palaeolithic modern humans found no differences in femoral curvature, but did not consider size-corrected curvature. Therefore, the objectives of this study were to use 3D morphometric landmark and semi-landmark analysis to quantify relative femoral curvature in Neanderthals, Upper Palaeolithic and recent modern humans, and to compare adult bone curvature as part of the overall femoral morphology among these populations. Comparisons among populations were made using geometric morphometrics (3D landmarks) and standard multivariate methods. Comparative material involved all available complete femora from Neanderthal and Upper Palaeolithic modern human, archaeological (Mesolithic, Neolithic, Medieval) and recent human populations representing a wide geographical and lifestyle range. There are significant differences in the anatomy of the femur between Neanderthals and modern humans. Neanderthals have more curved femora than modern humans. Early modern humans are most similar to recent modern humans in their anatomy. Femoral curvature is a good indicator of activity level and habitual loading of the lower limb, indicating higher activity levels in Neanderthals than modern humans. These differences contradict robusticity studies and the archaeological record, and would suggest that femoral morphology, and curvature in particular, in Neanderthals may not be explained by adult behavior alone and could be the result of genetic drift, natural selection or differences in behavior during ontogeny.

  5. [Adenosine deaminase in experimental trypanosomiasis: future implications].

    Science.gov (United States)

    Pérez-Aguilar, Mary Carmen; Rondón-Mercado, Rocío

    2015-09-01

    The adenosine deaminase represents a control point in the regulation of extracellular adenosine levels, thus playing a critical role in the modulation of purinergic responses to certain pathophysiological events. Several studies have shown that serum and plasma enzyme levels are elevated in some diseases caused by microorganisms, which may represent a compensatory mechanism due to the elevated levels of adenosine and the release of inflammatory mediators. Recent research indicates that adenosine deaminase activity decreases and affects hematological parameters of infected animals with Trypanosoma evansi, so that such alterations could have implications in the pathogenesis of the disease. In addition, the enzyme has been detected in this parasite; allowing the inference that it could be associated with the vital functions of the same, similar to what occurs in mammals. This knowledge may be useful in the association of chemotherapy with specific inhibitors of the enzyme in future studies.

  6. Adenosine Deaminase Activities in Hyperlipidaemic Patients ...

    African Journals Online (AJOL)

    Journal of Health and Visual Sciences ... Abstract. Adenosine Deaminase Activities, markers of cellular-mediated immunity ... were statistically significantly higher (P<0.001) in the test groups than in the control groups (10.7+3iu/1) respectively.

  7. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model

    Science.gov (United States)

    Simão, Daniel; Pinto, Catarina; Fernandes, Paulo; Peddie, Christopher J.; Piersanti, Stefania; Collinson, Lucy M.; Salinas, Sara; Saggio, Isabella; Schiavo, Giampietro; Kremer, Eric J.; Brito, Catarina; Alves, Paula M.

    2017-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in pre-clinical tests. For clinical translation, in-depth pre-clinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, while human adenovirus type 5 (HAdV5) showed increased tropism towards glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity. PMID:26181626

  8. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    Science.gov (United States)

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  9. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5'-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway.

    Science.gov (United States)

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-12-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity.

  10. A 3D co-culture microtissue model of the human placenta for nanotoxicity assessment

    DEFF Research Database (Denmark)

    Muoth, Carina; Wichser, Adrian; Monopoli, Marco;

    2016-01-01

    and functionality of the placental tissue. The effects of NPs on the human placenta are not well studied or understood, and predictive in vitro placenta models to achieve mechanistic insights on NP-placenta interactions are essentially lacking. Using the scaffold-free hanging drop technology, we developed a well-organized...... and highly reproducible 3D co-culture microtissue (MT) model consisting of a core of placental fibroblasts surrounded by a trophoblast cell layer, which resembles the structure of the in vivo placental tissue. We could show that secretion levels of human chorionic gonadotropin (hCG) were significantly higher...

  11. Feasibility of a 3D human airway epithelial model to study respiratory absorption

    NARCIS (Netherlands)

    Reus, A.A.; Maas, W.J.M.; Jansen, H.T.; Constant, S.; Staal, Y.C.M.; Triel, J.J. van; Kuper, C.F.

    2014-01-01

    The respiratory route is an important portal for human exposure to a large variety of substances. Consequently, there is an urgent need for realistic in vitro strategies for evaluation of the absorption of airborne substances with regard to safety and efficacy assessment. The present study investiga

  12. Production, Characterization and Potential Uses of a 3D Tissue-engineered Human Esophageal Mucosal Model.

    Science.gov (United States)

    Green, Nicola H; Corfe, Bernard M; Bury, Jonathan P; MacNeil, Sheila

    2015-05-18

    The incidence of both esophageal adenocarcinoma and its precursor, Barrett's Metaplasia, are rising rapidly in the western world. Furthermore esophageal adenocarcinoma generally has a poor prognosis, with little improvement in survival rates in recent years. These are difficult conditions to study and there has been a lack of suitable experimental platforms to investigate disorders of the esophageal mucosa. A model of the human esophageal mucosa has been developed in the MacNeil laboratory which, unlike conventional 2D cell culture systems, recapitulates the cell-cell and cell-matrix interactions present in vivo and produces a mature, stratified epithelium similar to that of the normal human esophagus. Briefly, the model utilizes non-transformed normal primary human esophageal fibroblasts and epithelial cells grown within a porcine-derived acellular esophageal scaffold. Immunohistochemical characterization of this model by CK4, CK14, Ki67 and involucrin staining demonstrates appropriate recapitulation of the histology of the normal human esophageal mucosa. This model provides a robust, biologically relevant experimental model of the human esophageal mucosa. It can easily be manipulated to investigate a number of research questions including the effectiveness of pharmacological agents and the impact of exposure to environmental factors such as alcohol, toxins, high temperature or gastro-esophageal refluxate components. The model also facilitates extended culture periods not achievable with conventional 2D cell culture, enabling, inter alia, the study of the impact of repeated exposure of a mature epithelium to the agent of interest for up to 20 days. Furthermore, a variety of cell lines, such as those derived from esophageal tumors or Barrett's Metaplasia, can be incorporated into the model to investigate processes such as tumor invasion and drug responsiveness in a more biologically relevant environment.

  13. Simulated Lidar Images of Human Pose using a 3DS Max Virtual Laboratory

    Science.gov (United States)

    2015-12-01

    drawings , specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S...Government. The fact that the Government formulated or supplied the drawings , specifications, or other data does not license the holder or any other...developed in Autodesk 3DS Max, with an animated , biofidelic 3D human mesh biped character (avatar) as the subject. The biped animation modifies the digital

  14. A 3D Vizualization and Simulation of the Individual Human Jaw

    OpenAIRE

    Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo

    2003-01-01

    A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple twodimensional model of the jaw cannot explain the biomechanics, where t...

  15. Adenosine stress protocols for myocardial perfusion imaging

    Directory of Open Access Journals (Sweden)

    Baškot Branislav

    2008-01-01

    Full Text Available Background/Aim. Treadmill test combined with myocardial perfusion scintigraphy (MPS is a commonly used technique in the assessment of coronary artery disease. There are many patients, however, who may not be able to undergo treadmill test. Such patients would benefit from pharmacological stress procedures combined with MPS. The most commonly used pharmacological agents for cardiac stress are coronary vasodilatators (adenosine, dipyridamol and catecholamines. Concomitant low-level treadmill exercise with adenosine pharmacologic stress (AdenoEX during MPS has become commonly used in recent years. A number of studies have demonstrated a beneficial impact of AdenoEX protocol. The aim of the study was, besides introducing into practice the two types of protocols of pharmatological stress test with adenosine, as a preparation for MPS, to compare and monitor the frequency of their side effects to quality, acquisition, as well as to standardize the onset time of acquisition (diagnostic imaging for both protocols. Methods. A total of 130 patients underwent pharmacological stress test with adenosine (vasodilatator. In 108 of the patients we performed concomitant exercise (AdenoEX of low level (50W by a bicycle ergometar. In 28 of the patients we performed Adenosine abbreviated protocol (AdenoSCAN. Side effects of adenosine were followed and compared between the two kinds of protocols AdenoEX and AdenoSCAN. Also compared were image quality and suggested time of acquisition after the stress test. Results. Numerous side effects were found, but being short-lived they did not require any active interventions. The benefit of AdenoEX versus AdenoSCAN included decreased side effects (62% vs 87%, improved safety and patients tolerance, improved target-to-background ratios because of less subdiaphragmatic activity, earlier acquisition, and improved sensitivity. Conclusion. The safety and efficacy of adenosine pharmacological stress is even better with concomitant

  16. Adenosine Deaminase Inhibition Prevents Clostridium difficile Toxin A-Induced Enteritis in Mice ▿

    Science.gov (United States)

    de Araújo Junqueira, Ana Flávia Torquato; Dias, Adriana Abalen Martins; Vale, Mariana Lima; Spilborghs, Graziela Machado Gruner Turco; Bossa, Aline Siqueira; Lima, Bruno Bezerra; Carvalho, Alex Fiorini; Guerrant, Richard Littleton; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne

    2011-01-01

    Toxin A (TxA) is able to induce most of the classical features of Clostridium difficile-associated disease in animal models. The objective of this study was to determine the effect of an inhibitor of adenosine deaminase, EHNA [erythro-9-(2-hydroxy-3-nonyl)-adenine], on TxA-induced enteritis in C57BL6 mice and on the gene expression of adenosine receptors. EHNA (90 μmol/kg) or phosphate-buffered saline (PBS) was injected intraperitoneally (i.p.) 30 min prior to TxA (50 μg) or PBS injection into the ileal loop. A2A adenosine receptor agonist (ATL313; 5 nM) was injected in the ileal loop immediately before TxA (50 μg) in mice pretreated with EHNA. The animals were euthanized 3 h later. The changes in the tissue were assessed by the evaluation of ileal loop weight/length and secretion volume/length ratios, histological analysis, myeloperoxidase assay (MPO), the local expression of inducible nitric oxide synthase (NOS2), pentraxin 3 (PTX3), NF-κB, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) by immunohistochemistry and/or quantitative reverse transcription-PCR (qRT-PCR). The gene expression profiles of A1, A2A, A2B, and A3 adenosine receptors also were evaluated by qRT-PCR. Adenosine deaminase inhibition, by EHNA, reduced tissue injury, neutrophil infiltration, and the levels of proinflammatory cytokines (TNF-α and IL-1β) as well as the expression of NOS2, NF-κB, and PTX3 in the ileum of mice injected with TxA. ATL313 had no additional effect on EHNA action. TxA increased the gene expression of A1 and A2A adenosine receptors. Our findings show that the inhibition of adenosine deaminase by EHNA can prevent Clostridium difficile TxA-induced damage and inflammation possibly through the A2A adenosine receptor, suggesting that the modulation of adenosine/adenosine deaminase represents an important tool in the management of C. difficile-induced disease. PMID:21115723

  17. Aberrant bone density in aging mice lacking the adenosine transporter ENT1.

    Directory of Open Access Journals (Sweden)

    David J Hinton

    Full Text Available Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1 is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.

  18. Measuring the dynamics of cyclic adenosine monophosphate level in living cells induced by low-level laser irradiation using bioluminescence resonance energy transfer

    Science.gov (United States)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen; Zeng, Haishan

    2015-05-01

    Several studies demonstrated that the cyclic adenosine monophosphate (cAMP), an important second messenger, is involved in the mechanism of low-level laser irradiation (LLLI) treatment. However, most of these studies obtained the cAMP level in cell culture extracts or supernatant. In this study, the cAMP level in living cells was measured with bioluminescence resonance energy transfer (BRET). The effect of LLLI on cAMP level in living cells with adenosine receptors blocked was explored to identify the role of adenosine receptors in LLLI. The results showed that LLLI increased the cAMP level. Moreover, the rise of cAMP level was light dose dependent but wavelength independent for 658-, 785-, and 830-nm laser light. The results also exhibited that the adenosine receptors, a class of G protein-coupled receptor (GPCR), modulated the increase of cAMP level induced by LLLI. The cAMP level increased more significantly when the A3 adenosine receptors (A3R) were blocked by A3R antagonist compared with A1 adenosine receptor or A2a adenosine receptor blocked in HEK293T cells after LLLI, which was in good agreement with the adenosine receptors' expressions. All these results suggested that measuring the cAMP level with BRET could be a useful technique to study the role of GPCRs in living cells under LLLI.

  19. Three-dimensional recording of the human face with a 3D laser scanner.

    Science.gov (United States)

    Kovacs, L; Zimmermann, A; Brockmann, G; Gühring, M; Baurecht, H; Papadopulos, N A; Schwenzer-Zimmerer, K; Sader, R; Biemer, E; Zeilhofer, H F

    2006-01-01

    Three-dimensional recording of the surface of the human body or of certain anatomical areas has gained an ever increasing importance in recent years. When recording living surfaces, such as the human face, not only has a varying degree of surface complexity to be accounted for, but also a variety of other factors, such as motion artefacts. It is of importance to establish standards for the recording procedure, which will optimise results and allow for better comparison and validation. In the study presented here, the faces of five male test persons were scanned in different experimental settings using non-contact 3D digitisers, type Minolta Vivid 910). Among others, the influence of the number of scanners used, the angle of recording, the head position of the test person, the impact of the examiner and of examination time on accuracy and precision of the virtual face models generated from the scanner data with specialised software were investigated. Computed data derived from the virtual models were compared to corresponding reference measurements carried out manually between defined landmarks on the test persons' faces. We describe experimental conditions that were of benefit in optimising the quality of scanner recording and the reliability of three-dimensional surface imaging. However, almost 50% of distances between landmarks derived from the virtual models deviated more than 2mm from the reference of manual measurements on the volunteers' faces.

  20. Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor

    Science.gov (United States)

    Kuzin, Igor; Sun, Hongliang; Moshkani, Safiekhatoon; Feng, Changyong; Mantalaris, Athanasios; Wu, JH David; Bottaro, Andrea

    2011-01-01

    Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g. T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo. PMID:21309085

  1. Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system

    Science.gov (United States)

    Schwarz, Mathias; Aguirre, Juan; Soliman, Dominik; Buehler, Andreas; Ntziachristos, Vasilis

    2016-03-01

    The absorption of visible light by human skin is governed by a number of natural chromophores: Eumelanin, pheomelanin, oxyhemoglobin, and deoxyhemoglobin are the major absorbers in the visible range in cutaneous tissue. Label-free quantification of these tissue chromophores is an important step of optoacoustic (photoacoustic) imaging towards clinical application, since it provides relevant information in diseases. In tumor cells, for instance, there are metabolic changes (Warburg effect) compared to healthy cells, leading to changes in oxygenation in the environment of tumors. In malignant melanoma changes in the absorption spectrum have been observed compared to the spectrum of nonmalignant nevi. So far, optoacoustic imaging has been applied to human skin mostly in single-wavelength mode, providing anatomical information but no functional information. In this work, we excited the tissue by a tunable laser source in the spectral range from 413-680 nm with a repetition rate of 50 Hz. The laser was operated in wavelengthsweep mode emitting consecutive pulses at various wavelengths that allowed for automatic co-registration of the multispectral datasets. The multispectral raster-scan optoacoustic mesoscopy (MSOM) system provides a lateral resolution of <60 μm independent of wavelength. Based on the known absorption spectra of melanin, oxyhemoglobin, and deoxyhemoglobin, three-dimensional absorption maps of all three absorbers were calculated from the multispectral dataset.

  2. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.

    Science.gov (United States)

    Kang, Hyun-Wook; Lee, Sang Jin; Ko, In Kap; Kengla, Carlos; Yoo, James J; Atala, Anthony

    2016-03-01

    A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs.

  3. Modulation and metamodulation of synapses by adenosine.

    Science.gov (United States)

    Ribeiro, J A; Sebastião, A M

    2010-06-01

    The presence of adenosine in all nervous system cells (neurones and glia) together with its intensive release following insults makes adenosine as a sort of 'regulator' of synaptic communication, leading to the homeostatic coordination of brain function. Besides the direct actions of adenosine on the neurosecretory mechanisms, to tune neurotransmitter release, adenosine receptors interact with other receptors as well as with transporters as part of its attempt to fine-tune synaptic transmission. This review will focus on examples of the different ways adenosine can use to modulate or metamodulate synapses, in other words, to trigger or brake the action of some neurotransmitters and neuromodulators, to cross-talk with other G protein-coupled receptors, with ionotropic receptors and with receptor kinases as well as with transporters. Most of these interactions occur through A2A receptors, which in spite of their low density in some brain areas, such as the hippocampus, may function as amplifiers of the signalling of other mediators at synapses.

  4. A 3D discrete model of the diaphragm and human trunk

    CERN Document Server

    Promayon, Emmanuel

    2008-01-01

    In this paper, a 3D discrete model is presented to model the movements of the trunk during breathing. In this model, objects are represented by physical particles on their contours. A simple notion of force generated by a linear actuator allows the model to create forces on each particle by way of a geometrical attractor. Tissue elasticity and contractility are modeled by local shape memory and muscular fibers attractors. A specific dynamic MRI study was used to build a simple trunk model comprised of by three compartments: lungs, diaphragm and abdomen. This model was registered on the real geometry. Simulation results were compared qualitatively as well as quantitatively to the experimental data, in terms of volume and geometry. A good correlation was obtained between the model and the real data. Thanks to this model, pathology such as hemidiaphragm paralysis can also be simulated.

  5. A 3D map of the islet routes throughout the healthy human pancreas

    Science.gov (United States)

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A.; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  6. Quantitative analysis of adenosine A{sub 1} receptors in human brain using positron emission tomography and [1 -methyl-{sup 11}C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Yuichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022 (Japan)]. E-mail: ukimura@ieee.org; Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022 (Japan); Fukumitsu, Nobuyoshi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022 (Japan); Department of Radiation Oncology, University of Tsukuba Hospital, Amakubo, 2-1-1, Tsukuba, 305-8576 (Japan); Oda, Keiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022 (Japan); Sasaki, Toru [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022 (Japan); Kawamura, Kazunori [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022 (Japan); SHI Accelerator Service Ltd., 1-17-6, Ohsaki, Shinagawa, Tokyo, 141-0032 (Japan); Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022 (Japan)

    2004-11-01

    Fully quantitative analysis of the adenosine A{sub 1} receptor (A1R) in the brain with {sup 11}C-MPDX and positron emission tomography is reported. The kinetics is described using a two-tissue three-compartment model, and estimated binding potentials correspond well with the estimates made by Logan plot. The image of the binding potential of the MPDX is physiologically reasonable. We conclude that MPDX is applicable to the visualization of the A1Rs in the brain with Logan plot.

  7. The role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity

    Directory of Open Access Journals (Sweden)

    Kubilay Oransay

    2014-01-01

    Full Text Available Aim: We investigated the role of adenosine in citalopram-induced cardiotoxicity. Materials and Methods: Protocol 1: Rats were randomized into four groups. Sodium cromoglycate was administered to rats. Citalopram was infused after the 5% dextrose, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX; A 1 receptor antagonist, 8-(-3-chlorostyryl-caffeine (CSC; A 2a receptor antagonist, or dimethyl sulfoxide (DMSO administrations. Protocol 2: First group received 5% dextrose intraperitoneally 1 hour prior to citalopram. Other rats were pretreated with erythro-9-(2-hydroxy-3-nonyl adenine (EHNA; inhibitor of adenosine deaminase and S-(4-Nitrobenzyl-6-thioinosine (NBTI; inhibitor of facilitated adenosine transport. After pretreatment, group 2 received 5% dextrose and group 3 received citalopram. Adenosine concentrations, mean arterial pressure (MAP, heart rate (HR,  QRS duration and QT interval were evaluated. Results: In the dextrose group, citalopram infusion caused a significant decrease in MAP and HR and caused a significant prolongation in QRS and QT. DPCPX infusion significantly prevented the prolongation of the QT interval when compared to control. In the second protocol, citalopram infusion did not cause a significant change in plasma adenosine concentrations, but a significant increase observed in EHNA/NBTI groups. In EHNA/NBTI groups, citalopram-induced MAP and HR reductions, QRS and QT prolongations were more significant than the dextrose group. Conclusions: Citalopram may lead to QT prolongation by stimulating adenosine A 1 receptors without affecting the release of adenosine.

  8. A 3D visualization and simulation of the individual human jaw.

    Science.gov (United States)

    Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo

    2003-01-01

    A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.

  9. Adenosine A2A receptor hyperexpression in patients with severe SIRS after cardiopulmonary bypass.

    Science.gov (United States)

    Kerbaul, François; Bénard, Frédéric; Giorgi, Roch; Youlet, By; Carrega, Louis; Zouher, Ibrahim; Mercier, Laurence; Gérolami, Victoria; Bénas, Vincent; Blayac, Dorothée; Gariboldi, Vlad; Collart, Frédéric; Guieu, Régis

    2008-08-01

    Adenosine (ADO) is an endogenous nucleoside, which has been involved in blood pressure failure during severe systemic inflammatory response syndrome (severe SIRS) after cardiac surgery with cardiopulmonary bypass (CPB). Adenosine acts via its receptor subtypes, namely A1, A2A, A2B, or A3. Because A2A receptors are implicated in vascular tone, their expression might contribute to severe SIRS. We compared adenosine plasma levels (APLs) and A2A ADO receptor expression (ie, B, K, and mRNA amount) in patients with or without postoperative SIRS. : This was a prospective comparative observational study. Forty-four patients who underwent cardiac surgery involving CPB. Ten healthy subjects served as controls. Among the patients, 11 presented operative vasoplegia and postoperative SIRS (named complicated patients) and 33 were without vasoplegia or SIRS (named uncomplicated patients). Adenosine plasma levels, K, B, and mRNA amount (mean +/- SD) were measured on peripheral blood mononuclear cells. Adenosine plasma levels, B, and K were significantly higher in complicated patients than in uncomplicated patients (APLs: 2.7 +/- 1.0 vs 1.0 +/- 0.5 micromol l, P SIRS after CPB.

  10. Transient Delivery of Adenosine as a Novel Therapy to Prevent Epileptogenesis

    Science.gov (United States)

    2015-10-01

    10q11-q24 in the human and on chromosome 14 A2-B in the mouse (Klobutcher et al., 1976; Samuelson and Farber, 1985). Although the size of the gene that...adenosine ki- nase in streptozotocin-induced diabetes mellitus rats. Mol Cell Biochem 236: 163–171. Samuelson LC and Farber RA (1985) Cytological

  11. Circular Dichroism and Fluorescence Spectroscopic Study of RNA-protein Folding Patterns in Human hnRNP A3 and Their Implications in Human Autoimmune Diseases

    Institute of Scientific and Technical Information of China (English)

    E.SüLEYMANO(G)LU

    2004-01-01

    In human cells, the heterogeneous nuclear ribonucleoproteins (hnRNP) are represented by a group of polypeptides, with various molecular properties, comprizing the most abundant constituents of the cell nucleus. Autoantibodies to hnRNPs have been reported in patients suffering from different rheumatic dieseases since 1980s. Experimental evidence indicates that hnRNP complexes undergo substantial structural changes during mRNA formation and export. However, how this contributes to disease development still has to be elucidated. Here some preliminary physicochemical features of RNA-protein folding and stability patterns of newly characterized hnRNP A3 with further functional implications in development of systemic human autoimmune states are reported.

  12. The role of adenosine in Alzheimer's disease.

    Science.gov (United States)

    Rahman, Anisur

    2009-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system manifested by cognitive and memory deterioration, a variety of neuropsychiatric symptoms, behavioral disturbances, and progressive impairment of daily life activities. Current pharmacotherapies are restricted to symptomatic interventions but do not prevent progressive neuronal degeneration. Therefore, new therapeutic strategies are needed to intervene with these progressive pathological processes. In the past several years adenosine, a ubiquitously released purine ribonucleoside, has become important for its neuromodulating capability and its emerging positive experimental effects in neurodegenerative diseases. Recent research suggests that adenosine receptors play important roles in the modulation of cognitive function. The present paper attempts to review published reports and data from different studies showing the evidence of a relationship between adenosinergic function and AD-related cognitive deficits. Epidemiological studies have found an association between coffee (a nonselective adenosine receptor antagonist) consumption and improved cognitive function in AD patients and in the elderly. Long-term administration of caffeine in transgenic animal models showed a reduced amyloid burden in brain with better cognitive performance. Antagonists of adenosine A2A receptors mimic these beneficial effects of caffeine on cognitive function. Neuronal cell cultures with amyloid beta in the presence of an A2A receptor antagonist completely prevented amyloid beta-induced neurotoxicity. These findings suggest that the adenosinergic system constitutes a new therapeutic target for AD, and caffeine and A2A receptor antagonists may have promise to manage cognitive dysfunction in AD.

  13. Adenosine elicits an eNOS-independent reduction in arterial blood pressure in conscious mice that involves adenosine A(2A) receptors

    DEFF Research Database (Denmark)

    Andersen, Henrik; Jaff, Mohammad G; Høgh, Ditte;

    2011-01-01

    Aims:  Adenosine plays an important role in the regulation of heart rate and vascular reactivity. However, the mechanisms underlying the acute effect of adenosine on arterial blood pressure in conscious mice are unclear. Therefore, the present study investigated the effect of the nucleoside on mean...... arterial blood pressure (MAP) and heart rate (HR) in conscious mice. Methods:  Chronic indwelling catheters were placed in C57Bl/6J (WT) and endothelial nitric oxide synthase knock-out (eNOS(-/-) ) mice for continuous measurements of MAP and HR. Using PCR and myograph analysis involment of adenosine...... receptors was investigated in human and mouse renal blood vessels Results:  Bolus infusion of 0.5 mg/kg adenosine elicited significant transient decreases in MAP (99.3±2.3 to 70.4±4.5 mmHg) and HR (603.2±18.3 to 364.3±49.2 min(-1) ) which were inhibited by the A(2A) receptor antagonist ZM 241385. Activation...

  14. Expression of MAGE-A1 and MAGE-A3 genes in human salivary gland carcinomas

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To determine at the mRNA level whether the MAGE-A1 and -A3 genes are expressedin cancer cell lines from salivary glands and relevant clinical carcinomas, andthus to distinguish cancerous tissues from normal tissues and benign tumors in salivary glands.MethodsThe expression of the MEGE-A1 and MEGE-A3 genes at the mRNA level was determined by reverse transcription and polymerase chain reaction (RT-PCR) in 2 cell lines of human adenoid cyst carcinomas (ACC-2 and ACC-M), in 18 malignant tumors and 9 benign salivary gland tumors, and in 10 samples of normal salivary glandtissues.ResultsBoth MAGE-A1 and -A3 genes were expressed in ACC-2 and ACC-M cell lines. None of the 9 benign tumors or the 10 normal tissue samples of salivary glands expressed the genes. The MAGE-A1 and -A3 genes were expressed in 9 (50%) and 11 (61%) of 18 salivary gland carcinomas, respectively, and at least 1 of the 2 genes was expressed in 14 (78 %) of them. Of the 18 salivary gland carcinomas, 6 low-differentiated carcinomas (33%) expressed both genes, whereas 4 high-differentiated carcinomas (22%) expressed neither gene. ConclusionsThe MAGE-A1 and -A3 genes can be expressed in cancer cell lines of salivary glands and relevant clinical carcinomas in addition to other malignant tumors of various histological origins. The results suggest the possibility of immunotherapy against salivary gland carcinomas by using MAGE-gene-encoded products as target antigens for tumor-rejection.

  15. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent

    Science.gov (United States)

    Song, Anren; Zhang, Yujin; Han, Leng; Yegutkin, Gennady G.; Liu, Hong; Sun, Kaiqi; D'Alessandro, Angelo; Li, Jessica; Karmouty-Quintana, Harry; Iriyama, Takayuki; Weng, Tingting; Zhao, Shushan; Wang, Wei; Wu, Hongyu; Nemkov, Travis; Subudhi, Andrew W.; Jameson-Van Houten, Sonja; Julian, Colleen G.; Lovering, Andrew T.; Hansen, Kirk C.; Zhang, Hong; Bogdanov, Mikhail; Dowhan, William; Jin, Jianping; Kellems, Rodney E.; Eltzschig, Holger K.; Blackburn, Michael; Roach, Robert C.; Xia, Yang

    2017-01-01

    Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation. PMID:28169986

  16. Metformin Is a Substrate and Inhibitor of the Human Thiamine Transporter, THTR-2 (SLC19A3).

    Science.gov (United States)

    Liang, Xiaomin; Chien, Huan-Chieh; Yee, Sook Wah; Giacomini, Marilyn M; Chen, Eugene C; Piao, Meiling; Hao, Jia; Twelves, Jolyn; Lepist, Eve-Irene; Ray, Adrian S; Giacomini, Kathleen M

    2015-12-07

    The biguanide metformin is widely used as first-line therapy for the treatment of type 2 diabetes. Predominately a cation at physiological pH's, metformin is transported by membrane transporters, which play major roles in its absorption and disposition. Recently, our laboratory demonstrated that organic cation transporter 1, OCT1, the major hepatic uptake transporter for metformin, was also the primary hepatic uptake transporter for thiamine, vitamin B1. In this study, we tested the reverse, i.e., that metformin is a substrate of thiamine transporters (THTR-1, SLC19A2, and THTR-2, SLC19A3). Our study demonstrated that human THTR-2 (hTHTR-2), SLC19A3, which is highly expressed in the small intestine, but not hTHTR-1, transports metformin (Km = 1.15 ± 0.2 mM) and other cationic compounds (MPP(+) and famotidine). The uptake mechanism for hTHTR-2 was pH and electrochemical gradient sensitive. Furthermore, metformin as well as other drugs including phenformin, chloroquine, verapamil, famotidine, and amprolium inhibited hTHTR-2 mediated uptake of both thiamine and metformin. Species differences in the substrate specificity of THTR-2 between human and mouse orthologues were observed. Taken together, our data suggest that hTHTR-2 may play a role in the intestinal absorption and tissue distribution of metformin and other organic cations and that the transporter may be a target for drug-drug and drug-nutrient interactions.

  17. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting.

    Science.gov (United States)

    Swami, Rajan; Singh, Indu; Jeengar, Manish Kumar; Naidu, V G M; Khan, Wahid; Sistla, Ramakrishna

    2015-01-01

    Delivering chemotherapeutics by nanoparticles into tumor is impeded majorly by two factors: nonspecific targeting and inefficient penetration. Targeted delivery of anti-cancer agents solely to tumor cells introduces a smart strategy because it enhances the therapeutic index compared with untargeted drugs. The present study was performed to investigate the efficiency of adenosine (ADN) to target solid lipid nanoparticles (SLN) to over expressing adenosine receptor cell lines such as human breast cancer and prostate cancer (MCF-7 and DU-145 cells), respectively. SLN were prepared by emulsification and solvent evaporation process using docetaxel (DTX) as drug and were characterized by various techniques like dynamic light scattering, differential scanning calorimeter and transmission electron microscopy. DTX loaded SLNs were surface modified with ADN, an adenosine receptors ligand using carbodiimide coupling. Conjugation was confirmed using infrared spectroscopy and quantified using phenol-sulfuric acid method. Conjugated SLN were shown to have sustained drug release as compared to unconjugated nanoparticles and drug suspension. Compared with free DTX and unconjugated SLN, ADN conjugated SLN showed significantly higher cytotoxicity of loaded DTX, as evidenced by in vitro cell experiments. The IC50 was 0.41 μg/ml for native DTX, 0.30 μg/ml for unconjugated SLN formulation, and 0.09 μg/ml for ADN conjugated SLN formulation in MCF-7 cell lines. Whereas, in DU-145, there was 2 fold change in IC50 of ADN-SLN as compared to DTX. IC50 was found to be 0.44 μg/ml for free DTX, 0.39 μg/ml for unconjugated SLN and 0.22 μg/ml for ADN-SLN. Annexin assay and cell cycle analysis assay further substantiated the cell cytotoxicity. Fluorescent cell uptake and competitive ligand-receptor binding assay corroborated the receptor mediated endocytosis pathway indicated role of adenosine receptors in internalization of conjugated particles. Pharmacokinetic studies of lipidic

  18. Growth inhibition of human gastric adenocarcinoma cells in vitro by STO-609 is independent of calcium/calmodulin-dependent protein kinase kinase-beta and adenosine monophosphate-activated protein kinase.

    Science.gov (United States)

    Ma, Zhiming; Wen, Dacheng; Wang, Xudong; Yang, Longfei; Liu, Tianzhou; Liu, Jingjing; Zhu, Jiaming; Fang, Xuedong

    2016-01-01

    Adenosine monophosphate (AMP)-activated protein kinase is a recently identified downstream target of calcium/calmodulin-dependent protein kinase kinase-beta, and is involved in the regulation of cell metabolism and cell proliferation. STO-609 is a selective antagonist of calcium/calmodulin-dependent protein kinase kinase-beta. In the present study, we found that STO-609 suppressed AMP-activated protein kinase activity, reduced expression of Akt and ERK, and increased cell apoptosis in SNU-1 and N87 cells but not normal gastric epithelial cells (CCL-241). Interestingly, we found such effects of STO-609 on gastric cancer cells were not affected after the knock-down of CaMKK-β and AMPK. In conclusion, STO-609 is an effective cytotoxic agent for gastric adenocarcinoma in vivo.

  19. An enzyme-free strategy for ultrasensitive detection of adenosine using a multipurpose aptamer probe and malachite green.

    Science.gov (United States)

    Zhao, Hui; Wang, Yong-Sheng; Tang, Xian; Zhou, Bin; Xue, Jin-Hua; Liu, Hui; Liu, Shan-Du; Cao, Jin-Xiu; Li, Ming-Hui; Chen, Si-Han

    2015-08-01

    We report on an enzyme-free and label-free strategy for the ultrasensitive determination of adenosine. A novel multipurpose adenosine aptamer (MAAP) is designed, which serves as an effective target recognition probe and a capture probe for malachite green. In the presence of adenosine, the conformation of the MAAP is converted from a hairpin structure to a G-quadruplex. Upon addition of malachite green into this solution, a noticeable enhancement of resonance light scattering was observed. The signal response is directly proportional to the concentration of adenosine ranging from 75 pM to 2.2 nM with a detection limit of 23 pM, which was 100-10,000 folds lower than those obtained by previous reported methods. Moreover, this strategy has been applied successfully for detecting adenosine in human urine and blood samples, further proving its reliability. The mechanism of adenosine inducing MAAP to form a G-quadruplex was demonstrated by a series of control experiments. Such a MAAP probe can also be used to other strategies such as fluorescence or spectrophotometric ones. We suppose that this strategy can be expanded to develop a universal analytical platform for various target molecules in the biomedical field and clinical diagnosis.

  20. Caffeine prevents protection in two human models of ischemic preconditioning.

    NARCIS (Netherlands)

    Riksen, N.P.; Zhou, Z.; Oyen, W.J.G.; Jaspers, R.A.; Ramakers, B.P.; Brouwer, R.M.H.J.; Boerman, O.C.; Steinmetz, N.; Smits, P.; Rongen, G.A.

    2006-01-01

    OBJECTIVES: We studied whether caffeine impairs protection by ischemic preconditioning (IP) in humans. BACKGROUND: Ischemic preconditioning is critically dependent on adenosine receptor stimulation. We hypothesize that the adenosine receptor antagonist caffeine blocks the protective effect of IP.

  1. Caffeine prevents protection in two human models of ischemic preconditioning.

    NARCIS (Netherlands)

    Riksen, N.P.; Zhou, Z.; Oyen, W.J.G.; Jaspers, R.A.; Ramakers, B.P.; Brouwer, R.M.H.J.; Boerman, O.C.; Steinmetz, N.; Smits, P.; Rongen, G.A.

    2006-01-01

    OBJECTIVES: We studied whether caffeine impairs protection by ischemic preconditioning (IP) in humans. BACKGROUND: Ischemic preconditioning is critically dependent on adenosine receptor stimulation. We hypothesize that the adenosine receptor antagonist caffeine blocks the protective effect of IP. ME

  2. The Effects of T4 and A3/R Bacteriophages on Differentiation of Human Myeloid Dendritic Cells.

    Science.gov (United States)

    Bocian, Katarzyna; Borysowski, Jan; Zarzycki, Michał; Pacek, Magdalena; Weber-Dąbrowska, Beata; Machcińska, Maja; Korczak-Kowalska, Grażyna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages) are viruses of bacteria. Here we evaluated the effects of T4 and A3/R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs) from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in the activation of T cells (CD40, CD80, CD83, CD86, CD1c, CD11c, MHC II, PD-L1, PD-L2, TLR2, TLR4, and CCR7) and phagocytosis receptors (CD64 and DEC-205). By contrast, bacterial lysate of T4 phage significantly decreased the percentages of DEC-205- and CD1c-positive cells. The percentage of DEC-205-positive cells was also significantly reduced in DCs differentiated in the presence of lysate of A3/R phage. Thus while bacteriophages do not substantially affect differentiation of DCs, some products of phage-induced lysis of bacterial cells may influence the differentiation and potentially also some functions of DCs. Our results have important implications for phage therapy of bacterial infections because during infections monocytes recruited to the site of inflammation are an important source of inflammatory DCs.

  3. The effects of T4 and A3R bacteriophages on differentiation of human myeloid dendritic cells

    Directory of Open Access Journals (Sweden)

    Katarzyna Bocian

    2016-08-01

    Full Text Available Bacteriophages (phages are viruses of bacteria. Here we evaluated the effects of T4 and A3R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in the activation of T cells (CD40, CD80, CD83, CD86, CD1c, CD11c, MHC II, PD-L1, PD-L2, TLR2, TLR4, and CCR7 and phagocytosis receptors (CD64 and DEC-205. By contrast, bacterial lysate of T4 phage significantly decreased the percentages of DEC-205- and CD1c-positive cells. The percentage of DEC-205-positive cells was also significantly reduced in DCs differentiated in the presence of lysate of A3R phage. Thus while bacteriophages do not substantially affect differentiation of DCs, some products of phage-induced lysis of bacterial cells may influence the differentiation and potentially also some functions of DCs. Our results have important implications for phage therapy of bacterial infections because during infections monocytes recruited to the site of inflammation are an important source of inflammatory DCs.

  4. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3.

    Science.gov (United States)

    Akbas, F; Aydin, Z

    2012-04-03

    Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels.

  5. The Effects of T4 and A3/R Bacteriophages on Differentiation of Human Myeloid Dendritic Cells

    Science.gov (United States)

    Bocian, Katarzyna; Borysowski, Jan; Zarzycki, Michał; Pacek, Magdalena; Weber-Dąbrowska, Beata; Machcińska, Maja; Korczak-Kowalska, Grażyna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages) are viruses of bacteria. Here we evaluated the effects of T4 and A3/R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs) from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in the activation of T cells (CD40, CD80, CD83, CD86, CD1c, CD11c, MHC II, PD-L1, PD-L2, TLR2, TLR4, and CCR7) and phagocytosis receptors (CD64 and DEC-205). By contrast, bacterial lysate of T4 phage significantly decreased the percentages of DEC-205- and CD1c-positive cells. The percentage of DEC-205-positive cells was also significantly reduced in DCs differentiated in the presence of lysate of A3/R phage. Thus while bacteriophages do not substantially affect differentiation of DCs, some products of phage-induced lysis of bacterial cells may influence the differentiation and potentially also some functions of DCs. Our results have important implications for phage therapy of bacterial infections because during infections monocytes recruited to the site of inflammation are an important source of inflammatory DCs. PMID:27582733

  6. Aminopyrimidine derivatives as adenosine antagonists / Janke Kleynhans

    OpenAIRE

    Kleynhans, Janke

    2013-01-01

    Aims of this project - The aim of this study was to design and synthesise novel 2-aminopyrimidine derivatives as potential adenosine A1 and A2A receptor antagonists. Background and rationale - Parkinson’s disease is the second most common neurodegenerative disorder (after Alzheimer’s disease) and is characterised by the selective death of the dopaminergic neurons of the nigro-striatal pathway. Distinctive motor symptoms include bradykinesia, muscle rigidity and tremor, while non-m...

  7. Computational QM/MM Study of the Reaction Mechanism of Human Glutathione S-Transferase A3-3

    Science.gov (United States)

    Calvaresi, Matteo; Stenta, Marco; Altoè, Piero; Bottoni, Andrea; Garavelli, Marco; Spinelli, Domenico

    2007-12-01

    Human Glutathione S-Transferase A3-3(hGSTA3-3) is the most efficient human steroid double-bond isomerase enzyme. It catalyzes the double bond isomerization of Δ5-androstene-3,17-dione (Δ5-AD) and Δ5-pregnene-3,20-dione (Δ5-PD). The isomerization products are the precursors of the steroid hormones testosterone and progesterone. We have carried out a QM/MM study to elucidate some interesting aspects of the enzyme catalytic mechanism. In particular, we have analyzed either a concerted or a stepwise reaction path. Moreover, we have attempted to rationalize the electrostatic effects on the catalytic activity of the residues surrounding the active site. Specifically, we have performed a "finger print" analysis to determine the electrostatic contribution of each aminoacid residue to the global electrostatic term, thus ranking the effect of the various aminoacids in the course of the reaction. In this way, we have highlighted the most important terms affecting the stabilization-destabilization of the enzyme.

  8. Novel antagonists for the human adenosine A2A and A3 receptor via purine nitration: synthesis and biological evaluation of C2-substituted 6-trifluoromethylpurines and 1-deazapurines

    NARCIS (Netherlands)

    Koch, M.

    2011-01-01

    Melle Koch onderzocht diverse syntheseroutes om purinemoleculen zó te veranderen dat ze selectief werken op één receptor in het lichaam, de adenosinereceptor. De onderzochte stoffen hebben hoge activiteit op de adenosinereceptor en kunnen worden gebruikt in geneesmiddelonderzoek. Koch ontwikkelde

  9. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS 2, 3 and 4 in Astrocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Till Nicolas Eusemann

    Full Text Available The "regulators of g-protein signalling" (RGS comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.

  10. Hypoxia-controlled EphA3 marks a human endometrium-derived multipotent mesenchymal stromal cell that supports vascular growth.

    Directory of Open Access Journals (Sweden)

    Catherine To

    Full Text Available Eph and ephrin proteins are essential cell guidance cues that orchestrate cell navigation and control cell-cell interactions during developmental tissue patterning, organogenesis and vasculogenesis. They have been extensively studied in animal models of embryogenesis and adult tissue regeneration, but less is known about their expression and function during human tissue and organ regeneration. We discovered the hypoxia inducible factor (HIF-1α-controlled expression of EphA3, an Eph family member with critical functions during human tumour progression, in the vascularised tissue of regenerating human endometrium and on isolated human endometrial multipotent mesenchymal stromal cells (eMSCs, but not in other highly vascularised human organs. EphA3 affinity-isolation from human biopsy tissue yielded multipotent CD29+/CD73+/CD90+/CD146+ eMSCs that can be clonally propagated and respond to EphA3 agonists with EphA3 phosphorylation, cell contraction, cell-cell segregation and directed cell migration. EphA3 silencing significantly inhibited the ability of transplanted eMSCs to support neovascularisation in immunocompromised mice. In accord with established roles of Eph receptors in mediating interactions between endothelial and perivascular stromal cells during mouse development, our findings suggest that HIF-1α-controlled expression of EphA3 on human MSCs functions during the hypoxia-initiated early stages of adult blood vessel formation.

  11. [The involvement of adenosine and adenosine deaminase in experimental myocardial infarct].

    Science.gov (United States)

    Stratone, A; Busuioc, A; Roşca, V; Bazgan, L; Popa, M; Hăulică, I

    1989-01-01

    By the ligature of the left coronary artery in the rat anesthetized with nembutal (10 mg/100 i.p.) a significant increase of the 5'-nucleotidase activity (Wooton method) was noticed 10 minutes after the left ventricle infarction (from an average value of 1038.5 +/- 187 mU/g tissue to 1537 +/- 225 mU/g fresh tissue). The adenosine desaminase levels spectrophotometrically determined by Denstedt technique, do not appear significantly modified 10 or 30 minutes after the left ventricle infarction. The chromatographically determined adenosine levels, by HPLC technique, decrease from the average value of 11.63 +/- 1.4 micrograms/mg PT to 8.60 +/- 1.0 micrograms/mg PT 30 minutes after infarction. The observed changes are explained by the conditions of hypoxia in the infarcted ventricle which lead to the raise in adenosine levels by activating the 5'-nucleotidase and their depression by a very fast metabolism of the same substance.

  12. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  13. Effects of adenosine agonist R-phenylisopropyl-adenosine on halothane anesthesia and antinociception in rats

    Institute of Scientific and Technical Information of China (English)

    Hai-chun MA; Yan-fen WANG; Chun-sheng FENG; Hua ZHAO; Shuji DOHI

    2005-01-01

    Aim: To investigate the antinociceptive effect of adenosine agonist Rphenylisopropyl-adenosine (R-PIA) given to conscious rats by intracerebroventricular (ICV) and intrathecal (IT), and identify the effect of R-PIA on minimum alveolar concentration (MAC) of halothane with pretreatment of A1 receptor an tagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or K+ channel blocker 4-aminopyridine (4-AP). Methods: Sprague-Dawley rats were implanted with 24 gauge stainless steel guide cannula using stereotaxic apparatus and ICV method, and an IT catheter (PE-10, 8.5 cm) was inserted into the lumbar subarachnoid space, while the rats were under pentobarbital anesthesia. After one week of recovery from surgery, rats were randomly assigned to one of the following protocols: MAC of halothane, or tail-flick latency. All measurements were performed after R-PIA (0.8-2.0 μg) microinjection into ICV and IT with or without pretreatment of DPCPX or 4-AP. Results: Microinjection of adenosine agonist R PIA in doses of 0.8-2.0 μg into ICV and IT produced a significant dose- and time dependent antinociceptive action as reflected by increasing latency times and ICV administration of adenosine agonist R-PIA (0.8 μg) reducing halothane anes thetic requirements (by 29%). The antinociception and reducing halothane requirements effected by adenosine agonist R-PIA was abolished by DPCPX and 4-AP. Conclusion: ICV and IT administration of adenosine agonist R-PIA produced an antinociceptive effect in a dose-dependent manner and decreased hal othane MAC with painful stimulation through activation of A1 receptor subtype, and the underlying mechanism involves K+ channel activation.

  14. Late-onset adenosine deaminase deficiency presenting with Heck's disease.

    Science.gov (United States)

    Artac, Hasibe; Göktürk, Bahar; Bozdemir, Sefika Elmas; Toy, Hatice; van der Burg, Mirjam; Santisteban, Ines; Hershfield, Michael; Reisli, Ismail

    2010-08-01

    Focal epithelial hyperplasia, also known as Heck's disease, is a rare but distinctive entity of viral etiology with characteristic clinical and histopathological features. It is a benign, asymptomatic disease of the oral mucosa caused by human papilloma viruses (HPV). Previous studies postulated an association between these lesions and immunodeficiency. Genetic deficiency of adenosine deaminase (ADA) results in varying degrees of immunodeficiency, including neonatal onset severe combined immunodeficiency (ADA-SCID), and milder, later onset immunodeficiency. We report a 12-year-old girl with the late onset-ADA deficiency presenting with Heck's disease. Our case report should draw attention to the possibility of immunodeficiency in patients with HPV-induced focal epithelial hyperplasia.

  15. Scanning mutagenesis in a yeast system delineates the role of the NPxxY(x)(5,6)F motif and helix 8 of the adenosine A(2B) receptor in G protein coupling.

    Science.gov (United States)

    Liu, Rongfang; Nahon, Dennis; le Roy, Beau; Lenselink, Eelke B; IJzerman, Adriaan P

    2015-06-15

    The adenosine receptor subfamily includes four subtypes: the A1, A2A, A2B and A3 receptors, which all belong to the superfamily of G protein-coupled receptors (GPCRs). The adenosine A2B receptor is the least investigated of the adenosine receptors, and the molecular mechanisms of its activation have hardly been explored. We used a single-GPCR-one-G protein yeast screening method in combination with mutagenesis studies, molecular modeling and bio-informatics to investigate the importance of the different amino acid residues of the NPxxY(x)6F motif and helix 8 in the human adenosine A2B receptor (hA2BR) activation. A scanning mutagenesis protocol was employed, yielding 11 single mutations and one double mutation of the NPxxY(x)6F motif and 16 single mutations of helix 8. The amino acid residues P287(7.50), Y290(7.53), R293(7.56) and I304(8.57) were found to be essential, since mutation of these amino acid residues to alanine led to a complete loss of function. Western blot analysis showed that mutant receptor R293(7.56)A was not expressed, whereas the other proteins were. Amino acid residues that are also important in receptor activation are: N286(7.49), V289(7.52), Y292(7.55), N294(8.47), F297(8.50), R298(8.51), H302(8.55) and R307(8.60). The mutation Y290(7.53)F lost 50% of efficacy, while F297(8.50)A behaved similar to wild type receptor. The double mutation, Y290(7.53)F/F297(8.50)Y, lost around 70% of efficacy and displayed a lower potency for the reference agonist 5'-(N-ethylcarboxamido)adenosine (NECA). This study provides new insight into the molecular interplay and impact of TM7 and helix 8 for hA2B receptor activation, which may be extrapolated to other adenosine receptors and possibly to other GPCRs.

  16. The Role of Adenosine Signaling in Headache: A Review

    Directory of Open Access Journals (Sweden)

    Nathan T. Fried

    2017-03-01

    Full Text Available Migraine is the third most prevalent disease on the planet, yet our understanding of its mechanisms and pathophysiology is surprisingly incomplete. Recent studies have built upon decades of evidence that adenosine, a purine nucleoside that can act as a neuromodulator, is involved in pain transmission and sensitization. Clinical evidence and rodent studies have suggested that adenosine signaling also plays a critical role in migraine headache. This is further supported by the widespread use of caffeine, an adenosine receptor antagonist, in several headache treatments. In this review, we highlight evidence that supports the involvement of adenosine signaling in different forms of headache, headache triggers, and basic headache physiology. This evidence supports adenosine A2A receptors as a critical adenosine receptor subtype involved in headache pain. Adenosine A2A receptor signaling may contribute to headache via the modulation of intracellular Cyclic adenosine monophosphate (cAMP production or 5' AMP-activated protein kinase (AMPK activity in neurons and glia to affect glutamatergic synaptic transmission within the brainstem. This evidence supports the further study of adenosine signaling in headache and potentially illuminates it as a novel therapeutic target for migraine.

  17. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    Science.gov (United States)

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  18. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat

    Institute of Scientific and Technical Information of China (English)

    V Haktan Ozacmak; Hale Sayan

    2007-01-01

    AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase,malondialdehyde, and reduced glutathione levels were measured.RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.

  19. Measurement of stapes vibration in Human temporal bones by round window stimulation using a 3-coil transducer.

    Science.gov (United States)

    Shin, Dong Ho; Kim, Dong Wook; Lim, Hyung Gyu; Jung, Eui Sung; Seong, Ki Woong; Lee, Jyung Hyun; Kim, Myoung Nam; Cho, Jin Ho

    2014-01-01

    Round window placement of a 3-coil transducer offers a new approach for coupling an implantable hearing aid to the inner ear. The transducer exhibits high performance at low-frequencies. One remarkable feature of the 3-coil transducer is that it minimizes leakage flux. Thus, the transducer, which consists of two permanent magnets and three coils, can enhance vibrational displacement. In human temporal bones, stapes vibration was observed by laser Doppler vibrometer in response to round window stimulation using the 3-coil transducer. Coupling between the 3-coil transducer and the round window was connected by a wire-rod. The stimulation created stapes velocity when the round window stimulated. Performance evaluation was conducted by measuring stapes velocity. To verify the performance of the 3-coil transducer, stapes velocity for round window and tympanic membrane stimulation were compared, respectively. Stapes velocity by round window stimulation using the 3-coil transducer was approximately 14 dB higher than that achieved by tympanic membrane stimulation. The study shows that 3-coil transducer is suitable for implantable hearing aids.

  20. Mechanism of protection of adenosine from sulphate radical anion and repair of adenosine radicals by caffeic acid in aqueous solution

    Indian Academy of Sciences (India)

    M Sudha Swaraga; L Charitha; M Adinarayana

    2005-07-01

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of adenosine suggesting that caffeic acid acts as an efficient scavenger of $SO_{4}^{\\bullet-}$ and protects adenosine from it. Sulphate radical anion competes for adenosine as well as for caffeic acid. The quantum yields of photooxidation of adenosine have been calculated from the rates of oxidation of adenosine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cal) assuming caffeic acid acting only as a scavenger of $SO_{4}^{\\bullet-}$ show that exptl values are lower than cal values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for $SO_{4}^{\\bullet-}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the transient adenosine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  1. Modulatory effect of adenosine receptors on the ascending and descending neural reflex responses of rat ileum

    Directory of Open Access Journals (Sweden)

    Schusdziarra Volker

    2002-12-01

    Full Text Available Abstract Background Adenosine is known to act as a neuromodulator by suppressing synaptic transmission in the central and peripheral nervous system. Both the release of adenosine within the small intestine and the presence of adenosine receptors on enteric neurons have been demonstrated. The aim of the present study was to characterize a possible involvement of adenosine receptors in the modulation of the myenteric reflex. The experiments were carried out on ileum segments 10 cm in length incubated in an single chambered organ bath, and the reflex response was initiated by electrical stimulation (ES. Results ES caused an ascending contraction and a descending relaxation followed by a contraction. All motility responses to ES were completely blocked by tetrodotoxin, indicating that they are mediated by neural mechanisms. Atropine blocked the contractile effects, whereas the descending relaxation was significantly increased. The A1 receptor agonist N6-cyclopentyladenosine increased the ascending contraction, whereas the ascending contraction was reduced by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. Activation of the A1 receptor further reduced the descending relaxation and the latency of the peristaltic reflex. The A2B receptor antagonist alloxazine increased ascending contraction, whereas descending relaxation remained unchanged. For A2A and A3 receptors, we found contradictory effects of the agonists and antagonists, thus there is no clear physiological role for these receptors at this time. Conclusions This study suggests that the myenteric ascending and descending reflex response of the rat small intestine is modulated by release of endogenous adenosine via A1 receptors.

  2. Synthesis and Pharmacological Evaluation of Modified Adenosines Joined to Mono-Functional Platinum Moieties

    Directory of Open Access Journals (Sweden)

    Stefano D'Errico

    2014-07-01

    Full Text Available The synthesis of four novel platinum complexes, bearing N6-(6-amino-hexyladenosine or a 1,6-di(adenosin-N6-yl-hexane respectively, as ligands of mono-functional cisplatin or monochloro(ethylendiamineplatinum(II, is reported. The chemistry exploits the high affinity of the charged platinum centres towards the N7 position of the adenosine base system and a primary amine of an alkyl chain installed on the C6 position of the purine. The cytotoxic behaviour of the synthesized complexes has been studied in A549 adenocarcinomic human alveolar basal epithelial and MCF7 human breast adenocarcinomic cancer cell lines, in order to investigate their effects on cell viability and proliferation.

  3. Serum adenosine deaminase activity in cutaneous anthrax.

    Science.gov (United States)

    Sunnetcioglu, Mahmut; Karadas, Sevdegul; Aslan, Mehmet; Ceylan, Mehmet Resat; Demir, Halit; Oncu, Mehmet Resit; Karahocagil, Mustafa Kasım; Sunnetcioglu, Aysel; Aypak, Cenk

    2014-07-06

    Adenosine deaminase (ADA) activity has been discovered in several inflammatory conditions; however, there are no data associated with cutaneous anthrax. The aim of this study was to investigate serum ADA activity in patients with cutaneous anthrax. Sixteen patients with cutaneous anthrax and 17 healthy controls were enrolled. We measured ADA activity; peripheral blood leukocyte, lymphocyte, neutrophil, and monocyte counts; erythrocyte sedimentation rate; and C reactive protein levels. Serum ADA activity was significantly higher in patients with cutaneous anthrax than in the controls (panthrax.

  4. Adenosine, caffeine, and performance: from cognitive neuroscience of sleep to sleep pharmacogenetics.

    Science.gov (United States)

    Urry, Emily; Landolt, Hans-Peter

    2015-01-01

    An intricate interplay between circadian and sleep-wake homeostatic processes regulate cognitive performance on specific tasks, and individual differences in circadian preference and sleep pressure may contribute to individual differences in distinct neurocognitive functions. Attentional performance appears to be particularly sensitive to time of day modulations and the effects of sleep deprivation. Consistent with the notion that the neuromodulator, adenosine , plays an important role in regulating sleep pressure, pharmacologic and genetic data in animals and humans demonstrate that differences in adenosinergic tone affect sleepiness, arousal and vigilant attention in rested and sleep-deprived states. Caffeine--the most often consumed stimulant in the world--blocks adenosine receptors and normally attenuates the consequences of sleep deprivation on arousal, vigilance, and attention. Nevertheless, caffeine cannot substitute for sleep, and is virtually ineffective in mitigating the impact of severe sleep loss on higher-order cognitive functions. Thus, the available evidence suggests that adenosinergic mechanisms, in particular adenosine A2A receptor-mediated signal transduction, contribute to waking-induced impairments of attentional processes, whereas additional mechanisms must be involved in higher-order cognitive consequences of sleep deprivation. Future investigations should further clarify the exact types of cognitive processes affected by inappropriate sleep. This research will aid in the quest to better understand the role of different brain systems (e.g., adenosine and adenosine receptors) in regulating sleep, and sleep-related subjective state, and cognitive processes. Furthermore, it will provide more detail on the underlying mechanisms of the detrimental effects of extended wakefulness, as well as lead to the development of effective, evidence-based countermeasures against the health consequences of circadian misalignment and chronic sleep restriction.

  5. p53-Independent induction of Fas and apoptosis in leukemic cells by an adenosine derivative, Cl-IB-MECA

    Science.gov (United States)

    Kim, Seong Gon; Ravi, Gnana; Hoffmann, Carsten; Jung, Yun-Jin; Kim, Min; Chen, Aishe; Jacobson, Kenneth A.

    2016-01-01

    A3 adenosine receptor (A3AR) agonists have been reported to influence cell death and survival. The effects of an A3AR agonist, 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-β-D-ribofuranonamide (Cl-IB-MECA), on apoptosis in two human leukemia cell lines, HL-60 and MOLT-4, were investigated. Cl-IB-MECA (≥30 μM) increased the apoptotic fractions, as determined using fluorescence-activated cell sorting (FACS) analysis, and activated caspase 3 and poly-ADP-ribose-polymerase. Known messengers coupled to A3AR (phospholipase C and intracellular calcium) did not seem to play a role in the induction of apoptosis. Neither dantrolene nor BAPTA-AM affected the Cl-IB-MECA-induced apoptosis. Cl-IB-MECA failed to activate phospholipase C in HL-60 cells, while UTP activated it through endogenous P2Y2 receptors. Induction of apoptosis during a 48 hr exposure to Cl-IB-MECA was not prevented by the A3AR antagonists [5-propyl-2-ethyl-4-propyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate] (MRS 1220) or N-[9-chloro-2-(2-furanyl)[l,2,4]triazolo[l,5-c]quinazolin-5-yl]benzeneacetamide (MRS 1523). Furthermore, higher concentrations of MRS 1220, which would also antagonize A1 and A2A receptors, were ineffective in preventing the apoptosis. Although Cl-IB-MECA has been shown in other systems to cause apoptosis through an A3AR-mediated mechanism, in these cells it appeared to be an adenosine receptor-independent effect, which required prolonged incubation. In both HL-60 and MOLT-4 cells, Cl-IB-MECA induced the expression of Fas, a death receptor. This induction of Fas was not dependent upon p53, because p53 is not expressed in an active form in either HL-60 or MOLT-4 cells. Cl-IB-MECA-induced apoptosis in HL-60 cells was augmented by an agonistic Fas antibody, CH-11, and this increase was suppressed by the antagonistic anti-Fas antibody ZB-4. Therefore, Cl-IB-MECA induced apoptosis via a novel, p53-independent up-regulation of Fas. Published by

  6. Targeting the inflammasome and adenosine type-3 receptors improves outcome of antibiotic therapy in murine anthrax

    Institute of Scientific and Technical Information of China (English)

    Serguei; G; Popov; Taissia; G; Popova; Fatah; Kashanchi; Charles; Bailey

    2011-01-01

    AIM:To establish whether activation of adenosine type-3 receptors(A3Rs)and inhibition of interleukin- 1β-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challenged with anthrax spores. METHODS:DBA/2 mice were challenged with Bacillus anthracis spores of the toxigenic Sterne strain 43F2. Survival of animals was monitored for 15 d.Ciprofloxacin treatment(50 mg/kg,once daily,intraperitoneally) was initiated at day+1 simultaneously with the ad- ministration of inhibitors,and continued for 10 d.Two doses(2.5 mg/kg and 12.5 mg/kg)of acetyl-tyrosylvalyl-alanyl-aspartyl-chloromethylketone(YVAD)and three doses(0.05,0.15 and 0.3 mg/kg)of 1-[2-Chloro- 6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1- deoxy-N-methyl-β-D-ribofuranuronamide(Cl-IB-MECA) were tested.Animals received YVAD on days 1-4,and Cl-IB-MECA on days 1-10 once daily,subcutaneously. Human lung epithelial cells in culture were challenged with spores or edema toxin and the effects of IB-MECAon phosphorylation of AKT and generation of cAMP were tested. RESULTS:We showed that the outcome of antibiotic treatment in a murine anthrax model could be substantially improved by co-administration of the caspase-1/4 inhibitor YVAD and the A3R agonist Cl-IB-MECA.Combination treatment with these substances and ciprofloxacin resulted in up to 90%synergistic protection.All untreated mice died,and antibiotic alone protected only 30% of animals.We conclude that both substances target the aberrant host signaling that underpins anthrax mortality. CONCLUSION:Our findings suggest new possibilities for combination therapy of anthrax with antibiotics,A3R agonists and caspase-1 inhibitors.

  7. Carbamazepine-induced upregulation of adenosine A(1)-receptors in astrocyte cultures affects coupling to the phosphoinositol signaling pathway

    NARCIS (Netherlands)

    Biber, K; Fiebich, BL; Gebicke-Harter, P; van Calker, D

    1999-01-01

    The anticonvulsant and antibipolar drug carbamazepine (CBZ) is known to act as a specific antagonist at adenosine A(1)-receptors. After a 3-week application of CBZ, A(1)-receptors are upregulated in the rat brain. We have investigated the consequences of this upregulation for the A(1)-receptor-media

  8. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway.

    Science.gov (United States)

    Mehta, Suresh L; Mendelev, Natalia; Kumari, Santosh; Andy Li, P

    2013-03-01

    Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and

  9. Comorbidities in Neurology: Is Adenosine the Common Link?

    Science.gov (United States)

    Boison, Detlev; Aronica, Eleonora

    2015-01-01

    Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the ‘adenosine hypothesis of comorbidities’ implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic ‘comorbidity model’, in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain comorbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions. PMID:25979489

  10. Endogenous adenosine curtails lipopolysaccharide-stimulated tumour necrosis factor synthesis

    NARCIS (Netherlands)

    Eigler, A; Greten, T F; Sinha, B; Haslberger, C; Sullivan, G W; Endres, S

    1997-01-01

    Recent studies have demonstrated the inhibitory effect of exogenous adenosine on TNF production. During inflammation endogenous adenosine levels are elevated and may be one of several anti-inflammatory mediators that reduce TNF synthesis. In the present study the authors investigated this role of ad

  11. Adenosine receptor modulation: potential implications in veterinary medicine.

    Science.gov (United States)

    Dip, Ramiro G

    2009-01-01

    Adenosine is a purine nucleoside whose concentration increases during inflammation and hypoxia and the many roles of this molecule are becoming better understood. Increased reactivity to adenosine of the airways of asthmatic but not of normal subjects underlines the role of adenosine in airway inflammation. The identification and pharmacological characterisation of different adenosine receptors have stimulated the search for subtype-specific ligands able to modulate the effects of this molecule in a directed way. Several compounds of different chemical classes have been identified as having potential drawbacks, including side effects resulting from the broad distribution of the receptors across the organism, have prevented clinical application. In this article, the effects of adenosine's different receptors and the intracellular signalling pathways are reviewed. The potential of adenosine receptor modulation as a therapeutic target for chronic airway inflammation is considered, taking equine recurrent airway disease and feline asthma as examples of naturally occurring airway obstructive diseases. Other potential applications for adenosine receptor modulation are also discussed. As the intrinsic molecular events of adenosine's mechanism of action become uncovered, new concrete therapeutic approaches will become available for the treatment of various conditions in veterinary medicine.

  12. Extending the Clinical Phenotype of Adenosine Deaminase 2 Deficiency.

    Science.gov (United States)

    Ben-Ami, Tal; Revel-Vilk, Shoshana; Brooks, Rebecca; Shaag, Avraham; Hershfield, Michael S; Kelly, Susan J; Ganson, Nancy J; Kfir-Erenfeld, Shlomit; Weintraub, Michael; Elpeleg, Orly; Berkun, Yackov; Stepensky, Polina

    2016-10-01

    Adenosine deaminase 2 deficiency is an autoinflammatory disease, characterized by various forms of vasculitis. We describe 5 patients with adenosine deaminase 2 deficiency with various hematologic manifestations, including pure red cell aplasia, with no evidence for vasculitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Adenosine Receptors: Expression, Function and Regulation

    Directory of Open Access Journals (Sweden)

    Sandeep Sheth

    2014-01-01

    Full Text Available Adenosine receptors (ARs comprise a group of G protein-coupled receptors (GPCR which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined.

  14. Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields

    Science.gov (United States)

    Vincenzi, Fabrizio; Ravani, Annalisa; Pasquini, Silvia; Merighi, Stefania; Setti, Stefania; Cadossi, Matteo; Cadossi, Ruggero

    2017-01-01

    Several studies explored the biological effects of low frequency low energy pulsed electromagnetic fields (PEMFs) on human body reporting different functional changes. Much research activity has focused on the mechanisms of interaction between PEMFs and membrane receptors such as the involvement of adenosine receptors (ARs). In particular, PEMF exposure mediates a significant upregulation of A2A and A3ARs expressed in various cells or tissues involving a reduction in most of the proinflammatory cytokines. Of particular interest is the observation that PEMFs, acting as modulators of adenosine, are able to increase the functionality of the endogenous agonist. By reviewing the scientific literature on joint cells, a double role for PEMFs could be hypothesized in vitro by stimulating cell proliferation, colonization of the scaffold, and production of tissue matrix. Another effect could be obtained in vivo after surgical implantation of the construct by favoring the anabolic activities of the implanted cells and surrounding tissues and protecting the construct from the catabolic effects of the inflammatory status. Moreover, a protective involvement of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells have suggested the hypothesis of a positive impact of this noninvasive biophysical stimulus. PMID:28255202

  15. Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Katia Varani

    2017-01-01

    Full Text Available Several studies explored the biological effects of low frequency low energy pulsed electromagnetic fields (PEMFs on human body reporting different functional changes. Much research activity has focused on the mechanisms of interaction between PEMFs and membrane receptors such as the involvement of adenosine receptors (ARs. In particular, PEMF exposure mediates a significant upregulation of A2A and A3ARs expressed in various cells or tissues involving a reduction in most of the proinflammatory cytokines. Of particular interest is the observation that PEMFs, acting as modulators of adenosine, are able to increase the functionality of the endogenous agonist. By reviewing the scientific literature on joint cells, a double role for PEMFs could be hypothesized in vitro by stimulating cell proliferation, colonization of the scaffold, and production of tissue matrix. Another effect could be obtained in vivo after surgical implantation of the construct by favoring the anabolic activities of the implanted cells and surrounding tissues and protecting the construct from the catabolic effects of the inflammatory status. Moreover, a protective involvement of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells have suggested the hypothesis of a positive impact of this noninvasive biophysical stimulus.

  16. The a3 isoform of subunit a of the vacuolar ATPase localizes to the plasma membrane of invasive breast tumor cells and is overexpressed in human breast cancer.

    Science.gov (United States)

    Cotter, Kristina; Liberman, Rachel; Sun-Wada, GeHong; Wada, Yoh; Sgroi, Dennis; Naber, Stephen; Brown, Dennis; Breton, Sylvie; Forgac, Michael

    2016-07-19

    The vacuolar (H+)-ATPases (V-ATPases) are a family of ATP-driven proton pumps that acidify intracellular compartments and transport protons across the plasma membrane. Previous work has demonstrated that plasma membrane V-ATPases are important for breast cancer invasion in vitro and that the V-ATPase subunit a isoform a3 is upregulated in and critical for MDA-MB231 and MCF10CA1a breast cancer cell invasion. It has been proposed that subunit a3 is present on the plasma membrane of invasive breast cancer cells and is overexpressed in human breast cancer. To test this, we used an a3-specific antibody to assess localization in breast cancer cells. Subunit a3 localizes to the leading edge of migrating breast cancer cells, but not the plasma membrane of normal breast epithelial cells. Furthermore, invasive breast cancer cells express a3 throughout all intracellular compartments tested, including endosomes, the Golgi, and lysosomes. Moreover, subunit a3 knockdown in MB231 breast cancer cells reduces in vitro migration. This reduction is not enhanced upon addition of a V-ATPase inhibitor, suggesting that a3-containing V-ATPases are critical for breast cancer migration. Finally, we have tested a3 expression in human breast cancer tissue and mRNA prepared from normal and cancerous breast tissue. a3 mRNA was upregulated 2.5-47 fold in all breast tumor cDNA samples tested relative to normal tissue, with expression generally correlated to cancer stage. Furthermore, a3 protein expression was increased in invasive breast cancer tissue relative to noninvasive cancer and normal breast tissue. These studies suggest that subunit a3 plays an important role in invasive human breast cancer.

  17. Enhanced tumor necrosis factor suppression and cyclic adenosine monophosphate accumulation by combination of phosphodiesterase inhibitors and prostanoids

    NARCIS (Netherlands)

    Sinha, B; Semmler, J; Eisenhut, T; Eigler, A; Endres, S

    1995-01-01

    We investigated cooperative effects of phosphodiesterase (PDE) inhibitors and prostanoids on cyclic adenosine monophosphate (cAMP) accumulation and tumor necrosis factor (TNF)-alpha synthesis in human peripheral blood mononuclear cells (PBMC). PDE inhibitors alone induced only a small increase in cA

  18. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  19. Pharmacological characterisation of the adenosine receptor mediating increased ion transport in the mouse isolated trachea and the effect of allergen challenge.

    Science.gov (United States)

    Kornerup, Kristin N; Page, Clive P; Moffatt, James D

    2005-04-01

    The effect of adenosine on transepithelial ion transport was investigated in isolated preparations of murine trachea mounted in Ussing chambers. The possible regulation of adenosine receptors in an established model of allergic airway inflammation was also investigated. Mucosally applied adenosine caused increases in short-circuit current (I(SC)) that corresponded to approximately 50% of the response to the most efficacious secretogogue, ATP (delta I(SC) 69.5 +/- 6.7 microA cm2). In contrast, submucosally applied adenosine caused only small (<20%) increases in I(SC), which were not investigated further. The A1-selective (N6-cyclopentyladenosine, CPA, 1 nM-10 microM), A2A-selective (2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxoamido adenosine; CGS 21680; 0.1-100 microM) and A3-selective (1-deoxy-1-[6-[[(3-iodophenyl)-methyl]amino]-9H-purin-9-yl]-N-methyl-beta-D-ribofuranuronamide; IB-MECA; 30 nM-100 microM) adenosine receptor agonists were either equipotent or less potent than adenosine, suggesting that these receptors do not mediate the response to adenosine. The A1 receptor selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 10 nM-1 microM) caused a rightward shift of the adenosine concentration-effect curve only at 1 microM. The mixed A2A/A2B receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) also caused rightward shift of the adenosine concentration-effect curve, again only at micromolar concentrations, suggestive of the involvement of A2B receptors. In preparations from animals sensitised to ovalbumin and challenged over 3 days with aerosol ovalbumin, a decrease in baseline I(SC) was observed and responses to ATP were diminished. Similarly, the amplitude of responses to adenosine were attenuated although there was no change in potency. These results suggest that the A2B receptor mediates the I(SC) response to adenosine in the mouse trachea. This receptor does not appear to be

  20. Adenosine kinase deficiency with neurodevelopemental delay and recurrent hepatic dysfunction: A case report

    Science.gov (United States)

    Shakiba, Marjan; Mahjoub, Fatemeh; Fazilaty, Hassan; Rezagholizadeh, Fereshteh; Shakiba, Arghavan; Ziadlou, Maryam; Gahl, William A.; Behnam, Babak

    2016-01-01

    Hypermethioninemia may be benign, present as a nonspecific sign of nongenetic conditions such as liver failure and prematurity, or a severe, progressive inborn error of metabolism. Genetic causes of hypermethioninemia include mitochondrial depletion syndromes caused by mutations in the MPV17 and DGUOK genes and deficiencies of cystathionine β-synthase, methionine adenosyltransferase types I and III, glycine N-methyltransferase, S-adenosylhomocysteine hydrolase, citrin, fumarylacetoacetate hydrolase, and adenosine kinase. Here we present a 3-year old girl with a history of poor feeding, irritability, respiratory infections, cholestasis, congenital heart disease, neurodevelopmental delay, hypotonia, sparse hair, facial dysmorphisms, liver dysfunction, severe hypermethioninemia and mild homocystinemia. Genetic analysis of the adenosine kinase (ADK) gene revealed a previously unreported variant (c.479–480 GA>TG) resulting in a stop codon (p.E160X) in ADK. A methionine-restricted diet normalized the liver function test results and improved her hypotonia. PMID:27500280

  1. [{sup 186}Re]-labeled mouse and chimeric monoclonal antibody 323/A3: A comparison of the efficacy in experimental human ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kievit, Els; Gog, Frank B. van; Schlueper, Hennie M.M.; Dongen, Guus A.M.S. van; Pinedo, Herbert M.; Boven, Epie

    1998-01-01

    We have investigated whether [{sup 186}Re]-labeled chimeric monoclonal antibody 323/A3 (MAb c-323/A3) is as effective as [{sup 186}Re]-labeled mouse 323/A3 (m-323/A3) in the growth inhibition of human ovarian cancer xenografts OVCAR-3 and FMa. [{sup 186}Re] was conjugated to MAbs with the use of the chelate S-benzoylmercaptoacetyltriglycine (S-benzoyl-MAG3). The maximum number of metal-MAG3 groups that could be conjugated to one MAb molecule accepting a minimal initial increase of the blood clearance (15%) was 8.5 and 2.9 for c-323/A3 and m-323/A3, respectively. With these molar ratios the immunoreactivity of both MAbs was maintained. An inverse relationship was observed between the protein dose of c-323/A3 and its blood clearance. Both [{sup 186}Re]-c-323/A3 and [{sup 186}Re]-m-323/A3 were comparable in the inhibition of the tumor growth when higher protein doses were used. Together with the expected lower immunogenicity, our results imply that c-323/A3 is preferable for use in [{sup 186}Re]-radioimmunotherapy in ovarian cancer patients.

  2. Effect in vitro of the Phenobarbital on the Activity of the Enzyme Adenosine Triphosphatase (ATPase of Sodium and Potassium Dependent in Human Placenta. Efecto in vitro del fenobarbital sobre la actividad de la enzima Adenosintrifosfatasa de sodio y potasio dependiente en placenta humana.

    Directory of Open Access Journals (Sweden)

    Pedro Sánchez Frenes

    2007-02-01

    Full Text Available

    Background: Most of the drugs can pass to the fetus through the placenta, conditioning alterations of the development and fetal growth. Objective: To evaluate the effect in vitro of Phenobarbital on the activity of adenosine triphosphatase of sodium and potassium dependent in human placenta. Method: A study in vitro was carried out, in total homogenizes of placentas coming from 30 mothers that were assisted in the Gynecological and Obstetric Educational Provincial Hospital ¨Mariana Grajales¨, in Santa Clara, during the period March-July 1993. Phenobarbital was administered in concentrations of 0,1 mg/ml, 0,15 mg/ml and 0,2 mg/ml, keeping in mind the therapeutic dose to which was prescribed. The analyzed variables were: enzymatic activity and inhibition type. Results: The enzymatic activity of the adenosine triphosphatase of sodium and potassium dependent, diminished in a significant way, proportionally with the diminishment of the administered concentration of Phenobarbital. The inhibitory effect of the drug also turned out to be dependent of the concentration, presenting a major inhibition as the dose was increased. Conclusion: Phenobarbital produced highly significant decrease in the activity of adenosine triphosphatase of sodium and dependent potassium. This inhibition is of competitive type.

    Fundamento: La mayoría de los fármacos, en mayor o menor medida, son capaces de pasar al feto a través de la placenta, condicionando alteraciones del desarrollo y del crecimiento fetal. Objetivo: Evaluar el efecto in vitro del fenobarbital sobre la actividad de la Adenosintrifosfatasa de sodio y potasio dependiente de placenta humana. Método: Se realizó un estudio in vitro, en homogeneizados totales de placentas provenientes de 30 madres que fueron atendidas en el Hospital Provincial Docente Ginecobst

  3. Sleep-Wake Regulation and Its Impact on Working Memory Performance: The Role of Adenosine

    Directory of Open Access Journals (Sweden)

    Carolin Franziska Reichert

    2016-02-01

    Full Text Available The sleep-wake cycle is regulated by a fine-tuned interplay between sleep-homeostatic and circadian mechanisms. Compelling evidence suggests that adenosine plays an important role in mediating the increase of homeostatic sleep pressure during time spent awake and its decrease during sleep. Here, we summarize evidence that adenosinergic mechanisms regulate not only the dynamic of sleep pressure, but are also implicated in the interaction of homeostatic and circadian processes. We review how this interaction becomes evident at several levels, including electrophysiological data, neuroimaging studies and behavioral observations. Regarding complex human behavior, we particularly focus on sleep-wake regulatory influences on working memory performance and underlying brain activity, with a specific emphasis on the role of adenosine in this interplay. We conclude that a change in adenosinergic mechanisms, whether exogenous or endogenous, does not only impact on sleep-homeostatic processes, but also interferes with the circadian timing system.

  4. Vasoconstrictor and vasodilator effects of adenosine in the kidney

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Schnermann, Jurgen

    2003-01-01

    Adenosine is an ATP breakdown product that in most vessels causes vasodilatation and that contributes to the metabolic control of organ perfusion, i.e., to the match between oxygen demand and oxygen delivery. In the renal vasculature, in contrast, adenosine can produce vasoconstriction, a respons...... activation from changes in vascular adenosine concentration, a characteristic that is ideally suited for the role of renal adenosine as a paracrine factor in the control of glomerular function.......Adenosine is an ATP breakdown product that in most vessels causes vasodilatation and that contributes to the metabolic control of organ perfusion, i.e., to the match between oxygen demand and oxygen delivery. In the renal vasculature, in contrast, adenosine can produce vasoconstriction, a response...... that has been suggested to be an organ-specific version of metabolic control designed to restrict organ perfusion when transport work increases. However, the vasoconstriction elicited by an intravenous infusion of adenosine is only short lasting, being replaced within 1-2 min by vasodilatation. It appears...

  5. P2X receptors regulate adenosine diphosphate release from hepatic cells.

    Science.gov (United States)

    Chatterjee, Cynthia; Sparks, Daniel L

    2014-12-01

    Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2-4 h. Nucleotide release from hepatic cells is stimulated by the Ca(2+) ionophore, ionomycin, and by the P2 receptor agonist, 2'3'-O-(4-benzoyl-benzoyl)-adenosine 5'-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10-100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca(2+) levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.

  6. Prognostic value of Annexin A3 in human colorectal cancer and its correlation with hypoxia-inducible factor-1α

    Science.gov (United States)

    Xie, Yong-Qiu; Fu, DI; He, Zheng-Hua; Tan, Qing-Dong

    2013-12-01

    Annexins are a family of intracellular proteins that bind membrane phospholipids in a Ca(2+) concentration-dependent manner and are involved in cellular processes, including apoptosis, proliferation and differentiation. Hypoxia-inducible factor-1α (HIF-1α) has been hypothesized to be critical in the angiogenesis of tumors. We hypothesized that Annexin A3, a member of the Annexin family, and HIF-1α may be associated with each other in colorectal cancer. The expression of Annexin A3 and HIF-1α in 60 colorectal cancer tissues was assessed by immunohistochemistry to statistically analyze the association between the clinicopathological features and survival of these cases. In the present study, 65 and 47% of colorectal cancer specimens were found to show Annexin A3 and HIF-1α immunoreactivity, respectively. Annexin A3 expression was found to significantly correlate with tumor size and Dukes' stage (all PA3 and HIF-1α protein expression exhibited a similar pattern in these samples, and their expression was found to correlate with poor survival in colorectal cancer patients. The results of the current study indicated for the first time that the increased expression of Annexin A3 in colorectal cancer correlates significantly with tumor growth and poor prognosis. Furthermore, Annexin A3 has been found to correlate with HIF-1α expression. These observations highlight an improved understanding of the carcinogenesis of colorectal cancer.

  7. A 3D Human Skeletonization Algorithm for a Single Monocular Camera Based on Spatial–Temporal Discrete Shadow Integration

    Directory of Open Access Journals (Sweden)

    Jie Hou

    2017-07-01

    Full Text Available Three-dimensional (3D human skeleton extraction is a powerful tool for activity acquirement and analyses, spawning a variety of applications on somatosensory control, virtual reality and many prospering fields. However, the 3D human skeletonization relies heavily on RGB-Depth (RGB-D cameras, expensive wearable sensors and specific lightening conditions, resulting in great limitation of its outdoor applications. This paper presents a novel 3D human skeleton extraction method designed for the monocular camera large scale outdoor scenarios. The proposed algorithm aggregates spatial–temporal discrete joint positions extracted from human shadow on the ground. Firstly, the projected silhouette information is recovered from human shadow on the ground for each frame, followed by the extraction of two-dimensional (2D joint projected positions. Then extracted 2D joint positions are categorized into different sets according to activity silhouette categories. Finally, spatial–temporal integration of same-category 2D joint positions is carried out to generate 3D human skeletons. The proposed method proves accurate and efficient in outdoor human skeletonization application based on several comparisons with the traditional RGB-D method. Finally, the application of the proposed method to RGB-D skeletonization enhancement is discussed.

  8. Adenosine and Preexcitation Variants: Reappraisal of Electrocardiographic Changes.

    Science.gov (United States)

    Ali, Hussam; Lupo, Pierpaolo; Foresti, Sara; De Ambroggi, Guido; Epicoco, Gianluca; Fundaliotis, Angelica; Cappato, Riccardo

    2016-07-01

    Intravenous adenosine is a short-acting blocker of the atrioventricular node that has been used to unmask subtle or latent preexcitation, and also to enable catheter ablation in selected patients with absent or intermittent preexcitation. Depending on the accessory pathway characteristics, intravenous adenosine may produce specific electrocardiographic changes highly suggestive of the preexcitation variant. Herein, we view different ECG responses to this pharmacological test in various preexcitation patterns that were confirmed by electrophysiological studies. Careful analysis of electrocardiographic changes during adenosine test, with emphasis on P-delta interval, preexcitation degree, and atrioventricular block, can be helpful to diagnose the preexcitation variant/pattern.

  9. Possible mechanism of adenosine protection in carbon tetrachloride acute hepatotoxicity. Role of adenosine by-products and glutathione peroxidase.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Yáñez, L; Vidrio, S; Díaz-Muñoz, M

    1995-02-01

    Adenosine proved to be an effective hepatoprotector increasing the survival rate of rats receiving lethal doses of CCl4. Searching for the mechanism of action, we found that adenosine transiently prevents the necrotic liver damage associated to an acute CCl4 treatment. The antilipoperoxidative action of the nucleoside was evidenced by a decrease of TBA-reactive products and the diene conjugates elicited by the hepatotoxin. Adenosine's protective effect was demonstrated by reverting the decrease of cytochrome P-450 while preserved intact the activity of the microsomal enzyme glucose-6-phosphatase. CCl4 promoted an increase in the oxidant stress through an enhancement in oxidized glutathione levels. This action was also completely counteracted by the nucleoside. Adenosine was unable to prevent CCl4 activation and, even, increased .CCl3 formation in the presence of PBN in vivo. However, in the presence of the nucleoside, irreversible binding of 14CCl4 to the microsomal lipid fraction of the treated animals was decreased. These results suggest that adenosine protective action might be exerted at the level of the propagation reaction following CCl4 activation. Two possible mechanisms were associated to the nucleoside protection: (1) the peroxide-metabolyzed enzymes, GSH-per, showed a marked increase after 30 minutes of adenosine treatment, which was potentiated by the hepatotoxin, suggesting an important role of this enzyme in the nucleoside's action; (2) the adenosine catabolism induced an increase in uric acid level, and allopurinol, a purine metabolism inhibitor, prevented such elevation as well as the antilipoperoxidative action of adenosine and the increase of GSH-per associated with the nucleoside treatment. These facts strongly suggest that the protective effect elicited by adenosine is not a direct one, but rather is related to its catabolic products, such as uric acid, which has been recognized as a free radical scavenger.

  10. Downregulation of the Ca(2+)-activated K(+) channel KC a3.1 by histone deacetylase inhibition in human breast cancer cells.

    Science.gov (United States)

    Ohya, Susumu; Kanatsuka, Saki; Hatano, Noriyuki; Kito, Hiroaki; Matsui, Azusa; Fujimoto, Mayu; Matsuba, Sayo; Niwa, Satomi; Zhan, Peng; Suzuki, Takayoshi; Muraki, Katsuhiko

    2016-04-01

    The intermediate-conductance Ca(2+)-activated K(+) channel KC a3.1 is involved in the promotion of tumor growth and metastasis, and is a potential therapeutic target and biomarker for cancer. Histone deacetylase inhibitors (HDACis) have considerable potential for cancer therapy, however, the effects of HDACis on ion channel expression have not yet been investigated in detail. The results of this study showed a significant decrease in KC a3.1 transcription by HDAC inhibition in the human breast cancer cell line YMB-1, which functionally expresses KCa3.1. A treatment with the clinically available, class I, II, and IV HDAC inhibitor, vorinostat significantly downregulated KC a3.1 transcription in a concentration-dependent manner, and the plasmalemmal expression of the KC a3.1 protein and its functional activity were correspondingly decreased. Pharmacological and siRNA-based HDAC inhibition both revealed the involvement of HDAC2 and HDAC3 in KC a3.1 transcription through the same mechanism. The downregulation of KC a3.1 in YMB-1 was not due to the upregulation of the repressor element-1 silencing transcription factor, REST and the insulin-like growth factor-binding protein 5, IGFBP5. The significant decrease in KC a3.1 transcription by HDAC inhibition was also observed in the KC a3.1-expressing human prostate cancer cell line, PC-3. These results suggest that vorinostat and the selective HDACis for HDAC2 and/or HDAC3 are effective drug candidates for KC a3.1-overexpressing cancers.

  11. Baculovirus-mediated expression and characterization of rat CYP2A3 and human CYP2a6: role in metabolic activation of nasal toxicants.

    Science.gov (United States)

    Liu, C; Zhuo, X; Gonzalez, F J; Ding, X

    1996-10-01

    Cytochrome P450 2A3 (CYP2A3) was previously identified in rat lung by cDNA cloning and recently found to be expressed at a high level in the olfactory mucosa. In the current study, CYP2A3 was expressed in insect cells lacking endogenous cytochrome P450 (P450) activity, and the substrate specificity of the recombinant cytochrome was characterized and compared with that of CYP2A6, a human ortholog of rat CYP2A3, which has been detected in human olfactory mucosa as well as in liver. The CYP2A3 and CYP2A6 cDNAs were cloned into baculovirus, and recombinant viruses were used to produce active enzymes in Spodoptera frugiperta (SF9) cells. The metabolic activities of S. frugiperta cell microsomal fractions containing CYP2A3 or CYP2A6 were studied in a reconstituted system with purified rabbit NADPH-P450 reductase. CYP2A3 was found to be active toward testosterone, producing 15 alpha-hydroxytestosterone and several other metabolites, but it had only low activity toward coumarin. On the other hand, CYP2A6 was active toward coumarin but not toward testosterone. However, both enzymes were active in the metabolic activation of hexamethylphosphoramide, a nasal procarcinogen, and 2,6-dichlorobenzonitrile (DCBN), a herbicide known to cause tissue-specific toxicity in the olfactory mucosa of rodents at very low doses. In addition, both enzymes were active toward 4-nitrophenol, a preferred substrate for CYP2E1. Consistent with CYP2A3 being a major catalyst in microsomal metabolism of DCBN, the activities of both CYP2A3 and rat olfactory microsomes in DCBN metabolism were inhibited strongly by metyrapone and methoxsalen (ID50 50 microM). Thus, rat CYP2A3 and human CYP2A6 have differences in substrate specificity as well as tissue distributor. These findings should be taken into account when assessing the risk of exposure to potential nasal toxicants in humans.

  12. Direct Growth Graphene on Cu Nanoparticles by Chemical Vapor Deposition as Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine

    CERN Document Server

    Xu, Shicai; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Liu, Hanping

    2015-01-01

    We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped around a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine. The minimum detected concentration of the adenosine in serum was demonstrated as low as 5 nM, and the calibration curve showed a good linear response from 5 to 500 nM. The capability of SERS detection of adenosine in real normal human urine samples based on G/CuNPs was also investigated and the characteristic peaks of adenosine were still recognizable. The reproducible and the ultrasensitive enhanced Raman signals could be due to the presence of an ultrathin graphene layer. The graphene shell was able to enrich and fix the adenosine molecules, which could also efficiently maintain chemical and optical stability of G/CuNPs. Based...

  13. Polymorphisms in the dopamine transporter gene (SLC6A3/DAT1) and alcohol dependence in humans: a systematic review

    NARCIS (Netherlands)

    Zwaluw, C.S. van der; Engels, R.C.M.E.; Buitelaar, J.K.; Verkes, R.J.; Franke, B.; Scholte, R.H.J.

    2009-01-01

    Dopamine neurotransmission has been a key player in attempts to identify genetic factors involved in alcohol dependence. The dopamine transporter terminates dopaminergic neurotransmission, making the gene encoding the transporter (SLC6A3/DAT1) an attractive candidate in clinical studies on alcohol d

  14. Polymorphisms in the dopamine transporter gene (SLC6A3/DAT1) and alcohol dependence in humans: a systematic review.

    NARCIS (Netherlands)

    Zwaluw, C.S. van der; Engels, R.C.M.E.; Buitelaar, J.K.; Verkes, R.J.; Franke, B.; Scholte, R.H.J.

    2009-01-01

    Dopamine neurotransmission has been a key player in attempts to identify genetic factors involved in alcohol dependence. The dopamine transporter terminates dopaminergic neurotransmission, making the gene encoding the transporter (SLC6A3/DAT1) an attractive candidate in clinical studies on alcohol d

  15. Adenosine Deaminase Activity in Diabetic and Obese Patients ...

    African Journals Online (AJOL)

    Journal of Health and Visual Sciences ... Abstract. Adenosine deaminase (ADA) commonly associated with severe combined ... The results (mean±) show that the mean values in the test groups were significantly higher than the controls ...

  16. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Zhenzhen Hu

    2013-01-01

    Full Text Available Cordycepin (3′-deoxyadenosine is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs, like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs. Sleep was recorded using electroencephalogram (EEG for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM sleep. Interestingly, cordycepin increased θ (theta waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  17. Expression of Drosophila adenosine deaminase in immune cells during inflammatory response.

    Science.gov (United States)

    Novakova, Milena; Dolezal, Tomas

    2011-03-11

    Extra-cellular adenosine is an important regulator of inflammatory responses. It is generated from released ATP by a cascade of ectoenzymes and degraded by adenosine deaminase (ADA). There are two types of enzymes with ADA activity: ADA1 and ADGF/ADA2. ADA2 activity originates from macrophages and dendritic cells and is associated with inflammatory responses in humans and rats. Drosophila possesses a family of six ADGF proteins with ADGF-A being the main regulator of extra-cellular adenosine during larval stages. Herein we present the generation of a GFP reporter for ADGF-A expression by a precise replacement of the ADGF-A coding sequence with GFP using homologous recombination. We show that the reporter is specifically expressed in aggregating hemocytes (Drosophila immune cells) forming melanotic capsules; a characteristic of inflammatory response. Our vital reporter thus confirms ADA expression in sites of inflammation in vivo and demonstrates that the requirement for ADA activity during inflammatory response is evolutionary conserved from insects to vertebrates. Our results also suggest that ADA activity is achieved specifically within sites of inflammation by an uncharacterized post-transcriptional regulation based mechanism. Utilizing various mutants that induce melanotic capsule formation and also a real immune challenge provided by parasitic wasps, we show that the acute expression of the ADGF-A protein is not driven by one specific signaling cascade but is rather associated with the behavior of immune cells during the general inflammatory response. Connecting the exclusive expression of ADGF-A within sites of inflammation, as presented here, with the release of energy stores when the ADGF-A activity is absent, suggests that extra-cellular adenosine may function as a signal for energy allocation during immune response and that ADGF-A/ADA2 expression in such sites of inflammation may regulate this role.

  18. Adenosine Deaminase Deficiency – More Than Just an Immunodeficiency

    OpenAIRE

    Kathryn Victoria Whitmore; Hubert Bobby Gaspar

    2016-01-01

    Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) which results from mutations in the gene encoding adenosine deaminase. Affected patients present with clinical and immunological manifestations typical of a severe combined immunodeficiency. Therapies are currently available that can that target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidenc...

  19. Low-dose adenosine stress echocardiography: Detection of myocardial viability

    Science.gov (United States)

    Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav

    2003-01-01

    Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months) were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 ± 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability. PMID:12812523

  20. Frequency of 3' VNTR Polymorphism in the Dopamine Transporter Gene SLC6A3 in Humans Predisposed to Antisocial Behavior.

    Science.gov (United States)

    Cherepkova, E V; Aftanas, L I; Maksimov, N; Menshanov, P N

    2016-11-01

    Predisposition to antisocial behavior can be related to the presence of certain polymorphic variants of genes encoding dopaminergic system proteins. We studied the frequencies of allele variants and genotypes of variable number tandem repeat polymorphism in 3' untranslated region (3' VTNR) of the dopaminergic transporter SLC6A3 gene in Caucasian men committed socially dangerous violent and non-violent crimes. Alleles with 9 and 10 repeats were most frequent in both the control group and group of men predisposed to antisocial behavior. At the same time, the 10/10 genotype was more frequently observed in the group of men prone to antisocial non-violent behavior. Hence, the presence of certain variants of 3' VTNR polymorphism of SLC6A3 gene in men is associated with predisposition to certain forms of antisocial behavior.

  1. Human neuronal acetylcholine receptor A5-A3-B4 haplotypes are associated with multiple nicotine dependence phenotypes

    Science.gov (United States)

    Weiss, Robert B.; Bolt, Daniel; von Niederhausern, Andrew; Fiore, Michael C.; Dunn, Diane M.; Piper, Megan E.; Matsunami, Nori; Smith, Stevens S.; Coon, Hilary; McMahon, William M.; Scholand, Mary B.; Singh, Nanda; Hoidal, John R.; Kim, Su-Young; Leppert, Mark F.; Cannon, Dale S.

    2009-01-01

    Introduction: Previous research revealed significant associations between haplotypes in the CHRNA5-A3-B4 subunit cluster and scores on the Fagerström Test for Nicotine Dependence among individuals reporting daily smoking by age 17. The present study used subsamples of participants from that study to investigate associations between the CHRNA5-A3-B4 haplotypes and an array of phenotypes not analyzed previously (i.e., withdrawal severity, ability to stop smoking, and specific scales on the Wisconsin Inventory of Smoking Dependence Motives (WISDM-68) that reflect loss of control, strong craving, and heavy smoking. Methods: Two cohorts of current or former smokers (N = 886) provided both self-report data and DNA samples. One sample (Wisconsin) comprised smokers making a quit smoking attempt, which permitted the assessment of withdrawal and relapse during the attempt. The other sample (Utah) comprised participants studied for risk factors for nicotine dependence and chronic obstructive pulmonary disease and included individuals originally recruited in the Lung Health Study. Results: The CHRNA5-A3-B4 haplotypes were significantly associated with the targeted WISDM-68 scales (Tolerance, Craving, Loss of Control) in both samples of participants but only among individuals who began smoking early in life. The haplotypes were significantly associated with relapse likelihood and withdrawal severity, but these associations showed no evidence of an interaction with age at daily smoking. Discussion: The CHRNA5-A3-B4 haplotypes are associated with a broad range of nicotine dependence phenotypes, but these associations are not consistently moderated by age at initial smoking. PMID:19436041

  2. Protein expression of nucleophosmin, annexin A3 and nm23-H1 correlates with human nasopharyngeal carcinoma radioresistance in vivo.

    Science.gov (United States)

    Qu, Song; Li, Xiao-Yu; Liang, Zhong-Guo; Li, Ling; Huang, Shi-Ting; Li, Jia-Quan; Li, Dan-Rong; Zhu, Xiao-Dong

    2016-07-01

    Radioresistance is a significant obstacle in the treatment of endemic nasopharyngeal carcinoma (NPC). The present study aimed to identify proteins associated with radioresistance in NPC in vitro and in vivo. Proteomics analyses were conducted to screen for differentially-expressed proteins (DEPs) in parental CNE-2 cells and CNE-2R cells. Using proteomics approaches, 16 DEPs were identified. Of these DEPs, nucleophosmin (NPM1), annexin A3 and nm23-H1, were verified using western blot analyses. The tumorigenicity was investigated using mouse xenograft tumorigenicity assays, and tumor growth curves were generated. The protein expression of NPM1, annexin A3 and nm23-H1 was examined by immunohistochemically staining tumor tissues. NPM1 and annexin A3 protein levels were downregulated in the CNE-2R cells, whereas nm23-H1 expression was upregulated. In vivo tests showed that compared with the CNE-2 tumors, CNE-2R tumor growth was significantly retarded (PA3 expression was significantly lower in non-irradiated (NIR)-CNE-2R tumors compared with NIR-CNE-2 tumors (PA3 and nm23-H1 expression correlated with the cellular and tumor radioresponse. These proteins are involved in the regulation of intracellular functions, including stress responses, cell proliferation and DNA repair. However, further clinical evaluations are required.

  3. Low-dose adenosine stress echocardiography: Detection of myocardial viability

    Directory of Open Access Journals (Sweden)

    Nedeljkovic Milan

    2003-06-01

    Full Text Available Abstract Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability.

  4. Role of adenosine in tubuloglomerular feedback and acute renal failure.

    Science.gov (United States)

    Osswald, H; Vallon, V; Mühlbauer, B

    1996-12-01

    1. Adenosine (ADO) can induce renal vasoconstriction and a fall in glomerular filtration rate. When the rate of ATP hydrolysis prevails over the rate of ATP synthesis the kidney generates ADO at an enhanced rate. 2. Tubuloglomerular feedback (TGF) is the vascular response to changes of the NaCl concentration in the tubular fluid at the macula densa segment, which is the result of transepithelial electrolyte reabsorption by the proximal tubule and the loop of Henle. 3. TGF can be inhibited by ADO-A1 receptor antagonists and is potentiated by substances that can elevate extracellular ADO concentrations. These observations led to the hypothesis that ADO is an element of the signal transmission processes in the juxtaglomerular apparatus. 4. Renal ischaemia and nephrotoxic substances can induce acute renal failure (ARF). ADO receptor antagonists have been shown to ameliorate renal function in several different models of ARF in laboratory animals and humans. 5. A number of factors, such as extracellular volume contraction, low NaCl diet, angiotensin II and cyclooxygenase inhibitors enhance to a similar extent: (a) the renal vascular response to endogenous and exogenous ADO; (b) the TGF response of the nephron; and (c) the severity of ARF. All three phenomena are susceptible to antagonism by ADO receptor antagonists. 6. Therefore, we conclude that ADO plays a significant role in normal and pathological states of kidney function.

  5. Inhibition of Salmonella enterica biofilm formation using small-molecule adenosine mimetics.

    Science.gov (United States)

    Koopman, Jacob A; Marshall, Joanna M; Bhatiya, Aditi; Eguale, Tadesse; Kwiek, Jesse J; Gunn, John S

    2015-01-01

    Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens.

  6. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels.

    Science.gov (United States)

    Alexanian, Arshak R; Liu, Qing-song; Zhang, Zhiying

    2013-08-01

    Advances in cell reprogramming technologies to generate patient-specific cells of a desired type will revolutionize the field of regenerative medicine. While several cell reprogramming methods have been developed over the last decades, the majority of these technologies require the exposure of cell nuclei to reprogramming large molecules via transfection, transduction, cell fusion or nuclear transfer. This raises several technical, safety and ethical issues. Chemical genetics is an alternative approach for cell reprogramming that uses small, cell membrane penetrable substances to regulate multiple cellular processes including cell plasticity. Recently, using the combination of small molecules that are involved in the regulation chromatin structure and function and agents that favor neural differentiation we have been able to generate neural-like cells from human mesenchymal stem cells. In this study, to improve the efficiency of neuronal differentiation and maturation, two specific inhibitors of SMAD signaling (SMAD1/3 and SMAD3/5/8) that play an important role in neuronal differentiation of embryonic stem cells, were added to our previous neural induction recipe. Results demonstrated that human mesenchymal stem cells grown in this culture conditions exhibited higher expression of several mature neuronal genes, formed synapse-like structures and exerted electrophysiological properties of differentiating neural stem cells. Thus, an efficient method for production of mature neuronal-like cells from human adult bone marrow derived mesenchymal stem cells has been developed. We concluded that specific combinations of small molecules that target specific cell signaling pathways and chromatin modifying enzymes could be a promising approach for manipulation of adult stem cell plasticity.

  7. 1-(beta-D-Erythrofuranosyl)adenosine.

    Science.gov (United States)

    Kline, Paul C; Zhao, Hongqiu; Noll, Bruce C; Oliver, Allen G; Serianni, Anthony S

    2010-04-01

    The title compound, also known as beta-erythroadenosine, C(9)H(11)N(5)O(3), (I), a derivative of beta-adenosine, (II), that lacks the C5' exocyclic hydroxymethyl (-CH(2)OH) substituent, crystallizes from hot ethanol with two independent molecules having different conformations, denoted (IA) and (IB). In (IA), the furanose conformation is (O)T(1)-E(1) (C1'-exo, east), with pseudorotational parameters P and tau(m) of 114.4 and 42 degrees, respectively. In contrast, the P and tau(m) values are 170.1 and 46 degrees, respectively, in (IB), consistent with a (2)E-(2)T(3) (C2'-endo, south) conformation. The N-glycoside conformation is syn (+sc) in (IA) and anti (-ac) in (IB). The crystal structure, determined to a resolution of 2.0 A, of a cocrystal of (I) bound to the enzyme 5'-fluorodeoxyadenosine synthase from Streptomyces cattleya shows the furanose ring in a near-ideal (O)E (east) conformation (P = 90 degrees and tau(m) = 42 degrees) and the base in an anti (-ac) conformation.

  8. Combining 3D human in vitro methods for a 3Rs evaluation of novel titanium surfaces in orthopaedic applications

    Science.gov (United States)

    Stevenson, G.; Rehman, S.; Draper, E.; Hernández‐Nava, E.; Hunt, J.

    2016-01-01

    ABSTRACT In this study, we report on a group of complementary human osteoblast in vitro test methods for the preclinical evaluation of 3D porous titanium surfaces. The surfaces were prepared by additive manufacturing (electron beam melting [EBM]) and plasma spraying, allowing the creation of complex lattice surface geometries. Physical properties of the surfaces were characterized by SEM and profilometry and 3D in vitro cell culture using human osteoblasts. Primary human osteoblast cells were found to elicit greater differences between titanium sample surfaces than an MG63 osteoblast‐like cell line, particularly in terms of cell survival. Surface morphology was associated with higher osteoblast metabolic activity and mineralization on rougher titanium plasma spray coated surfaces than smoother surfaces. Differences in osteoblast survival and metabolic activity on titanium lattice structures were also found, despite analogous surface morphology at the cellular level. 3D confocal microscopy identified osteoblast organization within complex titanium surface geometries, adhesion, spreading, and alignment to the biomaterial strut geometries. Mineralized nodule formation throughout the lattice structures was also observed, and indicative of early markers of bone in‐growth on such materials. Testing methods such as those presented are not traditionally considered by medical device manufacturers, but we suggest have value as an increasingly vital tool in efficiently translating pre‐clinical studies, especially in balance with current regulatory practice, commercial demands, the 3Rs, and the relative merits of in vitro and in vivo studies. Biotechnol. Bioeng. 2016;113: 1586–1599. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26702609

  9. Human UGT1A4 and UGT1A3 conjugate 25-hydroxyvitamin D3: metabolite structure, kinetics, inducibility, and interindividual variability.

    Science.gov (United States)

    Wang, Zhican; Wong, Timothy; Hashizume, Takanori; Dickmann, Leslie Z; Scian, Michele; Koszewski, Nicholas J; Goff, Jesse P; Horst, Ronald L; Chaudhry, Amarjit S; Schuetz, Erin G; Thummel, Kenneth E

    2014-06-01

    25-Hydroxyvitamin D3 (25OHD3) is used as a clinical biomarker for assessment of vitamin D status. Blood levels of 25OHD3 represent a balance between its formation rate and clearance by several oxidative and conjugative processes. In the present study, the identity of human uridine 5'-diphosphoglucuronyltransferases (UGTs) capable of catalyzing the 25OHD3 glucuronidation reaction was investigated. Two isozymes, UGT1A4 and UGT1A3, were identified as the principal catalysts of 25OHD3 glucuronidation in human liver. Three 25OHD3 monoglucuronides (25OHD3-25-glucuronide, 25OHD3-3-glucuronide, and 5,6-trans-25OHD3-25-glucuronide) were generated by recombinant UGT1A4/UGT1A3, human liver microsomes, and human hepatocytes. The kinetics of 25OHD3 glucuronide formation in all systems tested conformed to the Michaelis-Menten model. An association between the UGT1A4*3 (Leu48Val) gene polymorphism with the rates of glucuronide formation was also investigated using human liver microsomes isolated from 80 genotyped livers. A variant allele dose effect was observed: the homozygous UGT1A4*3 livers (GG) had the highest glucuronidation activity, whereas the wild type (TT) had the lowest activity. Induction of UGT1A4 and UGT1A3 gene expression was also determined in human hepatocytes treated with pregnane X receptor/constitutive androstane receptor agonists, such as rifampin, carbamazepine, and phenobarbital. Although UGT mRNA levels were increased significantly by all of the known pregnane X receptor/constitutive androstane receptor agonists tested, rifampin, the most potent of the inducers, significantly induced total 25OHD3 glucuronide formation activity in human hepatocytes measured after 2, but not 4 and 24 hours, of incubation. Finally, the presence of 25OHD3-3-glucuronide in both human plasma and bile was confirmed, suggesting that the glucuronidation pathway might be physiologically relevant and contribute to vitamin D homeostasis in humans.

  10. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice.

    Science.gov (United States)

    Molas, Susanna; Gener, Thomas; Güell, Jofre; Martín, Mairena; Ballesteros-Yáñez, Inmaculada; Sanchez-Vives, Maria V; Dierssen, Mara

    2014-11-11

    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.

  11. The Effects of Low Dose Irradiation on Inflammatory Response Proteins in a 3D Reconstituted Human Skin Tissue Model

    Energy Technology Data Exchange (ETDEWEB)

    Varnum, Susan M.; Springer, David L.; Chaffee, Mary E.; Lien, Katie A.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Sacksteder, Colette A.

    2012-12-01

    Skin responses to moderate and high doses of ionizing radiation include the induction of DNA repair, apoptosis, and stress response pathways. Additionally, numerous studies indicate that radiation exposure leads to inflammatory responses in skin cells and tissue. However, the inflammatory response of skin tissue to low dose radiation (<10 cGy) is poorly understood. In order to address this, we have utilized a reconstituted human skin tissue model (MatTek EpiDerm FT) and assessed changes in 23 cytokines twenty-four and forty eight hours following treatment of skin with either 3 or 10 cGy low-dose of radiation. Three cytokines, IFN-γ, IL-2, MIP-1α, were significantly altered in response to low dose radiation. In contrast, seven cytokines were significantly altered in response to a high radiation dose of 200 cGy (IL-2, IL-10, IL-13, IFN-γ, MIP-1α, TNF α, and VEGF) or the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (G-CSF, GM-CSF, IL-1α, IL-8, MIP-1α, MIP-1β, RANTES). Additionally, radiation induced inflammation appears to have a distinct cytokine response relative to the non-radiation induced stressor, TPA. Overall, these results indicate that there are subtle changes in the inflammatory protein levels following exposure to low dose radiation and this response is a sub-set of what is seen following a high dose in a human skin tissue model.

  12. Mycoplasma genitalium Infection Activates Cellular Host Defense and Inflammation Pathways in a 3-Dimensional Human Endocervical Epithelial Cell Model

    Science.gov (United States)

    McGowin, Chris L.; Radtke, Andrea L.; Abraham, Kyle; Martin, David H.; Herbst-Kralovetz, Melissa

    2013-01-01

    Background. Because Mycoplasma genitalium is a prevalent and emerging cause of sexually transmitted infections, understanding the mechanisms by which M. genitalium elicits mucosal inflammation is an essential component to managing lower and upper reproductive tract disease syndromes in women. Methods. We used a rotating wall vessel bioreactor system to create 3-dimensional (3-D) epithelial cell aggregates to model and assess endocervical infection by M. genitalium. Results. Attachment of M. genitalium to the host cell's apical surface was observed directly and confirmed using immunoelectron microscopy. Bacterial replication was observed from 0 to 72 hours after inoculation, during which time host cells underwent ultrastructural changes, including reduction of microvilli, and marked increases in secretory vesicle formation. Using genome-wide transcriptional profiling, we identified a host defense and inflammation signature activated by M. genitalium during acute infection (48 hours after inoculation) that included cytokine and chemokine activity and secretion of factors for antimicrobial defense. Multiplex bead-based protein assays confirmed secretion of proinflammatory cytokines, several of which are involved in leukocyte recruitment and hypothesized to enhance susceptibility to human immunodeficiency type 1 infection. Conclusions. These findings provide insight into key molecules and pathways involved in innate recognition of M. genitalium and the response to acute infection in the human endocervix. PMID:23493725

  13. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine.

    Science.gov (United States)

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-02-06

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human-machine-environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines.

  14. [Development and verification of a 3-dimensional finite element model of the human neck based on CT images].

    Science.gov (United States)

    Lu, Chang; Han, Ke; Li, Jing; Wang, Bing; Lu, Guo-hua

    2008-05-01

    To establish a 3-dimensional finite element model. The coordinate data of the vertebras were obtained from the CT scan images of Chinese 50th percentile healthy male adult volunteers' cervical spine, converted into point cloud data, and stored as ASCII file using Mimics software. CATIA software was used to preprocess and Geomagic software was used to establish the geometry model of the C0 approximately C7 cervical spine. The geometry model was meshed by Hypermesh software. Mapped mesh method was used to mesh cortical bone, trabecular bone, intervertebral disk, ligaments, etc. Some material parameters were defined from other available material parameters using proportion and function scale method. The model had 22 512 solid elements and 14 180 shell/membrane elements. The model was validated by the cervical spine drop test. The model has good biofidelity and can be used to study the dynamic response and injury mechanism of the cervical spine in the car accidents.

  15. A 3D Sphere Culture System Containing Functional Polymers for Large-Scale Human Pluripotent Stem Cell Production

    Directory of Open Access Journals (Sweden)

    Tomomi G. Otsuji

    2014-05-01

    Full Text Available Utilizing human pluripotent stem cells (hPSCs in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production.

  16. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles.

    Science.gov (United States)

    Hoelting, Lisa; Scheinhardt, Benjamin; Bondarenko, Olesja; Schildknecht, Stefan; Kapitza, Marion; Tanavde, Vivek; Tan, Betty; Lee, Qian Yi; Mecking, Stefan; Leist, Marcel; Kadereit, Suzanne

    2013-04-01

    Nanoparticles (NPs) have been shown to accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Here, we developed a human embryonic stem cell (hESC)-derived 3-dimensional (3-D) in vitro model that allows for testing of potential developmental neurotoxicants. Early central nervous system PAX6(+) precursor cells were generated from hESCs and differentiated further within 3-D structures. The 3-D model was characterized for neural marker expression revealing robust differentiation toward neuronal precursor cells, and gene expression profiling suggested a predominantly forebrain-like development. Altered neural gene expression due to exposure to non-cytotoxic concentrations of the known developmental neurotoxicant, methylmercury, indicated that the 3-D model could detect DNT. To test for specific toxicity of NPs, chemically inert polyethylene NPs (PE-NPs) were chosen. They penetrated deep into the 3-D structures and impacted gene expression at non-cytotoxic concentrations. NOTCH pathway genes such as HES5 and NOTCH1 were reduced in expression, as well as downstream neuronal precursor genes such as NEUROD1 and ASCL1. FOXG1, a patterning marker, was also reduced. As loss of function of these genes results in severe nervous system impairments in mice, our data suggest that the 3-D hESC-derived model could be used to test for Nano-DNT.

  17. Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study

    Science.gov (United States)

    Myriokefalitakis, S.; Daskalakis, N.; Mihalopoulos, N.; Baker, A. R.; Nenes, A.; Kanakidou, M.

    2015-07-01

    The global atmospheric iron (Fe) cycle is parameterized in the global 3-D chemical transport model TM4-ECPL to simulate the proton- and the organic ligand-promoted mineral-Fe dissolution as well as the aqueous-phase photochemical reactions between the oxidative states of Fe (III/II). Primary emissions of total (TFe) and dissolved (DFe) Fe associated with dust and combustion processes are also taken into account, with TFe mineral emissions calculated to amount to ~ 35 Tg-Fe yr-1 and TFe emissions from combustion sources of ~ 2 Tg-Fe yr-1. The model reasonably simulates the available Fe observations, supporting the reliability of the results of this study. Proton- and organic ligand-promoted Fe dissolution in present-day TM4-ECPL simulations is calculated to be ~ 0.175 Tg-Fe yr-1, approximately half of the calculated total primary DFe emissions from mineral and combustion sources in the model (~ 0.322 Tg-Fe yr-1). The atmospheric burden of DFe is calculated to be ~ 0.024 Tg-Fe. DFe deposition presents strong spatial and temporal variability with an annual flux of ~ 0.496 Tg-Fe yr-1, from which about 40 % (~ 0.191 Tg-Fe yr-1) is deposited over the ocean. The impact of air quality on Fe deposition is studied by performing sensitivity simulations using preindustrial (year 1850), present (year 2008) and future (year 2100) emission scenarios. These simulations indicate that about a 3 times increase in Fe dissolution may have occurred in the past 150 years due to increasing anthropogenic emissions and thus atmospheric acidity. Air-quality regulations of anthropogenic emissions are projected to decrease atmospheric acidity in the near future, reducing to about half the dust-Fe dissolution relative to the present day. The organic ligand contribution to Fe dissolution shows an inverse relationship to the atmospheric acidity, thus its importance has decreased since the preindustrial period but is projected to increase in the future. The calculated changes also show that the

  18. Human Lumbar Ligamentum Flavum Anatomy for Epidural Anesthesia: Reviewing a 3D MR-Based Interactive Model and Postmortem Samples.

    Science.gov (United States)

    Reina, Miguel A; Lirk, Philipp; Puigdellívol-Sánchez, Anna; Mavar, Marija; Prats-Galino, Alberto

    2016-03-01

    The ligamentum flavum (LF) forms the anatomic basis for the loss-of-resistance technique essential to the performance of epidural anesthesia. However, the LF presents considerable interindividual variability, including the possibility of midline gaps, which may influence the performance of epidural anesthesia. We devise a method to reconstruct the anatomy of the digitally LF based on magnetic resonance images to clarify the exact limits and edges of LF and its different thickness, depending on the area examined, while avoiding destructive methods, as well as the dissection processes. Anatomic cadaveric cross sections enabled us to visually check the definition of the edges along the entire LF and compare them using 3D image reconstruction methods. Reconstruction was performed in images obtained from 7 patients. Images from 1 patient were used as a basis for the 3D spinal anatomy tool. In parallel, axial cuts, 2 to 3 cm thick, were performed in lumbar spines of 4 frozen cadavers. This technique allowed us to identify the entire ligament and its exact limits, while avoiding alterations resulting from cutting processes or from preparation methods. The LF extended between the laminas of adjacent vertebrae at all vertebral levels of the patients examined, but midline gaps are regularly encountered. These anatomical variants were reproduced in a 3D portable document format. The major anatomical features of the LF were reproduced in the 3D model. Details of its structure and variations of thickness in successive sagittal and axial slides could be visualized. Gaps within LF previously studied in cadavers have been identified in our interactive 3D model, which may help to understand their nature, as well as possible implications for epidural techniques.

  19. Effect of a 3-day high-fat feeding period on carbohydrate balance and ad libitum energy intake in humans.

    Science.gov (United States)

    Galgani, J E; de Jonge, L; Most, M M; Bray, G A; Smith, S R

    2010-05-01

    A reduction in glycogen after the switch to an isoenergetic high-fat diet (HFD) might promote a compensatory increase in food intake to reestablish carbohydrate balance. We assessed the effect of an isoenergetic switch from a 49%-carbohydrate to 50%-fat diet on nutrient balance and ad libitum food intake. We hypothesized that carbohydrate balance would be inversely related to ad libitum energy intake. In 47 men and 11 women (22.6+/-0.4 years; 26.1+/-0.5 kg m(-2)), fuel balance was measured in a respiration chamber over 4 days. During the first day, an isoenergetic, high-carbohydrate diet was provided followed by a 3-day isoenergetic, HFD. At the end of this period and after 16 h of fasting, three options of foods (cookies, fruit salad and turkey sandwich) were offered ad libitum for 4 h. The relationships between post-chamber ad libitum intake and macronutrient oxidation and balance measured day-to-day and over the 4-day respiration chamber stay were studied. After switching to a HFD, 24-h respiratory quotient decreased from 0.87+/-0.02 to 0.83+/-0.02 (Plibitum energy intake. However, we detected that 4-day carbohydrate balance was a positive and independent predictor of post-chamber ad libitum energy intake (R (2)=0.10; P=0.01), whereas no significant influence of fat and protein balances was found. In response to an isoenergetic change from a high-carbohydrate to HFD, higher carbohydrate balance related to increased energy intake.

  20. Intracoronary adenosine improves myocardial perfusion in late reperfused myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Myocardial perfusion associates with clinical syndromes and prognosis.Adenosine could improve myocardial perfusion of acute myocardial infarction within 6 hours,but few data are available on late perfusion of myocardial infarction (MI).This study aimed at quantitatively evaluating the value of intracoronary adenosine improving myocardial perfusion in late reperfused MI with myocardial contrast echocardiography(MCE).Methods Twenty-six patients with anterior wall infarcts were divided randomly into 2 groups:adenosine group(n=12) and normal saline group(n=14).Their history of myocardial infarction was about 3-12 weeks.Adenosine or normalsaline was given when the guiding wire crossed the lesion through percutaneous coronary intervention(PCI),then the balloon was dilated and stent(Cypher/Cypher select)was implanted at the lesion.Contrast pulse sequencing MCE with Sonovue contrast via the coronary route was done before PCI and 30 minutes after PCI.Video densitometry and contrast filled-blank area were calculated with the CUSQ off-line software.Heart function and cardiac events were followed up within 30 days.Results Perfusion in the segments of the criminal occlusive coronary artery in the adenosine group was better than that in the saline group(5.71±0.29 vs 4.95±1.22,P<0.05).Ischemic myocardial segment was deminished significantly afterPCI,but the meliorated area was bigger in the adenosine group than in the saline group((1.56±0.60)cm2 vs(1.02±0.56) cm2,P<0.05).The video densitometry in critical segments was also improved significantly in the adenosine group (5.53±0.36 vs 5.26±0.35,P<0.05).Left ventricular ejection fraction(LVEF)was improved in all patients after PCI,but EF was not significant between the two groups((67±6)% vs(62±7)%,P>0.05).There was no in-hospital or 30-day major adverse cardiac event(MACE)in the adenosine group but 3 MACE in the saline group in 30 days after PCI.Conclusions Adenosine could improve myocardial microvascular

  1. WSS25 inhibits Dicer, downregulating microRNA-210, which targets Ephrin-A3, to suppress human microvascular endothelial cell (HMEC-1) tube formation.

    Science.gov (United States)

    Xiao, Fei; Qiu, Hong; Zhou, Ling; Shen, Xiaokun; Yang, Liping; Ding, Kan

    2013-05-01

    WSS25 is a sulfated polysaccharide that inhibits angiogenesis. However, the mechanism underlying the regulation of angiogenesis by WSS25 is not well understood. Using microRNA (miRNA) microarray analysis, a total of 25 miRNAs were found to be upregulated and 12 (including miR-210) downregulated by WSS25 in human microvascular endothelial cells (HMEC-1). Interestingly, Dicer, a key enzyme for miRNA biosynthesis, was downregulated by WSS25 in HMEC-1 cells. Further studies indicated that HMEC-1 cell tube formation and miR-210 expression were suppressed while Ephrin-A3 expression was enhanced by the silencing of Dicer. In contrast, HMEC-1 cell tube formation and miR-210 expression were induced while Ephrin-A3 expression was suppressed by Dicer overexpression. Moreover, miR-210 was downregulated while Ephrin-A3 was upregulated by WSS25 in HMEC-1 cells. HMEC-1 cell migration and tube formation were arrested, while Ephrin-A3 expression was augmented by anti-miR-210. In addition, HMEC-1 cell tube formation was significantly attenuated or augmented when Ephrin-A3 was overexpressed or silenced, respectively. Nevertheless, the tube formation blocked by WSS25 could be partially rescued by manipulation of Dicer, miR-210 and Ephrin-A3. These results suggest a new pathway whereby WSS25 inhibits angiogenesis via suppression of Dicer, leading to downregulation of miR-210 and upregulation of Ephrin-A3.

  2. Differential adenosine sensitivity of diaphragm and skeletal muscle arterioles.

    Science.gov (United States)

    Aaker, Aaron; Laughlin, M H

    2002-09-01

    The hyperemic response in exercising skeletal muscle is dependent on muscle fiber-type composition and fiber recruitment patterns, but the vascular control mechanisms producing exercise hyperemia in skeletal muscle remain poorly understood. The purpose of this study was to test the hypothesis that arterioles from white, low-oxidative skeletal muscle are less responsive to adenosine-induced dilation than are arterioles from diaphragm (Dia) and red, high-oxidative skeletal muscle. Second-order arterioles (2As) were isolated from the white portion of gastrocnemius muscle (WG; low-oxidative, fast-twitch muscle tissue) and two types of high-oxidative skeletal muscle [Dia and red portion of gastrocnemius muscle (RG)] of rats. Results reveal that 2As from all three types of muscle dilated in response to the endothelium-dependent dilator acetylcholine (WG: 48 +/- 3%, Dia: 51 +/- 3%, RG: 74 +/- 3%). In contrast, adenosine dilated only 2As from WG (48 +/- 4%) and Dia (46 +/- 5%) but not those from RG (5 +/- 5%). Thus adenosine-induced dilator responses differed among 2As of these different types of muscle tissue. However, the results do not support our hypothesis because 2As from Dia and WG dilated in response to adenosine, whereas 2As from RG did not. We conclude that the adenosine responsiveness of 2As from rat skeletal muscle cannot be predicted only by the fiber-type composition or oxidative capacity of the skeletal muscle tissue wherein the arteriole lies.

  3. Preclinical studies on [{sup 11}C]MPDX for mapping adenosine A{sub 1} receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi; Kimura, Yuichi; Oda, Keiichi; Kawamura, Kazunori; Ishii, Kenji; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan). Positron Medical Center; Nariai, Tadashi; Wakabayashi, Shinichi [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Shimada, Junichi [Kyowa Hakko Kogyo Co. Ltd., Tokyo (Japan). Pharmaceutical Research Inst.

    2002-09-01

    In previous in vivo studies with mice, rats and cats, we have demonstrated that [{sup 11}C]MPDX ([1-methyl-{sup 11}C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine) is a potential radioligand for mapping adenosine A{sub 1} receptors of the brain by positron emission tomography (PET). In the present study, we performed a preclinical study. The radiation absorbed-dose by [{sup 11}C]MPDX in humans estimated from the tissue distribution in mice was low enough for clinical use, and the acute toxicity and mutagenicity of MPDX were not found. The monkey brain was clearly visualized by PET with [{sup 11}C]MPDX. We have concluded that [{sup 11}C]MPDX is suitable for mapping adenosine A{sub 1} receptors in the human brain by PET. (author)

  4. Adenosine prevents TNFα-induced decrease in endothelial mitochondrial mass via activation of eNOS-PGC-1α regulatory axis.

    Directory of Open Access Journals (Sweden)

    Theodore J Kalogeris

    Full Text Available We tested whether adenosine, a cytoprotective mediator and trigger of preconditioning, could protect endothelial cells from inflammation-induced deficits in mitochondrial biogenesis and function. We examined this question using human microvascular endothelial cells exposed to TNFα. TNFα produced time and dose-dependent decreases in mitochondrial membrane potential, cellular ATP levels, and mitochondrial mass, preceding an increase in apoptosis. These effects were prevented by co-incubation with adenosine, a nitric oxide (NO donor, a guanylate cyclase (GC activator, or a cell-permeant cyclic GMP (cGMP analog. The effects of adenosine were blocked by a nitric oxide synthase inhibitor, a soluble guanylate cyclase inhibitor, a morpholino antisense oligonucleotide to endothelial nitric oxide synthase (eNOS, or siRNA knockdown of the transcriptional coactivator, PGC-1α. Incubation with exogenous NO, a GC activator, or a cGMP analog reversed the effect of eNOS knockdown, while the effect of NO was blocked by inhibition of GC. The protective effects of NO and cGMP analog were prevented by siRNA to PGC-1α. TNFα also decreased expression of eNOS, cellular NO levels, and PGC-1α expression, which were reversed by adenosine. Exogenous NO, but not adenosine, rescued expression of PGC-1α in cells in which eNOS expression was knocked down by eNOS antisense treatment. Thus, TNFα elicits decreases in endothelial mitochondrial function and mass, and an increase in apoptosis. These effects were reversed by adenosine, an effect mediated by eNOS-synthesized NO, acting via soluble guanylate cyclase/cGMP to activate a mitochondrial biogenesis regulatory program under the control of PGC-1α. These results support the existence of an adenosine-triggered, mito-and cytoprotective mechanism dependent upon an eNOS-PGC-1α regulatory pathway, which acts to preserve endothelial mitochondrial function and mass during inflammatory challenge.

  5. Amplified fluorescence detection of adenosine via catalyzed hairpin assembly and host-guest interactions between β-cyclodextrin polymer and pyrene.

    Science.gov (United States)

    Huang, Haihua; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Guo, Qiuping; Huang, Jin; Liu, Jianbo; Song, Chunxia

    2016-04-21

    Nowadays, enzyme-free nucleic acid-based signal amplification strategies are frequently utilized in the design of biosensors due to their excellent sensitivity. Developing more extended analytical methods is fundamental for basic studies in the biological and biomedical fields. Herein, we introduce an enzyme-free amplified detection strategy for the small molecule adenosine. The approach is based on adenosine-aptamer binding triggered catalyzed hairpin assembly and host-guest interactions between β-cyclodextrin polymer (β-CDP) and pyrene. Two hairpin probes (probe H1 and probe H2) and an aptamer-trigger/inhibitor duplex probe were employed in the system and the pyrene-labeled probe H1 was chosen as the signal unit. In the absence of adenosine, the aptamer-trigger was inhibited by the inhibitor strand. The hairpin probes were in the closed hairpin formation without activation of the trigger strand. Pyrene labeled at the 5'-termini of the single-stranded stem of probe H1 could be easily trapped in the hydrophobic cavity of β-CDP because of weak steric hindrance, leading to a significant fluorescence enhancement. Once the hairpin assembly was catalyzed by the adenosine-aptamer binding event, a hybridized DNA duplex H1/H2 was created continuously. Pyrene labeled at the 5'-termini of the DNA duplex H1/H2 finds it difficult to enter the cavity of β-CDP due to steric hindrance, leading to a weaker fluorescence signal. Thus, the target could be detected by this simple mix-and-detect amplification method without a need for expensive and perishable protein enzymes. As low as 42 nM of adenosine was detected by this assay, which is comparable to that of some reported colorimetric methods. Meanwhile, the proposed method was further successfully applied to detect adenosine in human serum samples, showing great potential for adenosine detection from complex fluids.

  6. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain

    Science.gov (United States)

    WEISSHAUPT, ANGELA; WEDEKIND, FRANZISKA; KROLL, TINA; MCCARLEY, ROBERT W.

    2015-01-01

    SUMMARY Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day–1 for 5 consecutive days (SR1–SR5), followed by 3 unrestricted recovery sleep days (R1–R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26–31% from SR1 to R1). A decrease in b-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. PMID:25900125

  7. A frameshift mutation in golden retriever dogs with progressive retinal atrophy endorses SLC4A3 as a candidate gene for human retinal degenerations.

    Directory of Open Access Journals (Sweden)

    Louise M Downs

    Full Text Available Progressive retinal atrophy (PRA in dogs, the canine equivalent of retinitis pigmentosa (RP in humans, is characterised by vision loss due to degeneration of the photoreceptor cells in the retina, eventually leading to complete blindness. It affects more than 100 dog breeds, and is caused by numerous mutations. RP affects 1 in 4000 people in the Western world and 70% of causal mutations remain unknown. Canine diseases are natural models for the study of human diseases and are becoming increasingly useful for the development of therapies in humans. One variant, prcd-PRA, only accounts for a small proportion of PRA cases in the Golden Retriever (GR breed. Using genome-wide association with 27 cases and 19 controls we identified a novel PRA locus on CFA37 (p(raw = 1.94×10(-10, p(genome = 1.0×10(-5, where a 644 kb region was homozygous within cases. A frameshift mutation was identified in a solute carrier anion exchanger gene (SLC4A3 located within this region. This variant was present in 56% of PRA cases and 87% of obligate carriers, and displayed a recessive mode of inheritance with full penetrance within those lineages in which it segregated. Allele frequencies are approximately 4% in the UK, 6% in Sweden and 2% in France, but the variant has not been found in GRs from the US. A large proportion of cases (approximately 44% remain unexplained, indicating that PRA in this breed is genetically heterogeneous and caused by at least three mutations. SLC4A3 is important for retinal function and has not previously been associated with spontaneously occurring retinal degenerations in any other species, including humans.

  8. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Szu-Ying; Shih, Ya-Chen [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China); Center for Stem Cell Research, Kaohsiung Medical University, Taiwan (China)

    2015-02-01

    Graphical abstract: A simple, enzyme-free, label-free, sensitive and selective system was developed for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles as an efficient quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate and as a recognition element for adenosine. - Highlights: • The proposed method can detect adenosine with more than 1000-fold selectivity. • The analysis of adenosine is rapid (∼6 min) using the proposed method. • This method provided better sensitivity for adenosine as compared to aptamer-based sensors. • This method can be applied for the determination of adenosine in urine. - Abstract: This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the

  9. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle: effect of a 3-day, high-fat diet.

    Science.gov (United States)

    Jordy, Andreas B; Serup, Annette K; Karstoft, Kristian; Pilegaard, Henriette; Kiens, Bente; Jeppesen, Jacob

    2014-11-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hypercaloric and high-fat diet regime. Muscle biopsies were taken before and after the diet intervention, and giant sarcolemmal vesicles were prepared. The high-fat diet induced decreased insulin sensitivity, but this was not associated with a relocation of FAT/CD36 or FABPpm protein to the sarcolemma. However, FAT/CD36 and FABPpm mRNA, but not the proteins, were upregulated by increased fatty acid availability. This suggests a time dependency in the upregulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after a high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein was located intracellularly but not at the sarcolemma in humans. Copyright © 2014 the American Physiological Society.

  10. The Use of Adenosine Agonists to Treat Nerve Agent-Induced Seizure and Neuropathology

    Science.gov (United States)

    2016-09-01

    kainate, adenosine and neuropeptide Y receptors. Neurochemical Research. 28: 1501-1515. 23. Bjorness, T. E. & R. W. Greene. 2009. Adenosine and sleep ...al. 2004. Adenosine and sleep -wake regulation. Progress in Neurobiology. 73: 379-396. 31. Schubert, P., et al. 1997. Protective mechanisms of...effects of adenosine by caffeine or 8-(p-sulfophenyl)theophylline. The Journal of Pharmacology and Experimental Therapeutics. 240: 428-432. 44

  11. Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ?

    OpenAIRE

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2016-01-01

    Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoim...

  12. Development of coronary vasospasm during adenosine-stress myocardial perfusion CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jeong Gu; Choi, Seong Hoon; Kang, Byeong Seong; Bang, Min Aeo; Kwon, Woon Jeong [Dept. of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of)

    2015-06-15

    Adenosine is a short-acting coronary vasodilator, and it is widely used during pharmacological stress myocardial perfusion imaging. It has a well-established safety profile, and most of its side effects are known to be mild and transient. Until now, coronary vasospasm has been rarely reported as a side effect of adenosine during or after adenosine stress test. This study reports a case of coronary vasospasm which was documented on stress myocardial perfusion CT imaging during adenosine stress test.

  13. Adenosine triphosphate-dependent copper transport in human liver

    NARCIS (Netherlands)

    vandenBerg, GJ; Wolters, H; Veld, GI; Slooff, MJH; Heymans, GSA; Kuipers, F; Vonk, RJ

    1996-01-01

    Background/Aim: The recent cloning and sequencing of the Wilson disease gene indicates that hepatic copper (Cu) transport is mediated by a P-type ATPase. The location of this Cu-transporting protein within the hepatocyte is not known; in view of its proposed function and current concepts of hepatic

  14. Novel ligands for the human adenosine A1 receptor

    NARCIS (Netherlands)

    Chang, Lisa Chung Wai

    2005-01-01

    This research describes the quest to create 'super-caffeines', substances that only produce the desired effects of caffeine, and unlike caffeine, substances that should only have to be taken in measured, minute, controlled amounts to achieve these effects. Unless particular steps are taken to avoid

  15. Novel ligands for the human adenosine A1 receptor

    NARCIS (Netherlands)

    Chang, Lisa Chung Wai

    2005-01-01

    This research describes the quest to create 'super-caffeines', substances that only produce the desired effects of caffeine, and unlike caffeine, substances that should only have to be taken in measured, minute, controlled amounts to achieve these effects. Unless particular steps are taken to avoid

  16. Gene expression profiles in adenosine-treated human mast cells

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... 11Department of Biotechnology and School of Biotechnology, Yeungnam ... The role of mast cells in allergic diseases and innate immunity has been widely .... the sequence quality and cloning vector sequences were.

  17. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  18. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders

    NARCIS (Netherlands)

    Calker, D; Biber, K

    2005-01-01

    Adenosine receptors were classified into A(1)- and A(2)-receptors in the laboratory of Bernd Hamprecht more than 25 years ago. Adenosine receptors are instrumental to the neurotrophic effects of glia cells. Both microglia and astrocytes release after stimulation via adenosine receptors factors that

  19. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype.

    Directory of Open Access Journals (Sweden)

    Michael P Schwartz

    Full Text Available Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s and primary human dermal fibroblasts (hDFs with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM arrays and proteolytic 3-dimensional (3D migration was investigated using matrix metalloproteinase (MMP-degradable poly(ethylene glycol (PEG hydrogels ("synthetic extracellular matrix" or "synthetic ECM". In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18. Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results

  20. Platelet aggregation and serum adenosine deaminase (ADA) activity in pregnancy associated with diabetes, hypertension and HIV.

    Science.gov (United States)

    Leal, Claudio A M; Leal, Daniela B R; Adefegha, Stephen A; Morsch, Vera M; da Silva, José E P; Rezer, João F P; Schrekker, Clarissa M L; Abdalla, Faida H; Schetinger, Maria R C

    2016-07-01

    Platelet aggregation and adenosine deaminase (ADA) activity were evaluated in pregnant women living with some disease conditions including hypertension, diabetes mellitus and human immunodeficiency virus infection. The subject population is consisted of 15 non-pregnant healthy women [control group (CG)], 15 women with normal pregnancy (NP), 7 women with hypertensive pregnancy (HP), 10 women with gestational diabetes mellitus (GDM) and 12 women with human immunodeficiency virus-infected pregnancy (HIP) groups. The aggregation of platelets was checked using an optical aggregometer, and serum ADA activity was determined using the colorimetric method. After the addition of 5 µM of agonist adenosine diphosphate, the percentage of platelet aggregation was significantly (p < 0·05) increased in NP, HP, GDM and HIP groups when compared with the CG, while the addition of 10 µM of the same agonist caused significant (p < 0·05) elevations in HP, GDM and HIP groups when compared with CG. Furthermore, ADA activity was significantly (p < 0·05) enhanced in NP, HP, GDM and HIP groups when compared with CG. In this study, the increased platelet aggregation and ADA activity in pregnancy and pregnancy-associated diseases suggest that platelet aggregation and ADA activity could serve as peripheral markers for the development of effective therapy in the maintenance of homeostasis and some inflammatory process in these pathophysiological conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. How We Manage Adenosine Deaminase-Deficient Severe Combined Immune Deficiency (ADA SCID).

    Science.gov (United States)

    Kohn, Donald B; Gaspar, H Bobby

    2017-02-14

    Adenosine deaminase-deficient severe combined immune deficiency (ADA SCID) accounts for 10-15% of cases of human SCID. From what was once a uniformly fatal disease, the prognosis for infants with ADA SCID has improved greatly based on the development of multiple therapeutic options, coupled with more frequent early diagnosis due to implementation of newborn screening for SCID. We review the various treatment approaches for ADA SCID including allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen-matched sibling or family member or from a matched unrelated donor or a haplo-identical donor, autologous HSCT with gene correction of the hematopoietic stem cells (gene therapy-GT), and enzyme replacement therapy (ERT) with polyethylene glycol-conjugated adenosine deaminase. Based on growing evidence of safety and efficacy from GT, we propose a treatment algorithm for patients with ADA SCID that recommends HSCT from a matched family donor, when available, as a first choice, followed by GT as the next option, with allogeneic HSCT from an unrelated or haplo-identical donor or long-term ERT as other options.

  2. Antioxidant Properties of cis-Z,Z'-3a.7a',7a.3a'-Dihydroxy-ligustilide on Human Umbilical Vein Endothelial Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Xuedong Liu

    2013-01-01

    Full Text Available A new chemical component, cis-Z,Z'-3a.7a',7a.3a'-dihydroxyligustilide, was isolated from Angelica sinensis and its structure elucidated from its NMR and MS spectra and confirmed by X-ray single crystal diffraction analysis. We also explored the antioxidative properties of cis-Z,Z'-3a.7a',7a.3a'-dihydroxyligustilide on human umbilical vein endothelial cells (HUVECs against injuries induced by hydrogen peroxide (H2O2 using an MTT assay and flow cytometry analysis. In addition, the activities of superoxide dismutase (SOD, malondialdehyde (MDA, lactate dehydrogenase (LDH, nitric oxide (NO and reactive oxygen species (ROS were determined. We found that cis-Z,Z'-3a.7a',7a.3a'-dihydroxyligustilide increased the viability of HUVECs injured by H2O2 in a dose-dependent manner, reduced the apoptosis of HUVEC, and enhanced HUVEC proliferation. Our results demonstrated the remarkable in vitro antioxidative activities of this compound, indicating that it could be a potential antioxidant with protective effects against H2O2-induced HUVEC injuries.

  3. Contributory role of adenosine deaminase in metabolic syndrome

    African Journals Online (AJOL)

    olayemitoyin

    Summary: Adenosine deaminase (ADA) is an enzyme of purine metabolism ... as obesity, insulin resistance, fasting hyperglycaemia, lipid abnormalities and ... Body mass index (BMI), fasting blood glucose (FBG), Glycated ... regulation of intracellular and extra cellular ... studies have indicated that defective signalling from.

  4. Adenosine receptor blockade reduces splanchnic hyperemia in cirrhotic rats.

    Science.gov (United States)

    Lee, S S; Chilton, E L; Pak, J M

    1992-06-01

    To explore a possible role for adenosine in the pathogenesis of the splanchnic hyperemia of cirrhosis, we administered 8-phenyltheophylline, a specific adenosine receptor antagonist, to rats with biliary cirrhosis caused by bile duct ligation and to control sham-operated rats. Micro-Doppler flow studies showed that a 10-mumol/kg dose of 8-phenyltheophylline completely abolished the superior mesenteric hyperemic response to infusions of exogenous adenosine in both cirrhotic and control rats. Analysis of regional blood flows by radioactive microspheres demonstrated that this dose of 8-phenyltheophylline in cirrhotic rats significantly increased portal tributary vascular resistance by 60% and decreased portal tributary blood flow by 26%. This decrease was entirely the result of a 42% reduction in the intestinal blood flow. 8-phenyltheophylline did not affect cardiac output, arterial pressure or any other extrasplanchnic hemodynamic variables in cirrhotic rats. No detectable effect of 8-phenyltheophylline was seen in sham-operated rats. These results suggest that adenosine may be involved in the genesis of splanchnic hyperemia in cirrhotic rats.

  5. Adenosine receptor modulation of seizure susceptibility in rats

    Energy Technology Data Exchange (ETDEWEB)

    Szot, P.

    1987-01-01

    Adenosine is considered to be a neuromodulator or cotransmitter in the periphery and CNS. This neuromodulatory action of adenosine may be observed as an anticonvulsant effect. Dose-response curves for R-phenylisopropyladenosine (PIA), cycohexyladenosine (CHA), 2-chloroadenosine (2-ClAdo), N-ethylcarboxamidoadenosine (NECA) and S-PIA were generated against PTZ seizure thresholds in the rat. The rank order of potency for adenosine agonists to elevate PTZ seizure threshold was R-PIA > 2-ClAdo > NECA > CHA > S-PIA. R-PIA was approximately 80-fold more potent than S-PIA. This 80-fold difference in potency between the diasteriomers of PIA was consistent with an A{sub 1} adenoise receptor-mediated response. The anticonvulsant action of 2-ClAdo was reversed by pretreatment with theoplylline. Chronic administration of theophylline significantly increased the specific binding of {sup 3}H-cyclohexyladenosine in membranes of the cerebral cortex and cerebellum of the rat. Chronic exposure to theophylline produced a significant increase in the densities of both the high- and low-affinity forms of A{sub 1} adenosine receptors in the cerebral cortex.

  6. Searching Inhibitors of Adenosine Kinase by Simulation Methods

    Institute of Scientific and Technical Information of China (English)

    ZHU Rui-Xin; ZHANG Xing-Long; DONG Xi-Cheng; CHEN Min-Bo

    2006-01-01

    Searching new inhibitors of adenosine kinase (AK) is still drawing attention of experimental scientists. A better and solid model is here proposed by means of simulation methods from different ways, the direct analysis of receptor itself, the conventional 3D-QSAR methods and the integration of docking method and the conventional QSAR analysis.

  7. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Science.gov (United States)

    2010-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet...

  8. CD39/adenosine pathway is involved in AIDS progression.

    Directory of Open Access Journals (Sweden)

    Maria Nikolova

    2011-07-01

    Full Text Available HIV-1 infection is characterized by a chronic activation of the immune system and suppressed function of T lymphocytes. Regulatory CD4+ CD25(high FoxP3+CD127(low T cells (Treg play a key role in both conditions. Here, we show that HIV-1 positive patients have a significant increase of Treg-associated expression of CD39/ENTPD1, an ectoenzyme which in concert with CD73 generates adenosine. We show in vitro that the CD39/adenosine axis is involved in Treg suppression in HIV infection. Treg inhibitory effects are relieved by CD39 down modulation and are reproduced by an adenosine-agonist in accordance with a higher expression of the adenosine A2A receptor on patients' T cells. Notably, the expansion of the Treg CD39+ correlates with the level of immune activation and lower CD4+ counts in HIV-1 infected patients. Finally, in a genetic association study performed in three different cohorts, we identified a CD39 gene polymorphism that was associated with down-modulated CD39 expression and a slower progression to AIDS.

  9. Adenosine Receptor Heteromers and their Integrative Role in Striatal Function

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2007-01-01

    Full Text Available By analyzing the functional role of adenosine receptor heteromers, we review a series of new concepts that should modify our classical views of neurotransmission in the central nervous system (CNS. Neurotransmitter receptors cannot be considered as single functional units anymore. Heteromerization of neurotransmitter receptors confers functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Some of these characteristics can be used as a “biochemical fingerprint” to identify neurotransmitter receptor heteromers in the CNS. This is exemplified by changes in binding characteristics that are dependent on coactivation of the receptor units of different adenosine receptor heteromers. Neurotransmitter receptor heteromers can act as “processors” of computations that modulate cell signaling, sometimes critically involved in the control of pre- and postsynaptic neurotransmission. For instance, the adenosine A1-A2A receptor heteromer acts as a concentration-dependent switch that controls striatal glutamatergic neurotransmission. Neurotransmitter receptor heteromers play a particularly important integrative role in the “local module” (the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit, where they act as processors mediating computations that convey information from diverse volume-transmitted signals. For instance, the adenosine A2A-dopamine D2 receptor heteromers work as integrators of two different neurotransmitters in the striatal spine module.

  10. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    Science.gov (United States)

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  11. Downregulation of organic cation transporters OCT1 (SLC22A1 and OCT3 (SLC22A3 in human hepatocellular carcinoma and their prognostic significance

    Directory of Open Access Journals (Sweden)

    Heise Michael

    2012-03-01

    Full Text Available Abstract Background Organic cation transporters (OCT are responsible for the uptake and intracellular inactivation of a broad spectrum of endogenous substrates and detoxification of xenobiotics and chemotherapeutics. The transporters became pharmaceutically interesting, because OCTs are determinants of the cytotoxicity of platin derivates and the transport activity has been shown to correlate with the sensitivity of tumors towards tyrosine kinase inhibitors. No data exist about the relevance of OCTs in hepatocellular carcinoma (HCC. Methods OCT1 (SLC22A1 and OCT3 (SLC22A3 mRNA expression was measured in primary human HCC and corresponding non neoplastic tumor surrounding tissue (TST by real time PCR (n = 53. Protein expression was determined by western blot analysis and immunofluorescence. Data were correlated with the clinicopathological parameters of HCCs. Results Real time PCR showed a downregulation of SLC22A1 and SLC22A3 in HCC compared to TST (p ≤ 0.001. A low SLC22A1 expression was associated with a worse patient survival (p SLC22A1 was less frequently downregulated in tumors with lower stages who underwent transarterial chemoembolization (p SLC22A1 expression (SLC22A3 expression compared to HCC with high SLC22A1 expression (p SLC22A3 expression. In the western blot analysis we found a different protein expression pattern in tumor samples with a more diffuse staining in the immunofluorescence suggesting that especially OCT1 is not functional in advanced HCC. Conclusion The downregulation of OCT1 is associated with tumor progression and a worse patient survival.

  12. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene

    2007-01-01

    AIMS: Adenosine causes vasoconstriction of afferent arterioles of the mouse kidney through activation of adenosine A(1) receptors and Gi-mediated stimulation of phospholipase C. In the present study, we further explored the signalling pathways by which adenosine causes arteriolar vasoconstriction....... METHODS AND RESULTS: Adenosine (10(-7) M) significantly increased the intracellular calcium concentration in mouse isolated afferent arterioles measured by fura-2 fluorescence. Pre-treatment with thapsigargin (2 microM) blocked the vasoconstrictor action of adenosine (10(-7) M) indicating that release...

  13. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    Directory of Open Access Journals (Sweden)

    Cátia Vieira

    2014-01-01

    Full Text Available Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders.

  14. The Rickettsia prowazekii invasion gene homolog (invA) encodes a Nudix hydrolase active on adenosine (5')-pentaphospho-(5')-adenosine.

    Science.gov (United States)

    Gaywee, Jariyanart; Xu, WenLian; Radulovic, Suzana; Bessman, Maurice J; Azad, Abdu F

    2002-03-01

    The genomic sequence of Rickettsia prowazekii, the obligate intracellular bacterium responsible for epidemic typhus, reveals an uncharacterized invasion gene homolog (invA). The deduced protein of 18,752 Da contains a Nudix signature, the specific motif found in the Nudix hydrolase family. To characterize the function of InvA, the gene was cloned and overexpressed in Escherichia coli. The expressed protein was purified to near homogeneity and subsequently tested for its enzymatic activity against a series of nucleoside diphosphate derivatives. The purified InvA exhibits hydrolytic activity toward dinucleoside oligophosphates (Np(n)N; n > or = 5), a group of cellular signaling molecules. At optimal pH 8.5, the enzyme actively degrades adenosine (5')-pentaphospho-(5')-adenosine into ATP and ADP with a K(m) of 0.1 mM and k(cat) of 1.9 s(-1). Guanosine (5')-pentaphospho-(5')-guanosine and adenosine-(5')-hexaphospho (5')-adenosine are also substrates. Similar to other Nudix hydrolases, InvA requires a divalent metal cation, Mg(2+) or Zn(2+), for optimal activity. These data suggest that the rickettsial invasion protein likely plays a role in controlling the concentration of stress-induced dinucleoside oligophosphates following bacterial invasion.

  15. Small-Animal PET Study of Adenosine A(1) Receptors in Rat Brain : Blocking Receptors and Raising Extracellular Adenosine

    NARCIS (Netherlands)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A.; Kwizera, Chantal; Sijbesma, Jurgen W. A.; Ishiwata, Kiichi; Willemsen, Antoon T. M.; Elsinga, Philip H.; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2011-01-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-C-11-methyl-3-propyl-xanthine (C-11-MPDX) and PET. This study aims to test whether C-11-MPDX

  16. Small-Animal PET Study of Adenosine A(1) Receptors in Rat Brain : Blocking Receptors and Raising Extracellular Adenosine

    NARCIS (Netherlands)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A.; Kwizera, Chantal; Sijbesma, Jurgen W. A.; Ishiwata, Kiichi; Willemsen, Antoon T. M.; Elsinga, Philip H.; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2011-01-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-C-11-methyl-3-propyl-xanthine (C-11-MPDX) and PET. This study aims to test whether C-11-MPDX c

  17. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.

    Science.gov (United States)

    Nguyen, Michael D; Venton, B Jill

    2015-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.

  18. Intracerebral adenosine infusion improves neurological outcome after transient focal ischemia in rats.

    Science.gov (United States)

    Kitagawa, Hisashi; Mori, Atsushi; Shimada, Jun; Mitsumoto, Yasuhide; Kikuchi, Tetsuro

    2002-04-01

    Second Institute of New Drug Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan In order to elucidate the role of adenosine in brain ischemia, the possible protective effects of adenosine on ischemic brain injury were investigated in a rat model of brain ischemia both in vitro and in vivo. Exogenous adenosine dose-dependently rescued cortical neuronal cells from injury after glucose deprivation in vitro. Adenosine (1 mM) also significantly reduced hypoglycemia/hypoxia-induced glutamate release from the hippocampal slice. In a rat model of transient middle cerebral artery occlusion (MCAO), extracellular adenosine concentration was increased immediately after occlusion, and then returned to the baseline by 30 min after reperfusion. Adenosine infusion through a microdialysis probe into the ipsilateral striatum (1 mM adenosine, 2 microl min(-1), total 4.5 h from the occlusion to 3 h after reperfusion) showed a significant improvement in the neurological outcome, and about 25% reduction of infarct volume, although the effect did not reach statistical significance, compared with the vehicle-treated group at 20 h after 90 min of MCAO. These results demonstrated the neuroprotective effect of adenosine against ischemic brain injury both in vitro and in vivo, suggesting the possible therapeutic application of adenosine regulating agents, which inhibit adenosine uptake or metabolism to enhance or maintain extracellular endogenous adenosine levels, for stroke treatment.

  19. Comparison of the transcriptomic profile of hepatic human induced pluripotent stem like cells cultured in plates and in a 3D microscale dynamic environment.

    Science.gov (United States)

    Leclerc, Eric; Kimura, Keiichi; Shinohara, Marie; Danoy, Mathieu; Le Gall, Morgane; Kido, Taketomo; Miyajima, Atsushi; Fujii, Teruo; Sakai, Yasuyuki

    2017-01-01

    We have compared the transcriptomic profiles of human induced pluripotent stem cells after their differentiation in hepatocytes like cells in plates and microfluidic biochips. The biochips provided a 3D and dynamic support during the cell differentiation when compared to the 2D static cultures in plates. The microarray have demonstrated the up regulation of important pathway related to liver development and maturation during the culture in biochips. Furthermore, the results of the transcriptomic profile, coupled with immunostaining, and RTqPCR analysis have shown typical biomarkers illustrating the presence of responders of biliary like cells, hepatocytes like cells, and endothelial like cells. However, the overall tissue still presented characteristic of immature and foetal patterns. Nevertheless, the biochip culture provided a specific micro-environment in which a complex multicellular differentiation toward liver could be oriented.

  20. Intracortical injection of endothelin-1 induces cortical infarcts in mice: effect of neuronal expression of an adenosine transporter

    Directory of Open Access Journals (Sweden)

    Soylu Hanifi

    2012-03-01

    Full Text Available Abstract Background Activation of adenosine A1 receptors has neuroprotective effects in animal stroke models. Adenosine levels are regulated by nucleoside transporters. In vitro studies showed that neuron-specific expression of human equilibrative nucleoside transporter 1 (hENT1 decreases extracellular adenosine levels and adenosine A1 receptor activity. In this study, we tested the effect of hENT1 expression on cortical infarct size following intracerebral injection of the vasoconstrictor endothelin-1 (ET-1 or saline. Methods Mice underwent stereotaxic intracortical injection of ET-1 (1 μl; 400 pmol or saline (1 μl. Some mice received the adenosine receptor antagonist caffeine (25 mg/kg, intraperitoneal 30 minutes prior to ET-1. Perfusion and T2-weighted magnetic resonance imaging (MRI were used to measure cerebral blood flow (CBF and subsequent infarct size, respectively. Results ET-1 reduced CBF at the injection site to 7.3 ± 1.3% (n = 12 in hENT1 transgenic (Tg and 12.5 ± 2.0% (n = 13 in wild type (Wt mice. At 48 hours following ET-1 injection, CBF was partially restored to 35.8 ± 4.5% in Tg and to 45.2 ± 6.3% in Wt mice; infarct sizes were significantly greater in Tg (9 ± 1.1 mm3 than Wt (5.4 ± 0.8 mm3 mice. Saline-treated Tg and Wt mice had modest decreases in CBF and infarcts were less than 1 mm3. For mice treated with caffeine, CBF values and infarct sizes were not significantly different between Tg and Wt mice. Conclusions ET-1 produced greater ischemic injury in hENT1 Tg than in Wt mice. This genotype difference was not observed in mice that had received caffeine. These data indicate that hENT1 Tg mice have reduced ischemia-evoked increases in adenosine receptor activity compared to Wt mice.

  1. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2015-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.

  2. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis.

    Science.gov (United States)

    Primon-Barros, Muriel; Rigo, Graziela Vargas; Frasson, Amanda Piccoli; Santos, Odelta dos; Smiderle, Lisiane; Almeida, Silvana; Macedo, Alexandre José; Tasca, Tiana

    2015-11-01

    Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.

  3. Impairment of skeletal muscle adenosine triphosphate–sensitive K+ channels in patients with hypokalemic periodic paralysis

    Science.gov (United States)

    Tricarico, Domenico; Servidei, Serenella; Tonali, Pietro; Jurkat-Rott, Karin; Camerino, Diana Conte

    1999-01-01

    The adenosine triphosphate (ATP)–sensitive K+ (KATP) channel is the most abundant K+ channel active in the skeletal muscle fibers of humans and animals. In the present work, we demonstrate the involvement of the muscular KATP channel in a skeletal muscle disorder known as hypokalemic periodic paralysis (HOPP), which is caused by mutations of the dihydropyridine receptor of the Ca2+ channel. Muscle biopsies excised from three patients with HOPP carrying the R528H mutation of the dihydropyridine receptor showed a reduced sarcolemma KATP current that was not stimulated by magnesium adenosine diphosphate (MgADP; 50–100 μM) and was partially restored by cromakalim. In contrast, large KATP currents stimulated by MgADP were recorded in the healthy subjects. At channel level, an abnormal KATP channel showing several subconductance states was detected in the patients with HOPP. None of these were surveyed in the healthy subjects. Transitions of the KATP channel between subconductance states were also observed after in vitro incubation of the rat muscle with low-K+ solution. The lack of the sarcolemma KATP current observed in these patients explains the symptoms of the disease, i.e., hypokalemia, depolarization of the fibers, and possibly the paralysis following insulin administration. PMID:10074484

  4. Expression, purification, and partial in vitro characterization of biologically active human coagulation factor VIII light chain (A3-C1-C2) in Pichia pastoris.

    Science.gov (United States)

    A R, Sudheer Reddy; Satheeshkumar, Padikara Kutty; Vijayalakshmi, Mookambeswaran A

    2013-09-01

    Recombinant coagulation factor VIII (FVIII) expressed in mammalian expression systems is used extensively in the treatment of hemophilia A. It is reported that the heavy (A1-A2) and light chains (A3-C1-C2) of factor VIII purified from plasma regained the coagulation activity by dimerization in vitro. In this work, cDNA coding for the light chain of human coagulation factor VIII (FVIII-LC) was cloned into pPICZα-A expression vector downstream of alcohol oxidase promoter and α-mating signal sequence from Saccharomyces cerevisiae in order to express the protein with a native N-terminus. The methylotrophic yeast, Pichia pastoris X-33, was transformed with this cassette, and transformants were selected for production of human factor VIII light chain into culture media. SDS-PAGE and Western blot analysis confirmed the expression of factor VIII light chain protein. The expressed protein was purified to near homogeneity using histidine ligand affinity chromatography (2.342 mg/L). The biological activity of FVIII-LC was confirmed by analyzing the interaction between FVIII-LC and phospholipid vesicles. The data presented here indicate the possibilities of exploring cost-effective systems to express complex proteins of therapeutic value.

  5. Biomedical-grade, high mannuronic acid content (BioMVM) alginate enhances the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D microenvironment

    Science.gov (United States)

    Rey-Rico, Ana; Klich, Angelique; Cucchiarini, Magali; Madry, Henning

    2016-01-01

    Alginates are important hydrogels for meniscus tissue engineering as they support the meniscal fibrochondrocyte phenotype and proteoglycan production, the extracellular matrix (ECM) component chiefly responsible for its viscoelastic properties. Here, we systematically evaluated four biomedical- and two nonbiomedical-grade alginates for their capacity to provide the best three-dimensional (3-D) microenvironment and to support proteoglycan synthesis of encapsulated human meniscal fibrochondrocytes in vitro. Biomedical-grade, high mannuronic acid alginate spheres (BioLVM, BioMVM) were the most uniform in size, indicating an effect of the purity of alginate on the shape of the spheres. Interestingly, the purity of alginates did not affect cell viability. Of note, only fibrochondrocytes encapsulated in BioMVM alginate produced and retained significant amounts of proteoglycans. Following transplantation in an explant culture model, the alginate spheres containing fibrochondrocytes remained in close proximity with the meniscal tissue adjacent to the defect. The results reveal a promising role of BioMVM alginate to enhance the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D hydrogel microenvironment. These findings have significant implications for cell-based translational studies aiming at restoring lost meniscal tissue in regions containing high amounts of proteoglycans. PMID:27302206

  6. Intrathecal clonidine and adenosine: effects on pain and sensory processing in patients with chronic regional pain syndrome.

    Science.gov (United States)

    Rauck, Richard L; North, James; Eisenach, James C

    2015-01-01

    Chronic pain may be accompanied by hyperalgesia and allodynia, and analgesic interventions may reduce these hypersensitivity phenomena. Preclinical data suggest that intrathecal clonidine and adenosine reduce hypersensitivity, but only clonidine reduces pain; therefore, we tested the effects of these interventions in patients with chronic pain. Twenty-two subjects with pain and hyperalgesia in a lower extremity from complex regional pain syndrome were recruited in a double-blind crossover study to receive intrathecal clonidine, 100 μg, or adenosine, 2 mg. Primary outcome measure was proportion with ≥30% reduction in pain 2 hours after injection, and secondary measures were pain report, areas of hypersensitivity, and temporal summation to heat stimuli. Treatments did not differ in the primary outcome measure (10 met success criterion after clonidine administration and 5 after adenosine administration), although they did differ in pain scores over time, with clonidine having a 3-fold greater effect (P = 0.014). Both drugs similarly reduced areas of hyperalgesia and allodynia by approximately 30% and also inhibited temporal summation. The percentage change in pain report did not correlate with the percentage change in areas of hyperalgesia (P = 0.09, r = 0.08) or allodynia (P = 0.24, r = 0.24) after drug treatment. Both intrathecal clonidine and adenosine acutely inhibit experimentally induced and clinical hypersensitivity in patients with chronic regional pain syndrome. Although these drugs do not differ in analgesia by the primary outcome measure, their difference in effect on pain scores over time and lack of correlation between effect on pain and hypersensitivity suggest that analgesia does not parallel antihyperalgesia with these treatments.

  7. 腺苷及其受体对中性粒细胞在炎症中的作用与机制研究进展%Function and mechanism of adenosine and adenosine receptor on neutrophil during inflammation

    Institute of Scientific and Technical Information of China (English)

    刘阳珷玥; 杨亭(综述); 赵力; 戴双双(审校)

    2014-01-01

    腺苷,作为机体内ATP代谢过程中的重要产物,通过激活腺苷受体(adenosine receptors, AR)(A1R、A2AR、A2BR、A3 R)参与了机体的许多生理及病理过程的调节。腺苷受体在体内的各个组织器官具有广泛的分布,在免疫系统尤为丰富,如中性粒细胞、巨噬细胞、淋巴细胞、树突状细胞均有较高表达。炎症,是机体抵御外来刺激的一种防御性免疫机制,过度的炎症反应则会对机体造成损伤,中性粒细胞是其中重要的参与者之一,腺苷及其受体的调节密切参与了其黏附、迁移、细菌杀伤作用、炎症介质产生、凋亡等过程,从而对炎症起到调节作用。%Adenosine, an important metabolic product of ATP, regulates many physiological and pathological processes through activating different adenosine receptors (A1R, A2AR, A2BR, A3R).There is a wide distribution of adenosine receptors in vari-ous tissues and organs particularly in immune system such as neutrophil, which is closely involved in the process of inflammation.In-flammation is defensive immune mechanism body resists external stimulus.The excessive inflammatory reaction will result in injury of the body in which neutrophils are one of the most important participants.The regulation of adenosine and its receptors on neutrophils plays an important role in adhesion, migration, bacterial killing effects, inflammatory mediators release, apoptosis and other processes.

  8. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses

    Science.gov (United States)

    Moore, Kimberly A.; Nicoll, Roger A.; Schmitz, Dietmar

    2003-11-01

    The release properties of synapses in the central nervous system vary greatly, not only across anatomically distinct types of synapses but also among the same class of synapse. This variation manifests itself in large part by differences in the probability of transmitter release, which affects such activity-dependent presynaptic forms of plasticity as paired-pulse facilitation and frequency facilitation. This heterogeneity in presynaptic function reflects differences in the intrinsic properties of the synaptic terminal and the activation of presynaptic neurotransmitter receptors. Here we show that the unique presynaptic properties of the hippocampal mossy fiber synapse are largely imparted onto the synapse by the continuous local action of extracellular adenosine at presynaptic A1 adenosine receptors, which maintains a low basal probability of transmitter release.

  9. Novel iron complexes bearing N6-substituted adenosine derivatives: synthesis, magnetic, 57Fe Mössbauer, DFT, and in vitro cytotoxicity studies.

    Science.gov (United States)

    Trávnícek, Zdenek; Mikulík, Jirí; Cajan, Michal; Zboril, Radek; Popa, Igor

    2008-09-15

    Iron complexes (1-7) involving N6-benzyladenosine derivatives of the predominant composition [Fe(L(n))Cl(3)].H(2)O {where L(1)=N6-(2-fluorobenzyl)adenosine (1), L(2)=N6-(4-fluorobenzyl)adenosine (2), L(3)=N6-(2-trifluoromethylbenzyl)adenosine (3), L(4)=N6-(3-trifluoromethylbenzyl)adenosine (4), L(5)=N6-(4-trifluoromethylbenzyl)adenosine (5), L(6)=N6-(4-trifluoromethoxybenzyl)adenosine (6), and L(7)=N6-(4-chlorobenzyl)adenosine (7)} have been synthesized. The compounds have been characterized by elemental analysis, variable-temperature and in-field 57Fe Mössbauer, ES+ MS, FTIR, 1H and 13C NMR spectroscopies, magnetochemical and conductivity measurements, thermal (TGA/DSC/DTA) analyses, and DFT calculations. It has been found that the organic molecule is coordinated to iron via N7 atom of the appropriate adenosine derivative and the products are represented by mixtures of complexes with various iron oxidation (Fe(III)/Fe(II)) and spin states (S=5/2, 4/2, 3/2, 2/2) and geometries (tetrahedral or trigonal bipyramidal). It is caused by the fact that partial redox processes proceed during the reactions due to the presence of a ribose moiety, which is oxidized to the corresponding 5'-ribotic acid, and simultaneously, a portion of Fe(III) cations is reduced to Fe(II) ones. Moreover, a significant effect of crystal water molecules on stereochemistry, and hence, on magnetic and spectral properties of the prepared complexes has been found. The compounds have been tested for their in vitro cytotoxicity against the following human cancer cell lines: malignant melanoma (G-361), osteogenic sarcoma (HOS), chronic myelogenous leukemia (K-562), and breast adenocarcinoma (MCF-7). The most important results have been obtained for complex 2 with IC(50) values 8-16 microM against HOS, K-562, and MCF-7 cell lines, and for complex 6 with IC(50) value 4 microM against MCF-7 cell line.

  10. The effects of methylmercury on motor activity are sex- and age-dependent, and modulated by genetic deletion of adenosine receptors and caffeine administration.

    Science.gov (United States)

    Björklund, Olga; Kahlström, Johan; Salmi, Peter; Ogren, Sven Ove; Vahter, Marie; Chen, Jiang-Fan; Fredholm, Bertil B; Daré, Elisabetta

    2007-11-30

    Adenosine and its receptors are, as part of the brain stress response, potential targets for neuroprotective drugs. We have investigated if the adenosine receptor system affects the developmental neurotoxicity caused by the fish pollutant methylmercury (MeHg). Behavioral outcomes of low dose perinatal MeHg exposure were studied in mice where the A(1) and A(2A) adenosine receptors were either partially blocked by caffeine treatment or eliminated by genetic modification (A(1)R and A(2A)R knock-out mice). From gestational day 7 to day 7 of lactation dams were administered doses that mimic human intake via normal diet, i.e. 1microM MeHg and/or 0.3g/l caffeine in the drinking water. This exposure to MeHg resulted in a doubling of brain Hg levels in wild type females and males at postnatal day 21 (PND21). Open field analysis was performed at PND21 and 2 months of age. MeHg caused time-dependent behavioral alterations preferentially in male mice. A decreased response to amphetamine in 2-month-old males pointed to disturbances in dopaminergic functions. Maternal caffeine intake induced long-lasting changes in the offspring evidenced by an increased motor activity and a modified response to psychostimulants in adult age, irrespectively of sex. Similar alterations were observed in A(1)R knock-out mice, suggesting that adenosine A(1) receptors are involved in the alterations triggered by caffeine exposure during development. Perinatal caffeine treatment and, to some extent, genetic elimination of adenosine A(1) receptors, attenuated the behavioral consequences of MeHg in males. Importantly, also deletion of the A(2A) adenosine receptor reduced the vulnerability to MeHg, consistent with the neuroprotective effects of adenosine A(2A) receptor inactivation observed in hypoxia and Parkinson's disease. Thus, the consequences of MeHg toxicity during gestation and lactation can be reduced by adenosine A(1) and A(2A) receptor inactivation, either via their genetic deletion or by

  11. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice.

    Science.gov (United States)

    Witts, Emily C; Nascimento, Filipe; Miles, Gareth B

    2015-10-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output.

  12. Evidence for an A1-adenosine receptor in the guinea-pig atrium.

    Science.gov (United States)

    Collis, M. G.

    1983-01-01

    1 The purpose of this study was to determine whether the adenosine receptor that mediates a decrease in the force of contraction of the guinea-pig atrium is of the A1- or A2-sub-type. 2 Concentration-response curves to adenosine and a number of 5'- and N6-substituted analogues were constructed and the order of potency of the purines was: 5'-N-cyclopropylcarboxamide adenosine (NCPCA) = 5'-N-ethylcarboxamide adenosine (NECA) greater than N6cyclohexyladenosine (CHA) greater than L-N6-phenylisopropyl adenosine (L-PIA) = 2-chloroadenosine- greater than adenosine greater than D-N6-phenylisopropyl adenosine (D-PIA). 3 The difference in potency between the stereoisomers D- and L-PIA was over 100 fold. 4 The adenosine transport inhibitor, dipyridamole, potentiated submaximal responses to adenosine but had no significant effect on those evoked by the other purines. 5 Theophylline antagonized responses evoked by all purines, and with D-PIA revealed a positive inotropic effect that was abolished by atenolol. 6 The results indicate the existence of an adenosine A1-receptor in the guinea-pig atrium. PMID:6297647

  13. Severe combined immunodeficiency due to adenosine deaminase deficiency.

    Science.gov (United States)

    Hussain, Waqar; Batool, Asma; Ahmed, Tahir Aziz; Bashir, Muhammad Mukarram

    2012-03-01

    Severe Combined Immunodeficiency is the term applied to a group of rare genetic disorders characterised by defective or absent T and B cell functions. Patients usually present in first 6 months of life with respiratory/gastrointestinal tract infections and failure to thrive. Among the various types of severe combined immunodeficiency, enzyme deficiencies are relatively less common. We report the case of a 6 years old girl having severe combined immunodeficiency due to adenosine deaminase deficiency.

  14. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  15. Magnetization transfer in human achilles tendon assessed by a 3D ultrashort echo time sequence. Quantitative examinations in healthy volunteers at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Syha, R.; Grosse, U.; Springer, F. [Tuebingen Univ. (Germany). Diagnostic and Interventional Radiology; Tuebingen Univ. (Germany). Section on Experimental Radiology; Martirosian, P.; Schick, F. [Tuebingen Univ. (Germany). Section on Experimental Radiology; Ketelsen, D.; Claussen, C.D. [Tuebingen Univ. (Germany). Diagnostic and Interventional Radiology

    2011-11-15

    Magnetization transfer contrast (MTC) imaging provides insight into interactions between free and bounded water. Newly developed ultrashort echo time (UTE) sequences implemented on whole-body magnetic resonance (MR) scanners allow MTC imaging in tissues with extremely fast signal decay such as tendons. The aim of this study was to develop a technique for the quantification of the MT effect in healthy Achilles tendons in-vivo at 3 Tesla. 16 normal tendons of volunteers with no history of tendinopathy were examined using a 3D-UTE sequence with a rectangular on-resonant excitation pulse and a Fermi-shaped off-resonant MT preparation pulse. The frequency of the MT pulse was varied from 1 to 5 kHz. MT effects were calculated in terms of the MT ratio (MTR) between measurements without and with MT preparation. Direct saturation effects of MT preparation on the signal intensity were evaluated using numerical simulation of Bloch equations. One patient with tendinopathy was examined to exemplarily show changes of MTR under pathologic conditions. Calculation of MTR data was feasible in all examined tendons and showed a decrease from 0.53 {+-} 0.05 to 0.25 {+-} 0.03 (1 kHz to 5 kHz) for healthy volunteers. Evaluation of variation with gender and dominance of ankle revealed no significant differences (p > 0.05). In contrast, the patient with confirmed tendinopathy showed MTR values between 0.36 (1 kHz) and 0.19 (5 kHz). MT effects in human Achilles tendons can be reliably assessed in-vivo using a 3D UTE sequence at 3 T. All healthy tendons showed similar MTR values (coefficient of variation 10.0 {+-} 1.2 %). The examined patient showed a clearly different MT effect revealing a changed microstructure in the case of tendinopathy. (orig.)

  16. Human serum amyloid A3 (SAA3 protein, expressed as a fusion protein with SAA2, binds the oxidized low density lipoprotein receptor.

    Directory of Open Access Journals (Sweden)

    Takeshi Tomita

    Full Text Available Serum amyloid A3 (SAA3 possesses characteristics distinct from the other serum amyloid A isoforms, SAA1, SAA2, and SAA4. High density lipoprotein contains the latter three isoforms, but not SAA3. The expression of mouse SAA3 (mSAA3 is known to be up-regulated extrahepatically in inflammatory responses, and acts as an endogenous ligand for the toll-like receptor 4/MD-2 complex. We previously reported that mSAA3 plays an important role in facilitating tumor metastasis by attracting circulating tumor cells and enhancing hyperpermeability in the lungs. On the other hand, human SAA3 (hSAA3 has long been regarded as a pseudogene, which is in contrast to the abundant expression levels of the other isoforms. Although the nucleotide sequence of hSAA3 is very similar to that of the other SAAs, a single oligonucleotide insertion in exon 2 causes a frame-shift to generate a unique amino acid sequence. In the present study, we identified that hSAA3 was transcribed in the hSAA2-SAA3 fusion transcripts of several human cell lines. In the fusion transcript, hSAA2 exon 3 was connected to hSAA3 exon 1 or hSAA3 exon 2, located approximately 130kb downstream from hSAA2 exon 3 in the genome, which suggested that it is produced by alternative splicing. Furthermore, we succeeded in detecting and isolating hSAA3 protein for the first time by an immunoprecipitation-enzyme linked immune assay system using monoclonal and polyclonal antibodies that recognize the hSAA3 unique amino acid sequence. We also demonstrated that hSAA3 bound oxidized low density lipoprotein receptor (oxLDL receptor, LOX-1 and elevated the phosphorylation of ERK, the intracellular MAP-kinase signaling protein.

  17. Caffeine prevents antihyperalgesic effect of gabapentin in an animal model of CRPS-I: evidence for the involvement of spinal adenosine A1 receptor.

    Science.gov (United States)

    Martins, Daniel F; Prado, Marcos R B; Daruge-Neto, Eduardo; Batisti, Ana P; Emer, Aline A; Mazzardo-Martins, Leidiane; Santos, Adair R S; Piovezan, Anna P

    2015-12-01

    This study was designed to determine whether 3 weeks of gabapentin treatment is effective in alleviating neuropathic pain-like behavior in animal models of complex regional pain syndrome type-I and partial sciatic nerve ligation (PSNL). We investigated the contribution of adenosine subtypes to the antihyperalgesic effect of gabapentin by examining the effect of caffeine, a non-selective adenosine A1 and A2 receptor antagonist or 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective adenosine A1 subtype receptor antagonist on this effect. Neuropathic pain was produced by unilateral prolonged hind paw ischemia and reperfusion (I/R) or PSNL procedures which resulted in stimulus-evoked mechanical hyperalgesia. After procedures, animals received gabapentin (10, 30, or 100 mg/kg intraperitoneal, respectively), caffeine (10 mg/kg intraperitoneal or 150 nmol intrathecally) or DPCPX (3 µg intrathecally) alone or in combination. Mice were tested for tactile mechanical hyperalgesia at 1, 2, and 3 weeks following procedures. Gabapentin produced dose-related inhibition of mechanical hyperalgesia over a 3-week period, and this effect was blocked by concomitant caffeine or DPCPX administration 1 week after injuries. The results of this study demonstrated that the mechanism through which gabapentin produces its effect may involve the activation of adenosine A1 subtype receptor.

  18. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    Science.gov (United States)

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  19. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP......) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...

  20. Determination of levels of adenosine phosphates in blood by ion chromatography

    Institute of Scientific and Technical Information of China (English)

    Pei Jin Xie; Ming Li Ye; Zhong Yang Hu; Guang Wen Pan; Yan Zhu; Jia Jie Zhang

    2011-01-01

    A new method was developed for simultaneous determination of levels of AMP, ADP and ATP in blood by anion-exchange chromatography. The three adenosine phosphates were separated by Dionex IonPac AG18 (50 mm x 4 mm) guard column and IonPac AS18 (250 mm x 4 mm) analytical column using a gradient method and detected with a suppressed conductivity detector. The detection limits (S/N = 3) of AMP, ADP and ATP were 38, 47, 108 ng/L, respectively. The relative standard deviations of retention time, peak area and peak height were all less than 1.87% and a good linear relationship was obtained. This method was applied to analyze human blood samples.

  1. Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists.

    Science.gov (United States)

    Louvel, Julien; Guo, Dong; Soethoudt, Marjolein; Mocking, Tamara A M; Lenselink, Eelke B; Mulder-Krieger, Thea; Heitman, Laura H; IJzerman, Adriaan P

    2015-08-28

    We report the synthesis and biological evaluation of new derivatives of Capadenoson, a former drug candidate that was previously advanced to phase IIa clinical trials. 19 of the 20 ligands show an affinity below 100 nM at the human adenosine A1 receptor (hA1AR) and display a wide range of residence times at this target (from approx. 5 min (compound 10) up to 132 min (compound 5)). Structure-affinity and structure-kinetics relationships were established, and computational studies of a homology model of the hA1AR revealed crucial interactions for both the affinity and dissociation kinetics of this family of ligands. These results were also combined with global metrics (Ligand Efficiency, cLogP), showing the importance of binding kinetics as an additional way to better select a drug candidate amongst seemingly similar leads.

  2. Endogenous adenosine and hemorrhagic shock: effects of caffeine administration or caffeine withdrawal.

    OpenAIRE

    Conlay, L A; Evoniuk, G; Wurtman, R J

    1988-01-01

    Plasma adenosine concentrations doubled when rats were subjected to 90 min of profound hemorrhagic shock. Administration of caffeine (20 mg per kg of body weight), an adenosine-receptor antagonist, attenuated the hemorrhage-induced decrease in blood pressure. In contrast, chronic caffeine consumption (0.1% in drinking water), followed by a brief period of caffeine withdrawal, amplified the hypotensive response to hemorrhage. These data suggest that endogenous adenosine participates in the hyp...

  3. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia.

    OpenAIRE

    Felicita Pedata; Anna Maria Pugliese; Elisabetta Coppi; Ilaria Dettori; Giovanna Maraula; Lucrezia Cellai; Alessia Melani

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by ...

  4. Interaction between Intrathecal Gabapentin and Adenosine in the Formalin Test of Rats

    OpenAIRE

    Yoon, Myung Ha; Choi, Jeong Il; Park, Heon Chang; Bae, Hong Beom

    2004-01-01

    Spinal gabapentin and adenosine have been known to display an antinociceptive effect. We evaluated the nature of the interaction between gabapentin and adenosine in formalin-induced nociception at the spinal level. Male Sprague-Dawley rats were prepared for intrathecal catheterization. Pain was evoked by injection of formalin solution (5%, 50 µL) into the hindpaw. After examination of the effects of gabapentin and adenosine, the resulting interaction was investigated with isobolographic and f...

  5. Endogenous adenosine and hemorrhagic shock: effects of caffeine administration or caffeine withdrawal.

    OpenAIRE

    Conlay, L A; Evoniuk, G; Wurtman, R.J.

    1988-01-01

    Plasma adenosine concentrations doubled when rats were subjected to 90 min of profound hemorrhagic shock. Administration of caffeine (20 mg per kg of body weight), an adenosine-receptor antagonist, attenuated the hemorrhage-induced decrease in blood pressure. In contrast, chronic caffeine consumption (0.1% in drinking water), followed by a brief period of caffeine withdrawal, amplified the hypotensive response to hemorrhage. These data suggest that endogenous adenosine participates in the hyp...

  6. The Influence of the 1-(3-Trifluoromethyl-Benzyl)-1H-Pyrazole-4-yl Moiety on the Adenosine Receptors Affinity Profile of Pyrazolo[4,3-e][1,2,4]Triazolo[1,5-c]Pyrimidine Derivatives.

    Science.gov (United States)

    Federico, Stephanie; Redenti, Sara; Sturlese, Mattia; Ciancetta, Antonella; Kachler, Sonja; Klotz, Karl-Norbert; Cacciari, Barbara; Moro, Stefano; Spalluto, Giampiero

    2015-01-01

    A new series of pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (PTP) derivatives has been developed in order to explore their affinity and selectivity profile at the four adenosine receptor subtypes. In particular, the PTP scaffold was conjugated at the C2 position with the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole, a group believed to confer potency and selectivity toward the human (h) A2B adenosine receptor (AR) to the xanthine ligand 8-(1-(3-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (CVT 6975). Interestingly, the synthesized compounds turned out to be inactive at the hA2B AR but they displayed affinity at the hA3 AR in the nanomolar range. The best compound of the series (6) shows both high affinity (hA3 AR Ki = 11 nM) and selectivity (A1/A3 and A2A/A3 > 9090; A2B/A3 > 909) at the hA3 AR. To better rationalize these results, a molecular docking study on the four AR subtypes was performed for all the synthesized compounds. In addition, CTV 6975 and two close analogues have been subjected to the same molecular docking protocol to investigate the role of the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole on the binding at the four ARs.

  7. Topical adenosine increases the proportion of thick hair in Caucasian men with androgenetic alopecia.

    Science.gov (United States)

    Iwabuchi, Tokuro; Ideta, Ritsuro; Ehama, Ritsuko; Yamanishi, Haruyo; Iino, Masato; Nakazawa, Yosuke; Kobayashi, Takashi; Ohyama, Manabu; Kishimoto, Jiro

    2016-05-01

    Adenosine is an effective treatment for androgenetic alopecia (AGA) in Japanese men and women. Adenosine exerts its effects by significantly increasing the proportion of thick hair. In this study, we assessed the clinical outcome of adenosine treatment for 6 months in 38 Caucasian men. The change in proportion of thick hair (≥60 μm) compared with baseline in the adenosine group was significantly higher than that in the placebo group (P thick hair in Caucasian men with AGA as well as in Japanese men and women.

  8. Adenosine Modulates the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation.

    Science.gov (United States)

    Cheon, Yong-Pil

    2016-06-01

    Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. By the inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage caused of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence..

  9. (/sup 3/H)nitrobenzylthioinosine binding as a probe for the study of adenosine uptake sites in brain

    Energy Technology Data Exchange (ETDEWEB)

    Marangos, P.J.; Patel, J.; Clark-Rosenberg, R.; Martino, A.M.

    1982-07-01

    The binding of the potent adenosine uptake inhibitor (/sup 3/H)nitrobenzylthioinosine ((/sup 3/H)NBI) to brain membrane fractions was investigated. Reversible, saturable, specific, high-affinity binding was demonstrated in both rat and human brain. The KD in both was 0.15 nM with Bmax values of 140-200 fmol/mg protein. Linear Scatchard plots were routinely obtained, indicating a homogeneous population of binding sites in brain. The highest density of binding sites was found in the caudate and hypothalamus in both species. The binding site was heat labile and trypsin sensitive. Binding was also decreased by incubation of the membranes in 0.05% Triton X-100 and by treatment with dithiothreitol and iodoacetamide. Of the numerous salt and metal ions tested, only copper and zinc had significant effects on (/sup 3/H)NBI binding. The inhibitory potencies of copper and zinc were IC50 . 160 microM and 6 mM, respectively. Subcellular distribution studies revealed a high percentage of the (/sup 3/H)NBI binding sites on synaptosomes, indicating that these sites were present in the synaptic region. A study of the tissue distribution of the (/sup 3/H)NBI sites revealed very high densities of binding in erythrocyte, lung, and testis, with much lower binding densities in brain, kidney, liver, muscle, and heart. The binding affinity in the former group was approximately 1.5 nM, whereas that in the latter group was 0.15 nM, suggesting two types of binding sites. The pharmacologic profile of (/sup 3/H)NBI binding was consistent with its function as the adenosine transport site, distinct from the adenosine receptor, since thiopurines were very potent inhibitors of binding whereas adenosine receptor ligands, such as cyclohexyladenosine and 2-chloroadenosine, were three to four orders of magnitude less potent. (/sup 3/H)NBI binding in brain should provide a useful probe for the study of adenosine transport in the brain.

  10. Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation.

    Science.gov (United States)

    Chang, Su-Youne; Kim, Inyong; Marsh, Michael P; Jang, Dong Pyo; Hwang, Sun-Chul; Van Gompel, Jamie J; Goerss, Stephan J; Kimble, Christopher J; Bennet, Kevin E; Garris, Paul A; Blaha, Charles D; Lee, Kendall H

    2012-08-01

    Essential tremor is often markedly reduced during deep brain stimulation simply by implanting the stimulating electrode before activating neurostimulation. Referred to as the microthalamotomy effect, the mechanisms of this unexpected consequence are thought to be related to microlesioning targeted brain tissue, that is, a microscopic version of tissue ablation in thalamotomy. An alternate possibility is that implanting the electrode induces immediate neurochemical release. Herein, we report the experiment performing with real-time fast-scan cyclic voltammetry to quantify neurotransmitter concentrations in human subjects with essential tremor during deep brain stimulation. The results show that the microthalamotomy effect is accompanied by local neurochemical changes, including adenosine release.

  11. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics – Insights from a 3D Model of the Human Atria

    Science.gov (United States)

    Adeniran, Ismail; MacIver, David H.; Garratt, Clifford J.; Ye, Jianqiao; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients. PMID:26606047

  12. p16/Ki-67 co-expression associates high risk human papillomavirus persistence and cervical histopathology: a 3-year cohort study in China.

    Science.gov (United States)

    Yu, Lu-Lu; Guo, Hui-Qin; Lei, Xiao-Qin; Qin, Yu; Wu, Ze-Ni; Kang, Le-Ni; Zhang, Xun; Qiao, You-Lin; Chen, Wen

    2016-10-04

    To evaluate the association of p16/Ki-67 co-expression and persistence of high-risk human papillomavirus (HR-HPV) infection as well as cervical abnormalities. We performed a 3-year cohort study among which 2498 Chinese women aged 25 to 65 years were screened by different HPV tests in 2011. 690 women who were positive at any of the tests and a random sample of 164 women with all negative results received colposcopy, cervical specimens for cobas HPV test (Roche diagnostics) were collected before colposcopy; of this group, 737 cervical specimens were collected to perform cobas, Liquid-based cytology, HPV E6 test (Arbor Vita Corporation) and p16/Ki-67 dual staining (Roche diagnostics) in 2014. Colposcopy and biopsies was performed on women with any abnormal result. Compared to women without HR-HPV persistent infection, women in the HR-HPV persistence group had a higher risk of p16/Ki-67 positive, with an adjusted Odds Ratio(OR) and 95% confidence interval (CI) of 6.29 (4.07-9.72); moreover, adjusted odds ratio for women who had HPV16/18 persistent infection was nearly 4-folder higher than women with other 12 HR-HPV persistent infection (adjusted OR = 17.15, 95% CI: 7.11-41.33 vs adjusted OR = 4.68, 95% CI: 2.89-7.58). Additionally, p16/Ki-67 positivity rate significantly increased with the severity of the cytological and histological abnormalities, and resulted strongly associated with a CIN2+ diagnosis (OR = 16.03, 95% CI: 4.46-57.59). p16/Ki-67 co-expressions associated strongly with HR-HPV persistence, especially with HPV16/18, and the presence of a CIN2+ lesion. Therefore, p16/Ki-67 could be considered as a suitable biomarker for cervical cancer screening, particularly in HPV-based screening programs.

  13. Multidrug Resistance-Associated Protein 4 (MRP4/ABCC4) Controls Efflux Transport of Hesperetin Sulfates in Sulfotransferase 1A3-Overexpressing Human Embryonic Kidney 293 Cells.

    Science.gov (United States)

    Sun, Hua; Wang, Xiao; Zhou, Xiaotong; Lu, Danyi; Ma, Zhiguo; Wu, Baojian

    2015-10-01

    Sulfonation is an important metabolic pathway for hesperetin. However, the mechanisms for the cellular disposition of hesperetin and its sulfate metabolites are not fully established. In this study, disposition of hesperetin via the sulfonation pathway was investigated using human embryonic kidney (HEK) 293 cells overexpressing sulfotransferase 1A3. Two monosulfates, hesperetin-3'-O-sulfate (H-3'-S) and hesperetin-7-O-sulfate (H-7-S), were rapidly generated and excreted into the extracellular compartment upon incubation of the cells with hesperetin. Regiospecific sulfonation of hesperetin by the cell lysate followed the substrate inhibition kinetics (Vmax = 0.66 nmol/min per mg, Km = 12.9 μM, and Ksi= 58.1 μM for H-3'-S; Vmax = 0.29 nmol/min per mg, Km = 14.8 μM, and Ksi= 49.1 μM for H-7-S). The pan-multidrug resistance-associated protein (MRP) inhibitor MK-571 at 20 μM essentially abolished cellular excretion of both H-3'-S and H-7-S (the excretion activities were only 6% of the control), whereas the breast cancer resistance protein-selective inhibitor Ko143 had no effects on sulfate excretion. In addition, knockdown of MRP4 led to a substantial reduction (>47.1%; P transport by MRP4 according to the vesicular transport assay. Moreover, sulfonation of hesperetin and excretion of its metabolites were well characterized by a two-compartment pharmacokinetic model that integrated drug uptake and sulfonation with MRP4-mediated sulfate excretion. In conclusion, the exporter MRP4 controlled efflux transport of hesperetin sulfates in HEK293 cells. Due to significant expression in various organs/tissues (including the liver and kidney), MRP4 should be a determining factor for the elimination and body distribution of hesperetin sulfates.

  14. Role of Adenosine Receptor(s) in the Control of Vascular Tone in the Mouse Pudendal Artery.

    Science.gov (United States)

    Labazi, Hicham; Tilley, Stephen L; Ledent, Catherine; Mustafa, S Jamal

    2016-03-01

    Activation of adenosine receptors (ARs) has been implicated in the modulation of renal and cardiovascular systems, as well as erectile functions. Recent studies suggest that adenosine-mediated regulation of erectile function is mainly mediated through A2BAR activation. However, no studies have been conducted to determine the contribution of AR subtype in the regulation of the vascular tone of the pudendal artery (PA), the major artery supplying and controlling blood flow to the penis. Our aim was to characterize the contribution of AR subtypes and identify signaling mechanisms involved in adenosine-mediated vascular tone regulation in the PA. We used a DMT wire myograph for muscle tension measurements in isolated PAs from wild-type, A2AAR knockout, A2BAR knockout, and A2A/A2BAR double-knockout mice. Real-time reverse transcription-polymerase chain reaction was used to determine the expression of the AR subtypes. Data from our pharmacologic and genetic approaches suggest that AR activation-mediated vasodilation in the PA is mediated by both the A2AAR and A2BAR, whereas neither the A1AR nor A3AR play a role in vascular tone regulation of the PA. In addition, we showed that A2AAR- and A2BAR-mediated vasorelaxation requires activation of nitric oxide and potassium channels; however, only the A2AAR-mediated response requires protein kinase A activation. Our data are complemented by mRNA expression showing the expression of all AR subtypes with the exception of the A3AR. AR signaling in the PA may play an important role in mediating erection and represent a promising therapeutic option for the treatment of erectile dysfunction.

  15. The Effects of the Adenosine Receptor Antagonists on the Reverse of Cardiovascular Toxic Effects Induced by Citalopram In-Vivo Rat Model of Poisoning

    Science.gov (United States)

    Büyükdeligöz, Müjgan; Hocaoğlu, Nil; Oransay, Kubilay; Tunçok, Yeşim; Kalkan, Şule

    2015-01-01

    Background: Citalopram is a selective serotonin reuptake inhibitor that requires routine cardiac monitoring to prevent a toxic dose. Prolongation of the QT interval has been observed in acute citalopram poisoning. Our previous experimental study showed that citalopram may be lead to QT prolongation by stimulating adenosine A1 receptors without affecting the release of adenosine. Aims: We examined the effects of adenosine receptor antagonists in reversing the cardiovascular toxic effects induced by citalopram in rats. Study Design: Animal experimentation. Methods: Rats were divided into three groups randomly (n=7 for each group). Sodium cromoglycate (20 mg/kg) was administered to all rats to inhibit adenosine A3 receptor mast cell activation. Citalopram toxicity was achieved by citalopram infusion (4 mg/kg/min) for 20 minutes. After citalopram infusion, in the control group (Group 1), rats were given an infusion of dextrose solution for 60 minutes. In treatment groups, the selective adenosine A1 antagonist DPCPX (Group 2, 8-cyclopentyl-1,3-dipropylxanthine, 20 μg/kg/min) or the selective A2a antagonist CSC (Group 3, 8-(3-chlorostyryl)caffeine, 24 μg/kg/min) was infused for 60 minutes. Mean arterial pressure (MAP), heart rate (HR), QRS duration and QT interval measurements were followed during the experiment period. Statistical analysis was performed by ANOVA followed by Tukey’s multiple comparison tests. Results: Citalopram infusion reduced MAP and HR and prolonged the QT interval. It did not cause any significant difference in QRS duration in any group. When compared to the control group, DPCPX after citalopram infusion shortened the prolongation of the QT interval after 40, 50 and 60 minutes (p<0.01). DPCPX infusion shortened the prolongation of the QT interval at 60 minutes compared with the CSC group (p<0.05). CSC infusion shortened the prolongation of the QT at 60 minutes compared with the control group (p<0.05). Conclusion: DPCPX improved QT interval

  16. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  17. Ribosome-inactivating lectins with polynucleotide:adenosine glycosidase activity.

    Science.gov (United States)

    Battelli, M G; Barbieri, L; Bolognesi, A; Buonamici, L; Valbonesi, P; Polito, L; Van Damme, E J; Peumans, W J; Stirpe, F

    1997-05-26

    Lectins from Aegopodium podagraria (APA), Bryonia dioica (BDA), Galanthus nivalis (GNA), Iris hybrid (IRA) and Sambucus nigra (SNAI), and a new lectin-related protein from Sambucus nigra (SNLRP) were studied to ascertain whether they had the properties of ribosome-inactivating proteins (RIP). IRA and SNLRP inhibited protein synthesis by a cell-free system and, at much higher concentrations, by cells and had polynucleotide:adenosine glycosidase activity, thus behaving like non-toxic type 2 (two chain) RIP. APA and SNAI had much less activity, and BDA and GNA did not inhibit protein synthesis.

  18. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex.

    Science.gov (United States)

    Nguyen, Michael D; Lee, Scott T; Ross, Ashley E; Ryals, Matthew; Choudhry, Vishesh I; Venton, B Jill

    2014-01-01

    Adenosine is a neuroprotective agent that inhibits neuronal activity and modulates neurotransmission. Previous research has shown adenosine gradually accumulates during pathologies such as stroke and regulates neurotransmission on the minute-to-hour time scale. Our lab developed a method using carbon-fiber microelectrodes to directly measure adenosine changes on a sub-second time scale with fast-scan cyclic voltammetry (FSCV). Recently, adenosine release lasting a couple of seconds has been found in murine spinal cord slices. In this study, we characterized spontaneous, transient adenosine release in vivo, in the caudate-putamen and prefrontal cortex of anesthetized rats. The average concentration of adenosine release was 0.17±0.01 µM in the caudate and 0.19±0.01 µM in the prefrontal cortex, although the range was large, from 0.04 to 3.2 µM. The average duration of spontaneous adenosine release was 2.9±0.1 seconds and 2.8±0.1 seconds in the caudate and prefrontal cortex, respectively. The concentration and number of transients detected do not change over a four hour period, suggesting spontaneous events are not caused by electrode implantation. The frequency of adenosine transients was higher in the prefrontal cortex than the caudate-putamen and was modulated by A1 receptors. The A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 6 mg/kg i.p.) increased the frequency of spontaneous adenosine release, while the A1 agonist CPA (N(6)-cyclopentyladenosine, 1 mg/kg i.p.) decreased the frequency. These findings are a paradigm shift for understanding the time course of adenosine signaling, demonstrating that there is a rapid mode of adenosine signaling that could cause transient, local neuromodulation.

  19. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  20. Effect of phentolamine on the hyperemic response to adenosine in patients with microvascular disease.

    Science.gov (United States)

    Aarnoudse, Wilbert; Geven, Maartje; Barbato, Emanuele; Botman, Kees-joost; De Bruyne, Bernard; Pijls, Nico H J

    2005-12-15

    For accurate measurement of the fractional flow reserve (FFR) of the myocardium, the presence of maximum hyperemia is of paramount importance. It has been suggested that the hyperemic effect of the conventionally used hyperemic stimulus, adenosine, could be submaximal in patients who have microvascular dysfunction and that adding alpha-blocking agents could augment the hyperemic response in these patients. We studied the effect of the nonselective alpha-blocking agent phentolamine, which was administered in addition to adenosine after achieving hyperemia, in patients who had microvascular disease and those who did not. Thirty patients who were referred for percutaneous coronary intervention were selected. Of these 30 patients, 15 had strong indications for microvascular disease and 15 did not. FFR was measured using intracoronary adenosine, intravenous adenosine, and intracoronary papaverine before and after intracoronary administration of the nonselective alpha blocker phentolamine. In patients who did not have microvascular disease, no differences in hyperemic response to adenosine were noted, whether or not alpha blockade was given before adenosine administration; FFR levels before and after phentolamine were 0.76 and 0.75, respectively, using intracoronary adenosine (p = 0.10) and 0.75 and 0.74, respectively, using intravenous adenosine (p = 0.20). In contrast, in patients who had microvascular disease, some increase in hyperemic response was observed after administration of phentolamine; FFR levels decreased from 0.74 to 0.70 using intracoronary adenosine (p = 0.003) and from 0.75 to 0.72 using intravenous adenosine (p = 0.04). Although statistically significant, the observed further decrease in microvascular resistance after addition of phentolamine was small and did not affect clinical decision making in any patient. In conclusion, when measuring FFR, routinely adding an alpha-blocking agent to adenosine does not affect clinical decision making.

  1. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea

    Science.gov (United States)

    Brown, C.M.; Collis, M.G.

    1982-01-01

    1 An attempt was made to determine whether the extracellular adenosine receptor that mediates relaxation in the guinea-pig trachea is of the A1/Ri or A2/Ra subtype. 2 Dose-response curves to adenosine and a number of 5′- and N6-substituted analogues were constructed for the isolated guinea-pig trachea, contracted with carbachol. 3 The 5′-substituted analogues of adenosine were the most potent compounds tested, the order of potency being 5′-N-cyclopropylcarboxamide adenosine (NCPCA) > 5′-N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine > L-N6-phenylisopropyladenosine (L-PIA) > adenosine > D-N6-phenylisopropyladenosine (D-PIA). 4 The difference in potency between the stereoisomers D- and L-PIA on the isolated trachea was at the most five fold. 5 Responses to low doses of adenosine and its analogues were attenuated after treatment with either theophylline or 8-phenyltheophylline. The responses to 2-chloroadenosine were affected to a lesser extent than were those to the other purines. 6 Adenosine transport inhibitors, dipyridamole and dilazep, potentiated responses to adenosine, did not affect those to NCPCA, NECA, L-PIA and D-PIA but significantly reduced the responses to high doses of 2-chloroadenosine. 7 Relaxations evoked by 9-β-D-xylofuranosyladenosine which can activate intracellular but not extracellular adenosine receptors, were attenuated by dipyridamole but unaffected by 8-phenyltheophylline. 8 The results support the existence of an extracellular A2/Ra subtype of adenosine receptor and an intracellular purine-sensitive site, both of which mediate relaxation. PMID:6286021

  2. Activation of Adenosine Receptor A2A Increases HSC Proliferation and Inhibits Death and Senescence by Down-regulation of p53 and Rb

    Directory of Open Access Journals (Sweden)

    Md. Kaimul eAhsan

    2014-04-01

    Full Text Available Background & Aims: During fibrosis hepatic stellate cells (HSC undergo activation, proliferation and senescence but the regulation of these important processes is poorly understood. The adenosine A2A receptor (A2A is known to be present on HSC, and its activation results in liver fibrosis. In this study, we tested if A2A has a role in the regulation of HSC proliferation, apoptosis, senescence, and the relevant molecular mechanism.Methods: The ability of adenosine to regulate p53 and Rb protein levels, proliferation, apoptosis and senescence was tested in the human HSC cell line LX-2 and rat primary HSC.Results: Adenosine receptor activation down-regulates p53 and Rb protein levels, increases BrdU incorporation and increases cell survival in LX-2 cells and in primary rat HSC. These effects of NECA were reproduced by an adenosine A2A receptor specific agonist (CGS21680 and blocked by a specific antagonist (ZM241385. By day twenty-one of culture primary rat HSC entered senescence and expressed -gal which was significantly inhibited by NECA. Furthermore, NECA induced down regulation of p53 and Rb and Rac1, and decreased phosphorylation of p44-42 MAP Kinase in LX-2 cells and primary rat HSC. These effects were reproduced by the cAMP analog 8-Bromo-cAMP, and the adenylyl cyclase activator forskolin, and were blocked by PKA inhibitors.Conclusions: These results demonstrate that A2A receptor regulates a number of HSC fate decisions and induces greater HSC proliferation, reduces apoptosis and senescence by decreasing p53 and Rb through cAMP-PKA/Rac1/p38 MAPK pathway. This provides a mechanism for adenosine induced HSC regulation and liver fibrosis.

  3. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion and anxiety

    Directory of Open Access Journals (Sweden)

    Joana E Coelho

    2014-06-01

    Full Text Available Adenosine A2A receptors (A2AR are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR] and aged-matched wild-types (WT of the same strain (Sprague-Dawley were studied. The forced swimming test (FST, sucrose preference test (SPT and the open-field test (OFT were performed to evaluate behavioral despair, anhedonia, locomotion and anxiety. Tg(CaMKII-hA2AR animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR rats exhibit depressive-like behavior, hyperlocomotion and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress and Alzheimer’s disease.

  4. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample.

    Directory of Open Access Journals (Sweden)

    Diego Robles Mazzotti

    Full Text Available Slow wave oscillations in the electroencephalogram (EEG during sleep may reflect both sleep need and intensity, which are implied in homeostatic regulation. Adenosine is strongly implicated in sleep homeostasis, and a single nucleotide polymorphism in the adenosine deaminase gene (ADA G22A has been associated with deeper and more efficient sleep. The present study verified the association between the ADA G22A polymorphism and changes in sleep EEG spectral power (from C3-A2, C4-A1, O1-A2, and O2-A1 derivations in the Epidemiologic Sleep Study (EPISONO sample from São Paulo, Brazil. Eight-hundred individuals were subjected to full-night polysomnography and ADA G22A genotyping. Spectral analysis of the EEG was carried out in all individuals using fast Fourier transformation of the signals from each EEG electrode. The genotype groups were compared in the whole sample and in a subsample of 120 individuals matched according to ADA genotype for age, gender, body mass index, caffeine intake status, presence of sleep disturbance, and sleep-disturbing medication. When compared with homozygous GG genotype carriers, A allele carriers showed higher delta spectral power in Stage 1 and Stages 3+4 of sleep, and increased theta spectral power in Stages 1, 2 and REM sleep. These changes were seen both in the whole sample and in the matched subset. The higher EEG spectral power indicates that the sleep of individuals carrying the A allele may be more intense. Therefore, this polymorphism may be an important source of variation in sleep homeostasis in humans, through modulation of specific components of the sleep EEG.

  5. An improved design of the kissing complex-based aptasensor for the detection of adenosine.

    Science.gov (United States)

    Goux, Emma; Lisi, Samuele; Ravelet, Corinne; Durand, Guillaume; Fiore, Emmanuelle; Dausse, Eric; Toulmé, Jean-Jacques; Peyrin, Eric

    2015-08-01

    We very recently reported a novel aptamer biosensing concept based on a dual recognition mechanism originating from the small target-induced formation of a functional nucleic acid assembly. This assembly is constituted of a hairpin aptamer (named aptaswitch) for which the apical loop of the parent aptamer is substituted by a short RNA sequence prone to loop-loop interactions. It can switch between folded and unfolded states in the presence and in the absence of targets, respectively. The apical loop of the folded aptaswitch is then recognized by a second hairpin (called aptakiss), forming a kissing complex that signals the presence of the target. In the present work, we focus on the design improvement of this biosensing platform by using a previously described adenosine-adenoswitch couple as a model system and a fluorophore-labeled aptakiss as a reporting probe for fluorescence anisotropy (FA) detection. In the first step, the initially described adenoswitch was re-engineered to optimally convert the unfolded structure into the active stem-loop form upon adenosine binding. To further improve the assay performance, a blocking DNA oligonucleotide of the adenoswitch sequence was subsequently introduced into the assay scheme. This blocking strategy led to a significant increase in the FA response by reducing the background signal generated by the undesired binding of the free adenoswitch to the aptakiss probe. We obtained a detection limit which is fivefold lower than that observed with the previously reported kissing complex-based sensor. Finally, the optimized biosensing platform was successfully applied under biologically relevant conditions, i.e., diluted human serum, suggesting the potential practical applicability of the kissing sensing approach.

  6. Different Modulating Effects of Adenosine on Neonatal and Adult Polymorphonuclear Leukocytes

    Directory of Open Access Journals (Sweden)

    Pei-Chen Hou

    2012-01-01

    Full Text Available Polymorphonuclear leukocytes (PMNs are the major leukocytes in the circulation and play an important role in host defense. Intact PMN functions include adhesion, migration, phagocytosis, and reactive oxygen species (ROS release. It has been known for a long time that adenosine can function as a modulator of adult PMN functions. Neonatal plasma has a higher adenosine level than that of adults; however, little is known about the modulating effects of adenosine on neonatal PMNs. The aim of this study was to investigate the effects of adenosine on neonatal PMN functions. We found that neonatal PMNs had impaired adhesion, chemotaxis, and ROS production abilities, but not phagocytosis compared to adult PMNs. As with adult PMNs, adenosine could suppress the CD11b expressions of neonatal PMNs, but had no significant suppressive effect on phagocytosis. In contrast to adult PMNs, adenosine did not significantly suppress chemotaxis and ROS production of neonatal PMNs. This may be due to impaired phagocyte reactions and a poor neonatal PMN response to adenosine. Adenosine may not be a good strategy for the treatment of neonatal sepsis because of impaired phagocyte reactions and poor response.

  7. The effect of circulating adenosine on cerebral haemodynamics and headache generation in healthy subjects

    DEFF Research Database (Denmark)

    Birk, S; Petersen, K.A.; Kruuse, Christina Rostrup

    2005-01-01

    been investigated in man and reports regarding the effect of intravenous adenosine on cerebral blood flow are conflicting. Twelve healthy participants received adenosine 80, 120 microg kg(-1) min(-1) and placebo intravenously for 20 min, in a double-blind, three-way, crossover, randomized design...

  8. Genetically Controlled Upregulation of Adenosine A(1) Receptor Expression Enhances the Survival of Primary Cortical Neurons

    NARCIS (Netherlands)

    Serchov, Tsvetan; Atas, Hasan-Cem; Normann, Claus; van Calker, Dietrich; Biber, Knut

    2012-01-01

    Adenosine has a key endogenous neuroprotective role in the brain, predominantly mediated by the adenosine A(1) receptor (A(1)R). This has been mainly explored using pharmacological tools and/or receptor knockout mice strains. It has long been suggested that the neuroprotective effects of A(1)R are i

  9. Extracellular ATP and adenosine : The Yin and Yang in immune responses?

    NARCIS (Netherlands)

    Faas, M. M.; Saez, T.; de Vos, P.

    Extracellular adenosine 50-triphosphate (ATP) and adenosine molecules are intimately involved in immune responses. ATP is mostly a pro-inflammatory molecule and is released during hypoxic condition and by necrotic cells, as well as by activated immune cells and endothelial cells. However, under

  10. Nafion-CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2012-07-07

    Adenosine is a neuromodulator that regulates neurotransmission. Adenosine can be monitored using fast-scan cyclic voltammetry at carbon-fiber microelectrodes and ATP is a possible interferent in vivo because the electroactive moiety, adenine, is the same for both molecules. In this study, we investigated carbon-fiber microelectrodes coated with Nafion and carbon nanotubes (CNTs) to enhance the sensitivity of adenosine and decrease interference by ATP. Electrodes coated in 0.05 mg mL(-1) CNTs in Nafion had a 4.2 ± 0.2 fold increase in current for adenosine, twice as large as for Nafion alone. Nafion-CNT electrodes were 6 times more sensitive to adenosine than ATP. The Nafion-CNT coating did not slow the temporal response of the electrode. Comparing different purine bases shows that the presence of an amine group enhances sensitivity and that purines with carbonyl groups, such as guanine and hypoxanthine, do not have as great an enhancement after Nafion-CNT coating. The ribose group provides additional sensitivity enhancement for adenosine over adenine. The Nafion-CNT modified electrodes exhibited significantly more current for adenosine than ATP in brain slices. Therefore, Nafion-CNT modified electrodes are useful for sensitive, selective detection of adenosine in biological samples.

  11. Treatment of paroxysmal supraventricular tachycardia with intravenous injection of adenosine triphosphate.

    OpenAIRE

    Saito, D.; Ueeda, M; Abe, Y.; Tani, H; Nakatsu, T.; Yoshida, H.; Haraoka, S; Nagashima, H

    1986-01-01

    Intravenous adenosine triphosphate rapidly terminated all 11 episodes of paroxysmal supraventricular tachycardia in 10 patients. Eight patients reported side effects but these resolved within 20 seconds and did not require treatment. Adenosine triphosphate is a suitable agent for the rapid termination of paroxysmal supraventricular tachycardia.

  12. Adenosine testing after cryoballoon pulmonary vein isolation improves long-term clinical outcome

    NARCIS (Netherlands)

    Y. van Belle (Yves); P. Janse (Petter); N. de Groot (Natasja); W. Anné (Wim); D.A.M.J. Theuns (Dominic); L.J.L.M. Jordaens (Luc)

    2012-01-01

    textabstractBackground Adenosine infusion after pulmonary vein isolation (PVI) with radiofrequency energy reveals dormant muscular sleeves and predicts atrial fibrillation (AF) recurrence. The aim of our study was to determine whether adenosine could reveal dormant PV sleeves after cryoballoon isola

  13. Adenosine Amine Congener as a Cochlear Rescue Agent

    Directory of Open Access Journals (Sweden)

    Srdjan M. Vlajkovic

    2014-01-01

    Full Text Available We have previously shown that adenosine amine congener (ADAC, a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. Methods. ADAC (25–300 μg/kg was administered intraperitoneally to Wistar rats (8–10 weeks old at intervals (6–72 hours after exposure to traumatic noise (8–16 kHz, 110 dB sound pressure level, 2 hours. Hearing sensitivity was assessed using auditory brainstem responses (ABR before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous administration. Results. ADAC was most effective in the first 24 hours after noise exposure at doses >50 μg/kg, providing up to 21 dB protection (averaged across 8–28 kHz. Pharmacokinetic studies demonstrated a short (5 min half-life of ADAC in plasma after intravenous administration without detection of degradation products. Conclusion. Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment.

  14. Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Peter A Keyel

    Full Text Available Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA, which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation.

  15. Adenosine signaling and the energetic costs of induced immunity.

    Directory of Open Access Journals (Sweden)

    Brian P Lazzaro

    2015-04-01

    Full Text Available Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected.

  16. Adenosine Deaminase Deficiency - More Than Just an Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Kathryn Victoria Whitmore

    2016-08-01

    Full Text Available Adenosine deaminase (ADA deficiency is best known as a form of severe combined immunodeficiency (SCID which results from mutations in the gene encoding adenosine deaminase. Affected patients present with clinical and immunological manifestations typical of a severe combined immunodeficiency. Therapies are currently available that can that target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences.

  17. Novel trypanocidal analogs of 5'-(methylthio)-adenosine.

    Science.gov (United States)

    Sufrin, Janice R; Spiess, Arthur J; Marasco, Canio J; Rattendi, Donna; Bacchi, Cyrus J

    2008-01-01

    The purine nucleoside 5'-deoxy-5'-(hydroxyethylthio)-adenosine (HETA) is an analog of the polyamine pathway metabolite 5'-deoxy-5'-(methylthio)-adenosine (MTA). HETA is a lead structure for the ongoing development of selectively targeted trypanocidal agents. Thirteen novel HETA analogs were synthesized and examined for their in vitro trypanocidal activities against bloodstream forms of Trypanosoma brucei brucei LAB 110 EATRO and at least one drug-resistant Trypanosoma brucei rhodesiense clinical isolate. New compounds were also assessed in a cell-free assay for their activities as substrates of trypanosome MTA phosphorylase. The most potent analog in this group was 5'-deoxy-5'-(hydroxyethylthio)-tubercidin, whose in vitro cytotoxicity (50% inhibitory concentration [IC50], 10 nM) is 45 times greater than that of HETA (IC50, 450 nM) against pentamidine-resistant clinical isolate KETRI 269. Structure-activity analyses indicate that the enzymatic cleavage of HETA analogs by trypanosome MTA phosphorylase is not an absolute requirement for trypanocidal activity. This suggests that additional biochemical mechanisms are associated with the trypanocidal effects of HETA and its analogs.

  18. Reconstruction of the adenosine system by bone marrow-derived mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Huicong Kang; Qi Hu; Xiaoyan Liu; Yinhe Liu; Feng Xu; Xiang Li; Suiqiang Zhu

    2012-01-01

    In the present study, we transplanted bone marrow-derived mesenchymal stem cells into the CA3 area of the hippocampus of chronic epilepsy rats kindled by lithium chloride-pilocarpine. Immunofluorescence and western blotting revealed an increase in adenosine A1 receptor expression and a decrease in adenosine A2a receptor expression in the brain tissues of epileptic rats 3 months after transplantation. Moreover, the imbalance in the A1 adenosine receptor/A2a adenosine receptor ratio was improved. Electroencephalograms showed that frequency and amplitude of spikes in the hippocampus and frontal lobe were reduced. These results suggested that mesenchymal stem cell transplantation can reconstruct the normal function of the adenosine system in the brain and greatly improve epileptiform discharges.

  19. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage:the neuroprotective effects of adenosine triphosphate against apoptosis

    Institute of Scientific and Technical Information of China (English)

    Na Lu; Baoying Wang; Xiaohui Deng; Honggang Zhao; Yong Wang; Dongliang Li

    2014-01-01

    After hypoxia, ischemia, or inlfammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, lfow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SY5Y cells. The enhanced autophagy ifrst appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury.

  20. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    Science.gov (United States)

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production.

  1. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine.

    Science.gov (United States)

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-04-01

    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma.

  2. Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2014-08-05

    Fast-scan cyclic voltammetry (FSCV) is an electrochemistry technique which allows subsecond detection of neurotransmitters in vivo. Adenosine detection using FSCV has become increasingly popular but can be difficult because of interfering agents which oxidize at or near the same potential as adenosine. Triangle shaped waveforms are traditionally used for FSCV, but modified waveforms have been introduced to maximize analyte sensitivity and provide stability at high scan rates. Here, a modified sawhorse waveform was used to maximize the time for adenosine oxidation and to manipulate the shapes of cyclic voltammograms (CVs) of analytes which oxidize at the switching potential. The optimized waveform consists of scanning at 400 V/s from -0.4 to 1.35 V and holding briefly for 1.0 ms followed by a ramp back down to -0.4 V. This waveform allows the use of a lower switching potential for adenosine detection. Hydrogen peroxide and ATP also oxidize at the switching potential and can interfere with adenosine measurements in vivo; however, their CVs were altered with the sawhorse waveform and they could be distinguished from adenosine. Principal component analysis (PCA) was used to determine that the sawhorse waveform was better than the triangle waveform at discriminating between adenosine, hydrogen peroxide, and ATP. In slices, mechanically evoked adenosine was identified with PCA and changes in the ratio of ATP to adenosine were observed after manipulation of ATP metabolism by POM-1. The sawhorse waveform is useful for adenosine, hydrogen peroxide, and ATP discrimination and will facilitate more confident measurements of these analytes in vivo.

  3. The Regulation of Skeletal Muscle Active Hyperemia: The Differential Role of Adenosine in Muscles of Varied Fiber Types

    Science.gov (United States)

    1986-04-21

    response. Proctor (1984) found theophylline, a competitiv~ antagonist of adenosine, attenuated the response in the low-oxidative hamster cremaster ...exogenously applied adenosine in hamster cremaster muscle but did not affect the vascular response to muscle stimulation. Differences in the exact drugs...found that the addition of adenosine deaminase to the suffusion solution adjacent to the arterioles of the transilluminated hamster cremaster muscle

  4. Induction of oral tremor in mice by the acetylcholinesterase inhibitor galantamine: Reversal with adenosine A2A antagonism.

    Science.gov (United States)

    Podurgiel, Samantha J; Spencer, Tiahna; Kovner, Rotem; Baqi, Younis; Müller, Christa E; Correa, Merce; Salamone, John D

    2016-01-01

    Tremulous jaw movements (TJMs) have become a commonly used rat model of Parkinsonian tremor. TJMs can be induced by a number of neurochemical conditions that parallel those seen in human Parkinsonism, including DA depletion, DA antagonism, and cholinomimetic administration, and can be reduced by various antiparkinsonian agents. TJMs typically occur in bursts with the peak frequency in the range of 3-7.5 Hz, which is similar to the Parkinsonian tremor frequency range. While the vast majority of this work has been done using rats, current efforts have focused on extending the TJM model to mice. The aim of the present studies was to establish a mouse model of Parkinsonian resting tremor using the anticholinesterase galantamine, and to investigate the effects of adenosine A2A antagonism on galantamine-induced TJMs. Galantamine significantly induced TJMs in a dose-dependent manner (0.5, 1.0, 1.5, 2.0, 2.5 mg/kg IP). The TJMs tended to occur in bursts in the 3-7.5 Hz frequency range, with a peak frequency of approximately 6 Hz. Systemic administration of the adenosine A2A antagonist MSX-3 (2.5, 5.0, 10.0 mg/kg) significantly attenuated galantamine-induced TJMs. Co-administration of MSX-3 also altered the local frequency of galantamine-induced TJMs, decreasing the peak frequency from approximately 6 Hz to 5 Hz, though the vast majority of TJMs remained in the frequency range characteristic of Parkinsonian resting tremor. These results indicate that adenosine A2A antagonism is capable of reducing anticholinesterase-induced TJMs in mice. Extending the TJM model to mice gives researchers an additional avenue for investigating drug-induced Parkinsonism and tremorogenesis, and could be a useful addition to the study of motor abnormalities observed in mouse genetic models of Parkinsonism.

  5. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities.

    Science.gov (United States)

    Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A

    2013-08-01

    Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.

  6. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep.

    Science.gov (United States)

    Rétey, J V; Adam, M; Khatami, R; Luhmann, U F O; Jung, H H; Berger, W; Landolt, H-P

    2007-05-01

    Caffeine is the most widely used stimulant in Western countries. Some people voluntarily reduce caffeine consumption because it impairs the quality of their sleep. Studies in mice revealed that the disruption of sleep after caffeine is mediated by blockade of adenosine A2A receptors. Here we show in humans that (1) habitual caffeine consumption is associated with reduced sleep quality in self-rated caffeine-sensitive individuals, but not in caffeine-insensitive individuals; (2) the distribution of distinct c.1083T>C genotypes of the adenosine A2A receptor gene (ADORA2A) differs between caffeine-sensitive and -insensitive adults; and (3) the ADORA2A c.1083T>C genotype determines how closely the caffeine-induced changes in brain electrical activity during sleep resemble the alterations observed in patients with insomnia. These data demonstrate a role of adenosine A2A receptors for sleep in humans, and suggest that a common variation in ADORA2A contributes to subjective and objective responses to caffeine on sleep.

  7. Direct Monitoring of Nucleotide Turnover in Human Cell Extracts and Cells by Fluorogenic ATP Analogs.

    Science.gov (United States)

    Hacker, Stephan M; Buntz, Annette; Zumbusch, Andreas; Marx, Andreas

    2015-11-20

    Nucleotides containing adenosine play pivotal roles in every living cell. Adenosine triphosphate (ATP), for example, is the universal energy currency, and ATP-consuming processes also contribute to posttranslational protein modifications. Nevertheless, detecting the turnover of adenosine nucleotides in the complex setting of a cell remains challenging. Here, we demonstrate the use of fluorogenic analogs of ATP and adenosine tetraphosphate to study nucleotide hydrolysis in lysates of human cell lines and in intact human cells. We found that the adenosine triphosphate analog is completely stable in lysates of human cell lines, whereas the adenosine tetraphosphate analog is rapidly turned over. The observed activity in human cell lysates can be assigned to a single enzyme, namely, the human diadenosine tetraphosphate hydrolase NudT2. Since NudT2 has been shown to be a prognostic factor for breast cancer, the adenosine tetraphosphate analog might contribute to a better understanding of its involvement in cancerogenesis and allow the straightforward screening for inhibitors. Studying hydrolysis of the analogs in intact cells, we found that electroporation is a suitable method to deliver nucleotide analogs into the cytoplasm and show that high FRET efficiencies can be detected directly after internalization. Time-dependent experiments reveal that adenosine triphosphate and tetraphosphate analogs are both processed in the cellular environment. This study demonstrates that these nucleotide analogs indeed bear the potential to be powerful tools for the exploration of nucleotide turnover in the context of whole cells.

  8. Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip.

    Science.gov (United States)

    Herland, Anna; van der Meer, Andries D; FitzGerald, Edward A; Park, Tae-Eun; Sleeboom, Jelle J F; Ingber, Donald E

    2016-01-01

    Neurovascular inflammation is a major contributor to many neurological disorders, but modeling these processes in vitro has proven to be difficult. Here, we microengineered a three-dimensional (3D) model of the human blood-brain barrier (BBB) within a microfluidic chip by creating a cylindrical collagen gel containing a central hollow lumen inside a microchannel, culturing primary human brain microvascular endothelial cells on the gel's inner surface, and flowing medium through the lumen. Studies were carried out with the engineered microvessel containing endothelium in the presence or absence of either primary human brain pericytes beneath the endothelium or primary human brain astrocytes within the surrounding collagen gel to explore the ability of this simplified model to identify distinct contributions of these supporting cells to the neuroinflammatory response. This human 3D BBB-on-a-chip exhibited barrier permeability similar to that observed in other in vitro BBB models created with non-human cells, and when stimulated with the inflammatory trigger, tumor necrosis factor-alpha (TNF-α), different secretion profiles for granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed depending on the presence of astrocytes or pericytes. Importantly, the levels of these responses detected in the 3D BBB chip were significantly greater than when the same cells were co-cultured in static Transwell plates. Thus, as G-CSF and IL-6 have been reported to play important roles in neuroprotection and neuroactivation in vivo, this 3D BBB chip potentially offers a new method to study human neurovascular function and inflammation in vitro, and to identify physiological contributions of individual cell types.

  9. Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip

    Science.gov (United States)

    FitzGerald, Edward A.; Park, Tae-Eun; Sleeboom, Jelle J. F.; Ingber, Donald E.

    2016-01-01

    Neurovascular inflammation is a major contributor to many neurological disorders, but modeling these processes in vitro has proven to be difficult. Here, we microengineered a three-dimensional (3D) model of the human blood-brain barrier (BBB) within a microfluidic chip by creating a cylindrical collagen gel containing a central hollow lumen inside a microchannel, culturing primary human brain microvascular endothelial cells on the gel’s inner surface, and flowing medium through the lumen. Studies were carried out with the engineered microvessel containing endothelium in the presence or absence of either primary human brain pericytes beneath the endothelium or primary human brain astrocytes within the surrounding collagen gel to explore the ability of this simplified model to identify distinct contributions of these supporting cells to the neuroinflammatory response. This human 3D BBB-on-a-chip exhibited barrier permeability similar to that observed in other in vitro BBB models created with non-human cells, and when stimulated with the inflammatory trigger, tumor necrosis factor-alpha (TNF-α), different secretion profiles for granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed depending on the presence of astrocytes or pericytes. Importantly, the levels of these responses detected in the 3D BBB chip were significantly greater than when the same cells were co-cultured in static Transwell plates. Thus, as G-CSF and IL-6 have been reported to play important roles in neuroprotection and neuroactivation in vivo, this 3D BBB chip potentially offers a new method to study human neurovascular function and inflammation in vitro, and to identify physiological contributions of individual cell types. PMID:26930059

  10. 阻断氯通道对人喉癌Hep-2细胞增殖及其RNA编辑酶1表达的影响%Effects of Blocking Chloride Channel on Proliferation and Expression of RNA-dependent Adenosine Deaminase 1 for Human Larynx Cancer Hep-2 Cell

    Institute of Scientific and Technical Information of China (English)

    余文发; 赵玉林; 董明敏

    2008-01-01

    目的 研究氯离子通道阻断荆5-硝基-2-(3-苯丙氨基)苯甲酸(NPPB)对人喉癌细胞系Hep-2细胞增殖及其RNA编辑酶1(RNA-dependent adenosine deaminase 1,ADARI)表达的影响.方法 以HeD-2细胞为研究对象,采用四甲基偶氮唑蓝(MTT)比色法检测NPPB对Hep-2细胞增殖的影响;用逆转录一聚合酶链反应(RT-PCR)检测氯通道阻断前后Hep-2细胞ADARI mRNA表达的变化.结果 NPPB浓度依赖性地抑制Hep-2细胞增殖,NPPB阻断Hep-2氯通道前后ADARl mRNA表达量存在显著性差异.结论 阻断Hep-2细胞氯通道,可抑制Hep-2细胞增殖;Hep-2细胞RNA编辑酶1的表达可能和氯通道密切相关.

  11. Adenosine-5'-phosphosulfate kinase is essential for Arabidopsis viability.

    Science.gov (United States)

    Mugford, Sarah G; Matthewman, Colette A; Hill, Lionel; Kopriva, Stanislav

    2010-01-04

    In Arabidopsis thaliana, adenosine-5'-phosphosulfate kinase (APK) provides activated sulfate for sulfation of secondary metabolites, including the glucosinolates. We have successfully isolated three of the four possible triple homozygous mutant combinations of this family. The APK1 isoform alone was sufficient to maintain WT levels of growth and development. Analysis of apk1 apk2 apk3 and apk1 apk3 apk4 mutants suggests that APK3 and APK4 are functionally redundant, despite being located in cytosol and plastids, respectively. We were, however, unable to isolate apk1 apk3 apk4 mutants, most probably because the apk1 apk3 apk4 triple mutant combination is pollen lethal. Therefore, we conclude that APS kinase is essential for plant reproduction and viability.

  12. Adenosine Monophosphate-Based Detection of Bacterial Spores

    Science.gov (United States)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  13. The Role of Adenosine in Pulmonary Vein Isolation: A Critical Review

    Directory of Open Access Journals (Sweden)

    Paolo D. Dallaglio

    2016-01-01

    Full Text Available The cornerstone of atrial fibrillation (AF ablation is pulmonary vein isolation (PVI, which can be achieved in more than 95% of patients at the end of the procedure. However, AF recurrence rates remain high and are related to recovery of PV conduction. Adenosine testing is used to unmask dormant pulmonary vein conduction (DC. The aim of this study is to review the available literature addressing the role of adenosine testing and determine the impact of ablation at sites of PV reconnection on freedom from AF. Adenosine infusion, by restoring the excitability threshold, unmasks reversible injury that could lead to recovery of PV conduction. The studies included in this review suggest that adenosine is useful to unmask nontransmural lesions at risk of reconnection and that further ablation at sites of DC is associated with improvement in freedom from AF. Nevertheless it has been demonstrated that adenosine is not able to predict all veins at risk of later reconnection, which means that veins without DC are not necessarily at low risk. The role of the waiting period in the setting of adenosine testing has also been analyzed, suggesting that in the acute phase adenosine use should be accompanied by enough waiting time.

  14. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells.

    Science.gov (United States)

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B

    2009-04-15

    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  15. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    Energy Technology Data Exchange (ETDEWEB)

    Schousboe, A.; Frandsen, A.; Drejer, J. (Univ. of Copenhagen (Denmark))

    1989-09-01

    Evoked release of ({sup 3}H)-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and (3H)-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP.

  16. Role of adenosine signalling and metabolism in β-cell regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Olov, E-mail: olov.andersson@ki.se

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  17. 腺苷及其衍生物在眼科应用的研究进展%Progress in research of adenosine and its biological products in ophthalmology

    Institute of Scientific and Technical Information of China (English)

    于军; 钟一声

    2011-01-01

    腺苷是机体内一种重要的生物活性物质,其广泛存在于细胞内液和细胞外液中。在生理状态下,细胞内外的腺苷浓度较低,但在应激情况下,如炎症、缺血、缺氧、创伤、疼痛等,机体内腺苷浓度会大幅度上升,广泛参与多种病理变化过程。腺苷受体具有A1、A2A、A2B、A3 4种亚型。腺苷通过其受体调控细胞的各种生理功能。目前研究发现腺苷在机体的中枢神经系统、心血管系统、凝血系统等发挥重要作用。近几年来,腺苷在眼部,特别是青光眼、视网膜疾病治疗方面的作用受到广泛关注。腺苷在眼部的作用表现为调节眼压、抑制视网膜新生血管、舒张视网膜血管、调节视网膜神经传导、保护视网膜光感受器和视网膜神经节细胞(RGCs)、抑制炎症反应等。就腺苷和其受体、生物制剂的研究进展及其在眼科的应用前景进行综述。%Adenosine is an important biological substance in the body. It exists extensively in intracellular and extracellular tissues. In physiological condition, adenosine remains at very low level intissue. However, under stress such as inflammation, ischemia, hypoxia, trauma, or pain etc. the adenosine concentration will be elevated dramatically,indicating that adenosine participates in multiple histopathological processes. Adenosine is a natural chemical messenger that binds to four subtypes( A1, A2A, A2B, A3 ) of adenosine receptors and by that, it regulates multiple kinds of physiological functions. Studies found that adenosine plays an important role in the central nervous system, cardiovascular system and coagulation system. In recent years, adenosine has been seen as an attractive option to improve the treatment of glaucoma and retinal diseases. The effects of adenosine in ophthalmology were as follows: adjusting intraocular pressure, inhibiting retinal angiogenesis, dilating retinal blood vessels, regulating retinal

  18. Fine mapping and functional activity of the adenosine deaminase origin in murine embryonic fibroblasts.

    Science.gov (United States)

    Sibani, Sahar; Rampakakis, Emmanouil; Di Paola, Domenic; Zannis-Hadjopoulos, Maria

    2008-06-01

    DNA replication initiates at origins within the genome. The late-firing murine adenosine deaminase (mAdA) origin is located within a 2 kb fragment of DNA, making it difficult to examine by realtime technology. In this study, fine mapping of the mAdA region by measuring the abundance of nascent strand DNA identified two origins, mAdA-1 and mAdA-C, located 397 bp apart from each other. Both origins conferred autonomous replication to plasmids transfected in murine embryonic fibroblasts (MEFs), and exhibited similar activities in vivo and in vitro. Furthermore, both were able to recruit the DNA replication initiator proteins Cdc6 and Ku in vitro, similar to other bona fide replication origins. When tested in a murine Ku80(-/-) cell line, both origins exhibited replication activities comparable to those observed in wildtype cells, as did the hypoxanthine-guanine phosphoribosyltransferase (HPRT) and c-myc origins. This contrasts with previously published studies using Ku80-deficient human cells lines and suggests differences in the mechanism of initiation of DNA replication between the murine and human systems.

  19. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Nakazawa, Taisuke; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2008-02-01

    Adenosine is a potent vasodilator of retinal blood vessels and is implicated to be a major regulator of retinal blood flow during metabolic stress, but little is known about the impact of diabetes on the role of adenosine in regulation of retinal hemodynamics. Therefore, we examined how diabetes affects adenosine-induced vasodilation of retinal arterioles. Male Wistar rats were treated with streptozotocin (80 mg/kg, intraperitoneally), and experiments were performed 6-8 weeks later. Rats were treated with tetrodotoxin (50 microg/kg, intravenously [i.v.]) to eliminate any nerve activity and prevent movement of the eye and infused with methoxamine continuously to maintain adequate systemic circulation. Fundus images were captured with a digital camera that was equipped with a special objective lens, and diameters of retinal arterioles were measured. Adenosine increased diameters of retinal arterioles and decreased systemic blood pressure. These responses were significantly attenuated by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (30 mg/kg, i.v.) and the adenosine triphosphate-dependent K+ (K(ATP)) channel blocker glibenclamide (20 mg/kg, i.v.). The depressor responses to adenosine were reduced in diabetic rats, whereas diabetes did not alter vasodilation of retinal arterioles to adenosine. In contrast, both depressor response and vasodilation of retinal arteriole to acetylcholine were reduced in diabetic rats. The retinal vasodilator responses to adenosine and acetylcholine observed in diabetic rats were diminished by N(G)-nitro-L-arginine methyl ester. There were no differences in the responses to pinacidil, a K(ATP) channel opener, between the diabetic and nondiabetic rats. These results suggest that both the activation of nitric oxide synthase and opening of K(ATP) channels contribute to the vasodilator effects of adenosine in rats in vivo. However, diabetes has no significant impact on the vasodilation mediated by these mechanisms in

  20. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    Science.gov (United States)

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists.

  1. Role of adenosine A2b receptor overexpression in tumor progression.

    Science.gov (United States)

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo

    2016-12-01

    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  2. Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip

    NARCIS (Netherlands)

    Herland, Anna; van der Meer, Andries Dirk; Fitzgerald, Edward A.; Park, Tae-Eun; Sleeboom, Jelle J.F.; Ingber, Donald E.

    2016-01-01

    Neurovascular inflammation is a major contributor to many neurological disorders, but modeling these processes in vitro has proven to be difficult. Here, we microengineered a three-dimensional (3D) model of the human blood-brain barrier (BBB) within a microfluidic chip by creating a cylindrical

  3. The contribution of the psychosocial work environment to sickness absence in human service workers : Results of a 3-year follow-up study

    NARCIS (Netherlands)

    Rugulies, Reiner; Christensen, Karl B.; Borritz, Marianne; Villadsen, Ebbe; Bultmann, Ute; Kristensen, Tage S.

    2007-01-01

    We investigated to what extent psychosocial. work characteristics predict sickness absence in a cohort of 890 human service professionals (84% women), followed-up for 3 years. We measured 16 different psychosocial work characteristics at baseline and analysed their associations with number of sickne

  4. Characterization of the A2B adenosine receptor from mouse, rabbit, and dog.

    Science.gov (United States)

    Auchampach, John A; Kreckler, Laura M; Wan, Tina C; Maas, Jason E; van der Hoeven, Dharini; Gizewski, Elizabeth; Narayanan, Jayashree; Maas, Garren E

    2009-04-01

    We have cloned and pharmacologically characterized the A(2B) adenosine receptor (AR) from the dog, rabbit, and mouse. The full coding regions of the dog and mouse A(2B)AR were obtained by reverse transcriptase-polymerase chain reaction, and the rabbit A(2B)AR cDNA was obtained by screening a rabbit brain cDNA library. It is noteworthy that an additional clone was isolated by library screening that was identical in sequence to the full-length rabbit A(2B)AR, with the exception of a 27-base pair deletion in the region encoding amino acids 103 to 111 (A(2B)AR(103-111)). This 9 amino acid deletion is located in the second intracellular loop at the only known splice junction of the A(2B)AR and seems to result from the use of an additional 5' donor site found in the rabbit and dog but not in the human, rat, or mouse sequences. [(3)H]3-Isobutyl-8-pyrrolidinoxanthine and 8-[4-[((4-cyano-[2,6-(3)H]-phenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine ([(3)H]MRS 1754) bound with high affinity to membranes prepared from human embryonic kidney (HEK) 293 cells expressing mouse, rabbit, and dog A(2B)ARs. Competition binding studies performed with a panel of agonist (adenosine and 2-amino-3,5-dicyano-4-phenylpyridine analogs) and antagonist ligands identified similar potency orders for the A(2B)AR orthologs, although most xanthine antagonists displayed lower binding affinity for the dog A(2B)AR compared with A(2B)ARs from rabbit and mouse. No specific binding could be detected with membranes prepared from HEK 293 cells expressing the rabbit A(2B)AR(103-111) variant. Furthermore, the variant failed to stimulate adenylyl cyclase or calcium mobilization. We conclude that significant differences in antagonist pharmacology of the A(2B)AR exist between species and that some species express nonfunctional variants of the A(2B)AR due to "leaky" splicing.

  5. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Directory of Open Access Journals (Sweden)

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  6. The role of muscarinic receptors in the beneficial effects of adenosine against myocardial reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Lei Sun

    Full Text Available Adenosine, a catabolite of ATP, displays a wide variety of effects in the heart including regulation of cardiac response to myocardial ischemia and reperfusion injury. Nonetheless, the precise mechanism of adenosine-induced cardioprotection is still elusive. Isolated Sprague-Dawley rat hearts underwent 30 min global ischemia and 120 min reperfusion using a Langendorff apparatus. Both adenosine and acetylcholine treatment recovered the post-reperfusion cardiac function associated with adenosine and muscarinic receptors activation. Simultaneous administration of adenosine and acetylcholine failed to exert any additive protective effect, suggesting a shared mechanism between the two. Our data further revealed a cross-talk between the adenosine and acetylcholine receptor signaling in reperfused rat hearts. Interestingly, the selective M(2 muscarinic acetylcholine receptor antagonist methoctramine significantly attenuated the cardioprotective effect of adenosine. In addition, treatment with adenosine upregulated the expression and the maximal binding capacity of muscarinic acetylcholine receptor, which were inhibited by the selective A(1 adenosine receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX and the nitric oxide synthase inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME. These data suggested a possible functional coupling between the adenosine and muscarinic receptors behind the observed cardioprotection. Furthermore, nitric oxide was found involved in triggering the response to each of the two receptor agonist. In summary, there may be a cross-talk between the adenosine and muscarinic receptors in ischemic/reperfused myocardium with nitric oxide synthase might serve as the distal converging point. In addition, adenosine contributes to the invigorating effect of adenosine on muscarinic receptor thereby prompting to regulation of cardiac function. These findings argue for a potentially novel mechanism behind the adenosine

  7. MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis

    Science.gov (United States)

    Lecca, Davide; Marangon, Davide; Coppolino, Giusy T.; Méndez, Aida Menéndez; Finardi, Annamaria; Costa, Gloria Dalla; Martinelli, Vittorio; Furlan, Roberto; Abbracchio, Maria P.

    2016-01-01

    In the mature central nervous system (CNS), oligodendrocytes provide support and insulation to axons thanks to the production of a myelin sheath. During their maturation to myelinating cells, oligodendroglial precursors (OPCs) follow a very precise differentiation program, which is finely orchestrated by transcription factors, epigenetic factors and microRNAs (miRNAs), a class of small non-coding RNAs involved in post-transcriptional regulation. Any alterations in this program can potentially contribute to dysregulated myelination, impaired remyelination and neurodegenerative conditions, as it happens in multiple sclerosis (MS). Here, we identify miR-125a-3p, a developmentally regulated miRNA, as a new actor of oligodendroglial maturation, that, in the mammalian CNS regulates the expression of myelin genes by simultaneously acting on several of its already validated targets. In cultured OPCs, over-expression of miR-125a-3p by mimic treatment impairs while its inhibition with an antago-miR stimulates oligodendroglial maturation. Moreover, we show that miR-125a-3p levels are abnormally high in the cerebrospinal fluid of MS patients bearing active demyelinating lesions, suggesting that its pathological upregulation may contribute to MS development, at least in part by blockade of OPC differentiation leading to impaired repair of demyelinated lesions. PMID:27698367

  8. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.

    Science.gov (United States)

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert

    2016-06-09

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.

  9. A Human-Mouse Chimera of the α3α4α5(IV) Collagen Protomer Rescues the Renal Phenotype in Col4a3−/− Alport Mice

    Science.gov (United States)

    Heidet, Laurence; Borza, Dorin-Bogdan; Jouin, Mélanie; Sich, Mireille; Mattei, Marie-Geneviève; Sado, Yoshikazu; Hudson, Billy G.; Hastie, Nicholas; Antignac, Corinne; Gubler, Marie-Claire

    2003-01-01

    Collagen IV is a major structural component of basement membranes. In the glomerular basement membrane (GBM) of the kidney, the α3, α4, and α5(IV) collagen chains form a distinct network that is essential for the long-term stability of the glomerular filtration barrier, and is absent in most patients affected with Alport syndrome, a progressive inherited nephropathy associated with mutation in COL4A3, COL4A4, or COL4A5 genes. To investigate, in vivo, the regulation of the expression, assembly, and function of the α3α4α5(IV) protomer, we have generated a yeast artificial chromosome transgenic line of mice carrying the human COL4A3-COL4A4 locus. Transgenic mice expressed the human α3 and α4(IV) chains in a tissue-specific manner. In the kidney, when expressed onto a Col4a3−/− background, the human α3(IV) chain restored the expression of and co-assembled with the mouse α4 and α5(IV) chains specifically at sites where the human α3(IV) was expressed, demonstrating that the expression of all three chains is required for network assembly. The co-assembly of the human and mouse chains into a hybrid network in the GBM restores a functional GBM and rescues the Alport phenotype, providing further evidence that defective assembly of the α3-α4-α5(IV) protomer, caused by mutations in any of the three chains, is the pathogenic mechanism responsible for the disease. This line of mice, humanized for the α3(IV) collagen chain, will also provide a valuable model for studying the pathogenesis of Goodpasture syndrome, an autoimmune disease caused by antibodies against this chain. PMID:14507670

  10. Hemodynamic significance of coronary stenosis by vessel attenuation measurement on CT compared with adenosine perfusion MRI

    NARCIS (Netherlands)

    den Dekker, Martijn A. M.; Pelgrim, Gert Jan; Pundziute, Gabija; van den Heuvel, Edwin R.; Oudkerk, Matthijs; Vliegenthart, Rozemarijn

    Purpose: We assessed the association between corrected contrast opacification (CCO) based on coronary computed tomography angiography (cCTA) and inducible ischemia by adenosine perfusion magnetic resonance imaging (APMR). Methods: Sixty cardiac asymptomatic patients with extra-cardiac arterial

  11. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  12. Influence of the adenosine A1 receptor on blood pressure regulation and renin release

    DEFF Research Database (Denmark)

    Brown, Russell D.; Thorén, Peter; Steege, Andreas

    2006-01-01

    The present study was performed to investigate the role of adenosine A1 receptors in regulating blood pressure in conscious mice. Adenosine A1-receptor knockout (A1R-/-) mice and their wild-type (A1R+/+) littermates were placed on standardized normal-salt (NS), high-salt (HS), or salt-deficient (SD......) diets for a minimum of 10 days before telemetric blood pressure and urinary excretion measurements in metabolic cages. On the NS diet, daytime and nighttime mean arterial blood pressure (MAP) was 7-10 mmHg higher in A1R-/- than in A1R+/+ mice. HS diet did not affect the MAP in A1R-/- mice....... The elevated plasma renin concentrations found in the A1R-/- mice could also result in increased blood pressure. Our results confirm that adenosine, acting through the adenosine A1 receptor, plays an important role in regulating blood pressure, renin release, and sodium excretion....

  13. ALLERGEN-INDUCED CHANGES IN ADENOSINE 5'-MONOPHOSPHATE BRONCHIAL RESPONSIVENESS - EFFECT OF NEDOCROMIL SODIUM

    NARCIS (Netherlands)

    AALBERS, R; KAUFMAN, HF; GROEN, H; KOETER, GH; DEMONCHY, JGR

    1992-01-01

    Bronchial hyperresponsiveness to adenosine 5'-monophosphate (AMP) was studied after allergen challenge in allergic asthmatic patients. Measurements were made with and without nedocromil sodium pretreatment. Nedocromil sodium inhibited both the early and late asthmatic reactions (P <.01). After aller

  14. Evidence that the positive inotropic effects of the alkylxanthines are not due to adenosine receptor blockade.

    Science.gov (United States)

    Collis, M. G.; Keddie, J. R.; Torr, S. R.

    1984-01-01

    We investigated the possibility that the positive inotropic effects of the alkylxanthines are due to adenosine receptor blockade. The potency of 8-phenyltheophylline, theophylline and enprofylline as adenosine antagonists was assessed in vitro, using the guinea-pig isolated atrium, and in vivo, using the anaesthetized dog. The order of potency of the alkylxanthines as antagonists of the negative inotropic response to 2-chloroadenosine in vitro, and of the hypotensive response to adenosine in vivo was 8-phenyltheophylline greater than theophylline greater than enprofylline. The order of potency of the alkylxanthines as positive inotropic and chronotropic agents in the anaesthetized dog was enprofylline greater than theophylline greater than 8-phenyltheophylline. The results of this study indicate that the inotropic effects of the alkylxanthines in the anaesthetized dog are not due to adenosine receptor blockade. PMID:6322898

  15. ALLERGEN-INDUCED CHANGES IN ADENOSINE 5'-MONOPHOSPHATE BRONCHIAL RESPONSIVENESS - EFFECT OF NEDOCROMIL SODIUM

    NARCIS (Netherlands)

    AALBERS, R; KAUFMAN, HF; GROEN, H; KOETER, GH; DEMONCHY, JGR

    1992-01-01

    Bronchial hyperresponsiveness to adenosine 5'-monophosphate (AMP) was studied after allergen challenge in allergic asthmatic patients. Measurements were made with and without nedocromil sodium pretreatment. Nedocromil sodium inhibited both the early and late asthmatic reactions (P <.01). After

  16. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    Science.gov (United States)

    Greene, R W; Haas, H L

    1985-09-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation.

  17. Role of adenosine A1 and A2A receptors in the alcohol withdrawal syndrome.

    Science.gov (United States)

    Kaplan, G B; Bharmal, N H; Leite-Morris, K A; Adams, W R

    1999-10-01

    The role of adenosine receptor-mediated signaling was examined in the alcohol withdrawal syndrome. CD-1 mice received a liquid diet containing ethanol (6.7%, v/v) or a control liquid diet that were abruptly discontinued after 14 days of treatment. Mice consuming ethanol showed a progressive increase in signs of intoxication throughout the drinking period. Following abrupt discontinuation of ethanol diet, mice demonstrated reversible signs of handling-induced hyperexcitability that were maximal between 5-8 h. Withdrawing mice received treatment with adenosine receptor agonists at the onset of peak withdrawal (5.5 h) and withdrawal signs were blindly rated (during withdrawal hours 6 and 7). Adenosine A1-receptor agonist R-N6(phenylisopropyl)adenosine (0.15 and 0.3 mg/ kg) reduced withdrawal signs 0.5 and 1.5 h after drug administration in a dose-dependent fashion. Adenosine A2A-selective agonist 2-p-(2-carboxyethyl)phenylethyl-amino-5'-N-ethylcarboxamidoadenosine (0.3 mg/kg) reduced withdrawal signs at both time points. In ethanol-withdrawing mice, there were significant decreases in adenosine transporter sites in striatum without changes in cortex or cerebellum. In ethanol-withdrawing mice, there were no changes in adenosine A1 and A2A receptor concentrations in cortex, striatum, or cerebellum. There appears to be a role for adenosine A1 and A2A receptors in the treatment of the ethanol withdrawal syndrome. Published by Elsevier Science Inc.

  18. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts.

    Science.gov (United States)

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-02-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats.

  19. Cardiac endothelial transport and metabolism of adenosine and inosine

    Science.gov (United States)

    Schwartz, Lisa M.; Bukowski, Thomas R.; Revkin, James H.; Bassingthwaighte, James B.

    2010-01-01

    The influence of transmembrane flux limitations on cellular metabolism of purine nucleosides was assessed in whole organ studies. Transcapillary transport of the purine nucleosides adenosine (Ado) and inosine (Ino) via paracellular diffusion through interendothelial clefts in parallel with carrier-mediated transendothelial fluxes was studied in isolated, Krebs-Henseleit-perfused rabbit and guinea pig hearts. After injection into coronary inflow, multiple-indicator dilution curves were obtained from coronary outflow for 90 s for 131I-labeled albumin (intravascular reference tracer), [3H]arabinofuranosyl hypoxanthine (AraH; extracellular reference tracer and nonreactive adenosine analog), and either [14C]Ado or [14C]Ino. Ado or Ino was separated from their degradative products, hypoxanthine, xanthine, and uric acid, in each outflow sample by HPLC and radioisotope counting. Ado and Ino, but not AraH, permeate the luminal membrane of endothelial cells via a saturable transporter with permeability-surface area product PSecl and also diffuse passively through interendothelial clefts with the same conductance (PSg) as AraH. These parallel conductances were estimated via fitting with an axially distributed, multi-pathway, four-region blood-tissue exchange model. PSg for AraH were ~4 and 2.5 ml · g−1 · min−1 in rabbits and guinea pigs, respectively. In contrast, transplasmalemmal conductances (endothelial PSecl) were ~0.2 ml · g−1 · min−1 for both Ado and Ino in rabbit hearts but ~2 ml · g−1 · min−1 in guinea pig hearts, an order of magnitude different. Purine nucleoside metabolism also differs between guinea pig and rabbit cardiac endothelium. In guinea pig heart, 50% of the tracer Ado bolus was retained, 35% was washed out as Ado, and 15% was lost as effluent metabolites; 25% of Ino was retained, 50% washed out, and 25% was lost as metabolites. In rabbit heart, 45% of Ado was retained and 5% lost as metabolites, and 7% of Ino was retained and 3% lost as

  20. Comparative systems toxicology analysis of cigarette smoke and aerosol from a candidate modified risk tobacco product in organotypic human gingival epithelial cultures: A 3-day repeated exposure study.

    Science.gov (United States)

    Zanetti, Filippo; Titz, Bjoern; Sewer, Alain; Lo Sasso, Giuseppe; Scotti, Elena; Schlage, Walter K; Mathis, Carole; Leroy, Patrice; Majeed, Shoaib; Torres, Laura Ortega; Keppler, Brian R; Elamin, Ashraf; Trivedi, Keyur; Guedj, Emmanuel; Martin, Florian; Frentzel, Stefan; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2017-03-01

    Smoking is one of the major lifestyle-related risk factors for periodontal diseases. Modified risk tobacco products (MRTP) offer a promising alternative in the harm reduction strategy for adult smokers unable to quit. Using a systems toxicology approach, we investigated and compared the exposure effects of a reference cigarette (3R4F) and a heat-not-burn technology-based candidate MRTP, the Tobacco Heating System (THS) 2.2. Human gingival epithelial organotypic cultures were repeatedly exposed (3 days) for 28 min at two matching concentrations of cigarette smoke (CS) or THS2.2 aerosol. Results showed only minor histopathological alterations and minimal cytotoxicity upon THS2.2 aerosol exposure compared to CS (1% for THS2.2 aerosol vs. 30% for CS, at the high concentration). Among the 14 proinflammatory mediators analyzed, only 5 exhibited significant alterations with THS2.2 exposure compared with 11 upon CS exposure. Transcriptomic and metabolomic analysis indicated a general reduction of the impact in THS2.2 aerosol-exposed samples with respect to CS (∼79% lower biological impact for the high THS2.2 aerosol concentration compared to CS, and 13 metabolites significantly perturbed for THS2.2 vs. 181 for CS). This study indicates that exposure to THS2.2 aerosol had a lower impact on the pathophysiology of human gingival organotypic cultures than CS. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Online cleanup of accelerated solvent extractions for determination of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly using high-performance liquid chromatography.

    Science.gov (United States)

    Xue, Xiaofeng; Wang, Feng; Zhou, Jinhui; Chen, Fang; Li, Yi; Zhao, Jing

    2009-06-10

    Determination of the levels of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly is important for the study of its pharmacological activities, health benefits, and adenosine phosphate degradation. In this study was developed a novel method to determine ATP, ADP, and AMP levels in royal jelly using accelerated solvent extraction (ASE) followed by online cleanup and high-performance liquid chromatography (HPLC) with diode array detection (DAD). The optimum extraction conditions were obtained using an 11 mL ASE cell, ethanol/water (5:5 v/v) as the extraction solvent, 1500 psi, 80 degrees C, a 5 min static time, and a 60% fl