WorldWideScience

Sample records for huh7 hepatoma cells

  1. Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells

    Directory of Open Access Journals (Sweden)

    Elodie Jouan

    2016-12-01

    Full Text Available Human hepatoma cells may represent a valuable alternative to the use of human hepatocytes for studying hepatic drug transporters, which is now a regulatory issue during drug development. In the present work, we have characterized hepatic drug transporter expression, activity and regulation in human hepatoma HuH-7 cells, in order to determine the potential relevance of these cells for drug transport assays. HuH-7 cells displayed notable multidrug resistance-associated protein (MRP activity, presumed to reflect expression of various hepatic MRPs, including MRP2. By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP, organic anion-transporting polypeptides (OATPs and organic cation transporter 1 (OCT1, and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP. Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2, OCT1 and bile salt export pump or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3 in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated. HuH-7 cells additionally exhibited farnesoid X receptor (FXR- and nuclear factor erythroid 2-related factor 2 (Nrf2-related up-regulation of some transporters. Such data indicate that HuH-7 cells, although expressing rather poorly some main hepatic drug transporters, may be useful for investigating interactions of drugs with MRPs, notably MRP2, and for studying FXR- or Nrf2-mediated gene regulation.

  2. Protein transfection study using multicellular tumor spheroids of human hepatoma Huh-7 cells.

    Directory of Open Access Journals (Sweden)

    Takuma Kato

    Full Text Available Several protein transfection reagents are commercially available and are powerful tools for elucidating function of a protein in a cell. Here we described protein transfection studies of the commercially available reagents, Pro-DeliverIN, Xfect, and TuboFect, using Huh-7 multicellular tumor spheroid (MCTS as a three-dimensional in vitro tumor model. A cellular uptake study using specific endocytosis inhibitors revealed that each reagent was internalized into Huh-7 MCTS by different mechanisms, which were the same as monolayer cultured Huh-7 cells. A certain amount of Pro-DeliverIN and Xfect was uptaken by Huh-7 cells through caveolae-mediated endocytosis, which may lead to transcytosis through the surface-first layered cells of MCTS. The results presented here will help in the choice and use of protein transfection reagents for evaluating anti-tumor therapeutic proteins against MCTS models.

  3. Characterization of increased drug metabolism activity in dimethyl sulfoxide (DMSO)-treated Huh7 hepatoma cells.

    Science.gov (United States)

    Choi, S; Sainz, B; Corcoran, P; Uprichard, S; Jeong, H

    2009-03-01

    The objective of this study was to characterize Huh7 cells' baseline capacity to metabolize drugs and to investigate whether the drug metabolism was enhanced upon treatment with dimethyl sulfoxide (DMSO). The messenger RNA (mRNA) levels of major Phase I and Phase II enzymes were determined by quantitative real-time-polymerase chain reaction (RT-PCR), and activities of major drug-metabolizing enzymes were examined using probe drugs by analysing relevant metabolite production rates. The expression levels of drug-metabolizing enzymes in control Huh7 cells were generally very low, but DMSO treatment dramatically increased the mRNA levels of most drug-metabolizing enzymes as well as other liver-specific proteins. Importantly, functionality assays confirmed concomitant increases in drug-metabolizing enzyme activity. Additionally, treatment of the Huh7 cells with 3-methylcholanthrene induced cytochrome P450 (CYP) 1A1 expression. The results indicate that DMSO treatment of Huh7 cells profoundly enhances their differentiation state, thus improving the usefulness of this common cell line as an in vitro hepatocyte model.

  4. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Science.gov (United States)

    Ivanov, Alexander V.; Smirnova, Olga A.; Petrushanko, Irina Y.; Ivanova, Olga N.; Karpenko, Inna L.; Alekseeva, Ekaterina; Sominskaya, Irina; Makarov, Alexander A.; Bartosch, Birke; Kochetkov, Sergey N.; Isaguliants, Maria G.

    2015-01-01

    Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGFβ1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1α. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein. PMID:26035647

  5. Emodin inhibits the growth of hepatoma cells: finding the common anti-cancer pathway using Huh7, Hep3B, and HepG2 cells.

    Science.gov (United States)

    Hsu, Chin-Mu; Hsu, Yu-An; Tsai, Yuhsin; Shieh, Fa-Kuen; Huang, Su-Hua; Wan, Lei; Tsai, Fuu-Jen

    2010-02-19

    Emodin--a major component of Rheum palmatum L.-exerts antiproliferative effects in cancer cells that are regulated by different signaling pathways. Hepatocellular carcinoma has high-incidence rates and is associated with poor prognosis and high mortality rates. This study was designed to evaluate the effects of emodin on human hepatocarcinoma cell viability and investigate its mechanisms of action in Huh7, Hep3B, and HepG2 cells. To define the molecular changes associated with this process, expression profiles were compared in emodin-treated hepatoma cells by cDNA microarray hybridization, quantitative RT-PCRs, and Western blot analysis. G2/M phase arrest was observed in all 3 cell lines. Cell cycle regulatory gene analysis showed increased protein levels of cyclin A, cyclin B, Chk2, Cdk2, and P27 in hepatoma cells after time courses of emodin treatment, and Western blot analysis showed decreased protein levels of Cdc25c and P21. Microarray expression profile data and quantitative PCR revealed that 15 representative genes were associated with emodin treatment response in hepatoma cell lines. The RNA expression levels of CYP1A1, CYP1B1, GDF15, SERPINE1, SOS1, RASD1, and MRAS were upregulated and those of NR1H4, PALMD, and TXNIP were downregulated in all three hepatoma cells. Moreover, at 6h after emodin treatment, the levels of GDF15, CYP1A1, CYP1B1, and CYR61 were upregulated. Here, we show that emodin treatment caused G2/M arrest in liver cancer cells and increased the expression levels of various genes both in mRNA and protein level. It is likely that these genes act as biomarkers for hepatocellular carcinoma therapy.

  6. Urokinase-type plasminogen activator (uPA) stimulates triglyceride synthesis in Huh7 hepatoma cells via p38-dependent upregulation of DGAT2.

    Science.gov (United States)

    Paland, Nicole; Gamliel-Lazarovich, Aviva; Coleman, Raymond; Fuhrman, Bianca

    2014-11-01

    The liver is the central organ of fatty acid and triglyceride metabolism. Oxidation and synthesis of fatty acids and triglycerides is under the control of peroxisome-proliferator-activated receptors (PPAR) α. Impairment of these receptors' function contributes to the accumulation of triglycerides in the liver resulting in non-alcoholic fatty liver disease. Urokinase-type plasminogen activator (uPA) was shown to regulate gene expression in the liver involving PPARγ transcriptional activity. In this study we questioned whether uPA modulates triglyceride metabolism in the liver, and investigated the mechanisms involved in the observed processes. Huh7 hepatoma cells were incubated with increasing concentrations of uPA for 24 h uPA dose-dependently increased the cellular triglyceride mass, and this effect resulted from increased de novo triglyceride synthesis mediated by the enzyme diglyceride acyltransferase 2 (DGAT2). Also, the amount of free fatty acids was highly up regulated by uPA through activation of the transcription factor SREBP-1. Chemical activation of PPARα further increased uPA-stimulated triglyceride synthesis, whereas inhibition of p38, an upstream activator of PPARα, completely abolished the stimulatory effect of uPA on both triglyceride synthesis and DGAT2 upregulation. The effect of uPA on triglyceride synthesis in Huh7 cells was mediated via binding to its receptor, the uPAR. In vivo studies in uPAR(-/-) mice demonstrated that no lipid droplets were observed in their livers compared to C57BL/6 mice and the triglyceride levels were significantly lower. This study presents a new biological function of the uPA/uPAR system in the metabolism of triglycerides and might present a new target for an early therapeutic intervention for NAFLD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. A new triterpene and protective effect of Periploca somaliensis Browicz fruits against CCl₄-induced injury on human hepatoma cell line (Huh7).

    Science.gov (United States)

    Abdel-Monem, Azza R; Kandil, Zeinab A; Abdel-Naim, Ashraf B; Abdel-Sattar, Essam

    2015-01-01

    The potential hepatoprotective effect of the methanolic extract of Periploca somaliensis Browicz fruits, its different fractions (n-hexane, chloroform and n-butanol) and the major isolated compound ursolic acid was evaluated using the human hepatoma cell line (Huh7) based on the changes in the activity of aspartate aminotransferase, alanine transaminase, glutathione and superoxide dismutase. Each sample was tested at three different concentrations (1000, 100 and 10 μg/mL). All tested samples exhibited a potent concentration-independent cytoprotective effect relative to silymarin as a reference standard. Chromatographic fractionation of the chloroform-soluble fraction of the methanol extract of P. somaliensis Browicz fruits afforded two known triterpenes, namely ursolic acid, and 11α,12α-epoxy-3β-hydroxy-olean-13β,28-olide, and a newly discovered one, namely 3β-hydroxy-urs-11-en-13β,28-olide. The structures of the isolated compounds were elucidated by the analysis of 1D and 2D NMR spectral data.

  8. Comparative evaluation of curcumin and curcumin loaded- dendrosome nanoparticle effects on the viability of SW480 colon carcinoma and Huh7 hepatoma cells

    Directory of Open Access Journals (Sweden)

    M.J. Dehghan Esmatabadi

    2015-06-01

    Full Text Available Background and objectives: Colorectal cancer is the third most common cancer and a major cause of morbidity globally. Hepatocellular carcinoma is a leading cause of death in the world. About 80% of all anticancer drugs are somehow related to natural products. One of the most important of these natural compounds is curcumin, the main component of turmeric that has a wide range of pharmacological activities. Curcumin has been found to suppress cell proliferation and decrease cell viability in various types of cancer cells; however, owing to lack of aqueous solubility, curcumin has shown reduced bioavailability in studies. Recent studies have shown that new 400th generation of dendrosome nanoparticle can increase bioavailability of curcumin and thus enhance the cytotoxic properties.  The aim of this study was to determine effectiveness of curcumin alone and in combination with 400th generation dendrosome nanoparticles (DNC on cell viability rate in SW480 and Huh7 cells. Methods: SW480 and Huh7 cells were incubated with different concentrations of curcumin and DNC (0-50μM for 24, 48 and 72 h. Then cytotoxicity was assessed by MTT assay and IC50 was determined. Results: The results suggested that the concentration-dependent inhibitory effect of DNC was stronger than curcumin on SW480 and Huh7 cells. Conclusion: The results suggest DNC as a more effective herbal anticancer agent for colorectal and hepatocellular tumors.

  9. Activity-based protein profiling of the hepatitis C virus replication in Huh-7 hepatoma cells using a non-directed active site probe

    Directory of Open Access Journals (Sweden)

    McKay Craig S

    2010-02-01

    Full Text Available Abstract Background Hepatitis C virus (HCV poses a growing threat to global health as it often leads to serious liver diseases and is one of the primary causes for liver transplantation. Currently, no vaccines are available to prevent HCV infection and clinical treatments have limited success. Since HCV has a small proteome, it relies on many host cell proteins to complete its life cycle. In this study, we used a non-directed phenyl sulfonate ester probe (PS4≡ to selectively target a broad range of enzyme families that show differential activity during HCV replication in Huh-7 cells. Results The PS4≡ probe successfully targeted 19 active proteins in nine distinct protein families, some that were predominantly labeled in situ compared to the in vitro labeled cell homogenate. Nine proteins revealed altered activity levels during HCV replication. Some candidates identified, such as heat shock 70 kDa protein 8 (or HSP70 cognate, have been shown to influence viral release and abundance of cellular lipid droplets. Other differentially active PS4≡ targets, such as electron transfer flavoprotein alpha, protein disulfide isomerase A5, and nuclear distribution gene C homolog, constitute novel proteins that potentially mediate HCV propagation. Conclusions These findings demonstrate the practicality and versatility of non-directed activity-based protein profiling (ABPP to complement directed methods and accelerate the discovery of altered protein activities associated with pathological states such as HCV replication. Collectively, these results highlight the ability of in situ ABPP approaches to facilitate the identification of enzymes that are either predominantly or exclusively labeled in living cells. Several of these differentially active enzymes represent possible HCV-host interactions that could be targeted for diagnostic or therapeutic purposes.

  10. Differential expression of several drug transporter genes in HepG2 and Huh-7 cell lines.

    Science.gov (United States)

    Louisa, Melva; Suyatna, Frans D; Wanandi, Septelia Inawati; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    Cell culture techniques have many advantages for investigation of drug transport to target organ like liver. HepG2 and Huh-7 are two cell lines available from hepatoma that can be used as a model for hepatic drug transport. The present study is aimed to analyze the expression level of several drug transporter genes in two hepatoma cell lines, HepG2 and Huh-7 and their response to inhibitors. This is an in vitro study using HepG2 and Huh-7 cells. The expression level of the following drug transporter genes was quantified: P-glycoprotein/multidrug resistance protein 1, Organic Anionic Transporter Protein 1B1 (OATP1B1) and Organic Cationic Transporter-1 (OCT1). Ribonucleic acid was extracted from the cells using Tripure isolation reagent, then gene expression level of the transporters is quantified using Applied Biosystems quantitative reverse transcriptase polymerase chain reaction. Verapamil (P-glycoprotein inhibitor), nelfinavir (OATP1B1 inhibitor), quinidine (OCT1 inhibitor) were used to differentiate the inhibitory properties of these agents to the transporter expressions in HepG2 and Huh-7 cells. Huh-7 shows a higher level of P-glycoprotein, OATP1B1 and OCT1 expressions compared with those of HepG2. Verapamil reduces the expressions of P-glycoprotein in HepG2 and Huh-7; nelfinavir reduces the expression of OATP1B1 in HepG2 and Huh-7; while quinidine reduces the OCT1 gene expressions in HepG2, but not in Huh-7 cells. This study indicates that HepG2 might be a more suitable in vitro model than Huh-7 to study drug transport in hepatocytes involving drug transporters.

  11. Metformin induces apoptosis in hepatocellular carcinoma Huh-7 cells in vitro and its mechanism

    Institute of Scientific and Technical Information of China (English)

    林芬

    2013-01-01

    Objective to investigate the effects of antidiabetic drug metformin on proliferation and apoptosis in human hepatocellular carcinoma cell line Huh-7 cells.Methods Huh-7 cells were treated with metformin at different concentrations.Cell viability was determined by MTT assay.Cell apoptosis and CD133+expression rate were detected by flow cytometery (FCM) .Expressions of PTEN,Akt,p-Akt,Bcl-2,Bax proteins in the cells were measured by Western blot.The effect of metformin on the hepato-

  12. Huh-7 cell line as an alternative cultural model for the production of human like erythropoietin (EPO

    Directory of Open Access Journals (Sweden)

    Kausar Humera

    2011-11-01

    Full Text Available Abstract Background and Aims Erythropoietin (EPO is a glycoprotein hormone which is required to regulate the production of red blood cells. Deficiency of EPO is known to cause anemia in chronically infected renal patients and they require regular blood transfusion. Availability of recombinant EPO has eliminated the need for blood transfusion and now it is extensively used for the treatment of anemia. Glycosylation of erythropoietin is essential for its secretion, stability, protein conformation and biological activity. However, maintenance of human like glycosylation pattern during manufacturing of EPO is a major challenge in biotechnology. Currently, Chinese hamster ovary (CHO cell line is used for the commercial production of erythropoietin but this cell line does not maintain glycosylation resembling human system. With the trend to eliminate non-human constituent from biopharmaceutical products, as a preliminary approach, we have investigated the potential of human hepatoma cell line (Huh-7 to produce recombinant EPO. Materials and methods Initially, the secretory signal and Kozak sequences was added before the EPO mature protein sequence using overlap extension PCR technique. PCR-amplified cDNA fragments of EPO was inserted into mammalian expression vector under the control of the cytomegalovirus (CMV promoter and transiently expressed in CHO and Huh-7 cell lines. After RT-PCR analysis, ELISA and Western blotting was performed to verify the immunochemical properties of secreted EPO. Results Addition of secretory signal and Kozak sequence facilitated the extra-cellular secretion and enhanced the expression of EPO protein. Significant expression (P Conclusion Huh-7 cell line has a great potential to produce glycosylated EPO, suggesting the use of this cell line to produce glycoproteins of the therapeutic importance resembling to the natural human system.

  13. Gli-1 siRNA induced apoptosis in Huh7 cells

    Institute of Scientific and Technical Information of China (English)

    Xi-Lin Chen; Liang-Qi Cao; Miao-Rong She; Qian Wang; Xiao-Hui Huang; Xin-Hui Fu

    2008-01-01

    AIM: To investigate the effects of Gli-1 small interference RNA (siRNA) on Huh7 cells, and the change of Bcl-2 expression in Huh7 cells.METHODS: Human hepatocellular carcinoma cells Huh7 were used. Cell viability was analyzed by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The expressions of Gli-1 and Bcl-2 family members were detected by RT-PCR and Western blot. Apoptosis was detected by Flow cytometry using propidium iodide, measured by Hoechst 33258 staining using Advanced Fluorescence Microscopy and caspase-3 enzymatic assay. Cell growth was analyzed after treatment with Gli-1 siRNA and 5-fluorouracil (5-Fu).RESULTS: Inhibition of Gli-1 mRNA in Huh7 cells through Gli-1 siRNA reduced cell viability. Gli-1 siRNA treatment also induced apoptosis by three criteria, increase in the sub-Gl cell cycle fraction, nuclear condensation, a morphologic change typical of apoptosis, and activation of caspase-3. Gli-1 siRNA was also able to down-regulate Bcl-2. However, Gli-1 siRNA resulted in no significant changes in Bcl-xl, Bax, Bad, and Bid. Furthermore, Gli-1 siRNA increased the cytotoxic effect of 5-Fu on Huh7 cell.CONCLUSION: Down-regulation of Bcl-2 plays an important role in apoptosis induced by Gli-1 siRNA in HCC cells. Combination Gli-1 siRNA with chemotherapeutic drug could represent a more promising strategy against HCC. The effects of the strategies need further investigation in vivo and may have potential clinical application.

  14. Identification of a Calcium Signalling Pathway of S-[6]-Gingerol in HuH-7 Cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Li

    2013-01-01

    Full Text Available Calcium signals in hepatocytes control cell growth, proliferation, and death. Members of the transient receptor potential (TRP cation channel superfamily are candidate calcium influx channels. NFκB activation strictly depends on calcium influx and often induces antiapoptotic genes favouring cell survival. Previously, we reported that S-[6]-gingerol is an efficacious agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1 in neurones. In this study, we tested the effect of S-[6]-gingerol on HuH-7 cells using the Fluo-4 calcium assay, RT-qPCR, transient cell transfection, and luciferase measurements. We found that S-[6]-gingerol induced a transient rise in [Ca2+]i in HuH-7 cells. The increase in [Ca2+]i induced by S-[6]-gingerol was abolished by preincubation with EGTA and was also inhibited by the TRPV1 channel antagonist capsazepine. Expression of TRPV1 in HuH-7 cells was confirmed by mRNA analysis as well as a test for increase of [Ca2+]i by TRPV1 agonist capsaicin and its inhibition by capsazepine. We found that S-[6]-gingerol induced rapid NFκB activation through TRPV1 in HuH-7 cells. Furthermore, S-[6]-gingerol-induced NFκB activation was dependent on the calcium gradient and TRPV1. The rapid NFκB activation by S-[6]-gingerol was associated with an increase in mRNA levels of NFκB-target genes: cIAP-2, XIAP, and Bcl-2 that encode antiapoptotic proteins.

  15. Encapsulation of Huh-7 cells within alginate-poly(ethylene glycol) hybrid microspheres.

    Science.gov (United States)

    Mahou, Redouan; Tran, Nhu Mai; Dufresne, Murielle; Legallais, Cécile; Wandrey, Christine

    2012-01-01

    Novel calcium alginate poly(ethylene glycol) hybrid microspheres (Ca-alg-PEG) were developed and evaluated as potentially suitable materials for cell microencapsulation. Grafting 5-13% of the backbone units of sodium alginate (Na-alg) with α-amine-ω-thiol PEG maintained the gelling capacity in presence of calcium ions, while thiol end groups allowed for preparing chemically crosslinked hydrogel via spontaneous disulfide bond formation. The combination of these two gelling mechanisms yielded Ca-alg-PEG. Human hepatocellular carcinoma cells (Huh-7) were encapsulated in Ca-alg-PEG and calcium alginate beads (Ca-alg), and cultured for 2 weeks under agitation conditions. Immediately after completion of the microencapsulation, the cell viability was 60% and similar in Ca-alg-PEG and Ca-alg. The proliferation of Huh-7 encapsulated in Ca-alg-PEG was slightly higher than in Ca-alg. Accelerated proliferation after 2 weeks was observed for the encapsulation in Ca-alg-PEG. The production of albumin confirmed the functionality of the encapsulated Huh-7 cells. The study confirms the suitability of Ca-alg-PEG and the one-step technology for cell microencapsulation.

  16. 奥沙利铂对原发性肝癌细胞系HUH-7的抗肿瘤效果评价%Oxaliplatin for hepatocellular carcinoma cell line HUH-7 anti-tumor effect of the evaluation

    Institute of Scientific and Technical Information of China (English)

    朴莲淑; 王迎春

    2015-01-01

    目的:探讨奥沙利铂对原发性肝癌细胞系HUH-7是否会产生作用和影响,根据其对抗肿瘤的效果决定是否能够应用于对肝癌细胞的临床治疗。方法把中科院2012年3月—2014年4月的肝癌细胞作为该试验的研究对象,用流式细胞仪器对癌细胞的分布周期和死亡状况进行分析,运用MTT法测试不同浓度和不同的作用时间的奥沙利铂对肝癌细胞增长繁殖的抑制效果。通过多次试验,得出最终结论。结果经过48 h作用后,癌细胞死亡率达到了11.8%,可见奥沙利铂对于肝癌细胞的繁衍增长有着很强的抑制功效,并且呈现出计量和时间的依赖性。结论奥沙利铂对原生性肝癌细胞系HUH-7的抗瘤效果明显,它可以抑制肝癌细胞繁殖,使细胞周期停留在S期和G2PM期之间,进而使癌细胞死亡。但是其具体的运行机制还有待研究,因而奥沙利铂能否应用于临床治疗还不能盖棺定论。%Objective To observe the effect of oxaliplatin on hepatocellular carcinoma cell line HUH-7 will produce the effect and influence, according to the anti - tumor effect decided whether to apply in the clinical treatment ofhepatocellular carcinoma cells. Methods Hepatoma cells as the object of study in this experiment, the distribution of cancer cell cycle were analyzed by flow cy-tometry instrument and death situation, using MTT method to test the inhibitory effect of different concentrations and different ac-tion time of oxaliplatin on hepatocellular carcinoma cell growth and reproduction of.Through many experiments, and draw the final conclusion. Results After 48 hours after the action of cancer cell death rate reached 11.8%, visible Asha Leigh Per has a very strong inhibitory effect on liver cancer cells multiplygrowth, and presents the measurement and time dependence. Conclusion Anti tumoreffect conclusion oxaliplatin on primary hepatocellular carcinoma cell line HUH-7 is obvious, it

  17. Proteomic analysis of HUH-7 cells harboring in vitro-transcribed full-length hepatitis C virus 1b RNA

    Institute of Scientific and Technical Information of China (English)

    Meng XUN; Si-hai ZHAO; Chun-xia CAO; Juan SONG; Ming-ming SHAO; Yong-lie CHU

    2008-01-01

    Aim: The present study examined the differential expression of proteins in HuH-7 cells and HUH-7 cells harboring in vitro-transcribed full-length hepatitis C virus 1b RNA (HuH-7-HCV), and elucidated the cellular responses to HCV replication. Methods: The protein profiles of matched pairs of HuH-7-HCV cells and HUH-7 mock cells were analyzed by 2-D electrophoresis (2DE). Solubilized proteins were separated in the first dimension by isoelectric focusing, and by 12.5% SDS-PAGE in the second dimension. The differential protein expression was analyzed by use of image analysis software to identify candidates for HCV infection-associated proteins. Results: In total, 29 protein spots showed increases and 25 protein spots showed decreases in signal in HuH-7-HCV cell 2DE profiles as compared with HuH-7 mock cells. In the next step, the 10 spots showing the greatest in-crease and the 10 spots showing the greatest decrease were excised from gels and the proteins present were identified by Matrix-Assisted Laser Desorption/Ioniza-tion Time of Flight Mass Spectrometer (MALDI-TOF MS) or MALDI-TOF/TOF MS. In total, 13 proteins were identified successfully. The potential significance of the differential expression due to HCV replication was discussed. Conclusion: Our study identifies changes in the proteome of HuH-7 cells in the presence of HCV replication and yields information of the mechanism of HCV pathogenesis. These results will be useful for the identification of HCV infection-associated proteins that could be molecular targets for treatment.

  18. Inhibitory effect of kaolin minerals compound against hepatitis C virus in Huh-7 cell lines.

    Science.gov (United States)

    Ali, Liaqat; Idrees, Muhammad; Ali, Muhammad; Hussain, Abrar; Ur Rehman, Irshad; Ali, Amjad; Iqbal, Syed Abbas; Kamel, Eyad Hassan

    2014-04-17

    Hepatitis C virus (HCV) is estimated to infect 200 million individuals in the globe, including approximately 10 million in Pakistan causing both acute and chronic hepatitis. The standard treatment against HCV is pegylated interferon therapy in combination with a nucleoside analogue ribavirin. In addition, several herbal extracts and phytochemicals derivatives are used traditionally in the treatment of liver diseases as well as HCV infection. The present study determines the inhibitory effect of kaolin minerals compound against hepatitis C virus in Huh-7 cell lines. Huh-7 cell lines were used for the in vitro HCV replication by using HCV positive sera from different patients with known HCV genotypes and viral titer/load. Total RNA was extracted from these infected cells and was quantified by real-time polymerase chain reaction (Real-time PCR). The viral titer was compared with the control samples to determine the anti-HCV activity of kaolin derived compounds. Kaolin is a group of clay minerals, with the chemical composition Al2 Si2O5 (OH)4. The results showed promising effectiveness of local kaolin derived anti-HCV compounds by causing 28% to 77% decrease in the HCV titer, when applied to infected Huh-7 cell lines. This study provides the basis for future work on these compounds especially to determine the specific pathway and mechanism for inhibitory action in the replicon systems of viral hepatitis. Kaolin mineral derivatives show promising inhibitory effects against HCV genotypes 3a and 1a infection, which suggests its possible use as complementary and alternative medicine for HCV viral infection.

  19. Lipogenesis in Huh7 cells is promoted by increasing the fructose: Glucose molar ratio

    Institute of Scientific and Technical Information of China (English)

    Fernando; Windemuller; Jiliu; Xu; Simon; S; Rabinowitz; M; Mahmood; Hussain; Steven; M; Schwarz

    2016-01-01

    AIM: To determine whether hepatocyte lipogenesis, in an in vitro cell culture model, is modulated by adjusting culture media monosaccharide content and concentration.METHODS: Hepatocytes(Huh7), demonstrating glucose and fructose uptake and lipid biosynthesis, were incubated in culture media containing either glucose alone(0.65-0.72 mmol/L) or isosmolar monosaccharide(0.72 mmol/L) comprising fructose:glucose(F:G) molar ratios ranging from 0.58-0.67. Following a 24-h incubation, cells were harvested and analyzed for total protein, triglyceride(TG) and cholesterol(C) content. Significant differences(P < 0.05) among groups were determined using analysis of variance followed by Dunnett’s test for multiple comparisons.RESULTS: After a 24 h incubation period, Huh7 cell mass and viability among all experimental groups were not different. Hepatocytes cultured with increasing concentrations of glucose alone did not demonstrate a significant change either in C or in TG content. However, when the culture media contained increasing F:G molar ratios, at a constant total monosaccharideconcentration, synthesis both of C and of TG increased significantly [F:G ratio = 0.58, C/protein(μg/μg) = 0.13;F:G = 0.67, C/protein = 0.18, P < 0.01; F:G ratio = 0.58,TG/protein(μg/μg) = 0.06; F:G ratio = 0.67, TG/protein= 0.11, P < 0.01]. CONCLUSION: In an in vitro hepatocyte model, glucose or fructose plus glucose support total cell mass and lipogenic activity. Increasing the fructose:glucose molar ratio(but not glucose alone) enhances triglyceride and cholesterol synthesis. These investigations demonstrate fructose promotes hepatocellular lipogenesis, and they provide evidence supporting future, in vivo studies of fructose’s role in the development of hepatic steatosis and non-alcoholic fatty liver disease.

  20. Lactobionic acid enhances mPEG-PLGA-PLL nanoparticles targeting to hepatocellular carcinoma cell Huh7%乳糖酸修饰mPEG-PLGA-PLL纳米粒靶向肝癌细胞Huh7的研究

    Institute of Scientific and Technical Information of China (English)

    孙彦明; 朱明洁; 王炳武; 孙颖; 刘培峰; 段友容

    2012-01-01

    背景与目的 去唾液酸糖蛋白受体(asialoglycoprotein receptor,ASGPR)是一种肝细胞特异性表达的膜表面蛋白,能够特异性地识别带有半乳糖残基的糖蛋白.乳糖酸含有半乳糖基团,可以作为靶向肝癌的特异性配基.该研究旨在探讨乳糖酸修饰的聚乙二醇/聚丙交酯-乙交酯/聚赖氨酸[methoxypoly(ethylene glycol)-b-poly(D,L-lactide-co-glycolide)-b-poly(L-lysine)(mPEG-PLGA-PLL)纳米粒,mPEG-PLGA-PLL-GAL NPs)]对肝癌Huh7靶向效果,为构建新型的靶向肝癌的纳米递送系统提供实验数据.方法 MTT法确定Huh7细胞摄取mPEG-PLGA-PLL NPs与mPEG-PLGA-PLL-GAL NPs适当的浓度;通过激光共聚焦和荧光显微镜定性观察Huh7对罗丹明B标记的mPEG-PLGA-PLL NPs和mPEG-PLGA-PLL-GAL NPs的摄取;并采用流式细胞计数仪定量研究Huh7细胞对两者的摄取差别;尾静脉注射荷Huh7瘤裸鼠研究两者体内分布情况.结果 mPEG-PLGA-PLL NPs与mPEG-PLGA-PLL-GAL NPs的浓度在0.2 mg/mL时细胞存活率较高且对Huh7细胞的毒性较小.激光共聚焦断层扫描显示Huh7细胞可以较好地摄取mPEG-PLGA-PLL-GAL NPs,同时流式细胞仪定量显示mPEGPLGA-PLL-GAL NPs在Huh7细胞的分布较mPEG-PLGA-PLL NPs高40%(P<0.05).mPEG-PLGA-PLL NPs与mPEG-PLGAPLL-GAL NPs在移植瘤中的分布明显多于其他脏器,并且随时间的延长mPEG-PLGA-PLL-GAL NPs体现了更好的靶向效果.结论 体外与体内实验证明乳糖酸修饰的mPEG-PLGA-PLL NPs对肝癌细胞Huh7有很好的靶向效果,可为肝癌的靶向治疗提供较好的药物载体.%Background and purpose: It is a wonderful approach to deliver drugs to hepatocellular carcinoma cell by receptor-mediated targeting. The asialoglycoprotein receptor (ASGPR) specifically recognized by galactose moiety residue is a mainly expressing membrane protein on the surface of hepatocellular carcinoma cell. Methoxy-poly (ethylene glycol)-b-poly(D, L-lactide-co-glycolide)-b-poly(L-lysine) (m

  1. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available BACKGROUND AND OBJECTIVE: Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC is high. It is well known that the epithelial mesenchymal transition (EMT and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. METHODOLOGY: HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. RESULTS: After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. CONCLUSIONS: The findings of this study systematically clarify the alterations of cell surface

  2. Quantitative proteomic analysis of exosome protein content changes induced by hepatitis B virus in Huh-7 cells using SILAC labeling and LC-MS/MS.

    Science.gov (United States)

    Zhao, Xue; Wu, Yanxin; Duan, Jinlin; Ma, Yanchun; Shen, Zhongliang; Wei, Lili; Cui, Xiaoxian; Zhang, Junqi; Xie, Youhua; Liu, Jing

    2014-12-05

    Hepatitis B virus (HBV) infection could cause hepatitis, liver cirrhosis, and hepatocellular carcinoma. HBV-mediated pathogenesis is only partially understood, but X protein (HBx) reportedly possesses oncogenic potential. Exosomes are small membrane vesicles with diverse functions released by various cells including hepatocytes, and HBV harnesses cellular exosome biogenesis and export machineries for virion morphogenesis and secretion. Therefore, HBV infection might cause changes in exosome contents with functional implications for both virus and host. In this work, exosome protein content changes induced by HBV and HBx were quantitatively analyzed by SILAC/LC-MS/MS. Exosomes prepared from SILAC-labeled hepatoma cell line Huh-7 transfected with HBx, wildtype, or HBx-null HBV replicon plasmids were analyzed by LC-MS/MS. Systematic analyses of MS data and confirmatory immunoblotting showed that HBx overexpression and HBV, with or without HBx, replication in Huh-7 cells indeed caused marked and specific changes in exosome protein contents. Furthermore, specific changes in protein contents were also detected in exosomes purified from HBV-infected patients' sera compared with control sera negative for HBV markers. These results illustrate a new aspect of interactions between HBV and the host and provide the foundation for future research into roles played by exosomes in HBV infection and pathogenesis.

  3. Alginate hydrogel protects encapsulated hepatic HuH-7 cells against hepatitis C virus and other viral infections.

    Directory of Open Access Journals (Sweden)

    Nhu-Mai Tran

    Full Text Available Cell microencapsulation in alginate hydrogel has shown interesting applications in regenerative medicine and the biomedical field through implantation of encapsulated tissue or for bioartificial organ development. Although alginate solution is known to have low antiviral activity, the same property regarding alginate gel has not yet been studied. The aim of this work is to investigate the potential protective effect of alginate encapsulation against hepatitis C virus (HCV infection for a hepatic cell line (HuH-7 normally permissive to the virus. Our results showed that alginate hydrogel protects HuH-7 cells against HCV when the supernatant was loaded with HCV. In addition, alginate hydrogel blocked HCV particle release out of the beads when the HuH-7 cells were previously infected and encapsulated. There was evidence of interaction between the molecules of alginate hydrogel and HCV, which was dose- and incubation time-dependent. The protective efficiency of alginate hydrogel towards HCV infection was confirmed against a variety of viruses, whether or not they were enveloped. This promising interaction between an alginate matrix and viruses, whose chemical mechanisms are discussed, is of great interest for further medical therapeutic applications based on tissue engineering.

  4. Secretion of One Adipokine Nampt/Visfatin Suppresses the Inflammatory Stress-Induced NF-κB Activity and Affects Nampt-Dependent Cell Viability in Huh-7 Cells

    Directory of Open Access Journals (Sweden)

    Yi-Ching Lin

    2015-01-01

    Full Text Available Nampt/visfatin acts in both intracellular and extracellular compartments to regulate multiple biological roles, including NAD metabolism, cancer, inflammation, and senescence. However, its function in chronic inflammation and carcinogenesis in hepatocellular carcinoma (HCC has not been well-defined. Here we use Huh-7 hepatoma cells as a model to determine how Nampt/visfatin affects cellular survival under oxidative stress. We found that the transition of Nampt/visfatin from intracellular into extracellular form was induced by H2O2 treatment in 293T cells and confirmed that this phenomenon was not due to cell death but through the secretion of Nampt/visfatin. In addition, Nampt/visfatin suppressed cell viability in oxidative treatment in Huh-7 cells and acted on the inhibition of hepatoma cell growth. Oxidative stress also reduced the Nampt-mediated activation of NF-κB gene expression. In this study, we identify a novel feature of Nampt/visfatin which functions as an adipokine that can be secreted upon cellular stress. Our results provide an example to understand how adipokine interacts with chemotherapeutic treatment by oxidative stress in HCC.

  5. Isolation and identification of CD133 + cells from human hepatocellular carcinoma cell lines Huh-7%人肝癌细胞系Huh-7中CD133+细胞的分离及鉴定

    Institute of Scientific and Technical Information of China (English)

    孙岚; 宋东颖; 刘岩磊; 刘岩; 张英鸽

    2013-01-01

    目的 通过表面标志分选法富集人肝癌Huh-7细胞中CD133+细胞,并初步鉴定其特性.方法 采用流式细胞分选技术从人肝癌细胞系Huh-7中分选出CD133+细胞,并进行干细胞比例分析;通过对CD133+细胞体外成球能力及增殖能力检测,考察CD133+细胞的自我更新能力;观察CD133+细胞在非肥胖性糖尿病/重度联合免疫缺陷小鼠(NOD/SCID)体内的成瘤情况.结果 分选获得的CD133+细胞经无血清培养后阳性比例达90%以上;CD133+细胞体外无血清培养3d即可成球且生长速度较CD133-细胞快;CD133+细胞在NOD/SCID小鼠体内21 d左右即可形成异种移植瘤.结论 CD133+表面标志物分选方法可以高纯度富集CD133+细胞,利用CD133抗体分选获得的CD133+细胞具有肿瘤干细胞样特性.%Objective To enrich CD133+ cells from human hepatocellular carcinoma cell lines Huh-7 cells through fluorescence activated cell sorting and identify their biological characteristics. Methods CD133 + cells were sorted by flow cytometry and the percentage of them in cultured Huh-7 cells was analyzed. The self-renewing and sphere-forming ability of CD133 + cell were observed by light microscope in vitro in comparison with CD133+ cells. Tumor-forming ability of CD133+ cells was observed by xenografts of them in NOD/SCID mice. Results Flow cytometry analysis indicated that the purity of CD133 + subset cells exceeded 90% , CD133 + subset cells were verified multipotent with the ability of forming tumor spheres within 3 culture days. And CD133 + subset cells were higher proliferative in vitro and had higher tumorigenitic ability in vivo than those of CD133+ subset cells in mice for 21 d. Conclusion CD133 + cells super marker sorting method can enrich CD133 + cells in high purity, and CD133 + cells sorted with CD133 antibody possess the characteristics of tumor stem cells.

  6. Mebiolgel, a thermoreversible polymer as a scaffold for three dimensional culture of Huh7 cell line with improved hepatocyte differentiation marker expression and HCV replication

    Directory of Open Access Journals (Sweden)

    A R Rajalakshmy

    2015-01-01

    Full Text Available Purpose: A novel three dimensional (3D culture system purely synthesised from co-polymer which is free from biological contamination for Huh7 cell cultivation and hepatitis C virus (HCV replication has been attempted. Materials and Methods: Mebiolgel, a thermo-reversible gelation polymer was used as a 3D scaffold for culturing Huh7, a liver carcinoma cell line used in our study. The 3D culture of the cells were infected with cell culture derived HCV. Result: The scaffold supported the cell growth as 3D spheroids for up to 63 days. Moreover mebiolgel was found to be improving the hepatocyte differentiation of Huh7 cells at the transcript level. Three dimensional culture was susceptible for HCV infection, and this was confirmed by detecting the HCV replication intermediate viral core antigen.Conclusion: Mebiolgel based culture system was proven to be suited for 3D culture of Huh7 cells by improvising liver specific genotypic expression and was susceptible for HCV replication. Since mebiolgel based Huh 7 express better hepatocyte differentiation markers genotypically, this can be implemented as an alternate for primary hepatocytes in studies such as viral isolation from patient serum.

  7. Nuclear Import Analysis of Two Different Fluorescent Marker Proteins into Hepatocyte Cell Lines (HuH-7 Cell

    Directory of Open Access Journals (Sweden)

    Aris Haryanto

    2015-10-01

    Full Text Available The application of fluorescent proteins as expression markers and protein fusion partners has provedimmensely valuable for resolving the organization of biological events in living cells. EGFP and DsRed2 arecommonly fluorescent marker protein which is used for biotechnology and cell biology research. The presentstudy was designed to identify the expression vector that suitable to ligate with DNA encoding HBV coreprotein for intracellular localization study in hepatocyte cell, which were expressed as fusion proteins. We alsocompared and quantified the expressed fluorescent protein which predominantly localized in the cellcompartment. The results indicated that DsRed2 shown as less than ideal for intracellular localization study ofthan EGFP, because of its tetrameric structure of the fluorescent protein and when fused to a protein of interest,the fusion protein often forms aggregates in the living cells. In contrast, EGFP fluorescent protein shown a muchhigher proportion of cytoplasmic localization, thus being more suitable for analysis of intracellular localizationthan DsRed2 fluorescent protein. EGFP fluorescent protein is also capable to produce a strong green fluorescencewhen excited by blue light, without any exogenously added substrate or cofactor, events inside living cell canthus be visualized in a non-invasive way. Based on our present quantitative data and some reasons above shownthat EGFP is more suitable than DsRed2 as a fluorescent marker protein for intracellular localization study intoHuH-7 cell.Keywords: EGFP, DsRed2 fluorescent protein , HuH-7 cell, HBV, intracellular localization

  8. Lentivirus vectors construction of SiRNA targeting interferenceGPC3 gene and its biological effects on liver cancer cell lines Huh-7

    Institute of Scientific and Technical Information of China (English)

    Chang-Jiang Lei; Chun Yao; Qing-Yun Pan; Hao-Cheng Long; Lei Li; Shu-Ping Zheng; Cheng Zeng; Jian-Bin Huang

    2014-01-01

    Objective:To buildGPC3 gene short hairpin interferenceRNA(shRNA) slow virus vector, observe expression ofHuh-7GPC3 gene in human liver cell line proliferation apoptosis and the effect ofGPC3 gene influencing on liver cancer cell growth, and provide theoretical basis for gene therapy of liver cancer.Methods:Hepatocellular carcinoma cell lineHuh-7 was transfected by aRNA interference technique.GPC3 gene expression in a variety of liver cancer cell lines was detected by fluorescence quantitativePCR.TargetedGPC3 gene sequences of small interfering RNA(siRNA)PGC-shRNA-GPC3 were restructured.Stable expression cell lines of siRNA were screened and established with the help of liposomes(lipofectamineTM2000) as carrier transfection of human liver cell lines.In order to validate siRNA interference efficiency,GPC3 siRNA mRNA expression was detected after transfection by usingRT-PCR andWestern blot.The absorbance value of the cells of blank group, untransfection group and transfection group, the cell cycle and cell apoptosis were calculated, and effects ofGPC3 gene onHuh-7 cell proliferation and apoptosis were observed.Results:In the liver cancer cell linesHuh-7,GPC3 gene showed high expression.PGC-shRNA-GPC3 recombinant plasmid was constructed successfully via sequencing validation.Stable recombinant plasmid transfected into liver cancer cell linesHuh-7 can obviously inhibitGPC3 mRNA expression level.Conclusions:The targetedGPC3 siRNA can effectively inhibit the expression ofGPC3.

  9. Novel TRAIL sensitizer Taraxacum officinale F.H. Wigg enhances TRAIL-induced apoptosis in Huh7 cells.

    Science.gov (United States)

    Yoon, Ji-Yong; Cho, Hyun-Soo; Lee, Jeong-Ju; Lee, Hyo-Jung; Jun, Soo Young; Lee, Jae-Hye; Song, Hyuk-Hwan; Choi, SangHo; Saloura, Vassiliki; Park, Choon Gil; Kim, Cheol-Hee; Kim, Nam-Soon

    2016-04-01

    TRAIL (TNF-related apoptosis inducing ligand) is a promising anti-cancer drug target that selectively induces apoptosis in cancer cells. However, many cancer cells are resistant to TRAIL-induced apoptosis. Therefore, reversing TRAIL resistance is an important step for the development of effective TRAIL-based anti-cancer therapies. We previously reported that knockdown of the TOR signaling pathway regulator-like (TIPRL) protein caused TRAIL-induced apoptosis by activation of the MKK7-c-Jun N-terminal Kinase (JNK) pathway through disruption of the MKK7-TIPRL interaction. Here, we identified Taraxacum officinale F.H. Wigg (TO) as a novel TRAIL sensitizer from a set of 500 natural products using an ELISA system and validated its activity by GST pull-down analysis. Furthermore, combination treatment of Huh7 cells with TRAIL and TO resulted in TRAIL-induced apoptosis mediated through inhibition of the MKK7-TIPRL interaction and subsequent activation of MKK7-JNK phosphorylation. Interestingly, HPLC analysis identified chicoric acid as a major component of the TO extract, and combination treatment with chicoric acid and TRAIL induced TRAIL-induced cell apoptosis via JNK activation due to inhibition of the MKK7-TIPRL interaction. Our results suggest that TO plays an important role in TRAIL-induced apoptosis, and further functional studies are warranted to confirm the importance of TO as a novel TRAIL sensitizer for cancer therapy. © 2015 Wiley Periodicals, Inc.

  10. Effect of 2-Methoxyestradioi on the Proliferation and Apoptosis of Human huh7 Cells in Vitro%2-甲氧基雌二醇对肝癌huh7细胞增殖与凋亡的作用及机制

    Institute of Scientific and Technical Information of China (English)

    梅娟娟; 朱尤庆; 常城; 蔡莎莎

    2012-01-01

    目的:观察2-甲氧基雌二醇(2ME2)对肝癌huh7细胞增殖及凋亡的影响,并初步探讨其分子机制.方法:采用不同浓度的2ME2作用于肝癌huh7细胞,以噻唑蓝(MTT)法测定其细胞毒作用;流式细胞仪检测细胞周期和细胞凋亡;Western blot观察血管内皮生长因子(VEGF)及Bcl-2蛋白的表达.结果:2ME2可抑制肝癌细胞huh7的生长,具有浓度和时间依赖性;2ME2能抑制huh7细胞分裂,大部分细胞阻滞在G2/M期,S期细胞减少;2ME2能诱导huh7细胞凋亡,主要是诱导huh7细胞发生早期凋亡;免疫印迹检查结果显示,2ME2能下调VEGF及Bcl-2蛋白的表达.结论:2ME2能抑制肝癌细胞huh7的增殖并诱导其凋亡,其机制可能与通过下调VEGF及Bel-2表达有关.%Objective: To evaluate the effect of 2-methoxyestradiol (2ME2) on the proliferation and ap-optosis of human huh7 cells, and to study its molecular mechanisms. Methods: The human huh7 cells were exposed to different concentration of 2-ME2, the methyl thiazolyl tetrazolium (MTT) assay was used to evaluate the cells cytotoxicity; the flow cytometry was adopted to test the cells cycle and apoptosis; Western blot was used to detect the expression of vascular endothelial growth factor (VEGF) and Bcl-2 protein. Results: The growth of huh7 cells was inhibited by 2-ME2 in a time- and dose-dependent manner? 2ME2 could inhibit the mitosis of huh7 cells, cells were arrested in G2/M phases, and the huh7 cells in S phase decreased; 2ME2 could induce huh7 cells apoptosis, particularly induce cell early apoptosis; Western blot result demonstrated 2ME2 decreased the expression of VEGF and Bcl-2 dose-dependently. Conclusion; 2ME2 can inhibit the proliferation of huh7 cells and induce cells apoptosis, which maybe related to its effect of down-regulating VEGF and Bcl-2.

  11. Effect of CCR7 on proliferation and invasiveness in hepatocellular carcinoma Huh-7 cells%CCR7对Huh-7肝癌细胞系增殖和侵袭的影响

    Institute of Scientific and Technical Information of China (English)

    张伯; 周萃阶; 刘秋华; 蒋维; 李建伟

    2013-01-01

    目的 探讨CCR7对肝细胞肝癌转移的影响.方法 构建siRNA-CCR7载体,稳定转染表达CCR7的肿瘤细胞株Huh-7,用MTT法检测沉默CCR7基因对Huh-7肝癌细胞系增殖的影响,通过趋化侵袭实验检测其对肿瘤细胞株Huh-7趋化、侵袭能力的影响.结果 通过抑制Huh-7细胞CCR7的表达,稳定转染siRNACCR7能有效抑制Huh-7细胞的增殖,并能抑制CCL21刺激的趋化和侵袭能力.结论 沉默CCR7基因能有效抑制肝癌细胞增殖和侵袭性.

  12. Optimization of in vitro HBV replication and HBsAg production in HuH7 cell line.

    Science.gov (United States)

    Cavallone, Daniela; Moriconi, Francesco; Colombatto, Piero; Oliveri, Filippo; Bonino, Ferruccio; Brunetto, Maurizia Rossana

    2013-04-01

    The Gunther's vector-free method (GM), using PCR-amplified full length HBV-DNA (fl-HBV-DNA), is currently the best in vitro HBV replication system despite the low intracellular HBV-DNA production. The replication efficiency and HBsAg secretion of 12 isolates from HBsAg/HBeAg positive sera by GM, Monomer-Linear-Sticky-Ends-DNA (MLSE) and Monomer-Circular-Closed (MCC) were compared in HuH7 cells. Eight of twelve genomes (67%) were replication competent by GM; however direct sequencing (DS) showed that more than 80% of input DNA was undigested in spite of SapI treatment. Replication Intermediates (RI) were detected earlier (24 vs. 48h) and in higher amounts (2.51±0.32 and 6.43±0.43 fold) by MCC than GM or MLSE. By MCC 10 of 12 genomes (83%) were replication competent and 7 produced high RI levels. RI and HBsAg kinetics correlated positively in MCC (R=0.696, p=0.017 overall; R=0.928, p=0.008), but not in GM (R=-0.437, p=0.179 overall; R=-0.395, p=0.439) in genotype D isolates. In conclusion, HBV-DNA circularization prior transfection improves in vitro viral replication and replication competent HBsAg production, mimicking better the in vivo conditions.

  13. 体外培养的嵌合体丙型肝炎病毒感染Huh7.5细胞的透射电镜观察%Observation of chimeric hepatitis C virus In infected Huh7.5 cell through transmission electron microscopy

    Institute of Scientific and Technical Information of China (English)

    马力; 魏欣; 张野; 王平忠; 连建奇; 贾战生

    2009-01-01

    目的 通过透射电子显微镜技术观察体外培养的嵌合体丙型肝炎病毒(HCV)感染Huh7.5细胞后胞内病毒颗粒的形态学特征及细胞内部超微结构的变化.方法 将含有全长HCV嵌合基因组的质粒pFL-J6/JFH体外转录为HCV RNA,电穿孔转染至Huh7.5细胞,实时定量聚合酶链反应(qRT-PCR)测定培养上清中病毒数量;间接免疫荧光检测病毒蛋白的表达;收取转染后细胞培养上清感染原始Huh7.5细胞,制作超薄细胞切片,透射电子显微镜技术观察被感染细胞中病毒颗粒的形态学特征及细胞超微结构的变化.结果 qRT-PCR显示不同时间点收取的转染后细胞培养上清中含有高水平的病毒量;间接免疫荧光显示病毒NSSA非结构蛋白高表达;透射电子显微镜观察到被感染的Huh7.5细胞内含有大量有包膜或无包膜的病毒样颗粒,细胞质内部分膜性细胞器增生,出现黄病毒科病毒感染后特征性结构及某种未知结构等.结论 体外培养的嵌合体HCV具有HCV颗粒的形态学特征,并能够有效感染人源性肝细胞Huh7.5.%Objective To observe the morphological characteristics of HCV particles and intracel-lular ultrastructure changes in Huh7. 5 cells which was infected with chimeric HCV via transmission electron microscopy. Methods Plasmid J6/JFH encoding the full length HCV chimeric genome was transcribed to HCV RNA in vitro and the RNA was transfected into Huh7.5 cells by electroporation. Quantitative real-time PCR(qRT-PCR) was used to assay HCV copies of the supernatant of transfected cells. Indirect immunofluo-rescence was used to detect the expression of HCV proteins. The cell culture superoatant were used to infect narve Huh7.5 cells, transmission electron microscopy was used to observe morphological characteristics of vi-rus particles and intracellular ultrastructure changes in infected Huh7. 5 cells. Results qRT-PCR showed high level virus copies in supernatant of transfected cells

  14. Hepatitis B Virus X Protein Stimulates Proliferation, Wound Closure and Inhibits Apoptosis of HuH-7 Cells via CDC42

    Science.gov (United States)

    Xu, Yongru; Qi, Yingzi; Luo, Jing; Yang, Jing; Xie, Qi; Deng, Chen; Su, Na; Wei, Wei; Shi, Deshun; Xu, Feng; Li, Xiangping; Xu, Ping

    2017-01-01

    Chronic hepatitis B virus (HBV) infection has been considered as the major cause of hepatocellular carcinoma (HCC). Hepatitis B virus X protein (HBx) has been reported to be oncogenic. The underlying mechanisms of HBV-related HCC are not fully understood, and the role played by the HBx protein in HBV induced carcinogenesis remains controversial. CDC42, a member of the Rho GTPase family, has been reported to be overexpressed in several different cancers, including HBV-related HCC. However, the specific role of CDC42 in HCC development remains unclear. Here, we investigated the cellular mechanisms by which CDC42 was responsible for the higher proliferation of HuH-7 cells mediated by HBx. We found that the expression level of CDC42 and its activity were significantly increased in HuH-7-HBx cells. The deficiency of CDC42 using the CRISPR/Cas9 system and inhibition by specific inhibitor CASIN led to the reduction of HBx-mediated proliferation. Furthermore, we observed that IQ Motif Containing GTPase Activating Protein 1 (IQGAP1), the downstream mediator of the CDC42 pathway, might be involved in the carcinogenesis induced by HBx. Therefore, the HBx/CDC42/IQGAP1 signaling pathway may potentially play an important role in HBx-mediated carcinogenesis. PMID:28282856

  15. Elimination of Cancer Stem-Like “Side Population” Cells in Hepatoma Cell Lines by Chinese Herbal Mixture “Tien-Hsien Liquid”

    Directory of Open Access Journals (Sweden)

    Chih-Jung Yao

    2012-01-01

    Full Text Available There are increasing pieces of evidence suggesting that the recurrence of cancer may result from a small subpopulation of cancer stem cells, which are resistant to the conventional chemotherapy and radiotherapy. We investigated the effects of Chinese herbal mixture Tien-Hsien Liquid (THL on the cancer stem-like side population (SP cells isolated from human hepatoma cells. After sorting and subsequent culture, the SP cells from Huh7 hepatoma cells appear to have higher clonogenicity and mRNA expressions of stemness genes such as SMO, ABCG2, CD133, β-catenin, and Oct-4 than those of non-SP cells. At dose of 2 mg/mL, THL reduced the proportion of SP cells in HepG2, Hep3B, and Huh7 cells from 1.33% to 0.49%, 1.55% to 0.43%, and 1.69% to 0.27%, respectively. The viability and colony formation of Huh7 SP cells were effectively suppressed by THL dose-dependently, accompanied with the inhibition of stemness genes, e.g., ABCG2, CD133, and SMO. The tumorigenicity of THL-treated Huh7 SP cells in NOD/SCID mice was also diminished. Moreover, combination with THL could synergize the effect of doxorubicin against Huh7 SP cells. Our data indicate that THL may act as a cancer stem cell targeting therapeutics and be regarded as complementary and integrative medicine in the treatment of hepatoma.

  16. Dengue virus NS1 protein interacts with the ribosomal protein RPL18: this interaction is required for viral translation and replication in Huh-7 cells.

    Science.gov (United States)

    Cervantes-Salazar, Margot; Angel-Ambrocio, Antonio H; Soto-Acosta, Ruben; Bautista-Carbajal, Patricia; Hurtado-Monzon, Arianna M; Alcaraz-Estrada, Sofia L; Ludert, Juan E; Del Angel, Rosa M

    2015-10-01

    Given dengue virus (DENV) genome austerity, it uses cellular molecules and structures for virion entry, translation and replication of the genome. NS1 is a multifunctional protein key to viral replication and pathogenesis. Identification of cellular proteins that interact with NS1 may help in further understanding the functions of NS1. In this paper we isolated a total of 64 proteins from DENV infected human hepatic cells (Huh-7) that interact with NS1 by affinity chromatography and immunoprecipitation assays. The subcellular location and expression levels during infection of the ribosomal proteins RPS3a, RPL7, RPL18, RPL18a plus GAPDH were determined. None of these proteins changed their expression levels during infection; however, RPL-18 was redistributed to the perinuclear region after 48hpi. Silencing of the RPL-18 does not affect cell translation efficiency or viability, but it reduces significantly viral translation, replication and viral yield, suggesting that the RPL-18 is required during DENV replicative cycle.

  17. RNA-seq based transcriptome analysis of hepatitis E virus (HEV) and hepatitis B virus (HBV) replicon transfected Huh-7 cells.

    Science.gov (United States)

    Jagya, Neetu; Varma, Satya Pavan Kumar; Thakral, Deepshi; Joshi, Prashant; Durgapal, Hemlata; Panda, Subrat Kumar

    2014-01-01

    Pathogenesis of hepatitis B virus (HBV) and hepatitis E virus (HEV) infection is as varied as they appear similar; while HBV causes an acute and/or chronic liver disease and hepatocellular carcinoma, HEV mostly causes an acute self-limiting disease. In both infections, host responses are crucial in disease establishment and/or virus clearance. In the wake of worsening prognosis described during HEV super-infection over chronic HBV hepatitis, we investigated the host responses by studying alterations in gene expression in liver cells (Huh-7 cell line) by transfection with HEV replicon only (HEV-only), HBV replicon only (HBV-only) and both HBV and HEV replicons (HBV+HEV). Virus replication was validated by strand-specific real-time RT-PCR for HEV and HBsAg ELISA of the culture supernatants for HBV. Indirect immunofluorescence for the respective viral proteins confirmed infection. Transcription profiling was carried out by RNA Sequencing (RNA-Seq) analysis of the poly-A enriched RNA from the transfected cells. Averages of 600 million bases within 5.6 million reads were sequenced in each sample and ∼15,800 genes were mapped with at least one or more reads. A total of 461 genes in HBV+HEV, 408 in HBV-only and 306 in HEV-only groups were differentially expressed as compared to mock transfection control by two folds (preplicon transfected RNA-Seq based transcriptome analysis to understand the host responses against HEV and HBV.

  18. In vitro antitumor efficacy of berberine: solid lipid nanoparticles against human HepG2, Huh7 and EC9706 cancer cell lines

    Science.gov (United States)

    Meng, Xiang-Ping; Wang, Xiao; Wang, Huai-ling; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2016-03-01

    Hepatocarcinoma and esophageal squamous cell carcinomas threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma and esophageal carcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma and antiesophageal carcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded solid lipid nanoparticles (Ber-SLN) was prepared by hot melting and then high pressure homogenization technique. The in vitro anti-hepatocarcinoma and antiesophageal carcinoma effects of Ber-SLN relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-SLN were 154.3 ± 4.1 nm and -11.7 ± 1.8 mV, respectively. MTT assay showed that Ber-SLN effectively inhibited the proliferation of human HepG2 and Huh7 and EC9706 cells, and the corresponding IC50 value was 10.6 μg/ml, 5.1 μg/ml, and 7.3 μg/ml (18.3μg/ml, 6.5μg/ml, and 12.4μg/ml μg/ml of bulk Ber solution), respectively. These results suggest that the delivery of Ber-SLN is a promising approach for treating tumors.

  19. Anti-hepatocarcinoma effects of berberine-nanostructured lipid carriers against human HepG2, Huh7, and EC9706 cancer cell lines

    Science.gov (United States)

    Meng, Xiang-Ping; Fan, Hua; Wang, Yi-fei; Wang, Zhi-ping; Chen, Tong-sheng

    2016-10-01

    Hepatocarcinoma and esophageal squamous cell carcinomas threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma and esophageal carcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma and antiesophageal carcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded nanostructured lipid carriers (Ber-NLC) was prepared by hot melting and then high pressure homogenization technique. The in vitro anti-hepatocarcinoma and antiesophageal carcinoma effects of Ber-NLC relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-NLC were 189.3 +/- 3.7 nm and -19.3 +/- 1.4 mV, respectively. MTT assay showed that Ber-NLC effectively inhibited the proliferation of human HepG2 and Huh7 and EC9706 cells, and the corresponding IC50 value was 9.1 μg/ml, 4.4 μg/ml, and 6.3 μg/ml (18.3μg/ml, 6.5μg/ml, and 12.4μg/ml μg/ml of bulk Ber solution), respectively. These results suggest that the delivery of Ber-NLC is a promising approach for treating tumors.

  20. Very-low-density lipoprotein (VLDL)-producing and hepatitis C virus-replicating HepG2 cells secrete no more lipoviroparticles than VLDL-deficient Huh7.5 cells.

    Science.gov (United States)

    Jammart, Baptiste; Michelet, Maud; Pécheur, Eve-Isabelle; Parent, Romain; Bartosch, Birke; Zoulim, Fabien; Durantel, David

    2013-05-01

    In the plasma samples of hepatitis C virus (HCV)-infected patients, lipoviroparticles (LVPs), defined as (very-) low-density viral particles immunoprecipitated with anti-β-lipoproteins antibodies are observed. This HCV-lipoprotein association has major implications with respect to our understanding of HCV assembly, secretion, and entry. However, cell culture-grown HCV (HCVcc) virions produced in Huh7 cells, which are deficient for very-low-density lipoprotein (VLDL) secretion, are only associated with and dependent on apolipoprotein E (apoE), not apolipoprotein B (apoB), for assembly and infectivity. In contrast to Huh7, HepG2 cells can be stimulated to produce VLDL by both oleic acid treatment and inhibition of the MEK/extracellular signal-regulated kinase (ERK) pathway but are not permissive for persistent HCV replication. Here, we developed a new HCV cell culture model to study the interaction between HCV and lipoproteins, based on engineered HepG2 cells stably replicating a blasticidin-tagged HCV JFH1 strain (JB). Control Huh7.5-JB as well as HepG2-JB cell lines persistently replicated viral RNA and expressed viral proteins with a subcellular colocalization of double-stranded RNA (dsRNA), core, gpE2, and NS5A compatible with virion assembly. The intracellular RNA replication level was increased in HepG2-JB cells upon dimethyl sulfoxide (DMSO) treatment, MEK/ERK inhibition, and NS5A overexpression to a level similar to that observed in Huh7.5-JB cells. Both cell culture systems produced infectious virions, which were surprisingly biophysically and biochemically similar. They floated at similar densities on gradients, contained mainly apoE but not apoB, and were not neutralized by anti-apoB antibodies. This suggests that there is no correlation between the ability of cells to simultaneously replicate HCV as well as secrete VLDL and their capacity to produce LVPs.

  1. Anti-hepatocarcinoma effects of berberine nanosuspension against human HepG2 and Huh7 cells as well as H22 tumor bearing mice

    Science.gov (United States)

    Wang, Zhi-ping; Wu, Jun-biao; Zhou, Qun; Wang, Yi-fei; Chen, Tongsheng

    2014-09-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber nanosuspension (Ber-NS) composed of Ber and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was prepared by high pressure homogenization technique. Both in vitro and in vivo anti-hepatocarcinoma effects of Ber-NS relative to effcacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-NS were 73.1 +/- 3.7 nm and 6.99 +/- 0.17 mV, respectively. Ber-NS exhibited significant inhibitory effects against human HepG2 and Huh7 cells, and the corresponding IC50 values were 8.1 and 4.7 μg/ml (18.3 and 6.5 μg/ml of Ber solution). In vivo studies also showed higher antitumor efficacy, and inhibition rates was 63.7% (41.4 % of Ber solution) at 100 mg/kg intragastric administration in the H22 solid tumor bearing mice. These results suggest that the delivery of Ber as a nanosuspension is a promising approach for treating hepatocarcinoma.

  2. TGF-β1/SMAD SIGNALING PATHWAY MEDIATES p53-DEPENDENT APOPTOSIS IN HEPATOMA CELL LINES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To determine whether transforming growth factor betal ( TGF-β1 )/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines. Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, and Hep3B, were used in this study. TGF-β31-induced apoptosis in hepatic carcinoma cell lines was analyzed using TUNEL assay. For identifying the mechanism of apoptosis induced by TGF-β1, cell lines were transfected with a TGF-β1-inducible luciferase reportor plasmid containing Smad4 binding elements. After transfection, cells were treated with TGF-β1, then assayed for luciferase activity. Results The apoptosis rate of HepG2 cell lines (48.51% ± 8.21% ) was significantly higher than control (12. 72% ±2. 18%, P <0. 05 ). But TGF-β1 was not able to induce apoptosis of Huh-7 and Hep3B cell lines. The relative luciferase activity of TGF-β1-treated HepG2 cell lines (4. 38) was significantly higher than control (1.00, P <0. 05). But the relative luciferase activity of TGF-β1-treated Huh-7 and Hep3B cell lines less increased compared with control. Conclusions HepG2 cells seem to be highly susceptible to TGF-β1-induced apoptosis compared with Hep3B and Huh-7 cell lines. Smad4 is a central mediator of TGF-β1 signaling transdution pathway. TGF-β1/Smad signaling pathway might mediate p53-dependent apoptosis in hepatoma cell lines.

  3. Very-Low-Density Lipoprotein (VLDL)-Producing and Hepatitis C Virus-Replicating HepG2 Cells Secrete No More Lipoviroparticles than VLDL-Deficient Huh7.5 Cells

    Science.gov (United States)

    Jammart, Baptiste; Michelet, Maud; Pécheur, Eve-Isabelle; Parent, Romain; Bartosch, Birke; Zoulim, Fabien

    2013-01-01

    In the plasma samples of hepatitis C virus (HCV)-infected patients, lipoviroparticles (LVPs), defined as (very-) low-density viral particles immunoprecipitated with anti-β-lipoproteins antibodies are observed. This HCV-lipoprotein association has major implications with respect to our understanding of HCV assembly, secretion, and entry. However, cell culture-grown HCV (HCVcc) virions produced in Huh7 cells, which are deficient for very-low-density lipoprotein (VLDL) secretion, are only associated with and dependent on apolipoprotein E (apoE), not apolipoprotein B (apoB), for assembly and infectivity. In contrast to Huh7, HepG2 cells can be stimulated to produce VLDL by both oleic acid treatment and inhibition of the MEK/extracellular signal-regulated kinase (ERK) pathway but are not permissive for persistent HCV replication. Here, we developed a new HCV cell culture model to study the interaction between HCV and lipoproteins, based on engineered HepG2 cells stably replicating a blasticidin-tagged HCV JFH1 strain (JB). Control Huh7.5-JB as well as HepG2-JB cell lines persistently replicated viral RNA and expressed viral proteins with a subcellular colocalization of double-stranded RNA (dsRNA), core, gpE2, and NS5A compatible with virion assembly. The intracellular RNA replication level was increased in HepG2-JB cells upon dimethyl sulfoxide (DMSO) treatment, MEK/ERK inhibition, and NS5A overexpression to a level similar to that observed in Huh7.5-JB cells. Both cell culture systems produced infectious virions, which were surprisingly biophysically and biochemically similar. They floated at similar densities on gradients, contained mainly apoE but not apoB, and were not neutralized by anti-apoB antibodies. This suggests that there is no correlation between the ability of cells to simultaneously replicate HCV as well as secrete VLDL and their capacity to produce LVPs. PMID:23427158

  4. Plasmodium berghei Δp52&p36 parasites develop independent of a parasitophorous vacuole membrane in Huh-7 liver cells.

    Science.gov (United States)

    Ploemen, Ivo H J; Croes, Huib J; van Gemert, Geert-Jan J; Wijers-Rouw, Mietske; Hermsen, Cornelus C; Sauerwein, Robert W

    2012-01-01

    The proteins P52 and P36 are expressed in the sporozoite stage of the murine malaria parasite Plasmodium berghei. Δp52&p36 sporozoites lacking expression of both proteins are severely compromised in their capability to develop into liver stage parasites and abort development soon after invasion; presumably due to the absence of a parasitophorous vacuole membrane (PVM). However, a small proportion of P. berghei Δp52&p36 parasites is capable to fully mature in hepatocytes causing breakthrough blood stage infections. We have studied the maturation of replicating Δp52&p36 parasites in cultured Huh-7 hepatocytes. Approximately 50% of Δp52&p36 parasites developed inside the nucleus of the hepatocyte but did not complete maturation and failed to produce merosomes. In contrast cytosolic Δp52&p36 parasites were able to fully mature and produced infectious merozoites. These Δp52&p36 parasites developed into mature schizonts in the absence of an apparent parasitophorous vacuole membrane as shown by immunofluorescence and electron microscopy. Merozoites derived from these maturing Δp52&p36 liver stages were infectious for C57BL/6 mice.

  5. Plasmodium berghei Δp52&p36 parasites develop independent of a parasitophorous vacuole membrane in Huh-7 liver cells.

    Directory of Open Access Journals (Sweden)

    Ivo H J Ploemen

    Full Text Available The proteins P52 and P36 are expressed in the sporozoite stage of the murine malaria parasite Plasmodium berghei. Δp52&p36 sporozoites lacking expression of both proteins are severely compromised in their capability to develop into liver stage parasites and abort development soon after invasion; presumably due to the absence of a parasitophorous vacuole membrane (PVM. However, a small proportion of P. berghei Δp52&p36 parasites is capable to fully mature in hepatocytes causing breakthrough blood stage infections. We have studied the maturation of replicating Δp52&p36 parasites in cultured Huh-7 hepatocytes. Approximately 50% of Δp52&p36 parasites developed inside the nucleus of the hepatocyte but did not complete maturation and failed to produce merosomes. In contrast cytosolic Δp52&p36 parasites were able to fully mature and produced infectious merozoites. These Δp52&p36 parasites developed into mature schizonts in the absence of an apparent parasitophorous vacuole membrane as shown by immunofluorescence and electron microscopy. Merozoites derived from these maturing Δp52&p36 liver stages were infectious for C57BL/6 mice.

  6. Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver

    Energy Technology Data Exchange (ETDEWEB)

    Luciani, Alain [Universite Rene Descartes, Hopital Europeen Georges Pompidou, Laboratoire de Recherche en Imagerie, EA 4062, Paris (France); Imagerie Medicale, Faculte de Medecine Paris XII, CHU Henri Mondor, Creteil cedex (France); Wilhelm, Claire; Gazeau, Florence [Universite Paris Diderot, Batiment Condorcet, Laboratoire Matiere et Systemes Complexes, CNRS-UMR 7057, Paris Cedex (France); Bruneval, Patrick [Anatomopathologie, Hopital Europeen Georges Pompidou, Paris (France); Cunin, Patrick [Unite de Recherche Clinique, Faculte de Medecine Paris XII, CHU Henri Mondor, Creteil cedex (France); Autret, Gwennhael; Clement, Olivier [Universite Rene Descartes, Hopital Europeen Georges Pompidou, Laboratoire de Recherche en Imagerie, EA 4062, Paris (France); Rahmouni, Alain [Imagerie Medicale, Faculte de Medecine Paris XII, CHU Henri Mondor, Creteil cedex (France)

    2009-05-15

    The purpose of this study was to determine whether an external magnet field can induce preferential trafficking of magnetically labeled Huh7 hepatoma cells to the liver following liver cell transplantation. Huh7 hepatoma cells were labeled with anionic magnetic nanoparticles (AMNP) and tagged with a fluorescent membrane marker (PKH67). Iron-uptake was measured by magnetophoresis. Twenty C57Bl6 mice received an intrasplenic injection of 2 x 10{sup 6} labeled cells. An external magnet (0.29 T; 25 T/m) was placed over the liver of 13 randomly selected animals (magnet group), while the remaining 7 animals served as controls. MRI (1.5 T) and confocal fluorescence microscopy (CFM) were performed 10 days post-transplantation. The presence and location of labeled cells within the livers were compared in the magnet group and controls, and confronted with histological analysis representing the standard of reference. Mean iron content per cell was 6 pg. Based on histology, labeled cells were more frequently present within recipient livers in the magnet group (p < 0.01) where their distribution was preferentially peri-vascular (p<0.05). MRI and CFM gave similar results for the overall detection of transplanted cells (kappa=0.828) and for the identification of peri-vascular cells (kappa=0.78). Application of an external magnet can modify the trafficking of transplanted cells, especially by promoting the formation of perivascular aggregates. (orig.)

  7. Interferon alpha regulates MAPK and STAT1 pathways in human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Ren Hao

    2011-04-01

    Full Text Available Abstract Background Signaling events triggered by interferon (IFN account for the molecular mechanisms of antiviral effect. JAK-STAT pathway plays a critical role in IFN signaling, and other pathways are also implicated in IFN-mediated antiviral effect. Changes in mitogen-activated protein kinase (MAPK and STAT1 pathways were evaluated in human hepatoma cells Huh7 and HepG2 upon IFN alpha treatment. Results Phosphorylation of ERK was significantly and specifically up-regulated, whereas enhanced phosphorylation of upstream kinase MEK was unobservable upon IFN alpha treatment. A mild increase in p38 MAPK, SAPK/JNK and downstream target ATF-2 phosphorylation was detectable after exposure to IFN alpha, indicating differential up-regulation of the MAPK signaling cascades. Moreover, STAT1 phosphorylation was strongly enhanced by IFN alpha. Conclusion IFN alpha up-regulates MAPK and STAT1 pathways in human hepatoma cells, and may provide useful information for understanding the IFN signaling.

  8. Gene Network Analysis of Glucose Linked Signaling Pathways and Their Role in Human Hepatocellular Carcinoma Cell Growth and Survival in HuH7 and HepG2 Cell Lines

    Science.gov (United States)

    Berger, Emmanuelle; Vega, Nathalie; Weiss-Gayet, Michèle; Géloën, Alain

    2015-01-01

    Cancer progression may be affected by metabolism. In this study, we aimed to analyze the effect of glucose on the proliferation and/or survival of human hepatocellular carcinoma (HCC) cells. Human gene datasets regulated by glucose were compared to gene datasets either dysregulated in HCC or regulated by other signaling pathways. Significant numbers of common genes suggested putative involvement in transcriptional regulations by glucose. Real-time proliferation assays using high (4.5 g/L) versus low (1 g/L) glucose on two human HCC cell lines and specific inhibitors of selected pathways were used for experimental validations. High glucose promoted HuH7 cell proliferation but not that of HepG2 cell line. Gene network analyses suggest that gene transcription by glucose could be mediated at 92% through ChREBP in HepG2 cells, compared to 40% in either other human cells or rodent healthy liver, with alteration of LKB1 (serine/threonine kinase 11) and NOX (NADPH oxidases) signaling pathways and loss of transcriptional regulation of PPARGC1A (peroxisome-proliferator activated receptors gamma coactivator 1) target genes by high glucose. Both PPARA and PPARGC1A regulate transcription of genes commonly regulated by glycolysis, by the antidiabetic agent metformin and by NOX, suggesting their major interplay in the control of HCC progression. PMID:26380295

  9. Effects of laminin and collagen type I on the morphology and secretion of proteins in human hepatoblastoma and hepatoma cell lines.

    Directory of Open Access Journals (Sweden)

    Tokiwa,Takayoshi

    1990-04-01

    Full Text Available The effects of laminin (LAM and collagen type I (C-I on human hepatoblastoma (HuH-6 and hepatoma (HuH-7 cell lines were investigated. C-I was superior to LAM in supporting the attachment of the cells, especially of HuH-6, to plastic surfaces. No effect of LAM and C-I on cellular morphology was recognizable by phase contrast microscopy. By scanning electron microscopy (SEM, much more microvilli were found on the cell surface of HuH-6 on LAM substrate than on C-I substrate. In HuH-7 cells, however, these microvilli were rarely found on either LAM substrate or C-I substrate. The gel profile of the proteins secreted by HuH-6 and HuH-7 cells was not affected by the culture substrate except for the major band, though the amount of alpha-fetoprotein (AFP secreted was larger when the cells were cultured on LAM substrate than on C-I substrate. These results indicate that the ability of LAM or C-I to enhance attachment is different from that to enhance AFP production or microvilli expression in HuH-6 cells and probably in HuH-7 cells.

  10. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Singaravelu, Ragunath [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Lyn, Rodney K. [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Srinivasan, Prashanth [National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Delcorde, Julie [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Steenbergen, Rineke H.; Tyrrell, D. Lorne [Department of Medical Microbiology and Immunology, University of Alberta (Canada); Li Ka Shing Institute of Virology, Katz Centre for Pharmacy and Health Research, Edmonton, Alberta T6G 2S2 (Canada); Pezacki, John P., E-mail: John.Pezacki@nrc-cnrc.gc.ca [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2013-11-15

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway.

  11. In vivo study of the HC-TN strain of hepatitis C virus recovered from a patient with fulminant hepatitis: RNA transcripts of a molecular clone (pHC-TN) are infectious in chimpanzees but not in Huh7.5 cells

    DEFF Research Database (Denmark)

    Sakai, Akito; Takikawa, Shingo; Thimme, Robert

    2007-01-01

    disease severity, host immune response, viral evolution, and outcome. A second chimpanzee (CH1581) was infected from CH1422 plasma, and a third chimpanzee (CH1579) was infected from RNA transcripts of a consensus cDNA of HC-TN (pHC-TN). RNA transcripts of pHC-TN did not replicate in Huh7.5 cells, which...

  12. Transcriptome profiling and genome-wide DNA binding define the differential role of fenretinide and all-trans RA in regulating the death and survival of human hepatocellular carcinoma Huh7 cells.

    Science.gov (United States)

    Hu, Ying; Liu, Hui-Xin; He, Yuqi; Fang, Yaping; Fang, Jianwen; Wan, Yu-Jui Yvonne

    2013-04-01

    Fenretinide is significantly more effective in inducing apoptosis in cancer cells than all-trans retinoic acid (ATRA). The current study uses a genome-wide approach to understand the differential role fenretinide and ATRA have in inducing apoptosis in Huh7 cells. Fenretinide and ATRA-induced gene expressions and DNA bindings were profiled using microarray and chromatin immunoprecipitation with anti-RXRα antibody. The data showed that fenretinide was not a strong transcription regulator. Fenretinide only changed the expressions of 1 093 genes, approximately three times less than the number of genes regulated by ATRA (2 811). Biological function annotation demonstrated that both fenretinide and ATRA participated in pathways that determine cell fate and metabolic processes. However, fenretinide specifically induced Fas/TNFα-mediated apoptosis by increasing the expression of pro-apoptotic genes i.e., DEDD2, CASP8, CASP4, and HSPA1A/B; whereas, ATRA induced the expression of BIRC3 and TNFAIP3, which inhibit apoptosis by interacting with TRAF2. In addition, fenretinide inhibited the expression of the genes involved in RAS/RAF/ERK-mediated survival pathway. In contrast, ATRA increased the expression of SOSC2, BRAF, MEK, and ERK genes. Most genes regulated by fenretinide and ATRA were bound by RXRα, suggesting a direct effect. This study revealed that by regulating fewer genes, the effects of fenretinide become more specific and thus has fewer side effects than ATRA. The data also suggested that fenretinide induces apoptosis via death receptor effector and by inhibiting the RAS/RAF/ERK pathway. It provides insight on how retinoid efficacy can be improved and how side effects in cancer therapy can be reduced.

  13. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece); Simos, George, E-mail: simos@med.uth.gr [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece)

    2010-07-16

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  14. Adaptive mutations enhance assembly and cell-to-cell transmission of a high-titer hepatitis C virus genotype 5a Core-NS2 JFH1-based recombinant

    DEFF Research Database (Denmark)

    Mathiesen, Christian K; Prentoe, Jannick; Meredith, Luke W

    2015-01-01

    UNLABELLED: Recombinant hepatitis C virus (HCV) clones propagated in human hepatoma cell cultures yield relatively low infectivity titers. Here, we adapted the JFH1-based Core-NS2 recombinant SA13/JFH1C3405G,A3696G (termed SA13/JFH1orig), of the poorly characterized genotype 5a, to Huh7.5 cells......81-deficient Huh7-derived cells demonstrated that these changes did not affect replication but increased HCV assembly and specific infectivity as early as 24 h posttransfection. Infectious coculture assays in Huh7.5 cells showed a significant increase in cell-to-cell transmission for SA13/JFH1Core...

  15. Disulfiram deregulates HIF-α subunits and blunts tumor adaptation to hypoxia in hepatoma cells

    Science.gov (United States)

    Park, Hye-joon; Kim, Min-sung; Cho, Kumsun; Yun, Jang-hyuk; Choi, Yong-joon; Cho, Chung-hyun

    2013-01-01

    Aim: Disulfiram is an aldehyde dehydrogenase inhibitor that was used to treat alcoholism and showed anticancer activity, but its anticancer mechanism remains unclear. The aim of this study was to investigate the effects of disulfiram on the hypoxia-inducible factor (HIF)-driven tumor adaptation to hypoxia in vitro. Methods: Hep3B, Huh7 and HepG2 hepatoma cells were incubated under normoxic (20% O2) or hypoxic (1% O2) conditions for 16 h. The expression and activity of HIF-1α and HIF-2α proteins were evaluated using immunoblotting and luciferase reporter assay, respectively. Semi-quantitative RT-PCR was used to analyze HIF-mediated gene expression. Endothelial tubule formation assay was used to evaluate the anti-angiogenic effect. Results: Hypoxia caused marked expression of HIF-1α and HIF-1α in the 3 hepatoma cell lines, dramatically increased HIF activity and induced the expression of HIF downstream genes (EPO, CA9, VEGF-A and PDK1) in Hep3B cells. HIF-2α expression was positively correlated with the induction of hypoxic genes (CA9, VEGF-A and PDK1). Moreover, hypoxia markedly increased VEGF production and angiogenic potential of Hep3B cells. Disulfiram (0.3 to 2 μmol/L) inhibited hypoxia-induced gene expression and HIF activity in a dose-dependent manner. Disulfiram more effectively suppressed the viability of Hep3B cells under hypoxia, but it did not affect the cell cycle. Overexpression of HIF-2α in Hep3B cells reversed the inhibitory effects of disulfiram on hypoxia-induced gene expression and cell survival under hypoxia. Conclusion: Disulfiram deregulates the HIF-mediated hypoxic signaling pathway in hepatoma cells, which may contribute to its anticancer effect. Thus, disulfiram could be used to treat solid tumors that grow in a HIF-dependent manner. PMID:23852087

  16. The inhibition effect of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin-induced aryl hydrocarbon receptor activation in human hepatoma cells with the treatment of cadmium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chao, How-Ran [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Emerging Compounds Research Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Tsou, Tsui-Chun [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Chen, Hung-Ta [Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, Eddy Essen; Tsai, Feng-Yuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Lin, Ding-Yan [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Chen, Fu-An [Graduate Institute of Pharmaceutical Science, Department of Pharmacy, Tajen University, Yan-Pu, Pingtung 907, Taiwan (China); Wang, Ya-Fen, E-mail: yfwang@cycu.edu.tw [Department of Bioenvironmental Engineering, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan (China); R and D Center of Membrane Technology, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-10-15

    Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), considered as endocrine disruptors, tend to accumulate in fatty tissues. Dioxin-responsive element chemical activated luciferase gene expression assay (DRE-luciferase assay) has been recognized as a semi-quantitative method for screening dioxins for its fast and low-cost as compared with HRGC/HRMS. However, some problems with the bioassay, including specificity, detection variation resulted from different cleanup strategies, and uncertainty of false-negative or false-positive results, remain to be overcome. Cadmium is a prevalent environmental contaminant around the world. This study was aimed to examine the effects of cadmium on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of aryl hydrocarbon receptor (AhR)-mediated gene expression in human hepatoma cells (Huh7-DRE-Luc cells and Huh7 cells). Ethoxyresorufin-O-deethylase (EROD) and DRE-luciferase assay were employed to determine the enzyme activity of cytochrome P450 1A1 (CYP1A1) and activation of AhR, respectively. The results showed that Cd{sup 2+} levels significantly inhibited the induction of TCDD-induced CYP1A1 and DRE luciferase activation in hepatoma cells. The 50% inhibited concentrations (IC{sub 50}) of CdCl{sub 2} were 0.414 {mu}M (95% confidence interval (C.I.): 0.230-0.602 {mu}M) in Huh7-DRE-Luc cells and 23.2 {mu}M (95% C.I.: 21.7-25.4 {mu}M) in Huh7 cells. Accordingly, prevention of interference with non-dioxin-like compounds in a DRE-luciferase assay is of great importance in an extensive cleanup procedure.

  17. Arecoline inhibits the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytochrome P450 1A1 activation in human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eddy Essen [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Miao Zhifeng [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Lee, W.-J. [Dept. of Environmental Engineering, National Cheng Kung Univ., Tainan 701, Taiwan (China)]|[Sustainable Environment Research Center, National Cheng Kung Univ., Tainan 701, Taiwan (China); Chao, H.-R. [Dept. of Environmental Science and Engineering, National Pingtung Univ. of Science and Technology, Pingtung 912, Taiwan (China); Li, Lih-Ann [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Wang, Y.-F. [Dept. of Chemical Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China); Ko, Y.-C. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China)]|[Dept. of Public Health, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Tsai, F.-Y. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Yeh, S.C. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China); Tsou, T.-C. [Lab. of Molecular Toxicology, Div. of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan (China)]. E-mail: tctsou@nhri.org.tw

    2007-07-19

    In the present study, we investigated the effect of arecoline, a major areca nut alkaloid, on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of cytochrome P4501A1 (CYP1A1) in a human hepatoma cell line Huh-7. We treated Huh-7 cells with 10 nM TCDD in the presence of different concentrations of arecoline (50-300 {mu}M). Our results indicated that arecoline attenuated the TCDD-induced CYP1A1 enzyme activation with an inhibitory effect on cell proliferation. By using real-time RT-PCR, we demonstrated that arecoline inhibited the TCDD-induced activations of CYP1A1 and AhR repressor (AhRR) mRNA expression in a similar pattern. Our results revealed that arecoline inhibited AhR mRNA expression with no direct effect on CYP1A1 enzyme activity. Therefore, in our present study, the observed inhibitory effect of arecoline on CYP1A1 activation was not due to the up-regulation of AhRR or direct inhibitory effect on CYP1A1. Taken together, here we have demonstrated that arecoline attenuates the TCDD-induced CYP1A1 activation mainly via down-regulation of AhR expression in human hepatoma cells, suggesting the possible involvement of arecoline in the AhR-mediated metabolism of environmental toxicants in liver.

  18. Arecoline inhibits the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytochrome P450 1A1 activation in human hepatoma cells.

    Science.gov (United States)

    Chang, Eddy Essen; Miao, Zhi-Feng; Lee, Wen-Jhy; Chao, How-Ran; Li, Lih-Ann; Wang, Ya-Fen; Ko, Ying-Chin; Tsai, Feng-Yuan; Yeh, Szu Ching; Tsou, Tsui-Chun

    2007-07-19

    In the present study, we investigated the effect of arecoline, a major areca nut alkaloid, on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of cytochrome P4501A1 (CYP1A1) in a human hepatoma cell line Huh-7. We treated Huh-7 cells with 10nM TCDD in the presence of different concentrations of arecoline (50-300 microM). Our results indicated that arecoline attenuated the TCDD-induced CYP1A1 enzyme activation with an inhibitory effect on cell proliferation. By using real-time RT-PCR, we demonstrated that arecoline inhibited the TCDD-induced activations of CYP1A1 and AhR repressor (AhRR) mRNA expression in a similar pattern. Our results revealed that arecoline inhibited AhR mRNA expression with no direct effect on CYP1A1 enzyme activity. Therefore, in our present study, the observed inhibitory effect of arecoline on CYP1A1 activation was not due to the up-regulation of AhRR or direct inhibitory effect on CYP1A1. Taken together, here we have demonstrated that arecoline attenuates the TCDD-induced CYP1A1 activation mainly via down-regulation of AhR expression in human hepatoma cells, suggesting the possible involvement of arecoline in the AhR-mediated metabolism of environmental toxicants in liver.

  19. Studies on responsiveness of hepatoma cells to catecholamines. IV. Lack of adrenergic activation of phosphorylase in rat ascites hepatoma cells.

    Science.gov (United States)

    Miyamoto, K; Yanaoka, T; Sanae, F; Wakusawa, S; Koshiura, R

    1986-10-01

    Glycogen phosphorylase a activity in 7 rat ascites hepatoma cell lines treated with adrenergic agents, phenylephrine, epinephrine and isoproterenol, was investigated as compared with that in freshly isolated rat hepatocytes. Basal phosphorylase activities in hepatoma cells except AH7974 cells were lower than that in hepatocytes. Phosphorylase in hepatoma cells was not activated by any of the agents, while the enzyme activity in hepatocytes was clearly increased in a dose- and time-dependent manner. Phosphorylase in hepatocytes was sensitive to glucagon, but it was found to be insensitive to glucagon in all hepatoma cells. The present results suggest that rat ascites hepatoma cells may escape the glycogenolytic regulation by catecholamines and glucagon.

  20. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: detachedy@yahoo.com.cn [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Sun, Ting [Brain and Nerve Research Laboratory, The First Affiliated Hospital, Soochow University, Suzhou (China); Cao, Jianping; Liu, Fenju [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Tian, Ye [Department of Radiotherapy and Oncology, The Second Affiliated Hospital, Soochow University, Suzhou (China); Zhu, Wei [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China)

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.

  1. Permissivity of primary human hepatocytes and different hepatoma cell lines to cell culture adapted hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Francois Helle

    Full Text Available Significant progress has been made in Hepatitis C virus (HCV culture since the JFH1 strain cloning. However, developing efficient and physiologically relevant culture systems for all viral genotypes remains an important goal. In this work, we aimed at producing a high titer JFH1 derived virus to test different hepatic cells' permissivity. To this end, we performed successive infections and obtained a JFH1 derived virus reaching high titers. Six potential adaptive mutations were identified (I599V in E2, R1373Q and M1611T in NS3, S2364P and C2441S in NS5A and R2523K in NS5B and the effect of these mutations on HCV replication and infectious particle production was investigated. This cell culture adapted virus enabled us to efficiently infect primary human hepatocytes, as demonstrated using the RFP-NLS-IPS reporter protein and intracellular HCV RNA quantification. However, the induction of a strong type III interferon response in these cells was responsible for HCV inhibition. The disruption of this innate immune response led to a strong infection enhancement and permitted the detection of viral protein expression by western blotting as well as progeny virus production. This cell culture adapted virus also enabled us to easily compare the permissivity of seven hepatoma cell lines. In particular, we demonstrated that HuH-7, HepG2-CD81, PLC/PRF/5 and Hep3B cells were permissive to HCV entry, replication and secretion even if the efficiency was very low in PLC/PRF/5 and Hep3B cells. In contrast, we did not observe any infection of SNU-182, SNU-398 and SNU-449 hepatoma cells. Using iodixanol density gradients, we also demonstrated that the density profiles of HCV particles produced by PLC/PRF/5 and Hep3B cells were different from that of HuH-7 and HepG2-CD81 derived virions. These results will help the development of a physiologically relevant culture system for HCV patient isolates.

  2. Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas.

    Science.gov (United States)

    Liu, Peifeng; Sun, Yanming; Wang, Qi; Sun, Ying; Li, He; Duan, Yourong

    2014-01-01

    The lysosomal escape of nanoparticles is crucial to enhancing their delivery and therapeutic efficiency. Here, we report the cellular uptake mechanism, lysosomal escape, and organelle morphology effect of monomethoxy (polyethylene glycol)-poly (D,L-lactide-co-glycolide)-poly (L-lysine) (mPEG-PLGA-PLL, PEAL) and 4-O-beta-D-Galactopyranosyl-D-gluconic acid (Gal)-modified PEAL (PEAL-Gal) for intracellular delivery to HepG2, Huh7, and PLC hepatoma cells. These results indicate that PEAL is taken up by clathrin-mediated endocytosis of HepG2, Huh7 and PLC cells. For PEAL-Gal, sialic acid receptor-mediated endocytosis and clathrin-mediated endocytosis are the primary uptake pathways in HepG2 cells, respectively, whereas PEAL-Gal is internalized by sag vesicle- and clathrin-mediated endocytosis in Huh7 cells. In the case of PLC cells, clathrin-mediated endocytosis and sialic acid receptor play a primary role in the uptake of PEAL-Gal. TEM results verify that PEAL and PEAL-Gal lead to a different influence on organelle morphology of HepG2, Huh7 and PLC cells. In addition, the results of intracellular distribution reveal that PEAL and PEAL-Gal are less entrapped in the lysosomes of HepG2 and Huh7 cells, demonstrating that they effectively escape from lysosomes and contribute to enhance the efficiency of intracellular delivery and tumor therapy. In vivo tumor targeting image results demonstrate that PEAL-Gal specifically delivers Rhodamine B (Rb) to the tumor tissue of mice with HepG2, Huh7, and PLC hepatomas and remains at a high concentration in tumor tissue until 48 h, properties that will greatly contribute to enhanced antitumor efficiency. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Studies on responsiveness of hepatoma cells to catecholamines. VI. Characteristics of adrenoceptors and adenylate cyclase response in rat ascites hepatoma cells and human hepatoma cells.

    Science.gov (United States)

    Sanae, F; Kohei, K; Nomura, M; Miyamoto, K

    1992-06-01

    Alpha 1, alpha 2- and beta-Adrenoceptor densities and catecholamine responsiveness in established hepatoma cells, rat ascites hepatoma AH13, AH66, AH66F, AH109A, AH130 and AH7974 cells and human hepatocellular carcinoma HLF and HepG2 cells, were compared with those in normal rat hepatocytes and Chang liver cells. Alpha 1-Adrenoceptor densities measured by [3H]prazosin bindings were not detected in all hepatoma cell lines. Alpha 2-Adrenoceptor densities measured by [3H]clonidine bindings were also barely detected in hepatoma cell lines except for AH130 cells and HepG2 cells. Regarding beta-adrenoceptor, AH109A, AH130 and AH7974 cells had much more [125I]iodocyanopindolol binding sites than normal rat hepatocytes, although we could not detect the binding in HepG2 cells. Adenylate cyclase of normal rat hepatocyte and Chang liver cells were stimulated by beta 2-adrenergic agonist salbutamol, while the cyclase in hepatoma cells had no beta 2-adrenergic response but a beta 1-type response. These findings indicate that the characteristics of adrenergic response in hepatoma cell lines is very different from that in normal hepatocytes, suggesting a participation in the hepatocarcinogenesis and/or the autonomous proliferation of hepatoma cells.

  4. PROTEN TYROSINE PHOSPHATASE ACTIVITY IN RAT ASCITES HEPATOMA CELLS

    Directory of Open Access Journals (Sweden)

    M.Saadat

    1998-10-01

    Full Text Available Protein tyrosine phosphatases (PTPases regulate tyrosine phosphorylation of target proteins involved in several aspects of cellular functions. Enzyme activities of the PTPases in cytosolic and particulate fractions of rat ascites hepatoma cell lines were determined and compared with those of normal rat liver. Our present data revealed that although there was no neoplatic-specific alteration of the PTPase activity in examined hepatomas, the activity in particulate fractions of island type of hepatomas was remarkably decreased compared with either rat liver or free type hepatomas.

  5. Cytotoxinic Mechanism of Hydroxyapatite Nanoparticles on Human Hepatoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    CAO Xian-ying; QI Zhi-tao; DAI Hong-lian; YAN Yu-hua; LI Shi-pu

    2003-01-01

    Stable and single-dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel-7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G1 phase of cell cycle,thus,cancer cells die directly.

  6. Comparative Study of Light Scattering from Hepatoma Cells and Hepatocytes

    Science.gov (United States)

    Lin, Xiaogang; Wang, Rongrong; Guo, Yongcai; Gao, Chao; Guo, Xiaoen

    2012-11-01

    Primary liver cancer is one of the highest mortality malignant tumors in the world. China is a high occurrence area of primary liver cancer. Diagnosis of liver cancer, especially early diagnosis, is essential for improving patients' survival. Light scattering and measuring method is an emerging technology developed in recent decades, which has attracted a large number of biomedical researchers due to its advantages, such as fast, simple, high accuracy, good repeatability, and non-destructive. The hypothesis of this project is that there may be some different light scattering information between hepatoma cells and hepatocyte. Combined with the advantages of the dynamic light scattering method and the biological cytology, an experimental scheme to measure the light scattering information of cells was formulated. Hepatoma cells and hepatic cells were irradiated by a semiconductor laser (532 nm). And the Brookhaven BI-200SM wide-angle light scattering device and temperature control apparatus were adopted. The light scattering information of hepatoma cells and hepatic cells in vitro within the 15°C to 30°C temperature range was processed by a BI-9000AT digital autocorrelator. The following points were found: (a) the scattering intensities of human hepatic cells and hepatoma cells are nearly not affected by the temperature factor, and the former is always greater than the latter and (b) the relaxation time of hepatoma cells is longer than that of hepatic cells, and both the relaxation time are shortened with increasing temperature from 15°C to 25°C. It can be concluded that hepatoma cells could absorb more incident light than hepatic cells. The reason may be that there exists more protein and nucleic acid in cancerous cells than normal cells. Furthermore, based on the length relaxation time, a conclusion can be inferred that the Brownian movement of cancer cells is greater.

  7. Hepatitis C virus core protein increases Snail expression and induces epithelial-mesenchymal transition through the signal transducer and activator of transcription 3 pathway in hepatoma cells.

    Science.gov (United States)

    Zhou, Jia-Jia; Meng, Zhe; He, Xiao-Yu; Cheng, Di; Ye, Hui-Lin; Deng, Xiao-Geng; Chen, Ru-Fu

    2017-05-01

    Aberrant expression of Snail, a mediator of epithelial-mesenchymal transition (EMT), is crucial for cancer invasiveness and metastasis. Although hepatitis C virus (HCV) core protein has been implicated in hepatocarcinogenesis, the relationship between HCV core and Snail expression has not been clarified. HepG2 and Huh7 stable cell lines were established by transfection with pcDNA-HCVc. HepG2-HCVc and Huh7-HCVc cells were co-administered with AG490. Cell migration and invasiveness were tested. STAT3 and Snail expression was analyzed by Real-time PCR and Western blot. We found that HCV core is capable of increasing Snail expression and inducing EMT in hepatoma cells. HCV core-induced Snail expression was accompanied by activation of signal transducer and activator of transcription 3 (STAT3), inhibition of STAT3 abrogated HCV core-induced Snail expression and EMT. Furthermore, chromatin immunoprecipitation showed that phosphorylated STAT3 directly binds to the Snail promoter. Collectively, these results suggest that HCV core would play a role in hepatocellular carcinoma invasiveness and metastasis by activating the STAT3 pathway, increasing Snail expression and subsequently triggering EMT. These findings would advance the understanding of HCV-mediated invasiveness and metastasis, and might provide a new potential therapeutic target for HCV-related hepatocellular carcinoma. © 2016 The Japan Society of Hepatology.

  8. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  9. Effects of the Interaction between Hydroxyapatite Nanoparticles and Hepatoma Cells

    Institute of Scientific and Technical Information of China (English)

    YIN Meizhen; XU Weiguo; CUI Bingcun; DAI Honglian; HAN Yingchao; YIN Yixia; LI Shipu

    2014-01-01

    To gain a better understanding of the anticancer effects of hydroxyapatite (HAP) nanoparticles in vivo and in vitro, the effects of the interaction of HAP nanoparticles with hepatoma cells were explored. HAP nanoparticles were prepared by homogeneous precipitation and characterized by laser particle analysis and transmission electron microscopy (TEM). HAP nanoparticles were observed to be uniformly distributed, with rod-like shapes and diameters in the range of 42.1-87.1 nm. Overnight attached, suspended, and proliferating Bel-7402 cells were incubated with HAP nanoparticles. Inverted microscopy observation revealed that HAP nanoparticles with a cell membrane showed good adsorption. TEM demonstrated that HAP nanoparticles were present on the surface of cells, continuously taken up by cells through endocytosis, and transported in vesicles close to the nucleus. Fluorescence microscopy showed that the concentrations of intracellular Ca2+labeled with Fluo-3 calcium fluorescent probe were significantly enhanced. In addition, inverted microscopy observation revealed that suspended cells treated with HAP nanoparticles did not adhere to the culture bottle, resulting in cell death. After the overnight attached cells were treated with HAP nanoparticles for 96 h with increasing doses of HAP nanoparticles, inverted microscopy observation revealed that cell proliferation was slowed and cell-cell adhesion was weakened. Feulgen staining and image analysis indicated that the nuclear DNA content of the cells was markedly reduced, and argyrophilic nucleolar organizer region (AgNOR) staining and image analysis indicated that the number of AgNORs was significantly decreased. Therefore, hepatoma cells brought about the adsorption, uptake, transport and degradation of HAP nanoparticles. In addition, HAP nanoparticles affected hepatoma cells with regard to cell-cell adhesion, cell and extracellular matrix adhesion, and DNA and protein synthesis;thus inhibiting cell proliferation. This

  10. Titanium Dioxide Nanoparticle Absorbed by Hepatoma Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; YAN Yuhua; WANG Youfa; CAO Xianying; LI Shipu

    2005-01-01

    It is reported that nanoparticles can be applied as carriers and anti-cancer medicines. But the interaction of nanoparticles and cells is unclear. The purpose of this study was to discuss whether inorganic crystal nanoparticles can get through cells with intact crystal. BEL7402 hepatoma cells and titanium dioxide ( TiO2 )nanoparticles were selected and incubated together in vitro. All specimens were prepared and observed under a transmission electron microscope (TEM). TiO2 nanoparticles were found not in the nuclear area but in the cytoplasma. TiO2 nanoparticles maintained the plate-like shape during absorbing. The result shows that hepatoma cells can endocytose the intact TiO2 crystal nanoparticles. It implies that novel nano-effect plays an important role in the biomedicinal application of inorganic crystal nanoparticles.

  11. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness.

    Directory of Open Access Journals (Sweden)

    Bae Hoon Lee

    Full Text Available Physical cues, such as cell microenvironment stiffness, are known to be important factors in modulating cellular behaviors such as differentiation, viability, and proliferation. Apart from being able to trigger these effects, mechanical stiffness tuning is a very convenient approach that could be implemented readily into smart scaffold designs. In this study, fibrinogen-modified poly(ethylene glycol-diacrylate (PEG-DA based hydrogels with tunable mechanical properties were synthesized and applied to control the spheroid formation and liver-like function of encapsulated Huh7.5 cells in an engineered, three-dimensional liver tissue model. By controlling hydrogel stiffness (0.1-6 kPa as a cue for mechanotransduction representing different stiffness of a normal liver and a diseased cirrhotic liver, spheroids ranging from 50 to 200 μm were formed over a three week time-span. Hydrogels with better compliance (i.e. lower stiffness promoted formation of larger spheroids. The highest rates of cell proliferation, albumin secretion, and CYP450 expression were all observed for spheroids in less stiff hydrogels like a normal liver in a healthy state. We also identified that the hydrogel modification by incorporation of PEGylated-fibrinogen within the hydrogel matrix enhanced cell survival and functionality possibly owing to more binding of autocrine fibronectin. Taken together, our findings establish guidelines to control the formation of Huh7.5 cell spheroids in modified PEGDA based hydrogels. These spheroids may serve as models for applications such as screening of pharmacological drug candidates.

  12. INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO.

    Science.gov (United States)

    Liu, Likun; Xin, Yi; Liu, Jia; Zhang, Ershao; Li, Weiling

    2017-01-01

    Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug.

  13. Hepatitis C virus core protein down-regulates p21(Waf1/Cip1 and inhibits curcumin-induced apoptosis through microRNA-345 targeting in human hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Tzu-Yue Shiu

    Full Text Available BACKGROUND: Hepatitis C virus (HCV has been reported to regulate cellular microRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma, but HCV core-modulated cellular microRNAs are unknown. The HCV core protein regulates p21(Waf1/Cip1 expression. However, the mechanism of HCV core-associated p21(Waf1/Cip1 regulation remains to be further clarified. Therefore, we attempted to determine whether HCV core-modulated cellular microRNAs play an important role in regulating p21(Waf1/Cip1 expression in human hepatoma cells. METHODS: Cellular microRNA profiling was investigated in core-overexpressing hepatoma cells using TaqMan low density array. Array data were further confirmed by TaqMan real-time qPCR for single microRNA in core-overexpressing and full-length HCV replicon-expressing cells. The target gene of microRNA was examined by reporter assay. The gene expression was determined by real-time qPCR and Western blotting. Apoptosis was examined by annexin V-FITC apoptosis assay. Cell cycle analysis was performed by propidium iodide staining. Cell proliferation was analyzed by MTT assay. RESULTS: HCV core protein up- or down-regulated some cellular microRNAs in Huh7 cells. HCV core-induced microRNA-345 suppressed p21(Waf1/Cip1 gene expression through targeting its 3' untranslated region in human hepatoma cells. Moreover, the core protein inhibited curcumin-induced apoptosis through p21(Waf1/Cip1-targeting microRNA-345 in Huh7 cells. CONCLUSION AND SIGNIFICANCE: HCV core protein enhances the expression of microRNA-345 which then down-regulates p21(Waf1/Cip1 expression. It is the first time that HCV core protein has ever been shown to suppress p21(Waf1/Cip1 gene expression through miR-345 targeting.

  14. The inhibitory effect of transthyretin gene on growth of human hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    LIUCHAOTING; JINYAO; 等

    1994-01-01

    Transthyretin(TTR) gene was highly expressed in normal liver and it has been found to be deleted in part of DNA samples from human hepatic cancer.Its mRNA expression was suppressed in most hepatoma samples.In order to study the biological effect of TTR gene on the growth of hepatoma cells,a recombinant vector containing TTR cDNA was constructed by pCMV,then it was transfected into hepatoma cell lines SMMC-7721 and Q3.It has been demonstrated that the inhibition of growth rate of TTR cDNA transfected hepatoma cells was about 50% in strength compared with that of the control.This inhibition was further enhanced when the transfected hepatoma cells were treated with all-trans retinoic acid.Hepatoma cells of cell lines PLC/PRF/5,SMMC-7721 and Q3 as well as hepatoma cells SMMC-7721 transfected with pCMV or pCMV-TTR were analyzed for TTR expression by Northern hybridization.The low level of TTR expression was found in both hepatoma cell lines and in SMMC-7721 cells transfected with pCMV alone.However,a remarkable TTR mRNA expression was observed in hepatoma SMMV-7721 cells transfected with pCMV-TTR.It seems possible that TTR gene might be a candidate of cancer suppressor gene for human hepatic cancer.

  15. Studies on responsiveness of hepatoma cells to catecholamines. II. Comparison of beta-adrenergic responsiveness of rat ascites hepatoma cells with cultured normal rat liver cells.

    Science.gov (United States)

    Miyamoto, K; Matsunaga, T; Takemoto, N; Sanae, F; Koshiura, R

    1985-05-01

    The pharmacological properties of beta-adrenoceptors in rat ascites hepatoma cells were compared with those in normal rat liver cells which were cultured for 24 hr after collagenase digestion. Adenylate cyclases in the homogenates of cultured normal rat liver cells and rat ascites hepatoma cells, AH44, AH66, AH109A, AH130 and AH7974, were all activated by isoproterenol or NaF to different degrees. The enzyme in rat liver cells was activated by several beta 2-agonists but those in all hepatoma cells hardly responded. Furthermore, salbutamol, a beta 2-partial agonist, antagonized the cyclase activation by isoproterenol in AH130 cells. The Kact value of isoproterenol for the activation of adenylate cyclase in AH130 cells was smaller than that in rat liver cells. A comparison of the Ki values of beta-antagonists for the inhibition of isoproterenol-stimulated cyclase activity shows that while the Ki values of propranolol and butoxamine in AH130 cells were similar to those in rat liver cells, a significant difference was observed in the values for beta 1-selective antagonists between AH130 cells and rat liver cells. The Ki values of metoprolol and atenolol for AH130 cells were 137- and 90-fold lower, respectively, than for normal rat liver cells. From these findings, it is strongly suggested that beta-adrenoceptors in rat ascites hepatoma cells including AH130 cells have similar properties to the mammalian beta 1-receptor.

  16. Melatonin and Doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate whether Melatonin has synergistic effects with Doxorubicin in the growth-inhibition and apoptosis-induction of human hepatoma cell lines HepG2 and Bel-7402.METHODS:The synergism of Melatonin and Doxorubicin inhibited the cell growth and induced cell apoptosis in human hepatoma cell lines HepG2 and Bel-7402.Cell viability was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT)assay.Cell apoptosis was evaluated using TUNEL method and flow cytometry.Apoptosis-r...

  17. Regulated expression of erythropoietin by two human hepatoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, M.A.; Glass, G.A.; Cunningham, J.M.; Bunn, H.F.

    1987-11-01

    The development of a cell culture system that produces erythropoietin (Epo) in a regulated manner has been the focus of much effort. The authors have screened multiple renal and hepatic cell lines for either constitutive or regulated expression of Epo. Only the human hepatoma cell lines, Hep3B and HepG2, made significant amounts of Epo as measured both by radioimmunoassay and in vitro bioassay (as much as 330 milliunits per 10/sup 6/ cells in 24 hr). The constitutive production of Epo increased dramatically as a function of cell density in both cell lines. At cell densities < 3.3 x 10/sup 5/ cells per cm/sup 2/, there was little constitutive release of Epo in the medium. With Hep3B cells grown at low cell densities, a mean 18-fold increase in Epo expression was seen in response to hypoxia and a 6-fold increase was observed in response to incubation in medium containing 50 ..mu..M cobalt(II) chloride. At similar low cell densities, Epo production in HepG2 cells could be enhanced an average of about 3-fold by stimulation with either hypoxia or cobalt(II) chloride. Upon such stimulation, both cell lines demonstrated markedly elevated levels of Epo mRNA. Hence, both Hep3B and HepG2 cell lines provide an excellent in vitro system in which to study the physiological regulation of Epo expression.

  18. [Effect of Conditioned Medium from Endothelial Cells on Cancer Stem Cell Phenotype of Hepatoma Cells].

    Science.gov (United States)

    Feng, Chuan; Yang, Xianjiong; Sun, Jinghui; Luo, Qing; Song, Guanbin

    2015-10-01

    In this study, we aimed to investigate the influences of conditioned medium from human umbilical vein endothelial cells (HUVEC) on cancer stem cell phenotype of human hepatoma cells. HUVEC and human hepatoma cells (MHCC97H) were cultured, respectively, and then the MHCC97H cells were co-cultured with conditioned medium from HUVEC (EC-CM) with Transwell system. Anti-cancer drug sensitivity, colony-formation, migration/invasion ability, expression of cancer stem cell marker and sphere formation were performed to determine the cancer stem cell phenotype in MHCC97H cells. We found that MHCC97H cells co-cultured with EC-CM exhibited significantly higher colony-formation ability and lower sensitivity of anti-cancer drugs 5-FU and Cis. Transwell assay showed that treatment with EC-CM obviously increased migration and invasion of MHCC97H cells. Moreover, increased sphere forming capability and expression of CD133 in MHCC97H cells were observed after co-cultured with EC-CM. These results suggested that EC-CM could promote cancer stem cell phenotype of hepatoma cells.

  19. TREATMENT OF RAT HEPATOMA BY LOCALLY INJECTION OF MURINE IL-12 RETROVIRUS PACKAGING CELL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the therapeutic effects of the murine IL-12 (mIL-12) retrovirus packaging cell line on hepatoma injected locally. Methods: The retrovirus vector encoding mIL-12 gene was constructed and transfected into packaging cell line PA317. The cells were then used to treat the rats with experimental orthotopic hepatoma at different time. The therapeutic effects, immune functions of the hosts, pathological and toxicological responses were documented. Results: the results showed that the mIL-12 retrovirus packaging cell line could significantly inhibit the growth of the hepatoma cells injected locally to the hepatoma. The early treatment made the rats survive long, while the medium or late stage treatment could prolong the life time of the rats compared with the bland control group or bland vector control group, though the rats did not survive. The number of NK cells and T cells increased significantly in the treatment group. The effects of the early treatment were superior to those of the medium and late stage treatment. Moreover, the transfection of IL-12 gene locally in the hepatoma tissue could make the hepatoma disappear from other liver lobe. This phenomenon demonstrated that IL-12 could activate the immune cells of the host to kill the untransfected tumor cells. This is very important for IL-12 to be used in gene therapy clinically. Meanwhile, the hepatoma would not recur in the rats that had survived more than 2 months from the early treatment after being re-challenged with tumor cells. Conclusion: the results showed that IL-12 gene injected locally in the hepatoma tissue could enhance the anti-tumor immunity of the host.

  20. Aflatoxin B1 up-regulates insulin receptor substrate 2 and stimulates hepatoma cell migration.

    Directory of Open Access Journals (Sweden)

    Yanli Ma

    Full Text Available Aflatoxin B1 (AFB1 is a potent carcinogen that can induce hepatocellular carcinoma. AFB1-8,9-exo-epoxide, one of AFB1 metabolites, acts as a mutagen to react with DNA and induce gene mutations, including the tumor suppressor p53. In addition, AFB1 reportedly stimulates IGF receptor activation. Aberrant activation of IGF-I receptor (IGF-IR signaling is tightly associated with various types of human tumors. In the current study, we investigated the effects of AFB1 on key elements in IGF-IR signaling pathway, and the effects of AFB1 on hepatoma cell migration. The results demonstrated that AFB1 induced IGF-IR, Akt, and Erk1/2 phosphorylation in hepatoma cell lines HepG2 and SMMC-7721, and an immortalized human liver cell line Chang liver. AFB1 also down-regulated insulin receptor substrate (IRS 1 but paradoxically up-regulated IRS2 through preventing proteasomal degradation. Treatment of hepatoma cells and Chang liver cells with IGF-IR inhibitor abrogated AFB1-induced Akt and Erk1/2 phosphorylation. In addition, IRS2 knockdown suppressed AFB1-induced Akt and Erk1/2 phosphorylation. Finally, AFB1 stimulated hepatoma cell migration. IGF-IR inhibitor or IRS2 knockdown suppressed AFB1-induced hepatoma cell migration. These data demonstrate that AFB1 stimulates hepatoma cell migration through IGF-IR/IRS2 axis.

  1. Andrographolide inhibits hepatoma cells growth and affects the expression of cell cycle related proteins.

    Science.gov (United States)

    Shen, Kai-Kai; Liu, Tian-Yu; Xu, Chong; Ji, Li-Li; Wang, Zheng-Tao

    2009-09-01

    The present study is aimed to investigate the toxic effects of andrographolide (Andro) on hepatoma cells and elucidate its preliminary mechanisms. After cells were treated with different concentrations of Andro (0-50 micromol x L(-1)) for 24 h, cell viability was evaluated with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, after hepatoma cells (Hep3B and HepG2) were treated with different concentrations of Andro (0-30 micromol x L(-1)) for 14 d, the number of colony formation was accounted under microscope. Cell cycle related proteins such as Cdc-2, phosphorylated-Cdc-2, Cyclin B and Cyclin D1 were detected with Western blotting assay and the cell cycle was analyzed by flow cytometry using propidium iodide staining. MTT results showed that Andro induced growth inhibition of hepatoma cells in a concentration-dependent manner but had no significant effects on human normal liver L-02 cells. Andro dramatically decreased the colony formation of hepatoma cells in the concentration-dependent manner. Moreover, Andro induced a decrease of Hep3B cells at the G0-G1 phase and a concomitant accumulation of cells at G2-M phase. At the molecular level, Western blotting results showed that Andro decreased the expression of Cdc-2, phosphorylated-Cdc-2, Cyclin D1 and Cyclin B proteins in a time-dependent manner, which are all cell cycle related proteins. Taken together, the results demonstrated that Andro specifically inhibited the growth of hepatoma cells and cellular cell cycle related proteins were possibly involved in this process.

  2. The manganese superoxide dismutase Ala16Val dimorphism modulates iron accumulation in human hepatoma cells.

    Science.gov (United States)

    Nahon, Pierre; Charnaux, Nathalie; Friand, Véronique; Prost-Squarcioni, Catherine; Ziol, Marianne; Lièvre, Nicole; Trinchet, Jean-Claude; Beaugrand, Michel; Gattegno, Liliane; Pessayre, Dominique; Sutton, Angela

    2008-11-01

    The Ala/16Val dimorphism incorporates alanine (Ala) or valine (Val) in the mitochondrial targeting sequence of manganese superoxide dismutase (MnSOD), modifying MnSOD mitochondrial import and activity. In alcoholic cirrhotic patients, the Ala-MnSOD allele is associated with hepatic iron accumulation and an increased risk of hepatocellular carcinoma. The Ala-MnSOD variant could modulate the expression of proteins involved in iron storage (cytosolic ferritin), uptake (transferrin receptors, TfR-1 and-2), extrusion (hepcidin), and intracellular distribution (frataxin) to trigger hepatic iron accumulation. We therefore assessed the Ala/Val-MnSOD genotype and the hepatic iron score in 162 alcoholic cirrhotic patients. In our cohort, this hepatic iron score increased with the number of Ala-MnSOD alleles. We also transfected Huh7 cells with Ala-MnSOD-or Val-MnSOD-encoding plasmids and assessed cellular iron, MnSOD activity, and diverse mRNAs and proteins. In Huh7 cells, MnSOD activity was higher after Ala-MnSOD transfection than after Val-MnSOD transfection. Additionally, iron supplementation decreased transfected MnSOD proteins and activities. Ala-MnSOD transfection increased the mRNAs and proteins of ferritin, hepcidin, and TfR2, decreased the expression of frataxin, and caused cellular iron accumulation. In contrast, Val-MnSOD transfection had limited effects. In conclusion, the Ala-MnSOD variant favors hepatic iron accumulation by modulating the expression of proteins involved in iron homeostasis.

  3. Effects of silymarin on hepatitis C virus and haem oxygenase-1 gene expression in human hepatoma cells.

    Science.gov (United States)

    Bonifaz, Vania; Shan, Ying; Lambrecht, Richard W; Donohue, Susan E; Moschenross, Darcy; Bonkovsky, Herbert L

    2009-03-01

    Hepatitis C virus (HCV) infection is a global medical problem. The current standard treatment of chronic hepatitis C (CHC), pegylated interferon plus ribavirin, is prolonged, expensive, has serious side effects and, at best, is only 50% effective. Silymarin (SI) is a natural antioxidant often used by patients with CHC, although its efficacy for decreasing HCV levels or ameliorating CHC remains uncertain. HCV infection is associated with increased hepatic oxidative stress, and one of the antioxidant enzymes that protect cells against this stress is haem oxygenase-1 (HO-1). We investigated effects of SI on HCV and HO-1 gene expression in Huh-7 cells, CNS3 and 9-13 cells (the latter two stably expressing HCV-proteins). Silymarin significantly downregulated HCV core mRNA (by 20%-36%) and protein (by 30%-60%) in CNS3 cells. In contrast, SI did not decrease HCV NS5A mRNA or protein expression in 9-13 cells. HO-1 mRNA was upregulated (60%-400%) by SI in Huh-7, CNS3 and 9-13 cells, whereas BTB and CNC homology 1 and nuclear factor erythroid related factor 2 mRNA levels were not affected. The effect of SI to downregulate HCV core was not related to changes in the Janus-activated tyrosine kinases-signal transducer and activators of transcription signalling pathway. Silymarin may be of benefit in CHC, although prospective, randomized, controlled trials are needed to be certain.

  4. Effects of Silymarin on Hepatitis C Virus and Heme Oxygenase-1 Gene Expression in Human Hepatoma Cells

    Science.gov (United States)

    Bonifaz, Vania; Shan, Ying; Lambrecht, Richard W.; Donohue, Susan E.; Moschenross, Darcy; Bonkovsky, Herbert L.

    2008-01-01

    Background/Aims Hepatitis C virus (HCV) infection is a global medical problem. The current standard treatment of chronic hepatitis C (CHC), pegylated interferon plus ribavirin, is prolonged, expensive, has serious side effects and, at best, is only 50% effective. Silymarin is a natural antioxidant often used by patients with CHC, although its efficacy for decreasing HCV levels or ameliorating CHC remains uncertain. HCV infection is associated with increased hepatic oxidative stress, and one of the antioxidant enzymes which protect cells against this stress is heme oxygenase-1 (HO-1). Methods We investigated effects of silymarin on HCV and HO-1 gene expression in Huh-7 cells, CNS3, and 9-13 cells (the latter two stably expressing HCV-proteins). Results Silymarin significantly down-regulated HCV core mRNA (by 20% - 36%) and protein (by 30%-60%) in CNS3 cells. In contrast, silymarin did not decrease HCV NS5A mRNA or protein expression in 9-13 cells. HO-1 mRNA was up-regulated (60%-400%) by silymarin in Huh-7, CNS3 and 9-13 cells, whereas Bach1 and Nrf2 mRNA levels were not affected. The effect of silymarin to down-regulate HCV core was not related to changes in the Jak-Stat signaling pathway. Conclusions Silymarin may be of benefit in CHC, although prospective, randomized, controlled trials are needed to be certain. PMID:18694403

  5. Establishment of a human hepatoma multidrug resistant cell line in vitro

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To establish a multidrug-resistant hepatoma cell line(SK-Hep-1),and to investigate its biological characteristics.METHODS:A highly invasive SK-Hep-1 cell line of human hepatocellular carcinoma,also known as malignant hepatoma was incubated with a high concentration of cisplatin(CDDP) to establish a CDDP-resistant cell subline(SK-Hep-1/CDDP).The 50% inhibitory dose(IC50) values and the resistance indexes [(IC50 SK-Hep-1/CDDP)/(IC50 SK-Hep-1)] for other chemotherapeutic agents and the growth curve of cell...

  6. Focal adhesion kinase (FAK) mediates the induction of pro-oncogenic and fibrogenic phenotypes in hepatitis C virus (HCV)-infected cells.

    Science.gov (United States)

    Alisi, Anna; Arciello, Mario; Petrini, Stefania; Conti, Beatrice; Missale, Gabriele; Balsano, Clara

    2012-01-01

    Hepatitis C Virus (HCV) infection is one of the most common etiological factors involved in fibrosis development and its progression to hepatocellular carcinoma (HCC). The pivotal role of hepatic stellate cells (HCSs) and extracellular matrix (ECM) in fibrogenesis is now certainly accepted, while the network of molecular interactions connecting HCV is emerging as a master regulator of several biological processes including proliferation, inflammation, cytoskeleton and ECM remodeling. In this study, the effects of HCV proteins expression on liver cancer cells, both pro-invasive and pro-fibrogenic phenotypes were explored. As a model of HCV infection, we used permissive Huh7.5.1 hepatoma cells infected with JFH1-derived ccHCV. Conditioned medium from these cells was used to stimulate LX-2 cells, a line of HSCs. We found that the HCV infection of Huh7.5.1 cells decreased adhesion, increased migration and caused the delocalization of alpha-actinin from plasma membrane to cytoplasm and increased expression levels of paxillin. The treatment of LX-2 cells, with conditioned medium from HCV-infected Huh7.5.1 cells, caused an increase in cell proliferation, expression of alpha-smooth muscle actin, hyaluronic acid release and apoptosis rate measured as cleaved poly ADP-ribose polymerase (PARP). These effects were accompanied in Huh7.5.1 cells by an HCV-dependent increasing of FAK activation that physically interacts with phosphorylated paxillin and alpha-actinin, and a rising of tumor necrosis factor alpha production/release. Silencing of FAK by siRNA reverted all effects of HCV infection, both those directed on Huh7.5.1 cells, and those indirect effects on the LX-2 cells. Moreover and interestingly, FAK inhibition enhances apoptosis in HCV-conditioned LX-2 cells. In conclusion, our findings demonstrate that HCV, through FAK activation, may promote cytoskeletal reorganization and a pro-oncogenic phenotype in hepatocyte-like cells, and a fibrogenic phenotype in HSCs.

  7. Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells

    OpenAIRE

    Ning Wang; Xuanbin Wang; Hor-Yue Tan; Sha Li; Chi Man Tsang; Sai-Wah Tsao; Yibin Feng

    2016-01-01

    The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degrada...

  8. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  9. Effects of Uptake of Hydroxyapatite Nanoparticles into Hepatoma Cells on Cell Adhesion and Proliferation

    Directory of Open Access Journals (Sweden)

    Meizhen Yin

    2014-01-01

    Full Text Available Hydroxyapatite nanoparticles (nano-HAPs were prepared by homogeneous precipitation, and size distribution and morphology of these nanoparticles were determined by laser particle analysis and transmission electron microscopy, respectively. Nano-HAPs were uniformly distributed, with rod-like shapes sizes ranging from 44.6 to 86.8 nm. Attached overnight, suspended, and proliferating Bel-7402 cells were repeatedly incubated with nano-HAPs. Inverted microscopy, transmission electron microscopy, and fluorescence microscopy were used to observe the cell adhesion and growth, the culture medium containing nano-HAPs, the cell ultrastructure, and intracellular Ca2+ labeled with a fluo-3 calcium fluorescent probe. The results showed that nano-HAPs inhibited proliferation of Bel-7402 cells and, caused an obvious increase in the concentration of intracellular Ca2+, along with significant changes in the cell ultrastructure. Moreover, nano-HAPs led suspended cells and proliferating cells after trypsinized that did not attach to the bottom of the culture bottle died. Nano-HAPs continuously entered these cells. Attached, suspended, and proliferating cells endocytosed nano-HAPs, and nanoparticle-filled vesicles were in the cytoplasm. Therefore, hepatoma cellular uptake of nano-HAPs through endocytosis was very active and occurred continuously. Nano-HAPs affected proliferation and adhesion of hepatoma cells probably because uptake of nano-HAPs blocked integrin-mediated cell adhesion, which may have potential significance in inhibiting metastatic cancer cells to their target organ.

  10. A Long Noncoding RNA Perturbs the Circadian Rhythm of Hepatoma Cells to Facilitate Hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Ming Cui

    2015-01-01

    Full Text Available Clock circadian regulator (CLOCK/brain and muscle arnt-like protein-1 (BMAL1 complex governs the regulation of circadian rhythm through triggering periodic alterations of gene expression. However, the underlying mechanism of circadian clock disruption in hepatocellular carcinoma (HCC remains unclear. Here, we report that a long noncoding RNA (lncRNA, highly upregulated in liver cancer (HULC, contributes to the perturbations in circadian rhythm of hepatoma cells. Our observations showed that HULC was able to heighten the expression levels of CLOCK and its downstream circadian oscillators, such as period circadian clock 1 and cryptochrome circadian clock 1, in hepatoma cells. Strikingly, HULC altered the expression pattern and prolonged the periodic expression of CLOCK in hepatoma cells. Mechanistically, the complementary base pairing between HULC and the 5' untranslated region of CLOCK mRNA underlay the HULC-modulated expression of CLOCK, and the mutants in the complementary region failed to achieve the event. Moreover, immunohistochemistry staining and quantitative real-time polymerase chain reaction validated that the levels of CLOCK were elevated in HCC tissues, and the expression levels of HULC were positively associated with those of CLOCK in clinical HCC samples. In functional experiments, our data exhibited that CLOCK was implicated in the HULC-accelerated proliferation of hepatoma cells in vitro and in vivo. Taken together, our data show that an lncRNA, HULC, is responsible for the perturbations in circadian rhythm through upregulating circadian oscillator CLOCK in hepatoma cells, resulting in the promotion of hepatocarcinogenesis. Thus, our finding provides new insights into the mechanism by which lncRNA accelerates hepatocarcinogenesis through disturbing circadian rhythm of HCC.

  11. Efficient replication of genotype 3a and 4a hepatitis C virus replicons in human hepatoma cells

    DEFF Research Database (Denmark)

    Saeed, Mohsan; Scheel, Troels K H; Gottwein, Judith M;

    2012-01-01

    Despite recent advances in the treatment of hepatitis C, the quest for pan-genotype, effective, and well-tolerated inhibitors continues. To facilitate these efforts, it is desirable to have in vitro replication systems for all major HCV genotypes. However, cell culture replication systems exist...... for only genotypes 1a, 1b, and 2a. In this study, we generated G418-selectable subgenomic replicons for prototype strains of genotypes 3a (S52) and 4a (ED43). Production of G418-resistant colonies by S52 and ED43 in Huh-7.5 cells required the amino acid substitutions S2210I and R2882G, respectively, cell...... culture adaptive mutations originally reported for genotype 1b replicons. RNA replication was confirmed by quantitative reverse transcription-PCR and detection of viral protein. Sequencing of multiple independent replicon clones revealed the presence of additional nonsynonymous mutations. Interestingly...

  12. Inhibition of water activated by far infrared functional ceramics on proliferation of hepatoma cells.

    Science.gov (United States)

    Zhang, Dongmei; Liang, Jinsheng; Ding, Yan; Meng, Junping; Zhang, Guangchuan

    2014-05-01

    Rare earth (RE)/tourmaline composite materials prepared by the precipitation method are added to the ceramic raw materials at a certain percentage and sintered into RE functional ceramics with high far infrared emission features. Then the far infrared functional ceramics are used to interact with water. The influence of the ceramics on the physical parameters of water is investigated, and the effect of the activated water on the growth of Bel-7402 hepatoma cells cultured in vitro is further studied. The results indicate that, compared with the raw water, the water activated by the ceramics can inhibit the proliferation of hepatoma cells, with statistical probability P ceramics has a higher concentration of H+, which decreases the potential difference across the cell membrane to release the apoptosis inducing factor (AIF). After entering the cells, the activated water stimulates the mitochondria to produce immune substances that lead tumor cells to apoptosis.

  13. Studies on the Identification of Constituents in Ethanol Extract of Radix Glycyrrhizae and Their Anti-Primary Hepatoma Cell Susceptibility

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-01-01

    Full Text Available The objective of this paper is to study the chemical constituents of Radix Glycyrrhizae and to apply the resulting natural products in the study of drug susceptibility of hepatoma cells so as to provide a scientific basis for quality standards and clinical application of medicinal Radix Glycyrrhizae. Chromatographic materials were used for isolation and purification; structural identification was performed based on physicochemical properties and spectral data. MTT colorimetry was used to detect the proliferation inhibition rate against primary hepatoma cells by natural products, and flow cytometry was used to detect the changes in cell cycle progression. Five compounds were isolated and identified, namely, liquiritigenin (1, liquiritin (2, isoliquiritigenin (3, betulinic acid (4, and oleanolic acid (5. In the study, 5-FU (5-fluorouracil is used as a positive control to the hepatoma cells. Primary hepatoma cells were highly susceptible to 5-FU and liquiritigenin, both of which markedly inhibited the proliferation of hepatoma cells; flow cytometry results showed an increase in G0/G1 phase cells, a decrease in S phase cells, and a relative increase in G2/M phase cells. Primary hepatoma cells are highly susceptible to liquiritigenin, a natural product; the testing of tumor cell susceptibility is of important significance to the improvement of therapeutic effect of cancer.

  14. Effect of Lidamycin on Telomerase Activity in Human Hepatoma BEL-7402 Cells

    Institute of Scientific and Technical Information of China (English)

    RUI-JUAN GAO; YUE-XIN LIANG; DIAN-DONG LI; HONG-YIN ZHANG; YONG-SU ZHEN

    2007-01-01

    Objective To investigate the effect of lidamycin(LDM)on telomerase activity in human hepatoma BEL-7402 cells under the condition of LDM inducing mitotic cell death and senescence.Methods Chromatin condensation was detected by co-staining with Hoechst 33342 and PI.Cell multinucleation was observed by Giemsa staining and genomic DNA was separated by agarose gel electrophoresis.Fluorescent intensity of Rho123 Was determined for mitochondrial membrane potential.MTT assay and SA-β-gal staining were employed to analyze the senescence-like phenotype.The expression of proteins was analyzed by Western blot.Telomerase activity was assayed by telomerase PCR-ELISA.Results Mitotic cell death occurred in LDM-treated cells characterized by unique and atypical chromatin condensation,multinucleation and increased mitochondrial membrane potential.However,no apoptotic bodies or DNA ladders were found.In addition,apoptosis-related proteins remained nearly unaltered.Senescence-like phenotype was identified by increased and elongated size of cells,growth retardation,enhanced SA-β-gal activity and the changes of senescence-related protein expression.Telomerase activity markedly decreased (P<0.01)in LDM-treated hepatoma BEL-7402 cells. Conelusion Mitotic cell death and senescence could be triggered simultaneously or sequentially after exposure of hepatoma BEL-7402 cells to LDM.The decrease in telomerase activity may play a key role in the defective mitosis and aging morphology.Further investigation of detailed mechanism is needed.

  15. KAI1/CD82 suppresses hepatocyte growth factor-induced migration of hepatoma cells via upregulation of Sprouty2

    Institute of Scientific and Technical Information of China (English)

    MU ZhenBin; WANG Hua; ZHANG Jing; LI QingFang; WANG LiSheng; GUO XiaoZhong

    2008-01-01

    We conducted a study concerning the suppressive mechanism of KAI1/CD82 on hepatoma cell metas-tasis. Hepatocyte growth factor (HGF) induces the migration of hepatoma cells through activation of cellular sphingosine kinase 1 (SphK1). Adenovirus-mediated gene transfer of KAI1 (Ad-KAI1) down-regulates the SphK1 expression and suppresses the HGF-induced migration of SMMC-7721 human hepatocellcular carcinoma cells. Overexpression of KAI1/CD82 significantly elevates Sprouty2 at the protein level. Ablation of Sprouty2 with RNA interference can block the KAI1/CD82-induced suppres-sion of hepatoma cell migration and downregulation of SphK1 expression. It is demonstrated that KAI1/CD82 suppresses HGF-induced migration of hepatoma cells via upregulation of Sprouty2.

  16. KAI1/CD82 suppresses hepatocyte growth factorinduced migration of hepatoma cells via upregulation of Sprouty2

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We conducted a study concerning the suppressive mechanism of KAI1/CD82 on hepatoma cell metastasis.Hepatocyte growth factor(HGF)induces the migration of hepatoma cells through activation of cellular sphingosine kinase 1(SphK1).Adenovirus-mediated gene transfer of KAI1(Ad-KAI1)downregulates the SphK1 expression and suppresses the HGF-induced migration of SMMC-7721 human hepatocellcular carcinoma cells.Overexpression of KAI1/CD82 significantly elevates Sprouty2 at the protein level.Ablation of Sprouty2 with RNA interference can block the KAI1/CD82-induced suppression of hepatoma cell migration and downregulation of SphK1 expression.It is demonstrated that KAI1/CD82 suppresses HGF-induced migration of hepatoma cells via upregulation of Sprouty2.

  17. Detection of PIVKA II produced by human hepatoma cells in nude mice.

    Science.gov (United States)

    Kohda, H; Ono, M; Sekiya, C; Ohta, H; Ohhira, M; Ohhira, M; Yoshida, Y; Ikeda, N; Namiki, M

    1991-03-01

    A novel experimental nude mouse model, which is useful for investigation of the mechanisms of PIVKA II synthesis, was established by inoculation with PIVKA II-producing human hepatoma cells (huH-1). We have found markedly elevated levels of PIVKA II in the plasma of nude mice transplanted with huH-1 cells and increased PIVKA II content in huH-1 tumor tissues. Whereas we have not found detectable level of PIVKA II neither in the plasma nor in tumor tissues of nude mice transplanted different human hepatoma cells (HLF) which is not producing PIVKA II. Histology of the tumor tissues produced by huH-1 cells revealed a thick trabecular pattern with blood spaces.

  18. High Permissivity of Human HepG2 Hepatoma Cells for Influenza Viruses

    OpenAIRE

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-01-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represe...

  19. Degradation of transplanted rat liver mitochondrial-outer-membrane proteins in hepatoma cells.

    OpenAIRE

    Russell, S.M.; Mayer, R J

    1983-01-01

    Reductively [3H]methylated 3H mitochondrial-outer-membrane vesicles from rat liver and vesicles where monoamine oxidase has been derivatized irreversibly by [3H]-pargyline have been deliberately miscompartmentalized by heterologous transplantation into hepatoma (HTC) cells by poly(ethylene glycol)-mediated vesicle-cell fusion. Fluorescein-conjugated mitochondrial-outer-membrane vesicles have also been used to show that transplanted material is patched, capped and internalized. Reductively met...

  20. Merocyanine 540 and Photofrin II as photosensitizers for in vitro killing of duck hepatitis B virus and human hepatoma cells

    Science.gov (United States)

    Lin, Tsung-I.; Shien, Yong-Shau; Kao, Ming-Chien

    1994-03-01

    The feasibility of using merocyanine 540 (MC 540) and Photofrin II (PII) as effective photodynamic therapeutic (PDT) agents for killing hepatoma cells and duck hepatitis B virus (DHBV) in vitro was investigated. Cultured duck hepatocytes infected with DHBV and hepatoma cells, Hep 3B and HCC 36, were used as models. MC 540 and PII effectively inhibits the DHBV growth by 90 - 99% in a dose- and light-dependent manner. Photodynamic killing of MC 540 in the two hepatoma cell lines results in 94 - 99% growth inhibition. However, both photosensitizers exhibit dark cytotoxicity (37 - 56%). The present results suggest that MC 540 and PII could be promising and effective photodynamic agents for killing HBV and hepatoma cells.

  1. Cyclooxygenase-2 is a target of microRNA-16 in human hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Noelia Agra Andrieu

    Full Text Available Cyclooxygenase-2 (COX-2 expression has been detected in human hepatoma cell lines and in human hepatocellular carcinoma (HCC; however, the contribution of COX-2 to the development of HCC remains controversial. COX-2 expression is higher in the non-tumoral tissue and inversely correlates with the differentiation grade of the tumor. COX-2 expression depends on the interplay between different cellular pathways involving both transcriptional and post-transcriptional regulation. The aim of this work was to assess whether COX-2 could be regulated by microRNAs in human hepatoma cell lines and in human HCC specimens since these molecules contribute to the regulation of genes implicated in cell growth and differentiation. Our results show that miR-16 silences COX-2 expression in hepatoma cells by two mechanisms: a by binding directly to the microRNA response element (MRE in the COX-2 3'-UTR promoting translational suppression of COX-2 mRNA; b by decreasing the levels of the RNA-binding protein Human Antigen R (HuR. Furthermore, ectopic expression of miR-16 inhibits cell proliferation, promotes cell apoptosis and suppresses the ability of hepatoma cells to develop tumors in nude mice, partially through targeting COX-2. Moreover a reduced miR-16 expression tends to correlate to high levels of COX-2 protein in liver from patients affected by HCC. Our data show an important role for miR-16 as a post-transcriptional regulator of COX-2 in HCC and suggest the potential therapeutic application of miR-16 in those HCC with a high COX-2 expression.

  2. The combinational effect of vincristine and berberine on growth inhibition and apoptosis induction in hepatoma cells.

    Science.gov (United States)

    Wang, Ling; Wei, Dandan; Han, Xiaojuan; Zhang, Wei; Fan, Chengzhong; Zhang, Jie; Mo, Chunfen; Yang, Ming; Li, Junhong; Wang, Zhe; Zhou, Qin; Xiao, Hengyi

    2014-04-01

    The use of vincristine, a known antitumor agent, in hepatoma therapy is limited particularly because of its toxic effect. Meanwhile, berberine has drawn increasing attention to its antineoplastic effect in recent years. In view of the advantages of combinational drug treatment reported in anti-cancer chemotherapy, we evaluated the effects of co-treatment of vincristine and berberine on hepatic carcinoma cell lines in this study. We find that combinational usage of these two drugs can significantly induce cell growth inhibition and apoptosis even under a concentration of vincristine barely showing cytotoxicity in the same cells when used alone. The underlying mechanism about this combinational effect was addressed in this study by monitoring the signals related to mitochondrial function, apoptotic pathway and endoplasmic reticulum stress. Our results suggest a new value of berberine as a potential adjuvant agent in cancer chemotherapy and provide a hopeful approach for developing hepatoma therapy by utilizing the combinational effect of vincristine and berberine.

  3. Stimulation of Hepatoma Cell Invasiveness and Metastatic Potential by Proteins Secreted From Irradiated Nonparenchymal Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Leyuan [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai (China); Wang Zhiming [Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai (China); Gao Yabo [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai (China); Wang Lingyan [Experimental Research Center, Zhongshan Hospital, Fudan University, Shanghai (China); Zeng Zhaochong, E-mail: zeng.zhaochong@zs-hospital.sh.cn [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai (China)

    2012-11-01

    Purpose: To determine whether factors secreted by irradiated liver nonparenchymal cells (NPCs) may influence invasiveness and/or metastatic potential of hepatocellular carcinoma (HCC) cells and to elucidate a possible mechanism for such effect. Methods and Materials: Primary rat NPCs were cultured and divided into irradiated (10-Gy X-ray) and nonirradiated groups. Forty-eight hours after irradiation, conditioned medium from irradiated (SR) or nonirradiated (SnonR) cultures were collected and added to sublethally irradiated cultures of the hepatoma McA-RH7777 cell line. Then, hepatoma cells were continuously passaged for eight generations (RH10Gy-SR and RH10Gy-SnonR). The invasiveness and metastatic potential of McA-RH7777, RH10Gy-SnonR, and RH10Gy-SR cells were evaluated using an in vitro gelatinous protein (Matrigel) invasion and an in vivo metastasis assay. In addition, SR and SnonR were tested using rat cytokine antibody arrays and enzyme-linked immunosorbent assay (ELISA). Results: In vitro gelatinous protein invasion assay indicated that the numbers of invading cells was significantly higher in RH10Gy-SR (40 {+-} 4.74) than in RH10Gy-SnonR (30.6 {+-} 3.85) cells, and lowest in McA-RH7777 (11.4 {+-} 3.56) cells. The same pattern was observed in vivo in a lung metastasis assay, as evaluated by number of metastatic lung nodules seen with RH10Gy-SR (28.83 {+-} 5.38), RH10Gy-SnonR (22.17 {+-} 4.26), and McA-RH7777 (8.3 {+-} 3.8) cells. Rat cytokine antibody arrays and ELISA demonstrated that metastasis-promoting cytokines (tumor necrosis factor-{alpha} and interleukin-6), circulating growth factors (vascular endothelial growth factor and epidermal growth factor), and metalloproteinases (MMP-2 and MMP-9) were upregulated in SR compared with SnonR. Conclusions: Radiation can increase invasiveness and metastatic potential of sublethally irradiated hepatoma cells, and soluble mediators released from irradiated NPCs promote this potential. Increased secretion of

  4. Intracellular glutathione regulates Andrographolide-induced cytotoxicity on hepatoma Hep3B cells.

    Science.gov (United States)

    Ji, Lili; Shen, Kaikai; Liu, Jun; Chen, Ying; Liu, Tianyu; Wang, Zhengtao

    2009-01-01

    Andrographolide (ANDRO), a diterpenoid lactone isolated from the traditional herbal plant Andrographis paniculata, was reported to induce apoptosis in hepatoma Hep3B cells in our previous study (Ji LL, Liu TY, Liu J, Chen Y, Wang ZT. Andrographolide inhibits human hepatoma-derived Hep3B cells growth through the activation of c-Jun N-terminal kinase. Planta Med 2007; 73: 1397-1401). The present investigation was carried out to observe whether cellular reduced glutathione (GSH) plays important roles in ANDRO-induced apoptosis. ANDRO initially increased intracellular GSH levels which then decreased later, while inhibition of cellular GSH synthesis by L-Buthionine-(S,R)-sulfoximine (BSO) augmented ANDRO-induced cytotoxicity and apoptosis in Hep3B cells. On the other hand, the thiol antioxidant dithiothreitol (DTT) rescued ANDRO-depleted cellular GSH, and abrogated ANDRO-induced cytotoxicity and apoptosis. Furthermore, BSO pretreatment augmented ANDRO-decreased expression of antioxidant protein thioredoxin 1 (Trx1), while DTT reversed this decrease. Further results showed that ANDRO increased the activity of the GSH-related antioxidant enzyme glutathione peroxidase (GPx) and the production of intracellular reactive oxygen species (ROS). Taken together, this study demonstrates that the intracellular redox system plays important roles in regulating the cytotoxicity of ANDRO on hepatoma Hep3B cells.

  5. Comparison of the effect of interferon on two human hepatoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M.; Schoub, B.D.; Lyons, S.F.; Chiu, M.N. (University of the Witwatersrand, Johannesburg (South Africa). Dept. of Virology)

    1985-06-01

    Two human hepatoma cell lines, the PLC/PRF/5 and the Mahlavu cells, which differ in their production of the hepatitis B surface antigen (HBsAg), responded differently to interferon (IFN). After IFN treatment both cell lines were able to inhibit Sindbis virus replication. Oligo A synthetase (E enzyme) could be activated in the PLC/PRF/5 cells although they were not sensitive to exogenous 2 - 5 oligoadenylic acid (2 - 5 A). In contrast, the Mahlavu cells were sensitive to exogenous 2 - 5 A, but unable to activate the E enzyme. Both cell lines were unable to stimulate phosphorylation of the exogenous initiator factor eIF-2.

  6. Creation and characterization of a cell-death reporter cell line for hepatitis C virus infection

    Science.gov (United States)

    Chen, Zhilei; Simeon, Rudo; Chockalingam, Karuppiah; Rice, Charles M.

    2010-01-01

    The present study describes the creation and characterization of a hepatoma cell line, n4mBid, that supports all stages of the hepatitis C virus (HCV) life cycle and strongly reports HCV infection by a cell-death phenotype. The n4mBid cell line is derived from the highly HCV-permissive Huh-7.5 hepatoma cell line and contains a modified Bid protein (mBid) that is cleaved and activated by the HCV serine protease NS3-4A. N4mBid exhibited a 10–20 fold difference in cell viability between the HCV-infected and mock-infected states, while the parental Huh-7.5 cells showed <2 fold difference under the same conditions. The pronounced difference in n4mBid cell viability between the HCV- and mock-infected states in a 96-well plate format points to its usefulness in cell survival-based high-throughput screens for anti-HCV molecules. The degree of cell death was found to be proportional to the intracellular load of HCV. HCV-low n4mBid cells, expressing an anti-HCV short hairpin RNA, showed a significant growth advantage over naïve cells and could be rapidly enriched after HCV infection, suggesting the possibility of using n4mBid cells for the cell survival-based selection of genetic anti-HCV factors. PMID:20188762

  7. Time-course regulation of quercetin on cell survival/proliferation pathways in human hepatoma cells.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Angeles Martín, María; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2008-04-01

    Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. This study was aimed at investigating the time-course regulation effect of quercetin on survival/proliferation pathways in a human hepatoma cell line (HepG2). Quercetin induced a significant time-dependent inactivation of the major survival signaling proteins, i. e., phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (AKT), extracellular regulated kinase (ERK), protein kinase C-alpha (PKC-alpha), in concert with a time-dependent activation of key death-related signals: c-jun amino-terminal kinase (JNK) and PKC-delta. These data suggest that quercetin exerts a tight regulation of survival/proliferation pathways that requires the integration of different signals and persists over time, being the balance of these regulatory signals what determines the fate of HepG2 cells.

  8. Antitumor effect of matrine in human hepatoma G2 cells by inducing apoptosis and autophagy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To study the antitumor effect of matrine in human hepatoma G2 (HepG2) cells and its molecular mechanism involved in antineoplastic activities. METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect viability of HepG2 cells. The effect of matrine on cell cycle was detected by flow cytometry. Annexin-V-FITC/PI double staining assay was used to detect cellular apoptosis. Cellular morphological changes were observed under an inverted phase contrast microscope. ...

  9. Synergistic effect of combining paeonol and cisplatin on apoptotic induction of human hepatoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Shu-ping XU; Guo-ping SUN; Yu-xian SHEN; Wan-ten PENG; Hua WANG; Wei WE

    2007-01-01

    Aim: To investigate whether paeonol (Pae) has synergistic effects with cisplatin (CDDP) on the growth-inhibition and apoptosis-induction of human hepatoma cell lines HepG2 and SMMC-7721.Methods: The cytotoxic effect of drugs was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. The coefficient of drug interaction was used to analyze the nature of drug interactions. Morphological changes were observed by acridine orange fluo-rescence staining. Cell cycle and the apoptosis rate were detected by flow cytometry. Bcl-2 and Bax expression were assayed by immunohistochemical staining.Results: Pae or CDDP had antiproliferative effect on the 2 cell lines in a dose-dependent manner, with different sensitivities to drugs. More interestingly, a synergistic inhibitory effect on the viability of the 2 cell lines was observed after treatment with a combination of Pae (15.63, 31.25, and 62.5 mg/L) with various concentrations of CDDP. Further study showed typical mor-phological changes of apoptosis if the cells were exposed to the two agents for 24 h. The apoptotic rate of the cells with combination treatment was signifi-candy higher than that of cells treated with Pae or CDDP alone. The expression of Bcl-2 decreased and that of Bax increased in the treated groups, especially in the combination group, with the ratio of Bcl-2/Bax decreasing correspondingly.Additionally, a combination of Pae with CDDP resulted in a stronger S phase arrest, compared with Pae or CDDP alone.Conclusion: Pae, in combination with CDDP, had a significantly synergistic growth-inhibitory and apoptosis-in-ducing effect on the 2 human hepatoma cell lines, which may be useful in hepatoma treatment.

  10. Hepatitis B virus X protein promotes hepatoma cell proliferation via upregulation of MEKK2

    Institute of Scientific and Technical Information of China (English)

    Guang-yao KONG; Jun-ping ZHANG; Shuai ZHANG; Chang-liang SHAN; Li-hong YE; Xiao-dong ZHANG

    2011-01-01

    To investigate the mechanism underlying the increase of hepatoma cell proliferation by hepatitis B virus X protein (HBx).Methods:HepG2,H7402 and HepG2.2.15 cells,which constitutively replicated hepatitis B virus were used.The effects of HBx on hepatoma cell proliferation were examined using 5-ethynyl-2-deoxyuridine (EdU) incorporation assay and MTT assay.The expression level of MEKK2 was measured using RT-PCR,Western blot and luciferase reporter gene assay.The activity of activator protein 1 (AP-1) was detected using luciferase reporter gene assay.The phosphorylation levels of JNK and c-Jun were measured using Western blot.The expression levels of HBx and MEKK2 in 11 clinical hepatocellular carcinoma (HCC) tissues were measured using real time PCR and Western blot.In addition,the expression of MEKK2 in 95 clinical HCC tissues was examined using immunohistochemistry.Results:HBx significantly enhanced HepG2-X cell proliferation.In HepG2-X,H7402-X and HepG2.2.15 cells,the expression level of MEKK2 was remarkably increased.In HepG2.2.15 cells,HBx was found to activate JNK and AP-1,which were the downstream effectors of MEKK2 in HepG2-X and HepG2.2.15 cells.In 11 clinical HCC tissues,both HBx and MEKK2 expression levels were remarkably increased,as compared to those in the corresponding peritumor tissues.In 95 clinical HCC tissues,the rate of detection of MEKK2 was 85.3%.Conclusion:HBx promotes hepatoma cell proliferation via upregulating MEKK2,which may be involved in hepatocarcinogenesis.

  11. Hepatitis C virus infection of human hepatoma cell line 7721 in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhi-Qiang Song; Fei Hao; Feng Min; Qiao-Yu Ma; Guo-Dong Liu

    2001-01-01

    AIM To establish a cell culture system with long-term replication of hepatitis C virus in vitro.``METHODS Human hepatoma cell line 7721 was tested for its susceptibility to HCV by incubating with a serum from a patient with chronic hepatitis C. Cells and supernatant were harvested at various phases during the culturing periods The presence of HCV RNA, the expression of HCV antigens in cells and/or supernatant were examined by RT-PCR, in situ hybridization and immunohistochemistry respectively.``RESULTS The intracellular HCV RNA was first detected on d 2 after infection and then could be intermittently detected in both cells and supernatant over a period of at least three months. The expression of HCV NS3, CP10antigens could be observed in cells. The fresh cells could be infected by supematant from cultured infected cells and the transmission of viral genome from HCV-infected 7721 cells to PBMCs was also observed.``CONCLUSION The hepatoma line 7721 is not only susceptible to HCV but also supports its long-term replication in vitro.``

  12. Role of ROS-mediated autophagy in radiation-induced bystander effect of hepatoma cells.

    Science.gov (United States)

    Wang, Xiangdong; Zhang, Jianghong; Fu, Jiamei; Wang, Juan; Ye, Shuang; Liu, Weili; Shao, Chunlin

    2015-05-01

    Autophagy plays a crucial role in cellular response to ionizing radiation, but it is unclear whether autophagy can modulate radiation-induced bystander effect (RIBE). Here, we investigated the relationship between bystander damage and autophagy in human hepatoma cells of HepG2. HepG2 cells were treated with conditioned medium (CM) collected from 3 Gy γ-rays irradiated hepatoma HepG2 cells for 4, 12, or 24 h, followed by the measurement of micronuclei (MN), intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and protein expressions of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 in the bystander HepG2 cells. In some experiments, the bystander HepG2 cells were respectively transfected with LC3 small interfering RNA (siRNA), Beclin-1 siRNA or treated with 1% dimethyl sulfoxide (DMSO). Additional MN and mitochondrial dysfunction coupled with ROS were induced in the bystander cells. The expressions of protein markers of autophagy, LC3-II/LC3-I and Beclin-1, increased in the bystander cells. The inductions of bystander MN and overexpressions of LC3 and Beclin-1 were significantly diminished by DMSO. However, when the bystander cells were transfected with LC3 siRNA or Beclin-1 siRNA, the yield of bystander MN was significantly enhanced. The elevated ROS have bi-functions in balancing the bystander effects. One is to cause MN and the other is to induce protective autophagy.

  13. Hepatoma SK Hep-1 cells exhibit characteristics of oncogenic mesenchymal stem cells with highly metastatic capacity.

    Directory of Open Access Journals (Sweden)

    Jong Ryeol Eun

    Full Text Available BACKGROUND: SK Hep-1 cells (SK cells derived from a patient with liver adenocarcinoma have been considered a human hepatoma cell line with mesenchymal origin characteristics, however, SK cells do not express liver genes and exhibit liver function, thus, we hypothesized whether mesenchymal cells might contribute to human liver primary cancers. Here, we characterized SK cells and its tumourigenicity. METHODS AND PRINCIPAL FINDINGS: We found that classical mesenchymal stem cell (MSC markers were presented on SK cells, but endothelial marker CD31, hematopoietic markers CD34 and CD45 were negative. SK cells are capable of differentiate into adipocytes and osteoblasts as adipose-derived MSC (Ad-MSC and bone marrow-derived MSC (BM-MSC do. Importantly, a single SK cell exhibited a substantial tumourigenicity and metastatic capacity in immunodefficient mice. Metastasis not only occurred in circulating organs such as lung, liver, and kidneys, but also in muscle, outer abdomen, and skin. SK cells presented greater in vitro invasive capacity than those of Ad-MSC and BM-MSC. The xenograft cells from subcutaneous and metastatic tumors exhibited a similar tumourigenicity and metastatic capacity, and showed the same relatively homogenous population with MSC characteristics when compared to parental SK cells. SK cells could unlimitedly expand in vitro without losing MSC characteristics, its tumuorigenicity and metastatic capacity, indicating that SK cells are oncogenic MSC with enhanced self-renewal capacity. We believe that this is the first report that human MSC appear to be transformed into cancer stem cells (CSC, and that their derivatives also function as CSCs. CONCLUSION: Our findings demonstrate that SK cells represent a transformation mechanism of normal MSC into an enhanced self-renewal CSC with metastasis capacity, SK cells and their xenografts represent a same relative homogeneity of CSC with substantial metastatic capacity. Thus, it represents a

  14. High permissivity of human HepG2 hepatoma cells for influenza viruses.

    Science.gov (United States)

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-12-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represent a new approach for study of the interrelations of this complex with influenza viruses.

  15. Reversing multidrug resistance by RNA interference through the suppression of MDR1 gene in human hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping Chen; Qi wang; Jian Guan; Zhi-Yong Huang; Wan-Guang Zhang; Bi-Xiang Zhang

    2006-01-01

    AIM: To reverse the multidrug resistance (MDR) by RNA interference (RNAi)-mediated MDR1 suppression in hepatoma cells.METHODS: For reversing MDR by RNAi technology, two different short hairpin RNAs (shRNAs) were designed and constructed into pGenSil-1 plasmid, respectively. They were then transfected into a highly adriamycin-resistant HepG2 hepatoma cell line (HepG2/ADM). The RNAi effect on MDR was evaluated by real-time PCR, cell cytotoxicity assay and rhodamine 123 (Rh123) efflux assy.RESULTS: The stably-transfected clones showed various degrees of reversal of MDR phenotype. Surprisingly, the MDR phenotype was completely reversed in two transfected clones.CONCLUSION: MDR can be reversed by the shRNAmediated MDRI suppression in HepG2/ADM cells, which provides a valuable clue to make multidrug-resistant hepatoma cells sensitive to anti-cancer drugs.

  16. Blocking autophagic flux enhances matrine-induced apoptosis in human hepatoma cells.

    Science.gov (United States)

    Wang, Li; Gao, Chun; Yao, Shukun; Xie, Bushan

    2013-11-25

    Autophagy, a self-defense mechanism, has been found to be associated with drug resistance in hepatocellular carcinoma (HCC). Our study was designed to investigate the role and related mechanisms of autophagy in matrine-induced apoptosis in hepatoma cells of HepG2 and Bel7402. Cell apoptosis was detected by flow cytometry analysis (Annexin V-FITC/PI double-staining assay), the activity and activating cleavages of caspase-3, -8, and -9. MTT assay and colony forming assay were used to assess the effect of matrine on growth and proliferation of HCC cells. Autophagic flux in HCC cells was analyzed using the expression of LC3BI/II and p62/SQSTM1, GFP-LC3 transfection, and transmission electron microscopy. Moreover, regarding to the associated mechanisms, the effects of matrine on the phosphoinositide 3-kinase/AKT/mTOR pathway and beclin-1 were studied. Our results showed that: (1) both autophagy and apoptosis could be induced by treatment with matrine; (2) using the autophagic inhibitor chloroquine and beclin-1 small-interfering RNA, cell apoptosis induced by matrine could be enhanced in a caspase-dependent manner; and (3) autophagy was induced via inhibition of PI3K/AKT/mTOR pathway and up-regulation of beclin-1. In conclusion, inhibition of autophagy could enhance matrine-induced apoptosis in human hepatoma cells.

  17. Blocking Autophagic Flux Enhances Matrine-Induced Apoptosis in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Li Wang

    2013-11-01

    Full Text Available Autophagy, a self-defense mechanism, has been found to be associated with drug resistance in hepatocellular carcinoma (HCC. Our study was designed to investigate the role and related mechanisms of autophagy in matrine-induced apoptosis in hepatoma cells of HepG2 and Bel7402. Cell apoptosis was detected by flow cytometry analysis (Annexin V–FITC/PI double-staining assay, the activity and activating cleavages of caspase-3, -8, and -9. MTT assay and colony forming assay were used to assess the effect of matrine on growth and proliferation of HCC cells. Autophagic flux in HCC cells was analyzed using the expression of LC3BI/II and p62/SQSTM1, GFP-LC3 transfection, and transmission electron microscopy. Moreover, regarding to the associated mechanisms, the effects of matrine on the phosphoinositide 3-kinase/AKT/mTOR pathway and beclin-1 were studied. Our results showed that: (1 both autophagy and apoptosis could be induced by treatment with matrine; (2 using the autophagic inhibitor chloroquine and beclin-1 small-interfering RNA, cell apoptosis induced by matrine could be enhanced in a caspase-dependent manner; and (3 autophagy was induced via inhibition of PI3K/AKT/mTOR pathway and up-regulation of beclin-1. In conclusion, inhibition of autophagy could enhance matrine-induced apoptosis in human hepatoma cells.

  18. Effects of hepatitis B virus on p53 expression in hepatoma cell line SMMU-7721

    Institute of Scientific and Technical Information of China (English)

    Jian-Hui Qu; Ming-Hua Zhu; Jing Lin; Can-Rong Ni; Fang-Mei Li; Zhi Zhu; Guan-Zhen Yu

    2005-01-01

    AIM: To investigate the contribution of HBV in the development of hepatocarcinoma by examining the effects of HBV on p53 function in SMMU-7721 cell line.METHODS: Plasmid pCvlVp53 was transfected or cotransfected with pCMVHBVa (wild-type HBV) or PCMVHBVb (mutation type HBV) into the hepatoma cell line SMMU-7721 by lipofectamine. Apoptosis cells were labeled with annexin V-FITC and confirmed by flow cytometry. Reporter plasmid PG13-CAT or p21-1uc was cotransfected, respectively, into each group to determine the transactivation activity of p53 and its effect on p21 promoter. Western blot was performed to observe p53 expression in hepatoma cell line of each group.RESULTS: The group transfected with pCMVp53 alone exhibited higher luciferase activity and higher apoptosis rate, otherwise, the p53 expression and reporter activity of PG13-CAT or P21-luc as well as cell apoptosis rate were obviously higher in the group cotransfected of pCMVp53with pCMVHBVa, but not in the other cotransfected group.CONCLUSION: Transient transfection of HBV into the SMMU-7721 cell line can enhance p53 expression and its effects on development of hepatocarcinoma.

  19. Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation

    Science.gov (United States)

    Bu, Li-Jia; Yu, Han-Qing; Fan, Lu-Lu; Li, Xiao-Qiu; Wang, Fang; Liu, Jia-Tao; Zhong, Fei; Zhang, Cong-Jun; Wei, Wei; Wang, Hua; Sun, Guo-Ping

    2017-01-01

    AIM To clarify the mechanisms involved in the critical endoplasmic reticulum (ER) stress initiating unfolded protein response pathway modified by melatonin. METHODS Hepatoma cells, HepG2, were cultured in vitro. Flow cytometry and TUNEL assay were used to measure HepG2 cell apoptosis. Western blotting and quantitative reverse transcription-polymerase chain reaction methods were used to determine the protein and messenger RNA levels of ER stress and apoptosis related genes’ expression, respectively. Tissue microarray construction from patients was verified by immunohistochemical analysis. RESULTS In the present study, we first identified that melatonin selectively blocked activating transcription factor 6 (ATF-6) and then inhibited cyclooxygenase-2 (COX-2) expression, leading to enhanced liver cancer cell apoptosis under ER stress condition. Dramatically increased CCAAT-enhancer-binding protein homologous protein level, suppressed COX-2 and decreased Bcl-2/Bax ratio by melatonin or ATF-6 siRNA contributed the enhanced HepG2 cell apoptosis under tunicamycin (an ER stress inducer) stimulation. In clinical hepatocellular carcinoma patients, the close relationship between ATF-6 and COX-2 was further confirmed. CONCLUSION These findings indicate that melatonin as a novel selective ATF-6 inhibitor can sensitize human hepatoma cells to ER stress inducing apoptosis. PMID:28246472

  20. Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation.

    Science.gov (United States)

    Bu, Li-Jia; Yu, Han-Qing; Fan, Lu-Lu; Li, Xiao-Qiu; Wang, Fang; Liu, Jia-Tao; Zhong, Fei; Zhang, Cong-Jun; Wei, Wei; Wang, Hua; Sun, Guo-Ping

    2017-02-14

    To clarify the mechanisms involved in the critical endoplasmic reticulum (ER) stress initiating unfolded protein response pathway modified by melatonin. Hepatoma cells, HepG2, were cultured in vitro. Flow cytometry and TUNEL assay were used to measure HepG2 cell apoptosis. Western blotting and quantitative reverse transcription-polymerase chain reaction methods were used to determine the protein and messenger RNA levels of ER stress and apoptosis related genes' expression, respectively. Tissue microarray construction from patients was verified by immunohistochemical analysis. In the present study, we first identified that melatonin selectively blocked activating transcription factor 6 (ATF-6) and then inhibited cyclooxygenase-2 (COX-2) expression, leading to enhanced liver cancer cell apoptosis under ER stress condition. Dramatically increased CCAAT-enhancer-binding protein homologous protein level, suppressed COX-2 and decreased Bcl-2/Bax ratio by melatonin or ATF-6 siRNA contributed the enhanced HepG2 cell apoptosis under tunicamycin (an ER stress inducer) stimulation. In clinical hepatocellular carcinoma patients, the close relationship between ATF-6 and COX-2 was further confirmed. These findings indicate that melatonin as a novel selective ATF-6 inhibitor can sensitize human hepatoma cells to ER stress inducing apoptosis.

  1. THE STUDY OF ELEMENE OF INDUCTION APOPTOSIS ON ASCITES HEPATOMA CELL LINE Hca-F25/CL-16A3

    Institute of Scientific and Technical Information of China (English)

    Zuo Yunfei; Zhang Yaozheng; Zhang Hong

    1998-01-01

    Objective: To investigate the effect of inducing apoptosis of Elemene on ascites hepatoma cell line HcaF25/cL-16A3. By using immunhistochemistry and DNA electrophoresis, the mechanism of Elemene antitumor was studied. Results: The results showed that the Elemene can inhibit expression of bcl-2 in ascites hepatoma cell line Hca-F25/CL-16A3, and the Eiemene also can make DNA fragmentation in this cell line in vitro and in vivo.Conclusion: The data suggest that Elemene can inhibit the growth of tumor by inducing apoptosis.

  2. [Effects of niflumic acid on the proliferation of human hepatoma cells].

    Science.gov (United States)

    Tian, Jing; Tao, Ling; Cao, Yun-Xin; Dong, Ling; Hu, Yu-Zhen; Yang, An-Gang; Zhou, Shi-Sheng

    2003-04-25

    The purpose of this work was to investigate the effects of niflumic acid (NFA), a chloride channel blocker, on the proliferation of human hepatoma cell line (HHCC). Cell proliferation was analyzed by cell count and MTT assay. Cell cycle analysis was carried out by flow cytometry. [Ca(2+)](i) was determined by laser scanning confocal system. It was found that NFA decreased significantly the cell number and the MTT optical density (OD) of HHCC cells, and that the OD value was reversed after washout of NFA. Compared with control, NFA blocked cell cycle progression in G(1) phase. Extracellular application of NFA (100 micromol/L) induced a rapid decrease in [Ca(2+)](i). These findings demonstrate that blockage of chloride channels by NFA induces growth arrest of HHCC in G(1) phase, which may be due to the inhibition of Ca(2+)/CaM-dependent signaling pathways.

  3. In Vitro and in Vivo Study of the Antitumor Effects of a THANK Modified Hepatoma Cell Line

    Institute of Scientific and Technical Information of China (English)

    WUDong; SHENFeng; 等

    2002-01-01

    Objective THANK, known as a member of TNF superfamily,is a petent costimulator of both B and T lymphocytes and can promote a strong immune response.To investigate its role in liver immunotherapy,the anti-tumor effects of the THAND-transduced hepatoma cell line SMMU-7721 in vitro and in vivo studied. Methods THANK full-elngth cDNA was transfected into SMMU-7721 cell line .The transfectant with stable expression of THAND was obtained by clone selection and THANK's effects on hepatoma cells were analyzed,further the tumorigenicity of THANK -transduced 7721 cells was examined in nude mice.Results THANK's expression in 7721 cells inhibited the growth of hepatoma cells and induced a strong CTL response in vitro.The cell cycle analysis showed that THANK transfected 7721 cells were arrested in the S phase.The expression of THANK in SMMU-7721 cell line not only inhibited the tumorigenicity of 7721 cells,but also induced a systemic immune response against re-chalenge of parental 7721 tumors. Conclusion THANK transduction in SMMU-7721 cells can induce an effective immune response in nude mice and may be useful for the immunotherapy of hepatomas.

  4. Telomerase inhibition and telomere loss in BEL-7404 human hepatoma cells treated with doxorubicin

    Institute of Scientific and Technical Information of China (English)

    Ru-Gang Zhang; Li-Xia Guo; Xing-Wang Wang; Hong Xie

    2002-01-01

    AIM: To study the effects of doxorubicin on telomeraseactivity and telomere length in hepatocellular carcinoma.METHODS: Telomerase activity was assayed with a non-radioisotopic quantitative telomerase repeat amplificationprotocal-based method. The effect of doxorubicin (DOX) onthe growth of BEL-7404 human hepatoma cells wasdetermined by microculture tetrazolium assay. Meantelomere length (terminal restriction fragment) was detectedby Southern blot method. The expression of telomerasesubunits genes was investigated by RT-PCR. Cell apoptosisand cell cycle distribution were evaluated by flow cytometry.RESULTS: Telomerase activity was inhibited in a dose andtime-dependent manner in BEL-7404 human hepatoma cellstreated with DOX for 24, 48 or 72 h in concentrations from0.156 to 2.5 μM which was crrelated with the inhibition ofcell growth. No changes were found in the mRNA expressionof three telomerase subunits (hTERT, hTR and TP1) afterdrug exposure for 72 h with indicated concentrations. Thecells treated with DOX showed shortened mean telomerelength and accumulated at the G2/M phase. However, therewas almost no effects on cell apoptosis by DOX.CONCLUSION: The telomerase inhibition and the telomereshortening by DOX may contribute to its efficiency in thetreatment in hepatocellular carcinoma.

  5. Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2016-11-01

    Full Text Available The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box containing complex-β-Transducin Repeat Containing Protein (SCFβ-TrCP complex to facilitate Cyclin D1 ubiquitin-proteasome dependent proteolysis. Knockdown of β-TrCP blocks Cyclin D1 turnover induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance to berberine. Our results shed light on berberine′s potential as an anti-tumor agent for clinical cancer therapy.

  6. Synergistic effect of cell differential agent-Ⅱ and arsenic trioxide on induction of cell cycle arrest and apoptosis in hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Wei Liu; Yi Tang; Yan Shen; Xue-Yun Zhong

    2003-01-01

    AIM: To illustrate the possible role of cell differential agent-Ⅱ (CDA-Ⅱ) in the apoptosis of hepatoma cells induced byarsenic trioxide (As2O3).METHODS: Hepatoma cell lines BEL-7402 and HepG2 weretreated with As2O3 together with CDA-Ⅱ. Cell survivingfraction was determined by MTT assay; morphologicalchanges were observed by immunofluorescence staining ofHoechst 33 258; and cell cycle and the apoptosis index weredetermined by flow cytometry (FCM).RESULTS: Cytotoxity of CDA-Ⅱ was low. Nevertheless, CDA-Ⅱ could strongly potentiate arsenic trioxide-inducedapoptosis. At 1.0 g/L CDA-Ⅱ, IC50 of As2O3 in hepatoma celllines was reduced from 5.0 μmol/L to 1.0 μmol/L (P<0.01).The potentiation of apoptosis was dependent on the dosageof CDA-Ⅱ. FCM indicated that in hepatoma, cell growth wasinhibited by CDA-Ⅱ at lower concentrations (<2.0 g/L)primarily by arresting at S and G2 phase, and at higherconcentrations (>2.0 g/L) apoptotic cell and cell cyclearresting at G1 phaseincreased proportionally. Thecombination of two drugs led to much higher apoptotic rates,as compared with the either drug used alone.CONCLUSION: CDA-Ⅱ can strongly potentiate As2O3-induced apoptosis in hepatoma cells, and two drugs canproduce a significant synergic effect.

  7. INVESTIGATION OF HYPOLIPIDEMIC EFFECT OF SESQUITERPENE Γ-LACTONE AHILLIN IN HEPATOMA TISSUE CULTURE (HTC CELLS

    Directory of Open Access Journals (Sweden)

    V. V. Ivanov

    2014-01-01

    Full Text Available Objective. Investigation of hypolipidemic effect of sesquiterpene γ-lactone ahillin in hepatoma tissue culture (HTC cells.Material and methods. In this study we’ve evaluated the effect of γ-lactone sesquiterpene aсhillin and gemfibrozil (comparator drug on the lipid content in the hepatoma tissue culture (HTC cell which were incubated with a fat emulsion lipofundin by fluorescent method with vital dye Nile Redand staining the cells with the dye Oil Red O. The cell viability was investigated using the MTT-test and staining with Trypan blue.Results. Cultivation cells HTC with aсhillin and gemfibrozilat concentrations ranging from 0.5 to1.5 mM and from0.25 mM to0.5 mM, respectively, resulted in dose-dependent decrease of the fluorescence’s intensity Nile Red. It reflects a decrease in lipid content in the cells. At these concentrations the drugs didn’t have cytotoxic effect and the cell viability didn’t change compared to the control culture.An experimental hyperlipidemia in the hepatoma culture cells was induced by adding to the incubation medium a fat emulsion lipofundin at a final concentration 0.05%. The intensity of fluorescence Nile Red in the cells was increased 4 fold (p < 0.05. This result suggests the significant accumulation of lipids in the cell’s cytosol and confirmed by microscopy after staining neutral lipids with the dye Oil Red O. Under these conditions aсhillin and gemfibrozil reduced lipid content in cells and hadthe effect at concentrations of0.5 mM and0.25 mM respectively.Conclusion. In the lipofundin-mediated model of hyperlipidemia the sesquiterpene lactone aсhillin prevents the lipid accumulation in cells. It confirms by decrease of fluorescence Nile Red and reduction lipid drops which were stained with Oil Red O in cytosol. To establish the molecular targets of aсhillin’saction on lipid metabolism in cell culture HTC we need to investigate a gene expression of key enzymes of lipid metabolism.

  8. Multiple hormonal control of enzyme synthesis in liver and hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, F.T.; Lee, K.L.; Pomato, N.; Nickol, J.M.

    1978-01-01

    Synthesis of hepatic tyrosine aminotransferase is accelerated in vivo by either of the pancreatic hormones, insulin and glucagon as well as by glucocorticoids, and glucagon acts via the intracellular mediator, cyclic AMP. The mechanisms responsive to these hormones have also been retained in cultured hepatoma cells: in H-35 cells the responses appear to be essentially identical to those in liver, especially in that each inducer can act independently of the others. In this paper we describe recent analyses of the cellular mechanisms involved in this multiple hormonal control of synthesis of a single enzyme. These experiments have been done with rat liver in vivo, owing to a need for larger quantities of cellular components that can readily be obtained from cultured cells. As some of these results appear to be at variance in important respects with those of earlier analyses carried out in H-35 cells, we briefly review these earlier experiments as well.

  9. Effects of cisplatin on telomerase activity and telomere length in BEL-7404 human hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Telomerase activity was inhibited in a dose and time-dependent manner with the treatment of cisplatin for 24, 48, or 72 h in a concentration ranged from 0.8 to 50 μM in BEL-7404 human hepatoma cells. There were no changes in expression pattern of three telomerase subunits, its catalytic reverse transcriptase subunit (hTERT), its RNA component (hTR) or the associated protein subunit (TP1), after cisplatin treated for 72 h with indicated concentrations. Mean telomere lengths were decreased by the cisplatin treatment. Cell growth inhibition and cell cycle accumulation in G2/M phase were found to be correlated with telomerase inhibition in the present study, but percentages of cell apoptosis did not change markedly during the process.

  10. Plasmid Transfer of Plasminogen K1-5 Reduces Subcutaneous Hepatoma Growth by Affecting Inflammatory Factors

    Directory of Open Access Journals (Sweden)

    Lea A. Koch

    2014-01-01

    Full Text Available There is evidence that plasminogen K1-5 (PlgK1-5 directly affects tumour cells and inflammation. Therefore, we analysed if PlgK1-5 has immediate effects on hepatoma cells and inflammatory factors in vitro and in vivo. In vitro, effects of plasmid encoding PlgK1-5 (pK1-5 on Hepa129, Hepa1-6, and HuH7 cell viability, apoptosis, and proliferation as well as VEGF and TNF-alpha expression and STAT3-phosphorylation were investigated. In vivo, tumour growth, proliferation, vessel density, and effects on vascular endothelial growth factor (VEGF and tumour necrosis factor alpha (TNF-alpha expression were examined following treatment with pK1-5. In vivo, pK1-5 halved cell viability; cell death was increased by up to 15% compared to the corresponding controls. Proliferation was not affected. VEGF, TNF-alpha, and STAT3-phosphorylation were affected following treatment with pK1-5. In vivo, ten days after treatment initiation, pK1-5 reduced subcutaneous tumour growth by 32% and mitosis by up to 77% compared to the controls. Vessel density was reduced by 50%. TNF-alpha levels in tumour and liver tissue were increased, whereas VEGF levels in tumours and livers were reduced after pK1-5 treatment. Taken together, plasmid gene transfer of PlgK1-5 inhibits hepatoma (cell growth not only by reducing vessel density but also by inducing apoptosis, inhibiting proliferation, and triggering inflammation.

  11. Long Noncoding RNA MEG3 Interacts with p53 Protein and Regulates Partial p53 Target Genes in Hepatoma Cells.

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhu

    Full Text Available Maternally Expressed Gene 3 (MEG3 encodes a lncRNA which is suggested to function as a tumor suppressor. Previous studies suggested that MEG3 functioned through activation of p53, however, the functional properties of MEG3 remain obscure and their relevance to human diseases is under continuous investigation. Here, we try to illuminate the relationship of MEG3 and p53, and the consequence in hepatoma cells. We find that transfection of expression construct of MEG3 enhances stability and transcriptional activity of p53. Deletion analysis of MEG3 confirms that full length and intact structure of MEG3 are critical for it to activate p53-mediated transactivation. Interestingly, our results demonstrate for the first time that MEG3 can interact with p53 DNA binding domain and various p53 target genes are deregulated after overexpression of MEG3 in hepatoma cells. Furthermore, results of qRT-PCR have shown that MEG3 RNA is lost or reduced in the majority of HCC samples compared with adjacent non-tumorous samples. Ectopic expression of MEG3 in hepatoma cells significantly inhibits proliferation and induces apoptosis. In conclusion, our data demonstrates that MEG3 functions as a tumor suppressor in hepatoma cells through interacting with p53 protein to activate p53-mediated transcriptional activity and influence the expression of partial p53 target genes.

  12. The citrus fruit flavonoid naringenin suppresses hepatic glucose production from Fao hepatoma cells.

    Science.gov (United States)

    Purushotham, Aparna; Tian, Min; Belury, Martha A

    2009-02-01

    Hepatic gluconeogenesis is the major source of fasting hyperglycemia. Here, we investigated the role of the citrus fruit flavonoid naringenin, in the attenuation of hepatic glucose production from hepatoma (Fao) cells. We show that naringenin, but not its glucoside naringin, suppresses hepatic glucose production. Furthermore, unlike insulin-mediated suppression of hepatic glucose production, incubation of hepatocytes with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor Ly294002 had no effect on the ability of naringenin to suppress hepatic glucose production. Further, naringenin did not increase phosphorylation of Akt at Ser473 or, Thr308, indicating this down-stream target of PI3-kinase is also not a player in naringenin-mediated suppression of hepatic glucose production. Importantly, like the dimethylbiguanide, metformin, naringenin significantly decreased cellular ATP levels without increasing cell cytotoxicity. Together, these results suggest that the aglycone, naringenin, has a role in the attenuation of hyperglycemia and may exert this effect in a manner similar to the drug, metformin.

  13. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells

    Science.gov (United States)

    Ramirez-Tagle, Rodrigo; Escobar, Carlos A.; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4′-trimethoxy-2′-hydroxy-chalcone (CH1) and 3′-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas. PMID:26907262

  14. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Ramirez-Tagle, Rodrigo; Escobar, Carlos A; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar

    2016-02-22

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4'-trimethoxy-2'-hydroxy-chalcone (CH1) and 3'-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas.

  15. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Rodrigo Ramirez-Tagle

    2016-02-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4′-trimethoxy-2′-hydroxy-chalcone (CH1 and 3′-bromo-3,4-dimethoxy-chalcone (CH2, over human hepatoma cells (HepG2 and Huh-7 and cultured mouse hepatocytes (HepM. Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i a caspase-dependent intrinsic pathway; and (ii by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas.

  16. Apoptosis of hepatoma cells SMMC-7721 induced by Ginkgo biloba seed polysaccharide

    Institute of Scientific and Technical Information of China (English)

    Qun Chen; Gui-Wen Yang; Li-Guo An

    2002-01-01

    AIM: To study the apoptosis of hepatoma cells SMMC-7721induced by polysaccharide isolated from Ginkgo biloba seed.METHODS: Ginkgo biloba seed polysaccharide (GBSP) wasisolated by ethanol fractionation of Ginkgo biloba seed andpurified by Sephadex G-200 chromatography. The purity ofGBSP was verified by reaction with iodine-potassium iodideand ninhydrin and confirmed by UV spectrophotometer,cellulose acetate membrane electrophoresis and Sepharose4B gel filtration chromatography. The Scanning ElectronMicroscope (SEM) and Flow Cytometrv (FCM) were used toexamine the SMMC-7721 cells with and without GBSPtreatment at 500 mg/ml for 36 h.RESULTS: GBSP product obtained was of high purity withthe average molecular weight of 1.86 × 105. Quantitativeanalysis of SMMC-7721 cells in vitro with FCM showed thatthe percentages of G2-M cells without and with GBSPtreatment were 17.01±1.28 % and 11.77±1.50% (P<0.05),the debds ratio of the cells were 0.46±0.12 % and 0.06±0 .06 %(P<0.01), and the apoptosis ratio of cells was 3.84±0 .55 %and 9.13±1.48 %(P<0.01) respectively. Following GBSPtreatment, microvilli of SMMC-7721 cells appeared thinnerand the number of spherical cells increased markedly. Mostsignificantly, the apoptosis bodies were formed on andaround the spherical cells treated with GBSP.CONCLUSION: GBSP could potentially induce the apoptosisof SMMC-7721 cells.

  17. Impact of graphene oxide on viability of Chinese hamster ovary and mouse hepatoma MH-22A cells.

    Science.gov (United States)

    Batiuskaite, Danute; Grinceviciute, Nora; Snitka, Valentinas

    2015-08-01

    The evaluation of the cyto- and bio-compatibility is a critical step in the development of graphene oxide (GO) as a new promising material for in vivo biomedical applications. In this study, we report the impact of GO, with and without the addition of bovine serum albumin, on healthy (Chinese hamster ovary) and a cancer (mouse hepatoma MH-22A) cells viability and the estimation of the intracellular distribution of GO inside the cells in vitro. The viability tests were performed using a colony formation assay. The intracellular distribution of GO was estimated using Raman spectroscopy and imaging. The viability of both cell lines decreased with increasing concentration of graphene oxide (12.5-50.0 μg/ml): in the case of Chinese hamster ovary cells viability decreased from 44% to 11%, in the case of mouse hepatoma MH-22A cells--from 22% to 3%. These cell lines significantly differed in their response to GO and GO-BSA formulations. The results of viability tests correlate with results of atomic force microscopy and Raman spectroscopy and imaging findings. The GO influence on cell morphology changes, cell structure, cells colony growth dynamics and GO accumulation inside the cells was higher in the case of mouse hepatoma MH-22A cells.

  18. Chemopreventive action of Lygodium flexuosum extract in human hepatoma PLC/PRF/5 and Hep 3B cells.

    Science.gov (United States)

    Wills, P J; Asha, V V

    2009-03-18

    Lygodium flexuosum (Lygodiaceae), a medicinal fern used in Indian traditional medicine against liver disorders. The rationale of the study was to examine whether the n-hexane extract from plant Lygodium flexuosum affects apoptosis on human hepatoma PLC/PRF/5 and Hep 3B cells. Chemopreventive activity of the Lygodium flexuosum extract was determined by MTT assay, annexin-V FITC binding to phosphatidyl serine and cleavage of PARP. Subdiploid condition of cells treated with Lygodium flexuosum was analyzed by flow cytometry. Further, used transiently transfected NF-kappaB reporter in PLC/PRF/5 cells to evaluate the inhibitive effect of Lygodium flexuosum extract. Lygodium flexuosum extract inhibited the cell viability and induced apoptosis in hepatoma cells in a concentration dependent manner as evidenced by apoptotic changes such as flipping of phosphatidyl serine, cleavage of PARP. Cell cycle analysis showed the subG1 apoptotic population in cells treated with higher concentrations of the extract. When activated with exogenous TNF-alpha in transfected hepatoma cells it was observed that NF-kappaB dependent gene expression was inhibited by treatment with Lygodium flexuosum extract in PLC/PRF/5 cells dose-dependently. This investigation suggests that the Lygodium flexuosum extract has antiproliferative and apoptotic activity in both cancer cells and has inhibitive role in TNF-alpha induced NF-kappaB activation in PLC/PRF/5 cells confirms the potential of the extract as a chemopreventive agent.

  19. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines.

    Directory of Open Access Journals (Sweden)

    Karolina Ewa Zakrzewska

    Full Text Available Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests.

  20. The effect of arsenic trioxide on human hepatoma cell line BEL-7402 culturedin vitro

    Institute of Scientific and Technical Information of China (English)

    You Lin Yang; Hong Yu Xu; Yuan Yuan Gao; Qiao Li Wu; Guang Qiang Gao

    2000-01-01

    AIM To study the effect of a wide range of concentration of arsenic trioxide on human hepatoma cell lineBEL-7402 and its mechanism.METHODS The BEL-7402 cells were treated with arsenic trioxide (a final concentration of 0.5, 1 and2 μmol/L, respectively) in various durations or for 4 successive days. The cell growth and proliferation wereobserved by cell counting and cell-growth curve. Morphologic changes were studied under electronmicroscopy. Flow cytometry was used to assay cell-DNA distribution and the protein expression of Bcl-2 andBax was detected by immunocytochemical method.RESULTS The cell growth was significantly inhibited by the different concentrations of arsenic trioxide asrevealed by cell counting and cell-growth curve. Arsenic trioxide treatment at 0.5, 1 and 2 μmol/L, resultedin a sub-G1 cell peak. The decreased G0/G1 phase cell and the increased percentage of S phase cell were observed by flow cytometer, suggesting that the inhibiting effect of arsernic trioxide on BEL-7402 cell lay inG0/G1 phase cell. Apoptotis-related morphology, such as intact cell membrane, nucleic condensation,apoptotic body formation, can be seen under the electron microscopy. High protein expression level of Bcl-2and Bax was detected in 1 and 2 μmol/L arsenic trioxide-treated cells, but that of Bax was more significant.Arsenic trioxide treatment at 0.5 μmol/L resulted in higher expression level of Bcl-2 and lower expressionlevel of Bax compared with control (P1<0.01, P2<0.01).CONCLUSION Arsenic trioxide not only inhibited the proliferation but also induced apoptosis of humanhepatoma cell line BEL-7402. The induced-apoptosis effect of 1 and 2 μmol/L arsenic trioxide was relative tothe expression level of Bcl-2 and Bax.

  1. Pokemon Silencing Leads to Bim-Mediated Anoikis of Human Hepatoma Cell QGY7703

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2012-05-01

    Full Text Available Pokemon is an important proto-oncogene that plays a critical role in cellular oncogenic transformation and tumorigenesis. Anoikis, which is regulated by Bim-mediated apoptosis, is critical to cancer cell invasion and metastasis. We investigated the role of Pokemon in anoikis, and our results show that Pokemon renders liver cells resistant to anoikis via suppression of Bim transcription. We knocked-down Pokemon in human hepatoma cells QGY7703 with small interfering RNAs (siRNA. Knockdown of Pokemon alone did not significantly affect the growth and survival of QGY7703 cells but notably enhanced their sensitivity to apoptotic stress due to the presence of chemical agents or cell detachment, thereby inducing anoikis, as evidenced by flow cytometry and caspase-3 activity assays. In contrast, ectopic expression of Pokemon in HL7702 cells led to resistance to anoikis. Dual-luciferase reporter and ChIP assays illustrated that Pokemon suppressed Bim transcription via direct binding to its promoter. Our results suggest that Pokemon prevents anoikis through the suppression of Bim expression, which facilitates tumor cell invasion and metastasis. This Pokemon-Bim pathway may be an effective target for therapeutic intervention for cancer.

  2. Contradicting interplay between insulin-like growth factor-1 and miR-486-5p in primary NK cells and hepatoma cell lines with a contemporary inhibitory impact on HCC tumor progression.

    Science.gov (United States)

    Youness, Rana Ahmed; Rahmoon, Mai Atef; Assal, Reem Amr; Gomaa, Asmaa Ibrahim; Hamza, Mohamed Tarif; Waked, Imam; El Tayebi, Hend Mohamed; Abdelaziz, Ahmed Ihab

    2016-08-01

    In this study, an impaired natural killer (NK) cell cytolytic activity in 135 hepatocellular carcinoma (HCC) patients parallel to a reduced expression level of insulin-like growth factor (IGF)-1 in NK cells of HCC patients has been revealed. Ectopic expression of miR-486-5p, a direct upstream regulator of IGF-1, restored the endogenous level of IGF-1 in NK cells of HCC patients, thus augmenting its cytolytic activity against Huh7 cells in an opposite manner to the IGF-1 siRNAs. Unorthodoxly, over-expression of miR-486-5p in target hepatocytes resulted in the repression of IGF-1, suppression of Huh7 cells proliferation and viability in a similar pattern to the IGF-1 siRNAs. Therefore, this study highlights a potential role of IGF-1 in modulating cytolytic potential of NK cells of HCC patients. miR-486-5p acts in a cell-specific manner, differentially modulating IGF-1 expression in NK cells and their target hepatocytes with a contemporary inhibitory impact on HCC progression.

  3. Hepatitis B virus X protein modulates the apoptosis of hepatoma cell line induced by TRAIL

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiaohong; SUN Wensheng; GAO Lifen; MA Chunhong; HAN Lihui; CHEN Youhai

    2005-01-01

    The purpose of this study is to observe the effects of HBx on the apoptosis of hepatoma cells induced by TNF-related apoptosis-inducing ligand (TRAIL) and to study preliminary molecular mechanisms for its effects. In order to set up a model in vitro, BEL7402-HBx cell line, stably expressing HBx mRNA, was established by stable transfection of pcDNA-HBx, which contains HBx gene, into hepatoma cell line BEL7402. Control cell line BEL7402-cDNA3, stably transfected with pcDNA3, was set up simultaneously as a control. Trypan blue exclusion test,caspase 3 activity detection and TUNEL assay were performed to detect the apoptosis of BEL7402, BEL7402-cDNA3, BEL7402-HBx induced by TRAIL. The expression of TRAIL receptors in three groups was analyzed by Flow cytometry. In addition, phosphorothioated antisense oligonucleotide against the translation initial region of HBx gene (PS-asODNs/HBx) was used to block the expression of HBx in HepG2.2.15 cells and to further confirm the effects of HBx on TRAIL-induced apoptosis. Trypan blue exclusion test indicated that TRAIL had a dose-dependent cytotoxicity on BEL7402, BEL7402-cDNA3 and BEL7402-HBx cells. Under treatment of the same concentration of TRAIL, BEL7402-HBx had a higher apoptosis rate and a higher level of Caspase 3 activation than BEL7402 and BEL7402-cDNA3. TUENL assay showed that the apoptosis rate of BEL7402-HBx induced by 10 μg/L TRAIL was 41.4%±7.2%, significantly higher than that of BEL7402 and BEL7402-cDNA3 cells. Blockade of HBx expression in Hep G2.2.15 cells partly inhibited the apoptosis induced by TRAIL. The introduction or blockade of HBx did not change the expression pattern of TRAIL receptors. The present study firstly confirms the effects of HBx on TRAIL- induced apoptosis from two different points and it is not related with the expression level of TRAIL receptors. This would be useful to further clarify the roles of imbalanced apoptosis in pathogenesis of Hepatitis B and related hepatocellular carcinoma.

  4. Inhibition of hepatitis B virus and induction of hepatoma cell apoptosis by ASGPR-directed delivery of shRNAs.

    Science.gov (United States)

    Ma, Jingwei; Huang, Chunmei; Yao, Xinxin; Shi, Chuan; Sun, Lifang; Yuan, Lu; Lei, Ping; Zhu, Huifen; Liu, Hongbo; Wu, Xiongwen; Ning, Qin; Zhou, Chun; Shen, Guanxin

    2012-01-01

    Hepatitis B virus (HBV) infection is a worldwide liver disease and nearly 25% of chronic HBV infections terminate in hepatocellular carcinoma (HCC). Currently, there is no effective therapy to inhibit HBV replication and to eliminate hepatoma cells, making it highly desired to develop novel therapies for these two stages of the HBV-caused detrimental disease. Recently, short hairpin RNA (shRNA) has emerged as a potential therapy for virus-infected disease and cancer. Here, we have generated a shRNA, pGenesil-siHBV4, which effectively inhibits HBV replication in the human hepatoma cell line HepG2.2.15. The inhibitory effects of pGenesil-siHBV4 are manifested by the decrease of both the HBV mRNA level and the protein levels of the secreted HBV surface antigen (HBsAg) and HBV e antigen (HBeAg), and by the reduction of secreted HBV DNA. Using mouse hydrodynamic tail vein injection, we demonstrate that pGenesil-siHBV4 is effective in inhibiting HBV replication in vivo. Because survivin plays a key role in cancer cell escape from apoptosis, we further generated pGenesil-siSurvivin, a survivin-silencing shRNA, and showed its effect of triggering apoptosis of HBV-containing hepatoma cells. To develop targeted shRNA therapy, we have identified that as a specific binder of the asialoglycoprotein receptor (ASGPR), jetPEI-Hepatocyte delivers pGenesil-siHBV4 and pGenesil-siSurvivin specifically to hepatocytes, not other types of cells. Finally, co-transfection of pGenesil-siHBV4 and pGenesil-siSurvivin exerts synergistic effects in inducing hepatoma cell apoptosis, a novel approach to eliminate hepatoma by downregulating survivin via multiple mechanisms. The application of these novel shRNAs with the jetPEI-Hepatocyte targeting strategy demonstrates the proof-of-principle for a promising approach to inhibit HBV replication and eliminate hepatoma cells with high specificity.

  5. Inhibition of hepatitis B virus and induction of hepatoma cell apoptosis by ASGPR-directed delivery of shRNAs.

    Directory of Open Access Journals (Sweden)

    Jingwei Ma

    Full Text Available Hepatitis B virus (HBV infection is a worldwide liver disease and nearly 25% of chronic HBV infections terminate in hepatocellular carcinoma (HCC. Currently, there is no effective therapy to inhibit HBV replication and to eliminate hepatoma cells, making it highly desired to develop novel therapies for these two stages of the HBV-caused detrimental disease. Recently, short hairpin RNA (shRNA has emerged as a potential therapy for virus-infected disease and cancer. Here, we have generated a shRNA, pGenesil-siHBV4, which effectively inhibits HBV replication in the human hepatoma cell line HepG2.2.15. The inhibitory effects of pGenesil-siHBV4 are manifested by the decrease of both the HBV mRNA level and the protein levels of the secreted HBV surface antigen (HBsAg and HBV e antigen (HBeAg, and by the reduction of secreted HBV DNA. Using mouse hydrodynamic tail vein injection, we demonstrate that pGenesil-siHBV4 is effective in inhibiting HBV replication in vivo. Because survivin plays a key role in cancer cell escape from apoptosis, we further generated pGenesil-siSurvivin, a survivin-silencing shRNA, and showed its effect of triggering apoptosis of HBV-containing hepatoma cells. To develop targeted shRNA therapy, we have identified that as a specific binder of the asialoglycoprotein receptor (ASGPR, jetPEI-Hepatocyte delivers pGenesil-siHBV4 and pGenesil-siSurvivin specifically to hepatocytes, not other types of cells. Finally, co-transfection of pGenesil-siHBV4 and pGenesil-siSurvivin exerts synergistic effects in inducing hepatoma cell apoptosis, a novel approach to eliminate hepatoma by downregulating survivin via multiple mechanisms. The application of these novel shRNAs with the jetPEI-Hepatocyte targeting strategy demonstrates the proof-of-principle for a promising approach to inhibit HBV replication and eliminate hepatoma cells with high specificity.

  6. MicroRNA-520b inhibits growth of hepatoma cells by targeting MEKK2 and cyclin D1.

    Directory of Open Access Journals (Sweden)

    Weiying Zhang

    Full Text Available Growing evidence indicates that the deregulation of microRNAs (miRNAs contributes to the tumorigenesis. We previously revealed that microRNA-520b (miR-520b was involved in the complement attack and migration of breast cancer cells. In this report, we show that miR-520b is an important miRNA in the development of hepatocellular carcinoma (HCC. Our data showed that the expression levels of miR-520b were significantly reduced in clinical HCC tissues and hepatoma cell lines. We observed that the introduction of miR-520b dramatically suppressed the growth of hepatoma cells by colony formation assays, 5-ethynyl-2-deoxyuridine (EdU incorporation assays and 3-(4,5- dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. Moreover, ectopic expression of miR-520b was able to inhibit the growth of hepatoma cells in nude mice. Further studies revealed that the mitogen-activated protein kinase kinase kinase 2 (MEKK2 and cyclin D1 were two of direct target genes of miR-520b. Silencing of MEKK2 or cyclin D1 was able to inhibit the growth of hepatoma cells in vitro and in vivo, which is consistent with the effect of miR-520b overexpression on the growth of hepatoma cells. In addition, miR-520b significantly decreased the phosphorylation levels of c-Jun N-terminal kinase (p-JNK, a downstream effector of MEKK2 or retinoblastoma (p-Rb, a downstream effector of cyclin D1. In conclusion, miR-520b is able to inhibit the growth of hepatoma cells by targeting MEKK2 or cyclin D1 in vitro and in vivo. Our findings provide new insights into the role of miR-520b in the development of HCC, and implicate the potential application of miR-520b in cancer therapy.

  7. Using a non-radioisotopic, quantitative TRAP-based me thod detecting telomerase activities in human hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A non-radioisotopic, quantitative TRAP-based telom erase activity assay was established mainly by using SYBR Green-I staining instead of radioisotope. Comparing with conventional radioisotope based method, it was better in reproducibility and accuracy. Using this method, we found telomerase activities were absent in normal human liver cells, while detected in all of four human hepatoma cell lines (BEL-7404, SMMC-7721, QGY-7903 and HCCM) without significant differences.

  8. Focal adhesion kinase (FAK mediates the induction of pro-oncogenic and fibrogenic phenotypes in hepatitis C virus (HCV-infected cells.

    Directory of Open Access Journals (Sweden)

    Anna Alisi

    Full Text Available Hepatitis C Virus (HCV infection is one of the most common etiological factors involved in fibrosis development and its progression to hepatocellular carcinoma (HCC. The pivotal role of hepatic stellate cells (HCSs and extracellular matrix (ECM in fibrogenesis is now certainly accepted, while the network of molecular interactions connecting HCV is emerging as a master regulator of several biological processes including proliferation, inflammation, cytoskeleton and ECM remodeling. In this study, the effects of HCV proteins expression on liver cancer cells, both pro-invasive and pro-fibrogenic phenotypes were explored. As a model of HCV infection, we used permissive Huh7.5.1 hepatoma cells infected with JFH1-derived ccHCV. Conditioned medium from these cells was used to stimulate LX-2 cells, a line of HSCs. We found that the HCV infection of Huh7.5.1 cells decreased adhesion, increased migration and caused the delocalization of alpha-actinin from plasma membrane to cytoplasm and increased expression levels of paxillin. The treatment of LX-2 cells, with conditioned medium from HCV-infected Huh7.5.1 cells, caused an increase in cell proliferation, expression of alpha-smooth muscle actin, hyaluronic acid release and apoptosis rate measured as cleaved poly ADP-ribose polymerase (PARP. These effects were accompanied in Huh7.5.1 cells by an HCV-dependent increasing of FAK activation that physically interacts with phosphorylated paxillin and alpha-actinin, and a rising of tumor necrosis factor alpha production/release. Silencing of FAK by siRNA reverted all effects of HCV infection, both those directed on Huh7.5.1 cells, and those indirect effects on the LX-2 cells. Moreover and interestingly, FAK inhibition enhances apoptosis in HCV-conditioned LX-2 cells. In conclusion, our findings demonstrate that HCV, through FAK activation, may promote cytoskeletal reorganization and a pro-oncogenic phenotype in hepatocyte-like cells, and a fibrogenic phenotype in

  9. Biological effects of extract from newborn porcine liver on hepatocytes, hepatic stellate cells, and hepatoma cell line

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective: Porcine liver extract has been shown to be effective in the clinical treatment of severe hepatitis. The aim of the present study was to study its antifibrotic as well as immune regulatory effect in vitro. Methods: Hepatocytes, hepatic stellate cells (HSCs), hepatoma cell line (HepG2) and human peripheral blood mononuclear cells (PMNCs) were studied with respect to proliferation, extracellular matrix production and apoptotic activities by proliferation assay, radioimmunoassay, gene transfection, reporter gene analysis and flow cytometry, respectively. Results: A strong stimulatory proliferation effect was observed in hepatocytes, and an inhibitory effect was found in HSCs. Hyaluronic acid (HA) production and reporter gene activities driven by various α1(Ⅰ) procollagen gene promoters in HSC-T6 were significantly decreased after treatment with the extract. Fluo-Anexin V binding apoptotic HepG2 cells were more prominent in the presence of 60 μg/ml extract. More CD4+/CD69+ positive T lymphocytes existed in the presence of the extract. Conclusion: Porcine liver extract is effective for antifibrogenesis via hepatocyte regeneration, HSC and hepatoma cell inhibition in vitro. The elevation of active T lymphocytes is helpful for immune surveillance. Fine mapping of the extract is necessary in order to get definite molecules which are essential in all described functions.

  10. Forskolin inhibits the Gs-stimulated adenylate cyclase in rat ascites hepatoma AH66F cells.

    Science.gov (United States)

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Hasegawa, T; Takagi, K; Satake, T

    1989-09-01

    Forskolin increased intracellular cyclic AMP and augmented cyclic AMP formation by prostaglandin E1 (PGE1) in normal rat hepatocytes and ascites hepatoma AH66 cells. However, in AH66F cells which were derived from the AH66 cell line, the diterpene only slightly increased the cyclic AMP level, and dose-dependently inhibited the accumulation caused by PGE1. Forskolin dose-dependently activated adenylate cyclase in these membranes, and the magnitude of activation by forskolin was largest in the following order: hepatocytes, AH66 cells, and AH66F cells. This difference may be based on the number of forskolin-binding sites. The binding affinity of forskolin for each cell membrane was similar. The number and affinity of forskolin-binding sites in these cells were not influenced by 5'-guanylylimidodiphosphate [Gpp(NH)p]. In hepatocytes and AH66 cells, forskolin and other adenylate cyclase activators such as PGE1, GTP, Gpp(NH)p, F-, and Mn2+ synergistically increased the enzyme activity. In AH66F cells, the forskolin-stimulated activity was hardly influenced by the GTP analog, and forskolin diminished the activities induced by the GTP analog in a manner similar to that of diterpene alone. Forskolin (10 microM) also significantly inhibited the activities induced by PGE1, GTP, and F-. The effect of forskolin with Mn2+ was additive in AH66F cells. The data suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide-binding protein and the catalytic unit in the membrane of normal hepatocytes and AH66 cells, but it interferes with the coupling in AH66F cells.

  11. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model

    Institute of Scientific and Technical Information of China (English)

    Ling Qiao; Zhili Xu; Tiejun Zhao; Zhigang Zhao; Mingxia Shi; Robert C Zhao; Lihong Ye; Xiaodong Zhang

    2008-01-01

    Human mesenchymal stem cells (hMSCs) can home to tumor sites and inhibit the growth of tumor cells. Little is known about the underlying molecular mechanisms that link hMSCs to the targeted inhibition of tumor cells. In this study, we investigated the effects of hMSCs on two human hepatoma cell lines (H7402 and HepG2) using an animal transplantation model, a co-culture system and conditioned media from hMSCs. Animal transplantation studies showed that the latent time for tumor formation was prolonged and that the tumor size was smaller when SCID mice were injected with H7402 cells and an equal number of Z3 hMSCs. When co-cultured with Z3 cells, H7402 cell proliferation decreased, apoptosis increased, and the expression of Bcl-2, c-Myc, proliferating cell nuclear antigen (PCNA) and survivin was downregulated. After treatment with conditioned media derived from Z3 hMSC cultures, H4702 cells showed decreased colony-forming ability and decreased proliferation. 1m-munoblot analysis showed that β-catenin, Bcl-2, c-Myc, PCNA and survivin expression was downregulated in H7402 and HepG2 cells. Taken together, our findings demonstrate that hMSCs inhibit the malignant phenotypes of the H7402 and HepG2 human liver cancer cell lines, which include proliferation, colony-forming ability and oncogene expression both in vitro and in vivo. Furthermore, our studies provide evidence that the Wnt signaling pathway may have a role in hMSC-mediated targeting and tumor cell inhibition.

  12. Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells.

    Science.gov (United States)

    Ji, Lili; Shen, Kaikai; Jiang, Ping; Morahan, Grant; Wang, Zhengtao

    2011-08-01

    Andrographolide (ANDRO), isolated from the traditional herbal medicine Andrographis paniculata, is reported to have the potential therapeutic effects for hepatocellular carcinoma (HCC) in our previous reports. Here, we investigated the mechanism of ANDRO-mediated apoptotic cell death, focusing on the involvement of cellular reduced glutathione (GSH) homeostasis and c-Jun NH(2) -Terminal kinase (JNK). Buthionine sulfoximine (BSO), an inhibitor of cellular GSH biosynthesis, significantly augmented ANDRO-induced cytotoxicity in hepatoma Hep3B and HepG2 cells. BSO depleted cellular GSH, and augmented ANDRO-induced apoptosis, inhibition of colony formation and JNK activation in Hep3B cells. All these effects could be reversed by GSH monoethyl ester (GSH.EE), whose deacetylation replenishes cellular GSH. BSO also augmented ANDRO-induced activation of apoptosis signal-regulating kinase 1 (ASK1), mitogen-activated protein kinase kinase-4 (MKK4) and c-Jun, which are all up-stream or down-stream signals of JNK. Further results showed that JNK inhibitor SP600125 and 420116 both reversed ANDRO-induced cytotoxicity, and SP600125 also decreased ANDRO-increased intracellular GSH and GCL activity. Finally, we showed that in nude mice bearing xenografted Hep3B tumors, BSO improved the inhibition of tumor growth by ANDRO. Taken together, our results suggest that there is a crosstalk between JNK activation and cellular GSH homeostasis, and ANDRO targets this to induce cytotoxicity in hepatoma cells.

  13. Effects of cumene hydroperoxide on the Ca(2+)-induced Ca2+ efflux from mitochondria and on the viability of hepatoma cells.

    Science.gov (United States)

    Teplova, V V; Kudin, A P; Evtodienko YuV

    1998-01-01

    Effects of cumene hydroperoxide on the Ca(2+)-induced Ca2+ efflux from mitochondria isolated from rat liver and Zaidelja hepatoma were compared. Cumene hydroperoxide at micromolar concentrations (0.3-10 microM) prevented the closing of the permeability transition pore in the inner mitochondrial membrane and, therefore, potentiated the Ca(2+)-induced Ca2+ efflux. This response was 10-100 times greater in hepatoma mitochondria than in rat liver mitochondria. Micromolar concentrations of cumene hydroperoxide induced the death of the hepatoma cells in vitro.

  14. 沉默Rock2对肝癌细胞增殖及凋亡作用的研究%Study of Rock2 on the Proliferation and Apoptosis of Hepatocellular Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    刘天德; 袁荣发; 王庆诺; 蒋成行; 杨志强; 邵江华

    2012-01-01

    Objective: To investigate the effects of Rock2 on proliferation and apoptosis of hepatocellular carcinoma Huh-7 and HepG2 cell lines. Methods: There were four experimental groups in this study, including untreated group, non-targeting group, PBS group and shRock2 group. Hepatocellular carcinoma Huh-7 and HepG2 cell lines were transfected with shRock2. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot assays were used to detect the expression levels of Rock2 mRNA and protein, respectively. The cell proliferation of Huh-7 and HepG2 was measured by MTT assay. The cell cycle was detected by PI staining method through flow cytometry and the earlier apoptosis was demonstrated by Annexin V apoptosis kit. Results: Results of RT-PCR and Western blot showed that the expression levels of Rock2 mRNA and protein were significantly decreased in shRock2 transfected Huh-7 and HepG2 cells. After the silence of Rock2, the cell proliferation was blocked in the shRock2 cells compared to that of control group (P < 0.01). The cell-cycle arrest was promoted at the G0/G1 phase. But the percentage of cells in S phase and G2/M decreased compared to that of control groups (P < 0.01). The earlier apoptotic rate of shRock2 Huh-7 and HepG2 cells was significantly increased compared with that of control group (P < 0.01). Conclusion: After Rock2 silencing, the proliferation was significantly inhibited and early apoptosis was induced in hepatoma cell lines Huh7 and HepG2 cells, which suggested that Rock2 may be a new target for HCC gene therapy.%目的:探讨沉默Rock2基因对人肝癌细胞Huh-7和HepG2增殖和凋亡作用的影响.方法:实验分为空白对照组、干扰无意义组、转染PBS组及干扰Rock2组.将Rock2干扰质粒shRock2转染到人肝癌细胞Huh-7和HepG2中,通过实时荧光定量PCR检测Rock2 mRNA的表达水平;Western blot检测Rock2蛋白的表达水平;MTT比色法检测沉默Rock2后对Huh-7和HepG2细胞增殖抑制的影响;

  15. [Hepatoma 27 cells and the epithelium of the large intestine in rats contain the identical set of prekeratin proteins].

    Science.gov (United States)

    Troianovskiĭ, S M; Krutovskikh, V A; Bannikov, G A

    1984-08-01

    It has been shown by means of the immunoblot technique in combination with monoclonal antibodies and peptide mapping that hepatocytes, hepatoma 27 cells, and rat colon enterocytes exhibit a common prekeratin protein with a molecular weight of 49 kD (PK49). This protein and vimentin, a protein contained by intermediate filaments of mesenchymal cells, share at least one antigenic determinant. The generally accepted procedure for prekeratin purification leads to a more or less pronounced degradation of PK49. The degree of degradation is dependent on the type of the tissue extracted. High heterogenicity of prekeratin polypeptides described elsewhere might be due partly to such a degradation process. In addition to PK49, hepatoma 27 cells, absorbing, goblet and proliferating cells of the colon demonstrated three more prekeratin proteins: two major (PK55 and PK40) and one minor (PK53). Monoclonal antibodies not reacting with PK49 do not recognize PK55, PK53 and PK40. PK55, PK49 and PK40 of hepatoma 27 are identical to the appropriate proteins of the colonic epithelium as judged by peptide mapping. Thus, the cells of the hepatocyte origin are able to synthesize the same prekeratins as the colonic epithelium.

  16. miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related mortality worldwide. Despite progress in diagnostics and treatment of HCC, its prognosis remains poor because the molecular mechanisms underlying hepatocarcinogenesis are not well understood. In the study, we focused on identifying the role of miRNAs in HCC progression. miRNA microarray was used to analyze the differentially expressed miRNAs, and the results were validated by qPCR. We found that the miR-150-5p expression is down-regulated in HCC tissues compared with pair non-tumor tissues. miR-150-5p expression is also decreased in metastatic cancer tissues compared with pair primary tissues, indicating that miR-150-5p may be involved in HCC metastasis. Functionally, miR-150-5p inhibition significantly promotes hepatoma cell migration and invasion, whereas miR-150-5p overexpression suppresses cancer cell migration and invasion in vitro. The matrix metalloproteinase 14 (MMP14 is identified as a new target gene of miR-150-5p. miR-150-5p markedly inhibits MMP14 expression in hepatoma cells, and miR-150-5p expression is negative correlation with MMP14 expression in vivo. More important, re-expression of MMP14 in hepatoma cells partially reverses the effect of miR-150-5p in inhibiting cell invasion.

  17. Additive effect of zinc oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line.

    Science.gov (United States)

    Yuan, Li; Wang, Yutang; Wang, Jing; Xiao, Haifang; Liu, Xuebo

    2014-03-03

    Metal nanomaterial could effectively decrease tumour resistance to anti-cancer drugs. In this paper, we have explored the synergistic effect and mechanisms of zinc oxide nanoparticles (ZnO Nps) and isoorientin (ISO) on cytotoxicity in human hepatoma (HepG2) cells. The results showed that ZnO Nps could exert dose- and time-dependent cytotoxicity in HepG2 cells, and the combining treatment resulted in a greater cytotoxicity than single treatment. ZnO Nps could synergistically potentiate ISO to induce apoptosis through resulting in mitochondrial dysfunction, inhibiting the phosphorylation of Akt and ERK1/2, and enhancing the phosphorylation of JNK and P38. Additionally, ZnO Nps were uptaked by cells through endocytic pathway and it enhanced the cellular uptake of ISO, while no significant injury was found in normal liver cells after the combined treatment. These results suggest that the combination of metal nanoparticle with anti-cancer drugs may provide a promising alternative for novel cancer treatments.

  18. Inhibition of hepatitis B virus replication by quercetin in human hepatoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Zhikui; Cheng; Ge; Sun; Wei; Guo; Yayun; Huang; Weihua; Sun; Fei; Zhao; Kanghong; Hu

    2015-01-01

    Hepatitis B virus(HBV) infection is one of the most serious and prevalent viral diseases in the world. Although several anti-HBV drugs have been used clinically, their side and adverse effects limit treatment efficacy. Therefore, it is necessary to identify novel potential anti-HBV agents. The flavonol quercetin has shown activity against some retroviruses, but its effect on HBV remains unclear. In the present study, quercetin was incubated with Hep G2.2.15 cells, as well as Hu H-7 cells transfected with an HBV plasmid. Quercetin was shown to significantly reduce Hepatitis B surface antigen(HBs Ag) and Hepatitis B e antigen(HBe Ag), secretion and HBV genomic DNA levels in both cell lines. In addition, co-incubation with lamivudine(3TC), entecavir(ETV), or adefovir(Ade) further enhanced the quercetin-induced inhibition of HBV replication. This inhibition was partially associated with decreased heat shock proteins and HBV transcription levels. The results indicate that quercetin inhibited HBV antigen secretion and genome replication in human hepatoma cell lines, which suggests that quercetin may be a potentially effective anti-HBV agent.

  19. Effect of isoorientin on intracellular antioxidant defence mechanisms in hepatoma and liver cell lines.

    Science.gov (United States)

    Yuan, Li; Wang, Jing; Wu, Wanqiang; Liu, Qian; Liu, Xuebo

    2016-07-01

    Isoorientin (ISO) is considered one of the most important flavonoid-like compounds responsible for health benefits, including the prevention of liver damage as well as antioxidant, anti-inflammatory, and anti-nociceptive activities. Our previous study showed that ISO inhibited the proliferation of hepatoma cells through increasing intracellular ROS levels. Interestingly, ISO protects rat liver cells against hydrogen peroxide-induced oxidation stress by decreasing intracellular ROS levels. Why are there different effects of ISO on ROS in different physiological and pathophysiological circumstances? The present study investigated the effect of ISO on mitochondrial respiratory chain complexes and phase II detoxifying enzyme activities in human hepatoblastoma cancer cells (HepG2), buffalo rat liver cells (BRL-3A) and human liver cancer cells (HL-7702). The results showed that intracellular ROS levels and the protein expression of the respiratory chain complexes was significantly (p<0.01) higher in the HepG2 cells than in the BRL-3A and HL-7702 cells. Additionally, ISO notably (p<0.01) increased ROS levels in the HepG2 cells, while no significance was found in the BRL-3A and HL-7702 cells. Furthermore, in the HepG2 cells, the protein expression of the respiratory chain complexes and the phase II detoxifying enzyme activities and GSH content were decreased by ISO (p<0.01), while ISO, in a certain range, enhanced the expression of the protein complexes and the phase II detoxifying enzyme activities and GSH content in BRL-3A and HL-7702 cells. All of these results demonstrated, for the first time, that ISO possesses a notable hepatoprotective effect, which might be mediated through the respiratory chain complexes and phase II detoxifying enzyme activities.

  20. Octreotide induces caspase activation and apoptosis inhuman hepatoma HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Nikos J Tsagarakis; Ioannis Drygiannakis; Antonis G Batistakis; George Kolios; Elias A Kouroumalis

    2011-01-01

    AIM: To investigate the role of octreotide on cellular proliferation and apoptosis of human hepatoma (HepG2) cells.METHODS: We studied cellular proliferation, apoptosis and the possible internal caspase-mediated apoptosis pathway involved, after treatment of HepG2 carcinomacells with octreotide in comparison with the apoptosis caused by tumor necrosis factor-α (TNF-α). Activities of caspase-3, caspase-9, caspase-8 and caspase-2 were studied, while apoptosis was investigated through detection of DNA fragmentation and through identification of apoptotic cells with the annexin-V/propidium iodide flow cytometric method.RESULTS: After an initial increase in HepG2 cellular proliferation, a significant inhibition was observed with 10-8 mol/L octreotide, while TNF-α dose-dependentlydecreased proliferation. Early and late apoptosis was significantly increased with both substances. Octreotide significantly increased caspase-3, caspase-8 andcaspase-2 activity. TNF-α significantly increased only caspase-2. Cellular proliferation was decreased after treatment with octreotide or TNF-α alone but, in contrast to TNF-α, octreotide decreased proliferation onlyat concentrations of 10-8 mol/L, while lower concentrations increased proliferation.CONCLUSION: Our findings are suggestive of caspasemediated signaling pathways of octreotide antitumor activity in HepG2 cells, and indicate that measurementsof serum octreotide levels may be important, at least in clinical trials, to verify optimal therapeutic drug concentrations.

  1. Preparative chromatography of flavonoids and saponins in Gynostemma pentaphyllum and their antiproliferation effect on hepatoma cell.

    Science.gov (United States)

    Tsai, Y C; Lin, C L; Chen, B H

    2010-12-15

    A preparative column chromatographic method was developed to isolate flavonoids and saponins from Gynostemma pentaphyllum, a Chinese Medicinal herb, and evaluate their antiproliferation effect on hepatoma cell Hep3B, with the standards rutin and ginsenoside Rb(3) being used for comparison. Initially the powdered G. pentaphyllum was extracted with ethanol, followed by eluting flavonoids and saponins with ethanol-water (30:70, v/v) and 100% ethanol, respectively, in an open-column containing 5 g of Cosmosil 75C(18)-OPN, and then subjected to HPLC-MS analysis. The flavonoid fraction was mainly composed of quercetin- and kaempferol-glycosides, while in saponin fraction, both ginsenoside Rb(3) and ginsenoside Rd dominated. Both fractions were more effective against Hep3B cells than the standards rutin and ginsenoside Rb(3), with the cell cycle being arrested at G0/G1 phase for all the treatments. Additionally, the inhibition effect followed a dose-dependent increase for all the sample treatments. The result of this study may be used as a basis for possible phytopreparations in the future with G. pentaphyllum as raw material. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. The impact of beta-elemene on beta-tubulin of human hepatoma hepg2 cells

    Institute of Scientific and Technical Information of China (English)

    Yuqiu Mao; Liying Ban; Jielin Zhang; Li Hou; Xiaonan Cui

    2014-01-01

    Objective:The aim of this study was to investigate the impact of beta-elemene injection on the growth and beta-tubulin of human hepatocarcinoma HepG2 cells. Methods:cellproliferation was assessed by MTT assay. cellcycle distribution was detected by flow cytometry (FCM). The mRNA expression of beta-tubulin was measured by RT-PCR. West-ern blot analysis was used to determine protein expression of beta-tubulin and the polymerization of beta-tubulin. Results:Beta-elemene injection inhibited HepG2 cells proliferation in a dose-and time-dependent manner;FCM analysis indicated beta-elemene injection induced cellcycle arrested at S phase. RT-PCR and western-blot analysis showed that beta-elemene injection down-regulated beta-tubulin expression at both mRNA and protein levels, presenting a dose-dependent manner. Moreover, beta-elemene injection reduced the polymerization of microtubules in a dose-dependent manner. Conclusion:Beta-elemene injection can inhibit the proliferation of hepatoma HepG2 cells, the mechanism might be partly related to the down-regulation of beta-tubulin and inhibition of microtubular polymerization.

  3. Reconstitution of bile acid transport in the rat hepatoma McArdle RH-7777 cell line.

    Science.gov (United States)

    Torchia, E C; Shapiro, R J; Agellon, L B

    1996-07-01

    The liver recovers bile acids from the portal circulation primarily via an active process that is dependent on sodium ions. Hepatocytes lose the ability to transport bile acids in culture, and, in liver-derived permanent cell lines, this ability is severely reduced or absent. To study the importance of bile acids in regulating liver-specific functions (e.g., cellular bile acid and cholesterol metabolism), we have re-established active bile acid transport in cultured cells. The complementary DNA (cDNA) encoding the rat sodium/taurocholate cotransporting polypeptide (ntcp) was placed under the control of a cytomegalovirus promoter and transfected into the rat hepatoma cell line, McArdle RH-7777. Transfected cells were screened for the ability to take up [3H]-taurocholate. Clones that displayed the ability to take up taurocholate were expanded (designated McNtcp) and further characterized. The apparent Michaelis constant (Km) for taurocholate uptake was similar among the different clones. The observed maximum velocity (Vmax), however, differed and was positively correlated with the abundance of recombinant ntcp messenger RNA (mRNA). The highest level of taurocholate uptake activity observed in McNtcp cells was comparable with that of freshly isolated hepatocytes. Efflux of accumulated taurocholate from McNtcp cells proceeded in a manner similar to primary hepatocytes, indicating that McArdle RH-7777 cells have retained the ability to secrete bile acids. Moreover, taurocholate uptake in McNtcp cells was inhibited by other bile acid species. Based on the observed kinetic parameters, the reconstituted McArdle RH-7777 cells mimic the ability of primary hepatocytes to transport bile acids.

  4. Stimulatory and inhibitory effects of forskolin on adenylate cyclase in rat normal hepatocytes and hepatoma cells.

    Science.gov (United States)

    Miyamoto, K; Sanae, F; Koshiura, R; Matsunaga, T; Takagi, K; Satake, T; Hasegawa, T

    1989-02-01

    Forskolin synergistically potentiated adenosine 3',5'-cyclic monophosphate formation by prostaglandin E1 (PGE1) in rat normal hepatocytes freshly prepared by collagenase digestion and rat ascites hepatoma AH66 cells, but dose-dependently inhibited the accumulation by PGE1 in AH66F cells. Forskolin activated adenylate cyclase in a dose-dependent manner in homogenates of all cell lines. In normal hepatocytes and AH66 cells, simultaneous addition of forskolin and other adenylate cyclase activators [isoproterenol (IPN), PGE1, guanosine 5'-triphosphate sodium salt (GTP), 5'-guanylylimidodiphosphate sodium salt (Gpp (NH)p), NaF, cholera toxin, islet activating protein and MnCl2] gave greater than additive responses. On the other hand, in AH66F cells, the effect of forskolin on adenylate cyclase was hardly influenced by GTP, but forskolin diminished the activities induced by high concentrations of GTP to that by the diterpene alone. Forskolin also significantly inhibited the PGE1-stimulated and the guanine nucleotide binding regulatory protein-stimulated activities. Because AH66F cells were insensitive to IPN, the combination with forskolin and IPN gave similar activity to that obtained with the diterpene alone. The effect of forskolin on the activation by manganese ion was neither synergistic nor inhibitory but was additive in AH66F cells. These results suggest that forskolin promotes the interaction between the stimulatory guanine nucleotide binding regulatory protein and the catalytic unit in normal hepatocytes and AH66 cells, but in AH66F cells forskolin interferes with the coupling of the two components of adenylate cyclase.

  5. Retroendocytosis of high density lipoproteins by the human hepatoma cell line, HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Kambouris, A.M.; Roach, P.D.; Calvert, G.D.; Nestel, P.J. (CSIRO, Division of Human Nutrition, Adelaide (Australia))

    1990-07-01

    When human HepG2 hepatoma cells were pulsed with 125I-labeled high density lipoproteins (HDL) and chased in fresh medium, up to 65% of the radioactivity released was precipitable with trichloroacetic acid. Cell-internalized 125I-HDL contributed to the release of acid-precipitable material; when cells were treated with trypsin before the chase to remove 125I-HDL bound to the outer cell membrane, 50% of the released material was still acid-precipitable. Characterization of the radioactive material resecreted by trypsinized cells revealed the presence of particles that were similar in size and density to mature HDL and contained intact apolipoproteins (apo) A-I and A-II. The release of internalized label occurred at 37 degrees C but not at 4 degrees C. Monensin, which inhibits endosomal recycling of receptors, decreased the binding of 125I-HDL to cells by 75%, inhibited the release of internalized radioactivity as acid-precipitable material by 80%, and increased the release of acid-soluble material by 90%. In contrast, the lysosomal inhibitor chloroquine increased the association of 125I-HDL to cells by 25%, inhibited the release of precipitable material by 10%, and inhibited the release of acid-soluble radioactivity by 80%. Pre-incubation with cholesterol caused a 50% increase in the specific binding, internalization, and resecretion of HDL label. Cholesterol affected the release of acid-precipitable label much more (+90%) than that of acid-soluble material (+20%). Taken together, these findings suggest that HepG2 cells can bind, internalize, and resecrete HDL by a retroendocytotic process. Furthermore, the results with cholesterol and monensin indicate that a regulated, recycling, receptor-like molecule is involved in the binding and intracellular routing of HDL.

  6. Reduction of tumorigenicity of SMMC-7721 hepatoma cells by vascular endothelial growth factor antisense gene therapy

    Institute of Scientific and Technical Information of China (English)

    Yu Cheng Tang; Yu Li; Guan Xiang Qian

    2001-01-01

    AIM To test the hypothesis to block VEGFexpression of SMMC-7721 hepatoma cells mayinhibit tumor growth using the rat hepatomamodel.METHODS Amplifiy the 200 VEGF cDNAfragment and insert it into human U6 genecassette in the reverse orientation transcribingsmall antisense RNA which could specificallyinteract with VEGF165, and VEGF121 mRNA.Construct the retroviral vector containing thisantisense VEGF U6 cassette and package thereplication-deficient recombinant retrovirus.SMMC-7721 cells were transduced with thesevirus and positive clones were selected withG418. PCR and Southern blot analysis wereperformed to determine if U6 cassette integratedinto the genomic DNA of positive clone.Transfected tumor cells were evaluated for RNAexpression by ribonuclease protection assays.The VEGF protein in the supernatant of parentaltumor cells and genetically modified tumor cellswas determined with ELISA. In vitro and in vivogrowth properties of antisense VEGF cell clonein nude mice were analyzed.RESULTS Restriction enzyme digestion andPCR sequencing verified that the antisense VEGFRNA retroviral vector was successfullyconstructed. After G418 selection, resistantSMMC-7721 cell clone was picked up. PCR andSouthern blot analysis suggested that U6cassette was integrated into the cell genomicDNA. Stable SMMC-7721 cell clone transducedwith U6 antisense RNA cassette could express200bp small antisense VEGF RNA and secretereduced levels of VEGF in culture condition.Production of VEGF by antisense transgeneexpressing cells was 65 ± 10 ng / L per 106 cells,420 ± 45 ng/L per 106 cells in sense group and 485± 30 ng/L per 106 cells in the negative control group, (P<0.05). The antisense-VEGF cell clone appeared phenotypically indistinguishable from SMMC-7721 cells and SMMC-7721 cells transfected sense VEGF. The growth rate of the antisense-VEGF cell clone was the same as the control cells. When S. C. was implanted into nude mice, growth of antisense-VEGF cell lines was greatly inhibited

  7. Metabolic Flux Distribution during Defatting of Steatotic Human Hepatoma (HepG2) Cells.

    Science.gov (United States)

    Yarmush, Gabriel; Santos, Lucas; Yarmush, Joshua; Koundinyan, Srivathsan; Saleem, Mubasher; Nativ, Nir I; Schloss, Rene S; Yarmush, Martin L; Maguire, Timothy J; Berthiaume, Francois

    2016-01-04

    Methods that rapidly decrease fat in steatotic hepatocytes may be helpful to recover severely fatty livers for transplantation. Defatting kinetics are highly dependent upon the extracellular medium composition; however, the pathways involved are poorly understood. Steatosis was induced in human hepatoma cells (HepG2) by exposure to high levels of free fatty acids, followed by defatting using plain medium containing no fatty acids, or medium supplemented with a cocktail of defatting agents previously described before. We measured the levels of 28 extracellular metabolites and intracellular triglyceride, and fed the data into a steady-state mass balance model to estimate strictly intracellular fluxes. We found that during defatting, triglyceride content decreased, while beta-oxidation, the tricarboxylic acid cycle, and the urea cycle increased. These fluxes were augmented by defatting agents, and even more so by hyperoxic conditions. In all defatting conditions, the rate of extracellular glucose uptake/release was very small compared to the internal supply from glycogenolysis, and glycolysis remained highly active. Thus, in steatotic HepG2 cells, glycolysis and fatty acid oxidation may co-exist. Together, these pathways generate reducing equivalents that are supplied to mitochondrial oxidative phosphorylation.

  8. Metabolic Flux Distribution during Defatting of Steatotic Human Hepatoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Gabriel Yarmush

    2016-01-01

    Full Text Available Methods that rapidly decrease fat in steatotic hepatocytes may be helpful to recover severely fatty livers for transplantation. Defatting kinetics are highly dependent upon the extracellular medium composition; however, the pathways involved are poorly understood. Steatosis was induced in human hepatoma cells (HepG2 by exposure to high levels of free fatty acids, followed by defatting using plain medium containing no fatty acids, or medium supplemented with a cocktail of defatting agents previously described before. We measured the levels of 28 extracellular metabolites and intracellular triglyceride, and fed the data into a steady-state mass balance model to estimate strictly intracellular fluxes. We found that during defatting, triglyceride content decreased, while beta-oxidation, the tricarboxylic acid cycle, and the urea cycle increased. These fluxes were augmented by defatting agents, and even more so by hyperoxic conditions. In all defatting conditions, the rate of extracellular glucose uptake/release was very small compared to the internal supply from glycogenolysis, and glycolysis remained highly active. Thus, in steatotic HepG2 cells, glycolysis and fatty acid oxidation may co-exist. Together, these pathways generate reducing equivalents that are supplied to mitochondrial oxidative phosphorylation.

  9. [In vitro targeting effect of lactoferrin modified PEGylated liposomes for hepatoma cells].

    Science.gov (United States)

    Wei, Min-yan; Zou, Qi; Wu, Chuan-bin; Xu, Yue-hong

    2015-10-01

    A lactoferrin-containing PEGylated liposome system (Lf-PLS) was developed and tested in vitro as a hepatoma-targeting drug delivery system. PEGylated liposomes (PLS) were successfully prepared using the thin film hydration method with peglipid post insertion. Lf was covalently conjugated onto the carboxyl terminal of DSPE-PEG2000-COOH on liposomes. Coumarin-6 was used to trace Lf-PLS with fluorescence. The cellular uptake of this system was carried out in asialoglycoprotein receptor (ASGPR) positive HepG2 cells via confocal microscopy and flow cytometry. The Lf-PLS liposome was observed as spherical or oval vesicles with the particle size around 130 nm, zeta potential about -30 mV and encapsulation efficiency more than 80%. The confocal microscopy images and flow cytometry data demonstrated that Lf-PLS resulted in significantly higher cell association by ASGPR positive HepG2 cells compared to PLS. The association between Lf-PLS and cells were dependent on the concentration, time and temperature, which was inhibited by pre-incubation with excessive free Lf. The results suggest that Lf-PLS has a good targeting effect on HepG2 cells in vitro. The targeting mechanism may be related to the specific binding of Lf and ASGPR on HepG2 cells, which guides Lf-PLS to the cell surface to induce an active endocytosis process. All these results demonstrated that Lf-PLS might be a potential drug delivery system in targeting hepatocellular carcinoma, which deserves more research on its targeting ability, antitumor efficiency, and metabolism in vivo for treatment of hepatomacellular carcinoma.

  10. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hsiang-Cheng; Liao, Chen-Hsin [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Huang, Ya-Hui [Medical Research Central, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Chen, Wei-Jan [First Cardiovascular Division, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Lin, Kwang-Huei, E-mail: khlin@mail.cgu.edu.tw [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China)

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  11. Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B.

    Science.gov (United States)

    Baker, R D; Baker, S S; LaRosa, K; Whitney, C; Newburger, P E

    1993-07-01

    Glutathione peroxidase is an important enzyme in cellular antioxidant defense systems, detoxifying peroxides and hydroperoxides. As a component of the glutathione cycle, it protects the liver from reactive oxygen metabolites. Selenocysteine is present at the catalytic site of glutathione peroxidase, and selenium availability regulates glutathione peroxidase enzyme activity. Hep3B cells, a well-differentiated human hepatoma-derived cell line, exhibited time-dependent decrease in glutathione peroxidase activity (nmol NADPH oxidized/min/mg protein, mean +/- SE) when incubated in selenium-free medium for 10 days (Day 0, 21.8 +/- 7.3; Day 2, 10.9 +/- 1.2; Day 4, 7.9 +/- 0.8; Day 6, 4.0 +/- 0.7; Day 8, 4.5 +/- 0.6; Day 10, 1.6 +/- 0.4). With the reintroduction of selenium, glutathione peroxidase activity returned. A second human hepatoma cell line, HepG2, demonstrated a similar pattern when depleted of and then repleted with selenium. To assess protein synthesis, glutathione peroxidase activity was measured in deficient and replete Hep3B cells incubated with and without selenium and with and without cycloheximide. Deficient cells (mean +/- SE) (4.9 +/- 0.2) showed an increase in glutathione peroxidase activity after 24 h in selenium-containing medium (11.6 +/- 0.2), but not when cycloheximide was included in the medium (6.9 +/- 0.5) or when cycloheximide and no selenium was included (5.3 +/- 0.8). Replete Hep3B cells (40.1 +/- 1.1) demonstrated decreased glutathione peroxidase after 24 h in medium without selenium (34.0 +/- 1.4), medium with both cycloheximide and selenium (34.0 +/- 2.6), and medium without selenium and containing cycloheximide (37.6 +/- 1.3). These data suggest that protein synthesis is needed for selenium repletion to exert control on glutathione peroxidase activity. Using a cDNA for human glutathione peroxidase (GPx1), selenium-deficient and replete Hep3B cell RNA was analyzed by Northern blot. mRNA for GPx was quantified by densitometry. The steady

  12. A possible receptor for β2 glycoprotein Ⅰ on the membrane of hepatoma cell line smmc7721

    Institute of Scientific and Technical Information of China (English)

    高普均; 朴云峰; 王小丛; 曲立科; 时阳; 杨翰仪

    2003-01-01

    Objectives To study the interaction of beta-2-glycoprotein Ⅰ (β2GP Ⅰ) with the membrane of hepatocytes and determine whether β2GP Ⅰ participates in HBV infection.Methods Ligand blotting, fluorescence microscopy, and fluorescence activated cell sorter (FACS) analysis were used to detect the specific interaction of β2GP Ⅰ with the hepatoma cell line smmc7721, the gastric carcinoma cell line SGC7901, and the lymphoma cell line HL-60.Results A specific 40 kDa β2GP Ⅰ band was observed by ligand blotting in the case of smmc7721 cells. No such band was observed in SGC7901 or HL-60 cells. Fluorescence microscopy also revealed specific binding of FITC-β2GP Ⅰ to smmc7721 cells, but neither to SGC7901 nor HL-60 cells. FACS analysis demonstrated that the binding rate of FITC-β2GP Ⅰ to smmc7721 cells was significantly higher than these in SGC7901 and HL-60 cells (P<0.01). The binding rate to smmc7721 cells did not increase with increasing amounts of FITC-β2GP Ⅰ.Conclusions There is a specific β2GP Ⅰ-binding protein on the membrane of hepatoma cells in cell line smmc7721 which as the β2GP Ⅰ receptor may participate in HBV infection of hepatocytes.

  13. Adhesion of different cell cycle human hepatoma cells to endothelial cells and roles of integrin β1

    Institute of Scientific and Technical Information of China (English)

    Guan-Bin Song; Jian Qin; Qing Luo; Xiao-Dong Shen; Run-Bin Yan; Shao-Xi Cai

    2005-01-01

    AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721)to human umbilical vein endothelial cells (ECV-304),expression of adhesive molecule integrinβ1 in SMMC-7721cells and its contribution to this adhesive course.METHODS: Adhesive force of SMMC-7721 cells to endothelialcells was measured using micropipette aspiration technique.Synchronous G1 and S phase SMMC-7721 cells wereachieved by thymine-2-deoxyriboside and colchicinessequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronousrates of SMMC-7721 cells and expression of integrinβ1 inSMMC-7721 cells were detected by flow cytometer.RESULTS: The percentage of cell cycle phases of generalSMMC-7721 cells was 11.01% in G2/M phases, 53.51% inG0/G1 phase, and 35.48% in S phase. The synchronous ratesof G1 and S phase SMMC-7721 cells amounted to 74.09%and 98.29%, respectively. The adhesive force of SMMC-7721cells to endothelial cells changed with the variations ofadhesive time and presented behavior characteristics ofadhesion and de-adhesion. S phase SMMC-7721 cells had higheradhesive forces than G1 phase cells [(307.65±92.10)× 10-10Nvs (195.42±60.72)×10-10N, P<0.01]. The expressivefluorescent intensity of integrinβ1 in G1 phase SMMC-7721cells was depressed more significantly than the values ofS phase and general SMMC-7721cells. The contribution ofadhesive integrinβ1 was about 53% in this adhesive course.CONCLUSION: SMMC-7721 cells can be synchronizedpreferably in G1 and S phases with thymine-2-deoxyribosideand colchicines. The adhesive molecule integrinβ1 expressesa high level in SMMC-7721 cells and shows differences invarious cell cycles, suggesting integrin β1 plays an importantrole in adhesion to endothelial cells. The change of adhesiveforces in different cell cycle SMMC-7721 cells indicatesthat S phase cells play predominant roles possibly whilethey interact with endothelial cells.

  14. CD147 stimulates hepatoma cells escaping from immune surveillance of T cells by interaction with Cyclophilin A.

    Science.gov (United States)

    Ren, Yi-Xin; Wang, Shu-Jing; Fan, Jian-Hui; Sun, Shi-Jie; Li, Xia; Padhiar, Arshad Ahmed; Zhang, Jia-Ning

    2016-05-01

    T cells play an important role in tumor immune surveillance. CD147 is a member of immunoglobulin superfamily present on the surface of many tumor cells and mediates malignant cell behaviors. Cyclophilin A (CypA) is an intracellular protein promoting inflammation when released from cells. CypA is a natural ligand for CD147. In this study, CD147 specific short hairpin RNAs (shRNA) were transfected into murine hepatocellular carcinoma Hepa1-6 cells to assess the effects of CD147 on hepatoma cells escaping from immune surveillance of T cells. We found extracellular CypA stimulated cell proliferation through CD147 by activating ERK1/2 signaling pathway. Downregulation of CD147 expression on Hepa1-6 cells significantly suppressed tumor progression in vivo, and decreased cell viability when co-cultured with T cells in vitro. Importantly, knockdown of CD147 on Hepa1-6 cells resulted in significantly increased T cells chemotaxis induced by CypA both in vivo and in vitro. These findings provide novel mechanisms how tumor cells escaping from immune surveillance of T cells. We provide a potential therapy for hepatocellular carcinoma by targeting CD147 or CD147-CypA interactions.

  15. Hepatitis B virus PreS1 facilitates hepatocellular carcinoma development by promoting appearance and self-renewal of liver cancer stem cells.

    Science.gov (United States)

    Liu, Zhixin; Dai, Xuechen; Wang, Tianci; Zhang, Chengcheng; Zhang, Wenjun; Zhang, Wei; Zhang, Qi; Wu, Kailang; Liu, Fang; Liu, Yingle; Wu, Jianguo

    2017-08-01

    Hepatitis B virus (HBV) is a major etiologic agent of hepatocellular carcinoma (HCC). However, the molecular mechanism by which HBV infection contributes to HCC development is not fully understood. Here, we initially showed that HBV stimulates the production of cancer stem cells (CSCs)-related markers (CD133, CD117 and CD90) and CSCs-related genes (Klf4, Sox2, Nanog, c-Myc and Oct4) and facilitates the self-renewal of CSCs in human hepatoma cells. Cellular and clinical studies revealed that HBV facilitates hepatoma cell growth and migration, enhances white blood cell (WBC) production in the sera of patients, stimulates CD133 and CD117 expression in HCC tissues, and promotes the CSCs generation of human hepatoma cells and clinical cancer tissues. Detailed studies revealed that PreS1 protein of HBV is required for HBV-mediated CSCs generation. PreS1 activates CD133, CD117 and CD90 expression in normal hepatocyte derived cell line (L02) and human hepatoma cell line (HepG2 and Huh-7); facilitates L02 cells migration, growth and sphere formation; and finally enhances the abilities of L02 cells and HepG2 cells to induce tumorigeneses in nude mice. Thus, PreS1 acts as a new oncoprotein to play a key role in the appearance and self-renewal of CSCs during HCC development. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Establishment of a Novel Permissive Cell Line for the Propagation of Hepatitis C Virus by Expression of MicroRNA miR122

    Science.gov (United States)

    Kambara, Hiroto; Fukuhara, Takasuke; Shiokawa, Mai; Ono, Chikako; Ohara, Yuri; Kamitani, Wataru

    2012-01-01

    The robust cell culture systems for hepatitis C virus (HCV) are limited to those using cell culture-adapted clones (HCV in cell culture [HCVcc]) and cells derived from the human hepatoma cell line Huh7. However, accumulating data suggest that host factors, including innate immunity and gene polymorphisms, contribute to the variation in host response to HCV infection. Therefore, the existing in vitro systems for HCV propagation are not sufficient to elucidate the life cycle of HCV. A liver-specific microRNA, miR122, has been shown to participate in the efficient replication of HCV. In this study, we examined the possibility of establishing a new permissive cell line for HCV propagation by the expression of miR122. A high level of miR122 was expressed by a lentiviral vector placed into human liver cell lines at a level comparable to the endogenous level in Huh7 cells. Among the cell lines that we examined, Hep3B cells stably expressing miR122 (Hep3B/miR122) exhibited a significant enhancement of HCVcc propagation. Surprisingly, the levels of production of infectious particles in Hep3B/miR122 cells upon infection with HCVcc were comparable to those in Huh7 cells. Furthermore, a line of “cured” cells, established by elimination of HCV RNA from the Hep3B/miR122 replicon cells, exhibited an enhanced expression of miR122 and a continuous increase of infectious titers of HCVcc in every passage. The establishment of the new permissive cell line for HCVcc will have significant implications not only for basic HCV research but also for the development of new therapeutics. PMID:22114337

  17. Thyromimetic actions of tetrabromobisphenol A (TBBPA) in steatotic FaO rat hepatoma cells.

    Science.gov (United States)

    Grasselli, E; Cortese, K; Fabbri, R; Smerilli, A; Vergani, L; Voci, A; Gallo, G; Canesi, L

    2014-10-01

    Tetrabromobisphenol A (2,2-bis(3,5-dibromo-4-hydroxyphenyl propane-TBBPA) is the most produced brominated flame retardant, detected in the environment and in biological samples. TBBPA shares structural similarities with thyroid hormones (THs), and it has been shown to interfere with different aspects of TH physiology, this raising concern on its possible effects as an endocrine disruptor in humans and wildlife. THs play a major role in lipid metabolism, with the liver representing one of their main target tissues. At the cellular level, THs act through interactions with TH receptors (TRs), as well as through TR-independent mechanisms. Rat hepatoma FaO cells (a liver cell line defective for functional TRs) overloaded with lipids have been utilized as a model to investigate the anti-steatotic effects of THs in the hepatocyte. In this work, the possible effects of TBBPA in steatotic FaO cells were investigated. Exposure to TBBPA for 24 h reduced triglyceride (TAG) content and the size of lipid droplets (LDs); similar effects were obtained with equimolar doses (10(-6) M) of T3 (3,3',5-L-triiodothyronine). TBBPA and T3 showed common effects on transcription of genes involved in lipid homeostasis. In particular, TBBPA mainly up-regulated mRNA levels for LD-associated oxidative tissue-enriched PAT protein (OXPAT), peroxisome proliferator-activated receptor (PPAR) isoform β/δ, and the mitochondrial uncoupling protein 2 (UCP2). The results demonstrate that TBBPA can decrease lipid accumulation in steatotic cells through stimulation of oxidative pathways. These data identify novel thyromimetic actions of TBBPA at the cellular level.

  18. Observation of DNA damage of human hepatoma cells irradiated by heavy ions using comet assay

    Institute of Scientific and Technical Information of China (English)

    Li-Mei Qiu; Wen-Jian Li; Xin-Yue Pang; Qing-Xiang Gao; Yan Feng; Li-Bin Zhou; Gao-Hua Zhang

    2003-01-01

    AIM: Now many countries have developed cancer therapy with heavy ions, especially in GSI (Gesellschaft fur Schwerionenforschung mbH, Darmstadt, Germany),remarkable results have obtained, but due to the complexity of particle track structure, the basic theory still needs further researching. In this paper, the genotoxic effects of heavy ions irradiation on SMMC-7721 cells were measured using the single cell gel electrophoresis (comet assay). The information about the DNA damage made by other radiations such as X-ray, γ-ray, UV and fast neutron irradiation is very plentiful, while little work have been done on the heavy ions so far. Hereby we tried to detect the reaction of liver cancer cells to heavy ion using comet assay, meanwhile to establish a database for clinic therapy of cancer with the heavy ions.METHODS: The human hepatoma cells were chosen as the test cell line irradiated by 80Mev/u 20Ne10+ on HIRFL (China), the radiation-doses were 0, 0.5, 1, 2, 4 and 8 Gy,and then comet assay was used immediately to detect the DNA damages, 100-150 cells per dose-sample (30-50 cells were randomly observed at constant depth of the gel). The tail length and the quantity of the cells with the tail were put down. EXCEL was used for statistical analysis.RESULTS: We obtained clear images by comet assay and found that SMMC-7721 cells were all damaged apparently from the dose 0.5Gy to 8Gy (t-test: P<0.001, vs control).The tail length and tail moment increased as the doses increased, and the number of cells with tails increased with increasing doses. When doses were higher than 2Gy, nearly 100 % cells were damaged. Furthermore, both tail length and tail moment, showed linear equation.CONCLUSION: From the clear comet assay images, our experiment proves comet assay can be used to measure DNA damages by heavy ions. Meanwhile DNA damages have a positive correlation with the dose changes of heavy ions and SMMC-7721 cells have a great radiosensitivity to 20Ne10+.Different reactions

  19. Autophagy inhibition contributes to the synergistic interaction between EGCG and doxorubicin to kill the hepatoma Hep3B cells.

    Directory of Open Access Journals (Sweden)

    Li Chen

    Full Text Available (--Epigallocatechin-3-O-gallate(EGCG, the highest catechins from green tea, has promisingly been found to sensitize the efficacy of several chemotherapy agents like doxorubicin (DOX in hepatocellular carcinoma (HCC treatment. However, the detailed mechanisms by which EGCG augments the chemotherapeutic efficacy remain unclear. Herein, this study was designed to determine the synergistic impacts of EGCG and DOX on hepatoma cells and particularly to reveal whether the autophagic flux is involved in this combination strategy for the HCC. Electron microscopy and fluorescent microscopy confirmed that DOX significantly increased autophagic vesicles in hepatoma Hep3B cells. Western blot and trypan blue assay showed that the increasing autophagy flux by DOX impaired about 45% of DOX-induced cell death in these cells. Conversely, both qRT-PCR and western blotting showed that EGCG played dose-dependently inhibitory role in autophagy signaling, and that markedly promoted cellular growth inhibition. Amazingly, the combined treatment caused a synergistic effect with 40 to 60% increment on cell death and about 45% augmentation on apoptosis versus monotherapy pattern. The DOX-induced autophagy was abolished by this combination therapy. Rapamycin, an autophagic agonist, substantially impaired the anticancer effect of either DOX or combination with EGCG treatment. On the other hand, using small interference RNA targeting chloroquine autophagy-related gene Atg5 and beclin1 to inhibit autophagy signal, hepatoma cell death was dramatically enhanced. Furthermore, in the established subcutaneous Hep3B cells xenograft tumor model, about 25% reduction in tumor growth as well as 50% increment of apoptotic cells were found in combination therapy compared with DOX alone. In addition, immunohistochemistry analysis indicated that the suppressed tendency of autophagic hallmark microtubule-associated protein light chain 3 (LC3 expressions was consistent with thus combined

  20. Antisense oligonucleotide targeting at the initiator of hTERT arrests growth of hepatoma cells

    Science.gov (United States)

    Liu, Su-Xia; Sun, Wen-Sheng; Cao, Ying-Lin; Ma, Chun-Hong; Han, Li-Hui; Zhang, Li-Ning; Wang, Zhen-Guang; Zhu, Fa-Liang

    2004-01-01

    AIM: To evaluate the inhibitory effect of antisense phosphorothioate oligonucleotide (asON) complementary to the initiator of human telomerase catalytic subunit (hTERT) on the growth of hepatoma cells. METHODS: The as-hTERT was synthesized by using a DNA synthesizer. HepG2.2.15 cells were treated with as-hTERT at the concentration of 10 μmol/L. After 72 h, these cells were obtained for detecting growth inhibition, telomerase activity using the methods of MTT, TRAP-PCR-ELISA, respectively. BALB/c(nu/nu) mice were injected HepG2.2.15 cells and a human-nude mice model was obtained. There were three groups for anti-tumor activity study. Once tumors were established, these animals in the first group were administered as-hTERT and saline. Apoptosis of tumor cells was detected by FCM. In the 2nd group, the animals were injected HepG2.2.15 cells together with as-hTERT. In the third group, the animals were given as-hTERT 24 hours postinjection of HepG2.2.15 cells. The anti-HBV effects were assayed with ELISA in vitro and in vivo. RESULTS: Growth inhibition was observed in cells treated with as-hTERT in vitro. A significant different in the value of A570 - A630 was found between cells treated with as-hTERT and control (P < 0.01) by MTT method. The telomerase activity of tumor cells treated with as-hTERT was reduced, the value of A450 nm was 0.42 compared to control (1.49) with TRAP-PCR-ELISA. The peak of apoptosis in tumor cells given as-hTERT was 21.12%, but not seen in saline-treated control. A prolonged period of carcinogenesis was observed in the second and third group animals. There was inhibitory effect on the expression of HBsAg and HBeAg in vivo and in vitro. CONCLUSION: As-hTERT has an anti-tumor activity, which may be useful for gene therapy of tumors. PMID:14760759

  1. Influence of Toxoplasma gondii on in vitro proliferation and apoptosis of hepatoma carcinoma H7402 cell

    Institute of Scientific and Technical Information of China (English)

    Gang Wang; Ming Gao

    2016-01-01

    Objective: To discuss the influence of tachyzoite of Toxoplasma gondii (T. gondii) RH strain on proliferation and apoptosis of hepatoma carcinoma (HCC) H7402 cell. Methods: The HCC H7402 cell in logarithmic phase and tachyzoite of T. gondii RH strain in different concentrations (1×107/mL, 2×107/mL, 4×107/mL, 8×107/mL and 16×107/mL) were co-cultured. CCK-8 was utilized to determine the inhibition rate of T. gondii tachyzoite on H7402 cell growth. Flow cytometry was used to detect the change of cell cycle. RT-PCR method was used to detect the expression of cyclinB1 and cdc2--two genes related to cell cycle. Western blot method was used to detect the expression of apoptosis-related proteins Caspase-3 and Bcl-2. Results: The tachyzoite of T. gondii RH strain can inhibit the proliferation of HCC H7402 cells. The inhibition rate of tumor cell growth increased with the increase of concentration of T. gondii tachyzoite. With the increase of concentration of T. gondii tachyzoite, the proportion of G0/G1 phase of H7402 cell increased, the proportion of S phase decreased, and PI value decreased accordingly. The expression of cyclinB1 and cdc2 genes decreased with the increase of the concentration of T. gondii tachyzoite. With the increase of the concentration of tachyzoite of T. gondii RH strain, the expression quantity of Caspase-3 in H7402 cell increased, but the expression quantity of Bcl-2 protein decreased. Conclusions: T. gondii can inhibit the in vitro proliferation of HCC H7402 cell, and induce its apoptosis. This effect shows a trend of concentration-dependent increase. Moreover, it is related to the down-regulation of cyclinB1 and cdc2 (cell cycle-related genes), the increase of apoptosis-related protein Caspase-3, and the decrease of Bcl-2 expression.

  2. GEP100/Arf6 is required for epidermal growth factor-induced ERK/Rac1 signaling and cell migration in human hepatoma HepG2 cells.

    Directory of Open Access Journals (Sweden)

    ZhenZhen Hu

    Full Text Available BACKGROUND: Epidermal growth factor (EGF signaling is implicated in the invasion and metastasis of hepatoma cells. However, the signaling pathways for EGF-induced motility of hepatoma cells remain undefined. METHODOLOGY/PRINCIPAL FINDINGS: We found that EGF dose-dependently stimulated the migration of human hepatoma cells HepG2, with the maximal effect at 10 ng/mL. Additionally, EGF increased Arf6 activity, and ectopic expression of Arf6 T27N, a dominant negative Arf6 mutant, largely abolish EGF-induced cell migration. Blocking GEP100 with GEP100 siRNA or GEP100-△PH, a pleckstrin homology (PH domain deletion mutant of GEP100, blocked EGF-induced Arf6 activity and cell migration. EGF also increased ERK and Rac1 activity. Ectopic expression GEP100 siRNA, GEP100-△PH, or Arf6-T27N suppressed EGF-induced ERK and Rac1 activity. Furthermore, blocking ERK signaling with its inhibitor U0126 remarkably inhibited both EGF-induced Rac1 activation as well as cell migration, and ectopic expression of inactive mutant form of Rac1 (Rac1-T17N also largely abolished EGF-induced cell migration. CONCLUSIONS/SIGNIFICANCE: Taken together, this study highlights the function of the PH domain of GEP100 and its regulated Arf6/ERK/Rac1 signaling cascade in EGF-induced hepatoma cell migration. These findings could provide a rationale for designing new therapy based on inhibition of hepatoma metastasis.

  3. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells.

    Science.gov (United States)

    Ullio, Chiara; Brunk, Ulf T; Urani, Chiara; Melchioretto, Pasquale; Bonelli, Gabriella; Baccino, Francesco M; Autelli, Riccardo

    2015-01-01

    Lysosomal membrane permeabilization (LMP) induced by oxidative stress has recently emerged as a prominent mechanism behind TNF cytotoxicity. This pathway relies on diffusion of hydrogen peroxide into lysosomes containing redox-active iron, accumulated by breakdown of iron-containing proteins and subcellular organelles. Upon oxidative lysosomal damage, LMP allows relocation to the cytoplasm of low mass iron and acidic hydrolases that contribute to DNA and mitochondrial damage, resulting in death by apoptosis or necrosis. Here we investigate the role of lysosomes and free iron in death of HTC cells, a rat hepatoma line, exposed to TNF following metallothionein (MT) upregulation. Iron-binding MT does not normally occur in HTC cells in significant amounts. Intracellular iron chelation attenuates TNF and cycloheximide (CHX)-induced LMP and cell death, demonstrating the critical role of this transition metal in mediating cytokine lethality. MT upregulation, combined with starvation-activated MT autophagy almost completely suppresses TNF and CHX toxicity, while impairment of both autophagy and MT upregulation by silencing of Atg7, and Mt1a and/or Mt2a, respectively, abrogates protection. Interestingly, MT upregulation by itself has little effect, while stimulated autophagy alone depresses cytokine toxicity to some degree. These results provide evidence that intralysosomal iron-catalyzed redox reactions play a key role in TNF and CHX-induced LMP and toxicity. The finding that chelation of intralysosomal iron achieved by autophagic delivery of MT, and to some degree probably of other iron-binding proteins as well, into the lysosomal compartment is highly protective provides a putative mechanism to explain autophagy-related suppression of death by TNF and CHX.

  4. Involvement of the prostaglandin E receptor EP2 in paeoniflorin-induced human hepatoma cell apoptosis.

    Science.gov (United States)

    Hu, Shanshan; Sun, Wuyi; Wei, Wei; Wang, Di; Jin, Juan; Wu, Jingjing; Chen, Jingyu; Wu, Huaxun; Wang, Qingtong

    2013-02-01

    Prostaglandin E2 (PGE2) has been shown to play an important role in tumor development and progression. PGE2 mediates its biological activity by binding any one of four prostanoid receptors (EP1 through EP4). The present study was designed to determine the role of the EP2 receptor during the proliferation and apoptosis of human HepG2 and SMMC-7721 hepatoma cell lines and the effect of paeoniflorin, a monoterpene glycoside. The proliferation of HepG2 and SMMC-7721 cells was determined by methyl thiazolyl tetrazolium after exposure to the selective EP2 receptor agonists butaprost and paeoniflorin. Apoptosis of HepG2 and SMMC-7721 cells was also quantified by flow cytometry with annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression levels of Bcl-2 and Bax were quantified by western blotting and immunohistochemistry. The expression of the EP2 receptor and cysteine-aspartic acid protease (caspase)-3 was determined by western blotting. Butaprost significantly increased proliferation in HepG2 and SMMC-7721 cells. Paeoniflorin significantly inhibited the proliferation of HepG2 and SMMC-7721 cells stimulated by butaprost at multiple time points (24, 48, and 72 h). Paeoniflorin induced apoptosis in HepG2 and SMMC-7721 cells, which was quantified by annexin-V and propidium iodide staining. Our results indicate that the expression of the EP2 receptor and Bcl-2 was significantly increased, whereas that of Bax and cleaved caspase-3 was decreased in HepG2 and SMMC-7721 cells after stimulation by butaprost. Paeoniflorin significantly decreased the expression of the EP2 receptor and Bcl-2 and increased Bax and caspase-3 activation in HepG2 and SMMC-7721 cells on addition of butaprost. Our results show that the PGE2 receptor subtype EP2 may play a vital role in the survival of both HepG2 and SMMC-7721 cells. Paeoniflorin, which may be a promising agent in the treatment of liver cancer, induced apoptosis in hepatocellular carcinoma cells by downregulating

  5. Synergistic effect of intervention of glypican-3 gene transcription combined with antitumor drugs in inhibiting hepatoma cell proliferation

    Directory of Open Access Journals (Sweden)

    YANG Jie

    2016-12-01

    Full Text Available ObjectiveTo investigate the inhibitory effect of intervention of glypican-3 (GPC3 gene transcription combined with antitumor drugs on hepatoma cell proliferation. MethodsFour types of GPC3-shRNA plasmids were established and transfected into HepG2 hepatoma cells. Quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression of GPC3 to analyze its association with hepatoma cell proliferation and apoptosis. The independent samples t-test was used for comparison of continuous data between any two groups, and a one-way analysis of variance was used for comparison between multiple groups. ResultsAmong these four plasmids, shRNA1 had a transfection efficiency of >85% in the transfection of HepG2 cells and a silence efficiency of 89.3% at the mRNA level, and the protein expression of GPC3 was significantly inhibited(P<0.01). At 72 hours, the GPC3-shRNA1 co-intervention group had an HepG2 cell inhibition rate of 71.1%, significantly different from that in the negative group (t=18.092, P<0.001, an inhibition rate of migration of 89.1%, significantly lower than that in the negative group (t=8.326, P<0.001, and inhibition rates of HepG2 cell movement and invasion of 53.6% and 60.1%, which were significantly different from those in the negative group (t=52.400 and 48.245, both P<0.001. The GPC3-shRNA1 co-intervention group had a β-catenin mRNA inhibition rate of 46.9% and a Gli1 mRNA upregulation rate of 7.4%, significantly different from those in the negative group (t=30.108 and -3.551, P<0.001 and P=0.009. At 24 hours, 10 μmol/L sorafenib combined with shRNA1 had an inhibition rate of tumor cells of 52.6% and 100 μmol/L sorafenib combined with shRNA1 had an inhibition rate of tumor cells of 79.5%, which were significantly different from that in the control group (t=23.314 and 50.352, both P<0.001. The half-maximal inhibitory concentrations of sorafenib, rapamycin, and erlotinib for HepG2 were 4.67±1

  6. Genetic analysis of a transcriptional activation pathway by using hepatoma cell variants.

    Science.gov (United States)

    Bulla, G A; Fournier, R E

    1994-01-01

    A hierarchy of liver-enriched transcription factors plays an important role in activating expression of many hepatic genes. In particular, hepatocyte nuclear factor 4 (HNF-4) is a major activator of the gene encoding HNF-1, and HNF-1 itself activates expression of more than 20 liver genes. To dissect this activation pathway genetically, we prepared somatic cell variants that were deficient in expression of the liver-specific alpha 1-antitrypsin (alpha 1AT) gene, which requires both HNF-1 and HNF-4 for high-level gene activity. This was accomplished in two steps. First, hepatoma transfectants that stably expressed two selectable markers under alpha 1AT promoter control were prepared; second, variant sublines that could no longer express either transgene were isolated by direct selection. In this report, we demonstrate that the variants contain defects in the HNF-4/HNF-1 activation pathway. These defects functioned in trans, as expression of many liver genes was affected, but the variant phenotypes were recessive to wild type in somatic cell hybrids. Three different variant classes could be discriminated by their phenotypic responses to ectopic expression of either HNF-4 or HNF-1. Two variant clones appeared specifically deficient in HNF-4 expression, as transfection with an HNF-4 expression cassette fully restored their hepatic phenotypes. Another line activated HNF-1 in response to forced HNF-4 expression, but activation of downstream genes failed to occur. One clone was unresponsive to either HNF-1 or HNF-4. Using the variants, we demonstrate further that the chromosomal genes encoding alpha 1AT, aldolase B, and alpha-fibrinogen display strict requirements for HNF-1 activation in vivo, while other liver genes were unaffected by the presence or absence of HNF-1 or HNF-4. We also provide evidence for the existence of an autoregulatory loop in which HNF-1 regulates its own expression through activation of HNF-4. Images PMID:7935424

  7. Evaluation of the anticancer potential of six herbs against a hepatoma cell line

    Directory of Open Access Journals (Sweden)

    Weerapreeyakul Natthida

    2012-06-01

    Full Text Available Abstract Background Six herbs in the Plant Genetics Conservation Project that have been used as complementary medicines were chosen on the basis of their medicinal value, namely Terminalia mucronata, Diospyros winitii, Bridelia insulana, Artabotrys harmandii, Terminallia triptera, and Croton oblongifolius. This study aims to evaluate the potential anticancer activity of 50% ethanol-water extracts of these six herbs. Methods Fifty percent ethanol-water crude extracts of the six herbs were prepared. The cytotoxicity of the herbal extracts relative to that of melphalan was evaluated using a hepatoma cell line (HepG2, and examined by neutral red assays and apoptosis induction by gel electrophoresis and flow cytometry after 24 h. Results A significant difference was found between the cytotoxicity of the 50% ethanol-water crude extracts and melphalan (P = 0.000. The 50% ethanol-water crude extracts of all six herbs exhibited cytotoxicity against HepG2 cells, with IC50 values ranging from 100 to 500 μg/mL. The extract of T. triptera showed the highest cytotoxicity with an IC50 of 148.7 ± 12.3 μg/mL, while melphalan had an IC50 of 39.79 ± 7.62 μg/mL. The 50% ethanol-water crude extracts of D. winitii and T. triptera, but not A. harmandii, produced a DNA ladder. The 50% ethanol-water crude extracts of D. winitii, T. triptera, and A. harmandii induced apoptosis detected by flow cytometry. Conclusion The 50% ethanol-water crude extracts of D. winitii, T. triptera, and A. harmandii showed anticancer activity in vitro.

  8. Identification of two-dimensional electrophoresis-separated proteins in human hepatoma cell by electrospray ion trap mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    As one of the most important analytical methods in proteome research, mass spectrometry was utilized to identify proteins separated by two-dimensional electrophoresis in the human hepatoma cell line BEL-7404. The protein spots were excised from the gel, followed by in-gel digestion, and the peptide mappings were analyzed by liquid chromatography electrospray ion trap mass spectrometer. Nine proteins were identified via database searching, according to the molecular weights and amino acid sequences of peptides, among which two proteins have not been identified in the other liver-cell database. The sequence coverage was 21%-72%. Furthermore, the relationship between the expressed proteins and the liver carcinoma was discussed.

  9. Molecular mechanisms of apoptosis induced by Scorpio water extract in human hepatoma HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Kang-Beom Kwon; Eun-Kyung Kim; Jung-Gook Lim; Eun-Sil Jeong; Byung-Cheul Shin; Young-Se Jeon; Kang-San Kim; Eun-A Seo; Do-Gon Ryu

    2005-01-01

    AIM: To clarify the mechanism underlying the anti-mutagenic and anti-cancer activities of Scorpio water extract (SWE).METHODS: Human hepatoma HepG2 cells were incubated with various concentrations of SWE. After 24-h incubation,cytotoxicity and apoptosis evaluations were determined by MTT and DNA fragmentation assay, respectively. After treatment with SWE, mitochondrial membrane potential(MMP) was determined by measuring the retention of the dye 3,3'-dihexyloxacarbocyanine (DiOC6(3)) and the protein expression including cytochrome C and poly-(ADPribose) polymerase (PARP)were measured by Western blotting. Caspase-3 and -9 enzyme activities were measured using specific fluorescence dyes such as Ac-DEVD-AFC and Ac-LEHD-AFC.RESULTS: We found that treatment with SWE induced apoptosis as confirmed by discontinuous DNA fragmentation in cultured human hepatoma HepG2 cells. Our investigation also showed that SWE-induced apoptosis of HepG2 cells were associated with intracellular events including disruption of MMP, increased translocation of cytochrome C from mitochondria to cytosol, activation of caspase-3,and PARP. Pre-treatment of N-acetyl-Asp-Glu-Val-Asp-CHO(Ac-DEVD-CHO), a caspase-3 specific inhibitor, or cydosporin A (CsA), an inhibitor of MMP disruption, completely abolished SWE-induced DNA fragmentation.CONCLUSION: These results suggest that SWE possibly causes mitochondrial damage, leading to cytochrome C release into cytosol and activation of caspases resulting in PARP cleavage and execution of apoptotic cell death in HepG2 cells. These results further suggest that Scorpio may be a valuable agent of therapeutic intervention of human hepatomas.

  10. An occult hepatitis B-derived hepatoma cell line carrying persistent nuclear viral DNA and permissive for exogenous hepatitis B virus infection.

    Science.gov (United States)

    Lin, Chih-Lang; Chien, Rong-Nan; Lin, Shi-Ming; Ke, Po-Yuan; Lin, Chen-Chun; Yeh, Chau-Ting

    2013-01-01

    Occult hepatitis B virus (HBV) infection is defined as persistence of HBV DNA in liver tissues, with or without detectability of HBV DNA in the serum, in individuals with negative serum HBV surface antigen (HBsAg). Despite accumulating evidence suggesting its important clinical roles, the molecular and virological basis of occult hepatitis B remains unclear. In an attempt to establish new hepatoma cell lines, we achieved a new cell line derived from a hepatoma patient with chronic hepatitis C virus (HCV) and occult HBV infection. Characterization of this cell line revealed previously unrecognized properties. Two novel human hepatoma cell lines were established. Hep-Y1 was derived from a male hepatoma patient negative for HCV and HBV infection. Hep-Y2 was derived from a female hepatoma patient suffering from chronic HCV and occult HBV infection. Morphological, cytogenetic and functional studies were performed. Permissiveness to HBV infection was assessed. Both cell lines showed typical hepatocyte-like morphology under phase-contrast and electron microscopy and expressed alpha-fetoprotein, albumin, transferrin, and aldolase B. Cytogenetic analysis revealed extensive chromosomal anomalies. An extrachromosomal form of HBV DNA persisted in the nuclear fraction of Hep-Y2 cells, while no HBsAg was detected in the medium. After treated with 2% dimethyl sulfoxide, both cell lines were permissive for exogenous HBV infection with transient elevation of the replication intermediates in the cytosol with detectable viral antigens by immunoflurescence analysis. In conclusions, we established two new hepatoma cell lines including one from occult HBV infection (Hep-Y2). Both cell lines were permissive for HBV infection. Additionally, Hep-Y2 cells carried persistent extrachromosomal HBV DNA in the nuclei. This cell line could serve as a useful tool to establish the molecular and virological basis of occult HBV infection.

  11. An occult hepatitis B-derived hepatoma cell line carrying persistent nuclear viral DNA and permissive for exogenous hepatitis B virus infection.

    Directory of Open Access Journals (Sweden)

    Chih-Lang Lin

    Full Text Available Occult hepatitis B virus (HBV infection is defined as persistence of HBV DNA in liver tissues, with or without detectability of HBV DNA in the serum, in individuals with negative serum HBV surface antigen (HBsAg. Despite accumulating evidence suggesting its important clinical roles, the molecular and virological basis of occult hepatitis B remains unclear. In an attempt to establish new hepatoma cell lines, we achieved a new cell line derived from a hepatoma patient with chronic hepatitis C virus (HCV and occult HBV infection. Characterization of this cell line revealed previously unrecognized properties. Two novel human hepatoma cell lines were established. Hep-Y1 was derived from a male hepatoma patient negative for HCV and HBV infection. Hep-Y2 was derived from a female hepatoma patient suffering from chronic HCV and occult HBV infection. Morphological, cytogenetic and functional studies were performed. Permissiveness to HBV infection was assessed. Both cell lines showed typical hepatocyte-like morphology under phase-contrast and electron microscopy and expressed alpha-fetoprotein, albumin, transferrin, and aldolase B. Cytogenetic analysis revealed extensive chromosomal anomalies. An extrachromosomal form of HBV DNA persisted in the nuclear fraction of Hep-Y2 cells, while no HBsAg was detected in the medium. After treated with 2% dimethyl sulfoxide, both cell lines were permissive for exogenous HBV infection with transient elevation of the replication intermediates in the cytosol with detectable viral antigens by immunoflurescence analysis. In conclusions, we established two new hepatoma cell lines including one from occult HBV infection (Hep-Y2. Both cell lines were permissive for HBV infection. Additionally, Hep-Y2 cells carried persistent extrachromosomal HBV DNA in the nuclei. This cell line could serve as a useful tool to establish the molecular and virological basis of occult HBV infection.

  12. Effects of Pinus massoniana bark extract on cell proliferation and apoptosis of human hepatoma BEL-7402 cells

    Institute of Scientific and Technical Information of China (English)

    Ying-Yu Cui; Heng Xie; Kang-Biao Qi; Yan-Ming He; Jin-Fa Wang

    2005-01-01

    AIM: To study the effects of Pinus massoniana bark extract (PMBE) on cell proliferation and apoptosis of human hepatoma BEL-7402 cells and to elucidate its molecular mechanism.METHODS: BEL-7402 cells were incubated with various concentrations (20-200 μg/mL) of PMBE for different periods of time. After 48 h, cell proliferation was determined by 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was evaluated by morphological observation, agarose gel electrophoresis,and flow cytometry analysis. Possible molecular mechanisms were primarily explored through immunohistochemical staining.RESULTS: PMBE (20-200 μg/mL) significantly suppressed BEL-7402 cell proliferation in a time- and dose-dependent manner. After treatment of BEL-7402 cells with 160 μg/mL PMBE for 24, 48, or 72 h, a typical apoptotic "DNA ladder"was observed using agarose gel electrophoresis. Nuclear condensation and boundary aggregation or split, apoptotic bodies were seen by fluorescence and electron microscopy.Sub-G1 curves were displayed by flow cytometry analysis.PMBE decreased the expression levels of Bcl-2 protein in a time-dependent manner after treatment of cells with 160 μg/mL PMBE.CONCLUSION: PMBE suppresses proliferation of BEL-7402 cells in a time- and dose-dependent manner and induces cell apoptosis by possibly downregulating the expression of the bcl-2 gene.

  13. Ethanol extracts of Cinnamomum kanehirai Hayata leaves induce apoptosis in human hepatoma cell through caspase-3 cascade

    Directory of Open Access Journals (Sweden)

    Liu YK

    2014-12-01

    Full Text Available Yu-Kuo Liu,1 Kuan-Hsing Chen,2 Yann-Lii Leu,3,4 Tzong-Der Way,5 Ling-Wei Wang,6,7 Yu-Jen Chen,8,9,* Yu-Ming Liu6–8,* 1Department of Chemical and Material Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; 2Kidney Research Center, Chang Gung Memorial Hospital, School of Medicine, 3Graduate Institute of Natural Products, College of Medicine, 4Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; 5Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; 6Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; 7National Yang-Ming University, Taipei, Taiwan; 8School of Medicine, Institute of Traditional Medicine, National Yang Ming University, Taipei, Taiwan; 9Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan *These authors contributed equally to this workAbstract: Inducing apoptosis to susceptible cells is the major mechanism of most cytotoxic anticancer drugs in current use. Cinnamomum kanehirai Hayata (Lauraceae, a unique and native tree of Taiwan, is the major host for the medicinal fungus Antrodia cinnamomea which exhibits anti-cancer activity. Because of the scarcity of A. cinnamomea, C. kanehirai Hayata instead, is used as fork medicine in liver cancer. Here we observed the C. kanehirai Hayata ethanol extract could inhibit the cellular viability of both HepG2 and HA22T/VGH human hepatoma cell lines in a dose- and time-dependent manner. We found the mode of cell death was apoptosis according to cell morphological changes by Liu's stain, oligonucleosomal DNA fragmentation by gel electrophoresis, externalization of phosphotidyl serine by detecting Annexin V and hypoploid population by cell cycle analysis. Our results showed that the extracts caused cleavage of caspase-3 and increased enzyme activity of caspase-8 and caspase-9. Caspase 3 inhibitor partially reversed

  14. Anticancer effect of the extracts from Polyalthia evecta against human hepatoma cell line (HepG2)

    Institute of Scientific and Technical Information of China (English)

    Sasipawan Machana; Natthida Weerapreeyakul; Sahapat Barusrux

    2012-01-01

    Objective: To investigate the anticancer activity of Polyalthia evecta (P. evecta) (Pierre) Finet& Gagnep against human hepatoma cell line (HepG2). Methods: The anticancer activity was based on (a) the cytotoxicity against human hepatoma cells (HepG2) assessed using a neutral red assay and (b) apoptosis induction determined by evaluation of nuclei morphological changes after DAPI staining. Preliminary phytochemical analysis of the crude extract was assessed by HPLC analysis. Results: The 50% ethanol-water crude leaf extract of P. evecta (EW-L) showed greater potential anticancer activity with high cytotoxicity [IC50 = (62.8 ± 7.3)μg/mL] and higher selectivity in HepG2 cells than normal Vero cells [selective index (SI) = 7.9]. The SI of EW-L was higher than the positive control, melphalan (SI = 1.6) and the apoptotic cells (46.4 ± 2.6) % induced by EW-L was higher than the melphalan (41.6 ± 2.1)% (P<0.05). The HPLC chromatogram of the EW-L revealed the presence of various kinds of polyphenolics and flavonoids in it. Conclusions:P. evecta is a potential plant with anticancer activity. The isolation of pure compounds and determination of the bioactivity of individual compounds will be further performed.

  15. A human hepatoma cell line FLC4 cultured on the radial flow bioreactor as a model for human hepatocytes

    Institute of Scientific and Technical Information of China (English)

    LiYW; BabuE

    2002-01-01

    Hepatocytes play central roles in the metabolism and excretion of drugs and xenobiovics.For this purpose,hepatocytes were endowed with high levels of enzyme activity for the phase I and phase Ⅱ metabolism as well as high levels of transmembrane transport activity which enables the entrance and the exit of drugs and xenobiotics and their metabolites through the plasma membrane of the hepatocytes.They include the transporters in the canalicular and sinusoidal membrane.Although a lot of cell lines were established from hepatoma cells or normal hepatocytes,none of them are fully satisfactory in the expression of the enzymes and transportens.We have established and characterized a hepatoma cell line designated FLC4 and found that this cell line exhibits properties quite similar to those of the normal hepatocytes in the light of enzymes and transporters for drug metabolism and transkport when they are cultured on the radial flow bioreactors.Using FLC4 cells cultured on the radial flow bioreactors,we are developing in vitro systems to evaluate the interaction of drugs with liver transporters and drug-drug interaction through the hepa tocyte transporters.

  16. Carvacrol and rosemary oil at higher concentrations induce apoptosis in human hepatoma HepG2 cells.

    Science.gov (United States)

    Melušová, Martina; Jantová, Soňa; Horváthová, Eva

    2014-12-01

    Natural essential oils are volatile herbal complex compounds which manifest cytotoxic effects on living cells depending on their type and concentration but usually they are not genotoxic. Our previous studies showed that carvacrol (CA) and rosemary essential oil (RO) induced growth inhibition of both human cell lines HepG2 and BHNF-1, with hepatoma HepG2 cells being more sensitive to either compound tested. Cytotoxic concentrations of CA and RO induced the formation of DNA strand breaks. Further ex vivo studies showed that extracts prepared from hepatocytes of CA- and RO-supplemented rats did not increase incision repair activity compared to extracts from liver cells of control animals. Therefore, the aim of this work was to determine the effect of cytotoxic concentrations of CA and RO on the cell cycle and the ability of both natural volatiles to induce DNA fragmentation and apoptotic death of human hepatoma HepG2 cells. These effects were measured after 24 h incubation of HepG2 cells with CA and RO using three independent methods - flow cytometry, internucleosomal DNA fragmentation (electrophoresis) and micronucleus assay. Evaluation of morphological changes and formation of micronuclei in HepG2 cells showed no increase in the number of micronuclei in cells treated by CA and RO compared to control cells. On the other hand, CA and RO induced morphological changes typical for apoptosis in concentration-dependent manner. The presence of necrosis was negligible. Both natural compounds caused shrinking of cytoplasmic membrane and formation of apoptotic bodies. In addition, the highest concentrations of CA and RO induced internucleosomal DNA fragmentation (formation of DNA ladder) in HepG2 cells. Cell cycle analysis revealed the accumulation of cells in the G1 phase, which was accompanied by a reduction in the number of cells in the S phase after 24 h exposure to the substances tested. The cell division was thus slowed down or stopped and this process resulted in cell

  17. Expression of alpha-fetoprotein messenger RNA in BEL-7404 human hepatoma cells and effect of L-4-oxalysine on the expression

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    AIM To investigate alpha-fetoprotein (AFP) mRNA expression in BEL-7404 human hepatoma cells and the effect of L-4-oxalysine (OXL) on the expression.METHODS BEl-7404 human hepatoma cells were maintained in RPMI 1640 media. Human AFP cDNA probe was labelled with digoxigenin-11-dUTP by the random primer labelling method. The expression of AFP mRNA in Bel-7404 cells was determined by an in situ hybridization technique with digoxigenin-labelled human AFP cDNA probe. The positive intensities of AFP mRNA in cells were analyzed by microspectrophotometer and expressed as absorbance at 470nm. For the experiment with OXL, cells were incubated with various concentrations of the agent for 72h.RESULTS Essentially all the hepatoma cells contained AFP mRNA in the cytoplasm, although in various amounts. The specificity of the hybridization reaction was confirmed by control experiments in which the use of RNase-treated BEL-7404 cells, non-AFP-producing cells (HL-60 human leukemia cells) or a nonspecific cDNA probe resulted in negative hybridization. When the cells were treated with OXL (25, 50mg/L), the content of AFP mRNA in the cytoplasm was decreased with the inhibition percentages of 34.3% and 70.1%, respectively (P<0.05).CONCLUSION AFP mRNA was expressed in BEL-7404 human hepatoma cells and OXL suppressed AFP mRNA expression in the cells.

  18. Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Grepper Susan

    2009-09-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is an aggressive cancer, and is the third leading cause of cancer death worldwide. Standard therapy is ineffective partly because HCC is intrinsically resistant to conventional chemotherapy. Its poor prognosis and limited treatment options make it critical to develop novel and selective chemotherapeutic agents. Since the Wnt/β-catenin pathway is essential in HCC carcinogenesis, we studied the inhibition of Wnt-1-mediated signaling as a potential molecular target in HCC. Results We demonstrated that Wnt-1 is highly expressed in human hepatoma cell lines and a subgroup of human HCC tissues compared to paired adjacent non-tumor tissues. An anti-Wnt-1 antibody dose-dependently decreased viability and proliferation of Huh7 and Hep40 cells over-expressing Wnt-1 and harboring wild type β-catenin, but did not affect normal hepatocytes with undetectable Wnt-1 expression. Apoptosis was also observed in Huh7 and Hep40 cells after treatment with anti-Wnt-1 antibody. In these two cell lines, the anti-Wnt-1 antibody decreased β-catenin/Tcf4 transcriptional activities, which were associated with down-regulation of the endogenous β-catenin/Tcf4 target genes c-Myc, cyclin D1, and survivin. Intratumoral injection of anti-Wnt-1 antibody suppressed in vivo tumor growth in a Huh7 xenograft model, which was also associated with apoptosis and reduced c-Myc, cyclin D1, and survivin expressions. Conclusion Our results suggest that Wnt-1 is a survival factor for HCC cells, and that the blockade of Wnt-1-mediated signaling may offer a potential pathway-specific therapeutic strategy for the treatment of a subgroup of HCC that over-expresses Wnt-1.

  19. High-density lipoprotein as a potential carrier for delivery of a lipophilic antitumoral drug into hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    Bin Lou; Xue-Ling Liao; Man-Ping Wu; Pei-Fang Cheng; Chun-Yan Yin; Zheng Fei

    2005-01-01

    AIM: To investigate the possibility of recombinant highdensity lipoprotein (rHDL) being a carrier for delivering antitumoral drug to hepatoma cells.METHODS: Recombinant complex of HDL and aclacinomycin(rHDL-ACM) was prepared by cosonication of apoproteins from HDL (Apo HDL) and ACM as well as phosphatidylcholine.Characteristics of the rHDL-ACM were elucidated by electrophoretic mobility, including the size of particles,morphology and entrapment efficiency. Binding activity of rHDL-ACM to human hepatoma cells was determined by competition assay in the presence of excess native HDL. The cytotoxicity of rHDL-ACM was assessed by MTT method.RESULTS: The density range of rHDL-ACM was 1.063-1.210g/mL, and the same as that of native HDL. The purity of all rHDL-ACM preparations was more than 92%.Encapsulated efficiencies of rHDL-ACM were more than90%. rHDL-ACM particles were typical sphere model of lipoproteins and heterogeneous in particle size. The average diameter was 31.26±5.62 nm by measure of 110rHDL-ACM particles in the range of diameter of lipoproteins.rHDL-ACM could bind on SMMC-7721 cells, and such binding could be competed against in the presence of excess native HDL. rHDL-ACM had same binding capacity as native HDL. The cellular uptake of rHDL-ACM by SMMC-7721 hepatoma cells was significantly higher than that of free ACM at the concentration range of 0.5-10 μg/mL(P<0.01). Cytotoxicity of rHDL-ACM to SMMC-7721 cells was significantly higher than that of free ACM at concentration range of less than 5 μg/mL (P<0.01) and IC50 of rHDL-ACM was lower than IC50 of free ACM(1.68 nmol/L vs3 nmol/L). Compared to L02 hepatocytes,a normal liver cell line, the cellular uptake of rHDL-ACM by SMMC-7721 cells was significantly higher (P<0.01) and in a dose-dependent manner at the concentration range of 0.5-10 μg/mL. Cytotoxicity of the rHDL-ACM to SMMC-7721 cells was significantly higher than that to L02 cells at concentration range of 1-7.5 μg/mL (P<0.01). IC50 for

  20. Characteristics and application of established luciferase hepatoma cell line that responds to dioxin-like chemicals

    Institute of Scientific and Technical Information of China (English)

    Zhi-Ren Zhang; Hong Yan; Shun-Qing Xu; Xi Sun; Yong-Jun Xu; Xiao-Kun Cai; Zhi-Wei Liu; Xiang-Lin Tan; Yi-Kai Zhou; Jun-Yue Zhang

    2003-01-01

    AIM: To establish a luciferase reporter cell line that responds dioxin-like chemicals (DLCs) and on this basis to evaluate its characteristics and application in the determination of DLCs.METHODS: A recombinant luciferase reporter plasmid was constructed by inserting dioxin-responsive element (DREs)and MMTV promoter segments into the pGL3-promoter plasmid immediately upstream of the luciferase gene, which was structurally demonstrated by fragment mapping analysis in gel electrophoresis and transfected into the human hepatoma cell line HepG2, both transiently and stably, to identify the inducible expression of luciferase by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). The time course,responsive period, sensitivity, structure-inducibility and doseeffect relationships of inducible luciferase expression to DLCs was dynamically observed in HepG2 cells stably transfected by the recombinant vector (HepG2-Luc) and compared with that assayed by ethoxyresorufin-O-deethylase (EROD) in non-transfected HepG2 cells (HepG2-wt).RESULTS: The inducible luciferase expression of HepG2-Luc cells wa s noted in a time-, dose-, and AhR-dependent manner, which peaked at 4 h and then decreased to a stable level at 14 h after TCDD treatment. The responsiveness of HepG2-Luc cells to TCDD induction was decreased with culture time and became undetectable at 10th month of HepG2-Luc cell formation. The fact that luciferase activity induced by 3, 3', 4, 4′-PCB in HepG2-Luc cells was much less than that induced by TCDD suggests a structureinducibility relationship existing among DLCs. Within the concentrations from 3.5× 10-12 to 5× 10-9 mol/L, significant correlations between TCDD doses and EROD activities were observed in both HepG2-luc and HepG2-wt cells. The correlation between TCDD doses from 1.1×10-13 to 1×10-8 mol/L and luciferase activities was also found to be significant in HepG2-luc cells (r=0.997, P<0.001), but not in their HepG2-wt counterparts. For the comparison of the

  1. Antiproliferative and Anti-Invasive Effect of Piceatannol, a Polyphenol Present in Grapes and Wine, against Hepatoma AH109A Cells

    Directory of Open Access Journals (Sweden)

    Yuichiro Kita

    2012-01-01

    Full Text Available Piceatannol is a stilbenoid, a metabolite of resveratrol found in red wine. Piceatannol and sera from rats orally given piceatannol were found to dose-dependently suppress both the proliferation and invasion of AH109A hepatoma cells in culture. Its antiproliferative effect was based on cell cycle arrest at lower concentration (25~50 μM and on apoptosis induction at higher concentration (100 μM. Piceatannol suppressed reactive oxygen species-potentiated invasive capacity by scavenging the intracellular reactive oxygen species. These results suggest that piceatannol, unlike resveratrol, has a potential to suppress the hepatoma proliferation by inducing cell cycle arrest and apoptosis induction. They also suggest that the antioxidative property of piceatannol, like resveratrol, may be involved in its anti-invasive action. Subsequently, piceatannol was found to suppress the growth of solid tumor and metastasis in hepatoma-bearing rats. Thus, piceatannol may be a useful anticancer natural product.

  2. Hepatitis B virus X protein mutant HBxΔ127 promotes proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fabao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); You, Xiaona [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Chi, Xiumei [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Wang, Tao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Niu, Junqi, E-mail: junqiniu@yahoo.com.cn [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-02-07

    Highlights: • Relative to wild type HBx, HBX mutant HBxΔ127 strongly enhances cell proliferation. • Relative to wild type HBx, HBxΔ127 remarkably up-regulates miR-215 in hepatoma cells. • HBxΔ127-elevated miR-215 promotes cell proliferation via targeting PTPRT mRNA. - Abstract: The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migration in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.

  3. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells : ROS-mediated cell death by 3-BrPA.

    Science.gov (United States)

    Kim, Ji Su; Ahn, Keun Jae; Kim, Jeong-Ah; Kim, Hye Mi; Lee, Jong Doo; Lee, Jae Myun; Kim, Se Jong; Park, Jeon Han

    2008-12-01

    Hexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high expression of HKII). 3-BrPA induced ATP depletion-dependent necrosis and apoptosis in both cell lines. 3-BrPA increased intracellular reactive oxygen species (ROS) leading to mitochondrial dysregulation. NAC (N-acetyl-L: -cysteine), an antioxidant, blocked 3-BrPA-induced ROS production, loss of mitochondrial membrane potential and cell death. 3-BrPA-mediated oxidative stress not only activated poly-ADP-ribose (PAR) but also translocated AIF from the mitochondria to the nucleus. Taken together, 3-BrPA induced ATP depletion-dependent necrosis and apoptosis and mitochondrial dysregulation due to ROS production are involved in 3-BrPA-induced cell death in hepatoma cells.

  4. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China); Wu, Jianguo, E-mail: jwu@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  5. Prolonged perturbation of the oscillations of hepatoma Fao cell proliferation by a single small dose of methotrexate.

    Science.gov (United States)

    Guerroui, S; Deschatrette, J; Wolfrom, C

    2005-06-01

    The proliferation rate of various cell types in vitro, including hepatoma Fao cells, displays aperiodic oscillations. The frequency of these oscillations is about one every 3-5 weeks, and there are variations in cell functions and polarity. Topological analysis has showed that these oscillations in growth rate are determined, and presumably chaotic. One characteristic of complex chaotic systems is that their dynamics can be persistently modified by a small external perturbation. We show that treatment with a single small dose of the anticancer drug methotrexate causes long-term stable alteration of the oscillatory dynamics of Fao cell proliferation. The oscillations of growth rate are shifted, and their mean level decreased according to a fractal pattern.

  6. A comparison of adrenergic receptors of rat ascites hepatoma AH130 cells with those of normal rat hepatocytes.

    Science.gov (United States)

    Sanae, F; Miyamoto, K; Koshiura, R

    1988-04-01

    The pharmacological specificity of adrenergic receptors in the plasma membrane of rat ascites hepatoma AH130 cells was compared with that in normal rat hepatocytes. The number of [125I]iodocyanopindolol-binding sites was much greater in AH130 cells than in the hepatocytes. We characterized the alpha-adrenergic receptor subtypes using the alpha 1-selective ligand [3H]prazosin and the alpha 2-selective ligand [3H]clonidine. AH130 cells had fewer prazosin-binding sites than the hepatocytes and about 8 times as many clonidine-binding sites of high affinity. The results showed that the adrenergic receptors in AH130 cells have pharmacological properties that are very different from those of the receptors in normal rat hepatocytes.

  7. Effect of IL-17 monoclonal antibody Secukinumab combined with IL-35 blockade of Notch signaling pathway on the invasive capability of hepatoma cells.

    Science.gov (United States)

    Li, H Ch; Zhang, Y X; Liu, Y; Wang, Q Sh

    2016-07-14

    We investigated the effect of the IL-17 monoclonal antibody Secukinumab combined with IL-35 in the blockade of the Notch signaling pathway on the invasive capability of hepatoma cells. We examined the effects of IL-17 antibody or IL-35 treatment alone or in combination on cell invasion and migration capabilities with Transwell chambers. The mRNA levels of Hes1, Hes5, and Hey1 were tested using quantitative polymerase chain reaction. The protein expression of N1ICD, Snail, and E-cadherin protein expressions were measured with western blot. The expression of Hes1, Hes5, Hey1 and N1ICD were all very high in hepatoma cell lines, and were positively correlated with the invasive migration capabilities of the cells. The combination of IL-17 monoclonal antibody Secukinumab with IL-35 could effectively inhibit the Notch signaling pathway, as well as the invasive migration of the cells. Snail and E-cadherin are involved in the migration of hepatoma cells, and it has been established that Snail can regulate the expression of E-cadherin. IL-17 monoclonal antibody Secukinumab combined with IL-35 can increase E-cadherin and decrease Snail expression, which are positively correlated with cell invasive migration capabilities. Overall, treatment with both IL-17 antibody and IL-35 is more effective than each treatment alone. Notch signaling is activated in hepatoma cell lines and increases with the enhancement of cell invasive migration capabilities. IL-17 monoclonal antibody Secukinumab combined with IL-35 can block the Notch signaling pathway, simultaneously reducing the invasive migration capability of hepatoma cells.

  8. Down-modulation of heat shock protein 70 and up-modulation of Caspase-3 during schisandrin B-induced apoptosis in human hepatoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Yi-Feng Wu; Ming-Fu Cao; Yan-Ping Gao; Fei Chen; Tao Wang; Edward P. Zumbika; Kai-Xian Qian

    2004-01-01

    AIM: To investigate the effect of schisandrin B (Sch B) on proliferation and apoptosis of human hepatoma SMMC-7721 cells in vitro and regulation of Hsp70 and Caspases-3, 7, 9 expression by Sch B.METHODS: Human hepatoma cell line SMMC-7721 was cultured and treated with Sch B at various concentrations.Growth suppression was detected with MTT colorimetric assay. Cell apoptosis was confirmed by DNA ladder detection and flow cytometric analysis. The expression of Hsp70,Caspases-3, 7, 9 were analyzed by Western blot analysis.RESULTS: Sch B inhibited the growth of hepatoma SMMC-7721 cells in a dose-dependent manner, leading to a 50% decrease in cell number (LC50) value of 23.50 mg/L. Treatment with Sch B resulted in degradation of chromosomal DNA into small internucleosomal fragments, evidenced by the formation of a 180-200 bp DNA ladder on agarose gels.FCM analysis showed the peak areas of subdiploid at the increased concentration of Sch B. The results of Western bolt analysis showed that Hsp70 was down-regulated and Caspase-3 was up-regulated, while the activity of Caspases-7,-9 had no significant change.CONCLUSION: Sch B is able to inhibit the proliferation of human hepatoma SMMC-7721 cells and induce apoptosis,which goes through Caspase-3-dependent and Caspase-9-independent pathway accompanied with the down-regulation of Hsp70 protein expression at an early event.

  9. Targeted delivery of macromolecular drugs: asialoglycoprotein receptor (ASGPR) expression by selected hepatoma cell lines used in antiviral drug development.

    Science.gov (United States)

    Li, Yan; Huang, Guifang; Diakur, James; Wiebe, Leonard I

    2008-10-01

    The asialoglycoprotein receptor (ASGPR), an endocytotic cell surface receptor expressed by hepatocytes, is triggered by triantennary binding to galactose residues of macromolecules such as asialoorosomucoid (ASOR). The capacity of this receptor to import large molecules across the cellular plasma membrane makes it an enticing target for receptor-mediated drug delivery to hepatocytes and hepatoma cells via ASGPR-mediated endocytosis. This study describes the preparation and characterization of (125)I-ASOR, and its utility in the assessment of ASGPR expression by HepG2, HepAD38 and Huh5-2 human hepatoma cell lines. ASOR was prepared from human orosomucoid, using acid hydrolysis to remove sialic acid residues, then radioiodinated using iodogen. (125)I-ASOR was purified by gel column chromatography and characterized by SDS-PAGE electrophoresis. The ASOR yield by acid hydrolysis was 75%, with approximately 87 % of the sialic acid residues removed. Electrophoresis and gel chromatography demonstrated substantial differences in (125)I-ASOR quality depending on the method of radioiodination. ASGPR densities per cell were estimated at 76,000 (HepG2), 17,000 (HepAD38) and 3,000 (Huh-5-2). (125)I-ASOR binding to ASGPR on HepG2 cells was confirmed through galactose- and EDTA- challenge studies. It is concluded that (125)I-ASOR is a facilely-prepared, stable assay reagent for ASGPR expression if appropriately prepared, and that HepG2 cells, but not HepAD38 or Huh-5-2 cells, are suitable for studies exploiting the endocytotic ASGPR.

  10. Cucurbitacin E inhibits the proliferation of hepatoma cells in vitro and in vivo through induction of G2/M phase arrest

    Institute of Scientific and Technical Information of China (English)

    LI Yan-chun; MA En-long; DENG Yi-hui; JING Yong-kui

    2008-01-01

    Objective Cucurbitacins are the highly oxygenated tetracyclic triterpenes, which are predominantly found in the Cucurbitaceae family but are also present in several other families of the plant kingdom. A number of compounds of this group have been investigated for their cytotoxie, hepatoprotective, anti-inflammatory, cardiovascular and anti-diabetic activities. In China, the cucurbitacin preparation, which contains mostly cucurbitacin B and cucurbitacin E, has been clinically used for the treatment of the primary liver carcinoma. It has been previously reported that eueurbitacin E could produce cytotoxicity against a variety of cancer cells, and various mechanisms were implicated in its cytotoxic effect. The present study is to investigate the effect of cucurbitacin E on hepatoma cells in vitro and in vivo and to study their potential mechanisms of action. Methods The MTT assay was used to assess the viability of human HepG2 and BEL7402 hepatoma cells in vitro after treatment with different concentrations of cucurbitacin E. The cell cycle distribution was determined by flowcytometrie analysis after propidium iodide (PI) staining. The cell cycle-related proteins were detected using western blotting analysis. Implanted mouse hepatoma H22 model was built to evaluate the growth inhibitory effect of cucurbitacin E in vivo in mice. Results Our studies found that cucurbitacin E (10-300 nM) produced anti-proliferative effect on human HepG2 and BEL7402 hepatoma cells in vitro without cytotoxicity. According to floweytometric analysis, cucurbitacin E arrested the cell cycle at G2/M phase in both HepG2 and BEL7402 hepatoma cells after 24 h treatment. Cucurbitacin E induced the decrease in the level of CDK1 protein and the increase in the level of p21 protein, but had no effect on the levels of cyclin A, cyclin B1 and Cdc25C protein. In in vivo anti-tumor experiment, eucurbitacin E had significant inhibitory effects on the growth of mouse H22 hepatoma cells. Conclusions

  11. Quercetin modulates NF-kappa B and AP-1/JNK pathways to induce cell death in human hepatoma cells.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2010-01-01

    Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. The aim of this study was to investigate the regulatory effect of quercetin (50 microM) on two main transcription factors (NF-kappa B and AP-1) related to survival/proliferation pathways in a human hepatoma cell line (HepG2) over time. Quercetin induced a significant time-dependent inactivation of the NF-kappa B pathway consistent with a downregulation of the NF-kappa B binding activity (from 15 min onward). These features were in concert with a time-dependent activation (starting at 15 min and maintained up to 18 h) of the AP-1/JNK pathway, which played an important role in the control of the cell death induced by the flavonoid and contributed to the regulation of survival/proliferation (AKT, ERK) and death (caspase-3, p38, unbalance of Bcl-2 proapoptotic and antiapoptotic proteins) signals. These data suggest that NF-kappa B and AP-1 play a main role in the tight regulation of survival/proliferation pathways exerted by quercetin and that the sustained JNK/AP-1 activation and inhibition of NF-kappa B provoked by the flavonoid induced HepG2 death.

  12. Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells

    DEFF Research Database (Denmark)

    Hartwig Petersen, Nicole; Færgeman, Nils J; Yu, Liqing;

    2008-01-01

    Niemann-Pick C1-like 1 (NPC1L1) is a recently identified protein that mediates intestinal cholesterol absorption and regulates biliary cholesterol excretion. The itineraries and kinetics of NPC1L1 trafficking remain uncertain. In this study, we have visualized movement of NPC1L1-enhanced green...... fluorescent protein (NPC1L1-EGFP) and cholesterol analogues in hepatoma cells. At steady state about 42% of NPC1L1 resided in the transferrin (Tf) positive, sterol enriched endocytic recycling compartment (ERC), while time-lapse microscopy demonstrated NPC1L1 traffic between plasma membrane and ERC...... exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1 mediated cellular sterol uptake....

  13. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems

    DEFF Research Database (Denmark)

    Gottwein, Judith Margarete; Bukh, Jens

    2008-01-01

    described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (c...... studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes...... isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro...

  14. Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway in PLC/PRF/5 hepatoma cells.

    Science.gov (United States)

    Zhen, Yulan; Pan, Wanying; Hu, Fen; Wu, Hongfu; Feng, Jianqiang; Zhang, Ying; Chen, Jingfu

    2015-05-01

    Hydrogen sulfide (H2S) takes part in a diverse range of intracellular pathways and hss physical and pathological properties in vitro and in vivo. However, the effects of H2S on cancer are controversial and remain unclear. The present study investigates the effects of H2S on liver cancer progression via activating NF-κB pathway in PLC/PRF/5 hepatoma cells. PLC/PRF/5 hepatoma cells were pretreated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of CSE, CBS, phosphosphorylate (p)-NF-κB p65, caspase-3, COX-2, p-IκB and MMP-2 were measured by western blot assay. Cell viability was detected by cell counter kit 8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. The production level of H2S in cell culture medium was measured by using the sulfur-sensitive electrode method. The production of vascular endothelial growth factor (VEGF) was tested by enzyme-linked immunosorbent assay (ELISA). Our results showed that the production of H2S was dramatically increased in the PLC/PRF/5 hepatoma cells, compared with human LO2 hepatocyte cells group, along with the overexpression levels of CSE and CBS. Treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS (a donor of H2S) for 24 h markedly increased the expression levels of CSE, CBS, p-IκB and NF-κB activation, leading to COX-2 and MMP-2 overexpression, and decreased caspase-3 production, as well as increased cell viability and decreased number of apoptotic cells. Otherwise, the production level of H2S and VEGF were also significantly increased. Furthermore, co-treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS and 200 µmol/l PDTC for 24 h significantly overturned these indexes. The findings of the present study provide evidence that the NF-κB is involved in the NaHS-induced cell proliferation, anti-apoptisis, angiogenesis, and migration in PLC/PRF/5 hepatoma cells, and that the PDTC against the NaHS-induced effects were by inhibition of the NF-κB pathway.

  15. Enhanced migration of tissue inhibitor of metalloproteinase overexpressing hepatoma cells is attributed to gelatinases:Relevance to intracellular signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Elke Roeb; Anja-Katrin Bosserhoff; Sabine Hamacher; Bettina Jansen; Judith Dahmen; Sandra Wagner; Siegfried Matern

    2005-01-01

    AIM: To study the effect of gelatinases (especially MMP-9)on migration of tissue inhibitor of metalloproteinase (TIMP-1) overexpressing hepatoma cells.METHODS: Wild type HepG2 cells, cells stably transfected with TIMP-1 and TIMP-1 antagonist (MMP-9-H401A, a catalytically inactive matrix metalloproteinase (MMP) which still binds and neutralizes TIMP-1) were incubated in Boyden chambers either with or without Galardin (a synthetic inhibitor of MMP-1, -2, -3, -8, -9) or a specific inhibitor of gelatinases.RESULTS: Compared to wild type HepG2 cells, the cells overexpressing TIMP-1 showed 115% migration (P<0.05)and the cells overexpressing MMP-9-H401A showed 62% migration (P<0.01). Galardin reduced cell migration dose dependently in all cases. The gelatinase inhibitor reduced migration in TIMP-1 overexpressing cells predominantly.Furthermore, we examined intracellular signal transduction pathways of TIMP-1-dependent HepG2 cells. TIMP-1deactivates cell signaling pathways of MMP-2 and MMP-9involving p38 mitogen-activated protein kinase. Specific blockade of the ERK pathway suppresses gelatinase expression either in the presence or absence of TIMP-1.CONCLUSION: Overexpressing functional TIMP-1-enhanced migration of HepG2-TIMP-1 cells depends on enhanced MMP-activity, especially MMP-9.

  16. Effect of P15INK4b/MTS2 on the proliferation of human hepatoma cells SMMC-7721

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The full length cDNA coding for P15 INK4b, which is a cyclin-dependent kinase inhibitor, was cloned to plasmid PXJ41-neo (Eco RⅠ/XhoⅠ site) and the new constructed plasmid pXJp15 was obtained. pXJp15 was transferred into the human hepatoma SMMC-7721 cells by lipofectine reagent. After G418 selection, a series of cell lines stably expressing high levels of P15 (named SHT) and the clone containing vector PXJ41-neo only (named SVXJ) were obtained by Northern and Western analysis. The results showed that the proliferation of SHT cells is inhibited compared with that of SVXJ cells. Cell cycle analysis indicated that overexpressing of P15 inhibited the growth of SHT cells by decreasing progrssion of cells from G1 to S and G2 to M phases. The levels of c-Myc and c-Fos were obviously decreased in SHT cells compared with control cells by Western blotting. The decreased expression of oncogene may be one of the molecular mechanisms of the effect of P15 on the proliferation of in SHT cells.

  17. A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Fat-Moon Suk

    2013-01-01

    Full Text Available Activating transcription factor-(ATF- 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002 is a Taiwanese propolin G (PPG derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose polymerase (PARP. GS-002 also induced endoplasmic reticular (ER stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78, growth arrest- and DNA damage-inducible gene 153 (GADD153, phosphorylated eukaryotic initiation factor 2α (eIF2α, phosphorylated protein endoplasmic-reticular-resident kinase (PERK, and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

  18. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Devanand Venkatasubbu, G.; Ramasamy, S., E-mail: sinna_ramasamy@yahoo.com [Crystal Growth Centre, Anna University (India); Avadhani, G. S. [Indian Institute of Science, Department of Materials Engineering (India); Palanikumar, L.; Kumar, J. [Crystal Growth Centre, Anna University (India)

    2012-03-15

    Nanoparticles are highly used in biological applications including nanomedicine. In this present study, the interaction of HepG2 hepatocellular carcinoma cells (HCC) with hydroxyapatite (HAp), zinc-doped hydroxyapatite, and titanium dioxide (TiO{sub 2}) nanoparticles were investigated. Hydroxyapatite, zinc-doped hydroxyapatite and titanium dioxide nanoparticles were prepared by wet precipitation method. They were subjected to isochronal annealing at different temperatures. Particle morphology and size distribution were characterized by X-ray diffraction and transmission electron microscope. The nanoparticles were co-cultured with HepG2 cells. MTT assay was employed to evaluate the proliferation of tumor cells. The DNA damaging effect of HAp, Zn-doped HAp, and TiO{sub 2} nanoparticles in human hepatoma cells (HepG2) were evaluated using DNA fragmentation studies. The results showed that in HepG2 cells, the anti-tumor activity strongly depend on the size of nanoparticles in HCC cells. Cell cycle arrest analysis for HAp, zinc-doped HAp, and TiO{sub 2} nanoparticles revealed the influence of HAp, zinc-doped HAp, and titanium dioxide nanoparticles on the apoptosis of HepG2 cells. The results imply that the novel nano nature effect plays an important role in the biomedicinal application of nanoparticles.

  19. Enhancement of carboplatin- and quercetin-induced cell death by roscovitine is Akt dependent and p53 independent in hepatoma cells.

    Science.gov (United States)

    Sharma, Aanchal; Bhat, Manoj Kumar

    2011-12-01

    Hepatocellular carcinoma (HCC) is a common malignancy worldwide and has an annual occurrence of one million new cases. Novel therapeutic strategies of increased efficacy in the treatment of HCC-bearing patients would certainly be helpful. Hence, the authors explored the effect of combination treatment of roscovitine with chemotherapeutic drugs or quercetin (Qctn) in hepatoma cells, HepG2 and Hep3B. Cell viability was assessed by MTT assay, cell growth assay, and nuclear morphological changes by DAPI staining. The altered expression of signaling proteins and apoptotic molecules was established by Western blotting. Roscovitine pretreatment considerably enhanced the drugs and Qctn-induced cell death in HepG2 and Hep3B cells. The exploratory studies revealed that augmented cell killing in HepG2 and Hep3B was mediated via Akt pathway and was independent of p53. pAkt was found to be significantly downregulated in combination treatment of roscovitine with carboplatin or Qctn. Corresponding to reduced expression of pAkt, the downstream molecules Bcl-2 and proactive forms of caspase 9 and caspase 3 were also downregulated indicating apoptosis. The present study reports for the first time, in hepatoma cells, the potentiation of carboplatin- and Qctn-induced cell death by the cell cycle inhibitor roscovitine. Roscovitine can thus be considered as a potential therapeutic target in combination with chemotherapeutic drugs or Qctn for treatment of HCC.

  20. Hydrogen sulfide (H{sub 2}S)/cystathionine γ-lyase (CSE) pathway contributes to the proliferation of hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yan; Ye, Shuang; Yuan, Dexiao; Zhang, Jianghong; Bai, Yang; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2014-05-15

    Highlights: • Inhibition of H{sub 2}S/CSE pathway strongly stimulates cellular apoptosis. • Inhibition of H{sub 2}S/CSE pathway suppresses cell growth by blocking EGFR pathway. • H{sub 2}S/CSE pathway is critical for maintaining the proliferation of hepatoma cells. - Abstract: Hydrogen sulfide (H{sub 2}S)/cystathionine γ-lyase (CSE) pathway has been demonstrated to play vital roles in physiology and pathophysiology. However, its role in tumor cell proliferation remains largely unclear. Here we found that CSE over-expressed in hepatoma HepG2 and PLC/PRF/5 cells. Inhibition of endogenous H{sub 2}S/CSE pathway drastically decreased the proliferation of HepG2 and PLC/PRF/5 cells, and it also enhanced ROS production and mitochondrial disruption, pronounced DNA damage and increased apoptosis. Moreover, this increase of apoptosis was associated with the activation of p53 and p21 accompanied by a decreased ratio of Bcl-2/Bax and up-regulation of phosphorylated c-Jun N-terminal kinase (JNK) and caspase-3 activity. In addition, the negative regulation of cell proliferation by inhibition of H{sub 2}S/CSE system correlated with the blockage of cell mitogenic and survival signal transduction of epidermal growth factor receptor (EGFR) via down-regulating the extracellular-signal-regulated kinase 1/2 (ERK1/2) activation. These results demonstrate that H{sub 2}S/CSE and its downstream pathway contribute to the proliferation of hepatoma cells, and inhibition of this pathway strongly suppress the excessive growth of hepatoma cells by stimulating mitochondrial apoptosis and suppressing cell growth signal transduction.

  1. The promoting molecular mechanism of alpha-fetoprotein on the growth of human hepatoma Bel7402 cell line

    Institute of Scientific and Technical Information of China (English)

    Meng-Sen Li; Ping-Feng Li; Shi-Peng He; Guo-Guang Du; Gang Li

    2002-01-01

    AIM: The goal of this study was to characterize the AlPreceptor, its possible signal transduction pathway and itsproliferative functions in human hepatoma cell line Bel 7402.METHODS: Cell proliferation enhanced by AFlP was detectedby MTT assay, 3H-thymidine incorporation and S-stsgepercentage of cell cycle analysis. With radioactive labeled 125 I-AFP for receptor binding assay; cAMP acctmuation, ProteinKinase A activity were detected by radioactive immunosorbentassay and the change of intracellular free calcium ([Ca2+ ], )was monitored by scanning fluorescence intensity under TCS-NT confocal microscope. The expression of oncxgenes N- ras,p53, and p21ras in the cultured cells in vitro were detected byNorthem blotting and Western blotting respectively.RESULTS: It was demonstrated that AFP enhanced theproliferation of human hepatoma Bel 7402 cell in a dosedependlent fashion asshown in MTT assay, 3H-thymidineincorporation and S-phase percentage up to 2-fold. Twosubtypes of AFP receptors were identified in the cells withKds of 1.3 x 10-9 mol. L-1 and 9.9 x 10-8 mol. L-1 respectively.Pretreatnent of cells with AFP resulted-in a significantincrease (625 %) in cAMP accumulation. The activity ofprotein kinase A activity were increased up to 37.5, 122.6,73.7 and 61.2 % at treatment time point 2, 6, 12 and 24hours. The level of intracellular calcium were elevated afterthe treatment of alpha-fetoprotsin and achieved to 204 % at 4min. The results also showed that AFP (20 mg. L-1 ) couldupregulate the expression of N-ras oncogenes and p53 andp21ras in Bel 7402 cells. In the later case, the alteration ware 81.1%(12 h) and 97.3 %(12 h) respectively compared with control.CONCLUSION: These results demonstrate that AFP is apotential growth factor to promote the proliferation of humanhepatoma Bel 7402 cells. Its growth-regulatory effects aremediated by its specific plasma membrane receptorscoupled with its transmembrane signaling transductionthrough the pathway of cAMP-PKA and

  2. Screening and identification of a novel target specific for hepatoma cell line HepG2 from the FliTrx bacterial peptide library

    Institute of Scientific and Technical Information of China (English)

    Wenhan Li; Ping Lei; Bing Yu; Sha Wu; Jilin Peng; Xiaoping Zhao; Huffen Zhu; Michael Kirschfink; Guanxin Shen

    2008-01-01

    To explore new targets for hepatoma research, we used a surface display library to screen novel tumor cell-specific peptides. The bacterial FliTrx system was screened with living normal liver cell line L02 and hepatoma cell line HepG2 successively to search for hepatoma-specific peptides. Three clones (Hep1, Hep2, and Hep3) were identified to be specific to HepG2 compared with L02 and other cancer cell lines.Three-dimensional structural prediction proved that peptides inserted into the active site of Escherichia coli thioredoxin (TrxA) formed certain loop structures protruding out of the surface. Western blot analysis showed that FliC/TrxA-pepfide fusion proteins could be directly used to detect HepG2 cells.Three different FliC/TrxA-peptide fusion proteins targeted the same molecule, at approximately 140 kDa, on HepG2 cells.This work presented for the first time the application of the FliTrx library in screening living cells. Three peptides were obtained that could be potential candidates for targeted liver cancer therapy.

  3. Selenium methylselenocysteine protects human hepatoma HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

    Science.gov (United States)

    Cuello, Susana; Ramos, Sonia; Mateos, Raquel; Martín, M Angeles; Madrid, Yolanda; Cámara, Carmen; Bravo, Laura; Goya, Luis

    2007-12-01

    Selenium methylselenocysteine (Se-MeSeCys) is a common selenocompound in the diet with a tested chemopreventive effect. This study investigated the potential protective effect of Se-MeSeCys against a chemical oxidative stress induced by tert-butyl hydroperoxide (t-BOOH) on human hepatoma HepG2 cells. Speciation of selenium derivatives by liquid chromatography-inductively coupled plasma mass spectrometry depicts Se-MeSeCys as the only selenocompound in the cell culture. Cell viability (lactate dehydrogenase) and markers of oxidative status--concentration of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS) and activity of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR)--were evaluated. Pretreatment of cells with Se-MeSeCys for 20 h completely prevented the enhanced cell damage, MDA concentration and GR and GPx activity and the decreased GSH induced by t-BOOH but did not prevent increased ROS generation. The results show that treatment of HepG2 cells with concentrations of Se-MeSeCys in the nanomolar to micromolar range confers a significant protection against an oxidative insult.

  4. Nano-cerium-element-doped titanium dioxide induces apoptosis of Bel 7402 human hepatoma cells in the presence of visible light

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the apoptotic effect of photoexcited titanium dioxide (TiO2) nanoparticles in the presence of visible light on human hepatoma cell line (Bel 7402) and to study the underlying mechanism.METHODS: Cerium-element-doped titanium dioxide nanoparticles were prepared by impregnation method.Bel 7402 human hepatoma cells were cultured in RPMI 1640 medium in a humidified incubator with 50 mL/L CO2 at 37℃. A 15 W fluorescent lamp with continuous wavelength light was used as light source in the photocatalytic test. Fluorescence morphology and agarose gel eletrophoresis pattern were performed to analyze apoptotic cells.RESULTS: The Ce (Ⅳ)-doped TiO2 nanoparticles displayed their superiority, The adsorption edge shifted to the 400-450 nm region. With visible light illuminated for 10 min, 10 μg/cm3 Ce (Ⅳ)-doped TiO2 induced micronuclei and significant apoptosis in 4 and 24 h,respectively. Hochest 33258 staining of the fixed cells revealed typical apoptotic structures (apoptotic bodies),agarose gel electrophoresis showed typical DNA ladder pattern in treated cells but not in untreated ones.CONCLUSION: Ce (Ⅳ) doped TiO2 nanoparticles can induce apoptosis of Bel 7402 human hepatoma cells in the presence of visible light.

  5. Orphan receptor TR3 enhances p53 transactivation and represses DNA double-strand break repair in hepatoma cells under ionizing radiation.

    Science.gov (United States)

    Zhao, Bi-xing; Chen, Hang-zi; Du, Xiao-dan; Luo, Jie; He, Jian-ping; Wang, Rong-hao; Wang, Yuan; Wu, Rong; Hou, Ru-rong; Hong, Ming; Wu, Qiao

    2011-08-01

    In response to ionizing radiation (IR)-induced DNA double-strand breaks (DSB), cells elicit an evolutionarily conserved checkpoint response that induces cell cycle arrest and either DNA repair or apoptosis, thereby maintaining genomic stability. DNA-dependent protein kinase (DNA-PK) is a central enzyme involved in DSB repair for mammalian cells that comprises a DNA-PK catalytic subunit and the Ku protein, which act as regulatory elements. DNA-PK also functions as a signaling molecule to selectively regulate p53-dependent apoptosis in response to IR. Herein, we demonstrate that the orphan nuclear receptor TR3 suppresses DSB repair by blocking Ku80 DNA-end binding activity and promoting DNA-PK-induced p53 activity in hepatoma cells. We find that TR3 interacts with Ku80 and inhibits its binding to DNA ends, which then suppresses DSB repair. Furthermore, TR3 is a phosphorylation substrate for DNA-PK and interacts with DNA-PK catalytic subunit in a Ku80-independent manner. Phosphorylated TR3, in turn, enhances DNA-PK-induced phosphorylation and p53 transcription activity, thereby enhancing IR-induced apoptosis in hepatoma cells. Together, our findings reveal novel functions for TR3, not only in DSB repair regulation but also in IR-induced hepatoma cell apoptosis, and they suggest that TR3 is a potential target for cancer radiotherapy.

  6. Human hepatoma cell lines on gas foaming templated alginate scaffolds for in vitro drug-drug interaction and metabolism studies.

    Science.gov (United States)

    Stampella, A; Rizzitelli, G; Donati, F; Mazzarino, M; de la Torre, X; Botrè, F; Giardi, M F; Dentini, M; Barbetta, A; Massimi, M

    2015-12-25

    Liver in vitro systems that allow reliable prediction of major human in vivo metabolic pathways have a significant impact in drug screening and drug metabolism research. In the present study, a novel porous scaffold composed of alginate was prepared by employing a gas-in-liquid foaming approach. Galactose residues were introduced on scaffold surfaces to promote cell adhesion and to enhance liver specific functions of the entrapped HepG2/C3A cells. Hepatoma cells in the gal-alginate scaffold showed higher levels of liver specific products (albumin and urea) and were more responsive to specific inducers (e.g. dexamethasone) and inhibitors (e.g. ketoconazole) of the CYP3A4 system than in conventional monolayer culture. HepG2/C3A cells were also more efficient in terms of rapid elimination of testosterone, used as a model substance, at rates comparable to those of in vivo excretion. In addition, an improvement in metabolism of testosterone, in terms of phase II metabolite formation, was also observed when the more differentiated HepaRG cells were used. Together the data suggest that hepatocyte/gas templated alginate-systems provide an innovative high throughput platform for in vitro drug metabolism and drug-drug interaction studies, with broad fields of application, and might provide a valid tool for minimizing animal use in preclinical testing of human relevance.

  7. Matrine-induced autophagy regulated by p53 through AMP-activated protein kinase in human hepatoma cells.

    Science.gov (United States)

    Xie, Shan-Bu; He, Xing-Xing; Yao, Shu-Kun

    2015-08-01

    Matrine, one of the main extract components of Sophora flavescens, has been shown to exhibit inhibitory effects on some tumors through autophagy. However, the mechanism underlying the effect of matrine remains unclear. The cultured human hepatocellular carcinoma cell line HepG2 and SMMC‑7721 were treated with matrine. Signal transduction and gene expression profile were determined. Matrine stimulated autophagy in SMMC‑7721 cells in a mammalian target of rapamycin (mTOR)-dependent manner, but in an mTOR-independent manner in HepG2 cells. Next, in HepG2 cells, autophagy induced by matrine was regulated by p53 inactivation through AMP-activated protein kinase (AMPK) signaling transduction, then AMPK suppression switched autophagy to apoptosis. Furthermore, the interferon (IFN)-inducible genes, including interferon α-inducible protein 27 (IFI27) and interferon induced transmembrane protein 1 (IFITM1), which are downstream effector of p53, might be modulated by matrine-induced autophagy. In addition, we found that the p53 protein isoforms, p53β, p53γ, ∆133p53, and ∆133p53γ, due to alternative splicing of intron 9, might be regulated by the p53-mediated autophagy. These results show that matrine induces autophagy in human hepatoma cells through a novel mechanism, which is p53/AMPK signaling pathway involvement in matrine-promoted autophagy.

  8. Decorin protects human hepatoma HepG2 cells against oxygen-glucose deprivation via modulating autophagy.

    Science.gov (United States)

    Ju, Wenbo; Li, Shubo; Wang, Zhaohui; Liu, Yanfeng; Wang, Dawei

    2015-01-01

    This study is to investigate the effects of decorin (DCN) on human hepatoma HepG2 cells under oxygen-glucose deprivation (OGD) condition. HepG2 cells were cultured under OGD condition. CCK-8 assay was used to assess the cell survival, and flow cytometry was performed to detect the apoptosis. Protein expression levels were detected with Western blot analysis. Transfection was performed with liposome, and cells were screened with G418. The cell survival rates were significantly decreased in the OGD groups. When treated with autophagy inhibitor 3-MA, the survival rates were further declined in these cells. Moreover, flow cytometry indicated that apoptosis occurred in the HepG2 cells under OGD condition, and the apoptosis rates were significantly increased by the 3-MA treatment. Western blot analysis showed that, the expression levels of DCN were significantly elevated in OGD-preconditioned HepG2 cells. Meanwhile, the expression level of Beclin1 and the LC3BI/LC3BII ratio were significantly increased, while the expression level of P62 was significantly decreased, in HepG2 cells under OGD condition. Over-expression of DCN significantly increased the expression level of Beclin1 and the LC3BI/LC3BII ratio, while no significant changes were observed in the P62 expression level, in HepG2 cells. Under the OGD condition, the apoptosis rate was also significantly decreased in DCN-transfected HepG2 cells. DCN protects HepG2 cells against OGD-induced injury, via regulating autophagy. These results might contribute to a better understanding of the roles of DCN and autophagy in hepatocellular carcinoma, and the potential treatment for the disease.

  9. The interaction of HAb18G/CD147 with integrin α6β1 and its implications for the invasion potential of human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Tang Juan

    2009-09-01

    Full Text Available Abstract Background HAb18G/CD147 plays pivotal roles in invasion by hepatoma cells, but the underlying mechanism remains unclear. Our previous study demonstrated that overexpression of HAb18G/CD147 promotes invasion by interacting with integrin α3β1. However, it has never been investigated whether α3β1 is solely responsible for this process or if other integrin family members also interact with HAb18G/CD147 in human hepatoma cells. Methods Human SMMC-7721 and FHCC98 cells were cultured and transfected with siRNA fragments against HAb18G/CD147. The expression levels of HAb18G/CD147 and integrin α6β1 were determined by immunofluorescent double-staining and confocal imaging analysis. Co-immunoprecipitation and Western blot analyses were performed to examine the native conformations of HAb18G/CD147 and integrin α6β1. Invasion potential was evaluated with an invasion assay and gelatin zymography. Results We found that integrin α6β1 co-localizes and interacts with HAb18G/CD147 in human hepatoma cells. The enhancing effects of HAb18G/CD147 on invasion capacity and secretion of matrix metalloproteinases (MMPs were partially blocked by integrin α6β1 antibodies (P 2+ mobilization, significantly reduced cell invasion potential and secretion of MMPs in human hepatoma cells (P Conclusion These results suggest that α6β1 interacts with HAb18G/CD147 to mediate tumor invasion and metastatic processes through the PI3K pathway.

  10. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2).

    Science.gov (United States)

    Abdel-Lateef, Ezzat; Mahmoud, Faten; Hammam, Olfat; El-Ahwany, Eman; El-Wakil, Eman; Kandil, Sherihan; Abu Taleb, Hoda; El-Sayed, Mortada; Hassenein, Hanaa

    2016-09-01

    The present study was designed to identify the chemical constituents of the methanolic extract of Curcuma longa L. rhizomes and their inhibitory effect on a hepatoma cell line. The methanolic extract was subjected to GC-MS analysis to identify the volatile constituents and the other part of the same extract was subjected to liquid column chromatographic separation to isolate curcumin. The inhibition of cell growth in the hepatoma cell line and the cytopathological changes were studied. GC-MS analysis showed the presence of fifty compounds in the methanolic extract of C. longa. The major compounds were ar-turmerone (20.50 %), β-sesquiphellandrene (5.20 %) and curcumenol (5.11 %). Curcumin was identified using IR, 1H and 13C NMR. The inhibition of cell growth by curcumin (IC50 = 41.69 ± 2.87 μg mL-1) was much more effective than that of methanolic extract (IC50 = 196.12 ± 5.25 μg mL-1). Degenerative and apoptotic changes were more evident in curcumin- treated hepatoma cells than in those treated with the methanol extract. Antitumor potential of the methanolic extract may be attributed to the presence of sesquiterpenes and phenolic constituents including curcumin (0.051 %, 511.39 μg g-1 dried methanol extract) in C. longa rhizomes.

  11. Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells

    Science.gov (United States)

    Kai, Wei; Xiaojun, Xu; Ximing, Pu; Zhenqing, Hou; Qiqing, Zhang

    2011-07-01

    The evaluation of the toxicity of magnetic nanoparticles (MNPs) has attracted much attention in recent years. The current study aimed to investigate the cytotoxic effects of Fe3O4, oleic acid-coated Fe3O4 (OA-Fe3O4), and carbon-coated Fe (C-Fe) nanoparticles on human hepatoma BEL-7402 cells and the mechanisms. WST-1 assay demonstrated that the cytotoxicity of three types of MNPs was in a dose-dependent manner. G1 (Fe3O4 and OA-Fe3O4) phase and G2 (C-Fe) phase cell arrests and apoptosis induced by MNPs were detected by flow cytometry analysis. The increase in apoptosis was accompanied with the Bax over-expression, mitochondrial membrane potential decrease, and the release of cytochrome C from mitochondria into cytosol. Moreover, apoptosis was further confirmed by morphological and biochemical hallmarks, such as swollen mitochondria with lysing cristae and caspase-3 activation. Our results revealed that certain concentrations of the three types of MNPs affect BEL-7402 cells viability via cell arrest and inducing apoptosis, and the MNPs-induced apoptosis is mediated through the mitochondrial-dependent pathway. The influence potency of MNPs observed in all experiments would be: C-Fe > Fe3O4 > OA-Fe3O4.

  12. Preparation of carotenoids and chlorophylls from Gynostemma pentaphyllum (Thunb.) Makino and their antiproliferation effect on hepatoma cell.

    Science.gov (United States)

    Tsai, Yu-Chian; Wu, Wen-Bin; Chen, Bing-Huei

    2010-12-01

    A preparative column chromatographic method for isolation of carotenoids and chlorophylls from Gynostemma pentaphyllum, a traditional Chinese herb, was developed to evaluate their antiproliferative effects on the hepatoma cell Hep3B. An open column containing 70 g of magnesium oxide-diatomaceous earth (1:2.5, wt/wt) was used to elute carotenoid with 2% ethanol in ethyl acetate and chlorophyll with 50% ethanol in acetone. After high-performance liquid chromatography-mass spectrometry analysis, the carotenoid fraction was composed of all-trans- and cis-isomers of lutein, α-carotene, and β-carotene as well as epoxy-containing carotenoids, while the chlorophyll fraction consisted of chlorophylls a and b and their derivatives. Both carotenoid and chlorophyll fractions as well as lutein and chlorophyll a standards at 50-100 μg/mL were effective against Hep3B cells with a dose-dependent response with the following order: carotenoid fraction > chlorophyll fraction > lutein > chlorophyll a. For all treatments, the cell cycle was arrested in the G₀/G₁ phase, with Hep3B cells undergoing necrosis or apoptosis.

  13. Human papillomavirus type 18 E6 and E7 genes integrate into human hepatoma derived cell line Hep G2.

    Science.gov (United States)

    Ma, Tianzhong; Su, Zhongjing; Chen, Ling; Liu, Shuyan; Zhu, Ningxia; Wen, Lifeng; Yuan, Yan; Lv, Leili; Chen, Xiancai; Huang, Jianmin; Chen, Haibin

    2012-01-01

    Human papillomaviruses have been linked causally to some human cancers such as cervical carcinoma, but there is very little research addressing the effect of HPV infection on human liver cells. We chose the human hepatoma derived cell line Hep G2 to investigate whether HPV gene integration took place in liver cells as well. We applied PCR to detect the possible integration of HPV genes in Hep G2 cells. We also investigated the expression of the integrated E6 and E7 genes by using RT-PCR and Western blotting. Then, we silenced E6 and E7 expression and checked the cell proliferation and apoptosis in Hep G2 cells. Furthermore, we analyzed the potential genes involved in cell cycle and apoptosis regulatory pathways. Finally, we used in situ hybridization to detect HPV 16/18 in hepatocellular carcinoma samples. Hep G2 cell line contains integrated HPV 18 DNA, leading to the expression of the E6 and E7 oncogenic proteins. Knockdown of the E7 and E6 genes expression reduced cell proliferation, caused the cell cycle arrest at the S phase, and increased apoptosis. The human cell cycle and apoptosis real-time PCR arrays analysis demonstrated E6 and E7-mediated regulation of some genes such as Cyclin H, UBA1, E2F4, p53, p107, FASLG, NOL3 and CASP14. HPV16/18 was found in only 9% (9/100) of patients with hepatocellular carcinoma. Our investigations showed that HPV 18 E6 and E7 genes can be integrated into the Hep G2, and we observed a low prevalence of HPV 16/18 in hepatocellular carcinoma samples. However, the precise risk of HPV as causative agent of hepatocellular carcinoma needs further study.

  14. Two-dimensional gel electrophoresis analysis of the proteomes expressed in the human hepatoma cell line BEL-7404 and normal liver cell line L-02

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Proteome analysis technology has been used extensively in conducting discovery research of biology and has become one of the most essential technologies in functional genomics. The proteomes of the human hepatoma cell line BEL-7404 and the normal human liver cell line L-02 have been separated by high resolution two-dimensional gel electrophoresis (2-DE) with immobilized pH gradient isoelectric focusing (IPG-IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension (IPG-DALT). The resulting images have been analyzed using 2-D analysis software. Quantitative analysis reveals that 7 protein spots are detected only in hepatoma BEL-7404 cells, 14 only in L-02 cells, and 78 protein spots show significant fluctuation in quantity in both cell lines (P<0.01).These protein spots have been displayed on a proteome differential expression map. Analysis for the reproducibility of 2-DE indicates that the positional variability in the IEF dimension is 0.73 mm, while the variability in the SDS-PAGE dimension is 0.44 mm, and the quantitative variability is 17.6%-19.2%. These results suggest that the reproducibility of 2-DE has been suitable for the study of differential expression of proteomes. Proteome differential expression maps can be useful tools for disease diagnosis, drug-target validation analysis and biological process elucidation.

  15. Different Responses of Two Highly Permissive Cell Lines Upon HCV Infection

    Institute of Scientific and Technical Information of China (English)

    Honghe Chen; Rongjuan Pei; Xinwen Chen

    2013-01-01

    The construction of the first infectious clone JFH-1 speeds up the research on hepatitis C virus (HCV).However,Huh7 cell line was the only highly permissive cell line for HCV infection and only a few clones were fully permissive.In this study,two different fully permissive clones of Huh7 cells,Huh7.5.1 and Huh7-Lunet-CD81 (Lunet-CD81) cells were compared for their responses upon HCV infection.The virus replication level was found slightly higher in Huh7.5.1 cells than that in Lunet-CD81 cells.Viability of Huh7.5.1 cells but not of Lunet-CD81 cells was reduced significantly after HCV infection.Further analysis showed that the cell cycle of infected Huh7.5.1 cells was arrested at G1 phase.The G1/S transition was blocked by HCV infection in Huh7.5.1 cells as shown by the cell cycle synchronization analysis.Genes related to cell cycle regulation was modified by HCV infection and gene interaction analysis in GeneSpring GX in Direct Interactions mode highlighted 31 genes.In conclusion,the responses of those two cell lines were different upon HCV infection.HCV infection blocked G1/S transition and cell cycle progress,thus reduced the cell viability in Huh7.5.1 cells but not in Lunet-CD81 cells.Lunet-CD81 cells might be suitable for long term infection studies of HCV.

  16. Propagation of Hepatitis B Virus in a Rat Hepatoma Cell Line Stably Transfected with Human Annexin-V

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Jazayeri

    2007-09-01

    Full Text Available Background and Aims: Hepatitis B virus (HBV displays a distinct hepatotropism and a narrow host range in vivo. However, very little is known about the interaction of HBV with its host cells, mainly because of difficulties in the development of suitable tissue culture system. We present here confirmatory evidence of a putative role of annexin-V in HBV infection. Methods: HBV from both human sera and from culture supernatants from HepG2 2.15 cells were used to infect FTO9.1 cells (a rat hepatoma cell line transfected with a construct containing human annexin-V. Cells and culture supernatants were assayed at various times post-infection by immunofluorescent microscopy (HBcAg staining in nucleus, and by HBV cccDNA-specific PCR. Supernatants from these initially infected cells were then used to infect fresh FTO9.1 cells with a similar outcome to primary infection. Results: Core and surface gene PCRs were positive on days 2, 5 and following transfer experiments. cccDNA-specific PCR confirmed internalisation of the virus into the nucleus. HBcAg fluorescence showed nuclear staining on days 2, 5 and following transfer experiments. Addition of recombinant annexin-V and DMSO to the cell culture medium resulted in a greater efficiency of infection. Later washes were negative for HBV-DNA, ruling out contamination of the cells by external HBV particles. Conclusions: This cell line does appear to be useful in the study of the early stages of HBV infection, but requires further evaluation.

  17. Adjuvant PIKA protects hepatoma cells from dengue virus infection by promoting a TBK-1-dependent innate immune response.

    Science.gov (United States)

    Zhang, Ping; Wu, Siyu; Li, Lietao; Liang, Zhaoduan; Li, Yuye; Feng, Lianqiang; Huang, Xi

    2013-04-01

    Our study presents a first investigation of the effect of the adjuvant PIKA on dengue virus (DENV) replication. PIKA pretreatment decreased the levels of DENV serotype 2 (DENV2) mRNA, protein and viral particles in the hepatoma cell line HepG2. Treatment with PIKA simultaneously with DENV2 infection, but not after infection, resulted in a protective effect. Significant induction of type I and type III interferons (IFNs), as well as interferon-stimulated genes was detected in PIKA-pretreated cells. Neutralization of IFN-β partially restored the replication levels of DENV2 in PIKA-pretreated cells, suggesting that IFN-β is one of the mediators involved in the antiviral action of PIKA. Additionally, blockade of TBK-1 signaling largely restored the IFN induction and viral suppression effects mediated by PIKA, further illustrating that PIKA plays its anti-DENV role by promoting innate immunity. These findings suggest that PIKA is an attractive agent to be used in the prevention of DENV diseases.

  18. Heavy Ion Beams Induce Survivin Expression in Human Hepatoma SMMC-7721 Cells More Effectively than X-rays

    Institute of Scientific and Technical Information of China (English)

    Li GONG; Xiaodong JIN; Qiang LI; Jiangtao LIU; Lizhe AN

    2007-01-01

    High linear energy transfer (LET) heavy ion radiation is more effective in inducing biological damage than low-LET X-rays or γ-rays. Heavy ion beam provides good dose localization (Bragg peak) in critical cancer tissue and gives higher relative biological effectiveness in cell killing across the dose peak, so high-LET heavy ion beam is superior to low-LET radiation in cancer treatment. Survivin, as a member of the inhibitor of apoptosis protein family, might help cancerous cells to overcome the G2/M apoptotic checkpoint and favor the aberrant progression of transformed cells through mitosis. Survivin expression in the human hepatoma SMMC-7721 cell line after exposure to low-LET X-ray and high-LET carbon ion irradiation was investigated in this study. Compared with X-ray irradiation, the carbon ion beam clearly caused G2/M arrest and promoted the expression of the survivin gene in a dose-dependent manner. Clonogenic survival assay showed that SMMC-7721 cells were more radiosensitive to the high-LET carbon ions than to the X-rays, and the radiosensitivity was promoted after treatment with specific survivin short interfering RNA. Differential survivin expression at both transcriptional and translational levels was found for SMMC-7721 cells following low- and high-LET irradiation. The overexpression of survivin in SMMC-7721 cells is probably an important reason why the cancerous cells have radioresistance to strong stimulus such as dense ionizing high-LET radiation. However, the direct killing effect on cancerous cells by high-LET radiation might be more significant than the apoptosis inhibition through the overexpression of survivin following heavy ion irradiation.

  19. Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells.

    Science.gov (United States)

    Raza, Haider; John, Annie; Benedict, Sheela

    2011-10-01

    It is widely accepted that non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, reduce the risk of cancer. The anti-cancer and anti-inflammatory effects of NSAIDs are associated with the inhibition of prostaglandin synthesis and cyclooxygenase-2 activity. Several other mechanisms which contribute to the anti-cancer effect of these drugs in different cancer models both in vivo and in vitro are also presumed to be involved. The precise molecular mechanism, however, is still not clear. We investigated, therefore, the effects of acetylsalicylic acid (ASA, aspirin) on multiple cellular and functional targets, including mitochondrial bioenergetics, using human hepatoma HepG2 cancer cells in culture. Our results demonstrate that ASA induced G0/G1 cell cycle arrest and apoptosis in HepG2 cells. ASA increased the production of reactive oxygen species, reduced the cellular glutathione (GSH) pool and inhibited the activities of the mitochondrial respiratory enzyme complexes, NADH-ubiquinone oxidoreductase (complex I), cytochrome c oxidase (complex IV) and the mitochondrial matrix enzyme, aconitase. Apoptosis was triggered by alteration in mitochondrial permeability transition, inhibition of ATP synthesis, decreased expression of the anti-apoptotic protein Bcl-2, release of cytochrome c and activation of pro-apoptotic caspase-3 and the DNA repairing enzyme, poly (-ADP-ribose) polymerase (PARP). These findings strongly suggest that ASA-induced toxicity in human hepatoma HepG2 cells is mediated by increased metabolic and oxidative stress, accompanied by mitochondrial dysfunction which result in apoptosis.

  20. Killing of p53-deficient hepatoma cells by parvovirus H-1 and chemotherapeutics requires promyelocytic leukemia protein

    Institute of Scientific and Technical Information of China (English)

    Maike Sieben; Markus Moehler; Kerstin Herzer; Maja Zeidler; Vera Heinrichs; Barbara Leuchs; Martin Schuler; Jan J Cornelis; Peter R Galle; Jean Rommelaere

    2008-01-01

    AIM: To evaluate the synergistic targeting and killing of human hepatocellular carcinoma (HCC) cells lacking p53 by the oncolytic autonomous parvovirus (PV) H-1 and chemotherapeutic agents and its dependence on functional promyelocytic leukemia protein (PML).METHODS: The role of p53 and PML in regulating cytotoxicity and gene transfer mediated by wild-type (wt)PV H-1 were explored in two pairs of isogenic human hepatoma cell lines with different p53 status.Furthermore,H-1 PV infection was combined with cytostatic drug treatment.RESULTS: While the HCC cells with different p53 status studied were all susceptible to H-1 PV-induced apoptosis,the cytotoxicity of H-1 PV was more pronounced in p53-negative than in p53-positive cells.Apoptosis rates in p53-negative cell lines treated by genotoxic drugs were further enhanced by a treatment with H-1 PV.In flow cytometric analyses,H-1 PV infection resulted in a reduction of the mitochondrial transmembrane potential.In addition,H-1 PV cells showed a significant increase in PML expression.Knocking down PML expression resulted in a striking reduction of the level of H-1 PV infected tumor cell death.CONCLUSION: H-1 PV is a suitable agent to circumvent the resistance of p53-negative HCC cells to genotoxic agents,and it enhances the apoptotic process which is dependent on functional PML.Thus,H-1 PV and its oncolytic vector derivatives may be considered as therapeutic options for HCC,particularly for p53-negative tumors.

  1. Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity : A correlation with cell polarity in HepG2 cells

    NARCIS (Netherlands)

    Zegers, MMP; Hoekstra, D

    1997-01-01

    The regulation of sphingolipid transport to the bile canalicular apical membrane in the well differentiated HepG2 hepatoma cells was studied. By employing fluorescent lipid analogs, trafficking in a transcytosis-dependent pathway and a transcytosis-independent ('direct') route between the trans-Golg

  2. Insulin and phorbol myristic acetate induce ornithine decarboxylase in Reuber H35 rat hepatoma cells by different mechanisms.

    Science.gov (United States)

    Goodman, S A; Esau, B; Koontz, J W

    1988-11-01

    Reuber H35 rat hepatoma cells respond to insulin or to tumor promoting phorbol esters with an increase in ornithine decarboxylase enzyme activity. This occurs in a time- and dose-dependent manner with both types of agonist. We report here that the increase in ornithine decarboxylase activity with optimal concentrations of both agonists is additive. Furthermore, the initial increase is dependent on continued RNA and protein synthesis. We also find that both of these agonists cause an increase in mRNA coding for ornithine decarboxylase in a time- and dose-dependent manner which suggests that the increase in enzyme activity can be accounted for by the increase in transcript levels. The difference in the time course of induction by the agonists, the additivity of induction by the two agonists, the differential sensitivity of induction to cycloheximide and RNA synthesis inhibitors, and the observation that phorbol myristic acetate causes a further increase in ornithine decarboxylase activity and transcript levels in cells already maximally induced by insulin suggest that these two agonists act through separate mechanisms.

  3. Composition of Lycium barbarum polysaccharides and their apoptosis-inducing effect on human hepatoma SMMC-7721 cells

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2015-11-01

    Full Text Available Background: Lycium barbarum polysaccharide (LBP is a natural functional component that has a variety of biological activities. The molecular structures and apoptosis-inducing activities on human hepatoma SMMC-7721 cells of two LBP fractions, LBP-d and LBP-e, were investigated. Results: The results showed that LBP-d and LBP-e both consist of protein, uronic acid, and neutral sugars in different proportions. The structure of LBP was characterized by gas chromatography, periodate oxidation, and Smith degradation. LBP-d was composed of eight kinds of monosaccharides (fucose, ribose, rhamnose, arabinose, xylose, mannose, galactose, and glucose, while LBP-e was composed of six kinds of monosaccharides (fucose, rhamnose, arabinose, mannose, galactose, and glucose. LBP-d and LBP-e blocked SMMC-7721 cells at the G0/G1 and S phases with an inhibition ratio of 26.70 and 45.13%, respectively, and enhanced the concentration of Ca2 + in the cytoplasm of SMMC-7721. Conclusion: The contents of protein, uronic acid, and galactose in LBP-e were much higher than those in LBP-d, which might responsible for their different bioactivities. The results showed that LBP can be provided as a potential chemotherapeutic agent drug to treat cancer.

  4. Antimutagenic activity and in vitro anticancer effects of bamboo salt on HepG2 human hepatoma cells.

    Science.gov (United States)

    Zhao, Xin; Ju, Jaehyun; Kim, Hyung-Min; Park, Kun-Young

    2013-01-01

    Bamboo salt is a traditional Korean baked solar salt processed by packing the solar salt in bamboo joint cases and heating it several times to high temperatures. The antimutagenic activity and in vitro anticancer effects of bamboo salt on HepG2 human hepatoma cells were investigated and compared to those of other salt samples. Although solar salt and purified salt exhibited comutagenicity with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in the Salmonella typhimurium TA100 strain, bamboo salt was associated with a lower degree of comutagenicity or antimutagenic activity. Bamboo salt baked nine times (9×) showed a greater increase in antimutagenic activity than salts baked once (1×) or three times (3×). At a concentration of 1%, the growth rate of HepG2 cells treated with 9× bamboo salt determined by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MIT) assay was reduced by 65%; this rate of inhibition was higher than that achieved with 1× baked bamboo salt (40%). Purified and solar salts had relatively lower inhibitory effects on growth rate (25% and 29%, respectively). Compared to the other salt samples, 9× bamboo salt significantly (pbamboo salts, especially 9× bamboo salt, also significantly (p<0.05) downregulated the expression of inflammation-related NF-κB, iNOS, and COX-2, and upregulated the gene expression of IκB-α compared to the other salt sample.

  5. Inhibition of Insulin Degradation by Hepatoma Cells after Microinjection of Monoclonal Antibodies to a Specific Cytosolic Protease

    Science.gov (United States)

    Shii, Kozui; Roth, Richard A.

    1986-06-01

    Four monoclonal antibodies were identified by their ability to bind to 125I-labeled insulin covalently linked to a cytosolic insulin-degrading enzyme from human erythrocytes. All four antibodies were also found to remove more than 90% of the insulin-degrading activity from erythrocyte extracts. These antibodies were shown to be directed to different sites on the enzyme by mapping studies and by their various properties. Two antibodies recognized the insulin-degrading enzyme from rat liver; one inhibited the erythrocyte enzyme directly; and two recognized the enzyme after gel electrophoresis and transfer to nitrocellulose filters. By this latter procedure and immunoprecipitation from metabolically labeled cells, the enzyme from a variety of tissues was shown to be composed of a single polypeptide chain of apparent Mr 110,000. Finally, these monoclonal antibodies were microinjected into the cytoplasm of a human hepatoma cell line to assess the contribution of this enzyme to insulin degradation in the intact cell. In five separate experiments, preloading of cells with these monoclonal antibodies resulted in an inhibition of insulin degradation of 18-54% (average 39%) and increased the amount of 125I-labeled insulin associated with the cells. In contrast, microinjection of control antibody or an extraneous monoclonal antibody had no effect on insulin degradation or on the amount of insulin associated with the cells. Moreover, the monoclonal antibodies to the insulin-degrading enzyme caused no significant inhibition of degradation of another molecule, low density lipoprotein. Thus, these results support a role for this enzyme in insulin degradation in the intact cell.

  6. Analysis of the genotoxic potential of low concentrations of Malathion on the Allium cepa cells and rat hepatoma tissue culture.

    Science.gov (United States)

    Bianchi, Jaqueline; Mantovani, Mario Sérgio; Marin-Morales, Maria Aparecida

    2015-10-01

    Based on the concentration of Malathion used in the field, we evaluated the genotoxic potential of low concentrations of this insecticide on meristematic and F1 cells of Allium cepa and on rat hepatoma tissue culture (HTC cells). In the A. cepa, chromosomal aberrations (CAs), micronuclei (MN), and mitotic index (MI) were evaluated by exposing the cells at 1.5, 0.75, 0.37, and 0.18mg/mL of Malathion for 24 and 48hr of exposure and 48hr of recovery time. The results showed that all concentrations were genotoxic to A. cepa cells. However, the analysis of the MI has showed non-relevant effects. Chromosomal bridges were the CA more frequently induced, indicating the clastogenic action of Malathion. After the recovery period, the higher concentrations continued to induce genotoxic effects, unlike the observed for the lowest concentrations tested. In HTC cells, the genotoxicity of Malathion was evaluated by the MN test and the comet assay by exposing the cells at 0.09, 0.009, and 0.0009mg/5mL culture medium, for 24hr of exposure. In the comet assay, all the concentrations induced genotoxicity in the HTC cells. In the MN test, no significant induction of MN was observed. The genotoxicity induced by the low concentrations of Malathion presented in this work highlights the importance of studying the effects of low concentrations of this pesticide and demonstrates the efficiency of these two test systems for the detection of genetic damage promoted by Malathion.

  7. Streptozotocin-Induced Cytotoxicity, Oxidative Stress and Mitochondrial Dysfunction in Human Hepatoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2012-05-01

    Full Text Available Streptozotocin (STZ is an antibiotic often used in the treatment of different types of cancers. It is also highly cytotoxic to the pancreatic beta-cells and therefore is commonly used to induce experimental type 1 diabetes in rodents. Resistance towards STZ-induced cytotoxicity in cancer cells has also been reported. Our previous studies have reported organ-specific toxicity and metabolic alterations in STZ-induced diabetic rats. STZ induces oxidative stress and metabolic complications. The precise molecular mechanism of STZ-induced toxicity in different tissues and carcinomas is, however, unclear. We have, therefore, investigated the mechanism of cytotoxicity of STZ in HepG2 hepatoma cells in culture. Cells were treated with different doses of STZ for various time intervals and the cytotoxicity was studied by observing the alterations in oxidative stress, mitochondrial redox and metabolic functions. STZ induced ROS and RNS formation and oxidative stress as measured by an increase in the lipid peroxidation as well as alterations in the GSH-dependent antioxidant metabolism. The mitochondria appear to be a highly sensitive target for STZ toxicity. The mitochondrial membrane potential and enzyme activities were altered in STZ treated cells resulting in the inhibition of ATP synthesis. ROS-sensitive mitochondrial aconitase activity was markedly inhibited suggesting increased oxidative stress in STZ-induced mitochondrial toxicity. These results suggest that STZ-induced cytotoxicity in HepG2 cells is mediated, at least in part, by the increase in ROS/RNS production, oxidative stress and mitochondrial dysfunction. Our study may be significant for better understanding the mechanisms of STZ action in chemotherapy and drug induced toxicity.

  8. Hepatitis E virus ORF2 protein over-expressed by baculovirus in hepatoma cells, efficiently encapsidates and transmits the viral RNA to naïve cells

    Directory of Open Access Journals (Sweden)

    Emerson Suzanne U

    2011-04-01

    Full Text Available Abstract A recombinant baculovirus(vBacORF2 that expressed the full-length ORF2 capsid protein of a genotype 1 strain of hepatitis E virus(HEV was constructed. Transduction of S10-3 human hepatoma cells with this baculovirus led to large amounts of ORF2 protein production in ~50% of the cells as determined by immune fluorescence microscopy. The majority of the ORF2 protein detected by Western blot was 72 kDa, the size expected for the full-length protein. To determine if the exogenously-supplied ORF2 protein could transencapsidate viral genomes, S10-3 cell cultures that had been transfected the previous day with an HEV replicon of genotype 1 that contained the gene for green fluorescent protein(GFP, in place of that for ORF2 protein, were transduced with the vBacORF2 virus. Cell lysates were prepared 5 days later and tested for the ability to deliver the GFP gene to HepG2/C3A cells, another human hepatoma cell line. FACS analysis indicated that lysates from cell cultures receiving only the GFP replicon were incapable of introducing the replicon into the HepG2/C3A cells whereas ~2% of the HepG2/C3A cells that received lysate from cultures that had received both the replicon and the baculovirus produced GFP. Therefore, the baculovirus-expressed ORF2 protein was able to trans-encapsidate the viral replicon and form a particle that could infect naïve HepG2/C3A cells. This ex vivo RNA packaging system should be useful for studying many aspects of HEV molecular biology.

  9. Phase Ⅲ Clinical Trials of the Cell Differentiation Agent-2 (CDA-2): Therapeutic Efficacy on Breast Cancer, Non-Small Cell Lung Cancer and Primary Hepatoma

    Institute of Scientific and Technical Information of China (English)

    Fengyi Feng; Mingzhong Li; Yunzhong Zhu; Meizhen Zhou; Jun Ren; Yetao Gao; Jingpo Zhao; Rongsheng Zheng; Wenhua Zhao; Zhiqiang Meng; Fang Li; Qing Li; Qizhong Zhang; Dongli Zhao; Liyan Xu; Yongqiang Zhang; Yanjun Zhang; Zhenjiu Wang; Shuanqi Liu; Ming C. Liau; Changquan Ling; Yang Zhang; Fengzhan Qin; Huaqing Wang; Wenxia Huang; Shunchang Jiao; Qiang Chen

    2005-01-01

    OBJECTIVE The objective of this study was to explore the effect of CDA-2, a selective inhibitor of abnormal methylation enzymes in cancer cells, on the therapeutic efficacy of cytotoxic chemotherapy.METHODS Advanced cancer patients, all of whom had previously undergone chemotherapy, were randomly divided into 2 groups, one receiving chemotherapy only as the control group, and the other receiving CDA-2 in addition to chemotherapy as the combination group. The therapeutic efficacies and the toxic manifestations of the 2 groups were compared based on the WHO criteria.RESULTS Of 454 cancer patients enrolled in phase Ⅲ clinical trials of CDA-2, 80, 188, and 186 were breast cancer,NSCLC, and primary hepatoma patients, respectively.Among them 378 patients completed treatments according to the protocols. The results showed that the overall effective rate of the combination group was 2.6 fold that of the control group, 4.8 fold in the case of breast cancer, 2.3 fold in the case of primary hepatoma, and 2.2 fold in the case of NSCLC. Surprisingly, the combination therapy appeared to work better for stage Ⅳ than stage Ⅲ patients. CDA-2 did not contribute additional toxicity. On the contrary, it reduced toxic manifestations of chemotherapy, particularly regarding white blood cells, nausea and vomiting.CONCLUSION Modulation of abnormal methylation enzymes by CDA-2 is definitely helpful to supplement chemotherapy. It significantly increased the therapeutic efficacy and reduced the toxic manifestation of cytotoxic chemotherapy on breast cancer and NSCLC.

  10. Effect of methoxychlor on Ca²⁺ homeostasis and apoptosis in HA59T human hepatoma cells.

    Science.gov (United States)

    Horng, Chi-Ting; Chou, Chiang-Ting; Tseng, Hui-Wen; Cheng, Jin-Shiung; Chang, Hong-Tai; Chang, Po-Min; Chen, I-Li; Hung, Ming-Chi; Tsai, Yi-Jen; Tsai, Peng-Chih; Liang, Wei-Zhe; Kuo, Chun-Chi; Kuo, Daih-Huang; Ho, Chin-Man; Lin, Jia-Rong; Shieh, Pochuen; Jan, Chung-Ren

    2015-02-28

    Methoxychlor, an organochlorine pesticide, is thought to be an endocrine disrupter that affects Ca²⁺ homeostasis and cell viability in different cell models. This study explored the action of methoxychlor on cytosolic free Ca²⁺ concentrations ([Ca²⁺]i) and apoptosis in HA59T human hepatoma cells. Fura-2, a Ca²⁺-sensitive fluorescent dye, was applied to measure [Ca²⁺]i. Methoxychlor at concentrations of 0.1-1 μM caused a [Ca²⁺]i rise in a concentration-dependent manner. Removal of external Ca²⁺ abolished methoxychlor's effect. Methoxychlor-induced Ca²⁺ influx was confirmed by Mn²⁺-induced quench of fura-2 fluorescence. Methoxychlor-induced Ca²⁺ entry was inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators. Methoxychlor killed cells at concentrations of 10-130 μM in a concentration-dependent fashion. Chelation of cytosolic Ca²⁺ with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM) did not prevent methoxychlor's cytotoxicity. Methoxychlor (10 and 50 μM) induced apoptosis concentration-dependently as determined by using Annexin V/propidium iodide staining. Together, in HA59T cells, methoxychlor induced a [Ca²⁺]i rise by inducing Ca²⁺ entry via protein kinase C-sensitive Ca²⁺-permeable channels, without causing Ca²⁺ release from stores. Methoxychlor also induced apoptosis that was independent of [Ca²⁺]i rises.

  11. Exploring the potential interference of estuarine sediment contaminants with the DNA repair capacity of human hepatoma cells.

    Science.gov (United States)

    Pinto, Miguel Ferreira; Louro, Henriqueta; Costa, Pedro M; Caeiro, Sandra; Silva, Maria João

    2015-01-01

    Estuaries may be reservoirs of a wide variety of pollutants, including mutagenic and carcinogenic substances that may impact on the ecosystem and human health. A previous study showed that exposure of human hepatoma (HepG2) cells to extracts from sediment samples collected in two areas (urban/industrial and riverine/agricultural) of an impacted estuary (Sado, Portugal), produced differential cytotoxic and genotoxic effects. Those effects were found to be consistent with levels and nature of sediment contamination. The present study aimed at evaluating whether the mixtures of contaminants contained in those extracts were able to modulate DNA repair capacity of HepG2 cells. The residual level of DNA damage was measured by the comet assay in cells exposed for 24 or 48 h to different extracts, after a short preexposure to a challenging concentration range of ethyl methanesulfonate (EMS), as a model alkylating agent. The results suggested that the mixture of contaminants present in the tested samples, besides a potential direct effect on the DNA molecule, may also interfere with DNA repair mechanisms in HepG2 cells, thus impairing their ability to deal with genotoxic stress and, possibly, facilitating accumulation of mutations. Humans are environmentally/occupationally exposed to mixtures rather than to single chemicals. Thus, the observation that estuarine contaminants induce direct and indirect DNA strand breakage in human cells, the latter through the impairment of DNA repair, raises additional concerns regarding potential hazards from exposure and the need to further explore these endpoints in the context of environmental risk assessment.

  12. P120ctn overexpression enhances β-catenin-E-cadherin binding and down regulates expression of survivin and cyclin D1 in BEL-7404 hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    Chao-Zan Nong; Li-Li Pan; Wei-Sheng He; Xi-Liang Zha; Hai-Hong Ye; Hua-Yi Huang

    2006-01-01

    AIM: To understand the role of P120ctn in E-cadherin-mediated cell-cell adhesion and signaling as well as in hepatoma cell biological function.METHODS: We stably overexpressed p120ctn isoform 3A in BEL-7404 human hepatoma cells and studied the effect of p120ctn on β-catenin and E-cadherin binding as well as p120ctn and β-catenin subcellular localization using immunoprecipitation, Western blotting and confocalmicroscopy. We also investigated the inhibitory effect of p120ctn transfection on the expression of apoptotic protein survivin survivin and cell cycle regulator cyclin D1in the cells.RERULTS: Western blotting indicated that p120ctn expression increased after cells were transfected with p120ctn isoform 3A. The protein was located mainly at membrane under immunofluorescent microscope.β-catenin nuclear expression was reduced after overexpression of p120ctn isoform 3A. The p120ctn-E-cadherin binding increased after transfection of p120ctn isoform 3A. Furthermore, overexpression of p120ctn down regulated the expression of apoptotic protein survivin and cell cycle regulator cyclin D1. These effects led to reduction of cell proliferation.CONCLUSION: Our results indicate that p120ctn plays an important role in regulating the formation of E-cadherin and -catenin complex, cell apoptosis, cell cycle and cancer cell biological function.

  13. Fuzheng Qingjie Granules Inhibit Growth of Hepatoma Cells via Inducing Mitochondria-Mediated Apoptosis and Enhancing Immune Function.

    Science.gov (United States)

    Chen, Xuzheng; Cao, Zhiyun; Zhang, Youquan; Li, Jinnong; Wang, Suqing; Du, Jian; Liao, Lianming

    2017-09-01

    Fuzheng Qingjie (FZQJ) granules, a compound Chinese medicine, have been used as an adjuvant therapy for alimentary tract cancers. However, the underlying anticancer mechanisms are still not well understood. In the present study, HepG2 cells were treated with FZQJ-containing serum. Cell proliferation was evaluated using MTT assay. Apoptosis was analyzed using a flow cytometer. Cell ultrastructure was observed under a transmission electron microscope. The mitochondrial membrane potential (Δψ) was examined with JC-1 dye. In H22 tumor-bearing mice, CD4(+) T cells, CD8(+) T cells, CD3(+) T cells, and natural killer (NK) cells in peripheral blood were evaluated cytometrically. Interleukin (IL)-2 and tumor necrosis factor (TNF)-α levels were measured using radioimmunoassay.The mRNA levels of Bax and Bcl-2 were examined by reverse transcription-polymerase chain reaction. The protein levels of Bax, Bcl-2, cytochrome C, caspase 3 and 9, PARP, and CD69 were examined by Western blotting. The apoptotic cells in tissues were observed using TUNEL method. Alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN), and creatinine (CRE) were detected by an automatic biochemical analyzer. The results showed that FZQJ-containing serum remarkably inhibited proliferation of HepG2 cells in dose- and time-dependent manners, induced HepG2 cell apoptosis and caused a decrease of Δψ. Analysis of tumor tissue showed that FZQJ-induced apoptosis was accompanied by downregulation of Bcl-2 and upregulation of Bax, release of cytochrome c, activation of caspase 3 and 9, and cleavage of PARP. In addition, FZQJ increased the percentages of CD4(+) T and NK cells, the ratio of CD4(+)/CD8(+) T cells as well as the levels of serum TNF-α. FZQJ also increased CD69 expression in tumor tissue. No hepatorenal toxicity was observed in H22 tumor-bearing mice. These results indicated that FZQJ could inhibit the growth of hepatoma cells via regulating immune function and inducing

  14. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells.

    Science.gov (United States)

    Dong, Ray; Wang, Xueqian; Wang, Huan; Liu, Zhengyun; Liu, Jie; Saavedra, Joseph E

    2017-04-01

    JS-K is a novel anticancer nitric oxide (NO) prodrug effective against a variety of cancer cells, including the inhibition of AM-1 hepatoma cell growth in rats. To further evaluate anticancer effects of JS-K, human hepatoma Hep3B cells were treated with JS-K and the compound control JS-43-126 at various concentrations (0-100μM) for 24h, and cytotoxicity was determined by the MTS assay. The compound control JS-43-126 was not cytotoxic to Hep3B cells at concentrations up to 100μM, while the LC50 for JS-K was about 10μM. To examine the molecular mechanisms of antitumor effects of JS-K, Hep3B cells were treated with 1-10μM of JS-K for 24h, and then subjected to gene expression analysis via real time RT-PCR and protein immunostain via confocal images. JS-K is a GST-α targeting NO prodrug, and decreased immunostaining for GST-α was associated with JS-K treatment. JS-K activated apoptosis pathways in Hep3B cells, including induction of caspase-3, caspase-9, Bax, TNF-α, and IL-1β, and immunostaining for caspase-3 was intensified. The expressions of thrombospondin-1 (TSP-1) and the tissue inhibitors of metalloproteinase-1 (TIMP-1) were increased by JS-K at both transcript and protein levels. JS-K treatment also increased the expression of differentiation-related genes CD14 and CD11b, and depressed the expression of c-myc in Hep3B cells. Thus, multiple molecular events appear to be associated with anticancer effects of JS-K in human hepatoma Hep3B cells, including activation of genes related to apoptosis and induction of genes involved in antiangiogenesis and tumor cell migration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Alpha particle-induced bystander effect is mediated by ROS via a p53-dependent SCO2 pathway in hepatoma cells.

    Science.gov (United States)

    Li, Jitao; He, Mingyuan; Shen, Bo; Yuan, Dexiao; Shao, Chunlin

    2013-12-01

    The radiation-induced bystander effect (RIBE) has important implications for the efficiency of radiotherapy but the underlying role of cellular metabolism is widely unknown. The roles of synthesis of cytochrome c oxidase 2 (SCO2), a key effector for respiratory chain, and related signaling factors in α-particle-induced bystander damage were currently investigated in a liver cell co-culture system. Human hepatoma cells of HepG2 with wild-type p53 (wtp53) and Hep3B (p53 null) were irradiated with 0.4 Gy of α-particles and co-cultured with non-irradiated normal liver cells HL-7702 for 6 h, then the incidence of micronucleus (MN) in the bystander HL-7702 cells was analyzed. The expressions of total P53, phospho-P53 (p-P53), SCO2, and reactive oxygen species (ROS) in the irradiated hepatoma cells were detected. In some experiments, the hepatoma cells were respectively treated with p53 siRNA, SCO2 siRNA, or dimethyl sulfoxide (DMSO) before irradiation. Bystander damage in HL-7702 cells was induced by α-irradiated HepG2 cells but not by α-irradiated Hep3B cells, and this bystander effect was diminished when the irradiated HepG2 cells were pretreated with p53 siRNA, SCO2 siRNA, or DMSO. Meanwhile, the expressions of p-P53 protein and SCO2 mRNA, the activity of SCO2 protein, and intracellular ROS were all increased in the irradiated HepG2 cells but not Hep3B cells and these expressions were eliminated by p53 siRNA treatment. Moreover, the radiation-enhanced expressions of SCO2 and ROS were inhibited by SCO2 siRNA. α-particle-induced bystander effect was regulated by p53 and its downstream SCO2 in the irradiated hepatoma cells, and ROS generation could be an early event for triggering this bystander response.

  16. New World hantaviruses activate IFNlambda production in type I IFN-deficient vero E6 cells.

    Directory of Open Access Journals (Sweden)

    Joseph Prescott

    Full Text Available Hantaviruses indigenous to the New World are the etiologic agents of hantavirus cardiopulmonary syndrome (HCPS. These viruses induce a strong interferon-stimulated gene (ISG response in human endothelial cells. African green monkey-derived Vero E6 cells are used to propagate hantaviruses as well as many other viruses. The utility of the Vero E6 cell line for virus production is thought to owe to their lack of genes encoding type I interferons (IFN, rendering them unable to mount an efficient innate immune response to virus infection. Interferon lambda, a more recently characterized type III IFN, is transcriptionally controlled much like the type I IFNs, and activates the innate immune system in a similar manner.We show that Vero E6 cells respond to hantavirus infection by secreting abundant IFNlambda. Three New World hantaviruses were similarly able to induce IFNlambda expression in this cell line. The IFNlambda contained within virus preparations generated with Vero E6 cells independently activates ISGs when used to infect several non-endothelial cell lines, whereas innate immune responses by endothelial cells are specifically due to viral infection. We show further that Sin Nombre virus replicates to high titer in human hepatoma cells (Huh7 without inducing ISGs.Herein we report that Vero E6 cells respond to viral infection with a highly active antiviral response, including secretion of abundant IFNlambda. This cytokine is biologically active, and when contained within viral preparations and presented to human epithelioid cell lines, results in the robust activation of innate immune responses. We also show that both Huh7 and A549 cell lines do not respond to hantavirus infection, confirming that the cytoplasmic RNA helicase pathways possessed by these cells are not involved in hantavirus recognition. We demonstrate that Vero E6 actively respond to virus infection and inhibiting IFNlambda production in these cells might increase their utility

  17. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes

    OpenAIRE

    Wang, Yanxin; Watford, Malcolm

    2006-01-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. C...

  18. Inhibitory effect of parvovirus H—1 on the formation of colonies of human hepatoma cell line in vitro and its tumors in nude mice

    Institute of Scientific and Technical Information of China (English)

    YANSHANGJUN; CHENGWUMA; 等

    1994-01-01

    The inhibitory effect of parvovirus H-1 on the colonyforming ability.in vitro of QGY-7703,a cultured human hepatoma cell line,and on the formation and growth of its tumors in nude mice was studied.With higher multiplicity of infection(MOI) of H-1 given,survival of the QGY-7703 cells was found to be decreased.H-1 DNA amplification level at 30h postinfection(p.i.) was detected to be 7.4 times higher than that at 2h by dispersed cells assay,while the cells were delayed to enter into S phase.Plaques were formed in the indicator cells(new-born human kidney cell line,NBK) by progeny H-1 virus particles released from the infected QGY-7703 cells by infectious cell center assay.The formation of tumors in nude mice by QGY-7703 cells which were injected s c at 2h postinfection was observed to by prevented in 2 proups with given MOI 25 and 50.The tumor growth of MOI 10 group occurred at a lower exponential rate than that of control,after a 20d latent period.It was evident that parvovirus H-1 exhibited a direct inhibitory effect on the formation and growth of human hepatoma cells in vivo as well as in vitro.

  19. Activation of PPARalpha and PPARgamma reduces triacylglycerol synthesis in rat hepatoma cells by reduction of nuclear SREBP-1.

    Science.gov (United States)

    König, Bettina; Koch, Alexander; Spielmann, Julia; Hilgenfeld, Christian; Hirche, Frank; Stangl, Gabriele I; Eder, Klaus

    2009-03-01

    Fibrates and thiazolidinediones, agonists of PPARalpha and PPARgamma, respectively, reduce triglyceride concentrations in rat liver and plasma. Fatty acid and triacylglycerol synthesis in mammals is regulated by sterol regulatory element-binding protein (SREBP)-1c. Recently, it was shown that insulin-induced gene (Insig)-1, the key regulator of SREBP activity, is up-regulated by both activation of PPARalpha and PPARgamma. In order to elucidate whether inhibition of SREBP-1 activation may contribute to the triacylglycerol lowering effect of PPARalpha and PPARgamma agonists, we incubated rat hepatoma Fao cells with WY 14,643 and troglitazone, strong and selective agonists of PPARalpha and PPARgamma, respectively. Activation of both, PPARalpha and PPARgamma led to increased concentrations of Insig-1 and Insig-2a, with the most prominent effect on Insig-2a after troglitazone incubation. As a result, the amount of nuclear SREBP-1 was reduced in Fao cells by both WY 14,643 and troglitazone treatment. The reduction of nuclear SREBP-1 was associated with decreased mRNA concentrations of its target genes fatty acid synthase and glycerol-3-phosphate acyltransferase, implicated in fatty acid and triacylglycerol synthesis. This was finally reflected in reduced rates of newly synthesized triacylglycerols from de novo-derived fatty acids and decreased intracellular and secreted triacylglycerol concentrations in Fao cells treated with WY 14,643 and troglitazone, respectively. Thus, these data suggest that the triacylglycerol reducing effect of fibrates and thiazolidinediones is partially caused by inhibition of SREBP-1 activation via up-regulation of Insig.

  20. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yijun [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Lu, Hongjuan [Productivity Center of Jiangsu Province, Nanjing 210042, Jiangsu (China); Wang, Dongxu; Li, Shengrong; Sun, Kang; Wan, Xiaochun [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Taylor, Ethan Will [Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27402 (United States); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2012-12-15

    Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. A high correlation between the inhibition of TrxR activity at 6 h and the inhibition of ascitic fluid volume at 72 h was established (r = 0.978, p < 0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone. -- Highlights: ► Nedaplatin at a pharmacological dose inhibits TrxR in cancer cells but not in kidney. ► The nedaplatin-treated cancer cells exhibit adaptive response. ► Buthionine sulfoximine inhibits glutathione in both cancer cells and kidney. ► Buthionine sulfoximine counteracts the adaptive response to the nedaplatin treatment. ► Buthionine sulfoximine does not

  1. The Effect of Aromatic Hydrocarbon Receptor on the Phenotype of the Hepa 1c1c7 Murine Hepatoma Cells in the Absence of Dioxin

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2007-01-01

    Full Text Available The aromatic hydrocarbon receptor (AhR mediates biological responses to certain exogenous ligands, such as the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, and has also been demonstrated to modulate the cell cycle and differentiated state of several cell lines independently of exogenous ligands. In this study, we used DNA micorarray analysis to elucidate the profile of genes responsive to the expression of unliganded AhR by re-introducing AhR into an AhR-deficient mouse derivative (c19 of the mouse hepatoma cell line Hepa1c1c7. 22 gene products were up-regulated and 8 were down-regulated two-fold or more in c19 cells infected with a retroviral vector expressing mouse AhR. Surprisingly, expression of genes involved in cell proliferation or differentiation were not affected by introduction of AhR. AhR also did not restore expression of the albumin gene in c19 cells. Introduction of AhR into c12, a similar AhRdefective mouse hepatoma cell line, also did not restore albumin expression, and furthermore, did not lead to changes in cellular morphology or cell cycle parameters. These observations fail to support the notion that unliganded AhR regulates proliferation and differentiation of liver-derived cells.

  2. In vitro uptakes of radiolabeled IVDU and IVFRU in herpes simplex virus type-1 thymidine kinase (HSV1-tk) gene transduced morris hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Sup; Choi, Tae Hyun; Ahn, Soon Hyuk; Woo, Kwang Sun; Jeong, Wee Sup; Kwon, Hee Chung; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Awh, Ok Doo [College of Health Sciences, Yonsei Univ., Wonju (Korea, Republic of)

    2004-02-01

    The herpes simplex virus type 1 thymidine kinase gene(HSV1-tk) is an attractive candidate as a reporter gene in noninvasive reporter gene monitoring system. The HSV1-tk gene was chosen as a reporter gene, because it has been extensively studied, and there are appropriate reporter probes, substrates of HSV1-tk gene product, to apply for HSV1-tk gene imaging. We used radiolabeled 5-iodovinyl-2'-deoxyuridine (IVDU) and 5-lodovinyl-2'-fluoro-2'-deoxyuridine (IVFRU) as reporter probes for HSV1-tk gene monitoring system. We prepared HSV1-tk gene transduced Morris hepatoma cell line using retroviral vector, MOLTEN containing HSV1-tk gene. And we confirmed the HSV1-tk gene expression by Northern blotting and Western blotting. We compared in vitro uptakes of radioiodinated IVDU and IVFRU to monitor HSV1-tk gene expression in Morris hepatoma cell line (MCA) and HSV1-tk gene tranduced MCA (MAC-tk) cells until 480 minutes. We also performed correlation analysis between percentage of HSV1-tk gene tranduced MCA cell % (MCA-tk%) and uptakes of radiolabeled IVDU or IVFRU. MCA-tk cell expressed HSV1-tk mRNA and HSV1-TK protein. Two compounds showed minimal uptake in MCA, but increased uptake was observed in MCA-tk. IVDU showed 4-fold higher accumulation than IVFRU at 480 min in MCA-tk (p<0.01). Both IVDU and IVFRU uptake were linearly correlated (R{sup 2}>0.96) with increasing MCA-tk%. The rediolabeld IVDU and IVFRU showed higher specific accumulation in retrovirally HSV1-tk gene transfected Morris hepatoma cell line. Both IVDU and IVFRU could be used as good substrates for evaluation of HSV1-tk gene expression.

  3. Selective COX-2 inhibitor, NS-398, suppresses cellular proliferation in human hepatocellular carcinoma cell lines via cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Ji Yeon Baek; Wonhee Hur; Jin Sang Wang; Si Hyun Bae; Seung Kew Yoon

    2007-01-01

    AIM: To investigate the growth inhibitory mechanism of NS-398, a selective cyclooxygenase-2 (COX-2) inhibitor,in two hepatocellular carcinoma (HCC) cell lines (HepG2and Huh7).METHODS: HepG2 and Huh7 cells were treated with NS-398. Its effects on cell viability, cell proliferation,cell cycles, and gene expression were respectively evaluated by water-soluble tetrazolium salt (WST-1)assay, 4'-6-diamidino-2-phenylindole (DAPI) staining,flow cytometer analysis, and Western blotting,with dimethyl sulfoxide (DMSO) as positive control.RESULTS: NS-398 showed dose- and time-dependent growth-inhibitory effects on the two cell lines.Proliferating cell nuclear antigen (PCNA) expressions in HepG2 and Huh7 cells, particularly in Huh7 cells were inhibited in a time- and dose-independent manner.NS-398 caused cell cycle arrest in the G1 phase with cell accumulation in the sub-G1 phase in HepG2 and Huh7cell lines. No evidence of apoptosis was observed in two cell lines.CONCLUSION: NS-398 reduces cell proliferation by inducing cell cycle arrest in HepG2 and Huh7 cell lines,and COX-2 inhibitors may have potent chemoprevention effects on human hepatocellular carcinoma.

  4. CLONING AND DETERMINING OF BAC GENE AND Bcl-2 AND CDK4 EXPRESSION ON ASCITES HEPATOMA CELL LINE Hca-F25/25CL-16A3

    Institute of Scientific and Technical Information of China (English)

    ZUO Yun-fei; ZHANG Yao-zheng; ZHANG Hong; REN Zhuang-yi

    1999-01-01

    Objective: To study the mechanism of cancer, the DNA for BAC was cloned from an ascites hepatoma cell line Hca-F25/CL-16A3 using PCR. Methods: The nucleotide sequences were determined using ABI PRISMTM 377 DNA sequencer. The expression of bcl-2 and CDK4gene were determined using immunohistochemistry.Results: The sequences of BAC segment on HcaF25/CL-16A3 have nearly identical sequences with human BAC. The bcl-2 and CDK4 are highly expression on this cell line. Conclusion: The highly expression of bcl-2 and CDK4 may the one of mechanisms for tumor growth.

  5. Differential expression of five protein kinase C isoenzymes in FAO and HepG2 hepatoma cell lines compared with normal rat hepatocytes.

    Science.gov (United States)

    Ducher, L; Croquet, F; Gil, S; Davy, J; Féger, J; Bréhier, A

    1995-12-14

    We analyzed the expression of five protein kinase C (PKC) isoforms in cytosolic and membrane fractions from normal rat hepatocytes compared with those of two tumorigenic cell lines FAO and HepG2. Western blots with PKC-specific isoenzymes polyclonal antibodies provide evidences for the presence of the five isoforms alpha, beta II, delta, epsilon and zeta in normal rat hepatocytes. In hepatoma cells, we show differences in the level of expression, the molecular sizes and the responses to Phorbol 12-myristate 13-acetate (PMA).

  6. Comparison of Helicobacter bilis-Associated Protein Expression in Huh7 Cells Harbouring HCV Replicon and in Replicon-Cured Cells

    OpenAIRE

    2012-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Hepatitis B or C infections are the main causes of HCC with hepatitis C being the major risk factor for liver cancer in the developed countries. Recently, complications with bacteria of the genus Helicobacter have been associated with HCV-induced HCC. To further understand the mechanisms leading to the development of HCC in the presence of HCV and/or Helicobacter spp., investigation of the differen...

  7. Transcriptional regulation of the apolipoprotein F (ApoF) gene by ETS and C/EBPα in hepatoma cells.

    Science.gov (United States)

    Shen, Xue-Bin; Huang, Ling; Zhang, Shao-Hong; Wang, De-Ping; Wu, Yun-Li; Chen, Wan-Nan; Xu, Shang-Hua; Lin, Xu

    2015-05-01

    Apolipoprotein F (ApoF) inhibits cholesteryl ester transfer protein (CETP) activity and plays an important role in lipid metabolism. In the present study, the full-length human ApoF promoter was cloned, and the molecular mechanism of the regulation of ApoF was investigated. The ApoF promoter displayed higher activities in hepatoma cell lines, and the -198 nt to +79 nt promoter region contained the maximum promoter activity. In the promoter region of -198 nt to -2 nt there were four putative binding sites for transcription factors ETS-1/ETS-2 (named EBS-1 to EBS-4) and one for C/EBP. Mutation of EBS-2, EBS4 and the C/EBP binding site abolished the promoter activity, and ETS-1/ETS-2 and C/EBPα could interact with corresponding binding sites. In addition, overexpression of ETS-1/2 or C/EBPα enhanced, while dominant-negative mutants of ETS-1/2 and knockdown of C/EBPα decreased, ApoF promoter activities. ETS-1 and C/EBPα associated physically, and acted synergistically to activate ApoF transcription. These results demonstrated combined activation of the ApoF promoter by liver-enriched and ubiquitous transcription factors. Direct interactions between C/EBPα and ETS-1 were important for high liver-specific expression of ApoF. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. mRNA levels of related Abcb genes change opposite to each other upon histone deacetylase inhibition in drug-resistant rat hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Adám Sike

    Full Text Available The multidrug-resistant phenotype of tumor cells is acquired via an increased capability of drug efflux by ABC transporters and causes serious problems in cancer treatment. With the aim to uncover whether changes induced by epigenetic mechanisms in the expression level of drug transporter genes correlates with changes in the drug resistance phenotypes of resistant cells, we studied the expression of drug transporters in rat hepatoma cell lines. We found that of the three major rat ABC transporter genes Abcb1a, Abcb1b and Abcc1 the activity of only Abcb1b increased significantly in colchicine-selected, drug-resistant cells. Increased transporter expression in drug-resistant cells results primarily from transcriptional activation. A change in histone modification at the regulatory regions of the chromosomally adjacent Abcb1a and Abcb1b genes differentially affects the levels of corresponding mRNAs. Transcriptional up- and down-regulation accompany an increase in acetylation levels of histone H3 lysine 9 at the promoter regions of Abcb1b and Abcb1a, respectively. Drug efflux activity, however, does not follow tightly the transcriptional activity of drug transporter genes in hepatoma cells. Our results point out the need for careful analysis of cause-and-effect relationships between changes in histone modification, drug transporter expression and drug resistance phenotypes.

  9. mRNA levels of related Abcb genes change opposite to each other upon histone deacetylase inhibition in drug-resistant rat hepatoma cells.

    Science.gov (United States)

    Sike, Adám; Nagy, Enikő; Vedelek, Balázs; Pusztai, Dávid; Szerémy, Péter; Venetianer, Anikó; Boros, Imre M

    2014-01-01

    The multidrug-resistant phenotype of tumor cells is acquired via an increased capability of drug efflux by ABC transporters and causes serious problems in cancer treatment. With the aim to uncover whether changes induced by epigenetic mechanisms in the expression level of drug transporter genes correlates with changes in the drug resistance phenotypes of resistant cells, we studied the expression of drug transporters in rat hepatoma cell lines. We found that of the three major rat ABC transporter genes Abcb1a, Abcb1b and Abcc1 the activity of only Abcb1b increased significantly in colchicine-selected, drug-resistant cells. Increased transporter expression in drug-resistant cells results primarily from transcriptional activation. A change in histone modification at the regulatory regions of the chromosomally adjacent Abcb1a and Abcb1b genes differentially affects the levels of corresponding mRNAs. Transcriptional up- and down-regulation accompany an increase in acetylation levels of histone H3 lysine 9 at the promoter regions of Abcb1b and Abcb1a, respectively. Drug efflux activity, however, does not follow tightly the transcriptional activity of drug transporter genes in hepatoma cells. Our results point out the need for careful analysis of cause-and-effect relationships between changes in histone modification, drug transporter expression and drug resistance phenotypes.

  10. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes.

    Science.gov (United States)

    Wang, Yanxin; Watford, Malcolm

    2007-04-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. Culture of Hep G2 cells without glutamine resulted in very high levels of protein, again with no change in mRNA abundance. Insulin was without effect in both C2C12 and Hep G2 cells. In 3T3 L1 adipocytes glucocorticoids increased the abundance of both glutamine synthetase mRNA and protein, insulin added alone had no effect but in the presence of glucocorticoids resulted in lower mRNA levels than seen with glucocorticoids alone, although protein levels remained high under such conditions. In contrast to the other cell lines glutamine synthetase protein levels were relatively unchanged by culture in the absence of glutamine. The results support the hypothesis that in myocytes, and hepatomas, but not in adipocytes, glutamine acts to moderate glutamine synthetase induction by glucocorticoids.

  11. WWOX induces apoptosis and inhibits proliferation of human hepatoma cell line SMMC-7721

    Institute of Scientific and Technical Information of China (English)

    Ben-Shun Hu; Jing-Wang Tan; Guo-Hua Zhu; Dan-Feng Wang; Xian Zhou; Zhi-Qiang Sun

    2012-01-01

    AIM:To investigate the effects of the WWOX gene on the human hepatic carcinoma cell line SMMC-7721.METHODS:Full-length WWOX cDNA was amplified from normal human liver tissues.Full-length cDNA was subcloned into pEGFP-N1,a eukaryotic expression vector.After introduction of the WWOX gene into cancer cells using liposomes,the WWOX protein level in the cells was detected through Western blotting.Cell growth rates were assessed by methyl thiazolyl tetrazolium (MTT) and colony formation assays.Cell cycle progression and cell apoptosis were measured by flow cytometry.The phosphorylated protein kinase B (AKT)and activated fragments of caspase-9 and caspase-3 were examined by Western blotting analysis.RESULTS:WWOX significantly inhibited cell proliferation,as evaluated by the MTT and colony formation assays.Cells transfected with WWOX showed significantly higher apoptosis ratios when compared with cells transfected with a mock plasmid,and overexpression of WWOX delayed cell cycle progression from G1 to S phase,as measured by flow cytometry.An increase in apoptosis was also indicated by a remarkable activation of caspase-9 and caspase-3 and a dephosphorylation of AKT (Thr308 and Ser473) measured with Western blotting analysis.CONCLUSION:Overexpression of WWOX induces apoptosis and inhibits proliferation of the human hepatic carcinoma cell line SMMC-7721.

  12. Construction and packaging of pseudotype retrovirus containing human N—ras cDNA antisense sequence and its biological effects on human hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    JIALIBIN; WANGXIANG; 等

    1990-01-01

    N-ras is one of the transforming genes in human hepatic cancer cells.It has been found that N-ras was overexpressed at the mRNA and protein level in hepatoma cells.In order to explore the biological roles of N-ras in human hepatic carcinogenesis and the potential application in control of cancer cell growth,a preudotype retrovirus containing antisense sequence of human N-ras was constructed and packaged.A recombinant retrovirus vector containing antisense or sense sequences of N-ras cDNA was constructed by pZIP-NeoSV(X)1.The pseudotype virus was packaged ang rescued by transfection and infection in PA317 and ψ 2 helper cells.It has been demonstrated that the pseudotype retrovirus containing antisense N-ras sequence did inhibit the growth of human PLC/PRF/5 hepatoma cells accompanied with inhibition of p21 expression,while the retrovirus containing sense sequence had none.The pseudotype virus had no effect on human diploid fibroblasts.

  13. Inlfuence of DNA methyltransferase 3b on FHIT expression and DNA methylation of the FHIT promoter region in hepatoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Jia-Xiang Wang; Yong-Gan Zhang; Long-Shuan Zhao

    2009-01-01

    BACKGROUND: Alterations in DNA methylation occur during the pathogenesis of human tumors. In this study, we investigated the inlfuence of DNA methyltransferase 3b (DNMT3b) on fragile histidine trial (FHIT) expression and on DNA methylation of the FHIT promoter region in the hepatoma cell line SMMC-7721. METHODS: DNMT3b siRNA was used to down-regulate DNMT3b expression. DNMT3b and FHIT proteins were determined by Western blotting. Methylation-speciifc PCR was used to analyze the methylation status of the FHIT gene. RESULTS: After DNMT3b siRNA transfection, the expression of DNMT3b was inhibited in SMMC-7721 cells, and the expression of FHIT was signiifcantly higher than that in the control group. There was no signiifcant difference in methylation status between the DNMT3b siRNA transfected cells and control cells. CONCLUSION: DNMT3b may play an important role in regulation of FHIT expression in hepatoma SMMC-7721 cells, but not through methylation of the FHIT promoter.

  14. CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Shi Lixin

    2011-01-01

    Full Text Available Abstract Cadmium telluride quantum dots (Cdte QDs have received significant attention in biomedical research because of their potential in disease diagnosis and drug delivery. In this study, we have investigated the interaction mechanism and synergistic effect of 3-mercaptopropionic acid-capped Cdte QDs with the anti-cancer drug daunorubicin (DNR on the induction of apoptosis using drug-resistant human hepatoma HepG2/ADM cells. Electrochemical assay revealed that Cdte QDs readily facilitated the uptake of the DNR into HepG2/ADM cells. Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells. We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells. Moreover, our in vivo study indicated that the treatment of Cdte QDs together with DNR effectively inhibited the human hepatoma HepG2/ADM nude mice tumor growth. The increased cell apoptosis rate was closely correlated with the enhanced inhibition of tumor growth in the studied animals. Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

  15. Induction of cell cycle arrest via the p21, p27–cyclin E,A/Cdk2 pathway in SMMC-7721 hepatoma cells by clioquinol

    Directory of Open Access Journals (Sweden)

    Huang Zhiwei

    2015-12-01

    Full Text Available Clioquinol has been shown to have anticancer activity in several carcinoma cells. In this study, we preliminarily examined the effect of clioquinol in human SMMC-7721 hepatoma and QSG-7701 normal hepatic cells. Our results indicated that clioquinol did not significantly affect survival of QSG-7701 cells, whereas it reduced cell viability in a concentration- and time-dependent manner in SMMC-7721 cells. Clioquinol did not trigger autophagy and apoptosis, while it induced cell cycle arrest in the S-phase in SMMC- 7721 cells. Additionally, down-regulation of cyclin D1, A2, E1, Cdk2 and up-regulation of p21, p27 were detected after the treatment with clioquinol. The results demonstrated for the first time that clioquinol suppressed cell cycle progression in the S-phase in SMMC-7721 cells via the p21, p27-cyclin E,A/Cdk2 pathway. This suggests that clioquinol may have a therapeutic potential as an anticancer drug for certain malignances.

  16. Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation.

    Science.gov (United States)

    Li, Shumin; Chakraborty, Nilay; Borcar, Apurva; Menze, Michael A; Toner, Mehmet; Hand, Steven C

    2012-12-18

    Expression of late embryogenesis abundant (LEA) proteins is highly correlated with desiccation tolerance in anhydrobiotic animals, selected land plants, and bacteria. Genes encoding two LEA proteins, one localized to the cytoplasm/nucleus (AfrLEA2) and one targeted to mitochondria (AfrLEA3m), were stably transfected into human HepG2 cells. A trehalose transporter was used for intracellular loading of this disaccharide. Cells were rapidly and uniformly desiccated to low water content (spin-drying technique. Immediately on rehydration, control cells without LEA proteins or trehalose exhibited 0% membrane integrity, compared with 98% in cells loaded with trehalose and expressing AfrLEA2 or AfrLEA3m; surprisingly, AfrLEA3m without trehalose conferred 94% protection. Cell proliferation across 7 d showed an 18-fold increase for cells dried with AfrLEA3m and trehalose, compared with 27-fold for nondried controls. LEA proteins dramatically enhance desiccation tolerance in mammalian cells and offer the opportunity for engineering biostability in the dried state.

  17. Association of topoisomerase II with the hepatoma cell nuclear matrix: the role of intermolecular disulfide bond formation.

    Science.gov (United States)

    Kaufmann, S H; Shaper, J H

    1991-02-01

    Previous studies have resulted in conflicting data regarding the recovery of the nuclear enzymes topoisomerase (topo) II and topo I in the nuclear matrix fraction. In the present study we have assessed the effect of systematically altering a single extraction procedure on the distribution of these enzymes during the subfractionation of nuclei from HTC hepatoma tissue culture cells. When nuclear monolayers (prepared by treating attached cells in situ with the neutral detergent Nonidet-P40 at 4 degrees C) were isolated in the presence of the irreversible sulfhydryl blocking reagent iodoacetamide, subsequent treatment with DNase I and RNase A followed by 1.6 M NaCl resulted in structures which were extensively depleted of intranuclear components as assessed by phase contrast microscopy and conventional transmission electron microscopy. These structures contained 12 +/- 4% of the total protein present in the original nuclear monolayers. The lamins and polypeptides with molecular weights comparable to those of actin and vimentin were the predominant polypeptides present on SDS-polyacrylamide gels. Western blotting revealed that less than 5% of the total nuclear topo II molecules were present in these structures. In contrast, when the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) was substituted for iodoacetamide, the same extraction procedure yielded structures containing components of the nucleolus and an extensive intranuclear network. These structures contained a wide variety of nonlamin, nonhistone nuclear polypeptides including 23 +/- 4% of the total nuclear topo II. SDS-polyacrylamide gel electrophoresis performed under nonreducing conditions revealed that topo II in these nuclear matrices was present as part of a large disulfide cross-linked complex. Treatment of these structures with reducing agents in 1.6 M NaCl released the topo II. In contrast, topo I did not form disulfide cross-linked oligomers and was not detectable in any of these nuclease

  18. Essential oil of Curcuma wenyujin induces apoptosis in human hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To investigate the effects of the essential oil of Curcuma wenyujin (CWO) on growth inhibition and on the induction of apoptosis in human HepG2 cancer cells. METHODS: The cytotoxic effect of drugs on HepG2 cells was measured by 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyltetra-zolium bromide (MT) assay. DNA fragmentation was visualized by agarose gel electrophoresis. Cell cycle and mitochondrial transmembrane potential (△ψm) were determined by flow cytometry (FCM). Cytochrome C immunostaining was evaluated by fluorescence microscopy. Caspase-3 enzymatic activity was assayed by the cleavage of Ac-DEVD-R110. Cleaved PARP and active caspase-3 protein levels were measured by FCM using BDTMCBA Human Apoptosis Kit. RESULTS: Treatment with CWO inhibited the growth of HepG2 cells in a dose-dependent manner, and the IC50 of CWO was approximately 70 μg/mL. CWO was found to inhibit the growth of HepG2 cells by inducing a cell cycle arrest at S/G2. DNA fragmentation was evidently observed at 70 μg/mL after 72 h of treatment. During the process, cytosolic HepG2 cytochrome C staining showed a markedly stronger green fluorescence than in control cells in a dose-dependent fashion, and CWO also caused mitochondrial transmembrane depolarization. Furthermore, the results clearly demonstrated that both, activity of caspase-3 enzyme and protein levels of cleaved PARP, significantly increased in a dose- dependent manner after treatment with CWO. CONCLUSION: CWO exhibits an antiproliferative effect in HepG2 cells by inducing apoptosis. This growth inhibition is associated with cell cycle arrest, cytochrome C translocation, caspase 3 activation, Poly- ADP-ribose polymerase (PARP) degradation, and loss of mitochondrial membrane potential. This process involves a mitochondria-caspase dependent apoptosis pathway. As apoptosis is an important anti-cancer therapeutic target, these results suggest a potential of CWO as a chemotherapeutic agent.

  19. Potentiation of resveratrol-induced apoptosis by matrine in human hepatoma HepG2 cells.

    Science.gov (United States)

    Ou, Xiuyuan; Chen, Yan; Cheng, Xinxin; Zhang, Xumeng; He, Qiyang

    2014-12-01

    Resveratrol, a natural polyphenolic phytochemical, has received considerable attention due to its potential chemopreventive and chemotherapeutic properties. In the present study, we first evaluated the growth-inhibitory effect of resveratrol on HepG2 cells and explored the underlying molecular mechanisms. Resveratrol inhibited proliferation and induced apoptosis in HepG2 cells via activation of caspase-9 and caspase-3, upregulation of the Bax/Bcl-2 ratio and induction of p53 expression. Cell cycle analysis demonstrated that resveratrol arrested cell cycle progression in the G1 and S phase. We further focused on the combination of matrine, a natural component extracted from the traditional Chinese medical herb Sophora flavescens Ait., as a mechanism to potentiate the growth-inhibitory effect of resveratrol on HepG2 cells. Both MTT and colony formation assay results indicated that the combined treatment of resveratrol and matrine exhibited a synergistic antiproliferative effect. In addition, resveratrol-induced apoptosis was significantly enhanced by matrine, which could be attributed to activation of caspase-3 and caspase-9, downregulation of survivin, induction of reactive oxygen species (ROS) generation and disruption of mitochondria membrane potential (Δψm). Our findings suggest that the combination treatment of resveratrol and matrine is a promising novel anticancer strategy for liver cancer; it also provides new insights into the mechanisms of combined therapy.

  20. Enhancement of migration and invasion of hepatoma cells via a Rho GTPase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    De-Sheng Wang; Ke-Feng Dou; Kai-Zong Li; Zhen-Shun Song

    2004-01-01

    AIM: Intrahepatic extension is the main cause of liver failure and death in hepatocellular carcinoma patients. The small GTPase Rho and one of its effector molecules ROCK regulate cytoskeleton and actomyosin contractility, and play a crucial role in cell adhesion and motility. We investigated the role of small GTPase Rho in biological behaviors of hepatocellular carcinoma to demonstrate the importance of Rho in cancer invasion and metastasis.METHODS: Using Western blotting, we quantitated Rho protein expression in SMMC-7721 cells induced by Lysophosphatidic acid (LPA). Furthermore, we examined the role of Rho signaling in regulating the motile and invasiveproperties of tumor cells.RESULTS: Rho protein expression was stimulated by LPA.Using the Rhotekin binding assay to assess Rho activation,we observed that the level of GTP-bound Rho was elevated transiently after the addition of LPA, and Y-27632 decreased the level of active Rho. LPA enhanced the motility of tumor cells and facilitated their invasion. Rho played an essential role in the migratory process, as evidenced by the inhibition of migration and motility of cancer cells by a specific inhibitor of ROCK, Y-27632.CONCLUSION: The finding that invasiveness of hepatocellular carcinoma is facilitated by the Rho/Rho-kinase pathway is likely to be relevant to tumor progression and Y-27632 may be a new potential effective agent for the prevention of intrahepatic extension of human liver cancer.

  1. Polarization Restricts Hepatitis C Virus Entry into HepG2 Hepatoma Cells

    NARCIS (Netherlands)

    Mee, Christopher J.; Harris, Helen J.; Farquhar, Michelle J.; Wilson, Garrick; Reynolds, Gary; Davis, Christopher; van IJzendoorn, Sven C. D.; Balfe, Peter; McKeating, Jane A.

    2009-01-01

    The primary reservoir for hepatitis C virus (HCV) replication is believed to be hepatocytes, which are highly polarized with tight junctions (TJ) separating their basolateral and apical domains. HepG2 cells develop polarity over time, resulting in the formation and remodeling of bile canalicular

  2. Inhibition of Citrinin-Induced Apoptotic Biochemical Signaling in Human Hepatoma G2 Cells by Resveratrol

    Directory of Open Access Journals (Sweden)

    Chia-Chi Chen

    2009-07-01

    Full Text Available The mycotoxin citrinin (CTN, a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis, but its precise regulatory mechanisms of action are currently unclear. Resveratrol, a member of the phytoalexin family found in grapes and other dietary plants, possesses antioxidant and anti-tumor properties. In the present study, we examined the effects of resveratrol on apoptotic biochemical events in Hep G2 cells induced by CTN. Resveratrol inhibited CTN-induced ROS generation, activation of JNK, loss of mitochondrial membrane potential (MMP, as well as activation of caspase-9, caspase-3 and PAK2. Moreover, resveratrol and the ROS scavengers, NAC and α-tocopherol, abolished CTN-stimulated intracellular oxidative stress and apoptosis. Active JNK was required for CTN-induced mitochondria-dependent apoptotic biochemical changes, including loss of MMP, and activation of caspases and PAK2. Activation of PAK2 was essential for apoptosis triggered by CTN. These results collectively demonstrate that CTN stimulates ROS generation and JNK activation for mitochondria-dependent apoptotic signaling in Hep G2 cells, and these apoptotic biochemical events are blocked by pretreatment with resveratrol, which exerts antioxidant effects.

  3. Determining oxidative and non-oxidative genotoxic effects driven by estuarine sediment contaminants on a human hepatoma cell line.

    Science.gov (United States)

    Pinto, M; Costa, P M; Louro, H; Costa, M H; Lavinha, J; Caeiro, S; Silva, M J

    2014-04-15

    Estuarine sediments may be reservoirs of hydrophilic and hydrophobic pollutants, many of which are acknowledged genotoxicants, pro-mutagens and even potential carcinogens for humans. Still, studies aiming at narrowing the gap between ecological and human health risk of sediment-bound contaminant mixtures are scarce. Taking an impacted estuary as a case study (the Sado, SW Portugal), HepG2 (human hepatoma) cells were exposed in vitro for 48 h to extracts of sediments collected from two areas (urban/industrial and Triverine/agricultural), both contaminated by distinct mixtures of organic and inorganic toxicants, among which are found priority mutagens such as benzo[a]pyrene. Comparatively to a control test, extracts of sediments from both impacted areas produced deleterious effects in a dose-response manner. However, sediment extracts from the industrial area caused lower replication index plus higher cytotoxicity and genotoxicity (concerning total DNA strand breakage and clastogenesis), with emphasis on micronucleus induction. On the other hand, extracts from the rural area induced the highest oxidative damage to DNA, as revealed by the FPG (formamidopyrimidine-DNA glycosylase) enzyme in the Comet assay. Although the estuary, on its whole, has been classified as moderately contaminated, the results suggest that the sediments from the industrial area are significantly genotoxic and, furthermore, elicit permanent chromosome damage, thus potentially being more mutagenic than those from the rural area. The results are consistent with contamination by pro-mutagens like polycyclic aromatic hydrocarbons (PAHs), potentiated by metals. The sediments from the agriculture-influenced area likely owe their genotoxic effects to metals and other toxicants, probably pesticides and fertilizers, and able to induce reactive oxygen species without the formation of DNA strand breakage. The findings suggest that the mixtures of contaminants present in the assayed sediments are genotoxic

  4. Glucocorticoid-mediated potentiation of cytochrome P4501A induction in a fish hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Celander, M.; Hahn, M.E.; Stegeman, J.J. [Woods Hole Oceanographic Institution, MA (United States)

    1995-12-31

    Induction of cytochrome P4501A (CYP1A) is widely used as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAH) and planar halogenated aromatic hydrocarbons (PHAH). Increasingly, potency of CYP1A inducers in fish is being determined in cells in culture including the Poeciliopsis lucida hepatocellular carcinoma cell line (PLHC-1). The authors used this cell line to investigate the effects of various glucocorticoid receptor (GR) agonists on that response. CYP1A in PLHC-1 cultures was highly responsive to treatment with PAH- or PHAH-type inducers including B-naphthoflavone (BNF), 3,3{prime},4,4{prime}-tetrachlorobiphenyl (TCB) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD was found to be three orders of magnitude more potent than BNF or TCB as an inducer of the CYP1A activity ethoxyresorufin-O-deethylase (EROD). The apparent efficacy for the induction by BNF was 50% and by TCB 10% of that obtained with TCDD. Induction of CYP1A was potentiated when these aryl hydrocarbon receptor (AHR) agonists were co-administered with GR agonists, such as dexamethasone D(EX), cortisol or prednisone. The magnitude of the potentiation of CYP1A induction varied with the different GR- and AHR agonists tested, but also with doses of AHR agonists and duration of exposure. Thus, highest degree of potentiation of CYP1A (up to 20-fold) in PLHC-1 cell cultures was obtained with a submaximal dose of TCDD in combination with DEX. Furthermore, the authors observed a delay in obtaining a maximal degree of potentiation. Thus, a peak potentiation of CYP1A induction was observed after 48 h in cultures treated with 1 {micro}M BNF + 10 {micro}M DEX.

  5. Ablation of phosphoinositide-3-kinase class II alpha suppresses hepatoma cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Stanley K.L. [Singapore Immunology Network A-STAR (Singapore); Neo, Soek-Ying, E-mail: neo_soek_ying@sics.a-star.edu.sg [Singapore Immunology Network A-STAR (Singapore); Yap, Yann-Wan [Singapore Immunology Network A-STAR (Singapore); Karuturi, R. Krishna Murthy; Loh, Evelyn S.L. [Genome Institute of Singapore A-STAR (Singapore); Liau, Kui-Hin [Department of General Surgery, Tan Tock Seng Hospital (Singapore); Ren, Ee-Chee, E-mail: ren_ee_chee@immunol.a-star.edu.sg [Singapore Immunology Network A-STAR (Singapore); Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore (Singapore)

    2009-09-18

    Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2{alpha}) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2{alpha} mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2{alpha} was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2{alpha} can modulate HCC cell growth.

  6. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability

    Energy Technology Data Exchange (ETDEWEB)

    Marchissio, Maria Julia; Francés, Daniel Eleazar Antonio; Carnovale, Cristina Ester; Marinelli, Raúl Alberto, E-mail: rmarinel@unr.edu.ar

    2012-10-15

    Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H{sub 2}O{sub 2} across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H{sub 2}O{sub 2} release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p < 0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H{sub 2}O{sub 2} release, assessed by Amplex Red, was reduced by about 45% (p < 0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+ 120%, p < 0.05) and loss of mitochondrial membrane potential (− 80%, p < 0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H{sub 2}O{sub 2} release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H{sub 2}O{sub 2} release and increases ROS. ► Aquaporin

  7. Role of autophagy in differential sensitivity of hepatocarcinoma cells to sorafenib

    Institute of Scientific and Technical Information of China (English)

    Trevan; D; Fischer; Jin-Hee; Wang; Adrian; Vlada; Jae-Sung; Kim; Kevin; E; Behrns

    2014-01-01

    AIM: To investigate the role of sorafenib(SFN) in autophagy of hepatocellular carcinoma(HCC). We evaluated how SFN affects autophagy signaling pathway in human HCC cell lines. METHODS: Two different human HCC cell lines, Hep3 B and Huh7, were subjected to different concentrations of SFN. Cell viability and onset of apoptosis were determined with colorimetric assay and immunoblotting analysis, respectively. The changes in autophagy-related proteins, including LC3, ULK1, AMPK, and LKB, were determined with immunoblotting analysis in the presence or absence of SFN. To assess autophagic dynamics, autophagic flux was measured with chloroquine, a lysosomal inhibitor. The autophagic responsiveness between different HCC cell lines was compared under the autophagy enhancing conditions.RESULTS: Hep3 B cells were significantly more resistant to SFN than Huh7 cells. Immunoblotting analysis revealed a marked increase in SFN-mediated autophagy flux in Huh7 cells, which was, however, absent in Hep3 B cells. While both starvation and rapamycin enhanced autophagy in Huh7 cells, only rapamycin increased autophagy in Hep3 B cells. Immunoblotting analysis of autophagy initiation proteins showed that SFN substantially increased phosphorylation of AMPK and consequently autophagy in Huh7, but not in Hep3 B cells.CONCLUSION: The autophagic responsiveness to SFN is distinct between Hep3 B and Huh7 cells. Resistance of Hep3 B cells to SFN may be associated with altered autophagy signaling pathways.

  8. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells.

    Science.gov (United States)

    Xie, Yuexia; Liu, Dejun; Cai, Chenlei; Chen, Xiaojing; Zhou, Yan; Wu, Liangliang; Sun, Yongwei; Dai, Huili; Kong, Xianming; Liu, Peifeng

    2016-01-01

    The application of Fe3O4 nanoparticles (NPs) has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mechanisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm). Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application.

  9. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells.

    Science.gov (United States)

    Sozio, Margaret S; Lu, Changyue; Zeng, Yan; Liangpunsakul, Suthat; Crabb, David W

    2011-10-01

    AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) are critical regulators of short-term and long-term fatty acid oxidation, respectively. We examined whether the activities of these molecules were coordinately regulated. H4IIEC3 cells were transfected with PPAR-α and PPAR-γ expression plasmids and a peroxisome-proliferator-response element (PPRE) luciferase reporter plasmid. The cells were treated with PPAR agonists (WY-14,643 and rosiglitazone), AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAR) and metformin, and the AMPK inhibitor compound C. Both AICAR and metformin decreased basal and WY-14,643-stimulated PPAR-α activity; compound C increased agonist-stimulated reporter activity and partially reversed the effect of the AMPK activators. Similar effects on PPAR-γ were seen, with both AICAR and metformin inhibiting PPRE reporter activity. Compound C increased basal PPAR-γ activity and rosiglitazone-stimulated activity. In contrast, retinoic acid receptor-α (RAR-α), another nuclear receptor that dimerizes with retinoid X receptor (RXR), was largely unaffected by the AMPK activators. Compound C modestly increased AM580 (an RAR agonist)-stimulated activity. The AMPK activators did not affect PPAR-α binding to DNA, and there was no consistent correlation between effects of the AMPK activators and inhibitor on PPAR and the nuclear localization of AMPK-α subunits. Expression of either a constitutively active or dominant negative AMPK-α inhibited basal and WY-14,643-stimulated PPAR-α activity and basal and rosiglitazone-stimulated PPAR-γ activity. We concluded that the AMPK activators AICAR and metformin inhibited transcriptional activities of PPAR-α and PPAR-γ, whereas inhibition of AMPK with compound C activated both PPARs. The effects of AMPK do not appear to be mediated through effects on RXR or on PPAR/RXR binding to DNA. These effects are independent of kinase activity and instead appear to

  10. Involvement of the p38 MAPK signaling pathway in S-phase cell-cycle arrest induced by Furazolidone in human hepatoma G2 cells.

    Science.gov (United States)

    Sun, Yu; Tang, Shusheng; Jin, Xi; Zhang, Chaoming; Zhao, Wenxia; Xiao, Xilong

    2013-12-01

    Given the previously described essential role for the p38 mitogen-activation protein kinase (p38 MAPK) signaling pathway in human hepatoma G2 cells (HepG2), we undertook the present study to investigate the role of the p38 MAPK signaling pathway in cell-cycle arrest induced by Furazolidone (FZD). The aim of this study was to determine the effects of FZD on HepG2 cells by activating and inhibiting the p38 MAPK signaling pathway. The cell cycle and proliferation of HepG2 cells treated with FZD were detected by flow cytometry and MTT assay in the presence or absence of p38 MAPK inhibitors (SB203580), respectively. Cyclin D1, cyclin D3 and CDK6 were detected by quantitative real-time PCR and western blot analysis. Our data showed that p38 MAPK became phosphorylated after stimulation with FZD. Activation of p38 MAPK could arise S-phase cell-cycle arrest and suppress cell proliferation. Simultaneously, inhibition of the p38 MAPK signaling pathway significantly prevented S-phase cell-cycle arrest, increased the percentage of cell viability and decreased the expression of cyclin D1, cyclin D3 and CDK6. These results demonstrated that FZD arose S-phase cell-cycle arrest via activating the p38 MAPK signaling pathway in HepG2 cells. Cyclin D1, cyclin D3 and CDK6 are target genes functioning at the downstream of p38 MAPK in HepG2 cells induced by FZD.

  11. Pokemon基因在肝癌细胞中的表达及意义%Pokemon Gene Expression in Hepatoma Cells and Its Significance

    Institute of Scientific and Technical Information of China (English)

    赵心恺; 宁巧明; 孙晓宁; 田德安

    2012-01-01

    Objective To research pokemon expression in hepatoma cells and apoptosis of liver cancer cells through down-regulation of Pokemon Gene. Methods Pokemon expression was detected by western blot assay in hepatoma cellular lines HepG2, SMMC7721 and human embryonic stem cells LO2 cell lines. Pokemon gene silencing was induced by siRNA inhibition and then apoptosis of hepatoma cells was analyzed by flow cytometry. Results Pokemon expressions in HepG2 and SMMC7721 were significantly higher than those in human fetal liver cells LO2. siRNA inhibition of the expression of Pokemon triggered apoptosis of the liver cancer cells. Conclusion Proto-oncogene Pokemon expression in liver cancer cells was significantly increased, and played an important role in hepatocellular carcinoma development.%目的 探讨Pokemon在肝癌细胞中的表达及意义,进一步阐明肝细胞癌发生发展过程中的分子机制.方法 选择肝癌细胞HepG2、SMMC7721和人胚胎肝细胞LO2细胞株,应用Western blot法检测Pokemon在不同细胞中的表达;应用基因沉默方法抑制Pokemon在肝癌细胞中的表达,应用流式细胞仪观察肝癌细胞的凋亡情况.结果 Pokemon在肝癌细胞HepG2、SMMC7721中的表达明显高于人胚胎肝细胞LO2;siRNA抑制Pokemon的表达后,肝癌细胞凋亡明显增加.结论 原癌基因Pokemon在肝癌细胞中表达明显增高,Pokemon可能在肝癌的发生、发展过程中起重要作用.

  12. Effects of fucoidan on proliferation, AMP-activated protein kinase, and downstream metabolism- and cell cycle-associated molecules in poorly differentiated human hepatoma HLF cells.

    Science.gov (United States)

    Kawaguchi, Takumi; Hayakawa, Masako; Koga, Hironori; Torimura, Takuji

    2015-05-01

    Survival rates are low in patients with poorly differentiated hepatocellular carcinoma (HCC). Fucoidan, a sulfated polysaccharide derived from brown seaweed, has anticancer activity; however, the effects of fucoidan on poorly differentiated HCC remain unclear. In this study, we investigated the effects of fucoidan on AMP-activated protein kinase (AMPK), a proliferation regulator, and its downstream metabolism- and cell cycle-related molecules in a poorly differentiated human hepatoma HLF cell line. HLF cells were treated with fucoidan (10, 50, or 100 µg/ml; n=4) or phosphate buffered saline (control; n=4) for 96 h. Proliferation was evaluated by counting cells every 24 h. AMPK, TSC2, mTOR, GSK3β, acetyl-CoA carboxylase (ACC), ATP-citrate lyase, p53, cyclin D1, cyclin-dependent kinase (CDK) 4, and CDK6 expression and/or phosphorylation were examined by immunoblotting 24 h after treatment with 100 µg/ml fucoidan. Cell cycle progression was analyzed by fluorescence-activated cell sorter 48 h after treatment. Treatment with 50 or 100 µg/ml fucoidan significantly and dose- and time-dependently suppressed HLF cell proliferation (PFucoidan induced AMPK phosphorylation on Ser172 24 h after treatment. Although no differences were seen in expression and phosphorylation levels of TSC2, mTOR, GSK3β, ATP-citrate lyase, and p53 between the control and fucoidan-treated HLF cells, fucoidan induced ACC phosphorylation on Ser79. Moreover, fucoidan decreased cyclin D1, CDK4 and CDK6 expression 24 h after treatment. Furthermore, HLF cells were arrested in the G1/S phase 48 h after fucoidan treatment. We demonstrated that fucoidan suppressed HLF cell proliferation with AMPK phosphorylation. We showed that fucoidan phosphorylated ACC and downregulated cyclin D1, CDK4 and CDK6 expression. Our findings suggest that fucoidan inhibits proliferation through AMPK-associated suppression of fatty acid synthesis and G1/S transition in HLF cells.

  13. Differential stimulation of hepatitis C virus RNA translation by microRNA-122 in different cell cycle phases.

    Science.gov (United States)

    Fehr, Carmen; Conrad, K Dominik; Niepmann, Michael

    2012-01-15

    Hepatitis C virus (HCV) replicates preferentially in the liver, and in most cases the HCV infection becomes chronic and often results in hepatocellular carcinoma. When the HCV plus-strand RNA genome has been delivered to the cytosol of the infected cell, its translation is directed by the Internal Ribosome Entry Site (IRES) in the 5'-untranslated region (5'-UTR) of the viral RNA. Thereby, IRES activity is modulated by several host factors. In particular, the liver-specific microRNA-122 (miR-122) interacts with two target sites in the HCV 5'-UTR and stimulates HCV translation, thereby most likely contributing to HCV liver tropism. Here we show that HCV IRES-dependent translation efficiency in the hepatoma cell line Huh7 is highest during the G₀ and G₁ phases of the cell cycle but significantly drops during the S phase and even more in the G₂/M phase. The superimposed stimulation of HCV translation by ectopic miR-122 works best during the G₀, G₁ and G₂/M phases but is lower during the S phase. However, the levels of Ago2 protein do not substantially change during cell cycle phases, indicating that other cellular factors involved in HCV translation stimulation by miR-122 may be differentially expressed in different cell cycle phases. Moreover, the levels of endogenously expressed miR-122 in Huh7 cells are lowest in the S phase, indicating that the predominant G₀/G₁ state of non-dividing hepatocytes in the liver facilitates high expression of the HCV genome and stimulation by miR-122, with yet unknown factors involved in the differential extent of stimulation by miR-122.

  14. The effects of urotensin II on migration and invasion are mediated by NADPH oxidase-derived reactive oxygen species through the c-Jun N-terminal kinase pathway in human hepatoma cells.

    Science.gov (United States)

    Li, Ying-Ying; Shi, Zheng-Ming; Yu, Xiao-Tong; Feng, Ping; Wang, Xue-Jiang

    2017-02-01

    Urotensin II (UII) is a vasoactive neuropeptide involved in migration and invasion in various cell types. However, the effects of UII on human hepatoma cells still remain unclear. The aim of this study was to investigate the role and mechanism of UII on migration and invasion in human hepatoma cells. Migration was measured by wound healing assays and a Transwell(®) methodology, and invasion was analyzed using Matrigel(®) invasion chambers. Reactive oxygen species (ROS) levels were detected using a 2', 7'-dichlorofluorescein diacetate probe, and flow cytometry, and protein expression levels were evaluated by western blotting. Cell proliferation and actin polymerization were examined using cell proliferation reagent WST-1 and F-actin immunohistochemistry staining. Exposure to UII promoted migration and invasion in hepatoma cells compared with that in cells without UII. UII also increased matrix metalloproteinase-2 (MMP2) expression in a time-independent manner. Furthermore, UII markedly enhanced ROS generation and NADPH oxidase subunit expression, and consequently facilitated the phosphorylation of c-Jun N-terminal kinase (JNK). The UT antagonist urantide or the antioxidant/NADPH oxidase inhibitor apocynin decreased UII-induced ROS production. JNK phosphorylation, migration, invasion, and MMP9/2 expression were also reversed by pretreatment with apocynin. Urantide and JNK inhibitor SP600125 abrogated migration, invasion, or MMP9/2 expression in response to UII. UII induced actin polymerization and fascin protein expression, and could be reversed by apocynin and SP600125. Exogenous UII induced migration and invasion in hepatoma cells that mainly involved NADPH oxidase-derived ROS through JNK activation. UT played an additional role in regulating hepatoma cells migration and invasion. Thus, our data suggested an important effect of UII in hepatocellular carcinoma metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Quasispecies of Hepatitis C Virus Participate in Cell-Specific Infectivity.

    Science.gov (United States)

    Fukuhara, Takasuke; Yamamoto, Satomi; Ono, Chikako; Nakamura, Shota; Motooka, Daisuke; Mori, Hiroyuki; Kurihara, Takeshi; Sato, Asuka; Tamura, Tomokazu; Motomura, Takashi; Okamoto, Toru; Imamura, Michio; Ikegami, Toru; Yoshizumi, Tomoharu; Soejima, Yuji; Maehara, Yoshihiko; Chayama, Kazuaki; Matsuura, Yoshiharu

    2017-03-22

    It is well documented that a variety of viral quasispecies are found in the patients with chronic infection of hepatitis C virus (HCV). However, the significance of quasispecies in the specific infectivity to individual cell types remains unknown. In the present study, we analyzed the role of quasispecies of the genotype 2a clone, JFH1 (HCVcc), in specific infectivity to the hepatic cell lines, Huh7.5.1 and Hep3B. HCV RNA was electroporated into Huh7.5.1 cells and Hep3B/miR-122 cells expressing miR-122 at a high level. Then, we adapted the viruses to Huh7 and Hep3B/miR-122 cells by serial passages and termed the resulting viruses HCVcc/Huh7 and HCVcc/Hep3B, respectively. Interestingly, a higher viral load was obtained in the homologous combination of HCVcc/Huh7 in Huh7.5.1 cells or HCVcc/Hep3B in Hep3B/miR-122 cells compared with the heterologous combination. By using a reverse genetics system and deep sequence analysis, we identified several adaptive mutations involved in the high affinity for each cell line, suggesting that quasispecies of HCV participate in cell-specific infectivity.

  16. Lipoprotein lipase inhibits hepatitis C virus (HCV infection by blocking virus cell entry.

    Directory of Open Access Journals (Sweden)

    Patrick Maillard

    Full Text Available A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL. Lipoprotein lipase (LPL hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic activity, it has a bridging activity, mediating the hepatic uptake of chylomicrons and VLDL remnants. We previously showed that exogenously added LPL increases HCV binding to hepatoma cells by acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate, while simultaneously decreasing infection levels. We show here that LPL efficiently inhibits cell infection with two HCV strains produced in hepatoma cells or in primary human hepatocytes transplanted into uPA-SCID mice with fully functional human ApoB-lipoprotein profiles. Viruses produced in vitro or in vivo were separated on iodixanol gradients into low and higher density populations, and the infection of Huh 7.5 cells by both virus populations was inhibited by LPL. The effect of LPL depended on its enzymatic activity. However, the lipase inhibitor tetrahydrolipstatin restored only a minor part of HCV infectivity, suggesting an important role of the LPL bridging function in the inhibition of infection. We followed HCV cell entry by immunoelectron microscopy with anti-envelope and anti-core antibodies. These analyses demonstrated the internalization of virus particles into hepatoma cells and their presence in intracellular vesicles and associated with lipid droplets. In the presence of LPL, HCV was retained at the cell surface. We conclude that LPL efficiently inhibits HCV infection by acting on TRL associated with HCV particles through mechanisms involving its lipolytic function, but mostly its bridging function. These mechanisms lead to immobilization of the virus at the cell

  17. Gypenosides Induce Apoptosis by Ca2+ Overload Mediated by Endoplasmic-Reticulum and Store-Operated Ca2+ Channels in Human Hepatoma Cells

    Science.gov (United States)

    Sun, Da-Peng; Li, Xiao-Xi; Liu, Xin-Li; Zhao, Dan; Qiu, Feng-Qi; Li, Yan

    2013-01-01

    Abstract Gypenosides (Gyps) are triterpenoid saponins contained in an extract from Gynostemma pentaphyllum Makino and reported to induce apoptosis in human hepatoma cells through Ca2+-implicated endoplasmic reticulum (ER) stress and mitochondria-dependent pathways. The mechanism underlying the Gyp-increased intracellular Ca2+ concentration ([Ca2+]i) is unclear. Here, we examined Gyp-induced necrosis and apoptosis in human hepatoma HepG2 cells. Gyp-induced apoptotic cell death was accompanied by a sustained increase in [Ca2+]i level. Gyp-increased [Ca2+]i level was partly inhibited by removal of extracellular Ca2+ by Ca2+ chelator EGTA, store-operated Ca2+ channel (SOC) inhibitor 2- aminoethoxydiphenyl borate (2-APB), and ER Ca2+-release-antagonist 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8). The strongest inhibitory effect was observed with TMB-8. EGTA, 2-APB, and TMB-8 also protected against Gyp-induced apoptosis in HepG2 cells. The combination of 2-APB and TMB-8 almost completely abolished the Gyp-induced Ca2+ response and apoptosis. In contrast, the sarco/endoplasmic-reticulum-Ca2+-ATPase (SERCA) inhibitor thapsigargin slightly elevated Gyp-induced [Ca2+]i increase and apoptosis in HepG2 cells. Exposure to 300 μg/mL Gyp for 24 hours upregulated protein levels of inositol 1,4,5-trisphosphate receptor and SOC and downregulated that of SERCA for at least 72 hours. Thus, Gyp-induced increase in [Ca2+]i level and consequent apoptosis in HepG2 cells may be mainly due to enhanced Ca2+ release from ER stores and increased store-operated Ca2+ entry. PMID:25310348

  18. Differential action of 13-HPODE on PPARalpha downstream genes in rat Fao and human HepG2 hepatoma cell lines.

    Science.gov (United States)

    König, Bettina; Eder, Klaus

    2006-06-01

    In rats, oxidized fats activate the peroxisome proliferator-activated receptor alpha (PPARalpha), leading to reduced triglyceride concentrations in liver, plasma and very low density lipoproteins. Oxidation products of linoleic acid constitute an important portion of oxidized dietary fats. This study was conducted to check whether the primary lipid peroxidation product of linoleic acid, 13-hydroperoxy-9,11-octadecadienoic acid (13-HPODE), might be involved in the PPARalpha-activating effect of oxidized fats. Therefore, we examined the effect of 13-HPODE on the expression of PPARalpha target genes in the rat Fao and the human HepG2 hepatoma cell lines. In Fao cells, 13-HPODE increased the mRNA concentration of the PPARalpha target genes acyl-CoA oxidase (ACO), cytochrome P450 4A1 and carnitine-palmitoyltransferase 1A (CPT1A). Furthermore, the concentration of cellular and secreted triglycerides was reduced in Fao cells treated with 13-HPODE. Because PPARalpha mRNA was not influenced, we conclude that these effects are due to an activation of PPARalpha by 13-HPODE. In contrast, HepG2 cells seemed to be resistant to PPARalpha activation by 13-HPODE because no remarkable induction of the PPARalpha target genes ACO, CPT1A, mitochondrial HMG-CoA synthase and delta9-desaturase was observed. Consequently, cellular and secreted triglyceride levels were not changed after incubation of HepG2 cells with 13-HPODE. In conclusion, this study shows that 13-HPODE activates PPARalpha in rat Fao but not in human HepG2 hepatoma cells.

  19. Hepatitis B virus X protein upregulates Lin28A/Lin28B through Sp-1/c-Myc to enhance the proliferation of hepatoma cells.

    Science.gov (United States)

    You, X; Liu, F; Zhang, T; Lv, N; Liu, Q; Shan, C; Du, Y; Kong, G; Wang, T; Ye, L; Zhang, X

    2014-01-23

    Hepatitis B virus X protein (HBx) plays critical roles in the pathogenesis of hepatocellular carcinoma (HCC). Here, we were interested in knowing whether the oncogene Lin28A and its homolog Lin28B are involved in the hepatocarcinogenesis mediated by HBx. We showed that the expression levels of Lin28A and Lin28B were increased in clinical HCC tissues, HepG2.2.15 cell line and liver tissues of p21-HBx transgenic mice. Interestingly, the expression levels of HBx were positively associated with those of Lin28A/Lin28B in clinical HCC tissues. Moreover, the overexpression of HBx resulted in the upregulation of Lin28A/Lin28B in hepatoma HepG2/H7402 cell lines by transient transfection, suggesting that HBx was able to upregulate Lin28A and Lin28B. Then, we examined the mechanism by which HBx upregulated Lin28A and Lin28B. We identified that the promoter region of Lin28A regulated by HBx was located at nt -235/-66 that contained Sp-1 binding element. Co-immunoprecipitation showed that HBx was able to interact with Sp-1 in HepG2-X cells. Moreover, chromatin immunoprecipitation (ChIP) demonstrated that HBx could bind to the promoter of Lin28A, which failed to work when Sp-1 was silenced. Electrophoretic mobility shift assay (EMSA) further identified that HBx was able to interact with Sp-1 element in Lin28A promoter via transcription factor Sp-1. In addition, we found that c-Myc was involved in the activation of Lin28B mediated by HBx. In function, Lin28A/Lin28B played important roles in HBx-enhanced proliferation of hepatoma cells in vitro and in vivo. In conclusion, HBx activates Lin28A/Lin28B through Sp-1/c-Myc in hepatoma cells. Lin28A/Lin28B serves as key driver genes in HBx-induced hepatocarcinogenesis.

  20. Basil extract inhibits the sulfotransferase mediated formation of DNA adducts of the procarcinogen 1'-hydroxyestragole by rat and human liver S9 homogenates and in HepG2 human hepatoma cells

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Punt, A.; Delatour, T.; Rietjens, I.M.C.M.

    2008-01-01

    The effects of a basil extract on the sulfation and concomitant DNA adduct formation of the proximate carcinogen 1¿-hydroxyestragole were studied using rat and human liver S9 homogenates and the human hepatoma cell line HepG2. Basil was chosen since it contains the procarcinogen estragole that can b

  1. Temporal and Tight Hepatitis C Virus Gene Activation in Cultured Human Hepatoma Cells Mediated by a Cell-Permeable Cre Recombinase

    Institute of Scientific and Technical Information of China (English)

    Dong XIAO; Kang XU; Ying YUE; Zhong-Min GUO; Bing HUANG; Xin-Yan DENG; Huan TANG; Xi-Gu CHEN

    2004-01-01

    Conditional gene expression has greatly facilitated the examination of the functions of particular gene products. Using the Cre/lox P switching expression system, we plan to develop efficient conditional transgene activation of hepatitis C virus core protein (HCV-C) cDNA (nucleotide 342-914) in the transgenic mice to overcome "immune tolerance" formed during the embryonic period and "immune escape" against hepatitis virus antigen in our project. To use this system in vivo, the dormant transgenic construct, i.e.,pApoE-SCS-EGFP-HCV-C, was generated using techniques of standard molecular biology. The liverspecific human apoE promoter was here used to target expression of genes of interest (EGFP and HCV-C) to murine liver. Prior to generating the transgenic mice, the availability of Cre/lox P system and construct functionality were successfully verified by a cell-free recombination system and via checking the expression of EGFP and HCV-C in the human hepatoma cells at the mRNA and protein levels. These results suggest that the Cre/lox P system could tightly control expression of EGFP and HCV-C in vitro, which laid a solid foundation to conditionally activate expression of target gene(s) in transgenic mice by Cre-mediated site-specific recombination.

  2. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Xie Y

    2016-07-01

    Full Text Available Yuexia Xie,1,2,* Dejun Liu,3,* Chenlei Cai,1,* Xiaojing Chen,1 Yan Zhou,1 Liangliang Wu,1 Yongwei Sun,3 Huili Dai,1,2 Xianming Kong,1,2 Peifeng Liu1,2 1Central Laboratory, 2State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, 3Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: The application of Fe3O4 nanoparticles (NPs has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mecha­nisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm. Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application. Keywords: hepatoma cells, nanoparticles, cytotoxicity, mechanism, oxidative stress

  3. Dioxin-like activity of brominated dioxins as individual compounds or mixtures in in vitro reporter gene assays with rat and mouse hepatoma cell lines.

    Science.gov (United States)

    Suzuki, G; Nakamura, M; Michinaka, C; Tue, N M; Handa, H; Takigami, H

    2017-10-01

    In vitro reporter gene assays detecting dioxin-like compounds have been developed and validated since the middle 1990's, and applied to the determination of dioxin-like activities in various samples for their risk management. Data on characterizing the potency of individual brominated dioxins and their activity in mixture with chlorinated dioxins are still limited on the cell-based assay. This study characterized the dioxin-like activities of the 32 brominated dioxins, such as polybrominated dibenzo-p-dioxins, polybrominated dibenzofurans (PBDFs), coplanar polybrominated biphenyls, mixed halogenated dibenzo-p-dioxins and dibenzofurans (PXDFs), as a sole component or in a mixture by DR-CALUX (dioxin-responsive chemically activated luciferase expression) using the rat hepatoma H4IIE cell line and XDS-CALUX (xenobiotic detection systems-chemically activated luciferase expression) assays using the mouse hepatoma H1L6.1 cell line. The 2,3,7,8-TCDD-relative potencies (REPs) of most of the brominated dioxins were within a factor of 10 of the WHO toxicity equivalency factor (WHO-TEF) for the chlorinated analogues. The REPs of a few PXDFs were an order of magnitude higher than the corresponding WHO-TEFs, indicating their toxicological importance. Results with reconstituted mixtures suggest that the activity of brominated and chlorinated dioxins in both CALUX assays was dose-additive. Thus, obtained results indicated the applicability of the CALUX assays as screening tools of brominated dioxins together with their chlorinated analogues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Type I Interferon Supports Inducible Nitric Oxide Synthase in Murine Hepatoma Cells and Hepatocytes and during Experimental Acetaminophen-Induced Liver Damage.

    Science.gov (United States)

    Bachmann, Malte; Waibler, Zoe; Pleli, Thomas; Pfeilschifter, Josef; Mühl, Heiko

    2017-01-01

    Cytokine regulation of high-output nitric oxide (NO) derived from inducible NO synthase (iNOS) is critically involved in inflammation biology and host defense. Herein, we set out to characterize the role of type I interferon (IFN) as potential regulator of hepatic iNOS in vitro and in vivo. In this regard, we identified in murine Hepa1-6 hepatoma cells a potent synergism between pro-inflammatory interleukin-β/tumor necrosis factor-α and immunoregulatory IFNβ as detected by analysis of iNOS expression and nitrite release. Upregulation of iNOS by IFNβ coincided with enhanced binding of signal transducer and activator of transcription-1 to a regulatory region at the murine iNOS promoter known to support target gene expression in response to this signaling pathway. Synergistic iNOS induction under the influence of IFNβ was confirmed in alternate murine Hepa56.1D hepatoma cells and primary hepatocytes. To assess iNOS regulation by type I IFN in vivo, murine acetaminophen (APAP)-induced sterile liver inflammation was investigated. In this model of acute liver injury, excessive necroinflammation drives iNOS expression in diverse liver cell types, among others hepatocytes. Herein, we demonstrate impaired iNOS expression in type I IFN receptor-deficient mice which associated with diminished APAP-induced liver damage. Data presented indicate a vital role of type I IFN within the inflamed liver for fine-tuning pathological processes such as overt iNOS expression.

  5. Type I Interferon Supports Inducible Nitric Oxide Synthase in Murine Hepatoma Cells and Hepatocytes and during Experimental Acetaminophen-Induced Liver Damage

    Science.gov (United States)

    Bachmann, Malte; Waibler, Zoe; Pleli, Thomas; Pfeilschifter, Josef; Mühl, Heiko

    2017-01-01

    Cytokine regulation of high-output nitric oxide (NO) derived from inducible NO synthase (iNOS) is critically involved in inflammation biology and host defense. Herein, we set out to characterize the role of type I interferon (IFN) as potential regulator of hepatic iNOS in vitro and in vivo. In this regard, we identified in murine Hepa1-6 hepatoma cells a potent synergism between pro-inflammatory interleukin-β/tumor necrosis factor-α and immunoregulatory IFNβ as detected by analysis of iNOS expression and nitrite release. Upregulation of iNOS by IFNβ coincided with enhanced binding of signal transducer and activator of transcription-1 to a regulatory region at the murine iNOS promoter known to support target gene expression in response to this signaling pathway. Synergistic iNOS induction under the influence of IFNβ was confirmed in alternate murine Hepa56.1D hepatoma cells and primary hepatocytes. To assess iNOS regulation by type I IFN in vivo, murine acetaminophen (APAP)-induced sterile liver inflammation was investigated. In this model of acute liver injury, excessive necroinflammation drives iNOS expression in diverse liver cell types, among others hepatocytes. Herein, we demonstrate impaired iNOS expression in type I IFN receptor-deficient mice which associated with diminished APAP-induced liver damage. Data presented indicate a vital role of type I IFN within the inflamed liver for fine-tuning pathological processes such as overt iNOS expression. PMID:28824623

  6. Insulin attenuates TNFα-induced hemopexin mRNA: An anti-inflammatory action of insulin in rat H4IIE hepatoma cells

    Directory of Open Access Journals (Sweden)

    J. Lee Franklin

    2017-03-01

    Full Text Available Proinflammatory cytokines, including TNF-α and IL-6, can contribute to insulin resistance. Conversely, insulin has some actions that can be considered anti-inflammatory. Hemopexin is a Class 2 acute phase reactant and control of its transcription is predominantly regulated by IL-6, with TNF-α and IL-1β also inducing hemopexin gene expression. Thus, we asked whether insulin could inhibit the ability of TNF-α to stimulate hemopexin mRNA expression. In cultured rat hepatoma (H4IIE cells, TNF-α significantly increased hemopexin mRNA accumulation. The TNF-α-induced increase of hemopexin mRNA was dramatically attenuated by insulin, even though TNF-α reduced peak insulin activation of ERK. Thus, even though TNF-α can contribute to insulin resistance, the residual insulin response was still able to counteract TNF-α actions.

  7. Effects of PARP-1 inhibitors AG-014699 and AZD2281 on proliferation and apoptosis of human hepatoma cell line HepG2

    Directory of Open Access Journals (Sweden)

    DU Senrong

    2015-06-01

    Full Text Available ObjectiveTo observe the inhibitory and pro-apoptotic effects of two poly(ADP-ribose polymerase (PARP-1 inhibitors, AG-014699 and AZD2281, on human hepatoma HepG2 cells and preliminarily explore the mechanism by which AG-014699 induces HepG2 cell apoptosis, and to provide a new therapeutic target for hepatoma. MethodsThe effects of different concentrations of AG-014699 and AZD2281 on HepG2 cell proliferation were determined by MTT assay. The cell apoptosis rate was measured by flow cytometry. The expression levels of caspase-3 and caspase-8 were measured by Western Blot. Inter-group comparison was made by t test. ResultsBoth AG-014699 and AZD2281 suppressed HepG2 cell proliferation in a time- and dose-dependent manner. However, the sensitivity of HepG2 cells to the two PARP-1 inhibitors was different. The half-maximal inhibitory concentrations of AG-014699 and AZD2281 at 48 h determined by MTT assay were about 20 μmol/L and 400 μmol/L, respectively. Flow cytometry and Western blot were not used to evaluate the apoptosis of HepG2 cells exposed to AZD2281 to which these cells were not sensitive. HepG2 cell apoptosis could be induced by 10, 30, and 50 μmol/L AG-014699, and the highest apoptosis rate at 48 h was significantly higher than that of the control group (3100%±2.13% vs 09%±0013%, P<0.01. Compared with those in the control group, the protein levels of caspase-3 and caspase-8 in HepG2 cells after 48-h exposure to 30, and 50 μmol/L AG-014699 increased. ConclusionThe two PARP-1 inhibitors AG-014699 and AZD2281 can inhibit the proliferation of HepG2 cells, which showed different sensitivities to the two inhibitors. AG-014699 can induce HepG2 cell apoptosis by up-regulating the protein expression of caspase-3 and caspase-8.

  8. Effect of antisense oligonucleotide targeting bFGF on apoptosis of hepatoma cells%多层螺旋CT同层动态扫描结合MPR技术诊断肝外胆管癌的研究

    Institute of Scientific and Technical Information of China (English)

    Jielin Qi; Ning Wu; Li Li; Bing Bu; Dengfeng Zhou; Xiqin Zhang

    2009-01-01

    Objective:To investigate the cell cycle changes of hepatoma cells and the rote of antisense oligonucleotide targeting bFGF.Methods:Inhibition of bFGF protein expression was investigated by conical microscopy analysis and Western blot in the best condition of transfecting antisense oligonucleotide targeting bFGF.Cell cycle and apoptosis were detected with flow cytometry analysis.Results:Treatmenl with antisense oligonucleotide of bFGF not only reduced the expression of bFGF by conical microscopy and Western blot analysises,but also increased the apoptosis of HepG2 cells(P<0.01).Conclusion:bFGF may take part in apoptosis regulation of hepatoma cells and be used as a target of hepatocel-lular carcinoma therapy.

  9. Comparative effects of food-derived polyphenols on the viability and apoptosis of a human hepatoma cell line (HepG2).

    Science.gov (United States)

    Ramos, Sonia; Alía, Mario; Bravo, Laura; Goya, Luis

    2005-02-23

    Consumption of fruits and vegetables, which are rich in polyphenols, has been associated with a reduced risk of chronic diseases such as cancer. Dietary polyphenols have antioxidant and antiproliferative properties that might explain their beneficial effect on cancer prevention. The aim of this study was to investigate the effects of different pure polyphenols [quercetin, chlorogenic acid, and (-)-epicatechin] and natural fruit extracts (strawberry and plum) on viability or apoptosis of human hepatoma HepG2 cells. The treatment of cells for 18 h with quercetin and fruit extracts reduced cell viability in a dose-dependent manner; however, chlorogenic acid and (-)-epicatechin had no prominent effects on the cell death rate. Similarly, quercetin and strawberry and plum extracts, rather than chlorogenic acid and (-)-epicatechin, induced apoptosis in HepG2 cells. Moreover, quercetin and fruit extracts arrested the G1 phase in the cell cycle progression prior to apoptosis. Quercetin and strawberry and plum extracts may induce apoptosis and contribute to a reduced cell viability in HepG2 cells.

  10. Overexpression of cyclooxygenase-2 in human HepG2, Bel-7402 and SMMC-7721 hepatoma cell lines and mechanism of cyclooxygenase-2 selective inhibitor celecoxib-induced cell growth inhibition and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ning-Bo Liu; Tao Peng; Chao Pan; Yu-Yu Yao; Bo Shen; Jing Leng

    2005-01-01

    AIM: To investigate the cyclooxygenase-2 (COX-2)expression level in human HepG2, Bel-7402 and SMMC-7721hepatoma cell lines and the molecular mechanism of COX-2 selective inhibitor celecoxib-induced cell growth inhibition and cell apoptosis.METHODS: Hepatoma cells were cultured and treated with celecoxib. Cell in situ hybridization (ISH) and immunocytochemistry were used to detect COX-2 mRNA and protein expression. Proliferating cell nuclear antigen and phosphorylated Akt were also detected by immunocytochemistry assay. Cell growth rates were assessed by 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium (MTT) bromide colorimetric assay. Celecoxibinduced cell apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and flow cytometry (FCM). The phosphorylated Akt and activated fragments of caspase-9, caspase-3 were examined by Western blotting analysis.RESULTS: Increased COX-2 mRNA and protein expression were detected in all three hepatoma cell lines. Celecoxib could significantly inhibit cell growth and the inhibitory effect was in a dose- and time-dependent manner evidenced by MTr assays and morphological changes.The apoptotic index measured by TUNEL increased correspondingly with the increased concentration of celecoxib and the reaction time. With 50 μmol/L celecoxib treatment for 24 h, the apoptotic index of HepG2, BEL-7402and SMMC-7721 cells was 25.01±3.08%, 26.40±3.05%,and 30.60±2.89%, respectively. Western blotting analysis showed remarkable activation of caspase-9, caspase-3and dephosphorylation of Akt (Thr308). Immunocytochemistry also showed the reduction of PCNA expression and phosphorylation Akt (Thr308) after treatment with celecoxib.CONCLUSION: COX-2 mRNA and protein overexpression in HepG2, Bel-7402 and SMMC-7721 cell lines correlate with the increased cell growth rate. Celecoxib can inhibit proliferation and induce apoptosis of hepatoma cell strains in a dose- and time-dependent manner.

  11. MiR-30e suppresses proliferation of hepatoma cells via targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Guoxing [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Shi, Hui [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin (China); Li, Jiong; Yang, Zhe [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Fang, Runping; Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin (China); Zhang, Weiying, E-mail: zhwybao@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China)

    2016-04-08

    Aberrant microRNA expression has been shown to be characteristic of many cancers. It has been reported that the expression levels of miR-30e are decreased in liver cancer tissues. However, the role of miR-30e in hepatocellular carcinoma remains poorly understood. In the present study, we investigated the significance of miR-30e in hepatocarcinogenesis. Bioinformatics analysis reveals a putative target site of miR-30e in the 3′-untranslated region (3′UTR) of prolyl 4-hydroxylase subunit alpha-1 (P4HA1) mRNA. Moreover, luciferase reporter gene assays verified that miR-30e directly targeted 3′UTR of P4HA1 mRNA. Then, we demonstrated that miR-30e was able to reduce the expression of P4HA1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blot analysis. Enforced expression of miR-30e suppressed proliferation of HepG2 cells by 5-ethynyl-2-deoxyuridine (EdU) assay and reduced colony formation of these cells by colony formation analysis. Conversely, anti-miR-30e enhanced the proliferation of hepatoma cells in vitro. Interestingly, the ectopic expression of P4HA1 could efficiently rescue the inhibition of cell proliferation mediated by miR-30e in HepG2 cells. Meanwhile, silencing of P4HA1 abolished the anti-miR-30e-induced proliferation of cells. Clinically, quantitative real-time PCR showed that miR-30e was down-regulated in liver tumor tissues relative to their peritumor tissues. The expression levels of miR-30e were negatively correlated to those of P4HA1 mRNA in clinical liver tumor tissues. Thus, we conclude that miR-30e suppresses proliferation of hepatoma cells through targeting P4HA1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • P4HA1 is a novel target gene of miR-30e. • P4HA1 is increased in clinical HCC tissues. • MiR-30e is negatively correlated with P4HA1 in clinical HCC tissues. • MiR-30e suppresses the proliferation of HCC cells through

  12. Camel milk triggers apoptotic signaling pathways in human hepatoma HepG2 and breast cancer MCF7 cell lines through transcriptional mechanism.

    Science.gov (United States)

    Korashy, Hesham M; Maayah, Zaid H; Abd-Allah, Adel R; El-Kadi, Ayman O S; Alhaider, Abdulqader A

    2012-01-01

    Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2) and human breast (MCF7) cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  13. Camel Milk Triggers Apoptotic Signaling Pathways in Human Hepatoma HepG2 and Breast Cancer MCF7 Cell Lines through Transcriptional Mechanism

    Directory of Open Access Journals (Sweden)

    Hesham M. Korashy

    2012-01-01

    Full Text Available Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2 and human breast (MCF7 cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  14. MiR-520b suppresses proliferation of hepatoma cells through targeting ten-eleven translocation 1 (TET1) mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiying; Lu, Zhanping; Gao, Yuen [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin (China); Song, Tianqiang, E-mail: tjchi@hotmai.com [Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China)

    2015-05-08

    Accumulating evidence indicates that microRNAs are able to act as oncogenes or tumor suppressor genes in human cancer. We previously reported that miR-520b was down-regulated in hepatocellular carcinoma (HCC) and its deregulation was involved in hepatocarcinogenesis. In the present study, we report that miR-520b suppresses cell proliferation in HCC through targeting the ten-eleven translocation 1 (TET1) mRNA. Notably, we identified that miR-520b was able to target 3′-untranslated region (3′UTR) of TET1 mRNA by luciferase reporter gene assays. Then, we revealed that miR-520b was able to reduce the expression of TET1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blotting analysis. In terms of function, 5-ethynyl-2-deoxyuridine (EdU) incorporation and colony formation assays demonstrated that the forced miR-520b expression remarkably inhibited proliferation of hepatoma cells, but TET1 overexpression could rescue the inhibition of cell proliferation mediated by miR-520b. Furthermore, anti-miR-520b enhanced proliferation of hepatoma cells, whereas silencing of TET1 abolished anti-miR-520b-induced acceleration of cell proliferation. Then, we validated that the expression levels of miR-520b were negatively related to those of TET1 mRNA in clinical HCC tissues. Thus, we conclude that miR-520b depresses proliferation of liver cancer cells through targeting 3′UTR of TET1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • TET1 is a novel target gene of miR-520b. • TET1 is upregulated in clinical HCC tissues. • MiR-520b is negatively correlated with TET1 in clinical HCC tissues. • MiR-520b depresses the proliferation of HCC cells through targeting TET1 mRNA.

  15. Sirolimus inhibits growth of human hepatoma cells alone or combined with tacrolimus, while tacrolimus promotes cell growth

    Institute of Scientific and Technical Information of China (English)

    Guido Schumacher; Marijke Oidtmann; Anne Rueggeberg; Dietmar Jacob; Sven Jonas; Jan M. Langrehr; Ruth Neuhaus; Marcus Bahra; Peter Neuhaus

    2005-01-01

    AIM: Standard immunosuppression after organ transplantation stimulates tumor growth. Sirolimus has a strong antiproliferative and a tumor inhibiting effect. The purpose is to assess the effect on tumor growth of the immunosuppressive compounds sirolimus and tacrolimus alone and in combination on cells of human hepatocellular carcinoma.METHODS: We used the human cell lines SK-Hep 1 and Hep 3B derived from hepatocellular carcinoma. Proliferation analyses after treatment with sirolimus, tacrolimus, or the combination of both were performed. FACS analyses were done to reveal cell cycle changes and apoptotic cell death. The expression of apoptosis-related proteins was estimated by Western blots.RESULTS: Sirolimus alone or combined with tacrolimus inhibited the growth of both cell lines after 5 d by up to 35% in SK-Hep 1 cells, and by up to 68% in Hep 3B cells at 25 ng/mL. Tacrolimus alone stimulated the growth by 12% after 5 ng/mL and by 25% after 25 ng/mL in Hep 3B cells. We found an increase of apoptotic Hep 3B cells from 6 to 16%, and a G1-arrest in SK-Hep 1 cells with an increase of cells from 61 to 82%, when sirolimus and tacrolimus were combined. Bcl-2 was down-regulated in Hep 3B, but not in SK-Hep 1 cells after combined treatment.CONCLUSION: Sirolimus appears to inhibit the growth of hepatocellular carcinoma cells alone and in combination with tacrolimus. Sirolimus seems to inhibit the growth stimulation of tacrolimus.

  16. Coencapsulation of Target Effector Cells With Mesenchymal Stem Cells Reduces Pericapsular Fibrosis and Improves Graft Survival in a Xenotransplanted Animal Model.

    Science.gov (United States)

    Vaithilingam, Vijayaganapathy; Evans, Margaret D M; Rowe, Anthony; Bean, Penelope A; Tuch, Bernard E

    2016-01-01

    Pericapsular fibrotic overgrowth (PFO) is a problem that thwarts full implementation of cellular replacement therapies involving encapsulation in an immunoprotective material, such as for the treatment of diabetes. Mesenchymal stem cells (MSCs) have inherent anti-inflammatory properties. We postulated that coencapsulation of MSCs with the target cells would reduce PFO. A hepatoinsulinoma cell line (HUH7) was used to model human target cells and was coencapsulated with either human or mouse MSCs at different ratios in alginate microcapsules. Viability of encapsulated cells was assessed in vitro and xenografted either intraperitoneally or subcutaneously into C57BL/6 mice. Graft retrieval was performed at 3 weeks posttransplantation and assessed for PFO. Coencapsulation of human MSCs (hMSCs) or mouse MSCs (mMSCs) with HUH7 at different ratios did not alter cell viability in vitro. In vivo data from intraperitoneal infusions showed that PFO for HUH7 cells coencapsulated with hMSCs and mMSCs in a ratio of 1:1 was significantly reduced by ∼30% and ∼35%, respectively, compared to HUH7 encapsulated alone. PFO for HUH7 cells was reduced by ∼51% when the ratio of mMSC/HUH7 was increased to 2:1. Implanting the microcapsules subcutaneously rather than intraperitoneally substantially reduced PFO in all treatment groups, which was most significant in the mMSC/HUH7 2:1 group with a ∼53% reduction in PFO compared with HUH7 alone. Despite the reduced PFO reaction to the individual microcapsules implanted subcutaneously, all microcapsule treatment groups were contained in a vascularized fibrotic pouch at 3 weeks. The presence of MSCs in microcapsules retrieved from these fibrotic pouches improved graft survival with significantly higher cell viabilities of 83.1 ± 0.6% and 79.1 ± 0.8% seen with microcapsules containing mMSC/HUH7 at 2:1 and 1:1 ratios, respectively, compared to HUH7 alone (51.5 ± 0.7%) transplanted subcutaneously. This study showed that

  17. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hong Shik; Hong, Eun-Hee [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae [Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Baek, Jeong-Hwa [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Lee, Chang-Woo [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Yim, Ji-Hye; Um, Hong-Duck [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Hwang, Sang-Gu, E-mail: sgh63@kcch.re.kr [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.

  18. Molecular mechanisms of (-)-epicatechin and chlorogenic acid on the regulation of the apoptotic and survival/proliferation pathways in a human hepatoma cell line.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Izquierdo-Pulido, María; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2007-03-07

    Dietary polyphenols have been associated with reduced risk of chronic diseases, but the precise molecular mechanisms of protection remain unclear. This work was aimed at studying the effect of (-)-epicatechin (EC) and chlorogenic acid (CGA) on the regulation of apoptotic and survival/proliferation pathways in a human hepatoma cell line (HepG2). EC or CGA treatment for 18 h had a slight effect on cell viability and decreased reactive oxygen species formation, and EC alone promoted cell proliferation, whereas CGA increased glutathione levels. Phenols neither induced the caspase cascade for apoptosis nor affected expression levels of Bcl-xL or Bax. A sustained activation of the major survival signals AKT/PI-3-kinase and ERK was shown in EC-treated cells, rather than in CGA-exposed cells. These data suggest that EC and CGA have no effect on apoptosis and enhance the intrinsic cellular tolerance against oxidative insults either by activating survival/proliferation pathways or by increasing antioxidant potential in HepG2.

  19. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    Science.gov (United States)

    Wu, Qingfeng; Li, Qiang; Jin, Xiaodong; Liu, Xinguo; Dai, Zhongying

    2011-01-01

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/μm carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  20. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wu Qingfeng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Li Qiang, E-mail: liqiang@impcas.ac.c [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Jin Xiaodong; Liu Xinguo [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Dai Zhongying [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China)

    2011-01-15

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/{mu}m carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  1. Mechanism(s of Toxic Action of Zn2+ and Selenite: A Study on AS-30D Hepatoma Cells and Isolated Mitochondria

    Directory of Open Access Journals (Sweden)

    Elena A. Belyaeva

    2011-01-01

    Full Text Available Mitochondria of AS-30D rat ascites hepatoma cells are found to be the main target for Zn2+ and sodium selenite (Na2SeO3. High [mu]M concentrations of Zn2+ or selenite were strongly cytotoxic, killing the AS-30D cells by both apoptotic and necrotic ways. Both Zn2+ and selenite produced strong changes in intracellular generation of reactive oxygen species (ROS and the mitochondrial dysfunction via the mitochondrial electron transport chain (mtETC disturbance, the membrane potential dissipation, and the mitochondrial permeability transition pore opening. The significant distinctions in toxic action of Zn2+ and selenite on AS-30D cells were found. Selenite induced a much higher intracellular ROS level (the early event compared to Zn2+ but a lower membrane potential loss and a lower decrease of the uncoupled respiration rate of the cells, whereas the mtETC disturbance was the early and critical event in the mechanism of Zn2+ cytotoxicity. Sequences of events manifested in the mitochondrial dysfunction produced by the metal/metalloid under test are compared with those obtained earlier for Cd2+, Hg2+, and Cu2+ on the same model system.

  2. FoxO3a mediates transforming growth factor-beta1-induced apoptosis in FaO rat hepatoma cells.

    Science.gov (United States)

    Kim, Byung-Chul

    2008-10-31

    FoxO3a is a member of the forkhead box class O (FoxO) transcription factor family and an important regulator of apoptosis. This work aimed to elucidate the involvement of FoxO3a in transforming growth factor-beta1 (TGF-beta1)-induced apoptosis in FaO rat hepatoma cells. TGF-beta1 caused a time-dependent activation of FoxO3a and a subsequent increase in FoxO response-element-containing luciferase reporter activity, which was Akt-sensitive. The FaO cells stably transfected with a wild type FoxO3a were more susceptible to the formation of apoptotic bodies, populations of sub-G1 apoptotic cells, and collapse of the mitochondrial-membrane potential triggered by TGF-beta1. In contrast, transfection with small-interfering RNA (siRNA) oligonucleotide specific for FoxO3a significantly inhibited caspase activation in FaO cells treated with TGF-beta1. It thus appears that FoxO3a plays a crucial mediatory role in the TGF-beta1 signaling pathway leading to apoptosis.

  3. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-07-01

    Full Text Available Xi Liu,1–4 Yan Liu,1–4 Pengcheng Zhang,1–4 Xiaodong Jin,1–3 Xiaogang Zheng,1–4 Fei Ye,1–4 Weiqiang Chen,1–3 Qiang Li1–3 1Institute of Modern Physics, 2Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, 3Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 4School of Life Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China Abstract: Reductive drug-functionalized gold nanoparticles (AuNPs have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ moiety, and then thioctyl TPZ (TPZs-modified AuNPs (TPZs-AuNPs were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. Keywords: AuNPs, radiation enhancement, synergistic effect, human hepatoma cells, hydroxyl radical production

  4. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs, including acetaminophen (APAP, have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP causes liver injury in humans and animals. Hepatic glutathione (GSH depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST and multidrug resistance (MDR1 proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM, a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  5. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Science.gov (United States)

    Raza, Haider; John, Annie

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs), including acetaminophen (APAP), have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP) causes liver injury in humans and animals. Hepatic glutathione (GSH) depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST) and multidrug resistance (MDR1) proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM), a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h) exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  6. Salmonella typhimurium strain SL7207 induces apoptosis and inhibits the growth of HepG2 hepatoma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Baowei Li

    2012-12-01

    Full Text Available Salmonella typhimurium is probably most extensively studied tumor-targeting bacteria and SL7207 is one of its attenuated strains. SL7207 was first made for bacterial vaccine development and its therapeutic efficacy and safety for hepatocellular carcinoma has not been characterized. In this study, the inhibitory ability of SL7207-lux on human hepatoma HepG2 cells was tested in vitro and in vivo. A bacterial luminescent gene cluster (lux CDABE was transfected into SL7207 to better monitor the invasion of the bacteria. The results show that SL7207-lux can rapidly enter HepG2 cells and localize in the cytoplasm. This invasion represses cell proliferation and induces apoptosis. In vivo real-time invasion studies showed that the bacteria gradually accumulate in the tumor. This enrichment was confirmed by anatomic observation at 5 days after inoculation. About 40% of tumor growth was inhibited by SL7207-lux at 34 days post-treatment without significant loss of body weight. The area of necrosis of tumor tissue was clearly increased in the treated group. Bacterial quantification showed that the number of colony-forming units per gram of bacteria within tumor tissue was approximately 1000-fold higher than that of liver and spleen. These data suggest that attenuated S. typhimurium strain SL7207 has potential for the treatment of cancers.

  7. Profiling of promoter occupancy by the SND1 transcriptional coactivator identifies downstream glycerolipid metabolic genes involved in TNFα response in human hepatoma cells.

    Science.gov (United States)

    Arretxe, Enara; Armengol, Sandra; Mula, Sarai; Chico, Yolanda; Ochoa, Begoña; Martínez, María José

    2015-12-15

    The NF-κB-inducible Staphylococcal nuclease and tudor domain-containing 1 gene (SND1) encodes a coactivator involved in inflammatory responses and tumorigenesis. While SND1 is known to interact with certain transcription factors and activate client gene expression, no comprehensive mapping of SND1 target genes has been reported. Here, we have approached this question by performing ChIP-chip assays on human hepatoma HepG2 cells and analyzing SND1 binding modulation by proinflammatory TNFα. We show that SND1 binds 645 gene promoters in control cells and 281 additional genes in TNFα-treated cells. Transcription factor binding site analysis of bound probes identified motifs for established partners and for novel transcription factors including HSF, ATF, STAT3, MEIS1/AHOXA9, E2F and p300/CREB. Major target genes were involved in gene expression and RNA metabolism regulation, as well as development and cellular metabolism. We confirmed SND1 binding to 21 previously unrecognized genes, including a set of glycerolipid genes. Knocking-down experiments revealed that SND1 deficiency compromises the glycerolipid gene reprogramming and lipid phenotypic responses to TNFα. Overall, our findings uncover an unexpected large set of potential SND1 target genes and partners and reveal SND1 to be a determinant downstream effector of TNFα that contributes to support glycerophospholipid homeostasis in human hepatocellular carcinoma during inflammation.

  8. Control of gene expression by the retinoic acid-related orphan receptor alpha in HepG2 human hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Caroline Chauvet

    Full Text Available Retinoic acid-related Orphan Receptor alpha (RORα; NR1F1 is a widely distributed nuclear receptor involved in several (pathophysiological functions including lipid metabolism, inflammation, angiogenesis, and circadian rhythm. To better understand the role of this nuclear receptor in liver, we aimed at displaying genes controlled by RORα in liver cells by generating HepG2 human hepatoma cells stably over-expressing RORα. Genes whose expression was altered in these cells versus control cells were displayed using micro-arrays followed by qRT-PCR analysis. Expression of these genes was also altered in cells in which RORα was transiently over-expressed after adenoviral infection. A number of the genes found were involved in known pathways controlled by RORα, for instance LPA, NR1D2 and ADIPOQ in lipid metabolism, ADIPOQ and PLG in inflammation, PLG in fibrinolysis and NR1D2 and NR1D1 in circadian rhythm. This study also revealed that genes such as G6PC, involved in glucose homeostasis, and AGRP, involved in the control of body weight, are also controlled by RORα. Lastly, SPARC, involved in cell growth and adhesion, and associated with liver carcinogenesis, was up-regulated by RORα. SPARC was found to be a new putative RORα target gene since it possesses, in its promoter, a functional RORE as evidenced by EMSAs and transfection experiments. Most of the other genes that we found regulated by RORα also contained putative ROREs in their regulatory regions. Chromatin immunoprecipitation (ChIP confirmed that the ROREs present in the SPARC, PLG, G6PC, NR1D2 and AGRP genes were occupied by RORα in HepG2 cells. Therefore these genes must now be considered as direct RORα targets. Our results open new routes on the roles of RORα in glucose metabolism and carcinogenesis within cells of hepatic origin.

  9. Arecoline induces HA22T/VGH hepatoma cells to undergo anoikis - involvement of STAT3 and RhoA activation.

    Science.gov (United States)

    Cheng, Hsiao-Ling; Su, Shu-Jem; Huang, Li-Wen; Hsieh, Bau-Shan; Hu, Yu-Chen; Hung, Thu-Ching; Chang, Kee-Lung

    2010-05-28

    Our previous study showed that, in basal cell carcinoma cells, arecoline reduces levels of the tumor cell survival factor interleukin-6 (IL-6), increases levels of tumor suppressor factor p53, and elicits cell cycle arrest, followed by apoptosis. In preliminarily studies, we observed that arecoline induces detachment of the human-derived hepatoma cell line HA22T/VGH from the extracellular matrix. In the present study, we explored the fate of the detached HA22T/VGH cells and investigated the underlying mechanism. HA22T/VGH cells or primary cultured rat hepatocytes were treated with arecoline, then changes in morphology, viability, apoptosis, and the expression of surface beta1-integrin, apoptosis-related proteins, and IL-6 were examined. Furthermore, activation of the signal transducer and activator of transcription 3 (STAT3) pathway and the RhoA/Rock signaling pathway, including p190RhoGAP and Src homology-2 domain-containing phosphatase SHP2, was examined. A low concentration of arecoline (arecoline treatment. IL-6 expression and phosphorylation of STAT3, which provides protection against anoikis, were inhibited and levels of downstream signaling proteins, including Bcl-XL and Bcl-2, were decreased, while Bax expression, mitochondrial cytochrome c release, and caspase-3 activity were increased. In addition, phosphorylation/activation of p190RhoGAP, a RhoA inhibitor, and of its upstream regulator, SHP2, was inhibited by arecoline treatment, while Rho/Rock activation was increased. Addition of the RhoA inhibitor attenuated the effects of arecoline. This study demonstrated that arecoline induces anoikis of HA22T/VGH cells involving inhibition of STAT3 and increased RhoA/Rock activation and that the STAT3 and RhoA/Rock signaling pathways are connected.

  10. Regulation of activin receptor-interacting protein 2 expression in mouse hepatoma Hepal-6 cells and its relationship with collagen type Ⅳ

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the regulation of activin receptor-interacting protein 2 (ARIP2) expression and its possible relationships with collagen type Ⅳ (collagen Ⅳ) in mouse hepatoma cell line Hepal-6 cells.METHODS: The ARIP2 mRNA expression kinetics in Hepal-6 cells was detected by RT-PCR, and its regulation factors were analyzed by treatment with signal transduction activators such as phorbol 12-myristate 13-acetate (PMA), forskolin and A23187. After pcDNA3-ARIP2 was transfected into Hepal-6 cells, the effects of ARIP2 overexpression on activin type Ⅱ receptor (ActRII)and collagen Ⅳ expression were evaluated.RESULTS: The expression levels of ARIP2 mRNA in Hapel-6 cells were elevated in time-dependent manner 12 h after treatment with activin A and endotoxin LPS, but not changed evidently in the early stage of stimulation (2 or 4 h). TheARIP2 mRNA expression was increased after stimulated with signal transduction activators such as PMA and forskolin in Hepal-6 cells, whereas decreased after treatment with A23187 (25.3% ± 5.7% vS 48.1% ± 3.6%, P < 0.01). ARIP2 overexpression could remarkably suppress the expression of ActRIIA mRNA in dose-dependent manner, but has no effect on ActRIIB in Hepal-6 cells induced by activin A. Furthermore, we have found that overexpression of ARIP2 could inhibit collagen Ⅳ mRNA and protein expressions induced by activin A in Hapel-6 cells.CONCLUSION: These findings suggest that ARIP2 expression can be influenced by various factors. ARIP2 may participate in the negative feedback regulation of signal transduction in the late stage by affecting the expression of ActRIIA and play an important role in regulation of development of liver fibrosis induced by activin.

  11. Species-specific differences in peroxisome proliferation, catalase, and SOD2 upregulation as well as toxicity in human, mouse, and rat hepatoma cells induced by the explosive and environmental pollutant 2,4,6-trinitrotoluene.

    Science.gov (United States)

    Naumenko, Ekaterina Anatolevna; Ahlemeyer, Barbara; Baumgart-Vogt, Eveline

    2017-03-01

    2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017.

  12. Structure and cell-specific expression of a cloned human retinol binding protein gene: the 5'-flanking region contains hepatoma specific transcriptional signals.

    Science.gov (United States)

    D'Onofrio, C; Colantuoni, V; Cortese, R

    1985-08-01

    Human plasma retinol binding protein (RBP) is coded by a single gene and is specifically synthesized in the liver. We have characterized a lambda clone, from a human DNA library, carrying the gene coding for plasma RBP. Southern blot analysis and DNA sequencing show that the gene is composed of six exons and five introns. Primer elongation and S1 mapping experiments allowed the definition of the initiation of transcription and the identification of the putative promoter. The 5'-flanking region of the RBP gene was fused upstream to the coding sequence of the bacterial enzyme chloramphenicol acetyl transferase (CAT): the chimeric gene was introduced, by calcium phosphate precipitation, into the human hepatoma cell line Hep G2 and into HeLa cells. Efficient expression of CAT was obtained only in Hep G2. Primer elongation analysis of the RNA extracted from transfected Hep G2 showed that initiation of transcription of the transfected chimeric gene occurs at a position identical to that of the natural gene. Transcriptional analysis of Bal31 deletions from the 3' end of the RBP 5'-flanking DNA allowed the identification of the RBP gene promoter.

  13. Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells.

    Science.gov (United States)

    Grasselli, Elena; Voci, Adriana; Canesi, Laura; Goglia, Fernando; Ravera, Silvia; Panfoli, Isabella; Gallo, Gabriella; Vergani, Laura

    2011-07-01

    Iodothyronines influence lipid metabolism and energy homeostasis. Previous studies demonstrated that 3,5-l-diiodothyronine (T(2)), as well as 3,3',5-L-triiodothyronine (T(3)), was able to both prevent and reverse hepatic steatosis in rats fed a high-fat diet, and this effect depends on a direct action of iodothyronines on the hepatocyte. However, the involvement of thyroid hormone receptors (TRs) in mediating the lipid-lowering effect of iodothyronines was not elucidated. In this study, we investigated the ability of T(2) and T(3) to reduce the lipid overloading using the rat hepatoma FaO cells defective for functional TRs. The absence of constitutive mRNA expression of both TRα1 and TRβ1 in FaO cells was verified by RT-qPCR. To mimic the fatty liver condition, FaO cells were treated with a fatty acid mixture and then exposed to pharmacological doses of T(2) or T(3) for 24 h. Lipid accumulation, mRNA expression of the peroxisome proliferator-activated receptors (PPAR-α, -γ, -δ) the acyl-CoA oxidase (AOX), and the stearoyl CoA desaturase (SCD1), as well as fuel-stimulated O(2) consumption in intact cells, were evaluated. Lipid accumulation was associated with an increase in triacylglycerol content, PPARγ mRNA expression, and a decrease in PPARδ and SCD1 mRNA expression. The addition of T(2) or T(3) to lipid-overloaded cells resulted in i) reduction in lipid content; ii) downregulation of PPARα, PPARγ, and AOX expression; iii) increase in PPARδ expression; and iv) stimulation of mitochondrial uncoupling. These data demonstrate, for the first time, that in the hepatocyte, the lipid-lowering actions of both T(2) and T(3) are not mediated by TRs.

  14. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2.

    Science.gov (United States)

    Maisanaba, Sara; Hercog, Klara; Filipic, Metka; Jos, Ángeles; Zegura, Bojana

    2016-03-01

    Montmorillonite, also known as Cloisite(®)Na(+) (CNa(+)), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa(+) arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa(+) (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa(+) on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa(+) increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa(+) is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa(+) are needed for hazard identification and human safety assessment.

  15. Aryl hydrocarbon receptor-mediated toxic potency of dissolved lipophilic organic contaminants collected from Lincoln Creek, Milwaukee, Wisconsin, USA, to PLHC-1 (Poeciliopsis lucida) fish hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, D.L.; Crunkilton, R.L.; DeVita, W.M. [Univ. of Wisconsin, Stevens Point, WI (United States)

    1997-05-01

    Lincoln Creek is a severely degraded urban stream located in Milwaukee County, Wisconsin, USA. As part of a comprehensive study on effects of urban storm water runoff on the stream biota, an in vitro bioassay with PLHC-1 (Poeciliopsis lucida) fish hepatoma cells was used to assess potential toxic potency of aryl hydrocarbon receptor (AhR)-active compounds, collected by semipermeable membrane devices (SPMDs) exposed to Lincoln Creek water. Dialysates from SPMDs exposed to Lincoln Creek water caused marked cytochrome P4501A induction in PLHC-1. Toxic potency of dialysates, expressed as bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ) ranged from 1,300 to 6,600 pg TCDD-EQ/g SPMD for 14-d exposures. Dialysates from SPMDs exposed to stream water at base flow had potencies consistently lower than those exposed to storm-flow (high-flow) events that occurred during the same 14-d period. Polychlorinated biphenyls were not detectable in the dialysates. Gas chromatography-mass spectrometry analysis identified polycyclic aromatic hydrocarbons (PAHs) as major contaminants in the dialysates. A log-log correlation of total PAHs and TCDD-EQ yielded an r{sup 2} of 0.802. Empirical evidence suggests that AhR-active PAHs can account for about 20 to 50% of the potency observed.

  16. Cytotoxic and genotoxic potential of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA complex in human hepatoma (HepG2) cells.

    Science.gov (United States)

    Novotnik, Breda; Ščančar, Janez; Milačič, Radmila; Filipič, Metka; Žegura, Bojana

    2016-07-01

    Chromium (Cr) and ethylenediaminetetraacetate (EDTA) are common environmental pollutants and can be present in high concentrations in surface waters at the same time. Therefore, chelation of Cr with EDTA can occur and thereby stable Cr(III)-EDTA complex is formed. Since there are no literature data on Cr(III)-EDTA toxicity, the aim of our work was to evaluate and compare Cr(III)-EDTA cytotoxic and genotoxic activity with those of Cr(VI) and Cr(III)-nitrate in human hepatoma (HepG2) cell line. First the effect of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on cell viability was studied in the concentration range from 0.04 μg mL(-1) to 25 μg mL(-1) after 24 h exposure. Further the influence of non-cytotoxic concentrations of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on DNA damage and genomic stability was determined with the comet assay and cytokinesis block micronucleus cytome assay, respectively. Cell viability was decreased only by Cr(VI) at concentrations above 1.0 μg mL(-1). Cr(VI) at ≥0.2 μg mL(-1) and Cr(III) at ≥1.0 μg mL(-1) induced DNA damage, while after Cr(III)-EDTA exposure no formation DNA strand breaks was determined. Statistically significant formation of micronuclei was induced only by Cr(VI) at ≥0.2 μg mL(-1), while no influence on the frequency of nuclear buds nor nucleoplasmic bridges was observed at any exposure. This study provides the first evidence that Cr(III)-EDTA did not induce DNA damage and had no influence on the genomic stability of HepG2 cells.

  17. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guifang [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Lu, Gang [Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China); Yin, Pinghe, E-mail: tyinph@jnu.edu.cn [Research Center of Analysis and Test, Jinan University, Guangzhou 510632 (China); Zhao, Ling, E-mail: zhaoling@jnu.edu.cn [Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China); Jimmy Yu, Qiming [Griffith School of Engineering, Griffith University, Nathan Campus, Brisbane, Queensland 4111 (Australia)

    2016-04-15

    Highlights: • Membrane concentrates have a threat to human health and environment. • Untreated membrane concentrates induces cytotoxic and genotoxic to HepG2 cells. • Both methods were effective method for degradation of BPA and NP in concentrates. • Both methods were efficient in reducing genotoxic effects of concentrates. • UV-Fenton reagent had higher removal efficiency and provides toxicological safety. - Abstract: Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24 h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates.

  18. Activation of Toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-β in cultured hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Zhaoduan Liang

    Full Text Available Toll-like receptors (TLRs play an important role in innate immunity against invading pathogens. Although TLR signaling has been indicated to protect cells from infection of several viruses, the role of TLRs in Dengue virus (DENV replication is still unclear. In the present study, we examined the replication of DENV serotype 2 (DENV2 by challenging hepatoma cells HepG2 with different TLR ligands. Activation of TLR3 showed an antiviral effect, while pretreatment of other TLR ligands (including TLR1/2, TLR2/6, TLR4, TLR5 or TLR7/8 did not show a significant effect. TLR3 ligand poly(I:C treatment prior to viral infection or simultaneously, but not post-treatment, significantly down-regulated virus replication. Pretreatment with poly(I:C reduced viral mRNA expression and viral staining positive cells, accompanying an induction of the type I interferon (IFN-β and type III IFN (IL-28A/B. Intriguingly, neutralization of IFN-β alone successfully restored the poly(I:C-inhibited replication of DENV2. The poly(I:C-mediated effects, including IFN induction and DENV2 suppression, were significantly reversed by IKK inhibitor, further suggesting that IFN-β is the dominant factor involved in the poly(I:C mediated antiviral effect. Our study presented the first evidence to show that activation of TLR3 is effective in blocking DENV2 replication via IFN-β, providing an experimental clue that poly(I:C may be a promising immunomodulatory agent against DENV infection and might be applicable for clinical prevention.

  19. Carboxyl ester lipase overexpression in rat hepatoma cells and CEL deficiency in mice have no impact on hepatic uptake or metabolism of chylomicron-retinyl ester.

    Science.gov (United States)

    van Bennekum, A M; Li, L; Piantedosi, R; Shamir, R; Vogel, S; Fisher, E A; Blaner, W S; Harrison, E H

    1999-03-30

    To study the role of carboxyl ester lipase (CEL) in hepatic retinoid (vitamin A) metabolism, we investigated uptake and hydrolysis of chylomicron (CM)-retinyl esters (RE) by rat hepatoma (McArdle-RH7777) cells stably transfected with a rat CEL cDNA. We also studied tissue uptake of CM-RE in CEL-deficient mice generated by targeted disruption of the CEL gene. CEL-transfected cells secreted active enzyme into the medium. However, both control and CEL-transfected cells accumulated exogenously added CM-RE or CM remnant (CMR)-derived RE in equal amounts. Serum clearance of intravenously injected CM-RE and cholesteryl ester were not different between wild-type and CEL-deficient mice. Also, the uptake of the two compounds by the liver and other tissues did not differ. These data indicate that the lack of CEL expression does not affect the uptake of dietary CM-RE by the liver or other tissues. Moreover, the percentage of retinol formed in the liver after CM-RE uptake, the levels of retinol and retinol-binding protein in serum, and retinoid levels in various tissues did not differ, indicating that CEL deficiency does not affect hepatic retinoid metabolism and retinoid distribution throughout the body. Surprisingly, in both pancreas and liver of wild-type, heterozygous, and homozygous CEL-deficient mice, the levels of bile salt-dependent retinyl ester hydrolase (REH) activity were similar. This indicates that in the mouse pancreas and liver an REH enzyme activity, active in the presence of bile salt and distinct from CEL, is present, compatible with the results from our accompanying paper that the intestinal processing and absorption of RE were unimpaired in CEL-deficient mice.

  20. Arecoline induces HA22T/VGH hepatoma cells to undergo anoikis - involvement of STAT3 and RhoA activation

    Directory of Open Access Journals (Sweden)

    Hung Thu-Ching

    2010-05-01

    Full Text Available Abstract Background Our previous study showed that, in basal cell carcinoma cells, arecoline reduces levels of the tumor cell survival factor interleukin-6 (IL-6, increases levels of tumor suppressor factor p53, and elicits cell cycle arrest, followed by apoptosis. In preliminarily studies, we observed that arecoline induces detachment of the human-derived hepatoma cell line HA22T/VGH from the extracellular matrix. In the present study, we explored the fate of the detached HA22T/VGH cells and investigated the underlying mechanism. Methods HA22T/VGH cells or primary cultured rat hepatocytes were treated with arecoline, then changes in morphology, viability, apoptosis, and the expression of surface β1-integrin, apoptosis-related proteins, and IL-6 were examined. Furthermore, activation of the signal transducer and activator of transcription 3 (STAT3 pathway and the RhoA/Rock signaling pathway, including p190RhoGAP and Src homology-2 domain-containing phosphatase SHP2, was examined. Results A low concentration of arecoline (≤ 100 μg/ml caused cytoskeletal changes in HA22T/VGH cells, but not hepatocytes, and this was accompanied by decreased β1-integrin expression and followed by apoptosis, indicating that HA22T/VGH cells undergo anoikis after arecoline treatment. IL-6 expression and phosphorylation of STAT3, which provides protection against anoikis, were inhibited and levels of downstream signaling proteins, including Bcl-XL and Bcl-2, were decreased, while Bax expression, mitochondrial cytochrome c release, and caspase-3 activity were increased. In addition, phosphorylation/activation of p190RhoGAP, a RhoA inhibitor, and of its upstream regulator, SHP2, was inhibited by arecoline treatment, while Rho/Rock activation was increased. Addition of the RhoA inhibitor attenuated the effects of arecoline. Conclusions This study demonstrated that arecoline induces anoikis of HA22T/VGH cells involving inhibition of STAT3 and increased Rho

  1. Role of ADAM17 in invasion and migration of CD133-expressing liver cancer stem cells after irradiation

    Science.gov (United States)

    Hong, Sung Woo; Hur, Wonhee; Choi, Jung Eun; Kim, Jung-Hee; Hwang, Daehee; Yoon, Seung Kew

    2016-01-01

    We investigated the biological role of CD133-expressing liver cancer stem cells (CSCs) enriched after irradiation of Huh7 cells in cell invasion and migration. We also explored whether a disintegrin and metalloproteinase-17 (ADAM17) influences the metastatic potential of CSC-enriched hepatocellular carcinoma (HCC) cells after irradiation. A CD133-expressing Huh7 cell subpopulation showed greater resistance to sublethal irradiation and specifically enhanced cell invasion and migration capabilities. We also demonstrated that the radiation-induced MMP-2 and MMP-9 enzyme activities as well as the secretion of vascular endothelial growth factor were increased more predominantly in Huh7CD133+ cell subpopulations than Huh7CD133− cell subpopulations. Furthermore, we showed that silencing ADAM17 significantly inhibited the migration and invasiveness of enriched Huh7CD133+ cells after irradiation; moreover, Notch signaling was significantly reduced in irradiated CD133-expressing liver CSCs following stable knockdown of the ADAM17 gene. In conclusion, our findings indicate that CD133-expressing liver CSCs have considerable metastatic capabilities after irradiation of HCC cells, and their metastatic capabilities might be maintained by ADAM17. Therefore, suppression of ADAM17 shows promise for improving the efficiency of current radiotherapies and reducing the metastatic potential of liver CSCs during HCC treatment. PMID:26993601

  2. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Maisanaba, Sara, E-mail: saramh@us.es [Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González no. 2, 41012 Seville (Spain); Hercog, Klara; Filipic, Metka [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Jos, Ángeles [Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González no. 2, 41012 Seville (Spain); Zegura, Bojana [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna pot 111, 1000 Ljubljana (Slovenia)

    2016-03-05

    Highlights: • Cloisite{sup ®}Na{sup +} has a wide range of well-documented and novel applications. • Cloisite{sup ®}Na{sup +} induces micronucleus, but not nuclear bridges or nuclear buds in HepG2 cells. • Cloisite{sup ®}Na{sup +} induces changes in the gene expression. • Gene alteration is presented mainly after 24 h of exposure to Cloisite{sup ®}Na{sup +}. - Abstract: Montmorillonite, also known as Cloisite{sup ®}Na{sup +} (CNa{sup +}), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa{sup +} arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa{sup +} (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa{sup +} on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa{sup +} increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa{sup +} is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa{sup +} are needed for hazard identification and human safety assessment.

  3. Effects of niflumic acid on the proliferation of human hepatoma cells%尼氟灭酸对肝癌细胞增殖的影响

    Institute of Scientific and Technical Information of China (English)

    田晶; 陶凌; 曹云新; 董玲; 胡玉珍; 杨安钢; 周士胜

    2003-01-01

    为了观察氯通道阻断剂尼氟灭酸(NFA)对人肝癌细胞(human hepatoma cell line, HHCC)增殖的影响, 我们将NFA作用于HHCC, 应用细胞计数法及噻唑兰(MTT)比色分析法观察细胞增殖情况; 用流式细胞仪检测细胞周期时相; 并用激光扫描共聚焦显微镜检测[Ca2+]i 的变化.结果发现, NFA使HHCC细胞数及MTT光吸收值(OD)较对照组都显著降低, 去除NFA后, OD值逐渐恢复.经100 μmol/L NFA处理48 h的HHCC细胞G1期细胞比例比对照组明显增高, S期及G2期细胞比例明显低于对照组.细胞外应用NFA (100 μmol/L)使 [Ca2+]i 快速降低, 去除NFA后, [Ca2+]i可恢复.这些结果表明, 尼氟灭酸能抑制细胞增殖, 其机制可能与细胞内信号转导Ca2+/CaM途径被抑制有关.

  4. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin [Key Laboratory of Tea Biochemistry and Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036 (China); College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Li, Feng [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Fang, Yong; Yang, Wenjian [College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China); An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Hu, Qiuhui, E-mail: qiuhuihu@njau.edu.cn [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China)

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  5. Redifferentiation of human hepatoma cells (SMMC-7721) induced by two new highly oxygenated bisabolane-type sesquiterpenes

    Indian Academy of Sciences (India)

    Ruidong Miao; Juan Wei; Q I Zhang; Venkateswara Sajja; Jinbo Yang; Qin Wang

    2008-12-01

    Bisabolane-type sesquiterpenes are a class of biologically active compounds that has antitumour, antifungal, antibacterial, antioxidant and antivenom properties. We investigated the effect of two new highly oxygenated bisabolane-type sesquiterpenes (HOBS) isolated from Cremanthodium discoideum (C. discoideum) on tumour cells. Our results showed that HOBS induced morphological differentiation and reduced microvilli formation on the cell surface in SMMC-7721 cells. Flow cytometry analysis demonstrated that HOBS could induce cell-cycle arrest in the G1 phase. Moreover, HOBS was able to increase tyrosine--ketoglutarate transaminase activity, decrease -foetoprotein level and -glutamyl transferase activity. In addition, we found that HOBS inhibited the anchorage-independent growth of SMMC-7721 cells in a dose-dependent manner. Taken together, all the above observations indicate that HOBS might be able to normalize malignant SMMC-7721 cells by inhibiting cell proliferation and inducing redifferentiation.

  6. Combination therapy and evaluation of therapeutic effect in hepatocellular carcinoma cell using triple reporter genes; containing for NIS, HSV1-sr39tk and GFP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You La; Lee, Yong Jin; Ahn, Sohn Joo; Ahn, Byeong Cheol; Lee, Sang Woo; Yoo, Jeong Soo; Lee, Jae Tae [Kyungpook National University, Daegu (Korea, Republic of)

    2007-07-01

    To identify therapeutic effect after combine Sodium Iodine Symporter (NIS) and Mutant Herpes-simplex virus type 1 sr39tk (HSV1-sr39tk) expression in hepatocellular carcinoma cell, we transfected triple gene and investigated the properties of these gene ability in hepatocellular carcinoma cell line. After making vector with gene encoding a fusion protein comprised of HSV1-sr39tk and green florescence protein (GFP), to make triple reporter genes NIS gene was further fused to the vector using IRES vector. The vector expressing triple reporter gene was transfected to the Huh-7 cell line using liposome. Functions of hNIS and HSV1-sr39tk expression were confirmed by radio iodine uptake with and without perchlorate and [3H]-penciclovir (3-H PCV) uptake, respectively. To evaluate therapeutic effect in vitro, GCV and I-131 was treated in Huh-7/NTG cell and dual therapy performed. An animal imaging acquired using Optix and microPET in vivo. I-125 uptake was increased up to 100-fold compare to that of non-transfected cells. The transfected cell accumulated H-3 PCV up to 53 times higher at 2 hour than that of non-transfected cells. With fluorescence microscopy, green fluorescence was detected in the transfected cell. In cytotoxic studies, the cell viability of Huh-7/NTG cell was decreased to 41 % of control cell at 10ug/ml GCV concentrations. The survival rate of the Huh-7/NTG cell treated with I-131 decreased up to 16%. In I-131 and GCV dual therapy, Huh-7/NTG cell survival rate decreased up to 4%. In animal studies, Huh-7/NTG tumors showed higher uptake of 18F-FHBG and I-124 than Huh-7 tumors. GFP signal is also higher in Huh-7/NTG tumor than control. We successfully constructed a vector with delivery two therapeutic genes and one reporter gene and transfected the vector to a Huh-7 cell. The hepatocellular carcinoma cell transfected with the vector can be treated with GCV and I-131. The effect of dual gene therapy could be easily assessed by the optical reporter gene imaging.

  7. Involvement of extracellular signal-regulated kinase/mitogen activated protein kinase pathway in multidrug resistance induced by HBx in hepatoma cell line

    Institute of Scientific and Technical Information of China (English)

    Jian Guan; Xiao-Ping Chen; Hong Zhu; Shun-Feng Luo; Bin Cao; Lei Ding

    2004-01-01

    AIM: To investigate the molecular mechanism of the influence of HBx protein on multidrug resistance associated genes:multidrug resistance 1 (MDR-1), multidrug related protein (MRP-1), lung resistance related protein (LRP) in hepatoma cells and the potential role of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway in this process.METHODS: A cell model stably expressing the HBx protein was established by liposome-mediated transfection of HBx gene into HepG2 cell line. The expression of multidrug resistance associated genes and proteins was detected by RT-PCR and Western blot. AnnexinV-FITC/PI assay was used to confirm the multidrug resistance (MDR) phenotype of transfected cells by fluorescence cytometry (FACS). The ERK/MAPK pathway activation was measured by Western blot through comparing the ratio of phosphorylation of ERK/MAPK to total ERK/MAPK protein. After treated with the ERK/MAPK pathway inhibitor U0126, the HBx-expressing cells were harvested. Then RT-PCR, Western blot and FACS were used to analyze the alterations in the expression of multidrug resistance associated genes and the MDR phenotype after exposure.RESULTS: Compared with the control group, the transfected cells showed a higher expression of MDR associated genes and proteins. Marked elevations in MDR-1 (64.3%), MRP-1 (87.5%) and LRP (90.8%) were observed in the transfected cells (P<0.05). RT-PCR revealed that the over-expression of MDR associated proteins was due to amplification of such genes (MDR1 2.9 fold, MRP1 1.67 fold, LRP1.95 fold).Furthermore, we found that the ERK/MAPK activity was remarkably high in the HBx-expressing cells. The activation of ERK/MAPK, as measured by the ratio of phosphorylated ERK bands normalized to the total ERK bands, was increased by 2.3-fold in HBx-transfected cells compared with cells transfected with the empty vector. After treated with the ERK/MAPK pathway inhibitor, the level of MDR associated genes and proteins in the

  8. Scutellaria barbate extract induces apoptosis of hepatoma H22 cells via the mitochondrial pathway involving caspase-3

    Institute of Scientific and Technical Information of China (English)

    Zhi-Jun Dai; Ling-Qin Song; Xi-Jing Wang; Zong-Fang Li; Zong-Zheng Ji; Hong-Tao Ren; Wei Tang; Xiao-Xu Liu; Hua-Feng Kang; Hai-Tao Guan

    2008-01-01

    AIM:To study the growth inhibitory and apoptotic effects of Scutellaria barbata D.Don (S.barbata) and to determine the underlying mechanism of its antitumor activity in mouse liver cancer cell line H22.METHODS:Proliferation of H22 cells was examined by MTr assay.Cellular morphology of PC-2 cells was observed under fluorescence microscope and transmission electron microscope (EM).Mitochondrial transmembrane potential was determined under laser scanning confocal microscope (LSCM) with rhodamine 123 staining.Flow cytometry was performed to analyze the cell cycle of H22 cells with propidium iodide staining.Protein level of cytochrome C and caspase-3 was measured by semi-quantitive RT-PCR and Western blot analysis.Activity of caspase-3 enzyme was measured by spectrofluorometry.RESULTS:M'IF assay showed that extracts from S.barbata (ESB) could inhibit the proliferation of H22 cells in a time-dependent manner.Among the various phases of cell cycle,the percentage of cells in S phase was significantly decreased,while the percentage of cells in G1 phase was increased.Flow cytometry assay also showed that ESB had a positive effect on apoptosis.Typical apoptotic morphologies such as condensation and fragmentation of nuclei and blebbing membrane of apoptotic cells could be observed under transmission electron microscope and fluorescence microscope.To further investige the molecular mechanism behind ESB-induced apoptosis,ESB-treated cells rapidly lost their mitochondrial transmembrane potential,released mitochondrial cytochrome C into cytosol,and induced caspase-3 activity in a dose-dependent manner.CONCLUSION:ESB can effectively inhibit the proliferation and induce apoptosis of H22 cells involving loss of mitochondrial transmembrane potential,release of cytochrome C,and activation of caspase-3.

  9. Inhibition of the growth of human hepatoma cell line both in vitro and in vivo by transducing CKI gene p21WAF-1 with GE7 targeting gene delivery system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The EGF receptor-mediated targeting gene delivery system GE7 was used to transduce exogenous gene pCEP-p21WAF-1 into human hepatocellular carcinoma cell both in vitro and in vivo. After in vitro transduction of the exogenous gene, the growth of the cell lines SMMC-7721 and BEL-7402 was significantly inhibited compared with the control. On day 8 the inhibition rates of the above cell lines reached 56.0% and 66.7%, respectively. The in vivo experiment showed that the growth of human hepatoma transplanted in nude mice injected with GE7 gene delivery system subcutaneously once a week for 3 weeks was remarkably inhibited compared with that of untransfected control. The average tumor weight of the experiment group was (0.083 ± 0.043) g, while that of the control group was (0.281± 0.173) g. The difference is significant (P<0.05). It was indicated that GE7 gene delivery system could efficiently transduce exogenous gene pCEP-p21WAF-1 into hepatoma cell with high EGF receptor expression, and inhibit the cell growth with high efficacy both in vivo and in vitro.

  10. Inhibition of the growth of human hepatoma cell line both in vitro and in vivo by transducing CKI gene p21WAF-1 with GE7 targeting gene delivery system

    Institute of Scientific and Technical Information of China (English)

    韩峻松; 田培坤; 柳湘; 姚明; 顾健人

    2000-01-01

    The EGF receptor-mediated targeting gene delivery system GE7 was used to transduce exogenous gene pCEP-p21WAF-1 into human hepatocellular carcinoma cell both in vitro and in vivo. After in vitro transduction of the exogenous gene, the growth of the cell lines SMMC-7721 and BEL-7402 was significantly inhibited compared with the control. On day 8 the inhibition rates of the above cell lines reached 56.0% and 66.7%, respectively. The in vivo experiment showed that the growth of human hepatoma transplanted in nude mice injected with GE7 gene delivery system subcutaneously once a week for 3 weeks was remarkably inhibited compared with that of untrans-fected control. The average tumor weight of the experiment group was (0.083 ?0.043) g, while that of the control group was (0.28110.173) g. The difference is significant (P<0.05). It was indicated that GE7 gene delivery system could efficiently transduce exogenous gene pCEP-p21WAF-1 into hepatoma cell with high EGF receptor expression, and inhibit the cell growt

  11. Peroxiredoxin II Is Essential for Maintaining Stemness by Redox Regulation in Liver Cancer Cells.

    Science.gov (United States)

    Kwon, Taeho; Bak, Yesol; Park, Young-Ho; Jang, Gyu-Beom; Nam, Jeong-Seok; Yoo, Jeong Eun; Park, Young Nyun; Bak, In Seon; Kim, Jin-Man; Yoon, Do-Young; Yu, Dae-Yeul

    2016-05-01

    Redox regulation in cancer stem cells (CSCs) is viewed as a good target for cancer therapy because redox status plays an important role in cancer stem-cell maintenance. Here, we investigated the role of Peroxiredoxin II (Prx II), an antioxidant enzyme, in association with maintenance of liver CSCs. Our study demonstrates that Prx II overexpressed in liver cancer cells has high potential for self-renewal activity. Prx II expression significantly corelated with expression of epithelial-cell adhesion molecules (EpCAM) and cytokerain 19 in liver cancer tissues of hepatocellular carcinoma (HCC) patients. Downregulation of Prx II in Huh7 cells with treatment of siRNA reduced expression of EpCAM and CD133 as well as Sox2 in accordance with increased ROS and apoptosis, which were reversed in Huh7-hPrx II cells. Huh7-hPrx II cells exhibited strong sphere-formation activity compared with mock cells. Vascular endothelial growth factor (VEGF) exposure enhanced sphere formation, cell-surface expression of EpCAM and CD133, and pSTAT3 along with activation of VEGF receptor 2 in Huh7-hPrx II cells. The result also emerged in Huh7-H-ras(G12V) and SK-HEP-1-H-ras(G12V) cells with high-level expression of Prx II. Prx II was involved in regulation of VEGF driving cancer stem cells through VEGFR-2/STAT3 signaling to upregulate Bmi1 and Sox2. In addition, knockdown of Prx II in Huh7-H-ras(G12V) cells showed significant reduction in cell migration in vitro and in tumorigenic potential in vivo. Taken together, all the results demonstrated that Prx II plays a key role in the CSC self-renewal of HCC cells through redox regulation. Stem Cells 2016;34:1188-1197.

  12. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    Science.gov (United States)

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-11-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells.

  13. General gambogic acids inhibited growth of human hepatoma SMMC-7721 cells in vitro and in nude mice

    Institute of Scientific and Technical Information of China (English)

    Qing-long GUO; Qi-dong YOU; Zhao-qiu WU; Sheng-tao YUAN; Li ZHAO

    2004-01-01

    AIM: To study the inhibitory effect of general gambogic acids (GGA) on transplantation tumor SMMC-7721 in experimental animal model and SMMC-7721 cells in vitro. METHODS: Anti-tumor activity of GGA in the experimental transplantation tumor SMMC-7721 was evaluated by relative tumor growth ratio. Cell morphology was observed with inverted microscope and electron microscope. Cell proliferation was measured by MTT assay and the telomerase activity was determined by PCR. RESULTS: In vivo study indicated that GGA (2, 4, and 8 mg/kg,iv, 3 times per week for 3 weeks) displayed an inhibitory effect on the growth of transplantation tumor SMMC7721 in nude mice compared with the normal saline group (P<0.01). At the concentrations of 0.625-5.0 mg/L,GGA remarkably inhibited the proliferation of SMMC-7721 cells in vitro. GGA 2 mg/L dramatically changed morphology of SMMC-7721 cells and inhibited the telomerase activity in SMMC-7721 cells. CONCLUSION:GGA had inhibitory effect on the growth of SMMC-7721, which might be related to its inhibition of telomerase activity.

  14. THE INFLUENCE OF HUMAN SINGLE CHAIN INTELEUKIN-12 GENE TRANSDUCTION ON THE BIOLOGICAL BEHAVIOR OF HEPATOMA 7721 CELLS

    Institute of Scientific and Technical Information of China (English)

    金莉; 来保长; 耿宜萍; 王一理; 司履生

    2001-01-01

    Objective. To investigate the anti-tumor effects of human single chain interleukin-12 (hscIL-12). Method. pcDNA/hscIL-12 recombinant was transfected into human hepatic carcinoma cells (7721 cells) by lipofectin method. The 7721/hscIL-12 cells which secrete hscIL-12 stably, were obtained via G418 selection, and in vitro the influence of hscIL-12 gene transduction on the growth of tumor cells was evaluated by cellcycle analysis. In vivo, genetically engineered 7721 cells (7721/hscIL-12, 7721/pcDNA) and parental cells were implanted into BALB/c nude mice, respectively. 7721/pcDNA and 7721/hscIL-12 groups were divided into two sub-groups on day 8: one was administered with hPBL twice, 6 days at interval; the other was given equalvolume of PBS. Mice were sacrificed on day 26, and spleens and tumors were taken out for histologic assay. Results. hscIL-12 produced stably by 7721/hscIL-12 cells had bioactivity, and it was proved by Western blot, immunocytochemistry, and in situ hybridization. In vitro, compared with 7721 and 7721/pcDNA, the7721/hscIL-12 grew much more slowly. FACS assay showed apparent G1 arrest of 7721/hscIL-12 cells. In ani-mal experiment, on day 8 after inoculation, the tumors of 7721 and 7721/pcDNA group were up to 5 -7mm,while those of 7721/hscIL-12 group were 2 -4mm. When treated with hPBL, the tumor of 7721/hscIL-12 groupdisappeared completely. Histologically, the tumors from 7721/hscIL-12 without hPBL treatment had numerouslymphocyte infiltration, the tumor cells displayed depression looking, atrophy, focal necrosis and apoptosis, whereas the tumors of 7721 and 772l/pcDNA groups grew thrivingly.Conclusion. hsclL-12 transduced 7721 cells could induced significant antitumor immune response which resulted in tumor regression totally when the hPBL was inoculated, and also hscIL-12 has certain effects on mice immune system. These findings suggest that hscIL-12 and hscIL-12 gene therapy might have promising prospects in clinical application.

  15. Quantitative Proteomics Analysis of the Hepatitis C Virus Replicon High-Permissive and Low-Permissive Cell Lines.

    Science.gov (United States)

    Ye, Fei; Xin, Zhongshuai; Han, Wei; Fan, Jingjing; Yin, Bin; Wu, Shuzhen; Yang, Wei; Yuan, Jiangang; Qiang, Boqin; Sun, Wei; Peng, Xiaozhong

    2015-01-01

    Chronic hepatitis C virus (HCV) infection is one of the leading causes of severe hepatitis. The molecular mechanisms underlying HCV replication and pathogenesis remain unclear. The development of the subgenome replicon model system significantly enhanced study of HCV. However, the permissiveness of the HCV subgenome replicon greatly differs among different hepatoma cell lines. Proteomic analysis of different permissive cell lines might provide new clues in understanding HCV replication. In this study, to detect potential candidates that might account for the differences in HCV replication. Label-free and iTRAQ labeling were used to analyze the differentially expressed protein profiles between Huh7.5.1 wt and HepG2 cells. A total of 4919 proteins were quantified in which 114 proteins were commonly identified as differentially expressed by both quantitative methods. A total of 37 differential proteins were validated by qRT-PCR. The differential expression of Glutathione S-transferase P (GSTP1), Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), carboxylesterase 1 (CES1), vimentin, Proteasome activator complex subunit1 (PSME1), and Cathepsin B (CTSB) were verified by western blot. And over-expression of CTSB or knock-down of vimentin induced significant changes to HCV RNA levels. Additionally, we demonstrated that CTSB was able to inhibit HCV replication and viral protein translation. These results highlight the potential role of CTSB and vimentin in virus replication.

  16. Quantitative Proteomics Analysis of the Hepatitis C Virus Replicon High-Permissive and Low-Permissive Cell Lines.

    Directory of Open Access Journals (Sweden)

    Fei Ye

    Full Text Available Chronic hepatitis C virus (HCV infection is one of the leading causes of severe hepatitis. The molecular mechanisms underlying HCV replication and pathogenesis remain unclear. The development of the subgenome replicon model system significantly enhanced study of HCV. However, the permissiveness of the HCV subgenome replicon greatly differs among different hepatoma cell lines. Proteomic analysis of different permissive cell lines might provide new clues in understanding HCV replication. In this study, to detect potential candidates that might account for the differences in HCV replication. Label-free and iTRAQ labeling were used to analyze the differentially expressed protein profiles between Huh7.5.1 wt and HepG2 cells. A total of 4919 proteins were quantified in which 114 proteins were commonly identified as differentially expressed by both quantitative methods. A total of 37 differential proteins were validated by qRT-PCR. The differential expression of Glutathione S-transferase P (GSTP1, Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1, carboxylesterase 1 (CES1, vimentin, Proteasome activator complex subunit1 (PSME1, and Cathepsin B (CTSB were verified by western blot. And over-expression of CTSB or knock-down of vimentin induced significant changes to HCV RNA levels. Additionally, we demonstrated that CTSB was able to inhibit HCV replication and viral protein translation. These results highlight the potential role of CTSB and vimentin in virus replication.

  17. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease.

    Science.gov (United States)

    Oe, Shinji; Miyagawa, Koichiro; Honma, Yuichi; Harada, Masaru

    2016-09-10

    Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ER stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.

  18. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines

    DEFF Research Database (Denmark)

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two...... are suitable for drug cytotoxicity tests....

  19. 3-Nitrobenzanthrone (3-NBA) induced micronucleus formation and DNA damage in human hepatoma (HepG2) cells.

    Science.gov (United States)

    Lamy, Evelyn; Kassie, Fekadu; Gminski, Richard; Schmeiser, Heinz H; Mersch-Sundermann, Volker

    2004-01-15

    3-Nitrobenzanthrone (3-NBA), identified in diesel exhaust and in airborne particulate matter, is a potent mutagen in Salmonella, induces micronuclei formation in mice and in human cells and DNA adducts in rats. In the present study, we investigated the genotoxic potency of 3-NBA in human HepG2 cells using the micronucleus (MN) assay and the single cell gel electrophoresis (SCGE). 3-NBA caused a genotoxic effect at concentrations > or =12 nM in both assays. In the micronucleus assay, we found 98.7+/-10.3 MN/1000 BNC at a concentration of 100 nM 3-NBA in comparison to 27.3+/-0.6 MN/1000 BNC with the negative control. At the same concentration, the DNA-migration (SCGE) showed an Olive tail moment (OTM) of 2.7+/-0.45 and %DNA in the tail of 8.28+/-0.76; OTM and %DNA in the tail of cells treated with the negative control were 0.73+/-0.08 and 2.81+/-0.30, respectively. The results are discussed under consideration of former studies.

  20. Multitargeting and antimetastatic potentials of silibinin in human HepG-2 and PLC/PRF/5 hepatoma cells.

    Science.gov (United States)

    Ghasemi, Reza; Ghaffari, Seyed H; Momeny, Majid; Pirouzpanah, Saeed; Yousefi, Mehdi; Malehmir, Mohsen; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir

    2013-01-01

    Hepatocellular carcinoma (HCC) is the most common sort of primary liver malignancy with poor prognosis. This study aimed at examining the effects of silibinin (a putative antimetastatic agent) on some transcriptional markers mechanistically related to HCC recurrence and metastasis in HepG-2 [hepatitis B virus (HBV)-negative and P53 intact) and PLC/PRF/5 (HBV-positive and P53 mutated) cells. The expression of 27 genes in response to silibinin was evaluated by real-time RT-PCR. The MMP gelatinolytic assay and microculture tetrazolium test (MTT) were tested. Silibinin was capable of suppressing the transcriptional levels of ANGPT2, ATP6L, CAP2, CCR6, CCR7, CLDN-10, cortactin, CXCR4, GLI2, HK2, ID1, KIAA0101, mortalin, PAK1, RHOA, SPINK1, and STMN1 as well as the enzymatic activity of MMP-2 but promoted the transcripts of CREB3L3, DDX3X, and PROX1 in both cells. Some significant differences between the cells in response to silibinin were detected that might be related to the differences of the cells in terms of HBV infection and/or P53 mutation, suggesting the possible influence of silibinin on HCC through biological functions of these 2 prognostic factors. In conclusion, our findings suggest that silibinin could potentially function as a multitargeting antimetastatic agent and might provide new insights for HCC therapy particularly for HBV-related and/or P53-mutated HCCs.

  1. The binding of human lipoprotein lipase treated VLDL by the human hepatoma cell line HepG2

    NARCIS (Netherlands)

    Mulder, M.; Wit, E.de; Havekes, L.M.

    1991-01-01

    It has been suggested that besides the LDL-receptor, hepatocytes possess an apo E or remnant receptor. To evaluate which hepatic lipoprotein receptor is involved in VLDL remnant catabolism, we studied the binding of VLDL remnants to HepG2 cells. Native VLDL was obtained from type IIb hyperlipidemic

  2. Effect of mitomycin C on the activation of adenylate cyclase in rat ascites hepatoma AH130 cells.

    Science.gov (United States)

    Miyamoto, K; Matsunaga, T; Sanae, F; Koshiura, R

    1986-09-01

    Isoproterenol (IPN)-stimulated activity of adenylate cyclase was enhanced in a dose-dependent manner by exposure of AH130 cells to mitomycin C (MMC). The enhancement was also observed in prostaglandin E1-, guanine nucleotide analog-, NaF-, cholera toxin- and forskolin-stimulated activities of the enzyme but not in manganese-stimulated activity. In addition, even when the cells pretreated with islet-activating protein were exposed to MMC, IPN-stimulated activity of adenylate cyclase was enhanced. Anaerobic exposure of AH130 cells to MMC somewhat inhibited IPN-stimulated activity of adenylate cyclase in contrast with aerobic exposure. Exposure of cells to adriamycin also caused enhancement of IPN-stimulated activity of adenylate cyclase but exposure to nitrogen mustard inhibited the enzyme stimulation by IPN. The enhancing effect of MMC was lost by the combined treatment with alpha-tocopherol. From these results, it was shown that MMC modulated the activity of adenylate cyclase, probably through alterations in membrane structure.

  3. The effect of oleuropein from olive leaf (Olea europaea) extract on Ca²⁺ homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in HepG2 human hepatoma cells.

    Science.gov (United States)

    Cheng, Jin-Shiung; Chou, Chiang-Ting; Liu, Yuan-Yuarn; Sun, Wei-Chih; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-01

    Oleuropein, a phenolic compound found in the olive leaf (Olea europaea), has been shown to have biological activities in different models. However, the effects of oleuropein on Ca(2+) homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in liver cells have not been analyzed. Oleuropein induced [Ca(2+)]i rises only in HepG2 cells but not in AML12, HA22T or HA59T cells due to the different status of 3-hydroxy-3-methylglutaryl-CoA reductase expression. In HepG2 cells, this Ca(2+) signaling response was reduced by removing extracellular Ca(2+), and was inhibited by the store-operated Ca(2+) channel blockers 2-APB and SKF96365. In Ca(2+)-free medium, pretreatment with the ER Ca(2+) pump inhibitor thapsigargin abolished oleuropein-induced [Ca(2+)]i rises. Oleuropein induced cell cycle arrest which was associated with the regulation of p53, p21, CDK1 and cyclin B1 levels. Furthermore, oleuropein elevated intracellular ROS levels but reduced GSH levels. Treatment with the intracellular Ca(2+) chelator BAPTA-AM or the antioxidant NAC partially reversed oleuropein-induced cytotoxicity. Together, in HepG2 cells, oleuropein induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through store-operated Ca(2+) channels. Moreover, oleuropein induced Ca(2+)-associated cytotoxicity that involved ROS signaling and cell cycle arrest. This compound may offer a potential therapy for treatment of human hepatoma.

  4. LNO3 AND L3 Are Associated With Antiproliferative And Pro-Apoptotic Action In Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Leonardo Campos Zanelatto

    2016-06-01

    Full Text Available Abstract The identification of antitumoral substances is the focus of intense biomedical research. Two structural analogues of thalidomide, LNO3 and L3, are two synthetic compounds that might possess such antitumor properties. We evaluated the toxicological effects of these substances, including cytotoxicity, genotoxicity and induction of apoptosis in HTC cells. Additionally, the production of free radicals (nitric oxide and superoxide was investigated, and the expression of caspases genes 3, 8, and 9 were determined by RT-qPCR. The compounds exhibited cytotoxic effects that resulted in inhibited cell proliferation. LNO3 showed to be more effective and toxic than L3 in all assays. LNO3 stimulated the release of NO and superoxide, which was accompanied by the formation of peroxynitrite. Apoptosis was induced in a dose-dependent manner by both compounds; however, the expression of caspases 3, 8 and 9 was unchanged. These results suggested that L3 and LNO3 possess antiproliferative and pro-apoptotic effects in HTC cells. Additionally, although they exhibited cytotoxicity, L3 and LNO3 might be useful coadjuvants in tumor treatment studies.

  5. Rosemary Extracts Upregulate Nrf2, Sestrin2, and MRP2 Protein Level in Human Hepatoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xiao-pei Tong

    2017-01-01

    Full Text Available In the past few decades, the incidence of liver cancer has been rapidly rising across the world. Rosemary is known to possess antioxidant activity and is used as natural antioxidant food preservative. It is proposed to have anticancer activity in treating different tumor models. In this study, we try to explore the impact of rosemary extracts on upregulating the level of Nrf2 and Nrf2-regulatory proteins, Sestrin2 and MRP2 in HepG2 cells, and to speculate its potential mechanism. The anticancer activity of rosemary extract, including its polyphenolic diterpenes carnosic acid and carnosol, was evaluated to understand the potential effect on HepG2 cells. Rosemary extract, carnosic acid, and carnosol induced the expression of Sestrin2 and MRP2 associate with enhancement of Nrf2 protein level in HepG2 cells, in which carnosic acid showed most obvious effect. Although the activation pathway of Nrf2/ARE was not exactly assessed, it can be assumed that the enhancement of expression of Sestrin2 and MRP2 may result from upregulation of Nrf2.

  6. Hemoglobin Regulates the Metabolic, Synthetic, Detoxification, and Biotransformation Functions of Hepatoma Cells Cultured in a Hollow Fiber Bioreactor

    Science.gov (United States)

    Chen, Guo

    2010-01-01

    Hepatic hollow fiber (HF) bioreactors constitute one type of extracorporeal bioartificial liver assist device (BLAD). Ideally, cultured hepatocytes in a BLAD should closely mimic the in vivo oxygenation environment of the liver sinusoid to yield a device with optimal performance. However, most BLADs, including hepatic HF bioreactors, suffer from O2 limited transport toward cultured hepatocytes, which reduces their performance. We hypothesize that supplementation of hemoglobin-based O2 carriers into the circulating cell culture medium of hepatic HF bioreactors is a feasible and effective strategy to improve bioreactor oxygenation and performance. We examined the effect of bovine hemoglobin (BvHb) supplementation (15 g/L) in the circulating cell culture medium of hepatic HF bioreactors on hepatocyte proliferation, metabolism, and varied liver functions, including biosynthesis, detoxification, and biotransformation. It was observed that BvHb supplementation supported the maintenance of a higher cell mass in the extracapillary space, improved hepatocyte metabolic efficiency (i.e., hepatocytes consumed much less glucose), improved hepatocyte capacity for drug metabolism, and conserved both albumin synthesis and ammonia detoxification functions compared to controls (no BvHb supplementation) under the same experimental conditions. PMID:20528678

  7. Structure of a rat hepatoma heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Fedarko, N.S.; Ishihara, M.; Conrad, H.E.

    1986-05-01

    Previous studies showed that as monolayer cultures of a rat hepatocyte cell line passed from log growth to confluency there was an increase in sulfation of heparan sulfate (HS) and the accumulation of a unique species of HS with a high content of sulfated GlcA residues in the nucleus. The present study compares the HS metabolism of a rat (Morris) hepatoma line. Cells were labeled with /sup 35/SO/sub 4//sup 2 -/ and the structure and distribution of (/sup 35/SO/sub 4/)HS from the culture medium (CM), the pericellular matrix (Ma), the nucleus (NUC), the outer nuclear membrane (NM), and the remaining cytoplasmic (CP) pool was measured as nitrous acid-susceptible material. The amount of label incorporated into each pool was 1/10 that observed in the hepatocyte line. The HS proteglycan and the free HS chains from the hepatoma showed size distributions similar to those found for the hepatocytes, but a lower average charge density. In the HS from the CM, Ma, and CP pools 56% of glucosamine residues were sulfated; in that from the NM and NUC pools 46% were sulfated. HONO treatment gave mono- and disulfated disaccharides in a ratio of 1.5:1 for all five cellular pools, but showed that the HS from the NUC pool did not contain high levels of sulfated GlcA residues.

  8. Effects of two organomodified clays intended to food contact materials on the genomic instability and gene expression of hepatoma cells.

    Science.gov (United States)

    Maisanaba, Sara; Jordá-Beneyto, María; Cameán, Ana M; Jos, Ángeles

    2016-02-01

    Globally, food industries have made significant progress in order to increase the shelf-life of food products and have fewer economic losses. In this sense, the use of organomodified clays destined to be incorporated in polymer matrices play a novel role, leading to improved materials named nanocomposites with enhanced technological profiles. Due to the presence of these clays into the package, the safety of the consumers is a main concern. Cloisite(®)30B and Clay1 are two organomodified clays containing quaternary ammonium salts as modifiers, that can be potentially used to reinforce packaging polymers. Available toxicity data about these clays, specifically genotoxicity, is still limited and inconclusive in some aspects. Thus, the purpose of this work was to evaluate both clays ability to induce genomic instability through the cytokinesis block micronucleus cytome assay (CBMN) and for the first time, their influence in the modulation of several genes involved in genotoxicity and cell death mechanisms. Overall, no genotoxicity response was obtained in any case at the conditions tested. On the other hand, significant expression changes were observed on the genes selected. Nevertheless, further studies are highly needed to elucidate and increase the knowledge about the molecular mechanisms of clays toxicity.

  9. Inhibitory effect of coffee on hepatoma proliferation and invasion in culture and on tumor growth, metastasis and abnormal lipoprotein profiles in hepatoma-bearing rats.

    Science.gov (United States)

    Miura, Yutaka; Ono, Kanako; Okauchi, Rieko; Yagasaki, Kazumi

    2004-02-01

    We have already reported that instant coffee powder (ICP) and ICP-loaded rat sera could suppress proliferation and invasion of rat ascites hepatoma cell line of AH109A in vitro. In this report, we examined the mechanisms for suppression of tumor cell proliferation and invasion by ICP, and the effect of ICP on in vivo tumor growth, metastasis and abnormal lipoprotein profiles in hepatoma-bearing rats. ICP, when directly added to the culture media, induced cell cycle arrest (elongation of S phase) at a lower concentration (0.3 mg/mL) and apoptosis at a higher concentration (0.6-1.2 mg/mL). ICP and ICP-loaded rat sera showed reactive oxygen species (ROS)-scavenging property and canceled the enhancement of invasive activity of hepatoma cells induced by ROS in vitro. These results suggest that ICP suppresses the proliferation by inducing cell cycle arrest and apoptosis, and the invasion by scavenging ROS and that ICP could retain these properties after their gastrointestinal absorption. The hepatoma-bearing rats were fed with a 20% casein diet (20C) or 20C supplemented with 0.1%, ICP for 14 d. Dietary ICP significantly reduced solid tumor growth and tended to reduce hepatoma metastases to lung and lymphatic nodes, suggesting that ICP could suppress tumor cell proliferation and invasion in vivo. In addition, dietary ICP significantly increased serum high-density lipoprotein (HDL)-cholesterol and tended to reduce very low-density and low-density lipoprotein (VLDL+LDL)-cholesterol, resulting in amelioration of abnormal lipoprotein profiles occurred in hepatoma-bearing rats. In conclusion, ICP has the ability to induce cell cycle arrest and apoptosis in hepatoma cells and to suppress tumor cell invasion by reducing oxidative stresses in vitro, and it could also exhibit these effects in vivo, leading to the inhibition of tumor growth and metastases.

  10. Identification of genes that regulate multiple cellular processes/responses in the context of lipotoxicity to hepatoma cells

    Directory of Open Access Journals (Sweden)

    Yedwabnick Matthew

    2007-10-01

    Full Text Available Abstract Background In order to devise efficient treatments for complex, multi-factorial diseases, it is important to identify the genes which regulate multiple cellular processes. Exposure to elevated levels of free fatty acids (FFAs and tumor necrosis factor alpha (TNF-α alters multiple cellular processes, causing lipotoxicity. Intracellular lipid accumulation has been shown to reduce the lipotoxicity of saturated FFA. We hypothesized that the genes which simultaneously regulate lipid accumulation as well as cytotoxicity may provide better targets to counter lipotoxicity of saturated FFA. Results As a model system to test this hypothesis, human hepatoblastoma cells (HepG2 were exposed to elevated physiological levels of FFAs and TNF-α. Triglyceride (TG accumulation, toxicity and the genomic responses to the treatments were measured. Here, we present a framework to identify such genes in the context of lipotoxicity. The aim of the current study is to identify the genes that could be altered to treat or ameliorate the cellular responses affected by a complex disease rather than to identify the causal genes. Genes that regulate the TG accumulation, cytotoxicity or both were identified by a modified genetic algorithm partial least squares (GA/PLS analysis. The analyses identified NADH dehydrogenase and mitogen activated protein kinases (MAPKs as important regulators of both cytotoxicity and lipid accumulation in response to FFA and TNF-α exposure. In agreement with the predictions, inhibiting NADH dehydrogenase and c-Jun N-terminal kinase (JNK reduced cytotoxicity significantly and increased intracellular TG accumulation. Inhibiting another MAPK pathway, the extracellular signal regulated kinase (ERK, on the other hand, improved the cytotoxicity without changing TG accumulation. Much greater reduction in the toxicity was observed upon inhibiting the NADH dehydrogenase and MAPK (which were identified by the dual-response analysis, than for the

  11. Studies on responsiveness of hepatoma cells to catecholamines. III. Difference between the receptor-adenylate cyclase regulating systems in AH130 cells and cultured normal rat liver cells.

    Science.gov (United States)

    Sanae, F; Matsunaga, T; Miyamoto, K; Koshiura, R

    1986-10-01

    The responsiveness to three beta-adrenergic agonists, isoproterenol (IPN), epinephrine (Epi) and norepinephrine (NE) in AH13O cells was examined compared with that in normal rat liver cells which were cultured for 24 hr after collagenase digestion. As regards to the activation of adenylate cyclase in the cell homogenates, the relative affinity of the three agonists was in order of IPN greater than NE greater than Epi in AH130 cells and IPN greater than Epi greater than NE in cultured normal liver cells. While the efficacies of the three agonists were similar in cultured liver cells, those of NE and Epi were markedly lower than that of IPN in AH13O cells and were increased to the similar level of IPN by pretreatment with phentolamine, but not with prazosin. Clonidine inhibited the activation of adenylate cyclase by IPN in AH13O cells. When cells were preincubated with islet-activating protein (IAP), the activity of adenylate cyclase in the presence or absence of agonist in both cell lines increased. In IAP-treated AH13O cells, the efficacies of NE and Epi became close to that of IPN. Adenylate cyclase in IAP-treated AH13O cells was activated by GTP in a dose-dependent manner, but that in IAP-treated cultured liver cells was not. In the presence of IPN, biphasic (activatory and inhibitory) effects of GTP on the cyclase were observed, and the inhibitory phase was eliminated by the IAP-treatment in both cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Chronic ecotoxic effects to Pseudomonas putida and Vibrio fischeri, and cytostatic and genotoxic effects to the hepatoma cell line (HepG2) of ofloxacin photo(cata)lytically treated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M.I. [University of Cyprus, Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Street, 1678 Nicosia (Cyprus); Nireas International Water Research Center, University of Cyprus (Cyprus); Garcia-Käufer, M. [University Medical Centre Freiburg, Department of Environmental Health Sciences, 115 B, Breisacher Straße, 79106 Freiburg (Germany); Hapeshi, E. [University of Cyprus, Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Street, 1678 Nicosia (Cyprus); Nireas International Water Research Center, University of Cyprus (Cyprus); Menz, J. [Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1/C13, 21335 Lüneburg (Germany); Kostarelos, K.; Fatta-Kassinos, D. [University of Cyprus, Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Street, 1678 Nicosia (Cyprus); Nireas International Water Research Center, University of Cyprus (Cyprus); Kümmerer, K., E-mail: Klaus.Kuemmerer@uni.leuphana.de [Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1/C13, 21335 Lüneburg (Germany)

    2013-04-15

    Ofloxacin (OFL), a broad-spectrum and widespread-used photolabile fluoroquinolone, is frequently found in treated wastewaters, aquatic and terrestrial ecosystems leading to increasing concern during the past decades regarding its effects to the environment and human health. The elimination of OFL and other xenobiotics by the application of advanced oxidation processes using photolytic (PL) and photocatalytic (PC) treatments seems promising. However, an integrated assessment scheme is needed, in which, not only the removal of the parent compound, but also the effects of the photo-transformation products (PTPs) are investigated. For this purpose, in the present study, a chronic ecotoxic assessment using representative bacteria of marine and terrestrial ecosystems and a cytostatic and genotoxic evaluation using hepatoma cell line were performed. PL and PC treatments of OFL were applied using UV radiation. The photo-transformation of OFL during the treatments was monitored by DOC measurements and UPLC–MS/MS analysis. The chronic ecotoxicity of OFL and treated samples was evaluated using Pseudomonas putida and Vibrio fischeri; whereas the cytostasis and genotoxicity were estimated by the cytokinesis-block micronucleus assay (CBMN). The main results suggest that photo-transformation of OFL took place during these treatments since the concentration of OFL decreased when the irradiation time increased, as quantified by UPLC–MS/MS analysis, and this was not coupled with an analogous DOC removal. Furthermore, nine compounds were identified as probable PTPs formed through piperazinyl dealkylation and decarboxylation. The ecotoxicity of treated solutions to the bacteria studied decreased while the cytostasis to the hepatoma cell line remained at low levels during both treatments. However, the genotoxicity to the hepatoma cell line demonstrated a different pattern in which treated samples induced a greater number of MNi for the 4–16 min of irradiation (p < 0.05) during

  13. Modulation of the mutagenic effect of benzo[a]pyrene and bleomycin by isoflavone extracts in a rat hepatoma cell line Modulação do efeito mutagênico do benzo[a]pireno e bleomicina por extratos de isoflavonas em células de hepatoma de roedor

    Directory of Open Access Journals (Sweden)

    Mário Sérgio Mantovani

    2012-06-01

    Full Text Available Epidemiologic studies show that the intake of foods rich in isoflavones (phytoestrogens, such as soybeans, confers protection against various types of cancer, what increases the scientific and popular interest on these compounds. In the present study, phytoestrogens extracts from soybeans were tested for genotoxic potential and modulatory effects on benzo[a]pyrene and bleomycin. Two phytoestrogens were evaluated in vitro, phytoestrogen “A” was supplied by EMBRAPA-Soja, Londrina – PR, and phytoestrogen “B” was purchased in a local drug store. The methods used were the comet assay (genotoxicity and antigenotoxicity and micronucleus test with cytokinesis block (mutagenicity in rat hepatoma cells (HTC cell. The isoflavones were tested at three concentrations pre-established by the MTT cytotoxicity assay. Both isoflavone extracts showed no genotoxic effects in the comet assay, but showed induction of micronucleus. In the evaluation of the phytoestrogens for a modulatory effect, both phytoestrogens extracts showed antigenotoxicity in the comet assay.Estudos epidemiológicos mostram que a ingestão de alimentos ricos em isoflavonas (fitoestrógenos, como a soja, confere proteção contra vários tipos de câncer, o que aumenta o interesse científico e popular sobre esses compostos. No presente estudo, os fitoestrógenos de extrato de soja foram testados quanto aos efeitos genotóxicos e modulador de benzo [a] pireno e bleomicina. Dois fitoestrogênios foram avaliados in vitro, o fitoestrógenos “A” foi fornecido pela Embrapa-Soja, Londrina - PR, e o fitoestrógenos “B” foi comprado em uma farmácia de manipulação local. Os métodos utilizados foram o teste do Cometa (genotoxicidade e antigenotoxicidade e teste do Micronúcleo com Bloqueio Citocinese (mutagenicidade em células de hepatoma de rato (HTC celulares. As isoflavonas foram testadas em três concentrações pré-estabelecidas pelo ensaio de citotoxidade MTT. Ambos os

  14. Fibrogenic potential of human multipotent mesenchymal stromal cells in injured liver.

    Directory of Open Access Journals (Sweden)

    Reto M Baertschiger

    Full Text Available Multipotent mesenchymal stromal cells (MSC are currently investigated clinically as cellular therapy for a variety of diseases. Differentiation of MSC toward endodermal lineages, including hepatocytes and their therapeutic effect on fibrosis has been described but remains controversial. Recent evidence attributed a fibrotic potential to MSC. As differentiation potential might be dependent of donor age, we studied MSC derived from adult and pediatric human bone marrow and their potential to differentiate into hepatocytes or myofibroblasts in vitro and in vivo. Following characterization, expanded adult and pediatric MSC were co-cultured with a human hepatoma cell line, Huh-7, in a hepatogenic differentiation medium containing Hepatocyte growth factor, Fibroblast growth factor 4 and oncostatin M. In vivo, MSC were transplanted into spleen or liver of NOD/SCID mice undergoing partial hepatectomy and retrorsine treatment. Expression of mesenchymal and hepatic markers was analyzed by RT-PCR, Western blot and immunohistochemistry. In vitro, adult and pediatric MSC expressed characteristic surface antigens of MSC. Expansion capacity of pediatric MSC was significantly higher when compared to adult MSC. In co-culture with Huh-7 cells in hepatogenic differentiation medium, albumin expression was more frequently detected in pediatric MSC (5/8 experiments when compared to adult MSC (2/10 experiments. However, in such condition pediatric MSC expressed alpha smooth muscle more strongly than adult MSC. Stable engraftment in the liver was not achieved after intrasplenic injection of pediatric or adult MSC. After intrahepatic injection, MSC permanently remained in liver tissue, kept a mesenchymal morphology and expressed vimentin and alpha smooth muscle actin, but no hepatic markers. Further, MSC localization merges with collagen deposition in transplanted liver and no difference was observed using adult or pediatric MSC. In conclusion, when transplanted into an

  15. Experimental Studies on PNP Suicide Gene Therapy of Hepatoma

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the killing effect of PNP/MeP-dR suicide gene system on hepatoma cells,pcDNA3. 0/PNP, an eukaryotic expression vector harboring E. coli PNP gene, was transfected into human hepatoma HepG2 cells by liposome-mediated method. A HepG2 cell line with stable PNP gene expression, HepG2/PNP, was established with presence of G418 selection. The cell growth curves were determined with trypan blue staining. The sensitivity of HepG2/PNP to MePdR and bystander effects were assayed by MTT and FCM methods. The enzymatic activity of the product of PNP gene was determined by HPLC method. The cytotoxic effects of MeP-dR on HepG2/PNP cells were obvious (IC50 =4.5μmol/L) and all HepG2/PNP cells were killed 4 days after the treatment with 100μmol/L MeP~dR. In mixed cultures containing increasing percentages of HepG2/PNP cells, total population killing was demonstrated when HepG2/PNP cells accounted for as few as 5% of all HepG2 cells 8 days after the treatment with 100μmol MeP-dR. Highpressure liquid chromatography (HPLC) demonstrated that the PNP enzyme could convert MePdR into 6-MP. PNP/MeP-dR suicide gene system had an advantage over traditional suicide gene systems for hepatoma gene therapy. Our e results suggest that high-level bystander effects of this system result in significant anti-tumor responses to hepatoma gene therapy, especially in vivo.

  16. Completion of the Entire Hepatitis C Virus Life Cycle in Vero Cells Derived from Monkey Kidney

    Directory of Open Access Journals (Sweden)

    Asako Murayama

    2016-06-01

    Full Text Available A hepatitis C virus (HCV cell culture system incorporating the JFH-1 strain and the human hepatoma cell line HuH-7 enabled the production of infectious HCV particles. Several host factors were identified as essential for HCV replication. Supplementation of these factors in nonhepatic human cell lines enabled HCV replication and particle production. Vero cells established from monkey kidney are commonly used for the production of vaccines against a variety of viruses. In this study, we aimed to establish a novel Vero cell line to reconstruct the HCV life cycle. Unmodified Vero cells did not allow HCV infection or replication. The expression of microRNA 122 (miR-122, an essential factor for HCV replication, is notably low in Vero cells. Therefore, we supplemented Vero cells with miR-122 and found that HCV replication was enhanced. However, Vero cells that expressed miR-122 still did not allow HCV infection. We supplemented HCV receptor molecules and found that scavenger receptor class B type I (SRBI was essential for HCV infection in Vero cells. The supplementation of apolipoprotein E (ApoE, a host factor important for virus production, enabled the production of infectious virus in Vero cells. Finally, we created a Vero cell line that expressed the essential factors miR-122, SRBI, and ApoE; the entire HCV life cycle, including infection, replication, and infectious virus production, was completed in these cells. In conclusion, we demonstrated that miR-122, SRBI, and ApoE were necessary and sufficient for the completion of the entire HCV life cycle in nonhuman, nonhepatic Vero cells.

  17. In vivo – in vitro toxicogenomic comparison of TCDD-elicited gene expression in Hepa1c1c7 mouse hepatoma cells and C57BL/6 hepatic tissue

    Directory of Open Access Journals (Sweden)

    Boverhof Darrell R

    2006-04-01

    Full Text Available Abstract Background In vitro systems have inherent limitations in their ability to model whole organism gene responses, which must be identified and appropriately considered when developing predictive biomarkers of in vivo toxicity. Systematic comparison of in vitro and in vivo temporal gene expression profiles were conducted to assess the ability of Hepa1c1c7 mouse hepatoma cells to model hepatic responses in C57BL/6 mice following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Results Gene expression analysis and functional gene annotation indicate that Hepa1c1c7 cells appropriately modeled the induction of xenobiotic metabolism genes in vivo. However, responses associated with cell cycle progression and proliferation were unique to Hepa1c1c7 cells, consistent with the cell cycle arrest effects of TCDD on rapidly dividing cells. In contrast, lipid metabolism and immune responses, representative of whole organism effects in vivo, were not replicated in Hepa1c1c7 cells. Conclusion These results identified inherent differences in TCDD-mediated gene expression responses between these models and highlighted the limitations of in vitro systems in modeling whole organism responses, and additionally identified potential predictive biomarkers of toxicity.

  18. Immunotherapy of hepatoma with a monoclonal antibody against murine endoglin

    Institute of Scientific and Technical Information of China (English)

    Guang-Hong Tan; Feng-Ying Huang; Hua Wang; Yong-Hao Huang; Ying-Ying Lin; Yue-Nan Li

    2007-01-01

    AIM: To explore the capability of a monoclonal antibody(mAb) against murine endoglin to inhibit tumor angiogenesis and suppression of hepatoma growth in murine models.METHODS: A monoclonal antibody against murine endoglin was purified by affinity chromatography and passively transfused through tail veins in two murine hepatoma models. Tumor volume and survival time were observed at three-day intervals for 48 d. Microvessels in tumor tissues were detected by immunohistochemistry against CD31, and angiogenesis in vivo was determined by alginate encapsulated assay. In addition, tumor cell apoptosis was detected by TUNEL assay.RESULTS: Passive immunotherapy with anti-endoglin mAb could effectively suppress tumor growth, and prolonged the survival time of hepatoma-bearing mice.Angiogenesis was apparently inhibited within the tumor tissues, and the vascularization of alginate beads was also reduced in the mice passively transfused with antiendoglin mAb. In addition, increased apoptotic cells were observed within the tumor tissues from the mice passively transfused with anti-endoglin mAb.CONCLUSION: Passive immunotherapy with antiendoglin mAb effectively inhibits tumor growth via inhibiting tumor angiogenesis and increasing tumor cell apoptosis, which may be highly correlated with the blockage of endoglin-related signal pathway induced by anti-endoglin mAb.

  19. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hong Shik [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Baek, Jeong-Hwa [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Yim, Ji-Hye [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Lee, Su-Jae [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Chang-Woo [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Hwang, Sang-Gu, E-mail: sgh63@kcch.re.kr [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-11

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.

  20. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2).

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2006-11-01

    Dietary polyphenols have been associated with the reduced risk of chronic diseases such as cancer, but the precise underlying mechanism of protection remains unclear. The aim of this study was to investigate the effect of quercetin on the activation of the apoptotic pathway in a human hepatoma cell line (HepG2). Treatment of cells for 18 h with quercetin induced cell death in a dose-dependent manner; however, a shorter treatment (4 h) had no effect on cell viability. Incubation of HepG2 cells with quercetin for 18 h induced apoptosis by the activation of caspase-3 and -9, but not caspase-8. Moreover, this flavonoid decreased the Bcl-xL:Bcl-xS ratio and increased translocation of Bax to the mitochondrial membrane. A sustained inhibition of the major survival signals, Akt and extracellular regulated kinase (ERK), also occurred in quercetin-treated cells. These data suggest that quercetin may induce apoptosis by direct activation of caspase cascade (mitochondrial pathway) and by inhibiting survival signaling in HepG2.

  1. 华蟾素注射液对人肝癌HepG-2细胞增殖及周期的影响%Impact of Cinobufacini injection on proliferation and cell cycle of human hepatoma HepG-2 cells

    Institute of Scientific and Technical Information of China (English)

    Yu Sun; Xinxin Lu; Xinmiao Liang; Xiaonan Cui

    2011-01-01

    Objective: The aim of our study was to investigate the effect of Cinobufacini injection on the proliferation and cell cycle of human hepatoma HepG-2 cells. Methods: Cell proliferation was assessed by MTT assay, cell cycle distributionwas detected by the flow cytometry (FCM). The expression of Cyclin A, CDK2 mRNA levels were examined by RT-PCR.Quantitative colorimetric assay was used to analyze Cyclin NCDK2 activity in HepG-2 cells. Results: Cinobufacini injection significantly inhibited HepG-2 cells proliferation in dose- and time-dependent ways; FCM analysis showed Cinobufacini injection induced cell cycle arrest at S phase; RT-PCR assay showed Cinobufacini injection down-regulated Cyclin A, CDK2expression at mRNA levels; Quantitative colorimetric assay showed Cinobufacini injection deceased Cyclin A/CDK2 activity in HepG-2 cells. Conclusion: Cinobufacini injection can inhibit human hepatoma HepG-2 cells growth, induce cell apoptosis and induce cell cycle arrest at S phase, the mechanism of which might be partly related to the down-regulation of Cyclin A,CDK2 mRNA expression and inhibition of Cyclin A/CDK2 activity.

  2. Embelin-Induced Apoptosis of Human Prostate Cancer Cells Is Mediated through Modulation of Akt and β-Catenin Signaling.

    Directory of Open Access Journals (Sweden)

    Nahee Park

    Full Text Available There is increasing evidence that embelin, an active component of Embelia ribes, induces apoptosis in human cancer cells, but the detailed mechanisms are still unclear. Here, we have investigated the effect of embelin on the growth of human prostate cancer cells. Embelin strongly inhibited cell growth especially in human prostate cancer cell lines, including PC3, DU145, LNCaP-LN3 and normal prostate epithelial cell, RWPE-1 compared to breast cancer (MDA-MB-231, MCF-7, and T47D, hepatoma (HepG2, Hep3B, and HuH-7, or choriocarcinoma (JEG-3. We observed that embelin induced apoptosis of PC3 cells in a time-dependent manner correlated with decreased expression of Bcl-2, Bcl-xL, and Mcl-1, increased translocation of Bax into mitochondria, and a reduction in the mitochondrial membrane potential. Furthermore, embelin induced voltage-dependent anion channel (VDAC 1 expression and oligomerization, which may promote cytochrome c and AIF release. Because embelin was able to inhibit Akt activation and cyclooxygenase-2 expression, the effects on Wnt/ β-catenin signaling were determined. Embelin activated glycogen synthase kinase (GSK-3β by preventing phosphorylation and suppressed β-catenin expression. Attenuation of β-catenin-mediated TCF transcriptional activity and gene transcription, such as cyclin D1, c-myc, and matrix metalloproteinase (MMP-7, were shown in embelin-treated cells. The changes in β-catenin levels in response to embelin were blocked by lithium chloride, a GSK-3 inhibitor, indicating that embelin may decrease β-catenin expression via GSK-3β activation. Furthermore, exposure of PC3 cells to embelin resulted in a significant decrease in cell migration and invasion. In conclusion, these findings suggest that inhibition of Akt signaling and activation of GSK-3β partially contributes to the pro-apoptotic effect of embelin in prostate cancer cells.

  3. Down-regulation of G protein-coupled receptor 137 by RNA interference inhibits cell growth of two hepatoma cell lines.

    Science.gov (United States)

    Shao, Xin; Liu, Yong; Huang, Hai; Zhuang, Linyuan; Luo, Tianping; Huang, Huping; Ge, Xinguo

    2015-04-01

    G protein-coupled receptors (GPCRs) are important signal transduction mediators and pharmacological therapeutic targets. G protein-coupled receptor 137 (GPR137) was initially reported as a novel orphan GPCR around 10 years ago. Some orphan GPCRs have been implicated in cancer cell proliferation and migration. The aim of this study is to investigate the role of GPR137 in hepatocellular carcinoma (HCC). GPR137 is widely expressed in several human HCC cell lines, as determined by real-time PCR. We then applied lentivirus mediated RNA interference (RNAi) to knock down GPR137 expression in two HCC cell lines HepG2 and Bel7404. Depletion of GPR137 remarkably inhibited cell proliferation and colony formation capacity. Knockdown of GPR137 in HepG2 cells led to cell cycle arrest at G0/G1 phase and G2/M phase, and induced cell apoptosis, as determined by flow cytometry analysis, which contributed to cell growth inhibition. Our findings suggested that GPR137 could facilitate HCC cell proliferation and thus promote hepatocarcinogenesis.

  4. On-line comprehensive two-dimensional HepG2 cell membrane chromatographic analysis system for charactering anti-hepatoma components from rat serum after oral administration of Radix scutellariae: A strategy for rapid screening active compounds in vivo.

    Science.gov (United States)

    Jia, Dan; Chen, Xiaofei; Cao, Yan; Wu, Xunxun; Ding, Xuan; Zhang, Hai; Zhang, Chuan; Chai, Yifeng; Zhu, Zhenyu

    2016-01-25

    Cell membrane chromatography (CMC) is a bioaffinity chromatography technique for characterizing interactions between drugs and membrane receptors and has been widely used to screen active components from complex samples such as herbal medicines (HMs). However, it has never been applied in vivo due to its relatively high limit of detection (LOD) and the matrix interferences. In this study, a novel on-line comprehensive two-dimensional HepG2/CMC/enrich columns/high performance liquid chromatography/time-of-flight mass spectrometry system was developed to rapidly screen potential anti-hepatoma components from drug-containing serum of rats after oral administration of Radix scutellariae. A matrix interference deduction method with a home-written program in MATLAB was developed, which could successfully eliminate the interference of endogenous substances in serum. Baicalein, wogonin, chrysin, oroxylin A, neobaicalein and rivularin from Radix scutellariae extraction were significantly retained in the HepG2/CMC column. Three potential active components, wogonin, oroxylin A and neobaicalein were firstly screened from the drug-containing serum as well. The cell counting kit-8 assay demonstrated that wogonin, oroxylin A and chrysin showed high inhibitory activities in a dose-dependent manner on HepG2 cells at the concentration of 12.5-200 μM (pactive components from complex biological samples and could be applied to other biochromatography models.

  5. DNA-PKcs deficiency sensitizes the human hepatoma HepG2 cells to cisplatin and 5-fluorouracil through suppression of the PI3K/Akt/NF-κB pathway.

    Science.gov (United States)

    Fang, Yuan; Chai, Zongtao; Wang, Dansong; Kuang, Tiantao; Wu, Wenchuan; Lou, Wenhui

    2015-01-01

    The aim of the present study was to investigate the effects of DNA-PKcs deficiency on the chemosensitivity of human hepatoma HepG2 cells to cisplatin (CDDP) and 5-fluorouracil (5-Fu), and to explore the underlying molecular mechanism. After transfection with DNA-PKcs siRNA or control siRNA, HepG2 cells were exposed to combination treatment of CDDP and 5-Fu. The cell viability, DNA damage, cell apoptosis, intracellular reactive oxygen species and glutathione (GSH) level, expression of apoptosis related proteins, activity of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, and nuclear factor-κB (NF-κB) pathways were assessed. The combination of CDDP and 5-Fu had a synergistic cytotoxic effect in HepG2 cells in terms of the cell viability, DNA damage, apoptosis, and oxidative stress level. DNA-PKcs siRNA could sensitize the HepG2 cells to the combined treatment. DNA-PKcs suppression further reduced the Akt phosphorylation level and Bcl-2 expression in HepG2 cells exposed to CDDP and 5-Fu, but enhanced the expression of pro-apoptotic proteins p53 and caspase-3. Moreover, CDDP could inhibit the transcriptional activity of NF-κB through degradation of IkB-α, while 5-Fu alone seemed in some extent increases the NF-κB activity. The combined treatment with CDDP and 5-Fu resulted in significantly decrease of the transcriptional activity of NF-κB, which was further aggravated by DNA-PKcs siRNA treatment. In conclusion, DNA-PKcs suppression had complementary effects in combination with CDDP and 5-Fu treatment in HepG2 cells, which was associated with suppression of NF-κB signaling pathway cascade, activation of caspase-3 and p53, as well as down-regulation of Bcl-2 and GSH.

  6. Radioiodine Therapy of Liver Cancer Cell Following Tissue Specific Sodium Iodide Symporter Gene Transfer and Assessment of Therapeutic Efficacy with Optical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byoung Kuk; Lee, You La; Lee, Yong Jin [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)] (and others)

    2008-10-15

    Cancer specific killing can be achieved by therapeutic gene activated by cancer specific promotor. Expression of sodium iodide symporter (NIS) gene causes transportation and concentration of iodide into the cell, therefore radioiodine treatment after NIS gene transfer to cancer cell could be a form of radionuclide gene therapy. luciferase (Luc) gene transfected cancer cell can be monitored by in vivo optical imaging after D-luciferin injection. Aims of the study are to make vector with both therapeutic NIS gene driven by AFP promoter and reporter Luc gene driven by CMV promoter, to perform hepatocellular carcinoma specific radiodiodine gene therapy by the vector, and assessment of the therapy effect by optical imaging using luciferase expression. A Vector with AFP promoter driven NIS gene and CMV promoter driven Luc gene (AFP-NIS-CMV-Luc) was constructed. Liver cancer cell (HepG2, Huh-7) and non liver cancer cell (HCT-15) were transfected with the vector using liposome. Expression of the NIS gene at mRNA level was elucidated by RT-PCR. Radioiodide uptake, perchlorate blockade, and washout tests were performed and bioluminescence also measured by luminometer in these cells. In vitro clonogenic assay with I-131 was performed. In vivo nuclear imaging was obtained with gamma camera after I-131 intraperitoneal injection. A Vector with AFP-NIS-CMV-Luc was constructed and successfully transfected into HepG2, Huh-7 and HCT-15 cells. HepG2 and Huh-7 cells with AFP-NIS-CMV-Luc gene showed higher iodide uptake than non transfected cells and the higher iodide uptake was totally blocked by addition of perchlorate. HCT-15 cell did not showed any change of iodide uptake by the gene transfection. Transfected cells had higher light output than control cells. In vitro clonogenic assay, transfected HepG2 and Huh-7 cells showed lower colony count than non transfected HepG2 and Huh-7 cells, but transfected HCT-15 cell did not showed any difference than non transfected HCT-15 cell

  7. 柞蚕蛹虫草抑制人肝癌SMMC-7721细胞增殖和诱导凋亡的作用%Cordyceps Militaris of Antheraea pernyi Inhibits Proliferation and Promotes Apoptosis of Hepatoma SMMC-7721 Cells

    Institute of Scientific and Technical Information of China (English)

    王林美; 都兴范; 李学军; 米锐; 李亚洁; 李树英

    2011-01-01

    To evaluate new medical value of the cordyceps militaris of Antheraea pernyi, the human hepatoma SMMC-7721 cells were treated with different concentrations of the aqueous extract of A.pernyi cordycep militaris (AEoAPC) for 24, 48, and 72 h respectively in vitro. The proliferation and apoptosis of the hepatoma SMMC-7721 cells were examined by an inverted phase contrast microscope, a transmission electron microscope, methyl thiazolyl tetrazolium (MTT) colorimetric assay, and flow cytometry (FCM). The results showed that addition of AEoAPC into cell culture plates with mass concentrations of 0.1,0.2, 0.5, 0.8, 1.0, 2.0, and 5.0 g/L respectively could inhibit proliferation of SMMC-7721 cells significantly and the inhibition was in a time and dose-dependent manner. Treatment with 1.0 g/L AEoAPC for 24, 48,and 72 h had an inhibitory rate to hepatoma SMMC-7721 cell growth of 18.9%, 46.4%, and 77. 2% respectively. After AEoAPC treatment, a large number of cancer cells showed chromatin margination, chromatin condensation, nuclear fragmentation and apoptotic bodies. SMMC-7721 cell apoptotic rate from treatment with 1.0 g/L AEoAPC for 24, 48,and 72 h was 7.65%, 11.04%, and 23.02% respectively. The degree of apoptosis had positive correlation with AEoAPC treatment duration, and the cell cycle of SMMC-7721 was apparently arrested at G1 phase by AEoAPC treatment for 72 h. Our results suggested that AEoAPC could inhibit proliferation and induce apoptosis of the hepatoma SMMC-7721 cells, and its antitumor function was related with induction of apoptosis to tumor cells.%为鉴定柞蚕蛹虫草新的医用价值,将不同浓度的柞蚕蛹虫草水提物(AEoAPC)分别作用于体外培养的人肝癌SMMC-7721细胞,于24、48、72 h后采用倒置相差显微镜和透射电子显微镜观察、四甲基偶唑蓝(MTT)比色及流式细胞术(FCM)检测细胞的增殖和凋亡情况.结果表明:细胞培养板中分别加入质量浓度为0.1、0.2、0.5、0.8、1.0、2

  8. The Anti-tumor Immunity of Dendritic Cells Modified by IFN γ Gene on Mice Bearing Ascite Hepatoma Cell H22

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 Introduction Dendritc cell (DC)-based cancer vaccines have shown to been effective both in clinical trials and in animal tumor models. Some clinical trials have been on the phase Ⅲ, but some problems are challenging now. The functions of DC from patient with malignant tumor were depressed by tumor-secreting cytokines such as IL-10. it is critical to find out some methods to improve DC differentiation maturation for priming naive T cells and initiating the specific anti-tumor immunity effectively. IFNγ is ...

  9. JA, a new type of polyunsaturated fatty acid isolated from Juglans mandshurica Maxim, limits the survival and induces apoptosis of heptocarcinoma cells.

    Science.gov (United States)

    Gao, Xiu-Li; Lin, Hua; Zhao, Wei; Hou, Ya-Qin; Bao, Yong-Li; Song, Zhen-Bo; Sun, Lu-Guo; Tian, Shang-Yi; Liu, Biao; Li, Yu-Xin

    2016-03-01

    Juglans mandshurica Maxim (Juglandaceae) is a famous folk medicine for cancer treatment and some natural compounds isolated from it have been studied extensively. Previously we isolated a type of ω-9 polyunsaturated fatty acid (JA) from the bark of J. mandshurica, however little is known about its activity and the underlying mechanisms. In this study, we studied anti-tumor activity of JA on several human cancer cell lines. Results showed that JA is cytotoxic to HepG2, MDA-MB-231, SGC-7901, A549 and Huh7 cells at a concentration exerting minimal toxic effects on L02 cells. The selective toxicity of JA was better than other classical anti-cancer drugs. Further investigation indicated that JA could induce cell apoptosis, characterized by chromatin condensation, DNA fragmentation and activation of the apoptosis-associated proteins such as Caspase-3 and PARP-1. Moreover, we investigated the cellular apoptosis pathway involved in the apoptosis process in HepG2 cells. We found that proteins involved in mitochondrion (cleaved-Caspase-9, Apaf-1, HtrA2/Omi, Bax, and Mitochondrial Bax) and endocytoplasmic reticulum (XBP-1s, GRP78, cleaved-Caspase-7 and cleaved-Caspase-12) apoptotic pathways were up-regulated when cells were treated by JA. In addition, a morphological change in the mitochondrion was detected. Furthermore, we found that JA could inhibit DNA synthesis and induce G2/M cell cycle arrest. The expression of G2-to-M transition related proteins, such as CyclinB1 and phosphorylated-CDK1, were reduced. In contrast, the G2-to-M inhibitor p21 was increased in JA-treated cells. Overall, our results suggest that JA can induce mitochondrion- and endocytoplasmic reticulum-mediated apoptosis, and G2/M phase arrest in HepG2 cells, making it a promising therapeutic agent against hepatoma.

  10. Efficient cell culture system for hepatitis C virus genotype 5A

    DEFF Research Database (Denmark)

    2013-01-01

    of in vitro transcripts in Huh7.5 cells, production of infectious viruses was delayed. However, in subsequent viral passages efficient spread of infection and HCV RNA titers as high as for J6/JFH were obtained. Infectivity titers were at all time points analyzed comparable to J6/JFH control virus. Sequence...

  11. Cytoskeletal Requirements for Hepatitis C Virus (HCV) RNA Synthesis in the HCV Replicon Cell Culture System

    OpenAIRE

    Bost, Anne G.; Venable, Daryl; Liu, Lifei; Heinz, Beverly A.

    2003-01-01

    Hepatitis C virus (HCV) induces microtubule aggregates in infected hepatocytes. To determine if cytoskeletal elements are important for HCV RNA synthesis, we examined the effect of cytoskeleton inhibitors on HCV replicon transcription in Huh7 cells. The data demonstrate that HCV replication complex-mediated RNA synthesis requires microtubule and actin polymerization.

  12. Cytoskeletal requirements for hepatitis C virus (HCV) RNA synthesis in the HCV replicon cell culture system.

    Science.gov (United States)

    Bost, Anne G; Venable, Daryl; Liu, Lifei; Heinz, Beverly A

    2003-04-01

    Hepatitis C virus (HCV) induces microtubule aggregates in infected hepatocytes. To determine if cytoskeletal elements are important for HCV RNA synthesis, we examined the effect of cytoskeleton inhibitors on HCV replicon transcription in Huh7 cells. The data demonstrate that HCV replication complex-mediated RNA synthesis requires microtubule and actin polymerization.

  13. Signal regulation of POKemon and NF-κB p65 in hepatoma cells%POKemon和NF-κB p65在肝癌细胞中的信号调控

    Institute of Scientific and Technical Information of China (English)

    赵心恺; 宁巧明; 孙晓宁; 田德安

    2012-01-01

    目的:旨在探讨原癌基因POKemon和核因子-κB(nuclear factor-kappa B,NF-κB) p65在肝癌细胞中的信号调控作用.方法:采用实时荧光定量-PCR(real-time fluorogenic quantitative-PCR,RFQ-PCR)和蛋白质印迹法分别检测POKemon、NF-κB p65 mRNA和蛋白在肝癌细胞株HepG2和SMMC7721及人胚胎肝细胞LO2中的表达情况;随后应用小干扰RNA(small interference RNA,siRNA)法依次分别抑制POKemon和NF-κB p65在肝癌细胞中的表达,观察二者在肝癌细胞中的变化,并应用FCM法检测对肝癌细胞凋亡的影响.结果:POKemon和NF-κB p65在肝癌细胞HepG2和SMMC7721中的表达量明显高于人胚胎肝细胞LO2;特异性针对POKemon基因的siRNA抑制POKemon的表达后,NF-κB p65在HepG2和SMMC7721细胞中的表达量也明显下降,转染前后分别为2.12±0.14vs 1.37±0.11和2.08±0.16vs 1.35±0.13,差异有统计学意义(P<0.05),且肝癌细胞凋亡明显增加分别为(5.07±0.46)%vs (39.65±3.75)%和(5.71±0.83)%vs (33.21±3.66)%,差异有统计学意义(P<0.05);特异性针对NF-κB基因的siRNA抑制NF-κB p65的表达后,POKemon在HepG2和SMMC7721细胞中的表达则无明显变化,其表达量转染前后分别为1.86±0.12vs 1.90±0.13和1.91±0.11 vs 1.85±0.11,差异无统计学意义(P>0.05),但明显提高HepG2和SMMC7721细胞的凋亡率,差异有统计学意义(P<0.05).结论:原癌基因POKemon可通过调控NF-κB p65的表达而阻遏肿瘤细胞凋亡,促进肝癌的发生、发展.%Objective: To investigate the signal regulation of POKemon and nuclear factor-kappa B (NF-kB) p65 in hepatoma cells. Methods: The expression levels of POKemon and NF-kB p65 mRNAs and proteins in human hepatoma cell lines HepG2 and SMMC7721 as well as human embryo liver cell line LO2 were detected by real-time fluorogenic quantitative-PCR (RFQ-PCR) and Western blotting, respectively. Then the expression levels of POKemon and NF-kB p65 proteins in HepC2 and SMMC7721 cells transfected

  14. The Anti-tumor Immunity of Dendritic Cells Modified by IFN γ Gene on Mice Bearing Ascite Hepatoma Cell H22

    Institute of Scientific and Technical Information of China (English)

    Zi-You CUI; Hong-Yan YANG; You-Tian HUANG; Zhi-min ZHENG; Ming-Yao ZHAO; Zi-Ming DONG

    2005-01-01

    @@ 1 Introduction Dendritc cell (DC)-based cancer vaccines have shown to been effective both in clinical trials and in animal tumor models. Some clinical trials have been on the phase Ⅲ , but some problems are challenging now. The functions of DC from patient with malignant tumor were depressed by tumor-secreting cytokines such as IL-10. it is critical to find out some methods to improve DC differentiation maturation for priming naive T cells and initiating the specific anti-tumor immunity effectively. IFNγ is a pluripotent cytokine that can exert more the expressions of different molecules in various cells. Now, some data have shown that DCs can produce IFNγ and IFNγ can promote the maturation of DCs, which plays very important roles in promoting protective immune response as the same as IFNγ produced in NK and NKT cells. In our research,we transfected IFNγ gene into DCs in order to investigate the effect of IFNγ on DCs and monitor the anti-tumor response of the tumor bearing mice after vaccination by IFNγ-modified DCs.

  15. Effect of hepatoma H22 on lymphatic endothelium in vitro

    Institute of Scientific and Technical Information of China (English)

    Hua Yu; Hong-Zhi Zhou; Chun-Mei Wang; Xiao-Ming Gu; Bo-Rong Pan

    2004-01-01

    AIM: To determine the effect of metastatic hepatoma cells on lymphangioma-derived endothelium, and to establish in vitro model systems for assessing metastasis-related response of lymphatic endothelium.METHODS: Benign lymphangioma, induced by intraperitonea linjection of the incomplete Freund's adjuvant in BALB/c mice, was embedded in fibrin gel or digested and then cultured in the conditioned medium derived from hepatoma H22. Light and electron microscopy, and the transwell migration assay were used to determine the effect of H22 on tissue or cell culture. Expressions of Flt-4, c-Fos, proliferating cell nuclear antigen (PCNA), and inducible nitric oxide synthase (iNOS) in cultured cells, and content of nitric oxide in culture medium were also examined.RESULTS: The embedded lymphangioma pieces gave rise to array of capillaries, while separated cells from lymphangioma grew to a cobblestone-like monolayer. H22 activated growth and migration of the capillaries and cells, induced expressions of Flt-4, c-Fos, PCNA and iNOS in cultured cells, and significantly increased the content of NO in the culture medium.CONCLUSION: Lymphangioma-derived cells keep the differentiated phenotypes of lymphatic endothelium, and the models established in this study are feasible for in vitro study of metastasis-related response of lymphatic endothelium.

  16. PCBP-1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells

    Directory of Open Access Journals (Sweden)

    Ge Changhui

    2010-04-01

    Full Text Available Abstract Background PCBP1 (or alpha CP1 or hnRNP E1, a member of the PCBP family, is widely expressed in many human tissues and involved in regulation of transcription, transportation process, and function of RNA molecules. However, the role of PCBP1 in CD44 variants splicing still remains elusive. Results We found that enforced PCBP1 expression inhibited CD44 variants expression including v3, v5, v6, v8, and v10 in HepG2 cells, and knockdown of endogenous PCBP1 induced these variants splicing. Invasion assay suggested that PCBP1 played a negative role in tumor invasion and re-expression of v6 partly reversed the inhibition effect by PCBP1. A correlation of PCBP1 down-regulation and v6 up-regulation was detected in primary HCC tissues. Conclusions We first characterized PCBP1 as a negative regulator of CD44 variants splicing in HepG2 cells, and loss of PCBP1 in human hepatic tumor contributes to the formation of a metastatic phenotype.

  17. Phosphorus NMR of isolated perfused morris hepatomas

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.A.; Meyer, R.A.; Brown, T.R.; Sauer, L.A.

    1986-03-05

    The authors are developing techniques for the study of perfused solid tumors by NMR. Tissue-isolated solid hepatomas were grown to 1-2 cm diameter as described previously. The arterial supply was isolated and the tumors perfused (0.5 - 1.0 ml/min) in vitro at 25 C with a 15% suspension of red blood cells in Krebs-Henseliet solution. /sup 31/P-NMR spectra were acquired at 162 MHz in a specially-designed NMR probe using a solenoidal coil. Intracellular pH (monitored from the chemical shift of inorganic phosphate) and ATP levels were stable for up to 6 hrs during perfusion. During 30 min of global ischemia, ATP decreased by 75% and pH fell from 7.0 to 6.7. These changes were reversed by 1 hr reperfusion. In addition to ATP and phosphate, the spectra included a large resonance due to phosphomonoesters, as well as peaks consistent with glycerylphosphocholine, glyceryl-phosphoethanolamine, phosphocreatine, NAD, and UDPG. However, the most novel feature of the spectra was the presence of an unidentified peak in the phosphonate region (+ 16.9 ppm). The peak was not present in spectra of muscle, liver, brain, kidney, or fat tissues excised from the same animals. They are presently attempting to identify the compound that gives rise to this peak and to establish its metabolic origin.

  18. Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C virus

    DEFF Research Database (Denmark)

    Russell, Rodney S; Meunier, Jean-Christophe; Takikawa, Shingo

    2008-01-01

    mutations that were selected during serial passage in Huh-7.5 cells were studied. Recombinant genomes containing all five mutations produced 3-4 logs more infectious virions than did wild type. Neither a coding mutation in NS5A nor a silent mutation in E2 was adaptive, whereas coding mutations in E2, p7...

  19. Adaptive mutations allow establishment of JFH1-based cell culture systems for hepatitis C virus genotype 4A

    DEFF Research Database (Denmark)

    2013-01-01

    transmembrane domain (.alpha.), in the cytoplasmic part (.beta.) or at the NS2/NS3 cleavage site (y). Following transfection of Huh7.5 cells with RNA transcripts, infectious viruses were produced in the ED43/JFH1-.beta. and -y cultures only. Compared to the 2a control virus, production of infectious viruses...

  20. Cinnamaldehyde-induced apoptosis in human hepatoma PLC/PRF/5 cells involves the mitochondrial death pathway and is sensitive to inhibition by cyclosporin A and z-VAD-fmk.

    Science.gov (United States)

    Lin, Liang-Tzung; Tai, Chen-Jei; Chang, Shun-Pang; Chen, Jin-Liang; Wu, Shu-Jing; Lin, Chun-Ching

    2013-12-01

    Cinnamaldehyde (CIN) has been shown to exert chemopreventive activity against several types of human cancer cells. We previously reported that CIN induced apoptosis of human hepatoma PLC/PRF/5 cells and this effect was associated with activation of the pro-apoptotic Bcl-2 family of proteins and the MAPK cascade. To further clarify the underlying mechanism of CIN-induced apoptosis, we examined in this study its relationship with the mitochondrial death pathway using the mitochondrial permeability transition (MPT) inhibitor, cyclosporin A (CsA), and the general caspase inhibitor, z-VAD-fmk. Results indicated that CIN-induced apoptosis involved enhanced ROS generation, disruption of mitochondrial potential, and the mitochondrial release of cytochrome c and Smac/DIABLO into the cytosol, which in turn promoted caspase-3 to its active form and the subsequent cleavage of PARP. Treatment with CIN also downregulated protein levels of the anti-apoptotic factors XIAP and Bcl-2 with concomitant accumulation of the pro-apoptotic Bax in a timedependent manner. These mitochondria-related apoptotic effects induced by CIN were however blocked by CsA and z-VAD-fmk pretreatments, which prevented cells from undergoing programmed cell death triggered by CIN. Furthermore, the increase of Bax and decrease of Bcl-2 and XIAP protein expression due to CIN treatment were also reversely modulated by the two inhibitors. Taken together, these results suggested that CIN is an apoptotic inducer that acts on the mitochondrial death pathway in PLC/PRF/5 cells and its effect could be blocked by CsA and z-VAD-fmk.

  1. 奥美拉唑对肝癌HepG2细胞增殖与凋亡的影响%Effects of Omeprazole on the Proliferation and Apoptosis of Hepatoma Cell Line HepG2

    Institute of Scientific and Technical Information of China (English)

    魏艳; 梁宁林; 朱永军; 吴文超; 刘小菁; 杨丽

    2012-01-01

    Objective To investigate the effects of omeprazole (OME), a proton pump inhibitor, on the proliferation and apoptosis of human hepatoma cell line HepG2. Methods HepG2 cells were cultured to the logarithmic phase, and then treated with OME of different concentrations (10, 20, 40, 80, 160 mg/L) for 24 h or 48 h. Cell proliferation was evaluated by MTT assay, DNA synthesis was measured with 5 ethynyl-2'-deoxyuridine (Edu) fluorescent assay and the apoptosis of cells was measured by the Hoechst33342 assay. Results MTT assay showed that OME (40, 80 and 160 mg/L concentrations) could inhibit the proliferation of HepG2 cells for 24 h or 48 h treatment (P<0. 05) and 80 mg/L group has strongest effect. Compared with that of 24 h treatment, the same concentration of OME could inhibit HepG2 more significantly with 48 h treatment. After different concentrations of OME treatment for 24 h and then incubation with Edu for 2 h, compared with the control group, the proportion of Cells in S phase in 20, 40, 80, 160 mg/L groups decreased. Hoechst33342 staining demonstrated that treatment with OME (40,80,160 mg/L) for 24 h could significantly promote the cell apoptosis. Conclusion Omeprazole could inhibit human hepatoma cell line HepG2 cell proliferation and promote apoptosis.%目的 探讨质子泵抑制剂奥美拉唑(omeprazole,OME)对肝癌HepG2细胞增殖和细胞凋亡的影响.方法 不同浓度(0、10、20、40、80、160 mg/L)的OME作用于HepG2细胞后,分别于不同时间(24 h、48 h),采用甲基四唑蓝(MTT)法测定OME对HepG2细胞增殖的影响;5-乙炔基-2’-脱氧尿嘧啶核苷(Edu)荧光检测法测定DNA合成期(S期)细胞所占比例;Hoechst33342染色法检测细胞凋亡.结果 MTT结果示,10、20 mg/L OME对HepG2细胞增殖无明显抑制,而40、80、160 mg/L OME可产生明显抑制作用,其中80 mg/L OME作用最强;且相同浓度OME作用下,48 h较24 h对HepG2的抑制率增加.Edu荧光检测法表明,不同浓度OME处理细胞24h

  2. Eight pairs of epimeric triterpenoids involving a characteristic spiro-E/F ring from Abies faxoniana.

    Science.gov (United States)

    Wang, Guo-Wei; Lv, Chao; Fang, Xin; Tian, Xin-Hui; Ye, Ji; Li, Hui-Liang; Shan, Lei; Shen, Yun-Heng; Zhang, Wei-Dong

    2015-01-23

    Five pairs of new epimeric lanostane-type triterpenoids, abiespirones A-D (1-4) and G (7), two pairs of new epimeric cycloartane-type triterpenoids, abiespirones E and F (5, 6), and a pair of new epimeric 7(8→9)abeo-spirolanostane abiespirones H (8) with spiro-B/C and -E/F ring systems were isolated from Abies faxoniana as inseparable mixtures of C-23 epimers in a specific proportion. The HPLC plots showed that each purified isomer rapidly equilibrated with the C-23 epimer in solution. The structures of compounds 1-8 were elucidated by analysis of the NMR spectra and single-crystal X-ray diffraction. Compound 6 showed cytotoxicity against three hepatoma cell lines, namely, HepG2, Huh7, and SMMC7721, with IC50 values of 9.8, 7.5, and 10.7 μM, respectively, but exerted low cytotoxicity on normal QSG7701 hepatic cells, indicating its selective cytotoxicity for hepatoma cells. Compound 6 arrests the cell cycle at G2/M and induces cell apoptosis in Huh7 cells. In addition, the generation of reactive oxygen species (ROS) was detected in Huh7 cells when treated with compound 6, and a ROS scavenger partly blocked the effects of compound 6-induced Huh7 cell death, suggesting that compound 6-induced apoptosis is associated with elevated levels of ROS in Huh7 cells.

  3. 沙利度胺对人肝癌细胞株SMMC-7721体外生长的抑制作用%Inhibitory effect of thalidomide on growth of human hepatoma cell line SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    孙萍; 张良明; 孙等军; 董亮亮

    2009-01-01

    Objective The aim of this study was to investigate the effect of thalidomide on the growth of human hepatoma cell line SMMC-7721 cells in vitro, and to explore the curative possibility of hepatocellular carcinoma with thalidomide. Methods SMMC-7721 cells were treated with Thalidomide at different concentrations. The cell growth and proliferation was assessed by MTT assay. DNA ladder, apoptosis rate and changes of cell nuclei were studied by agarose electrophresis, fluorescence microscopy and flow cytometry, respectively. The expression of caspase-3 was analyzed with flow cytometry. The VEGF content of SMMC-7721 cells in culture medium was tested by ELSIA. Results When the concentration of Thalidomide .solution was increased from 3. 125 μg/ml to 200 μg/ml, the cell growth was inhibited by from 11.7% to 34.2%. Compared with the control group, the thalidomide solution at a concentration of 25,50, I00 and 200 μg/ml solution significantly inhibited the proliferation of SMMC-7721 cells ( P 25 μg/ml时,其对SMMC-7721细胞的增殖抑制作用明显强于空白对照组(P<0.05).200 μg/ml的沙利度胺处理SMMC-7721细胞24 h后,行琼脂糖凝胶电泳,可见到DNA梯形条带;48 h后梯形条带更明显,并且在荧光显微镜下可见SMMC-7721细胞出现核固缩和核裂解现象.200μg/ml的沙利度胺处理SMMC-7721细胞12、24、48和72 h时,碘化丙啶(PI)法检测SMMC-7721细胞的凋亡率分别为3.1%±0.5%、8.4%±1.3%、19.4%±3.5%和25.8%±2.1%,24 h起的凋亡率均明显高于空白对照组SMMC-7721细胞48 h的自然凋亡率(1.6%±0.6%,均P<0.05).50、100和200μg/ml的沙利度胺处理SMMC-7721细胞48 h时,Annexin V-FITC/PI双标法检测SMMC-7721细胞的凋亡率分别为8.7%±1.2%、16.8%±2.5%和25.4%±4.5%,均明显高于空白对照组SMMC-7721细胞48 h的自然凋亡率(2.1%±0.5%,均P<0.05).随着沙利度胺浓度的增加,表达caspase-3蛋白的SMMC-7721细胞数量不断增加,而SMMC-7721细胞中VEGF的

  4. Resveratrol as a Pan-HDAC Inhibitor Alters the Acetylation Status of Jistone Proteins in Human-Derived Hepatoblastoma Cells

    Science.gov (United States)

    Böcker, Alexander; Busch, Christian; Weiland, Timo; Noor, Seema; Leischner, Christian; Schleicher, Sabine; Mayer, Mascha; Weiss, Thomas S.; Bischoff, Stephan C.; Lauer, Ulrich M.; Bitzer, Michael

    2013-01-01

    The polyphenolic alcohol resveratrol has demonstrated promising activities for the prevention and treatment of cancer. Different modes of action have been described for resveratrol including the activation of sirtuins, which represent the class III histone deacetylases (HDACs). However, little is known about the activity of resveratrol on the classical HDACs of class I, II and IV, although these classes are involved in cancer development or progression and inhibitors of HDACs (HDACi) are currently under investigation as promising novel anticancer drugs. We could show by in silico docking studies that resveratrol has the chemical structure to inhibit the activity of different human HDAC enzymes. In vitro analyses of overall HDAC inhibition and a detailed HDAC profiling showed that resveratrol inhibited all eleven human HDACs of class I, II and IV in a dose-dependent manner. Transferring this molecular mechanism into cancer therapy strategies, resveratrol treatment was analyzed on solid tumor cell lines. Despite the fact that hepatocellular carcinoma (HCC) is known to be particularly resistant against conventional chemotherapeutics, treatment of HCC with established HDACi already has shown promising results. Testing of resveratrol on hepatoma cell lines HepG2, Hep3B and HuH7 revealed a dose-dependent antiproliferative effect on all cell lines. Interestingly, only for HepG2 cells a specific inhibition of HDACs and in turn a histone hyperacetylation caused by resveratrol was detected. Additional testing of human blood samples demonstrated a HDACi activity by resveratrol ex vivo. Concluding toxicity studies showed that primary human hepatocytes tolerated resveratrol, whereas in vivo chicken embryotoxicity assays demonstrated severe toxicity at high concentrations. Taken together, this novel pan-HDACi activity opens up a new perspective of resveratrol for cancer therapy alone or in combination with other chemotherapeutics. Moreover, resveratrol may serve as a lead

  5. Functional analysis of microRNA-122 binding sequences of hepatitis C virus and identification of variants with high resistance against specific antagomir

    DEFF Research Database (Denmark)

    Li, Yi-ping; Pham, Long; Uzcategui, Nathalie

    2016-01-01

    recombinants with HCV genotype 1-6 5'UTR-NS2 in human hepatoma Huh7.5 cells. However, specific S1 mutations were permitted and conferred viral resistance to miravirsen treatment. Using the J6 (genotype 2a) 5'UTR-NS2 JFH1-based recombinant, we here performed reverse-genetics analysis of S1 (ACACUCCG...

  6. Neutralization resistance of hepatitis C virus can be overcome by recombinant human monoclonal antibodies

    DEFF Research Database (Denmark)

    Pedersen, Jannie L; Carlsen, Thomas H R; Prentoe, Jannick

    2013-01-01

    -derived genotype 2a (strain T9), 2b (strains DH8 and DH10), and 2c (strain S83) consensus sequences, were viable in Huh7.5 hepatoma cells without requirement for adaptive mutations, reaching HCV infectivity titers of 3.9-4.5 log10 focus-forming units per milliliter. In in vitro neutralization assays, we...

  7. A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans

    DEFF Research Database (Denmark)

    Law, John Lok Man; Chen, Chao; Wong, Jason

    2013-01-01

    of genotype 1a). Cross neutralization was tested in Huh-7.5 human hepatoma cell cultures using infectious recombinant HCV (HCVcc) expressing structural proteins of heterologous HCV strains from all known major genotypes, 1-7. Vaccination induced significant neutralizing antibodies against heterologous HCV...

  8. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    NARCIS (Netherlands)

    Xu, Cui-Ping; Ji, Wen-Min; van den Brink, Gijs R.; Peppelenbosch, Maikel P.

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells. METHODS: Fifty-four adult male Wistar rats we

  9. Tumor-targeted gene therapy using Adv-AFP-HRPC/IAA prodrug system suppresses growth of hepatoma xenografted in mice.

    Science.gov (United States)

    Dai, M; Liu, J; Chen, D-E; Rao, Y; Tang, Z-J; Ho, W-Z; Dong, C-Y

    2012-02-01

    Clinical efficacy of current therapies for hepatocellular carcinoma (HCC) treatment is limited. Indole-3-acetic acid (IAA) is non-toxic for mammalian cells. Oxidative decarboxylation of IAA by horseradish peroxidase (HRP) leads to toxic effects of IAA. The purpose of this study was to investigate the effects of a novel gene-targeted enzyme prodrug therapy with IAA on hepatoma growth in vitro and in vivo mouse hepatoma models. We generated a plasmid using adenovirus to express HRP isoenzyme C (HRPC) with the HCC marker, alpha-fetoprotein (AFP), as the promoter (pAdv-AFP-HRPC). Hepatocellular cells were infected with pAdv-AFP-HRPC and treated with IAA. Cell death was detected using MTT assay. Hepatoma xenografts were developed in mice by injection of mouse hepatoma cells. The size and weight of tumors and organs were evaluated. Cell death in tumors was assessed using hematoxylin and eosin-stained tissue sections. HRPC expression in tissues was detected using Reverse Transcriptase-Polymerase Chain Reaction. IAA stimulated death of hepatocellular cells infected with pAdv-AFP-HRPC, in a dose- and time-dependent manner, but not in control cells. Growth of hepatoma xenografts, including the size and weight, was inhibited in mice treated with pAdv-AFP-HRPC and IAA, compared with that in control group. pAdv-AFP-HRPC/IAA treatment induced cell death in hepatoma xenografts in mice. HRPC gene expressed only in hepatoma, but not in other normal organs of mice. pAdv-AFP-HRPC/IAA treatment did not cause any side effects on normal organs. These findings suggest that pAdv-AFP-HRPC/IAA enzyme/prodrug system may serve as a strategy for HCC therapy.

  10. Highly Efficient JFH1-Based Cell-Culture System for Hepatitis C Virus Genotype 5a: Failure of Homologous Neutralizing-Antibody Treatment to Control Infection

    DEFF Research Database (Denmark)

    Jensen, Tanja B; Gottwein, Judith Margarete; Scheel, Troels Kasper Høyer

    2008-01-01

    was to adapt the system to employ genotype 5. Methods. @nbsp; Huh7.5 cells infected with SA13/JFH1, containing Core-NS2 of strain SA13 (genotype 5a), were monitored for Core expression and for supernatant infectivity and HCV-RNA titers. Adaptive mutations of SA13/JFH1 were identified by sequence analysis...

  11. Mutational analysis of the hepatitis C virus E1 glycoprotein in retroviral pseudoparticles and cell-culture-derived H77/JFH1 chimeric infectious virus particles

    DEFF Research Database (Denmark)

    Russell, R S; Kawaguchi, K; Meunier, J-C

    2009-01-01

    . Retrovirus-based HCV-pseudotyped viruses (HCVpp; genotype 1a) containing Ala or Pro substitutions at conserved amino acid positions within this putative fusion peptide were generated. Mutation of conserved residues significantly reduced efficiency of HCVpp entry into Huh-7 cells. The majority of amino acid...

  12. Production and characterization of high-titer serum-free cell culture grown hepatitis C virus particles of genotype 1-6

    DEFF Research Database (Denmark)

    Mathiesen, Christian K; Jensen, Tanja B; Prentoe, Jannick

    2014-01-01

    Recently, cell culture systems producing hepatitis C virus particles (HCVcc) were developed. Establishment of serum-free culture conditions is expected to facilitate development of a whole-virus inactivated HCV vaccine. We describe generation of genotype 1-6 serum-free HCVcc (sf-HCVcc) from Huh7...

  13. Cytochrome P4501A induction, benzo[a]pyrene metabolism, and nucleotide adduct formation in fish hepatoma cells: Effect of preexposure to 3,3',4,4',5-pentachlorobiphenyl

    Science.gov (United States)

    Smeets, J.M.W.; Voormolen, A.; Tillitt, D.E.; Everaarts, J.M.; Seinen, W.; Vanden Berg, M.D.

    1999-01-01

    In PLHC-1 hepatoma cells, benzo[a]pyrene (B[a]P) caused a maximum induction of cytochrome P4501A (CYP1A) activity, measured as ethoxyresorufin O-deethylation (EROD), after 4 to 8 h of exposure, depending on the B[a]P concentration. The decline of EROD activity at longer exposu