WorldWideScience

Sample records for hudson bay lithospheric

  1. Sustainable development in the Hudson Bay/James Bay bioregion

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    An overview is presented of projects planned for the James Bay/Hudson Bay region, and the expected environmental impacts of these projects. The watershed of James Bay and Hudson Bay covers well over one third of Canada, from southern Alberta to central Ontario to Baffin Island, as well as parts of north Dakota and Minnesota in the U.S.A. Hydroelectric power developments that change the timing and rate of flow of fresh water may cause changes in the nature and duration of ice cover, habitats of marine mammals, fish and migratory birds, currents into and out of Hudson Bay/James Bay, seasonal and annual loads of sediments and nutrients to marine ecosystems, and anadromous fish populations. Hydroelectric projects are proposed for the region by Quebec, Ontario and Manitoba. In January 1992, the Canadian Arctic Resources Committee (CARC), the Environmental Committee of Sanikuluaq, and the Rawson Academy of Arctic Science will launch the Hudson Bay/James Bay Bioregion Program, an independent initiative to apply an ecosystem approach to the region. Two main objectives are to provide a comprehensive assessment of the cumulative impacts of human activities on the marine and freshwater ecosystems of the Hudson Bay/James Bay bioregion, and to foster sustainable development by examining and proposing cooperative processes for decision making among governments, developers, aboriginal peoples and other stakeholders. 1 fig

  2. Towards a sustainable future in Hudson Bay

    International Nuclear Information System (INIS)

    Okrainetz, G.

    1991-01-01

    To date, ca $40-50 billion has been invested in or committed to hydroelectric development on the rivers feeding Hudson Bay. In addition, billions more have been invested in land uses such as forestry and mining within the Hudson Bay drainage basin. However, there has never been a study of the possible impacts on Hudson Bay resulting from this activity. Neither has there been any federal environmental assessment on any of the economic developments that affect Hudson Bay. To fill this gap in knowledge, the Hudson Bay Program was established. The program will not conduct scientific field research but will rather scan the published literature and consult with leading experts in an effort to identify biophysical factors that are likely to be significantly affected by the cumulative influence of hydroelectric and other developments within and outside the region. An annotated bibliography on Hudson Bay has been completed and used to prepare a science overview paper, which will be circulated for comment, revised, and used as the basis for a workshop on cumulative effects in Hudson Bay. Papers will then be commissioned for a second workshop to be held in fall 1993. A unique feature of the program is its integration of traditional ecological knowledge among the Inuit and Cree communities around Hudson Bay with the scientific approach to cumulative impact assessment. One goal of the program is to help these communities bring forward their knowledge in such a way that it can be integrated into the cumulative effects assessment

  3. Climate change and sea ice: Shipping accessibility on the marine transportation corridor through Hudson Bay and Hudson Strait (1980–2014

    Directory of Open Access Journals (Sweden)

    Jonathan Andrews

    2017-03-01

    Full Text Available Shipping traffic has been increasing in Hudson Strait and Hudson Bay and the shipping route through these waters to the Port of Churchill may soon become a federally-designated transportation corridor. A dataset on passive microwave-based sea ice concentration was used to characterize the timing of the ice on the shipping corridor to the Port between 1980 and 2014. Efforts were made to produce results in a readily accessible format for stakeholders of the shipping industry; for example, open water was defined using a sea ice concentration threshold of ≤ 15% and results are presented in terms of real dates instead of anomalies. Between 1980 and 2014, the average breakup date on the corridor was July 4, the average freeze-up date was November 25, and the average length of the open water season was 145 days. However, each of these three variables exhibited significant long-term trends and spatial variability over the 34-year time period. Regression analysis revealed significant linear trends towards earlier breakup (–0.66 days year–1, later freeze-up (+0.52 days year–1, and a longer open water season (+1.14 days year–1 along the shipping corridor between 1980 and 2014. Moreover, the section of the corridor passing through Hudson Strait displayed significantly stronger trends than the two sections in Hudson Bay (i.e., “Hudson Islands” and “Hudson Bay”. As a result, sea ice timing in the Hudson Strait section of the corridor has diverged from the timing in the Hudson Bay sections. For example, the 2010–2014 median length of the open water season was 177 days in Hudson Strait and 153 days in the Hudson Bay sections. Finally, significant linear relationships were observed amongst breakup, freeze-up, and the length of the open water season for all sections of the corridor; correlation analysis suggests that these relationships have greatest impact in Hudson Strait.

  4. Cumulative impacts of hydroelectric development on the fresh water balance in Hudson Bay

    International Nuclear Information System (INIS)

    Anctil, F.; Couture, R.

    1994-01-01

    A study is presented of the impacts of hydroelectric development on the surface water layer of Hudson Bay, including James Bay and the Foxe Basin. These impacts are directly related to the modifications in the fresh water balance of Hudson Bay and originate from the management of hydroelectric complexes. The fresh water balance is determined by identifying, at different scales, the modifications caused by each complex. The main inputs are the freezing and thawing of the ice cover, runoff water, and mass exchange at the air-water interface. Three spatial scales were used to obtain the resolution required to document the cumulative effects of fresh water balance modifications on the water surface layer, one each for Hudson Bay, Hudson Strait, and the Labrador Sea. Finally, the addition of the proposed Great Whale hydroelectric complex is examined from the available information and forecasts. 18 refs,. 6 figs., 1 tab

  5. Community-based observations on sustainable development in southern Hudson Bay

    International Nuclear Information System (INIS)

    Arragutainaq, L.; Fleming, B.

    1991-01-01

    Inuit residents of the Belcher Islands in Hudson Bay practice sustainable development over a wide region, and are heavily dependent on fish and wildlife for food. Large-scale hydroelectric developments on rivers emptying into Hudson Bay and James Bay threaten both the environment and the traditional economy and culture of those residents. The main focus of concern is the James Bay hydroelectric project, part 1 of which (La Grande) is now operational. In addition, hydroelectric projects in Manitoba and Ontario may also affect the region. The residents feel that the subdivision of each project into components, each subject to a separate environmental review and assessment, works in favor of the project proponents and does not address the issues of interest to those affected by the project. Neither does such a review process address questions related to the cumulative development of many projects over a long term. The Belcher Islands are remote from the territorial and national governments, neither of which seem to be giving the James Bay developments as much attention as seems necessary. The island community has identified its primary ecological concerns on part 2 of the James Bay project and presented them at a public hearing. These concerns include the long-term impacts of the project on the marine environment and the kinds of compensation, if any, for such impacts. 7 refs., 2 figs

  6. Nelson River and Hudson Bay

    Science.gov (United States)

    2002-01-01

    Rivers that empty into large bodies of water can have a significant impact on the thawing of nearshore winter ice. This true-color Moderate Resolution Imaging Spectroradiometer (MODIS) image from May 18, 2001, shows the Nelson River emptying spring runoff from the Manitoba province to the south into the southwestern corner of Canada's Hudson Bay. The warmer waters from more southern latitudes hasten melting of ice near the shore, though some still remained, perhaps because in shallow coastal waters, the ice could have been anchored to the bottom. High volumes of sediment in the runoff turned the inflow brown, and the rim of the retreating ice has taken on a dirty appearance even far to the east of the river's entrance into the Bay. The sediment would have further hastened the melting of the ice because its darker color would have absorbed more solar radiation than cleaner, whiter ice. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  7. Demography and population status of polar bears in western Hudson Bay

    Science.gov (United States)

    Lunn, Nicholas J.; Regher, Eric V; Servanty, Sabrina; Converse, Sarah J.; Richardson, Evan S.; Stirling, Ian

    2013-01-01

    We evaluated the demography and population status of the Western Hudson Bay (WH) polar bear subpopulation for the period 1984-2011, using live-recapture data from research studies and management actions, and dead-recovery data from polar bears harvested for subsistence purposes or removed during human-bear conflicts.

  8. Riverine organic matter composition and fluxes to Hudson Bay

    Science.gov (United States)

    Kuzyk, Z. Z. A.; Macdonald, R. W.; Goni, M. A.; Godin, P.; Stern, G. A.

    2016-12-01

    With warming in northern regions, many changes including permafrost degradation, vegetation alteration, and wildfire incidence will impact the carbon cycle. Organic carbon (OC) carried by river runoff to northern oceans has the potential to provide integrated evidence of these impacts. Here, concentrations of dissolved (DOC) and particulate (POC) OC are used to estimate terrestrial OC transport in 17 major rivers draining varied vegetative and permafrost conditions into Hudson Bay and compositional data (lignin and 14C) to infer OC sources. Hudson Bay lies just south of the Arctic Circle in Canada and is surrounded by a large drainage basin (3.9 × 106 km2) dominated by permafrost. Analysis of POC and DOC in the 17 rivers indicates that DOC dominates the total OC load. The southern rivers dominate. The Nelson and Churchill Rivers to the southwest are particularly important suppliers of OC partly because of large drainage basins but also perhaps because of impacts by hydroelectric development, as suggested by a 14C age of DOC in the Churchill River of 2800 years. Higher DOC and POC concentrations in the southern rivers, which have substantive areas only partially covered by permafrost, compared to northern rivers draining areas with complete permafrost cover, implies that warming - and hence permafrost thawing - will lead to progressively higher DOC and POC loads for these rivers. Lignin composition in the organic matter (S/V and C/V ratios) reveals mixed sources of OC consistent with the dominant vegetation in the river basins. This vegetation is organized by latitude with southern regions below the tree line enriched by woody gymnosperm sources (boreal forest) and northern regions enriched with organic matter from non-woody angiosperms (flowering shrubs, tundra). Acid/Aldehyde composition together with Δ14C data for selected DOC samples suggest that most of the lignin has undergone oxidative degradation, particularly the DOC component. However, high Δ14C ages

  9. On Measurements of the Tide at Churchill, Hudson Bay

    Science.gov (United States)

    Ray, Richard D.

    2016-01-01

    Since the late 1990s the semi-diurnal tide at Churchill, on the western shore of Hudson Bay, has been decreasing in amplitude, with M(sub 2) amplitudes falling from approximately 154 cm in 1998 to 146 cm in 2012 and 142 cm in 2014. There has been a corresponding small increase in phase lag. Mean low water, decreasing throughout most of the twentieth century, has levelled off. Although the tidal changes could reflect merely a malfunctioning tide gauge, the fact that there are no other measurements in the region and the possibility that the tide is revealing important environmental changes calls for serious investigation. Satellite altimeter measurements of the tide in Hudson Bay are complicated by the seasonal ice cover; at most locations less than 40% of satellite passes return valid ocean heights and even those can be impacted by errors from sea ice. Because the combined TOPEX/Poseidon, Jason-1, and Jason-2 time series is more than 23 years long, it is now possible to obtain sufficient data at crossover locations near Churchill to search for tidal changes. The satellites sense no changes in M(sub 2) that are comparable to the changes seen at the Churchill gauge. The changes appear to be localized to the harbour, or to the Churchill River, or to the gauge itself.

  10. Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay

    Science.gov (United States)

    Regehr, E.V.; Lunn, N.J.; Amstrup, Steven C.; Stirling, I.

    2007-01-01

    Some of the most pronounced ecological responses to climatic warming are expected to occur in polar marine regions, where temperature increases have been the greatest and sea ice provides a sensitive mechanism by which climatic conditions affect sympagic (i.e., with ice) species. Population-level effects of climatic change, however, remain difficult to quantify. We used a flexible extension of Cormack-Jolly-Seber capture-recapture models to estimate population size and survival for polar bears (Ursus maritimus), one of the most ice-dependent of Arctic marine mammals. We analyzed data for polar bears captured from 1984 to 2004 along the western coast of Hudson Bay and in the community of Churchill, Manitoba, Canada. The Western Hudson Bay polar bear population declined from 1,194 (95% CI = 1,020-1,368) in 1987 to 935 (95% CI = 794-1,076) in 2004. Total apparent survival of prime-adult polar bears (5-19 yr) was stable for females (0.93; 95% CI = 0.91-0.94) and males (0.90; 95% CI = 0.88-0.91). Survival of juvenile, subadult, and senescent-adult polar bears was correlated with spring sea ice breakup date, which was variable among years and occurred approximately 3 weeks earlier in 2004 than in 1984. We propose that this correlation provides evidence for a causal association between earlier sea ice breakup (due to climatic warming) and decreased polar bear survival. It may also explain why Churchill, like other communities along the western coast of Hudson Bay, has experienced an increase in human-polar bear interactions in recent years. Earlier sea ice breakup may have resulted in a larger number of nutritionally stressed polar bears, which are encroaching on human habitations in search of supplemental food. Because western Hudson Bay is near the southern limit of the species' range, our findings may foreshadow the demographic responses and management challenges that more northerly polar bear populations will experience if climatic warming in the Arctic continues as

  11. Lithosphere structure and upper mantle characteristics below the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, G.S.; Radhakrishna, M.; Sreejith, K.M.; Krishna, K.S.; Bull, J.M.

    The oceanic lithosphere in the Bay of Bengal (BOB) formed 80-120 Ma following the breakup of eastern Gondwanaland. Since its formation, it has been affected by the emplacement of two long N-S trending linear aseismic ridges (85°E and Ninetyeast...

  12. Estimating the abundance of the Southern Hudson Bay polar bear subpopulation with aerial surveys

    Science.gov (United States)

    Obbard, Martyn E.; Stapleton, Seth P.; Middel, Kevin R.; Thibault, Isabelle; Brodeur, Vincent; Jutras, Charles

    2015-01-01

    The Southern Hudson Bay (SH) polar bear subpopulation occurs at the southern extent of the species’ range. Although capture–recapture studies indicate abundance was likely unchanged between 1986 and 2005, declines in body condition and survival occurred during the period, possibly foreshadowing a future decrease in abundance. To obtain a current estimate of abundance, we conducted a comprehensive line transect aerial survey of SH during 2011–2012. We stratified the study site by anticipated densities and flew coastal contour transects and systematically spaced inland transects in Ontario and on Akimiski Island and large offshore islands in 2011. Data were collected with double-observer and distance sampling protocols. We surveyed small islands in James Bay and eastern Hudson Bay and flew a comprehensive transect along the Québec coastline in 2012. We observed 667 bears in Ontario and on Akimiski Island and nearby islands in 2011, and we sighted 80 bears on offshore islands during 2012. Mark–recapture distance sampling and sight–resight models yielded an estimate of 860 (SE = 174) for the 2011 study area. Our estimate of abundance for the entire SH subpopulation (943; SE = 174) suggests that abundance is unlikely to have changed significantly since 1986. However, this result should be interpreted cautiously because of the methodological differences between historical studies (physical capture–recapture) and this survey. A conservative management approach is warranted given previous increases in duration of the ice-free season, which are predicted to continue in the future, and previously documented declines in body condition and vital rates.

  13. Coastal conduit in southwestern Hudson Bay (Canada) in summer: Rapid transit of freshwater and significant loss of colored dissolved organic matter

    Science.gov (United States)

    Granskog, Mats A.; MacDonald, Robie W.; Kuzyk, Zou Zou A.; Senneville, Simon; Mundy, Christopher-John; Barber, David G.; Stern, Gary A.; Saucier, Francois

    2009-08-01

    Distributions of freshwater (sea-ice melt and runoff) were investigated along inshore-offshore sections in southwestern Hudson Bay for fall conditions. Conductivity-temperature-density profiles and bottle samples collected for salinity, oxygen isotope (δ18O), and colored dissolved organic matter (CDOM) analyses were used to discriminate between contributions of river water (RW) and sea-ice melt (SIM). Stations had a fresh summer surface mixed layer 5-25 m thick overlying a cold subsurface layer indicative of the previous winter's polar mixed layer (PML). The fraction of RW decreased strongly with distance from shore, while the opposite was true for SIM. The majority of RW was constrained in a coastal domain within 100-150 km from shore, which, because of high alongshore velocities, accounts for the majority of freshwater and volume transports. On the basis of freshwater inventories and composition, brine and RW accumulate in the PML over winter because of ice formation and downward mixing. The summer surface circulation results in an annual net export of SIM from the region. Residence times for freshwater components in the southwestern sector of the bay, based on currents derived from a 3-D ocean model for Hudson Bay, are about 1-10 months, implying rapid transit of freshwater. Despite the short residence time for RW (1-3 months), CDOM is significantly photobleached and provides an unreliable tracer for RW. Photobleaching represents an important sink for dissolved organic carbon entering from rivers and could, in part, explain why Hudson Bay is only a minor sink for atmospheric CO2 in the open water season.

  14. A History of Vegetation, Sediment and Nutrient Dynamics at Tivoli North Bay, Hudson Estuary, New York

    Science.gov (United States)

    Sritrairat, Sanpisa; Peteet, Dorothy M.; Kenna, Timothy C.; Sambrotto, Ray; Kurdyla, Dorothy; Guilderson, Tom

    2012-01-01

    We conduct a stratigraphic paleoecological investigation at a Hudson River National Estuarine Research Reserve (HRNERR) site, Tivoli Bays, spanning the past 1100 years. Marsh sediment cores were analyzed for ecosystem changes using multiple proxies, including pollen, spores, macrofossils, charcoal, sediment bulk chemistry, and stable carbon and nitrogen isotopes. The results reveal climatic shifts such as the warm and dry Medieval Warm Period (MWP) followed by the cooler Little Ice Age (LIA), along with significant anthropogenic influence on the watershed ecosystem. A five-fold expansion of invasive species, including Typha angustifolia and Phragmites australis, is documented along with marked changes in sediment composition and nutrient input. During the last century, a ten-fold sedimentation rate increase due to land-use changes is observed. The large magnitude of shifts in vegetation, sedimentation, and nutrients during the last few centuries suggest that human activities have made the greatest impact to the marshes of the Hudson Estuary during the last millennium. Climate variability and ecosystem changes similar to those observed at other marshes in northeastern and mid-Atlantic estuaries, attest to the widespread regional signature recorded at Tivoli Bays.

  15. The impact of water loading on postglacial decay times in Hudson Bay

    Science.gov (United States)

    Han, Holly Kyeore; Gomez, Natalya

    2018-05-01

    Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations during the last glacial cycle has been contributing to sea-level changes globally throughout the Holocene, especially in regions like Canada that were heavily glaciated during the Last Glacial Maximum (LGM). The spatial and temporal distribution of GIA, as manifested in relative sea-level (RSL) change, are sensitive to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that RSL curves near the center of previously glaciated regions with no ongoing surface loading follow an exponential-like form, with the postglacial decay times associated with that form having a weak sensitivity to the details of the ice loading history. Postglacial decay time estimates thus provide a powerful datum for constraining the Earth's viscous structure and improving GIA predictions. We explore spatial patterns of postglacial decay time predictions in Hudson Bay by decomposing numerically modeled RSL changes into contributions from water and ice loading effects, and computing their relative impact on the decay times. We demonstrate that ice loading can contribute a strong geographic trend on the decay time estimates if the time window used to compute decay times includes periods that are temporally close to (i.e. contemporaneous with, or soon after) periods of active loading. This variability can be avoided by choosing a suitable starting point for the decay time window. However, more surprisingly, we show that across any adopted time window, water loading effects associated with inundation into, and postglacial flux out of, Hudson Bay and James Bay will impart significant geographic variability onto decay time estimates. We emphasize this issue by considering both maps of predicted decay times across the region and site-specific estimates, and we conclude that variability in observed decay times (whether based on existing or future data

  16. Estimating abundance of the Southern Hudson Bay polar bear subpopulation using aerial surveys, 2011 and 2012

    Science.gov (United States)

    Obbard, Martyn E.; Middel, Kevin R.; Stapleton, Seth P.; Thibault, Isabelle; Brodeur, Vincent; Jutras, Charles

    2013-01-01

    The Southern Hudson Bay (SH) polar bear subpopulation occurs at the southern extent of the species’ range. Although capture-recapture studies indicate that abundance remained stable between 1986 and 2005, declines in body condition and survival were documented during the period, possibly foreshadowing a future decrease in abundance. To obtain a current estimate of abundance, we conducted a comprehensive line transect aerial survey of SH during 2011–2012. We stratified the study site by anticipated densities and flew coastal contour transects and systematically spaced inland transects in Ontario and on Akimiski Island and large offshore islands in 2011. Data were collected with double observer and distance sampling protocols. We also surveyed small islands in Hudson Bay and James Bay and flew a comprehensive transect along the Québec coastline in 2012. We observed 667 bears in Ontario and on Akimiski Island and nearby islands in 2011, and we sighted 80 bears on offshore islands during 2012. Mark-recapture distance sampling and sightresight models yielded a model-averaged estimate of 868 (SE: 177) for the 2011 study area. Our estimate of abundance for the entire SH subpopulation (951; SE: 177) suggests that abundance has remained unchanged. However, this result should be interpreted cautiously because of the methodological differences between historical studies (physical capture) and this survey. A conservative management approach is warranted given the previous increases in the duration of the ice-free season, which are predicted to continue in the future, and previously documented declines in body condition and vital rates.

  17. What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay

    Science.gov (United States)

    Gormezano, Linda J; Rockwell, Robert F

    2013-01-01

    Under current climate trends, spring ice breakup in Hudson Bay is advancing rapidly, leaving polar bears (Ursus maritimus) less time to hunt seals during the spring when they accumulate the majority of their annual fat reserves. For this reason, foods that polar bears consume during the ice-free season may become increasingly important in alleviating nutritional stress from lost seal hunting opportunities. Defining how the terrestrial diet might have changed since the onset of rapid climate change is an important step in understanding how polar bears may be reacting to climate change. We characterized the current terrestrial diet of polar bears in western Hudson Bay by evaluating the contents of passively sampled scat and comparing it to a similar study conducted 40 years ago. While the two terrestrial diets broadly overlap, polar bears currently appear to be exploiting increasingly abundant resources such as caribou (Rangifer tarandus) and snow geese (Chen caerulescens caerulescens) and newly available resources such as eggs. This opportunistic shift is similar to the diet mixing strategy common among other Arctic predators and bear species. We discuss whether the observed diet shift is solely a response to a nutritional stress or is an expression of plastic foraging behavior. PMID:24223286

  18. Mercury and cortisol in Western Hudson Bay polar bear hair.

    Science.gov (United States)

    Bechshoft, T; Derocher, A E; Richardson, E; Mislan, P; Lunn, N J; Sonne, C; Dietz, R; Janz, D M; St Louis, V L

    2015-08-01

    Non-invasive methods of assessing animal health and life history are becoming increasingly popular in wildlife research; hair samples from polar bears (Ursus maritimus), are being used to study an ever broader range of anthropogenic and endocrine compounds. A number of contaminants are known to disrupt endocrine function in polar bears. However, the relationship between mercury and cortisol remains unknown, although mercury is an endocrine disruptor in other species. Here, we examine the relationship between concentrations of cortisol and total mercury (THg) analyzed in guard hair from 378 polar bears (184 females, 194 males) sampled in Western Hudson Bay, 2004-2012. The difference in mean cortisol concentration between female (0.8 ± 0.6 pg/mg) and male (0.7 ± 0.5 pg/mg) polar bears bordered on significance (p = 0.054). However, mean mercury concentration was significantly greater (p = 0.009) in females (4.7 ± 1.4 μg/g) than males (4.3 ± 1.2 μg/g). Hair cortisol in males was significantly influenced by mercury, age, and fatness, as well as interactions between mercury and year, mercury and fatness, and year and fatness (all: p polar bears.

  19. Recent changes in mercury deposition and primary productivity inferred from sediments of lakes from the Hudson Bay Lowlands, Ontario, Canada

    International Nuclear Information System (INIS)

    Brazeau, Michelle L.; Poulain, Alexandre J.; Paterson, Andrew M.; Keller, Wendel; Sanei, Hamed; Blais, Jules M.

    2013-01-01

    Spatial and temporal changes in mercury (Hg) concentrations and organic carbon in lake sediments were examined from the Hudson Bay Lowlands to investigate whether Hg deposition to sediments is related to indicators of autochthonous production. Total organic carbon, “S2” carbon (mainly algal-derived OC), C:N and ∂ 13 C indicators suggest an increase in autochthonous productivity in recent decades. Up-core profiles of S2 concentrations and fluxes were significantly correlated with Hg suggesting that varying algal matter scavenging of Hg from the water column may play an important role in the temporal profiles of Hg throughout the sediment cores. Absence of significant relationship between total Hg and methyl Hg (MeHg) in surficial sediments suggested that inorganic Hg supply does not limit MeHg production. MeHg and OC were highly correlated across lakes in surface and deep sediment layers, indicating that sediment organic matter content explains part of the spatial variation in MeHg concentrations between lakes. - Highlights: ► Hg concentrations in sediment cores correlate with autochthonous organic production. ► Inorganic Hg supply in sediment does not limit MeHg production. ► Sediment methylmercury concentration is highly correlated with organic C content. - Increased mercury concentrations in lake sediment cores coincide with evidence of increased autochthonous production in lakes of the Hudson Bay Lowlands, Canada.

  20. The Hudson's Bay Company as a context for science in the Columbia Department.

    Science.gov (United States)

    Schefke, Brian

    2008-01-01

    This article aims to elucidate and analyze the links between science, specifically natural history, and the imperialist project in what is now the northwestern United States and western Canada. Imperialism in this region found its expression through institutions such as the Hudson's Bay Company (HBC). I examine the activities of naturalists such as David Douglas and William Tolmie Fraser in the context of the fur trade in the Columbia Department. Here I show how natural history aided Britain in achieving its economic and political goals in the region. The key to this interpretation is to extend the role of the HBC as an imperial factor to encompass its role as a patron for natural history. This gives a better understanding of the ways in which imperialism--construed as mercantile, rather than military--delineated research priorities and activities of the naturalists who worked in the Columbia Department.

  1. Hair Mercury Concentrations in Western Hudson Bay Polar Bear Family Groups.

    Science.gov (United States)

    Bechshoft, Thea; Derocher, Andrew E; Richardson, Evan; Lunn, Nicholas J; St Louis, Vincent L

    2016-05-17

    Methylmercury is one of the more toxic forms of mercury (Hg), the biomagnification of which is prevalent in the Arctic where apex predators such as polar bears (Ursus maritimus) can carry high loads. The maternal transfer of contaminants to offspring is a concern, as offspring may be particularly sensitive to the effects of environmental pollutants during early development. However, few studies of polar bears report on Hg in dependent young. We examined hair total Hg (THg) concentrations in 24 polar bear family groups in western Hudson Bay: mother, cub-of-the-year (COY), yearling, and 2 year old. THg concentrations increased with bear age, with COYs having lower concentrations than other offspring groups (p ≤ 0.008). Using AICc-based regression models, we found maternal THg to be positively related to body condition and litter size, while overall offspring THg was positively related to maternal body condition in addition to being dependent on the sex and age of the offspring. COY THg concentrations were positively related to maternal THg while also depending on the sex of the offspring. Considering our results, future studies in polar bear ecotoxicology are encouraged to include offspring of different ages and sexes.

  2. Dietary composition and spatial patterns of polar bear foraging on land in western Hudson Bay.

    Science.gov (United States)

    Gormezano, Linda J; Rockwell, Robert F

    2013-12-21

    Flexible foraging strategies, such as prey switching, omnivory and food mixing, are key to surviving in a labile and changing environment. Polar bears (Ursus maritimus) in western Hudson Bay are versatile predators that use all of these strategies as they seasonally exploit resources across trophic levels. Climate warming is reducing availability of their ice habitat, especially in spring when polar bears gain most of their annual fat reserves by consuming seal pups before coming ashore in summer. How polar bears combine these flexible foraging strategies to obtain and utilize terrestrial food will become increasingly important in compensating for energy deficits from lost seal hunting opportunities. We evaluated patterns in the composition of foods in scat to characterize the foraging behaviors that underpin the diet mixing and omnivory observed in polar bears on land in western Hudson Bay. Specifically, we measured diet richness, proportions of plant and animal foods, patterns in co-occurrence of foods, spatial composition and an index of temporal composition. Scats contained between 1 and 6 foods, with an average of 2.11 (SE = 0.04). Most scats (84.9%) contained at least one type of plant, but animals (35.4% of scats) and both plants and animals occurring together (34.4% of scats) were also common. Certain foods, such as Lyme grass seed heads (Leymus arenarius), berries and marine algae, were consumed in relatively higher proportions, sometimes to the exclusion of others, both where and when they occurred most abundantly. The predominance of localized vegetation in scats suggests little movement among habitat types between feeding sessions. Unlike the case for plants, no spatial patterns were found for animal remains, likely due the animals' more vagile and ubiquitous distribution. Our results suggest that polar bears are foraging opportunistically in a manner consistent with maximizing intake while minimizing energy expenditure associated with movement. The

  3. Permafrost and peatland evolution in the northern Hudson Bay lowland, Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Dyke, L.D.; Sladen, W.E. [Natural Resources Canada, Ottawa, ON (Canada). Geological Survey of Canada

    2010-12-15

    This article reported on a study that investigated the sensitivity of peat plateau terrain to continued climate warming in the area of the northern Hudson Bay lowland. Snow and shallow standing water were assessed as the environmental factors most likely to create above-freezing ground temperatures in peat plateau terrain that is otherwise frozen. The relationships between air and ground temperatures in creating these surface environmental conditions were determined and used with air temperature records to predict whether peat plateaus will thaw as a result of foreseeable climate warming. Lake erosion was also assessed as a mechanism for the degradation of frozen peat plateau terrain. Environmental conditions that result in elevated ground temperatures at the margin of peat plateaus either eliminate permafrost or promote permafrost temperatures that are warmer than those beneath unforested peat plateaus. Under present climatic conditions, the process in which a frozen peat plateau degrades and transitions to fen is slow, but with continued warming the subsidence at plateau edges will become more pronounced, accelerating the subsidence process. The consequences of continued warming will be the expansion of thawed zones, subsidence at plateau margins, and potentially the collapse of plateau surfaces and conversion into fen. Peat plateau bog is also being lost to wave erosion of subsiding plateau borders at lake shorelines. 30 refs., 14 figs.

  4. Magnitude and Seasonality of Wetland Methane Emissions from the Hudson Bay Lowlands (Canada)

    Science.gov (United States)

    Pickett-Heaps, C. A.; Jacob, D. J.; Wecht, K. J.; Kort, E. A.; Wofsy, S. C.; Diskin, G. S.; Worthy, D. E. J.; Kaplan, J. O.; Bey, I.; Drevet, J.

    2011-01-01

    The Hudson Bay Lowlands (HBL) is the second largest boreal wetland ecosystem in the world and an important natural source of global atmospheric methane. We quantify the HBL methane emissions by using the GEOS-Chem chemical transport model to simulate aircraft measurements over the HBL from the ARCTAS and pre-HIPPO campaigns in May-July 2008, together with continuous 2004-2008 surface observations at Fraserdale (southern edge of HBL) and Alert (Arctic background). The difference in methane concentrations between Fraserdale and Alert is shown to be a good indicator of HBL emissions, and implies a sharp seasonal onset of emissions in late May (consistent with the aircraft data), a peak in July-August, and a seasonal shut-off in September. The model, in which seasonal variation of emission is mainly driven by surface temperature, reproduces well the observations in summer but its seasonal shoulders are too broad. We suggest that this reflects the suppression of emissions by snow cover and greatly improve the model simulation by accounting for this effect. Our resulting best estimate for HBL methane emissions is 2.3 Tg/a, several-fold higher than previous estimates (Roulet et al., 1994; Worthy et al., 2000).

  5. Tetrachlorodibenzo-p-dioxins and tetrachlorodibenzofurans in Atlantic coast striped bass and in selected Hudson River fish, waterfowl and sediments

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, P; Hilker, D; Meyer, C; Aldous, K; Shane, L; Donnelly, R; Smith, R; Sloan, R; Skinner, L; Horn, E

    1884-01-01

    In striped bass samples from the lower Hudson River and its estuary 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) was found at concentrations from 16 to 120 pg/g (ppt). Striped bass from two other locations (Rhode Island coastal waters and Chesapeake Bay, Maryland) had <5 ppt, 2,3,7,8-TCDD. The contaminant, 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF), was found in striped bass from all three locations with concentrations varying from 6 ppt in Chesapeake Bay to 78 ppt in the Hudson River. Results from a limited number of non-migratory fish (carp and goldfish) and sediments suggest that the upper Hudson River is not a source for 2,3,7,8-TCDD/2,3,7,8-TCDF contamination of striped bass. 26 references, 3 tables.

  6. The Formation of Laurentia: Evidence from Shear Wave Splitting and Seismic Tomography

    Science.gov (United States)

    Liddell, M. V.; Bastow, I. D.; Rawlinson, N.; Darbyshire, F. A.; Gilligan, A.

    2017-12-01

    The northern Hudson Bay region of Canada comprises several Archean cratonic nuclei, assembled by Paleoproterozoic orogenies including the 1.8 Ga Trans-Hudson Orogen (THO) and Rinkian-Nagssugtoqidian Orogen (NO). Questions remain about how similar in scale and nature these orogens were compared to modern orogens like the Himalayas. Also in question is whether the thick Laurentian cratonic root below Hudson Bay is stratified, with a seismically-fast Archean core underlain by a lower, younger, thermal layer. We investigate these problems via shear-wave splitting and teleseismic tomography using up to 25 years of data from 65 broadband seismic stations across northern Hudson Bay. The results of the complementary studies comprise the most comprehensive study to date of mantle seismic velocity and anisotropy in northern Laurentia. Splitting parameter patterns are used to interpret multiple layers, lithospheric boundaries, dipping anisotropy, and deformation zone limits for the THO and NO. Source-side waveguide effects from Japan and the Aleutian trench are observed despite the tomographic data being exclusively relative arrival time. Mitigating steps to ensure data quality are explained and enforced. In the Hudson Strait, anisotropic fast directions (φ) generally parallel the THO, which appears in tomographic images as a strong low velocity feature relative to the neighbouring Archean cratons. Several islands in northern Hudson Bay show short length-scale changes in φ coincident with strong velocity contrasts. These are interpreted as distinct lithospheric blocks with unique deformational histories, and point to a complex, rather than simple 2-plate, collisional history for the THO. Strong evidence is presented for multiple anisotropic layers beneath Archean zones, consistent with the episodic development model of cratonic keels (e.g., Yuan & Romanowicz 2010). We show via both tomographic inversion models and SKS splitting patterns that southern Baffin Island was

  7. Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada

    Directory of Open Access Journals (Sweden)

    C. A. Pickett-Heaps

    2011-04-01

    Full Text Available The Hudson Bay Lowlands (HBL is the second largest boreal wetland ecosystem in the world and an important natural source of global atmospheric methane. We quantify the HBL methane emissions by using the GEOS-Chem chemical transport model to simulate aircraft measurements over the HBL from the ARCTAS and pre-HIPPO campaigns in May–July 2008, together with continuous 2004–2008 surface observations at Fraserdale (southern edge of HBL and Alert (Arctic background. The difference in methane concentrations between Fraserdale and Alert is shown to be a good indicator of HBL emissions, and implies a sharp seasonal onset of emissions in late May (consistent with the aircraft data, a peak in July–August, and a seasonal shut-off in September. The model, in which seasonal variation of emission is mainly driven by surface temperature, reproduces well the observations in summer but its seasonal shoulders are too broad. We suggest that this reflects the suppression of emissions by snow cover and greatly improve the model simulation by accounting for this effect. Our resulting best estimate for HBL methane emissions is 2.3 Tg a−1, several-fold higher than previous estimates (Roulet et al., 1994; Worthy et al., 2000.

  8. Evidence of Spatially Extensive Resistance to PCBs in an Anadromous Fish of the Hudson River

    Science.gov (United States)

    Yuan, Zhanpeng; Courtenay, Simon; Chambers, R. Christopher; Wirgin, Isaac

    2006-01-01

    Populations of organisms that are chronically exposed to high levels of chemical contaminants may not suffer the same sublethal or lethal effects as naive populations, a phenomenon called resistance. Atlantic tomcod (Microgadus tomcod) from the Hudson River, New York, are exposed to high concentrations of polycyclic aromatic hydrocarbons (PAHs) and bioaccumulate polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs). They have developed resistance to PCBs and PCDDs but not to PAHs. Resistance is largely heritable and manifests at early-life-stage toxic end points and in inducibility of cytochrome P4501A (CYP1A) mRNA expression. Because CYP1A induction is activated by the aryl hydrocarbon receptor (AHR) pathway, as are most toxic responses to these compounds, we sought to determine the geographic extent of resistance to CYP1A mRNA induction by PCBs in the Hudson River tomcod population. Samples of young-of-the-year tomcod were collected from seven locales in the Hudson River, extending from the Battery at river mile 1 (RM 1) to RM 90, and from the Miramichi River, New Brunswick, Canada. Laboratory-reared offspring of tomcod adults from Newark Bay, in the western portion of the Hudson River estuary, were also used in this study. Fish were partially depurated in clean water and intraperitoneally injected with 10 ppm coplanar PCB-77, 10 ppm benzo[a]pyrene (BaP), or corn oil vehicle, and levels of CYP1A mRNA were determined. CYP1A was significantly inducible by treatment with BaP in tomcod from the Miramichi River, from laboratory-spawned offspring of Newark Bay origin, and from all Hudson River sites spanning 90 miles of river. In contrast, only tomcod from the Miramichi River displayed significantly induced CYP1A mRNA expression when treated with PCB-77. Our results suggest that the population of tomcod from throughout the Hudson River estuary has developed resistance to CYP1A inducibility and probably

  9. 77 FR 40518 - Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York...

    Science.gov (United States)

    2012-07-10

    ... 1625-AA00 Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York Bay, Lower New York Bay; New York, NY ACTION: Final rule. SUMMARY: The Coast Guard is establishing seven temporary safety zones for swim events within the Captain of the Port (COTP) New York Zone. These...

  10. Heritability of body size in the polar bears of Western Hudson Bay.

    Science.gov (United States)

    Malenfant, René M; Davis, Corey S; Richardson, Evan S; Lunn, Nicholas J; Coltman, David W

    2018-04-18

    Among polar bears (Ursus maritimus), fitness is dependent on body size through males' abilities to win mates, females' abilities to provide for their young and all bears' abilities to survive increasingly longer fasting periods caused by climate change. In the Western Hudson Bay subpopulation (near Churchill, Manitoba, Canada), polar bears have declined in body size and condition, but nothing is known about the genetic underpinnings of body size variation, which may be subject to natural selection. Here, we combine a 4449-individual pedigree and an array of 5,433 single nucleotide polymorphisms (SNPs) to provide the first quantitative genetic study of polar bears. We used animal models to estimate heritability (h 2 ) among polar bears handled between 1966 and 2011, obtaining h 2 estimates of 0.34-0.48 for strictly skeletal traits and 0.18 for axillary girth (which is also dependent on fatness). We genotyped 859 individuals with the SNP array to test for marker-trait association and combined p-values over genetic pathways using gene-set analysis. Variation in all traits appeared to be polygenic, but we detected one region of moderately large effect size in body length near a putative noncoding RNA in an unannotated region of the genome. Gene-set analysis suggested that variation in body length was associated with genes in the regulatory cascade of cyclin expression, which has previously been associated with body size in mice. A greater understanding of the genetic architecture of body size variation will be valuable in understanding the potential for adaptation in polar bear populations challenged by climate change. © 2018 John Wiley & Sons Ltd.

  11. Proceedings of a workshop on the potential cumulative impacts of development in the region of Hudson and James Bays, 17-19 June 1992

    International Nuclear Information System (INIS)

    Bunch, J.N.; Reeves, R.R.

    1992-01-01

    An interdepartmental scientific workshop was held to begin developing a response by the Canadian Department of Fisheries and Oceans to concerns about cumulative environmental effects of development in the region of Hudson Bay and James Bay. Discussions at the workshop centered on the major hydroelectric projects that are proposed or under way in that region. The main product of the workshop was a series of working hypotheses referring to potential cumulative effects under four headings: physics; inorganic nutrients, organic carbon, and suspended matter fluxes; mercury and other contaminants; and biological resources. Several of the hypotheses, such as those concerning the direction of physical changes due to modification of the timing and location of freshwater discharge, problems of mercury mobilization and contamination, and decreased productivity of anadromous fish populations, were considered well-supported by available data. Other hypotheses, such as those related to primary and secondary productivity in estuarine and marine environments, effects on isolated populations of harbor seals and Atlantic salmon, and the likely responses of fish and marine mammals to altered conditions in estuaries, were judged as needing more focused research. 27 refs., 2 figs

  12. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.

    Science.gov (United States)

    Ulanowski, T A; Branfireun, B A

    2013-06-01

    The Hudson Bay Lowland (HBL) of northern Ontario, Manitoba and Quebec, Canada is the second largest contiguous peatland complex in the world, currently containing more than half of Canada's soil carbon. Recent concerns about the ecohydrological impacts to these large northern peatlands resulting from climate change and resource extraction have catalyzed a resurgence in scientific research into this ecologically important region. However, the sheer size, heterogeneity and elaborate landscape arrangements of this ecosystem raise important questions concerning representative sampling of environmental media for chemical or physical characterization. To begin to quantify such variability, this study assessed the small-scale spatial (1m) and short temporal (21 day) variability of surface pore-water biogeochemistry (pH, dissolved organic carbon, and major ions) in a Sphagnum spp.-dominated, ombrotrophic raised bog, and a Carex spp.-dominated intermediate fen in the HBL. In general, pore-water pH and concentrations of dissolved solutes were similar to previously reported literature values from this region. However, systematic sampling revealed consistent statistically significant differences in pore-water chemistries between the bog and fen peatland types, and large within-site spatiotemporal variability. We found that microtopography in the bog was associated with consistent differences in most biogeochemical variables. Temporal changes in dissolved solute chemistry, particularly base cations (Na(+), Ca(2+) and Mg(2+)), were statistically significant in the intermediate fen, likely a result of a dynamic connection between surficial waters and mineral-rich deep groundwater. In both the bog and fen, concentrations of SO4(2-) showed considerable spatial variability, and a significant decrease in concentrations over the study period. The observed variability in peatland pore-water biogeochemistry over such small spatial and temporal scales suggests that under-sampling in

  13. The Energetic Value of Land-Based Foods in Western Hudson Bay and Their Potential to Alleviate Energy Deficits of Starving Adult Male Polar Bears.

    Directory of Open Access Journals (Sweden)

    Linda J Gormezano

    Full Text Available Climate change is predicted to expand the ice-free season in western Hudson Bay and when it grows to 180 days, 28-48% of adult male polar bears are projected to starve unless nutritional deficits can be offset by foods consumed on land. We updated a dynamic energy budget model developed by Molnar et al. to allow influx of additional energy from novel terrestrial foods (lesser snow geese, eggs, caribou that polar bears currently consume as part of a mixed diet while on land. We calculated the units of each prey, alone and in combination, needed to alleviate these lethal energy deficits under conditions of resting or limited movement (2 km d-1 prior to starvation. We further considered the total energy available from each sex and age class of each animal prey over the period they would overlap land-bound polar bears and calculated the maximum number of starving adult males that could be sustained on each food during the ice-free season. Our results suggest that the net energy from land-based food, after subtracting costs of limited movement to obtain it, could eliminate all projected nutritional deficits of starving adult male polar bears and likely other demographic groups as well. The hunting tactics employed, success rates as well as behavior and abundance of each prey will determine the realized energetic values for individual polar bears. Although climate change may cause a phenological mismatch between polar bears and their historical ice-based prey, it may simultaneously yield a new match with certain land-based foods. If polar bears can transition their foraging behavior to effectively exploit these resources, predictions for starvation-related mortality may be overestimated for western Hudson Bay. We also discuss potential complications with stable-carbon isotope studies to evaluate utilization of land-based foods by polar bears including metabolic effects of capture-related stress and consuming a mixed diet.

  14. The Energetic Value of Land-Based Foods in Western Hudson Bay and Their Potential to Alleviate Energy Deficits of Starving Adult Male Polar Bears.

    Science.gov (United States)

    Gormezano, Linda J; Rockwell, Robert F

    2015-01-01

    Climate change is predicted to expand the ice-free season in western Hudson Bay and when it grows to 180 days, 28-48% of adult male polar bears are projected to starve unless nutritional deficits can be offset by foods consumed on land. We updated a dynamic energy budget model developed by Molnar et al. to allow influx of additional energy from novel terrestrial foods (lesser snow geese, eggs, caribou) that polar bears currently consume as part of a mixed diet while on land. We calculated the units of each prey, alone and in combination, needed to alleviate these lethal energy deficits under conditions of resting or limited movement (2 km d-1) prior to starvation. We further considered the total energy available from each sex and age class of each animal prey over the period they would overlap land-bound polar bears and calculated the maximum number of starving adult males that could be sustained on each food during the ice-free season. Our results suggest that the net energy from land-based food, after subtracting costs of limited movement to obtain it, could eliminate all projected nutritional deficits of starving adult male polar bears and likely other demographic groups as well. The hunting tactics employed, success rates as well as behavior and abundance of each prey will determine the realized energetic values for individual polar bears. Although climate change may cause a phenological mismatch between polar bears and their historical ice-based prey, it may simultaneously yield a new match with certain land-based foods. If polar bears can transition their foraging behavior to effectively exploit these resources, predictions for starvation-related mortality may be overestimated for western Hudson Bay. We also discuss potential complications with stable-carbon isotope studies to evaluate utilization of land-based foods by polar bears including metabolic effects of capture-related stress and consuming a mixed diet.

  15. 27 CFR 9.47 - Hudson River Region.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Hudson River Region. 9.47... Hudson River Region. (a) Name. The name of the viticultural area described in this section is “Hudson River Region.” (b) Approved maps. The approved maps for determining the boundaries of Hudson River...

  16. Mixing and photoreactivity of dissolved organic matter in the Nelson/Hayes estuarine system (Hudson Bay, Canada)

    Science.gov (United States)

    Guéguen, C.; Mokhtar, M.; Perroud, A.; McCullough, G.; Papakyriakou, T.

    2016-09-01

    This work presents the results of a 4-year study (2009-2012) investigating the mixing and photoreactivity of dissolved organic matter (DOM) in the Nelson/Hayes estuary (Hudson Bay). Dissolved organic carbon (DOC), colored DOM, and humic-like DOM decreased with increasing salinity (r2 = 0.70-0.84). Removal of DOM was noticeable at low to mid salinity range, likely due to degradation and/or adsorption to particles. DOM photobleaching rates (i.e., decrease in DOM signal resulting from exposure to solar radiation) ranged from 0.005 to 0.030 h- 1, corresponding to half-lives of 4.9-9.9 days. Dissolved organic matter from the Nelson and Hayes Rivers was more photoreactive than from the estuary where the photodegradation of terrestrial DOM decreased with increasing salinity. Coincident with the loss of CDOM absorption was an increase in spectral slope S, suggesting a decrease in DOM molecular weight. Marked differences in photoreactivity of protein- and humic-like DOM were observed with highly humidified material being the most photosensitive. Information generated by our study will provide a valuable data set for better understanding the impacts of future hydroelectric development and climate change on DOM biogeochemical dynamics in the Nelson/Hayes estuary and coastal domain. This study will constitute a reference on terrestrial DOM fate prior to building additional generating capacity on the Nelson River.

  17. Impact of impingement on the Hudson River white perch population. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Van Winkle, W.; Kirk, B.L.; Vaughan, D.S.

    1982-02-01

    This report summarizes a series of analyses of the magnitude and biological significance of the impingement of white perch at the Indian Point Nuclear Generating Station and other Hudson River power plants. Included in these analyses were evaluations of: (1) two independent lines of evidence relating to the magnitude of impingement impacts on the Hudson River white perch population; (2) the additional impact caused by entrainment of white perch; (3) data relating to density-dependent growth among young-of-the-year white perch; (4) the feasibility of performing population-level analyses of impingement impacts on the white perch populations of Chesapeake Bay and the Delaware River; and (5) the feasibility of using simple food chain and food web models to evaluate community-level effects of impingement and entrainment. Estimated reductions in the abundances of the 1974 and 1975 white perch year classes, caused by impingement and entrainment, were high enough that the possibility of adverse long-term effects cannot be excluded.

  18. Hudson 3 essentials

    CERN Document Server

    Meinholz, Lloyd

    2013-01-01

    A practical guide, packed with illustrations, that will help you become proficient with Hudson and able to utilize it how you want.If you are a Java developer or administrator who would to like automate some of the mundane work required to build and test software and improve software quality, this is the book for you. If you are a development manager or tester, you can also benefit from learning how Hudson works by gaining some insight into test results and historical trends.

  19. Downward Migration of Coastal Conifers as a Response to Recent Land Emergence in Eastern Hudson Bay, Québec

    Science.gov (United States)

    Bégin, Yves; Bérubé, Dominique; Grégoire, Martin

    1993-07-01

    Postglacial uplift in the eastern Hudson Bay area is among the most rapid in the world (300 m during the last 8000 yr). Although emergence curves based on 14 C-dated raised shorelines give a consistent basis for modeling relative sea-level changes, such a low-resolution dating method is inappropriate for estimating trends over recent decades. A major downward displacement of white spruce ( Picea glauca (Moench) Voss) and tamarack ( Larix laricina (DuRoi) K. Koch) occurred on protected shores as a response to shoreline retreat during this century. Analysis of the age distribution of trees indicates a progradation of white spruce and tamarack on gently sloping terrain ranging from 1.3 and 2.6 cm/yr, respectively, toward the sea. Improvement of climatic conditions during the 20th century favored such expansion which was probably faster than the real land emergence rates, but recent episodes of high water levels caused regression of forest margins over the highly exposed shores. Nevertheless, the downward trend of the treeline over this century substantiates the projections of 14C-dated coastal emergence curves during the modern period (1.0 to 1.3 cm/yr) by providing an estimate of the maximum rates of shoreline retreat.

  20. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  1. 2010 Hudson River Shallow Water Sediment Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...

  2. Quantum random walks and their convergence to Evans–Hudson ...

    Indian Academy of Sciences (India)

    Quantum dynamical semigroup; Evans–Hudson flow; quantum random walk. 1. Introduction. The aim of this article is to investigate convergence of random walks on von Neumann algebra to Evans–Hudson flows. Here the random walks and Evans–Hudson flows are gene- ralizations of classical Markov chains and Markov ...

  3. 77 FR 22530 - Safety Zone; Fireworks, Hudson River, Rhinecliff, NY

    Science.gov (United States)

    2012-04-16

    ...-AA00 Safety Zone; Fireworks, Hudson River, Rhinecliff, NY AGENCY: Coast Guard, DHS. ACTION: Notice of... navigable waters of the Hudson River in the vicinity of Rhinecliff, NY for a fireworks display. This... fireworks displays. This rule is intended to restrict all vessels from a portion of the Hudson River before...

  4. Distributions of polyhalogenated compounds in Hudson River (New York, USA) fish in relation to human uses along the river

    International Nuclear Information System (INIS)

    Skinner, Lawrence C.

    2011-01-01

    PCBs (as Aroclor concentrations) have been extensively examined in fish along the Hudson River, but other xenobiotic chemicals in fish have had limited assessment. This study determined concentrations and congener distributions of polybrominated diphenyl ethers (PBDEs), polybrominated and polychlorinated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PCDD/Fs), and polychlorinated biphenyls (PCBs) in smallmouth bass and striped bass taken from a 385 km reach of the Hudson River. Concentrations of PBDEs and PCBs in smallmouth bass, and PCBs in striped bass, were positively related to human uses of the compounds in the basin. Generally low levels of PCDD/Fs were found. One striped bass, however, contained elevated 2,3,7,8-TCDD, indicating exposure to a known source in the adjacent Newark Bay-Passaic River basin. PBDDs were generally below detection. PBDFs were present in four of 18 smallmouth bass, but were not detected in striped bass. Dioxin-like PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Highlights: → In the Hudson River, → PBDEs in smallmouth bass follow human population patterns, but do not for striped bass. → Proximity to known PCB sources govern PCB levels and patterns in fish. → PBDFs were in smallmouth bass but not striped bass. PBDDs were present in one fish. → PCDD/Fs were low in 29 of 30 fish. A 2,3,7,8-TCDD source affected one striped bass. → PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Residues of polyhalogenated compounds in resident and migratory fish from the Hudson River are compared with human uses of the compounds in the river basin.

  5. Distributions of polyhalogenated compounds in Hudson River (New York, USA) fish in relation to human uses along the river

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Lawrence C., E-mail: lxskinne@gw.dec.state.ny.us [New York State Department of Environmental Conservation, 625 Broadway, Albany, NY 12233 (United States)

    2011-10-15

    PCBs (as Aroclor concentrations) have been extensively examined in fish along the Hudson River, but other xenobiotic chemicals in fish have had limited assessment. This study determined concentrations and congener distributions of polybrominated diphenyl ethers (PBDEs), polybrominated and polychlorinated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PCDD/Fs), and polychlorinated biphenyls (PCBs) in smallmouth bass and striped bass taken from a 385 km reach of the Hudson River. Concentrations of PBDEs and PCBs in smallmouth bass, and PCBs in striped bass, were positively related to human uses of the compounds in the basin. Generally low levels of PCDD/Fs were found. One striped bass, however, contained elevated 2,3,7,8-TCDD, indicating exposure to a known source in the adjacent Newark Bay-Passaic River basin. PBDDs were generally below detection. PBDFs were present in four of 18 smallmouth bass, but were not detected in striped bass. Dioxin-like PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Highlights: > In the Hudson River, > PBDEs in smallmouth bass follow human population patterns, but do not for striped bass. > Proximity to known PCB sources govern PCB levels and patterns in fish. > PBDFs were in smallmouth bass but not striped bass. PBDDs were present in one fish. > PCDD/Fs were low in 29 of 30 fish. A 2,3,7,8-TCDD source affected one striped bass. > PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Residues of polyhalogenated compounds in resident and migratory fish from the Hudson River are compared with human uses of the compounds in the river basin.

  6. Researcher Interview: Tom Hudson

    Science.gov (United States)

    Tom Hudson, M.D., President and Scientific Director of the Ontario Institute for Cancer Research, describes the International Cancer Genome Consortium (ICGC), which brings together cancer genomic data and research from across the world.

  7. Zirconium/niobium-95 determined in Hudson River water

    International Nuclear Information System (INIS)

    Linsalata, P.; Cohen, N.

    1982-01-01

    Zirconium 95 and Niobium 95 are the fission products detected in greatest abundance in Hudson River water following the atmospheric testing of a nuclear device in N.W. China in 1980. Water samples, collected continuously and on a 'grab' basis, and processed monthly, have been studied to determine 95 Zr and 95 Nb concentrations, and plotted against collection time. Total precipitation values for each month, averaged over the whole Hudson River are also plotted. Airborne concentration data were obtained from sites in Lower Manhattan and Chester, N.J. A maximum value for 95 Zr in the Hudson River was found for February 1981. Half-time removal of 95 Zr from water was also calculated. (U.K.)

  8. Magnetotelluric investigations of the lithosphere beneath the central Rae craton, mainland Nunavut, Canada

    Science.gov (United States)

    Spratt, Jessica E.; Skulski, Thomas; Craven, James A.; Jones, Alan G.; Snyder, David B.; Kiyan, Duygu

    2014-03-01

    New magnetotelluric soundings at 64 locations throughout the central Rae craton on mainland Nunavut constrain 2-D resistivity models of the crust and lithospheric mantle beneath three regional transects. Responses determined from colocated broadband and long-period magnetotelluric recording instruments enabled resistivity imaging to depths of > 300 km. Strike analysis and distortion decomposition on all data reveal a regional trend of 45-53°, but locally the geoelectric strike angle varies laterally and with depth. The 2-D models reveal a resistive upper crust to depths of 15-35 km that is underlain by a conductive layer that appears to be discontinuous at or near major mapped geological boundaries. Surface projections of the conductive layer coincide with areas of high grade, Archean metasedimentary rocks. Tectonic burial of these rocks and thickening of the crust occurred during the Paleoproterozoic Arrowsmith (2.3 Ga) and Trans-Hudson orogenies (1.85 Ga). Overall, the uppermost mantle of the Rae craton shows resistivity values that range from 3000 Ω m in the northeast (beneath Baffin Island and the Melville Peninsula) to 10,000 Ω m beneath the central Rae craton, to >50,000 Ω m in the south near the Hearne Domain. Near-vertical zones of reduced resistivity are identified within the uppermost mantle lithosphere that may be related to areas affected by mantle melt or metasomatism associated with emplacement of Hudsonian granites. A regional decrease in resistivities to values of 500 Ω m at depths of 180-220 km, increasing to 300 km near the southern margin of the Rae craton, is interpreted as the lithosphere-asthenosphere boundary.

  9. Lithospheric thermal-rheological structure of the Ordos Basin and its geodynamics

    Science.gov (United States)

    Pan, J.; Huang, F.; He, L.; Wu, Q.

    2015-12-01

    The study on the destruction of the North China Craton has always been one of the hottest issues in earth sciences.Both mechanism and spatial variation are debated fiercely, still unclear.However, geothermal research on the subject is relatively few. Ordos Basin, located in the west of the North China Craton, is a typical intraplate. Based on two-dimensional thermal modeling along a profile across Ordos Basin from east to west, obtained the lithospheric thermal structure and rheology. Mantle heat flow in different regions of Ordos Basin is from 21.2 to 24.5 mW/m2. In the east mantle heat flow is higher while heat flow in western region is relatively low. But mantle heat flow is smooth and low overall, showing a stable thermal background. Ratio of crustal and mantle heat flow is between 1.51 and 1.84, indicating that thermal contribution from shallow crust is lower than that from the mantle. Rheological characteristics along the profile are almost showed as "jelly sandwich" model and stable continental lithosphere structure,which is represent by a weak crust portion but a strong lithospheric mantle portion in vertical strength profile. Based on above , both thermal structure and lithospheric rheology of Ordos Basin illustrate that tectonic dynamics environment in the west of North China Craton is relatively stable. By the study on lithospheric thermal structure, we focus on the disparity in thickness between the thermal lithosphere and seismic lithosphere.The difference in western Ordos Basin is about 140km, which decreases gradually from Fenwei graben in the eastern Ordos Basin to the Bohai Bay Basin.That is to say the difference decreases gradually from the west to the east of North China Craton.The simulation results imply that viscosity of the asthenosphere under North China Craton also decreases gradually from west to east, confirming that dehydration of the Pacific subduction is likely to have great effect on the North China Craton.

  10. Stock characteristics of Hudson River striped bass

    International Nuclear Information System (INIS)

    Hoff, T.B.; McLaren, J.B.; Cooper, J.C.

    1988-01-01

    Striped bass, because of their tremendous popularity both commercially and recreationally, were a principal focus of the Hudson River power plant case. Between 1976 and 1979, over 23,000 age-II and older striped bass were studied as one facet of an extensive research program on the spring population in the Hudson River. Samples were collected from the overwintering as well as the spawning portion of the striped bass population, and included immature as well as mature fish. At least 12 age-groups contributed to spawning each year. Of these 12, age-groups III, IV, and V usually were most abundant, but the percentage of the population represented by any single age-group varied as the result of fluctuations in year-class strength. Males first became sexually mature at age II and females at age IV. Fast-growing individuals within a year class tended to mature earlier. Fecundity increased with the size of fish, reaching an observed maximum of about 3 million eggs per female. Although significant annual variations in maturity and growth were detected for Hudson River striped bass, there was no evidence of a consistent change in either variable that might be associated with increasing power plant operations and a reduction in striped bass abundance. Age at maturity and age structure are the two life history components that differ the most between the Hudson River population and other striped bass populations. 36 refs., 7 tabs

  11. Geochemical and sedimentological properties of Heinrich layers H2 and H1 off the Hudson Strait ice-surging source areas: ice-rafting vs water-laid down depositional mechanisms

    Science.gov (United States)

    Nuttin, L.; Hillaire-Marcel, C.

    2012-12-01

    The ~9 m-long core HU08-029-004PC was raised from the lower Labrador Sea slope (2674 m water-depth), approximately 180 km off Hudson Strait shelf edge. It yielded a high resolution record spanning the last 35 ka. The sequence includes layers with abundant detrital carbonates produced by glacial erosion of Paleozoic rocks and released into the Labrador Sea through ice streaming processes in Hudson Strait and Ungava Bay. These layers are assigned to 'Heinrich events' 3 (at core bottom), 2 and 1. Sedimentological properties and U and Th isotope measurements are used to document depositional mechanisms and durations of these layers. Data suggest: i) intense ice-rafting deposition (IRD) due to iceberg calving at the ice-stream edge, as illustrated by the coarse fraction content of the layers, and ii) sub-glacial meltwater flushing over the Hudson Strait sill, carrying fine silt-size, carbonate-rich glacial flour to the shelf-edge. Such suspended sediment pulses led to the spreading of turbidites mostly into the deep Labrador Sea, through the NAMOC system. Others late-glacial events, such as the ~ 8.2 ka final drainage of Lake Agassiz, are also recorded in the study core, whereas the H0 layer, exclusively observed in the western Labrador Sea is missing. CAT-scan images, mineralogical data, carbonate abundance, %>106 μm fraction (mostly IRD here), U-Th isotope data and 14C ages of planktic foraminifera assemblages (Neogloboquadrina pachyderma, l.) are used to further document H2 (760 to 700 cm) and H1 (588 to 488 cm). The H-layers contain up to 60% of fine detrital carbonates (about 2/3 calcite, 1/3 dolomite). Whereas the fine calcitic material points to sediment sources (basal till/water-laid glacial sediments) in the Hudson Strait and Ungava Bay, i.e., originating from the glacial erosion of Paleozoic carbonates from the area, the dolomitic component might have several origins (from Proterozoic and Paleozoic limestones in the Hudson Bay and Strait, to northwestern

  12. Future sea ice conditions in Western Hudson Bay and consequences for polar bears in the 21st century.

    Science.gov (United States)

    Castro de la Guardia, Laura; Derocher, Andrew E; Myers, Paul G; Terwisscha van Scheltinga, Arjen D; Lunn, Nick J

    2013-09-01

    The primary habitat of polar bears is sea ice, but in Western Hudson Bay (WH), the seasonal ice cycle forces polar bears ashore each summer. Survival of bears on land in WH is correlated with breakup and the ice-free season length, and studies suggest that exceeding thresholds in these variables will lead to large declines in the WH population. To estimate when anthropogenic warming may have progressed sufficiently to threaten the persistence of polar bears in WH, we predict changes in the ice cycle and the sea ice concentration (SIC) in spring (the primary feeding period of polar bears) with a high-resolution sea ice-ocean model and warming forced with 21st century IPCC greenhouse gas (GHG) emission scenarios: B1 (low), A1B (medium), and A2 (high). We define critical years for polar bears based on proposed thresholds in breakup and ice-free season and we assess when ice-cycle conditions cross these thresholds. In the three scenarios, critical years occur more commonly after 2050. From 2001 to 2050, 2 critical years occur under B1 and A2, and 4 under A1B; from 2051 to 2100, 8 critical years occur under B1, 35 under A1B and 41 under A2. Spring SIC in WH is high (>90%) in all three scenarios between 2001 and 2050, but declines rapidly after 2050 in A1B and A2. From 2090 to 2100, the mean spring SIC is 84 (±7)% in B1, 56 (±26)% in A1B and 20 (±13)% in A2. Our predictions suggest that the habitat of polar bears in WH will deteriorate in the 21st century. Ice predictions in A1B and A2 suggest that the polar bear population may struggle to persist after ca. 2050. Predictions under B1 suggest that reducing GHG emissions could allow polar bears to persist in WH throughout the 21st century. © 2013 John Wiley & Sons Ltd.

  13. The continental lithosphere

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2009-01-01

    The goal of the present study is to extract non-thermal signal from seismic tomography models in order to distinguish compositional variations in the continental lithosphere and to examine if geochemical and petrologic constraints on global-scale compositional variations in the mantle...... are consistent with modern geophysical data. In the lithospheric mantle of the continents, seismic velocity variations of a non-thermal origin (calculated from global Vs seismic tomography data [Grand S.P., 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions...... and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research 106, 16387–16414.] show strong correlation with tectono-thermal ages and with regional variations in lithospheric thickness constrained by surface heat flow data and seismic velocities. In agreement with xenolith data...

  14. Upscaling reflectance information of lichens and mosses using a singularity index: a case study of the Hudson Bay Lowlands, Canada

    Directory of Open Access Journals (Sweden)

    T. Neta

    2010-08-01

    Full Text Available Assessing moisture contents of lichens and mosses using ground-based high spectral resolution spectrometers (400–2500 nm offers immense opportunities for a comprehensive monitoring of peatland moisture status by satellite/airborne imagery. This information may be valuable for present and future carbon balance modeling. Previous studies are based upon point measurements of vegetation moisture content and water table position, and therefore a detailed moisture status of entire northern peatlands is not available. Consequently, upscaling ground and remotely sensed data to the desired spatial resolutions is inevitable. This study continues our previous investigation of the impact of various moisture conditions of common sub-Arctic lichen and moss species (i.e., Cladina stellaris, Cladina rangiferina, Dicranum elongatum, and Tomenthypnum nitens upon the spectral signatures obtained in the Hudson Bay Lowlands, Canada. Upscaling reflectance measurements of the above species were conducted in the field, and reflectance analysis using a singularity index was made, since this study serves as a basis for future aircraft/satellite research. An attempt to upscale current and new spectral reflectance indices developed in our previous studies was made as well. Our findings indicate that the spectral index C. rangiferina is to a lesser amount influenced by scale since it has a small R2 values between the log of the index and the log of the resolution, reduced slopes between the log of the index and the log of the resolution, and similar slopes between log reflectance and log resolution (α of two wavelengths employed by the index. Future study should focus on concurrent monitoring of moisture variations in lichens and mosses both in situ and from satellite and airborne images, as well as analysis of fractal models in relations to the upscaling experiments.

  15. Hudson River Sub-Bottom Profile Points

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hudson River Estuary Shallow Water Surveys. Subbottom Profile Points. Subbottom data was collected November 5 to December 15, 2009, in the estuary north from...

  16. 75 FR 76943 - Regulated Navigation Area; Hudson River South of the Troy Locks, NY

    Science.gov (United States)

    2010-12-10

    ...-AA11 Regulated Navigation Area; Hudson River South of the Troy Locks, NY AGENCY: Coast Guard, DHS... Navigation Area (RNA) on the navigable waters of the Hudson River in New York, south of the Troy Locks. This... within the waters of the Hudson River south of the Troy Locks when ice is a threat to navigation. DATES...

  17. 76 FR 8654 - Regulated Navigation Area; Hudson River South of the Troy Locks, NY

    Science.gov (United States)

    2011-02-15

    ...-AA11 Regulated Navigation Area; Hudson River South of the Troy Locks, NY AGENCY: Coast Guard, DHS... navigable waters of the Hudson River in New York, south of the Troy Locks. This action is necessary to... Hudson River south of the Troy Locks when ice is a threat to navigation. DATES: This rule is effective in...

  18. Survival of fishes after impingement on traveling screens at Hudson River power plants

    International Nuclear Information System (INIS)

    Muessig, P.H.; Hutchison, J.B.; King, L.R.; Ligotino, R.J.; Daley, M.

    1988-01-01

    The survival of Hudson River fishes, juveniles and adults, after they had been impinged on continuously rotated traveling screens at the Bowline Point and Danskammer Point power plants was examined. Survival of principal species was similar at the two plants, and estimates of survival improved as monitoring stress was reduced. Adjusted for survival of control fish, survival over 84-108 h after fish were recovered from the screens was highest for Atlantic tomcod, striped bass, and white perch (50-90%) and lowest for bay anchovy, alewife, and blueback herring; other species showed intermediate survival. Survival of striped bass and white perch was positively correlated with water temperature in winter and with conductivity in spring and fall. Continual rotation of the screens, which shortens the average time that fish are impinged, increased survival over that associated with intermittent rotation. 24 refs., 9 figs., 4 tabs

  19. Hudson River cooling tower proceeding: Interface between science and law

    International Nuclear Information System (INIS)

    Bergen, G.S.P.

    1988-01-01

    As the Hudson River power plant case proceeded, the regulatory ground shifted under the utility companies. At first, the US Environmental Protection Agency (EPA) contended that the utilities should build expensive closed-cycle cooling towers at three plants to minimize the plants' discharge of heated effluents to the river. When the formal hearing began, however, EPA claimed that cooling towers were needed to minimize the number of organisms impinged at and entrained through the plants. The Hudson River proceeding became a policy dispute over what the appropriate standard of environmental conduct should be, instead of a determination of whether a standard had been met or not. Such policy issues, which arise when legal precedent has yet to be developed for new laws like the Clean Water Act, are better addressed by a rule-making proceeding than by the adjudicatory hearing format used in the Hudson case. A rule-making proceeding would have markedly shortened the Hudson deliberations, probably without substantive change in the final settlement, and is recommended for future cases in which ambiguity in legislation or the lack of precedent has left policy matters unresolved. 2 refs

  20. Dating sediment cores from Hudson River marshes

    International Nuclear Information System (INIS)

    Robideau, R.; Bopp, R.F.

    1993-01-01

    There are several methods for determining sediment accumulation rates in the Hudson River estuary. One involves the analysis of the concentration of certain radionuclides in sediment core sections. Radionuclides occur in the Hudson River as a result of: natural sources, fallout from nuclear weapons testing and low level aqueous releases from the Indian Point Nuclear Power Facility. The following radionuclides have been studied in the authors work: Cesium-137, which is derived from global fallout that started in the 1950's and has peaked in 1963. Beryllium-7, a natural radionuclide with a 53 day half-life and found associated with very recently deposited sediments. Another useful natural radionuclide is Lead-210 derived from the decay of Radon-222 in the atmosphere. Lead-210 has a half-life of 22 years and can be used to date sediments up to about 100 years old. In the Hudson River, Cobalt-60 is a marker for Indian Point Nuclear Reactor discharges. The author's research involved taking sediment core samples from four sites in the Hudson River Estuarine Research Reserve areas. These core samples were sectioned, dried, ground and analyzed for the presence of radionuclides by the method of gamma-ray spectroscopy. The strength of each current pulse is proportional to the energy level of the gamma ray absorbed. Since different radionuclides produce gamma rays of different energies, several radionuclides can be analyzed simultaneously in each of the samples. The data obtained from this research will be compared to earlier work to obtain a complete chronology of sediment deposition in these Reserve areas of the river. Core samples may then by analyzed for the presence of PCB's, heavy metals and other pollutants such as pesticides to construct a pollution history of the river

  1. A Comparison of the Crustal Deformation Predicted by Glacial Isostatic Adjustment to Seismicity in the Baffin Region of Northern Canada

    Science.gov (United States)

    James, T. S.; Schamehorn, T.; Bent, A. L.; Allen, T. I.; Mulder, T.; Simon, K.

    2016-12-01

    The horizontal crustal strain-rates induced by glacial isostatic adjustment (GIA) in northern Canada and western Greenland region are compared to the spatial pattern of seismicity. For the comparison, an updated seismicity catalogue was created from the 2010 version of the NRCan Seismic Hazard Earthquake Epicentre File (SHEEF2010) catalogue and the Greenland Ice Sheet Monitoring Network (GLISN) catalogue of the Geological Survey of Denmark and Greenland (GEUS). Crustal motion rates were computed with the Innu/Laur16 ice-sheet history and the VM5a viscosity profile (Simon et al., 2015; 2016). This GIA model optimizes the fit to relative sea-level and vertical crustal motion measurements around Hudson Bay and in the Canadian Arctic Archipelago (CAA). A region in Baffin Bay with historically high seismicity, including the 1933 M 7.4 and the 1934 and 1945 M 6.5 earthquakes, features high predicted GIA strain-rates. Elsewhere, agreement is not strong, with zones of seismicity occurring where predicted horizontal crustal strain-rates are small and large crustal strain-rates predicted where earthquake occurrence is muted. For example, large compressional crustal strain-rates are predicted beneath seismically quiescent portions of the Greenland ice sheet. Similarly, large predicted extensional strain-rates occur around southern Hudson Bay and the Foxe Basin, which are also regions of relative seismic quiescence. Additional factors to be considered include the orientation of the background stress field, relative to the predicted stress changes, and potential pre-existing zones of lithospheric weakness.

  2. Evolution of Meso-Cenozoic lithospheric thermal-rheological structure in the Jiyang sub-basin, Bohai Bay Basin, eastern North China Craton

    Science.gov (United States)

    Xu, Wei; Qiu, Nansheng; Wang, Ye; Chang, Jian

    2018-01-01

    The Meso-Cenozoic lithospheric thermal-rheological structure and lithospheric strength evolution of the Jiyang sub-basin were modeled using thermal history, crustal structure, and rheological parameter data. Results indicate that the thermal-rheological structure of the Jiyang sub-basin has exhibited obvious rheological stratification and changes over time. During the Early Mesozoic, the uppermost portion of the upper crust, middle crust, and the top part of the upper mantle had a thick brittle layer. During the early Early Cretaceous, the top of the middle crust's brittle layer thinned because of lithosphere thinning and temperature increase, and the uppermost portion of the upper mantle was almost occupied by a ductile layer. During the late Early Cretaceous, the brittle layer of the middle crust and the upper mantle changed to a ductile one. Then, the uppermost portion of the middle crust changed to a thin brittle layer in the late Cretaceous. During the early Paleogene, the thin brittle layer of the middle crust became even thinner and shallower under the condition of crustal extension. Currently, with the decrease in lithospheric temperature, the top of the upper crust, middle crust, and the uppermost portion of the upper mantle are of a brittle layer. The total lithospheric strength and the effective elastic thickness ( T e) in Meso-Cenozoic indicate that the Jiyang sub-basin experienced two weakened stages: during the late Early Cretaceous and the early Paleogene. The total lithospheric strength (approximately 4-5 × 1013 N m-1) and T e (approximately 50-60 km) during the Early Mesozoic was larger than that after the Late Jurassic (2-7 × 1012 N m-1 and 19-39 km, respectively). The results also reflect the subduction, and rollback of Pacific plate is the geodynamic mechanism of the destruction of the eastern North China Craton.

  3. Estimates of entrainment mortality for striped bass and other fish species inhabiting the Hudson River estuary

    International Nuclear Information System (INIS)

    Boreman, J.; Goodyear, C.P.

    1988-01-01

    An empirically derived age-, time-, and space-variant equation was used to estimate entrainment mortality at power plants for seven fish species inhabiting the Hudson River estuary. Entrainment mortality is expressed as a conditional rate, which is the fractional reduction in year-class strength due to entrainment if other sources of mortality are density-independent. Estimates of the conditional entrainment mortality, based on historical and projected once-through cooling operation of five power plants, were 11-22% for striped bass, 11-17% for white perch, 5-7% for Atlantic tomcod, 14-21% for American shad, 4-11% for river herring (alewife and blueback herring combined), and 35-79% for bay anchovy. Closed-cycle cooling (natural-draft cooling towers) at three of the power plants (Indian Point, Bowline Point, and Roseton) would reduce entrainment mortality of striped bass by 50-80%, of white perch by 75-80%, of Atlantic tocod by 65-70%, of American shad by 80%, of river herring by 30-90%, and of bay anchovy by 45-80%. The life stages most vulnerable to entrainment mortality were post-yolk-sac larva and entrainable size juvenile. 18 refs., 7 tabs

  4. The Hudson River Plume: Exploring Human Impact on the Coastal Environment

    Science.gov (United States)

    McDonnell, Janice; Duncan, Ravit; Lichtenwalner, C. Sage; Dunbar, Laura

    2010-01-01

    The Hudson River Watershed contains a variety of geologic, topographic, climatic, and hydrologic features and a diversity of land-use patterns--making it an ideal model for studying human impact on the coastal environment. In this article, the authors present the Hudson River Plume (HRP), a problem-based online module that explores nonpoint-source…

  5. Hudson River settlement agreement: Technical rationale and cost considerations

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Boreman, J.; Englert, T.L.; Kirk, W.L.; Horn, E.G.

    1988-01-01

    In an effort to end litigation over open-cycle cooling at Hudson River power plants, out-of-court negotiations began in August 1979. On December 19, 1980, an agreement that was acceptable to all parties was reached. As an alternative to building cooling towers at the Indian Point, Bowline Point, and Roseton generating stations, the utilities agreed to a variety of technical and operational changes intended to reduce entrainment and impingement. In addition, they agreed to supplement the production of striped bass in the Hudson River estuary by means of a hatchery, to conduct a biological monitoring program, and to fund an independent research foundation for study of Hudson River environmental problems. Although the settlement costs were substantial, they were much smaller than the estimated costs of constructing and operating cooling towers. The settlement was expected to provide 15-43% of the impact reduction that might have been obtained with cooling at approximately 10% of the cost. 20 refs., 3 tabs

  6. 75 FR 8486 - Regulated Navigation Area; Hudson River south of the Troy Locks, New York

    Science.gov (United States)

    2010-02-25

    ...-AA11 Regulated Navigation Area; Hudson River south of the Troy Locks, New York AGENCY: Coast Guard, DHS... area on the navigable waters of the Hudson River south of the Troy Locks. This regulated navigation... Hudson River south of the Troy locks when ice conditions are 8 inches or greater unless authorized by the...

  7. Limnological regime shifts caused by climate warming and Lesser Snow Goose population expansion in the western Hudson Bay Lowlands (Manitoba, Canada).

    Science.gov (United States)

    MacDonald, Lauren A; Farquharson, Nicole; Merritt, Gillian; Fooks, Sam; Medeiros, Andrew S; Hall, Roland I; Wolfe, Brent B; Macrae, Merrin L; Sweetman, Jon N

    2015-02-01

    Shallow lakes are dominant features in subarctic and Arctic landscapes and are responsive to multiple stressors, which can lead to rapid changes in limnological regimes with consequences for aquatic resources. We address this theme in the coastal tundra region of Wapusk National Park, western Hudson Bay Lowlands (Canada), where climate has warmed during the past century and the Lesser Snow Goose (LSG; Chen caerulescens caerulescens) population has grown rapidly during the past ∽40 years. Integration of limnological and paleolimnological analyses documents profound responses of productivity, nutrient cycling, and aquatic habitat to warming at three ponds ("WAP 12", "WAP 20", and "WAP 21″), and to LSG disturbance at the two ponds located in an active nesting area (WAP 20, WAP 21). Based on multiparameter analysis of (210)Pb-dated sediment records from all three ponds, a regime shift occurred between 1875 and 1900 CE marked by a transition from low productivity, turbid, and nutrient-poor conditions of the Little Ice Age to conditions of higher productivity, lower nitrogen availability, and the development of benthic biofilm habitat as a result of climate warming. Beginning in the mid-1970s, sediment records from WAP 20 and WAP 21 reveal a second regime shift characterized by accelerated productivity and increased nitrogen availability. Coupled with 3 years of limnological data, results suggest that increased productivity at WAP 20 and WAP 21 led to atmospheric CO2 invasion to meet algal photosynthetic demand. This limnological regime shift is attributed to an increase in the supply of catchment-derived nutrients from the arrival of LSG and their subsequent disturbance to the landscape. Collectively, findings discriminate the consequences of warming and LSG disturbance on tundra ponds from which we identify a suite of sensitive limnological and paleolimnological measures that can be utilized to inform aquatic ecosystem monitoring.

  8. The initiation and tectonic regimes of the Cenozoic extension in the Bohai Bay Basin, North China revealed by numerical modelling

    Science.gov (United States)

    Li, Lu; Qiu, Nansheng

    2017-06-01

    In this study the dynamic aspects of the Cenozoic extension in the Bohai Bay Basin are considered in the context of initial thickness of the crust and lithosphere, tectonic force, strain rate and thermal rheology, which are directly or indirectly estimated from a pure shear extensional model. It is accordingly reasonable to expect that, in the Bohai Bay Basin, the thickness variation could be present prior to the initiation of extension. The extensional deformation is localized by a thickness variation of the crust and lithosphere and the heterogeneity of the initial thickness plays an important role in rifting dynamics. The onset of rifting requires a critical tectonic force (initial tectonic force) to be applied, which then immediately begins to decay gradually. Rifting will only occur when the total effective buoyancy force of the subducting slab reaches a critical level, after a certain amount of subduction taking place. The magnitude of the tectonic force decreases with time in the early phase of rifting, which indicates the weakening due to the increase in geothermal gradient. In order to deform the continental lithosphere within the currently accepted maximum magnitude of the force derived from subducted slab roll-back, the following conditions should be satisfied: (1) the thickness of the continental lithosphere is significantly thin and less than 125 km and (2) the lithosphere has a wet and hot rheology, which provides implications for rheological layering in continental lithosphere. Our results are strongly supported by the ;crème brûlée; model, in which the lower crust and mantle are relatively ductile.

  9. The lithosphere-asthenosphere Italy and surroundings

    CERN Document Server

    Panza, G F; Chimera, G; Pontevivo, A; Raykova, R

    2003-01-01

    The velocity-depth distribution of the lithosphere-asthenosphere in the Italian region and surroundings is imaged, with a lateral resolution of about 100 km, by surface wave velocity tomography and non-linear inversion. Maps of the Moho depth, of the thickness of the lithosphere and of the shear-wave velocities, down to depths of 200 km and more, are constructed. A mantle wedge, identified in the uppermost mantle along the Apennines and the Calabrian Arc, underlies the principal recent volcanoes, and partial melting can be relevant in this part of the uppermost mantle. In Calabria a lithospheric doubling is seen, in connection with the subduction of the Ionian lithosphere. The asthenosphere is shallow in the Southern Tyrrhenian Sea. High velocity bodies, cutting the asthenosphere, outline the Adria-lonian subduction in the Tyrrhenian Sea and the deep-reaching lithospheric root in the Western Alps. Less deep lithospheric roots are seen in the Central Apennines. The lithosphere-asthenosphere properties delineat...

  10. Hydrological functions of a mine-impacted and natural peatland-dominated watershed, James Bay Lowland

    OpenAIRE

    Leclair, Melissa; Whittington, Pete; Price, Jonathan

    2015-01-01

    Study region: This study was conducted in Northern Ontario, Canada, in the middle of the Hudson-James Bay. Lowland: one of the world’s largest wetland complexes. Study focus: Northern latitudes are expected to be the most impacted by climate change in the next century and adding to this stressor are increased mineral exploration activities, such as the De Beers Victor Mine, a large open-pit diamond mine. Because of the extremely low relief and presence of marine sediments, horizontal runof...

  11. Babesiosis in Lower Hudson Valley, New York

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses a study about an increase in babesiosis in the Lower Hudson Valley of New York state. Dr. Julie Joseph, Assistant Professor of Medicine at New York Medical College, shares details of this study.

  12. 33 CFR 207.50 - Hudson River Lock at Troy, N.Y.; navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Hudson River Lock at Troy, N.Y..., DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.50 Hudson River Lock at Troy, N.Y.; navigation. (a...) [Reserved] (n) Trespass on U.S. property. Trespass on U.S. property, or willful injury to the banks, masonry...

  13. The lithosphere-asthenosphere: Italy and surroundings

    International Nuclear Information System (INIS)

    Panza, G.F.; Aoudia, A.; Pontevivo, A.; Chimera, G.; Raykova, R.

    2003-02-01

    The velocity-depth distribution of the lithosphere-asthenosphere in the Italian region and surroundings is imaged, with a lateral resolution of about 100 km, by surface wave velocity tomography and non-linear inversion. Maps of the Moho depth, of the thickness of the lithosphere and of the shear-wave velocities, down to depths of 200 km and more, are constructed. A mantle wedge, identified in the uppermost mantle along the Apennines and the Calabrian Arc, underlies the principal recent volcanoes, and partial melting can be relevant in this part of the uppermost mantle. In Calabria a lithospheric doubling is seen, in connection with the subduction of the Ionian lithosphere. The asthenosphere is shallow in the Southern Tyrrhenian Sea. High velocity bodies, cutting the asthenosphere, outline the Adria-lonian subduction in the Tyrrhenian Sea and the deep-reaching lithospheric root in the Western Alps. Less deep lithospheric roots are seen in the Central Apennines. The lithosphere-asthenosphere properties delineate a differentiation between the northern and the southern sectors of the Adriatic Sea, likely attesting the fragmentation of Adria. (author)

  14. 78 FR 31454 - Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY

    Science.gov (United States)

    2013-05-24

    ...-AA09 Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY AGENCY: Coast Guard, DHS... that governs the highway bridge (Troy Green Island) across the Hudson River, mile 152.7, between Troy... the regulations for the 112th Street Bridge, mile 155.4, between Troy and Cohoes which has been...

  15. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the LOUIS S. ST. LAURENT in the Baffin Bay, Davis Strait and others from 1997-08-03 to 1997-08-18 (NODC Accession 0114432)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0114432 includes chemical, discrete sample, physical and profile data collected from LOUIS S. ST. LAURENT in the Baffin Bay, Davis Strait, Hudson...

  16. Lithosphere erosion atop mantle plumes

    Science.gov (United States)

    Agrusta, R.; Arcay, D.; Tommasi, A.

    2012-12-01

    Mantle plumes are traditionally proposed to play an important role in lithosphere erosion. Seismic images beneath Hawaii and Cape Verde show a lithosphere-asthenosphere-boundary (LAB) up to 50 km shallower than the surroundings. However, numerical models show that unless the plate is stationary the thermo-mechanical erosion of the lithosphere does not exceed 30 km. We use 2D petrological-thermo-mechanical numerical models based on a finite-difference method on a staggered grid and marker in cell method to study the role of partial melting on the plume-lithosphere interaction. A homogeneous peridotite composition with a Newtonian temperature- and pressure-dependent viscosity is used to simulate both the plate and the convective mantle. A constant velocity, ranging from 5 to 12.5 cm/yr, is imposed at the top of the plate. Plumes are created by imposing a thermal anomaly of 150 to 350 K on a 50 km wide domain at the base of the model (700 km depth); the plate right above the thermal anomaly is 40 Myr old. Partial melting is modeled using batch-melting solidus and liquidus in anhydrous conditions. We model the progressive depletion of peridotite and its effect on partial melting by assuming that the melting degree only strictly increases through time. Melt is accumulated until a porosity threshold is reached and the melt in excess is then extracted. The rheology of the partially molten peridotite is determined using viscous constitutive relationship based on a contiguity model, which enables to take into account the effects of grain-scale melt distribution. Above a threshold of 1%, melt is instantaneously extracted. The density varies as a function of partial melting degree and extraction. Besides, we analyze the kinematics of the plume as it impacts a moving plate, the dynamics of time-dependent small-scale convection (SSC) instabilities developing in the low-viscosity layer formed by spreading of hot plume material at the lithosphere base, and the resulting thermal

  17. 78 FR 56607 - Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY

    Science.gov (United States)

    2013-09-13

    ...-AA09 Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY AGENCY: Coast Guard, DHS... operation of the highway bridge across the Hudson River, mile 152.7, between Troy and Green Island, New York... Street Bridge, mile 155.4, between Troy and Cohoes which has been converted to a fixed bridge. It is...

  18. Comments on James D. Brown and Thom Hudson's "The Alternatives in Language Assessment."

    Science.gov (United States)

    Bruton, Anthony; Brown, James Dean; Hudson, Thom

    1999-01-01

    Anthony Bruton comments on Brown and Hudson's article "The Alternatives in Language Assessment," (v32 n4 Win 1998). Raises questions about some of their definitions and categories and suggests additional items that need to be considered by test takers. Brown and Hudson reply with clarifications of terms and definition of the scope of their paper.…

  19. 77 FR 41271 - Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson River, NY

    Science.gov (United States)

    2012-07-13

    ... 1625-AA00 Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson River, NY AGENCY: Coast Guard, DHS... navigable waters of the Hudson River, NY in the vicinity of Newburgh, NY for the annual Newburgh Beacon Swim... Beacon Swim is an annual recurring event that has a permanent safety zone found at 33 CFR 165.160. The...

  20. Low Latitude Pelagic Foraminifera Found in the Hudson River: Are They Hurricane Deposits?

    Science.gov (United States)

    Monahan, K. M.; Abbott, D. H.; Hoenisch, B.; Breger, D.

    2011-12-01

    River sediment cores provide a record of past environmental changes through stacked layers of sediments. In core CD02-29A, recovered from the southern Hudson River, a significant number of tropical planktic foraminifer tests were found. Foraminifera were concentrated in sediment layers of low impedance, suggesting high carbonate content. Because modern planktic foraminifera are exclusively marine, their presence in Hudson sediments in the core was remarkable. We can think of only two mechanisms that could explain this observation: either living specimens are carried upriver with the daily tides, or storm surges carry large amounts of seawater and re-suspended marine sediment upriver. To test for the presence of living specimens in Hudson River water, plankton tow samples were collected during high tide at the Hudson Battery south of the sample site, and at Piermont Pier north of the sample site and no living foraminifera were found. In addition, oxygen isotope (δ18O) analyses reveal a marine composition but the large difference in δ18O between the two surface dwelling species Globigerinoides ruber (pink) and Globigerinoides sacculifer, picked from the same sediment layer, suggests re-suspension and mixing of marine sediment deposits. Because only planktic, tropical to subtropical foraminiferal assemblages were found, the Hudson River deposits differ from previously recorded storm deposits found on Long Island and in New Jersey. In particular, the foraminiferal assemblages contain up to 40% G. ruber (pink), suggesting a highly tropical signal from a location where abundances of G. ruber are very low. This data, in addition to the pulsed occurrence of tests in the sediment suggests that the introduction of planktic foraminifera into the Hudson River must be driven by rare events. We suggest that storm surges from rare high-intensity hurricanes most likely explain the presence of these tests in Hudson River sediments, possibly assisted by the Gulf Stream entraining

  1. Rifting Thick Lithosphere - Canning Basin, Western Australia

    Science.gov (United States)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture. The discrepancy between estimates of lithospheric thickness derived from subsidence data for the western Canning Basin and those derived from shear wave tomography suggests that the latter technique currently is limited in its ability to resolve lithospheric thickness variations at horizontal half-wavelength scales of <300 km.

  2. A River Summer on the Hudson

    Science.gov (United States)

    Kenna, T. C.; Pfirman, S.; Selleck, B.; Son, L.; Land, M.; Cronin, J.

    2006-12-01

    River Summer is a month-long faculty development program extending from the continental shelf off New York City to the headwaters of the Hudson in the Adirondack Mountains. During the program, faculty from the Environmental Consortium of Hudson Valley Colleges and Universities teach each other about the Hudson environment, using innovative methods of teaching and learning, with a focus on incorporation of hands-on approaches from the perspective of multiple disciplines. Over four weeks, faculty from research universities, community colleges, liberal arts institutions, and middle and high schools work and live together, on board a research vessel or in a remote tent campsite, for several days at a time. Using the geology, hydrology, and landscape of the River as a foundation, River Summer focuses on understanding development of the Hudson within the context of its natural resources and cultural history. Participants conduct field sampling and analyses and consider issues through approaches that are common to many disciplines: scaling for problem solving; sampling and assessing bias and representation; observing and documenting; representing and depicting; interpretation and assessing relationships and causality; and evaluation. They also get a chance to experience, first-hand, the complexity and often open-ended nature of doing science. By allowing individuals, many of whom come from non-science disciplines, to experience these methods and processes in a safe learning environment, science is made more meaningful and accessible. The program's pedagogy is based on the principles of cognitive psychology and immersive field-, place- and inquiry-based learning. Field programs have been found to provide memorable, transformative experiences for undergraduate students, and our experience with River Summer 2005 and 2006 suggests they are equally effective with faculty. Evaluation shows that River Summer has a significant impact on its participants. Participants develop new

  3. Radiogenic Lead Isotopes and Time Stratigraphy in the Hudson River, New York

    International Nuclear Information System (INIS)

    Chillrud, Steven N.; Bopp, Richard F.; Ross, James M.; Chaky, Damon A.; Hemming, Sidney; Shuster, Edward L.; Simpson, H. James; Estabrooks, Frank

    2004-01-01

    Radionuclide, radiogenic lead isotope and trace metal analyses on fine-grained sediment cores collected along 160 km of the upper and tidal Hudson River were used to examine temporal trends of contaminant loadings and to develop radiogenic lead isotopes both as a stratigraphic tool and as tracers for resolving decadal particle transport fluxes. Very large inputs of Cd, Sb, Pb, and Cr are evident in the sediment record, potentially from a single manufacturing facility. The total range in radiogenic lead isotope ratios observed in well-dated cores collected about 24 km downstream of the plant is large (e.g., maximum difference in 206 Pb/ 207 Pb is 10%), characterized by four major shifts occurring in the 1950s, 1960s, 1970s and 1980s. The upper Hudson signals in Cd and radiogenic lead isotopes were still evident in sediments collected 160 km downstream in the tidal Hudson. The large magnitude and abrupt shifts in radiogenic lead isotope ratios as a function of depth provide sensitive temporal constraints that complement information derived from radionuclide analyses to significantly improve the precision of dating assignments. Application of a simple dilution model to data from paired cores suggests much larger sediment inputs in one section of the river than previously reported, suggesting particle influxes to the Hudson have been underestimated

  4. Drought as a Disturbance: Implications for Peatland Carbon Budgets in the Hudson Bay Lowland

    Science.gov (United States)

    Bello, R.; Abnizova, A.; Miller, E.

    2009-05-01

    Carbon feedbacks are of particular importance in high latitudes, both because of large circumpolar peatland carbon pools and because climate warming is occurring more rapidly at these latitudes. Longer-term net ecosystem exchange will be influenced by the capacity of plant communities to respond to changing conditions. The nature of community change and the factors inducing change are examined in this study of a disturbance generated by severe drought in 1994 causing widespread mortality in the dominant moss, Dicranum elongatum, occupying an upland tundra site within the Hudson Bay Lowland near Churchill, Manitoba. One quarter of this moss has recently died and become encrusted with the micro-lichen, Ochrolechia spp. Moss cushions affected in this manner exhibit strong allelopathic inhibition of seedling establishment progressing to complete moss decay. Chamber NEE growing-season flux measurements show an average net release of 642 mg C /m2/d from the dead moss compared to an average net uptake of 164 mg C /m2/d from completely healthy cushions. Between these two extremes, stressed living moss cushions support abundant seedling cover which increases in direct proportion with the fractional mortality. A proxy method for estimating the growth rates of cushions, based on the length of green living shoots, indicates that the moss community is uniform in age and established shortly after the most severe drought of historical record in 1966. Subsequent growth rates of cushions show a strong dependency on proximity to the water table (4.17-1.11 mm/y over 58 cm height interval). A growing-season moss water budget identifies the dominant water flow pathways and indicates capillary uptake (0.08 mm h-1) provides 64% of the storage gains, emphasizing the importance of groundwater for growth and survival. Maximum storage capacities are directly related to cushion biomass, leading to both enhanced moisture stress and increased susceptibility to mortality as cushion size

  5. Lithospheric flexure beneath the Freyja Montes Foredeep, Venus: Constraints on lithospheric thermal gradient and heat flow

    International Nuclear Information System (INIS)

    Solomon, S.C.; Head, J.W.

    1990-01-01

    Analysis of Venera 15 and 16 radar images and topographic data from the Freyja Montes region on Venus suggest that this mountain belt formed as a result of a sequence of underthrusts of the lithosphere of the North Polar Plains beneath the highlands of Ishtar Terra. The Freyja Montes deformation zone consists, south to north, of a linear orogenic belt, an adjacent plateau, a steep scarp separating the plateau from the North Polar Plains, a linear depression at the base of the scarp, and an outer rise. The topographic profile of the depression and outer rise are remarkably similar to that of a foreland deep and rise formed by the flexure of the underthrusting plate beneath a terrestrial mountain range. The authors test the lithospheric flexure hypothesis and they estimate the effective thickness T e of the elastic lithosphere of the underthrusting portion of the North Polar Plains by fitting individual topographic profiles to deflection curves for a broken elastic plate. The theoretical curves fit the observed topographic profiles to within measurement error for values of flexural rigidity D in the range (0.8-3) x 10 22 N m, equivalent to T e in the range 11-18 km. Under the assumption that the base of the mechanical lithosphere is limited by the creep strength of olivine, the mean lithospheric thermal gradient is 14-23 K/km. That the inferred thermal gradient is similar to the value expected for the global mean gradient on the basis of scaling from Earth provides support for the hypothesis that simple conduction dominates lithospheric heat transport on Venus relative to lithospheric recycling and volcanism

  6. Transport of fallout and reactor radionuclides in the drainage basin of the Hudson River estuary

    International Nuclear Information System (INIS)

    Simpson, H.J.; Linsalata, P.; Olsen, C.R.

    1982-01-01

    The transport and fate of Strontium 90, Cesium 137 and Plutonium 239, 240 in the Hudson River Estuary is discussed. Rates of radionuclide deposition and accumulation over time and space are calculated for the Hudson River watershed, estuary, and continental shelf offshore. 37 references, 7 figures, 15 tables

  7. Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay

    Science.gov (United States)

    Lunn, Nicholas J.; Servanty, Sabrina; Regehr, Eric V.; Converse, Sarah J.; Richardson, Evan S.; Stirling, Ian

    2016-01-01

    Changes in the abundance and distribution of wildlife populations are common consequences of historic and contemporary climate change. Some Arctic marine mammals, such as the polar bear (Ursus maritimus), may be particularly vulnerable to such changes due to the loss of Arctic sea ice. We evaluated the impacts of environmental variation on demographic rates for the Western Hudson Bay (WH), polar bear subpopulation from 1984 to 2011 using live-recapture and dead-recovery data in a Bayesian implementation of multistate capture–recapture models. We found that survival of female polar bears was related to the annual timing of sea ice break-up and formation. Using estimated vital rates (e.g., survival and reproduction) in matrix projection models, we calculated the growth rate of the WH subpopulation and projected population responses under different environmental scenarios while accounting for parametric uncertainty, temporal variation, and demographic stochasticity. Our analysis suggested a long-term decline in the number of bears from 1185 (95% Bayesian credible interval [BCI] = 993–1411) in 1987 to 806 (95% BCI = 653–984) in 2011. In the last 10 yr of the study, the number of bears appeared stable due to temporary stability in sea ice conditions (mean population growth rate for the period 2001–2010 = 1.02, 95% BCI = 0.98–1.06). Looking forward, we estimated long-term growth rates for the WH subpopulation of ~1.02 (95% BCI = 1.00–1.05) and 0.97 (95% BCI = 0.92–1.01) under hypothetical high and low sea ice conditions, respectively. Our findings support previous evidence for a demographic linkage between sea ice conditions and polar bear population dynamics. Furthermore, we present a robust framework for sensitivity analysis with respect to continued climate change (e.g., to inform scenario planning) and for evaluating the combined effects of climate change and management actions on the status of wildlife populations.

  8. Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay.

    Science.gov (United States)

    Lunn, Nicholas J; Servanty, Sabrina; Regehr, Eric V; Converse, Sarah J; Richardson, Evan; Stirling, Ian

    2016-07-01

    Changes in the abundance and distribution of wildlife populations are common consequences of historic and contemporary climate change. Some Arctic marine mammals, such as the polar bear (Ursus maritimus), may be particularly vulnerable to such changes due to the loss of Arctic sea ice. We evaluated the impacts of environmental variation on demographic rates for the Western Hudson Bay (WH), polar bear subpopulation from 1984 to 2011 using live-recapture and dead-recovery data in a Bayesian implementation of multistate capture-recapture models. We found that survival of female polar bears was related to the annual timing of sea ice break-up and formation. Using estimated vital rates (e.g., survival and reproduction) in matrix projection models, we calculated the growth rate of the WH subpopulation and projected population responses under different environmental scenarios while accounting for parametric uncertainty, temporal variation, and demographic stochasticity. Our analysis suggested a long-term decline in the number of bears from 1185 (95% Bayesian credible interval [BCI] = 993-1411) in 1987 to 806 (95% BCI = 653-984) in 2011. In the last 10 yr of the study, the number of bears appeared stable due to temporary stability in sea ice conditions (mean population growth rate for the period 2001-2010 = 1.02, 95% BCI = 0.98-1.06). Looking forward, we estimated long-term growth rates for the WH subpopulation of ~1.02 (95% BCI = 1.00-1.05) and 0.97 (95% BCI = 0.92-1.01) under hypothetical high and low sea ice conditions, respectively. Our findings support previous evidence for a demographic linkage between sea ice conditions and polar bear population dynamics. Furthermore, we present a robust framework for sensitivity analysis with respect to continued climate change (e.g., to inform scenario planning) and for evaluating the combined effects of climate change and management actions on the status of wildlife populations. © 2016 by the Ecological Society of

  9. Habitat Mapping Cruise - Hudson Canyon (HB0904, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives are to: 1) perform multibeam mapping of transitional and deepwater habitats in Hudson Canyon (off New Jersey) with the National Institute of Undersea...

  10. Numerical simulations of the mantle lithosphere delamination

    Science.gov (United States)

    Morency, C.; Doin, M.-P.

    2004-03-01

    Sudden uplift, extension, and increased igneous activity are often explained by rapid mechanical thinning of the lithospheric mantle. Two main thinning mechanisms have been proposed, convective removal of a thickened lithospheric root and delamination of the mantle lithosphere along the Moho. In the latter case, the whole mantle lithosphere peels away from the crust by the propagation of a localized shear zone and sinks into the mantle. To study this mechanism, we perform two-dimensional (2-D) numerical simulations of convection using a viscoplastic rheology with an effective viscosity depending strongly on temperature, depth, composition (crust/mantle), and stress. The simulations develop in four steps. (1) We first obtain "classical" sublithospheric convection for a long time period (˜300 Myr), yielding a slightly heterogeneous lithospheric temperature structure. (2) At some time, in some simulations, a strong thinning of the mantle occurs progressively in a small area (˜100 km wide). This process puts the asthenosphere in direct contact with the lower crust. (3) Large pieces of mantle lithosphere then quickly sink into the mantle by the horizontal propagation of a detachment level away from the "asthenospheric conduit" or by progressive erosion on the flanks of the delaminated area. (4) Delamination pauses or stops when the lithospheric mantle part detaches or when small-scale convection on the flanks of the delaminated area is counterbalanced by heat diffusion. We determine the parameters (crustal thicknesses, activation energies, and friction coefficients) leading to delamination initiation (step 2). We find that delamination initiates where the Moho temperature is the highest, as soon as the crust and mantle viscosities are sufficiently low. Delamination should occur on Earth when the Moho temperature exceeds ˜800°C. This condition can be reached by thermal relaxation in a thickened crust in orogenic setting or by corner flow lithospheric erosion in the

  11. 33 CFR 165.162 - Safety Zone: New York Super Boat Race, Hudson River, New York.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: New York Super Boat Race, Hudson River, New York. 165.162 Section 165.162 Navigation and Navigable Waters COAST GUARD... § 165.162 Safety Zone: New York Super Boat Race, Hudson River, New York. (a) Regulated area. The...

  12. Impact of entrainment and impingement on fish populations in the Hudson River estuary. Volume I. Entrainment-impact estimates for six fish populations inhabiting the Hudson River estuary

    International Nuclear Information System (INIS)

    Boreman, J.; Barnthouse, L.W.; Vaughn, D.S.; Goodyear, C.P.; Christensen, S.W.; Kumar, K.D.; Kirk, B.L.; Van Winkle, W.

    1982-01-01

    This volume is concerned with the estimation of the direct (or annual) entrainment impact of power plants on populations of striped bass, white perch, Alosa spp. (blueback herring and alewife), American shad, Atlantic tomcod, and bay anchovy in the Hudson River estuary. Entrainment impact results from the killing of fish eggs, larvae, and young juveniles that are contained in the cooling water cycled through a power plant. An Empirical Transport Model (ETM) is presented as the means of estimating a conditional entrainment mortality rate (defined as the fraction of a year class which would be killed due to entrainment in the absence of any other source of mortality). Most of this volume is concerned with the estimation of several parameters required by the ETM: physical input parameters (e.g., power-plant withdrawal flow rates); the longitudinal distribution of ichthyoplankton in time and space; the duration of susceptibility of the vulnerable organisms; the W-factors, which express the ratios of densities of organisms in power plant intakes to densities of organisms in the river; and the entrainment mortality factors (f-factors), which express the probability that an organism will be killed if it is entrained. Once these values are obtained, the ETM is used to estimate entrainment impact for both historical and projected conditions

  13. Selective analysis of power plant operation on the Hudson River with emphasis on the Bowline Point Generating Station. Volume 2

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Cannon, J.B.; Christensen, S.G.

    1977-07-01

    Because of the location of the Bowline, Roseton, and Indian Point power generating facilities in the low-salinity zone of the Hudson estuary, operation of these plants with the present once-through cooling systems will adversely influence the fish populations that use the area for spawning and initial periods of growth and development. Recruitment rates and standing crops of several fish species may be lowered in response to the increased mortality caused by entrainment of nonscreenable eggs and larvae and by impingement of screenable young of the year. Entrainment and impingement data are particularly relevant for assessing which fish species have the greatest potential for being adversely affected by operation of Bowline, Roseton, and Indian Point with once-through cooling. These data from each of these three plants suggest that the six species that merit the greatest consideration are striped bass, white perch, tomcod, alewife, blueback herring, and bay anchovy. Two points of view are available for assessing the relative importance of the fish species in the Hudson River. From the fisheries point of view, the only two species of major importance are striped bass and shad. From the fish-community and ecosystem point of view, the dominant species, as determined by seasonal and regional standing crops (in numbers and biomass per hectare), are the six species most commonly entrained and impinged, namely, striped bass, white perch, tomcod, alewife, blueback herring, and anchovy

  14. 78 FR 20169 - Notice of Availability of an Environmental Assessment for the Proposed Hudson Yards Concrete...

    Science.gov (United States)

    2013-04-03

    ... Environmental Assessment for the Proposed Hudson Yards Concrete Casing Project in New York, New York AGENCY... of Availability of Environmental Assessment for the Hudson Yards Concrete Casing Construction... the construction of an underground concrete casing to preserve a right-of- way (ROW) (the proposed...

  15. The Bible and mission in faith perspective: J.Hudson Taylor and the early China Inland Mission

    NARCIS (Netherlands)

    Wigram, C.E.M.

    2007-01-01

    The thesis 'The Bible and Mission in Faith Perspective: J.Hudson Taylor and the Early China Inland Mission' by Christopher E.M. Wigram analysis the hermeneutical assumptions that underlay Hudson Taylor's approach to biblical interpretation, and the significance of his approach for the mission which

  16. Babesiosis in Lower Hudson Valley, New York

    Centers for Disease Control (CDC) Podcasts

    2011-05-12

    This podcast discusses a study about an increase in babesiosis in the Lower Hudson Valley of New York state. Dr. Julie Joseph, Assistant Professor of Medicine at New York Medical College, shares details of this study.  Created: 5/12/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 5/23/2011.

  17. Transport of fallout and reactor radionuclides in the drainage basin of the Hudson River estuary

    International Nuclear Information System (INIS)

    Simpson, H.J.; Linsalata, P.; Olsen, C.R.; Cohen, N.; Trier, R.M.

    1987-01-01

    Fallout plutonium and radiocesium derived from both weapons testing and local reactor releases are found in the water column and sediments of the Hudson River in readily measurable amounts. The history of fallout delivery and dissolved phase runoff from the drainage basin of 80 Sr, 137 Cs, and /sup 239,240/Pu have been extensively documented since the mid-1950s. Sediment and water column concentrations of 134 Cs, 137 Cs, and /sup 239,240/Pu in the Hudson have also been documented since the mid-1960's and are summarized. Since the peak fallout years, substantial portions of the fallout radionuclides in the drainage basin have become unavailable to normal weathering processes as reflected by a measured decrease in the fallout nuclide transport to the waters of the tidal Hudson. Budget calculations indicate that plutonium may be transported into the estuary from the coastal ocean, and that desorption of radiocesium from particles has allowed a substantial fraction of radiocesium to be exported from the Hudson to marine waters. 29 references, 6 figures, 8 tables

  18. Sources of heavy metals in sediments of the Hudson River Estuary

    International Nuclear Information System (INIS)

    Williams, S.C.; Simpson, H.J.; Olsen, C.R.; Bopp, R.F.

    1978-01-01

    Sediments in the Hudson Estuary contain zinc, copper and lead from metal pollutants discharged to the harbor in the New York City area, from dispersed sources of contamination introduced upstream, and from natural weathering processes. The magnitude of the contribution from each of these three sources to particular sites can be estimated on the basis of total metal abundances, relative proportions of several metals, and other sediment properties. The pattern of recent heavy-metal contamination in Hudson sediments closely follows the distribution in sediments of 137 Cs which was derived over the past two decades from global fallout and local releases from a commercial nuclear reactor. Several simple empirical corrections related to grain size and mineralogy variations are suggested for comparing heavy-metal contamination levels of sandy continental shelf sediments with fine-grained estuarine and coastal sediments. Iron has little variation in Hudson sediments while manganese is greater in surface sediment of some low-salinity and fresh-water areas than deeper in the sediments, and generally less in the high-salinity area of rapid sediment deposition in New York harbor. Much of the pollutant Cu added to the harbor appears to be rapidly deposited in the sediments. (Auth.)

  19. Craton Heterogeneity in the South American Lithosphere

    Science.gov (United States)

    Lloyd, S.; Van der Lee, S.; Assumpcao, M.; Feng, M.; Franca, G. S.

    2012-04-01

    We investigate structure of the lithosphere beneath South America using receiver functions, surface wave dispersion analysis, and seismic tomography. The data used include recordings from 20 temporary broadband seismic stations deployed across eastern Brazil (BLSP02) and from the Chile Ridge Subduction Project seismic array in southern Chile (CRSP). By jointly inverting Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh wave forms we obtain a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a correlation between crustal thickness and geologic age can be derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. We also invert for S velocity structure and estimate the depth of the lithosphere-asthenosphere boundary (LAB) in Precambrian South America. The new model reveals a relatively thin lithosphere throughout most of Precambrian South America (< 140 km). Comparing LAB depth with lithospheric age shows they are overall positively correlated, whereby the thickest lithosphere occurs in the relatively small Saõ Francisco craton (200 km). However, within the larger Amazonian craton the younger lithosphere is thicker, indicating that locally even larger cratons are not protected from erosion or reworking of the lithosphere.

  20. 75 FR 38714 - Safety Zone; Macy's Fourth of July Fireworks Display, Hudson River, New York, NY

    Science.gov (United States)

    2010-07-06

    ... is scheduled to occur on the waters of the Hudson River. This temporary safety zone is necessary to... public notification. Although the temporary safety zone will apply to the entire width of the river... establishment of a temporary safety zone on a portion of the Hudson River during the launching of fireworks. An...

  1. SOLAR PANELS ON HUDSON COUNTY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    BARRY, KEVIN

    2014-06-06

    This project involved the installation of an 83 kW grid-connected photovoltaic system tied into the energy management system of Hudson County's new 60,000 square foot Emergency Operations and Command Center and staff offices. Other renewable energy features of the building include a 15 kW wind turbine, geothermal heating and cooling, natural daylighting, natural ventilation, gray water plumbing system and a green roof. The County intends to seek Silver LEED certification for the facility.

  2. Impact of lithospheric rheology on surface topography

    Science.gov (United States)

    Liao, K.; Becker, T. W.

    2017-12-01

    The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.

  3. The continental lithosphere: a geochemical perspective

    International Nuclear Information System (INIS)

    Hawkesworth, C.J.; Person, G.; Turner, S.P.; Calsteren, P. Van; Gallagher, K.

    1993-01-01

    The lithosphere is the cool strong outler layer of the Earth that is effectively a boundary layer to the convecting interior. The evidence from mantle xenoliths and continental basalts is that the lower continental crust and uppermost mantle are different beneath Archaen and proterozoic areas. Mantle xenoliths from Archaen terrains, principally the Kaapvaal craton in southern Africa, are significantly depleted in Fe and other major elements which are concentrated in basalts. Nd and Os isotope data on inclusions in diamonds and peridoties respectively, indicate that such mantle is as old as the overlying Archaen crust. Since it appears to have been coupled to the overlying crust, and to have been isolated from the homogenising effects of convection for long periods of time, it is inferred to be within the continental lithosphere. The mantle lithosphere beneath Proterozoic and younger areas is less depleted in major elements, and so it is more fertile, less buoyant, and therefore thinner, than the Archaen mantle lithosphere. (author). 136 refs, 14 figs

  4. 2012 FEMA Topographic Lidar: Hudson-Hoosic and Deerfield Watersheds, Massachusetts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Hudson-Hoosic and Deerfield project area. The entire survey area for Massachusetts is...

  5. Methods to assess impacts on Hudson River white perch: report for the period October 1, 1978 to September 30, 1979

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Kirk, B.L.; Kumar, K.D.; Van Winkle, W.; Vaughan, D.S.

    1980-06-01

    This report is a brief description of the work done on the NRC project entitled 'Methods to Assess Impacts on Hudson River White Perch' October 1, 1978 to September 30, 1979. Accounts of special studies of white perch entrainment at Hudson River power plants, of density-dependent growth in the Hudson River white perch population, and of data on the white perch populations of the Delaware and Chesapeake systems were performed. Complete accounts of these special studies are included in this report. During this period, a final draft topical report entitled 'Evaluation of Impingement Losses of White Perch at the Indian Point Nuclear Station and Other Hudson River Power Plants' (NUREG/CR-1100) was completed

  6. Seismic Constraints on the Lithosphere-Asthenosphere Boundary Beneath the Izu-Bonin Area: Implications for the Oceanic Lithospheric Thinning

    Science.gov (United States)

    Cui, Qinghui; Wei, Rongqiang; Zhou, Yuanze; Gao, Yajian; Li, Wenlan

    2018-01-01

    The lithosphere-asthenosphere boundary (LAB) is the seismic discontinuity with negative velocity contrasts in the upper mantle. Seismic detections on the LAB are of great significance in understanding the plate tectonics, mantle convection and lithospheric evolution. In this paper, we study the LAB in the Izu-Bonin subduction zone using four deep earthquakes recorded by the permanent and temporary seismic networks of the USArray. The LAB is clearly revealed with sP precursors (sdP) through the linear slant stacking. As illustrated by reflected points of the identified sdP phases, the depth of LAB beneath the Izu-Bonin Arc (IBA) is about 65 km with a range of 60-68 km. The identified sdP phases with opposite polarities relative to sP phases have the average relative amplitude of 0.21, which means a 3.7% velocity drop and implies partial melting in the asthenosphere. On the basis of the crustal age data, the lithosphere beneath the IBA is located at the 1100 °C isotherm calculated with the GDH1 model. Compared to tectonically stable areas, such as the West Philippine Basin (WPB) and Parece Vela Basin (PVB) in the Philippine Sea, the lithosphere beneath the Izu-Bonin area shows the obvious lithospheric thinning. According to the geodynamic and petrological studies, the oceanic lithospheric thinning phenomenon can be attributed to the strong erosion of the small-scale convection in the mantle wedge enriched in volatiles and melts.

  7. Megabenthic assemblages at the Hudson Canyon head (NW Atlantic margin): Habitat-faunal relationships

    Science.gov (United States)

    Pierdomenico, Martina; Gori, Andrea; Guida, Vincent G.; Gili, Josep-Maria

    2017-09-01

    The distribution of megabenthic communities at the head of Hudson Canyon and adjacent continental shelf was studied by means of underwater video transects and still photo imagery collected using a towed camera system. The goal was to explore the relationships between faunal distribution and physical seafloor conditions and to test the hypothesis that increased seafloor heterogeneity in the Hudson Canyon supports a larger diversity of benthic communities, compared with the adjacent continental shelf. Hierarchical cluster analysis was performed to identify benthic assemblages as defined in imagery. The BIO-ENV procedure and the Canonical Correspondence Analysis were carried out to elucidate species groupings in relation to terrain variables extracted from bathymetric data. Species accumulation curves were generated to evaluate species turn over in and out of Hudson Canyon. The results indicate that seafloor morphology is the main physical factor related to benthic community composition and distribution. Assemblages dominated by sponges, zoanthids and cup corals colonized the canyon margins and flanks, and were associated with coarse-grained sediments, while sea pen assemblages were observed along muddy seafloor within the thalweg. An assemblage dominated by sea stars occurred on the shelf, associated with a sandy seafloor. Some assemblages were exclusively observed in the canyon area, suggesting that the increased variability of seafloor composition, together with the oceanographic processes specific to the canyon area, enhance beta diversity. The colonization by benthic suspension feeders within the canyon, in contrast to shelf assemblages, mainly composed of carnivores and detritus feeders could be favored the intense hydrodynamics at the canyon head that increase the availability of suspended organic matter. From the perspective of management and conservation of marine resources, the results obtained support the relevance of Hudson Canyon as a biodiversity hotspot

  8. Lithospheric processes

    International Nuclear Information System (INIS)

    Baldridge, W.S.

    2000-01-01

    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy

  9. Lithospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Baldridge, W. [and others

    2000-12-01

    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy.

  10. Global thermal models of the lithosphere

    Science.gov (United States)

    Cammarano, F.; Guerri, M.

    2017-12-01

    Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations

  11. Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Mid-Lithosphere Discontinuity: A Hypothesis

    Science.gov (United States)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2017-09-01

    The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.

  12. Declining metal levels at Foundry Cove (Hudson River, New York): Response to localized dredging of contaminated sediments

    International Nuclear Information System (INIS)

    Mackie, Joshua A.; Natali, Susan M.; Levinton, Jeffrey S.; Sanudo-Wilhelmy, Sergio A.

    2007-01-01

    This study examines the effectiveness of remediating a well-recognized case of heavy metal pollution at Foundry Cove (FC), Hudson River, New York. This tidal freshwater marsh was polluted with battery-factory wastes (1953-1979) and dredged in 1994-1995. Eight years after remediation, dissolved and particulate metals (Cd, Co, Cu, Pb, Ni, and Ag) were found to be lower than levels in the lower Hudson near New York City. Levels of metals (Co, Ni, Cd) on suspended particles were comparatively high. Concentrations of surface sediment Cd throughout the marsh system remain high, but have decreased both in the dredged and undredged areas: Cd was 2.4-230 mg/kg dw of sediment in 2005 vs. 109-1500 mg/kg in the same area in 1983. The rate of tidal export of Cd from FC has decreased by >300-fold, suggesting that dredging successfully stemmed a major source of Cd to the Hudson River. - Dredging of a hotspot of metal-contaminated sediment is associated with a recognizable local and river-wide decline in cadmium in the Hudson River, New York

  13. Mercury's Lithospheric Magnetization

    Science.gov (United States)

    Johnson, C.; Phillips, R. J.; Philpott, L. C.; Al Asad, M.; Plattner, A.; Mast, S.; Kinczyk, M. J.; Prockter, L. M.

    2017-12-01

    Magnetic field data obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have been used to demonstrate the presence of lithospheric magnetization on Mercury. Larger amplitude fields resulting from the core dynamo and the strongly time-varying magnetospheric current systems are first estimated and subtracted from the magnetic field data to isolate lithospheric signals with wavelengths less than 500 km. These signals (hereafter referred to as data) are only observed at spacecraft altitudes less than 120 km, and are typically a few to 10 nT in amplitude. We present and compare equivalent source dipole magnetization models for latitudes 35°N to 75°N obtained from two distinct approaches to constrain the distribution and origin of lithospheric magnetization. First, models that fit either the data or the surface field predicted from a regional spherical harmonic representation of the data (see Plattner & Johnson abstract) and that minimize the root mean square (RMS) value of the magnetization are derived. Second, models in which the spatial distribution of magnetization required to fit the data is minimized are derived using the approach of Parker (1991). As seen previously, the largest amplitudes of lithospheric magnetization are concentrated around the Caloris basin. With this exception, across the northern hemisphere there are no overall correlations of magnetization with surface geology, although higher magnetizations are found in regions with darker surfaces. Similarly, there is no systematic correlation of magnetization signatures with crater materials, although there are specific instances of craters with interiors or ejecta that have magnetizations distinct from the surrounding region. For the latter case, we observe no correlation of the occurrence of these signatures with crater degradation state (a proxy for age). At the lowest spacecraft altitudes (source depths less than O(10 km) are unlikely in most regions

  14. Science, law, and Hudson River power plants: A case study in environmental impact assessment

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Klauda, R.J.; Vaughan, D.S.; Kendall, R.L.

    1988-01-01

    Between 1963 and 1980, the Hudson River estuary was the focus of one of the most ambitious environmental research and assessment programs ever performed. The studies supported a series of US federal proceedings involving licenses and discharge permits for two controversial electric power generating facilities: the Cornwall pumped storage facility, and units 2 and 3 of the Indian Point nuclear generating station. Both facilities were to draw large volumes of water from a region of the Hudson used as spawning and nursery habitat by several fish species, including the striped bass. Fishermen and conservationists feared that a major fraction of the striped bass eggs and larvae in the Hudson would be entrained with the pumped water and killed. Additional fish would be killed on trash screens at the intakes. Scientists were asked to aid the utility companies and regulatory agencies in determining the biological importance of entrainment and impingement. This monograph contains both technical papers that present research results and synthesis papers that summarize and interpret the results. The intent was to: (1) summarize the scientific issues and approaches; (2) present the significant results of the Hudson River biological studies; (3) describe the role of the studies in the decision-making process; (4) evaluate the successes and failures of the studies; and (5) present recommendations for future estuarine impact assessments. Separate abstracts are processed for 22 papers for inclusion in the appropriate data bases

  15. Piecewise delamination of Moroccan lithosphere from beneath the Atlas Mountains

    Science.gov (United States)

    Bezada, M. J.; Humphreys, E. D.; Davila, J. M.; Carbonell, R.; Harnafi, M.; Palomeras, I.; Levander, A.

    2014-04-01

    The elevation of the intracontinental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco. Our imaging resolves the location and shape of lithospheric cavities and of delaminated lithosphere ˜400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle sourced from regional upwellings in northern Africa or the Canary Islands enhanced the instability of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, which we infer to be the site of the most recent delamination. The Atlas Mountains of Morocco stand as an example of large-scale lithospheric loss in a mildly contractional orogen.

  16. Hudson River Sub_Bottom Profile Data - Raw SEG-Y Files (*.sgy)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hudson River Estuary Shallow Water Surveys. Subbottom data was collected November 5 to December 15, 2009, in the estuary north from Saugerties to Troy. Data...

  17. Impact of impingement on the Hudson River white perch population

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Van Winkle, W.

    1980-01-01

    The impact of power plant impingement on the 1974 and 1975 year classes of the Hudson River white perch population is assessed using a simple model derived from Ricker's theory of fisheries dynamics. The impact of impingement is expressed in the model as the conditional mortality rate, rather than as the more commonly used exploitation rate. Since the calculated impact is sensitive to errors in the estimation of population size and total mortality, ranges of probable values of these quantities are used to compute upper and lower bounds on the fractional reduction in abundance of each year class. Best estimates of abundance and mortality are used to compute the conditional impingement mortality rate separately for each plant and month. The results are used to assess the relative impacts of white perch impingement at six Hudson River power plants and to identify the seasons during which the impact is highest

  18. Seasonal air-water exchange fluxes of polychlorinated biphenyls in the Hudson River Estuary

    International Nuclear Information System (INIS)

    Yan Shu; Rodenburg, Lisa A.; Dachs, Jordi; Eisenreich, Steven J.

    2008-01-01

    Polychlorinated biphenyls (PCBs) were measured in the air and water over the Hudson River Estuary during six intensive field campaigns from December 1999 to April 2001. Over-water gas-phase ΣPCB concentrations averaged 1100 pg/m 3 and varied with temperature. Dissolved-phase ΣPCB concentrations averaged 1100 pg/L and displayed no seasonal trend. Uncertainty analysis of the results suggests that PCBs with 5 or fewer chlorines exhibited net volatilization. The direction of net air/water exchange could not be determined for PCBs with 6 or more chlorines. Instantaneous net fluxes of ΣPCBs ranged from +0.2 to +630 ng m -2 d -1 . Annual fluxes of ΣPCBs were predicted from modeled gas-phase concentrations, measured dissolved-phase concentrations, daily surface water temperatures and wind speeds. The net volatilization flux was +62 μg m -2 yr -1 , corresponding to an annual loss of +28 kg/yr of ΣPCBs from the Hudson River Estuary for the year of 2000. - Investigation of the air-water exchange of PCBs in the Hudson River Estuary suggests that PCBs with 5 or fewer chlorines undergo net volatilization

  19. Permeability Barrier Generation in the Martian Lithosphere

    Science.gov (United States)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  20. Lithosphere mantle density of the North China Craton based on gravity data

    Science.gov (United States)

    Xia, B.; Artemieva, I. M.; Thybo, H.

    2017-12-01

    Based on gravity, seismic and thermal data we constrained the lithospheric mantle density at in-situ and STP condition. The gravity effect of topography, sedimentary cover, Moho and Lithosphere-Asthenosphere Boundary variation were removed from free-air gravity anomaly model. The sedimentary covers with density range from 1.80 g/cm3 with soft sediments to 2.40 g/cm3 with sandstone and limestone sediments. The average crustal density with values of 2.70 - 2.78 g/cm3 which corresponds the thickness and density of the sedimentary cover. Based on the new thermal model, the surface heat flow in original the North China Craton including western block is > 60 mW/m2. Moho temperature ranges from 450 - 600 OC in the eastern block and in the western block is 550 - 650 OC. The thermal lithosphere is 100 -140 km thick where have the surface heat flow of 60 - 70 mW/m2. The gravity effect of surface topography, sedimentary cover, Moho depth are 0 to +150 mGal, - 20 to -120 mGal and +50 to -200 mGal, respectively. By driving the thermal lithosphere, the gravity effect of the lithosphere-asthenosphere boundary ranges from 20 mGal to +200 mGal which shows strong correction with the thickness of the lithosphere. The relationship between the gravity effect of the lithosphere-asthenosphere boundary and the lithosphere thickness also for the seismic lithosphere, and the value of gravity effect is 0 to +220 mGal. The lithospheric mantle residual gravity which caused by lithospheric density variation range from -200 to +50 mGal by using the thermal lithosphere and from -250 to +100 mGal by driving the seismic lithosphere. For thermal lithosphere, the lithospheric mantle density with values of 3.21- 3.26 g/cm3 at in-situ condition and 3.33 - 3.38 g/cm3 at STP condition. Using seismic lithosphere, density of lithosphere ranges from 3.20 - 3.26 g/cm3 at in-situ condition and 3.31 - 3.41 g/cm3 at STP condition. The subcontinental lithosphere of the North China Craton is highly heterogeneous

  1. DESTRUCTION OF THE LITHOSPHERE: FAULTBLOCK DIVISIBILITY AND ITS TECTONOPHYSICAL REGULARITIES

    Directory of Open Access Journals (Sweden)

    Semen I. Sherman

    2012-01-01

    Full Text Available A new concept is proposed concerning the origin and inception of ‘initial’ faults and formation of large blocks as a result of cooling of the Archaean lithosphere, during which Benard cells had formed (Fig. 5. At locations where cooling convection currents went down, partial crystallization took place, stresses were localized, and initial fault occurred there. The systems of such fault developed mainly in two directions and gradually formed an initial block pattern of the lithosphere. This pattern is now represented by the largest Archaean faults acting as boundaries of the lithospheric plates and large intraplate blocks (Fig. 6. This group of faults represents the first scaletime level of destruction of the lithosphere. Large blocks of the first (and may be the second order, which are located on the viscous foundation, interacted with each other under the influence of the sublithospheric movements or endogenous sources and thus facilitated the occurrence of high stresses inside the blocks. When the limits of strength characteristics of the block medium were exceeded, the intrablock stresses were released and caused formation of fractures/faults and blocks of various ranks (Fig. 14. This large group, including faultblock structures of various ranks and ages, comprises the second level of the scaletime destruction of the lithosphere.The intense evolution of ensembles of faults and blocks of the second scaletime level is facilitated by shortterm activation of faultblock structures of the lithosphere under the influence of strain waves. Periods of intensive shortterm activation are reliably detected by seismic monitoring over the past fifty years. Investigations of periodical processes specified in the geological records over the post-Proterozoic periods [Khain, Khalilov, 2009] suggest that in so far uninvestigated historical and more ancient times, the top of the lithosphere was subject to wave processes that

  2. Groundwater quality in the Upper Hudson River Basin, New York, 2012

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.

    2014-01-01

    Water samples were collected from 20 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, New York) in New York in August 2012 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Eleven of the wells sampled in the Upper Hudson River Basin are completed in sand and gravel deposits, and nine are completed in bedrock. Groundwater in the Upper Hudson River Basin was typically neutral or slightly basic; the water typically was moderately hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 7 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Two pesticides, an herbicide degradate and an insecticide degredate, were detected in two samples at trace levels; seven VOCs, including chloroform, four solvents, and the gasoline additive methyl tert-butyl ether (MTBE) were detected in four samples. The greatest radon-222 activity, 2,900 picocuries per liter, was measured in a sample from a bedrock well; the median radon activity was higher in samples from bedrock wells than in samples from sand and gravel wells. Coliform bacteria were

  3. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Eisenbud, M.

    1979-01-01

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226 Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40 K, 238 U plus daughters and 232 Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus

  4. The westward drift of the lithosphere: A tidal ratchet?

    Directory of Open Access Journals (Sweden)

    A. Carcaterra

    2018-03-01

    Full Text Available Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the ‘westerly’ decoupling of the entire Earth's outer lithospheric shell and new studies support lower viscosities in the low-velocity layer (LVZ atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon's revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle.

  5. Petrology of Serpentinites and Rodingites in the Oceanic Lithosphere

    OpenAIRE

    Klein, Frieder

    2009-01-01

    Serpentinization, steatitization, and rodingitization are consequences of seawater reaction with lithospheric mantle. These processes take place coevally within the oceanic lithosphere and are related to circulation pathways, lithologic makeup of rocks along the flow path, fluid flux, and temperature. While the boundary conditions are set by the history of magmatic and tectonic accretion of the lithosphere, fluid-rock equilibria determine what reactions take place and where in the system. Pet...

  6. Antarctic Lithosphere Studies: Progress, Problems and Promise

    Science.gov (United States)

    Dalziel, I. W. D.; Wilson, T. J.

    2017-12-01

    In the sixty years since the International Geophysical Year, studies of the Antarctic lithosphere have progressed from basic geological observations and sparse geophysical measurements to continental-scale datasets of radiometric dates, ice thickness, bedrock topography and characteristics, seismic imaging and potential fields. These have been augmented by data from increasingly dense broadband seismic and geodetic networks. The Antarctic lithosphere is known to have been an integral part, indeed a "keystone" of the Pangea ( 250-185Ma) and Gondwanaland ( 540-180 Ma) supercontinents. It is widely believed to have been part of hypothetical earlier supercontinents Rodinia ( 1.0-0.75 Ga) and Columbia (Nuna) ( 2.0-1.5 Ga). Despite the paucity of exposure in East Antarctica, the new potential field datasets have emboldened workers to extrapolate Precambrian geological provinces and structures from neighboring continents into Antarctica. Hence models of the configuration of Columbia and its evolution into Rodinia and Gondwana have been proposed, and rift-flank uplift superimposed on a Proterozoic orogenic root has been hypothesized to explain the Gamburtsev Subglacial Mountains. Mesozoic-Cenozoic rifting has imparted a strong imprint on the West Antarctic lithosphere. Seismic tomographic evidence reveals lateral variation in lithospheric thickness, with the thinnest zones within the West Antarctic rift system and underlying the Amundsen Sea Embayment. Upper mantle low velocity zones are extensive, with a deeper mantle velocity anomaly underlying Marie Byrd Land marking a possible mantle plume. Misfits between crustal motions measured by GPS and GIA model predictions can, in part, be linked with the changes in lithosphere thickness and mantle rheology. Unusually high uplift rates measured by GPS in the Amundsen region can be interpreted as the response of regions with thin lithosphere and weak mantle to late Holocene ice mass loss. Horizontal displacements across the TAM

  7. The role of diet on long-term concentration and pattern trends of brominated and chlorinated contaminants in western Hudson Bay polar bears, 1991-2007

    International Nuclear Information System (INIS)

    McKinney, Melissa A.; Stirling, Ian; Lunn, Nick J.; Peacock, Elizabeth; Letcher, Robert J.

    2010-01-01

    Adipose tissue was sampled from the western Hudson Bay (WHB) subpopulation of polar bears at intervals from 1991 to 2007 to examine temporal trends of PCB and OCP levels both on an individual and sum-(Σ-)contaminant basis. We also determined levels and temporal trends of emerging polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), polybrominated biphenyls (PBBs) and other current-use brominated flame retardants. Over the 17-year period, Σ DDT (and p,p'-DDE, p,p'-DDD, p,p'-DDT) decreased (-8.4%/year); α-hexachlorocyclohexane (α-HCH) decreased (-11%/year); β-HCH increased (+ 8.3%/year); and Σ PCB and Σ chlordane (CHL), both contaminants at highest concentrations in all years (> 1 ppm), showed no distinct trends even when compared to previous data for this subpopulation dating back to 1968. Some of the less persistent PCB congeners decreased significantly (-1.6%/year to -6.3%/year), whereas CB153 levels tended to increase (+ 3.3%/year). Parent CHLs (c-nonachlor, t-nonachlor) declined, whereas non-monotonic trends were detected for metabolites (heptachlor epoxide, oxychlordane). Σ chlorobenzene, octachlorostyrene, Σ mirex, Σ MeSO 2 -PCB and dieldrin did not significantly change. Increasing Σ PBDE levels (+ 13%/year) matched increases in the four consistently detected congeners, BDE47, BDE99, BDE100 and BDE153. Although no trend was observed, total-(α)-HBCD was only detected post-2000. Levels of the highest concentration brominated contaminant, BB153, showed no temporal change. As long-term ecosystem changes affecting contaminant levels may also affect contaminant patterns, we examined the influence of year (i.e., aging or 'weathering' of the contaminant pattern), dietary tracers (carbon stable isotope ratios, fatty acid patterns) and biological (age/sex) group on congener/metabolite profiles. Patterns of PCBs, CHLs and PBDEs were correlated with dietary tracers and biological group, but only PCB and CHL patterns were correlated with year

  8. Post-processing scheme for modelling the lithospheric magnetic field

    Directory of Open Access Journals (Sweden)

    V. Lesur

    2013-03-01

    Full Text Available We investigated how the noise in satellite magnetic data affects magnetic lithospheric field models derived from these data in the special case where this noise is correlated along satellite orbit tracks. For this we describe the satellite data noise as a perturbation magnetic field scaled independently for each orbit, where the scaling factor is a random variable, normally distributed with zero mean. Under this assumption, we have been able to derive a model for errors in lithospheric models generated by the correlated satellite data noise. Unless the perturbation field is known, estimating the noise in the lithospheric field model is a non-linear inverse problem. We therefore proposed an iterative post-processing technique to estimate both the lithospheric field model and its associated noise model. The technique has been successfully applied to derive a lithospheric field model from CHAMP satellite data up to spherical harmonic degree 120. The model is in agreement with other existing models. The technique can, in principle, be extended to all sorts of potential field data with "along-track" correlated errors.

  9. Benthic bacterial biomass and production in the Hudson River estuary

    International Nuclear Information System (INIS)

    Austin, H.K.; Findlay, S.E.G.

    1989-01-01

    Bacterial biomass, production, and turnover were determined for two freshwater march sites and a site in the main river channel along the tidally influenced Hudson River. The incorporation of [methyl- 3 H]thymidine into DNA was used to estimate the growth rate of surface and anaerobic bacteria. Bacterial production at marsh sites was similar to, and in some cases considerably higher than, production estimates reported for other aquatic wetland and marine sediment habitats. Production averaged 1.8-2.8 mg C·m -2 · hour -1 in marsh sediments. Anaerobic bacteria in marsh sediment incorporated significant amounts of [methyl- 3 H]thymidine into DNA. Despite differences in dominant vegatation and tidal regime, bacterial biomass was similar (1 x 10 3 ± 0.08 mg C·m -2 ) in Trapa, Typha, and Nuphar aquatic macrophyte communities. Bacterial abundance and productivity were lower in sandy sediments associated with Scirpus communities along the Hudson River (0.2 x 10 3 ± 0.05 mg C·m -2 and 0.3 ± 0.23 mg C · m -2 · hour -1 , respectively)

  10. In situ rheology of the oceanic lithosphere along the Hawaiian ridge

    Science.gov (United States)

    Pleus, A.; Ito, G.; Wessel, P.; Frazer, L. N.

    2017-12-01

    Much of our quantitative understanding of lithospheric rheology is based on rock deformation experiments carried out in the laboratory. The accuracy of the relationships between stress and lithosphere deformation, however, are subject to large extrapolations, given that laboratory strain rates (10-7 s-1) are much greater than geologic rates (10-15 to 10-12 s-1). In situ deformation experiments provide independent constraints and are therefore needed to improve our understanding of natural rheology. Zhong and Watts [2013] presented such a study around the main Hawaiian Islands and concluded that the lithosphere flexure requires a much weaker rheology than predicted by laboratory experiments. We build upon this study by investigating flexure around the older volcanoes of the Hawaiian ridge. The ridge is composed of a diversity of volcano sizes that loaded seafloor of nearly constant age (85+/-8 Ma); this fortunate situation allows for an analysis of flexural responses to large variations in applied loads at nearly constant age-dependent lithosphere thermal structure. Our dataset includes new marine gravity and multi-beam bathymetry data collected onboard the Schmidt Ocean Institute's R/V Falkor. These data, along with forward models of lithospheric flexure, are used to obtain a joint posterior probability density function for model parameters that control the lithosphere's flexural response to a given load. These parameters include the frictional coefficient constraining brittle failure in the shallow lithosphere, the activation energy for the low-temperature plasticity regime, and the geothermal gradient of the Hawaiian lithosphere. The resulting in situ rheological parameters may be used to verify or update those derived in the lab. Attaining accurate lithospheric rheological properties is important to our knowledge, not only of the evolution of the Hawaiian lithosphere, but also of other solid-earth geophysical problems, such as oceanic earthquakes, subduction

  11. Updated Reference Model for Heat Generation in the Lithosphere

    Science.gov (United States)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2017-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  12. Radionuclides at the Hudson Canyon disposal site

    International Nuclear Information System (INIS)

    Schell, W.R.; Nevissi, A.E.

    1983-01-01

    A sampling and analytical program was initiated in June 1978 to measure radionuclides in water, sediments, and biota collected at the deepwater (4000 m) radioactive waste disposal site at the mouth of the Hudson Canyon 350km off New York Harbor in the western Atlantic Ocean. Plutonium, americium, cesium, strontium, and uranium series isotopes were measured in selected samples; the /sup 210/Pb data were used to give sedimentation and mixing rates in the upper sediment layers. The results showed that /sup 137/Cs, /sup 239,240/Pu, and /sup 238/Pu were found at low concentrations in the skin, viscera, and stomach contents for some of the fish collected. Significant concentrations of /sup 241/Am were found in tissues of the common rattail Coryphaenoides (Macrouridae) collected at the disposal site, suggesting a local source for this radionuclide and biological accumulation. The edible muscle of this fish contained less than 2.6 x 10/sup -5/ Bq g/sup -1/ (dry wt) of /sup 239,240/Pu. Radionuclides measured in sediment-core profiles showed that mixing occurred to depths of 16 cm and that variable sedimentation or mixing rates, or both, exist at 4000 m deep. Radionuclide deposition near the canisters was not found to be significantly higher than the expected fallout levels at 4000 m deep. At the mouth of the Hudson Canyon variable sedimentation and mixing rates were found using the natural unsupported /sup 210/Pb tracer values; these variable rates were attributed to sediment transport by the currents and to bioturbation

  13. 239 240Pu and 238Pu in sediments of the Hudson River estuary

    International Nuclear Information System (INIS)

    Linsalata, P.; Wrenn, M.E.; Cohen, N.; Singh, N.P.

    1980-01-01

    Plutonium-239,240 and plutonium-238 were determined in 59 Hudson River sediment dredge samples collected during 1973-77 in the vicinity of the Indian Point Nuclear Power Station. Acid leaching followed by solvent extraction, electrodeposition, and alpha-spectrometry were used to extract, purify, and quantitate plutonium isotopes present in these samples. Annual median plutonium-238/plutonium-239,240 isotopic activity ratios in surficial sediments were 0.032 (1973-74), 0.035 (1975), 0.042 (1976), and 0.040 (1977). The source of these nuclides in the estuary was identified by analysis of the sample isotopic activity ratios. On the basis of the sampling regimen and the methods used, it is concluded that no input, other than that of fallout, has contributed significantly to the plutonium burden in Hudson sediments

  14. Seismic imaging of lithospheric discontinuities and continental evolution

    Science.gov (United States)

    Bostock, M. G.

    1999-09-01

    Discontinuities in physical properties within the continental lithosphere reflect a range of processes that have contributed to craton stabilization and evolution. A survey of recent seismological studies concerning lithospheric discontinuities is made in an attempt to document their essential characteristics. Results from long-period seismology are inconsistent with the presence of continuous, laterally invariant, isotropic boundaries within the upper mantle at the global scale. At regional scales, two well-defined interfaces termed H (˜60 km depth) and L (˜200 km depth) of continental affinity are identified, with the latter boundary generally exhibiting an anisotropic character. Long-range refraction profiles are frequently characterized by subcontinental mantle that exhibits a complex stratification within the top 200 km. The shallow layering of this package can behave as an imperfect waveguide giving rise to the so-called teleseismic Pn phase, while the L-discontinuity may define its lower base as the culmination of a low velocity zone. High-resolution, seismic reflection profiling provides sufficient detail in a number of cases to document the merging of mantle interfaces into lower continental crust below former collisional sutures and magmatic arcs, thus unambiguously identifying some lithospheric discontinuities with thrust faults and subducted oceanic lithosphere. Collectively, these and other seismic observations point to a continental lithosphere whose internal structure is dominated by a laterally variable, subhorizontal layering. This stratigraphy appears to be more pronounced at shallower lithospheric levels, includes dense, anisotropic layers of order 10 km in thickness, and exhibits horizontal correlation lengths comparable to the lateral dimensions of overlying crustal blocks. A model of craton evolution which relies on shallow subduction as a principal agent of craton stabilization is shown to be broadly compatible with these characteristics.

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: REPTILES (Reptile Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for estuarine reptiles (turtles, terrapins) and amphibians (salamanders, frogs) for the Hudson River....

  16. Global model for the lithospheric strength and effective elastic thickness

    OpenAIRE

    Magdala Tesauro; Mikhail Kaban; S. A. P. L. Cloetingh

    2013-01-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member ‘hard’ (HRM) and a ‘soft’ (SR...

  17. Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling

    Science.gov (United States)

    Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.

    2017-12-01

    The nature and mechanisms of formation of extremely thinned continental crust (N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.

  18. Estimating lithospheric properties at Atla Regio, Venus

    Science.gov (United States)

    Phillips, Roger J.

    1994-01-01

    Magellan spehrical harmonic gravity and topography models are used to estimate lithospheric properties at Alta Regio, Venus, a proposed hotspot with dynamic support from mantle plume(s). Global spherical harmonic and local representations of the gravity field share common properties in the Atla region interms of their spectral behavior over a wavelength band from approximately 2100 to approximately 700 km. The estimated free-air admittance spectrum displays a rather featureless long-wavelength portion followed by a sharp rise at wavelengths shorter than about 1000 km. This sharp rise requires significant flexural support of short-wavelength structures. The Bouguer coherence also displays a sharp drop in this wavelength band, indicating a finite flexural rigidity of the lithosphere. A simple model for lithospheric loading from above and below is introduced (D. W. Forsyth, 1985) with four parameters: f, the ratio of bottom loading to top loading; z(sub m), crustal thickness; z(sub l) depth to bottom loading source; and T(sub e) elastic lithosphere thickness. A dual-mode compensation model is introduced in which the shorter wavelengths (lambda approximately less than 1000 km) might be explained best by a predominance of top loading by the large shield volcanoes Maat Mons, Ozza Mons, and Sapas Mons, and the longer wavelengths (lambda approximately greater than 1500 km) might be explained best by a deep depth of compensation, possibly representing bottom loading by a dynamic source. A Monte Carlo inversion technique is introduced to thoroughly search out the four-space of the model parameters and to examine parameter correlation in the solutions. Venus either is a considerabe deficient in heat sources relative to Earth, or the thermal lithosphere is overthickened in response to an earlier episode of significant heat loss from the planet.

  19. Characterizing Lithospheric Thickness in Australia using Ps and Sp Scattered Waves

    Science.gov (United States)

    Ford, H. A.; Fischer, K. M.; Rychert, C. A.

    2008-12-01

    The purpose of this study is to constrain the morphology of the lithosphere-asthenosphere boundary throughout Australia using scattered waves. Prior surface wave studies have shown a correlation between lithospheric thickness and the three primary geologic provinces of Australia, with the shallowest lithosphere located beneath the Phanerozoic province to the east, and the thicker lithosphere located beneath the Proterozoic and Archean regions. To determine lithospheric thickness, waveform data from twenty permanent broadband stations spanning mainland Australia and the island of Tasmania were analyzed using Ps and Sp migration techniques. Waveform selection for each station was based on epicentral distance (35° to 80° for Ps and 55° to 80° for Sp), and event depth (no greater than 300 km for Sp). For both Ps and Sp a simultaneous deconvolution was performed on the data for each of the twenty stations, and the resulting receiver function for each station was migrated to depth. Data were binned with epicentral distance to differentiate direct discontinuity phases from crustal reverberations (for Ps) and other teleseismic arrivals (for Sp). Early results in both Ps and Sp show a clear Moho discontinuity at most stations in addition to sharp, strong crustal reverberations seen in many of the Ps images. In the eastern Phanerozoic province, a strong negative phase at 100-105 km is evident in Ps for stations CAN and EIDS. The negative phase lies within a depth range that corresponds to the negative velocity gradient between fast lithosphere and slow asthenosphere imaged by surface waves. We therefore think that it is the lithosphere- asthenosphere boundary. On the island of Tasmania, a negative phase at 70-75 km in Ps images at stations TAU and MOO also appears to be the lithosphere-asthenosphere boundary. In the Proterozoic and Archean regions of the Australian continent, initial results for both Ps and Sp migration indicate clear crustal phases, but significantly

  20. Diatoms as Proxies for Abrupt Events in the Hudson River Estuary

    Science.gov (United States)

    Skorski, W.; Abbott, D. H.; Recasens, C.; Breger, D. L.

    2014-12-01

    The Hudson River estuary has been subject to many abrupt events throughout its history including hurricanes, droughts and pluvials. Hurricanes in particular are rare, discrete events that if fingerprinted can be used to develop better age models for Hudson River sediments. Proxies use observed physical characteristics or biological assemblages (e.g. diatom and foraminiferal assemblages) as tools to reconstruct past conditions prior to the modern instrumental record. Using a sediment core taken from the Hudson River (CDO2-29A), in New York City, drought and pluvial layers were selected based on Cs-137 dating while hurricane layers were determined from occurrences of tropical to subtropical foraminifera. Contrary to previous studies (Weaver, 1970, Weiss et al, 1978), more than sixty different diatom species have been identified using a scanning electron microscope (SEM). Cosmopolitan, hurricane and drought assemblages have begun to be identified after observing multiple layers (Table 1). Tropical foraminifera dominated by Globigerinoides ruber pink were also found in a hurricane layer that we infer was deposited during Hurricane Belle in 1976. More diatom abundance analyses and cataloged SEM pictures will provide further insight into these proxies. Table 1 Diatom Genera and Species Environment Clarification Cyclotella caspia Planktonic, marine-brackish Cosmopolitan Karayevia clevei Freshwater Cosmopolitan Melosira sp Planktonic, marine Cosmopolitan Thalassiosira sp Marine, brackish Cosmopolitan Staurosirella leptostauron Benthic, freshwater Cosmopolitan Actinoptychus senarius Planktonic or benthic, freshwater to brackish Hurricane and pluvial layers Amphora aff. sp Benthic, marine or freshwater Hurricane layers only Nitzschia sp Benthic, marine or freshwater Hurricane layers only Gomphonema sp Freshwater Hurricane layers only Surirella sp Marine-brackish Drought layer only Triceratium sp Marine Drought layer only Other Genera and species Environment Clarification

  1. Three-dimensional lithospheric density distribution of China and surrounding regions

    Directory of Open Access Journals (Sweden)

    Chuantao Li

    2014-01-01

    Full Text Available In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30′ × 30′ gravity data and 1° × 1° P-wave velocity data. Firstly, we used the empirical equation between the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density. Secondly, we calculated the gravity anomaly, caused by the Moho discontinuity and the sedimentary layer discontinuity, by the Parker formula. Thirdly, the gravity anomaly of the spherical harmonics with 2–40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96. Finally, by using Algebra Reconstruction Techniques (ART, the inversion of 30′ × 30′ residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed structural model. The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure. The density is relatively high in the Philippine Sea plate, Japan Sea, the Indian plate, the Kazakhstan shield and the Western Siberia plain, whereas the Tibetan Plateau has low-density characteristics. The minimum value of density lies in the north of Philippines, in the Taiwan province and in the Ryukyu island arc.

  2. Towards an improved determination of Earth’s lithospheric field from satellite observations

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils; Finlay, Chris

    Perhaps one of the biggest difficulties in modelling the Earth’s lithospheric magnetic field is the separation of contributions from sources of internal and external origin. In particular, the determination of smaller-scale lithospheric magnetic field features is problematic because the lithosphe......Perhaps one of the biggest difficulties in modelling the Earth’s lithospheric magnetic field is the separation of contributions from sources of internal and external origin. In particular, the determination of smaller-scale lithospheric magnetic field features is problematic because...

  3. Lithospheric Strength Beneath the Zagros Mountains of Southwestern Iran

    Science.gov (United States)

    Adams, A. N.; Nyblade, A.; Brazier, R.; Rodgers, A.; Al-Amri, A.

    2006-05-01

    The Zagros Mountain Belt of southwestern Iran is among the most seismically active mountain belts in the world. Early seismic studies of this area found that the lithosphere underlying the Zagros Mountains follows the "jelly sandwich" model, having a strong upper crust and a strong lithospheric mantle, separated by a weak lower crust. More recent studies, which analyzed earthquakes originating within the Zagros Mountains that were recorded at teleseismic distances, however, found that these earthquakes occurred only within the upper crust, thus indicating that the strength of the Zagros Mountains' lithosphere lies only within the upper crust, in accordance with the "creme brulee" lithospheric model. Preliminary analysis of regionally recorded earthquakes that originated within the Zagros Mountains is presented here. Using earthquakes recorded at regional distances will allow the analysis of a larger dataset than has been used in previous studies. Preliminary results show earthquakes occurring throughout the crust and possibly extending into the upper mantle.

  4. Satellite gravity gradient views help reveal the Antarctic lithosphere

    Science.gov (United States)

    Ferraccioli, F.; Ebbing, J.; Pappa, F.; Kern, M.; Forsberg, R.

    2017-12-01

    Here we present and analyse satellite gravity gradient signatures derived from GOCE and superimpose these on tectonic and bedrock topography elements, as well as seismically-derived estimates of crustal thickness for the Antarctic continent. The GIU satellite gravity component images the contrast between the thinner crust and lithosphere underlying the West Antarctic Rift System and the Weddell Sea Rift System and the thicker lithosphere of East Antarctica. The new images also suggest that more distributed wide-mode lithospheric and crustal extension affects both the Ross Sea Embayment and the less well known Ross Ice Shelf segment of the rift system. However, this pattern is less clear towards the Bellingshousen Embayment, indicating that the rift system narrows towards the southern edge of the Antarctic Peninsula. In East Antarctica, the satellite gravity data provides new views into the Archean to Mesoproterozoic Terre Adelie Craton, and clearly shows the contrast wrt to the crust and lithosphere underlying both the Wilkes Subglacial Basin to the east and the Sabrina Subglacial Basin to the west. This finding augments recent interpretations of aeromagnetic and airborne gravity data over the region, suggesting that the Mawson Continent is a composite lithospheric-scale entity, which was affected by several Paleoproterozoic and Mesoproterozoic orogenic events. Thick crust is imaged beneath the Transantarctic Mountains, the Terre Adelie Craton, the Gamburtsev Subglacial Mountains and also Eastern Dronning Maud Land, in particular beneath the recently proposed region of the Tonian Oceanic Arc Superterrane. The GIA and GIU components help delineate the edges of several of these lithospheric provinces. One of the most prominent lithospheric-scale features discovered in East Antarctica from satellite gravity gradient imaging is the Trans East Antarctic Shear Zone that separates the Gamburtsev Province from the Eastern Dronning Maud Land Province and appears to form the

  5. Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow

    Science.gov (United States)

    Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.

    2017-12-01

    Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.

  6. Geodynamic inversion to constrain the non-linear rheology of the lithosphere

    Science.gov (United States)

    Baumann, T. S.; Kaus, Boris J. P.

    2015-08-01

    One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology

  7. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species for the Hudson River. Vector polygons in this data set...

  8. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in the Hudson River. Vector polygons in this...

  9. Space geodesy validation of the global lithospheric flow

    Science.gov (United States)

    Crespi, M.; Cuffaro, M.; Doglioni, C.; Giannone, F.; Riguzzi, F.

    2007-02-01

    Space geodesy data are used to verify whether plates move chaotically or rather follow a sort of tectonic mainstream. While independent lines of geological evidence support the existence of a global ordered flow of plate motions that is westerly polarized, the Terrestrial Reference Frame (TRF) presents limitations in describing absolute plate motions relative to the mantle. For these reasons we jointly estimated a new plate motions model and three different solutions of net lithospheric rotation. Considering the six major plate boundaries and variable source depths of the main Pacific hotspots, we adapted the TRF plate kinematics by global space geodesy to absolute plate motions models with respect to the mantle. All three reconstructions confirm (i) the tectonic mainstream and (ii) the net rotation of the lithosphere. We still do not know the precise trend of this tectonic flow and the velocity of the differential rotation. However, our results show that assuming faster Pacific motions, as the asthenospheric source of the hotspots would allow, the best lithospheric net rotation estimate is 13.4 +/- 0.7 cm yr-1. This superfast solution seems in contradiction with present knowledge on the lithosphere decoupling, but it matches remarkably better with the geological constraints than those retrieved with slower Pacific motion and net rotation estimates. Assuming faster Pacific motion, it is shown that all plates move orderly `westward' along the tectonic mainstream at different velocities and the equator of the lithospheric net rotation lies inside the corresponding tectonic mainstream latitude band (~ +/-7°), defined by the 1σ confidence intervals.

  10. Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary.

    Science.gov (United States)

    Cantwell, Mark G; Katz, David R; Sullivan, Julia C; Shapley, Daniel; Lipscomb, John; Epstein, Jennifer; Juhl, Andrew R; Knudson, Carol; O'Mullan, Gregory D

    2018-06-15

    The widespread use of pharmaceuticals by human populations results in their sustained discharge to surface waters via wastewater treatment plants (WWTPs). In this study, 16 highly prescribed pharmaceuticals were quantified along a 250 km transect of the Hudson River Estuary and New York Harbor to describe their sources and spatial patterns. Sampling was conducted over two dry weather periods in May and July 2016, at 72 sites which included mid-channel and nearshore sites, as well as locations influenced by tributaries and WWTP outfalls. The detection frequency of the study pharmaceuticals was almost identical between the May and July sampling periods at 55% and 52%, respectively. Six pharmaceuticals were measurable at 92% or more of the sites during both sampling periods, illustrating their ubiquitous presence throughout the study area. Individual pharmaceutical concentrations were highly variable spatially, ranging from non-detect to 3810 ng/L during the study. Major factors controlling concentrations were proximity and magnitude of WWTP discharges, inputs from tributaries and tidal mixing. Two compounds, sucralose and caffeine, were evaluated as tracers to identify wastewater sources and assess pharmaceutical behavior. Sucralose was useful in identifying wastewater inputs to the river and concentrations showed excellent correlations with numerous pharmaceuticals in the study. Caffeine-sucralose ratios showed potential in identifying discharges of untreated wastewater occurring during a combined sewage overflow event. Many of the study pharmaceuticals were present throughout the Hudson River Estuary as a consequence of sustained wastewater discharge. Whereas some concentrations were above published effects levels, a more complete risk assessment is needed to understand the potential for ecological impacts due to pharmaceuticals in the Hudson River Estuary. Published by Elsevier Ltd.

  11. Evolving lithospheric flexure and paleotopography of the Pyrenean Orogen from 3D flexural modeling and basin analysis

    Science.gov (United States)

    Curry, M. E.; van der Beek, P.; Huismans, R. S.; Muñoz, J. A.

    2017-12-01

    The Pyrenees are an asymmetric, doubly-vergent orogen with retro- and pro- foreland basins that preserve a record of deformation since the Mesozoic. The extensive research and exploration efforts on the mountain belt and flanking foreland basins provide an exceptional dataset for investigating geodynamics and surface processes over large spatial and temporal scales in western Europe. We present the results of a numerical modeling study investigating the spatio-temporal variation in lithospheric flexure in response to the developing orogen. We employ a finite element method to model the 3D flexural deformation of the lithosphere beneath the Pyrenean orogen since the onset of convergence in the late Cretaceous. Using subsurface, geophysical, and structural data, we describe the evolving geometry of both the French Aquitaine and Spanish Ebro foreland basins at the present (post-orogenic), the mid-Eocene (peak orogenic), the Paleocene (early orogenic), and the end of the Cretaceous (pre- to early orogenic). The flexural modeling provides insight into how both the rigidity of the lithosphere and the paleotopographic load have varied over the course of orogenesis to shape the basin geometry. We find that the overriding European plate has higher rigidity than the subducting Iberian plate, with modern Effective Elastic Thickness (EET) values of 20 ± 2 and 12 ± 2 km, respectively. Modeling indicates that the modern rigidity of both plates decreases westward towards the Bay of Biscay. The lithospheric rigidity has increased by 50% since the Mesozoic with early Cenozoic EET values of 13 ± 2 and 8 ± 1 km for the European and Iberian plates, respectively. The topographic load began increasing with convergence in the late Cretaceous, reaching modern levels in the central and eastern Pyrenees by the Eocene. In contrast, the topographic load in the western Pyrenees was 70% of the modern value in the Eocene, and experienced topographic growth through the Oligo-Miocene. The

  12. Global model for the lithospheric strength and effective elastic thickness

    Science.gov (United States)

    Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2013-08-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.

  13. Synthetic Analysis of the Effective Elastic Thickness of the Lithosphere in China

    Science.gov (United States)

    Lu, Z.; Li, C.

    2017-12-01

    Effective elastic thickness (Te) represents the response of the lithosphere to a long-term (larger than 105 years) geological loading and reflects the deformation mechanism of plate and its thermodynamic state. Temperature and composition of the lithosphere, coupling between crust and lithospheric mantle, and lithospheric structures affect Te. Regional geology in China is quite complex, influenced by the subduction of the Pacific and Philippine Sea plates in the east and the collision of the Eurasia plate with the India-Australia plate in the southwest. Te can help understand the evolution and strength of the lithospheres in different areas and tectonic units. Here we apply the multitaper coherence method to estimate Te in China using the topography (ETOPO1) and Bouguer gravity anomalies (WGM2012) , at different window sizes (600km*600km, 800km*800km, 1000km*1000km) and moving steps. The lateral variation of Te in China coincides well with the geology. The old stable cratons or basins always correspond to larger Te, whereas the oceanic lithosphere or active orogen blocks tend to get smaller Te. We further correlate Te to curie-point depths (Zb) and heat flow to understand how temperature influences the strength of the lithosphere. Despite of a complex correlation between Te and Zb, good positive correlations are found in the North China Block, Tarim Basin, and Lower Yangtze, showing strong influence of temperature on lithospheric strength. Conversely, the Tibetan Plateau, Upper and Middle Yangtze, and East China Sea Basin even show negative correlation, suggesting that lithospheric structures and compositions play more important roles than temperature in these blocks. We also find that earthquakes tend to occur preferably in a certain range of Te. Deeper earthquakes are more likely to occur where the lithosphere is stronger with larger Te. Crust with a larger Te may also have a deeper ductile-brittle boundary, along which deep large earthquakes tend to cluster.

  14. The Lithosphere in Italy: Structure and Seismicity

    International Nuclear Information System (INIS)

    Brandmayr, Enrico; Blagoeva Raykova, Reneta; Zuri, Marco; Romanelli, Fabio; Doglioni, Carlo; Panza, Giuliano Francesco

    2010-07-01

    We propose a structural model for the lithosphere-asthenosphere system for the Italic region by means of the S-wave velocity (V S ) distribution with depth. To obtain the velocity structure the following methods are used in the sequence: frequency-time analysis (FTAN); 2D tomography (plotted on a grid 1 o x 1 o ); non-linear inversion; smoothing optimization method. The 3D V S structure (and its uncertainties) of the study region is assembled as a juxtaposition of the selected representative cellular models. The distribution of seismicity and heat flow is used as an independent constraint for the definition of the crustal and lithospheric thickness. The moment tensor inversion of recent damaging earthquakes which occurred in the Italic region is performed through a powerful non-linear technique and it is related to the different rheologic-mechanic properties of the crust and uppermost mantle. The obtained picture of the lithosphere-asthenosphere system for the Italic region confirms a mantle extremely vertically stratified and laterally strongly heterogeneous. The lateral variability in the mantle is interpreted in terms of subduction zones, slab dehydration, inherited mantle chemical anisotropies, asthenospheric upwellings, and so on. The western Alps and the Dinarides have slabs with low dip, whereas the Apennines show a steeper subduction. No evidence for any type of mantle plume is observed. The asymmetric expansion of the Tyrrhenian Sea, which may be interpreted as related to a relative eastward mantle flow with respect to the overlying lithosphere, is confirmed. (author)

  15. Numerical modeling of continental lithospheric weak zone over plume

    Science.gov (United States)

    Perepechko, Y. V.; Sorokin, K. E.

    2011-12-01

    The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of

  16. Impact of the lithosphere on dynamic topography: Insights from analogue modeling

    OpenAIRE

    Sembroni, Andrea; Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Becker, Thorsten W.; Goblig, Jan; Fernandez, Manel

    2017-01-01

    Density anomalies beneath the lithosphere are expected to generate dynamic topography at the Earth's surface due to the induced mantle flow stresses which scale linearly with density anomalies, while the viscosity of the upper mantle is expected to control uplift rates. However, limited attention has been given to the role of the lithosphere. Here we present results from analogue modeling of the interactions between a density anomaly rising in the mantle and the lithosphere in a Newtonian sys...

  17. Global model for the lithospheric strength and effective elastic thickness

    NARCIS (Netherlands)

    Tesauro, M.; Kaban, M.K.; Cloetingh, S.A.P.L.

    2013-01-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young

  18. Preliminary three-dimensional model of mantle convection with deformable, mobile continental lithosphere

    Science.gov (United States)

    Yoshida, Masaki

    2010-06-01

    Characteristic tectonic structures such as young orogenic belts and suture zones in a continent are expected to be mechanically weaker than the stable part of the continental lithosphere with the cratonic root (or cratonic lithosphere) and yield lateral viscosity variations in the continental lithosphere. In the present-day Earth's lithosphere, the pre-existing, mechanically weak zones emerge as a diffuse plate boundary. However, the dynamic role of a weak (low-viscosity) continental margin (WCM) in the stability of continental lithosphere has not been understood in terms of geophysics. Here, a new numerical simulation model of mantle convection with a compositionally and rheologically heterogeneous, deformable, mobile continental lithosphere is presented for the first time by using three-dimensional regional spherical-shell geometry. A compositionally buoyant and highly viscous continental assemblage with pre-existing WCMs, analogous to the past supercontinent, is modeled and imposed on well-developed mantle convection whose vigor of convection, internal heating rate, and rheological parameters are appropriate for the Earth's mantle. The visco-plastic oceanic lithosphere and the associated subduction of oceanic plates are incorporated. The time integration of the advection of continental materials with zero chemical diffusion is performed by a tracer particle method. The time evolution of mantle convection after setting the model supercontinent is followed over 800 Myr. Earth-like continental drift is successfully reproduced, and the characteristic thermal interaction between the mantle and the continent/supercontinent is observed in my new numerical model. Results reveal that the WCM protects the cratonic lithosphere from being stretched by the convecting mantle and may play a significant role in the stability of the cratonic lithosphere during the geological timescale because it acts as a buffer that prevents the cratonic lithosphere from undergoing global

  19. The rheological structure of the lithosphere in the Eastern Marmara region, Turkey

    Science.gov (United States)

    Oruç, Bülent; Sönmez, Tuba

    2017-05-01

    The aim of this work is to propose the geometries of the crustal-lithospheric mantle boundary (Moho) and lithosphere-asthenosphere boundary (LAB) and the 1D thermal structure of the lithosphere, in order to establish a rheological model of the Eastern Marmara region. The average depths of Moho and LAB are respectively 35 km and 51 km from radially averaged amplitude spectra of EGM08 Bouguer anomalies. The geometries of Moho and LAB interfaces are estimated from the Parker-Oldenburg gravity inversion algorithm. Our results show the Moho depth varies from 31 km at the northern part of North Anatolian Fault Zone (NAFZ) to 39 km below the mountain belt in the southern part of the NAFZ. The depth to the LAB beneath the same parts of the region ranges from 45 km to 55 km. Having lithospheric strength and thermal boundary layer structure, we analyzed the conditions of development of lithosphere thinning. A two-dimensional strength profile has been estimated for rheology model of the study area. Thus we suggest that the rheological structure consists of a strong upper crust, a weak lower crust, and a partly molten upper lithospheric mantle.

  20. Lithospheric-scale centrifuge models of pull-apart basins

    Science.gov (United States)

    Corti, Giacomo; Dooley, Tim P.

    2015-11-01

    We present here the results of the first lithospheric-scale centrifuge models of pull-apart basins. The experiments simulate relative displacement of two lithospheric blocks along two offset master faults, with the presence of a weak zone in the offset area localising deformation during strike-slip displacement. Reproducing the entire lithosphere-asthenosphere system provides boundary conditions that are more realistic than the horizontal detachment in traditional 1 g experiments and thus provide a better approximation of the dynamic evolution of natural pull-apart basins. Model results show that local extension in the pull-apart basins is accommodated through development of oblique-slip faulting at the basin margins and cross-basin faults obliquely cutting the rift depression. As observed in previous modelling studies, our centrifuge experiments suggest that the angle of offset between the master fault segments is one of the most important parameters controlling the architecture of pull-apart basins: the basins are lozenge shaped in the case of underlapping master faults, lazy-Z shaped in case of neutral offset and rhomboidal shaped for overlapping master faults. Model cross sections show significant along-strike variations in basin morphology, with transition from narrow V- and U-shaped grabens to a more symmetric, boxlike geometry passing from the basin terminations to the basin centre; a flip in the dominance of the sidewall faults from one end of the basin to the other is observed in all models. These geometries are also typical of 1 g models and characterise several pull-apart basins worldwide. Our models show that the complex faulting in the upper brittle layer corresponds at depth to strong thinning of the ductile layer in the weak zone; a rise of the base of the lithosphere occurs beneath the basin, and maximum lithospheric thinning roughly corresponds to the areas of maximum surface subsidence (i.e., the basin depocentre).

  1. A seismic tomography study of lithospheric structure under the Norwegian Caledonides

    DEFF Research Database (Denmark)

    Hejrani, Babak; Jacobsen, B. H.; Balling, N.

    2012-01-01

    A deep lithospheric transition between southern Norway and southern Sweden has been revealed in papers by Medhus et al. (2009,) and Medhus (2010). This lithospheric transition is crossing various tectonic units including the Caledonides.. We address the question of whether this transition continu...... (Hejrani et al., 2011) (optimizes 2D ray coverage under a crooked profile) is used to resolve the details of the transition boundaries in lithosphere structure across the mountains and its relation to the geological surface settings....... in this area. These results are compared the upper mantle structure obtained by Medhus (2010) and Hejrani et al. (2011) for Caledonian and shield units to the south in southern Norway and Sweden, where the lithospheric transition follows the eastern margin of the Oslo Graben. Crooked line seismic tomography...

  2. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive human-use data for regional and state parks, historic sites, marine sanctuaries, and other managed areas for the Hudson River....

  3. Timing of sediment-hosted Cu-Ag mineralization in the Trans-Hudson orogen at Janice Lake, Wollaston Domain, Saskatchewan, Canada

    Science.gov (United States)

    Perelló, José; Valencia, Víctor A.; Cornejo, Paula; Clifford, John; Wilson, Alan J.; Collins, Greg

    2018-04-01

    The Janice Lake Cu-Ag mineralization in the Wollaston Domain of northern Saskatchewan is hosted by a metasedimentary sequence in the upper part of the Wollaston Supergroup of the Trans-Hudson orogen. The Wollaston Supergroup was deposited between 2070 and 1865 Ma in a foreland basin setting constructed over Archean basement of the Hearne craton. The Trans-Hudson orogen underwent final collision and peak metamorphism at 1810 Ma, during consolidation of Laurentia and its amalgamation with the Columbia supercontinent. Titanite is a common constituent of the post-peak metamorphic assemblages of Trans-Hudson lithotectonic units and accompanied disseminated sediment-hosted Cu sulfide mineralization at Janice Lake. Titanite crystals, intergrown with chalcocite over a strike-length of 2 km of Cu-bearing stratigraphy, were dated by the ID-TIMS and LA-ICP-MS U-Pb methods, returning an age range from 1780 to 1760 Ma and a weighted average age of 1775 ± 10 Ma. The titanite ages effectively date the associated chalcocite-dominated sediment-hosted Cu-Ag mineralization and its formation during initial post-orogenic uplift and cooling, 30 myr after peak metamorphism. The age-range and tectonic setting of the Janice Lake mineralization confirms that sediment-hosted Cu mineralization was an integral part of the metallogenic endowment of Columbia and that its emplacement coincided with the continental-scale Trans-Hudson orogeny rather than with diagenesis and extensional basin development 100 myr earlier.

  4. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    Science.gov (United States)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of

  5. The partitioning of Triclosan between aqueous and particulate bound phases in the Hudson River Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Brittan [University of Massachusetts, Department of Environment, Earth and Ocean Sciences, 100 Morrissey Blvd., Boston, MA 02125 (United States); Chen, Robert F. [University of Massachusetts, Department of Environment, Earth and Ocean Sciences, 100 Morrissey Blvd., Boston, MA 02125 (United States); Cantwell, Mark [NHEERL, Atlantic Ecology Division, US Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882 (United States); Gontz, Allen; Jun, Zhu; Olsen, Curtis R. [University of Massachusetts, Department of Environment, Earth and Ocean Sciences, 100 Morrissey Blvd., Boston, MA 02125 (United States)

    2009-07-01

    The distribution of Triclosan within the Hudson River Estuary can be explained by a balance among the overall effluent inputs from municipal sewage treatment facilities, dilution of Triclosan concentrations in the water column with freshwater and seawater inputs, removal of Triclosan from the water column by adsorption to particles, and loss to photodegradation. This study shows that an average water column concentration of 3 {+-} 2 ng/l (in the lower Hudson River Estuary) is consistent with an estimate for dilution of average wastewater concentrations with seawater and calculated rates of adsorption of Triclosan to particles. An average Triclosan sediment concentration of 26 {+-} 11 ng/g would be in equilibrium with the overlying water column if Triclosan has a particle-to-water partitioning coefficient of k{sub d} {approx} 10{sup 4}, consistent with laboratory estimates.

  6. The partitioning of Triclosan between aqueous and particulate bound phases in the Hudson River Estuary

    International Nuclear Information System (INIS)

    Wilson, Brittan; Chen, Robert F.; Cantwell, Mark; Gontz, Allen; Zhu Jun; Olsen, Curtis R.

    2009-01-01

    The distribution of Triclosan within the Hudson River Estuary can be explained by a balance among the overall effluent inputs from municipal sewage treatment facilities, dilution of Triclosan concentrations in the water column with freshwater and seawater inputs, removal of Triclosan from the water column by adsorption to particles, and loss to photodegradation. This study shows that an average water column concentration of 3 ± 2 ng/l (in the lower Hudson River Estuary) is consistent with an estimate for dilution of average wastewater concentrations with seawater and calculated rates of adsorption of Triclosan to particles. An average Triclosan sediment concentration of 26 ± 11 ng/g would be in equilibrium with the overlying water column if Triclosan has a particle-to-water partitioning coefficient of k d ∼ 10 4 , consistent with laboratory estimates.

  7. Selective analysis of power plant operation on the Hudson River with emphasis on the Bowline Point Generating Station. Volume 2. [Multiple impact of power plant once-through cooling systems on fish populations

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L. W.; Cannon, J. B.; Christensen, S. G.

    1977-07-01

    Because of the location of the Bowline, Roseton, and Indian Point power generating facilities in the low-salinity zone of the Hudson estuary, operation of these plants with the present once-through cooling systems will adversely influence the fish populations that use the area for spawning and initial periods of growth and development. Recruitment rates and standing crops of several fish species may be lowered in response to the increased mortality caused by entrainment of nonscreenable eggs and larvae and by impingement of screenable young of the year. Entrainment and impingement data are particularly relevant for assessing which fish species have the greatest potential for being adversely affected by operation of Bowline, Roseton, and Indian Point with once-through cooling. These data from each of these three plants suggest that the six species that merit the greatest consideration are striped bass, white perch, tomcod, alewife, blueback herring, and bay anchovy. Two points of view are available for assessing the relative importance of the fish species in the Hudson River. From the fisheries point of view, the only two species of major importance are striped bass and shad. From the fish-community and ecosystem point of view, the dominant species, as determined by seasonal and regional standing crops (in numbers and biomass per hectare), are the six species most commonly entrained and impinged, namely, striped bass, white perch, tomcod, alewife, blueback herring, and anchovy.

  8. A lithospheric perspective on structure and evolution of Precambrian cratons

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2012-01-01

    The purpose of this chapter is to provide a summary of geophysical data on the structure of the stable continental lithosphere and its evolution since the Archean. Here, the term lithosphere is used to define the outer layer of the Earth which includes the crust and uppermost mantle, forms the ro...

  9. Double subduction of continental lithosphere, a key to form wide plateau

    Science.gov (United States)

    Replumaz, Anne; Funiciello, Francesca; Reitano, Riccardo; Faccenna, Claudio; Balon, Marie

    2016-04-01

    The mechanisms involved in the creation of the high and wide topography, like the Tibetan Plateau, are still controversial. In particular, the behaviour of the indian and asian lower continental lithosphere during the collision is a matter of debate, either thickening, densifying and delaminating, or keeping its rigidity and subducting. But since several decades seismicity, seismic profiles and global tomography highlight the lithospheric structure of the Tibetan Plateau, and make the hypotheses sustaining the models more precise. In particular, in the western syntaxis, it is now clear that the indian lithosphere subducts northward beneath the Hindu Kush down to the transition zone, while the asian one subducts southward beneath Pamir (e.g. Negredo et al., 2007; Kufner et al., 2015). Such double subduction of continental lithospheres with opposite vergence has also been inferred in the early collision time. Cenozoic volcanic rocks between 50 and 30 Ma in the Qiangtang block have been interpreted as related to an asian subduction beneath Qiangtang at that time (De Celles et al., 2011; Guillot and Replumaz, 2013). We present here analogue experiments silicone/honey to explore the subduction of continental lithosphere, using a piston as analogue of far field forces. We explore the parameters that control the subductions dynamics of the 2 continental lithospheres and the thickening of the plates at the surface, and compare with the Tibetan Plateau evolution. We show that a continental lithosphere is able to subduct in a collision context, even lighter than the mantle, if the plate is rigid enough. In that case the horizontal force due to the collision context, modelled by the piston push transmitted by the indenter, is the driving force, not the slab pull which is negative. It is not a subduction driving by the weight of the slab, but a subduction induced by the collision, that we could call "collisional subduction".

  10. Lithospheric controls on magma composition along Earth's longest continental hotspot track.

    Science.gov (United States)

    Davies, D R; Rawlinson, N; Iaffaldano, G; Campbell, I H

    2015-09-24

    Hotspots are anomalous regions of volcanism at Earth's surface that show no obvious association with tectonic plate boundaries. Classic examples include the Hawaiian-Emperor chain and the Yellowstone-Snake River Plain province. The majority are believed to form as Earth's tectonic plates move over long-lived mantle plumes: buoyant upwellings that bring hot material from Earth's deep mantle to its surface. It has long been recognized that lithospheric thickness limits the rise height of plumes and, thereby, their minimum melting pressure. It should, therefore, have a controlling influence on the geochemistry of plume-related magmas, although unambiguous evidence of this has, so far, been lacking. Here we integrate observational constraints from surface geology, geochronology, plate-motion reconstructions, geochemistry and seismology to ascertain plume melting depths beneath Earth's longest continental hotspot track, a 2,000-kilometre-long track in eastern Australia that displays a record of volcanic activity between 33 and 9 million years ago, which we call the Cosgrove track. Our analyses highlight a strong correlation between lithospheric thickness and magma composition along this track, with: (1) standard basaltic compositions in regions where lithospheric thickness is less than 110 kilometres; (2) volcanic gaps in regions where lithospheric thickness exceeds 150 kilometres; and (3) low-volume, leucitite-bearing volcanism in regions of intermediate lithospheric thickness. Trace-element concentrations from samples along this track support the notion that these compositional variations result from different degrees of partial melting, which is controlled by the thickness of overlying lithosphere. Our results place the first observational constraints on the sub-continental melting depth of mantle plumes and provide direct evidence that lithospheric thickness has a dominant influence on the volume and chemical composition of plume-derived magmas.

  11. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain

    Science.gov (United States)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine

    2015-12-01

    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  12. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: STAGING (Staging Site Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for staging sites along the Hudson River. Vector points in this data set represent locations of possible staging areas...

  13. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: SENSITIV (Sensitive Area Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for sensitive areas along the Hudson River. Vector points in this data set represent sensitive areas. This data set...

  14. Ecological investigation of Hudson River macrozooplankton in the vicinity of a nuclear power plant

    International Nuclear Information System (INIS)

    Ginn, T.C.

    1977-01-01

    Studies were conducted on selected Hudson River macrozooplankton species to determine temporal and spatial distributions and responses to power plant operation. Distinguishing morphological and habitat characteristics were determined for the three gammarid amphipods (Gammarus daiberi, G. tigrinus, and G. fasciatus) occurring in the Hudson River. The oedicerotid amphipod Monoculodes edwardsi and the mysid Neomysis americana, in addition to the gammarid amphipods, displayed characteristic diel and seasonal abundances which affect their potential availability for power plant entrainment. The selected macrozooplankton species were utilized in temperature and chlorine bioassays in order to predict responses to cooling water entrainment. Although amphipods (Gammarus spp. and M. edwardsi) survived typical Indian Point cooling water temperatures, N. americana had high mortalities during a 30-minute, 8.3 0 C ΔT at 25 0 C ambient temperature. The bioassay results were substantiated by generally high survivals of entrained amphipods at the Indian Point plant. Neomysis americana were more heat sensitive, as indicated in bioassays, with average entrainment mortalities ranging from 30 to 60 percent during the summer. All species examined had higher immediate and latent mortalities during plant condenser chlorination. The ability of Gammarus to survive condenser passage and exposure to the Indian Point thermal discharge plume indicates that power plant operation on the lower Hudson River Estuary has no adverse impact on local gammarid amphipod populations. Entrained N. americana experience considerable mortalities; however, the impact on Atlantic Coast populations is minimized by the limited exposure of the population fringe to the Indian Point power plant

  15. Fossil plume head beneath the Arabian lithosphere?

    Science.gov (United States)

    Stein, Mordechai; Hofmann, Albrecht W.

    1992-12-01

    Phanerozoic alkali basalts from Israel, which have erupted over the past 200 Ma, have isotopic compositions similar to PREMA ("prevalent mantle") with narrow ranges of initial ɛ Nd(T) = +3.9-+5.9; 87Sr/ 86Sr(T)= 0.70292-0.70334; 206Pb/ 204Pb(T)= 18.88-19.99; 207Pb/ 204Pb(T)= 15.58-15.70; and 208Pb/ 204Pb(T)= 38.42-39.57. Their Nb/U(43 ± 9) and Ce/Pb(26 ± 6) ratios are identical to those of normal oceanic basalts, demonstrating that the basalts are essentially free of crustal contamination. Overall, the basalts are chemically and isotopically indistinguishable from many ordinary plume basalts, but no plume track can be identified. We propose that these and other, similar, magmas from the Arabian plate originated from a "fossilized" head of a mantle plume, which was unable to penetrate the continental lithosphere and was therefore trapped and stored beneath it. The plume head was emplaced some time between the late Proterozoic crust formation and the initiation of the Phanerozoic magmatic cycles. Basalts from rift environments in other continental localities show similar geochemistry to that of the Arabian basalts and their sources may also represent fossil plume heads trapped below the continents. We suggest that plume heads are, in general, characterized by the PREMA isotopic mantle signature, because the original plume sources (which may have HIMU or EM-type composition) have been diluted by overlying mantle material, which has been entrained by the plume heads during ascent. On the Arabian plate, rifting and thinning of the lithosphere caused partial melting of the stored plume, which led to periodic volcanism. In the late Cenozoic, the lithosphere broke up and the Red Sea opened. N-MORB tholeiites are now erupting in the central trough of the Red Sea, where the lithosphere has moved apart and the fossil plume has been exhausted, whereas E-MORBs are erupting in the northern and southern troughs, still tapping the plume reservoir. Fossil plumes, which are

  16. Primula latifolia Lapeyr. and Primula vulgaris Hudson flavonoids.

    Science.gov (United States)

    Colombo, Paola S; Flamini, Guido; Fico, Gelsomina

    2014-01-01

    Three flavonoids were isolated from the leaf MeOH extracts of Primula latifolia Lapeyr. and Primula vulgaris Hudson collected from Italian Alps: rutin (1) and kaempferol 3-neohesperidoside (2) from P. latifolia, and kaempferol 3-β-O-glucopyranosyl-(1 → 2) gentiobioside (3) from P. vulgaris. The structures were assigned on the basis of their (1)H and (13)C NMR data, including those derived from 2D NMR, as well as on HPLC-MS results. This article is the first to report on P. vulgaris tissue flavonoids after Harborne's study in 1968 and the first work ever on these compounds from P. latifolia.

  17. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for small terrestrial mammals (woodrats, myotis, muskrat, mink) for the Hudson River. Vector polygons in...

  18. 75 FR 39839 - Regulated Navigation Area; Hudson River and Port of NY/NJ

    Science.gov (United States)

    2010-07-13

    ... navigation area (RNA) from Port Coeymans, New York on the Hudson River to Jersey City, New Jersey on Upper... replacement span. DATES: This rule is effective from July 13, 2010 through October 31, 2010. The RNA will be... time and place announced by a later notice in the Federal Register. [[Page 39840

  19. Lithospheric flexural strength and effective elastic thicknesses of the Eastern Anatolia (Turkey) and surrounding region

    Science.gov (United States)

    Oruç, Bülent; Gomez-Ortiz, David; Petit, Carole

    2017-12-01

    The Lithospheric structure of Eastern Anatolia and the surrounding region, including the northern part of the Arabian platform is investigated via the analysis and modeling of Bouguer anomalies from the Earth Gravitational Model EGM08. The effective elastic thickness of the lithosphere (EET) that corresponds to the mechanical cores of the crust and lithospheric mantle is determined from the spectral coherence between Bouguer anomalies and surface elevation data. Its average value is 18.7 km. From the logarithmic amplitude spectra of Bouguer anomalies, average depths of the lithosphere-asthenosphere boundary (LAB), Moho, Conrad and basement in the study area are constrained at 84 km, 39 km, 16 km and 7 km, respectively. The geometries of the LAB and Moho are then estimated using the Parker-Oldenburg inversion algorithm. We also present a lithospheric strength map obtained from the spatial variations of EET determined by Yield Stress Envelopes (YSE). The EET varies in the range of 12-23 km, which is in good agreement with the average value obtained from spectral analysis. Low EET values are interpreted as resulting from thermal and flexural lithospheric weakening. According to the lithospheric strength of the Eastern Anatolian region, the rheology model consists of a strong but brittle upper crust, a weak and ductile lower crust, and a weak lower part of the lithosphere. On the other hand, lithosphere strength corresponds to weak and ductile lower crust, a strong upper crust and a strong uppermost lithospheric mantle for the northern part of the Arabian platform.

  20. Environmental Sensitivity Index (ESI) Atlas: Hudson River, maps and geographic information systems data (NODC Accession 0014791)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for the Hudson River from 1942 to 2005. ESI data characterize estuarine environments and...

  1. Extensional and compressional instabilities in icy satellite lithospheres

    International Nuclear Information System (INIS)

    Herrick, D.L.; Stevenson, D.J.

    1990-01-01

    The plausibility of invoking a lithospheric instability mechanism to account for the grooved terrains on Ganymede, Encedalus, and Miranda is presently evaluated in light of the combination of a simple mechanical model of planetary lithospheres and asthenospheres with recent experimental data for the brittle and ductile deformation of ice. For Ganymede, high surface gravity and warm temperatures render the achievement of an instability sufficiently great for the observed topographic relief virtually impossible; an instability of sufficient strength, however, may be able to develop on such smaller, colder bodies as Encedalus and Miranda. 15 refs

  2. Regional contamination versus regional dietary differences: Understanding geographic variation in brominated and chlorinated contaminant levels in polar bears

    Science.gov (United States)

    McKinney, M.A.; Letcher, R.J.; Aars, Jon; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Gabrielsen, G.W.; Muir, D.C.G.; Peacock, E.; Sonne, C.

    2011-01-01

    The relative contribution of regional contamination versus dietary differences to geographic variation in polar bear (Ursus maritimus) contaminant levels is unknown. Dietary variation between Alaska Canada, East Greenland, and Svalbard subpopulations was assessed by muscle nitrogen and carbon stable isotope (?? 15N, ?? 13C) and adipose fatty acid (FA) signatures relative to their main prey (ringed seals). Western and southern Hudson Bay signatures were characterized by depleted ?? 15N and ??13C, lower proportions of C20 and C22 monounsaturated FAs and higher proportions of C18 and longer chain polyunsaturated FAs. East Greenland and Svalbard signatures were reversed relative to Hudson Bay. Alaskan ?? 2011 American Chemical Society.

  3. Plutonium, cesium, uranium and thorium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, 1 December 1984-30 November 1985

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.; Anderson, R.F.

    1985-01-01

    We have measured radionuclide activities in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs and 60 Co determined by gamma spectrometry and /sup 239,240/Pu and 238 Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in /sup 239,240/Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Fallout /sup 239,240/Pu moving downstream in the Hudson appears to be almost completely retained within the system by particle deposition, while more than 50% of the 137 Cs derived from both reactor releases and fallout has been exported from the tidal Hudson to coastal waters. Some significant movement of dissolved plutonium into the estuary from the adjacent coastal waters may well be occurring. Depth profiles of radionuclides in Hudson sediments do not appear to be significantly altered by physical mixing processes in the sediment in areas accumulating particles at greater than 1 cm/y. Transport of fallout radionuclides from the drainage basin to the tidal Hudson appears to have decreased much faster than would be calculated from continuous removal from a well-mixed soil reservoir, indicating that sequestering of a substantial portion of the soil fallout burden has occurred in the watershed soils over the past two decades. Activities of 60 Co in New York harbor sediments in 1984 averaged considerably higher than in 1979 and 1981, suggesting releases of this nuclide to the Hudson comparable to the first five years of reactor operations. 12 figs., 9 tabs

  4. 33 CFR 207.60 - Federal Dam, Hudson River, Troy, N.Y.; pool level.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Federal Dam, Hudson River, Troy, N.Y.; pool level. 207.60 Section 207.60 Navigation and Navigable Waters CORPS OF ENGINEERS..., N.Y.; pool level. (a) Whenever the elevation of the pool created by the Federal dam at Troy, N.Y...

  5. Wildlife habitat connectivity in the changing climate of New York's Hudson Valley.

    Science.gov (United States)

    Howard, Timothy G; Schlesinger, Matthew D

    2013-09-01

    Maintaining and restoring connectivity are key adaptation strategies for biodiversity conservation under climate change. We present a novel combination of species distribution and connectivity modeling using current and future climate regimes to prioritize connections among populations of 26 rare species in New York's Hudson Valley. We modeled patches for each species for each time period and modeled potential connections among habitat patches by finding the least-cost path for every patch-to-patch connection. Finally, we aggregated these patches and paths to the tax parcel, commonly the primary unit of conservation action. Under future climate regimes, suitable habitat was predicted to contract or appear upslope and farther north. On average, predicted patches were nine times smaller and paths were twice as long under future climate. Parcels within the Hudson Highlands, Shawangunk Ridge, Catskill Mountains, and Harlem Valley had high species overlap, with areas upslope and northward increasing in importance over time. We envision that land managers and conservation planners can use these results to help prioritize parcel-level conservation and management and thus support biodiversity adaptation to climate change. © 2013 New York Academy of Sciences.

  6. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine mammals (seals) in the Hudson River. Vector polygons in this data set represent marine mammal...

  7. Lithospheric strucutre and relationship to seismicity beneath the Southeastern US using reciever functions

    Science.gov (United States)

    Cunningham, E.; Lekic, V.

    2017-12-01

    Despite being on a passive margin for millions of years, the Southeastern United States (SEUS) contains numerous seismogenic zones with the ability to produce damaging earthquakes. However, mechanisms controlling these intraplate earthquakes are poorly understood. Recently, Biryol et al. 2016 use P-wave tomography suggest that upper mantle structures beneath the SEUS correlate with areas of seismicity and seismic quiescence. Specifically, thick and fast velocity lithosphere beneath North Carolina is stable and indicative of areas of low seismicity. In contrast, thin and slow velocity lithosphere is weak, and the transition between the strong and weak lithosphere may be correlated with seismogenic zones found in the SEUS. (eg. Eastern Tennessee seismic zone and the Central Virginia seismic zone) Therefore, I systematically map the heterogeneity of the mantle lithosphere using converted seismic waves and quantify the spatial correlation between seismicity and lithospheric structure. The extensive network of seismometers that makes up the Earthscope USArray combined with the numerous seismic deployments in the Southeastern United States allows for unprecedented opportunity to map changes in lithospheric structure across seismogenic zones and seismic quiescent regions. To do so, I will use both P-to-s and S-to-p receiver functions (RFS). Since RFs are sensitive to seismic wavespeeds and density discontinuities with depth, they particularly useful for studying lithospheric structure. Ps receiver functions contain high frequency information allowing for high resolution, but can become contaminated by large sediment signals; therefore, I removed sediment multiples and correct for time delays of later phases using the method of Yu et. al 2015 which will allow us to see later arriving phases associated with lithospheric discontinuities. S-to-p receiver functions are not contaminated by shallow layers, making them ideal to study deep lithospheric structures but they can

  8. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.

    Science.gov (United States)

    Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-03-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.

  9. Determination of intrinsic attenuation in the oceanic lithosphere-asthenosphere system

    Science.gov (United States)

    Takeuchi, Nozomu; Kawakatsu, Hitoshi; Shiobara, Hajime; Isse, Takehi; Sugioka, Hiroko; Ito, Aki; Utada, Hisashi

    2017-12-01

    We recorded P and S waves traveling through the oceanic lithosphere-asthenosphere system (LAS) using broadband ocean-bottom seismometers in the northwest Pacific, and we quantitatively separated the intrinsic (anelastic) and extrinsic (scattering) attenuation effects on seismic wave propagation to directly infer the thermomechanical properties of the oceanic LAS. The strong intrinsic attenuation in the asthenosphere obtained at higher frequency (~3 hertz) is comparable to that constrained at lower frequency (~100 seconds) by surface waves and suggests frequency-independent anelasticity, whereas the intrinsic attenuation in the lithosphere is frequency dependent. This difference in frequency dependence indicates that the strong and broad peak dissipation recently observed in the laboratory exists only in the asthenosphere and provides new insight into what distinguishes the asthenosphere from the lithosphere.

  10. Lithospheric structure and deformation of the North American continent

    OpenAIRE

    Magdala Tesauro; Mikhail Kaban; S. Cloetingh; W. D. Mooney

    2013-01-01

    We estimate the integrated strength and elastic thickness (Te) of the North American lithosphere based on thermal, density and structural (seismic) models of the crust and upper mantle. The temperature distribution in the lithosphere is estimated considering for the first time the effect of composition as a result of the integrative approach based on a joint analysis of seismic and gravity data. We do this via an iterative adjustment of the model. The upper mantle temperatures are initially e...

  11. Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data

    Science.gov (United States)

    Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.

    2018-01-01

    to south. The crustal material has higher velocity at the southern part compared to that at the northern part of Bay of Bengal indicating that it changes from more oceanic type in the southern part of the Bay to more continental type to its north. Both Moho and lithosphere - asthenosphere boundary (LAB) dips gently towards north. Thicknesses of both lithosphere and asthenosphere also increase in the same direction. The mantle structure shows complex variation from south to north indicating possible effect of repeated changes in type of tectonic activity in the Bay of Bengal.

  12. Analysis of Lithospheric Stresses Using Satellite Gravimetry: Hypotheses and Applications to North Atlantic

    Science.gov (United States)

    Minakov, A.; Medvedev, S.

    2017-12-01

    Analysis of lithospheric stresses is necessary to gain understanding of the forces that drive plate tectonics and intraplate deformations and the structure and strength of the lithosphere. A major source of lithospheric stresses is believed to be in variations of surface topography and lithospheric density. The traditional approach to stress estimation is based on direct calculations of the Gravitational Potential Energy (GPE), the depth integrated density moment of the lithosphere column. GPE is highly sensitive to density structure which, however, is often poorly constrained. Density structure of the lithosphere may be refined using methods of gravity modeling. However, the resulted density models suffer from non-uniqueness of the inverse problem. An alternative approach is to directly estimate lithospheric stresses (depth integrated) from satellite gravimetry data. Satellite gravity gradient measurements by the ESA GOCE mission ensures a wealth of data for mapping lithospheric stresses if a link between data and stresses or GPE can be established theoretically. The non-uniqueness of interpretation of sources of the gravity signal holds in this case as well. Therefore, the data analysis was tested for the North Atlantic region where reliable additional constraints are supplied by both controlled-source and earthquake seismology. The study involves comparison of three methods of stress modeling: (1) the traditional modeling approach using a thin sheet approximation; (2) the filtered geoid approach; and (3) the direct utilization of the gravity gradient tensor. Whereas the first two approaches (1)-(2) calculate GPE and utilize a computationally expensive finite element mechanical modeling to calculate stresses, the approach (3) uses a much simpler numerical treatment but requires simplifying assumptions that yet to be tested. The modeled orientation of principal stresses and stress magnitudes by each of the three methods are compared with the World Stress Map.

  13. Constraints on Composition, Structure and Evolution of the Lithosphere

    Science.gov (United States)

    Bianchini, Gianluca; Bonadiman, Costanza; Aulbach, Sonja; Schutt, Derek

    2015-05-01

    The idea for this special issue was triggered at the Goldschmidt Conference held in Florence (August 25-30, 2013), where we convened a session titled "Integrated Geophysical-Geochemical Constraints on Composition and Structure of the Lithosphere". The invitation to contribute was extended not only to the session participants but also to a wider spectrum of colleagues working on related topics. Consequently, a diverse group of Earth scientists encompassing geophysicists, geodynamicists, geochemists and petrologists contributed to this Volume, providing a comprehensive overview on the nature and evolution of lithospheric mantle by combining studies that exploit different types of data and interpretative approaches. The integration of geochemical and geodynamic datasets and their interpretation represents the state of the art in our knowledge of the lithosphere and beyond, and could serve as a blueprint for future strategies in concept and methodology to advance our knowledge of this and other terrestrial reservoirs.

  14. Seismic and Thermal Structure of the Arctic Lithosphere, From Waveform Tomography and Thermodynamic Modelling

    Science.gov (United States)

    Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.

    2015-12-01

    Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.

  15. Lithospheric discontinuities beneath the U.S. Midcontinent - signatures of Proterozoic terrane accretion and failed rifting

    Science.gov (United States)

    Chen, Chen; Gilbert, Hersh; Fischer, Karen M.; Andronicos, Christopher L.; Pavlis, Gary L.; Hamburger, Michael W.; Marshak, Stephen; Larson, Timothy; Yang, Xiaotao

    2018-01-01

    Seismic discontinuities between the Moho and the inferred lithosphere-asthenosphere boundary (LAB) are known as mid-lithospheric discontinuities (MLDs) and have been ascribed to a variety of phenomena that are critical to understanding lithospheric growth and evolution. In this study, we used S-to-P converted waves recorded by the USArray Transportable Array and the OIINK (Ozarks-Illinois-Indiana-Kentucky) Flexible Array to investigate lithospheric structure beneath the central U.S. This region, a portion of North America's cratonic platform, provides an opportunity to explore how terrane accretion, cratonization, and subsequent rifting may have influenced lithospheric structure. The 3D common conversion point (CCP) volume produced by stacking back-projected Sp receiver functions reveals a general absence of negative converted phases at the depths of the LAB across much of the central U.S. This observation suggests a gradual velocity decrease between the lithosphere and asthenosphere. Within the lithosphere, the CCP stacks display negative arrivals at depths between 65 km and 125 km. We interpret these as MLDs resulting from the top of a layer of crystallized melts (sill-like igneous intrusions) or otherwise chemically modified lithosphere that is enriched in water and/or hydrous minerals. Chemical modification in this manner would cause a weak layer in the lithosphere that marks the MLDs. The depth and amplitude of negative MLD phases vary significantly both within and between the physiographic provinces of the midcontinent. Double, or overlapping, MLDs can be seen along Precambrian terrane boundaries and appear to result from stacked or imbricated lithospheric blocks. A prominent negative Sp phase can be clearly identified at 80 km depth within the Reelfoot Rift. This arrival aligns with the top of a zone of low shear-wave velocities, which suggests that it marks an unusually shallow seismic LAB for the midcontinent. This boundary would correspond to the top of a

  16. Historical development of entrainment models for Hudson River striped bass

    International Nuclear Information System (INIS)

    Christensen, S.W.; Englert, T.L.

    1988-01-01

    In the mid-1960s, concerns surfaced regarding entrainment and impingement of young-of-the-year (age-0) striped bass by electric power generating facilities on the Hudson River. These concerns stimulated the development of increasingly complex models to evaluate the impacts of these facilities. The earliest simplistic formulas, based on empirical data, proved inadequate because of conceptual shortcomings, incomplete development, and lack of data. By 1972, complex transport models based on biological and hydrodynamic principles had been developed and applied by scientists representing both the utilities and the government. Disagreements about the acceptability of these models spurred the development of even more complex models. The entrainment models stimulated the collection of substantial amounts of field data to define the spatial distributions and entrainment survival of early life stages. As the difficulties of accounting for the movement of early life stages from hydrodynamic principles became more evident and as more field data became available, simpler empirical modeling approaches became both practical and defensible. Both empirical and hydrodynamic modeling approaches were applied during the US Environmental Protection Agency's hearings on the Hudson River power case (1977-1980). The main lessons learned from the experience with entrainment-impingement modeling are that complex mechanistic models are not necessarily better than simpler empirical models for young fish, and that care must be taken to construct even the simple models correctly. 29 refs., 4 figs., 1 tab

  17. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: RVRMILES (River Mile Marker Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for river miles along the Hudson River. Vector lines in this data set represent river mile markers. This data set...

  18. Primary birthing attendants and birth outcomes in remote Inuit communities—a natural “experiment” in Nunavik, Canada

    Science.gov (United States)

    Simonet, F; Wilkins, R; Labranche, E; Smylie, J; Heaman, M; Martens, P; Fraser, W D; Minich, K; Wu, Y; Carry, C; Luo, Z-C

    2010-01-01

    Background There is a lack of data on the safety of midwife-led maternity care in remote or indigenous communities. In a de facto natural “experiment”, birth outcomes were assessed by primary birthing attendant in two sets of remote Inuit communities. Methods A geocoding-based retrospective birth cohort study in 14 Inuit communities of Nunavik, Canada, 1989–2000: primary birth attendants were Inuit midwives in the Hudson Bay (1529 Inuit births) vs western physicians in Ungava Bay communities (1197 Inuit births). The primary outcome was perinatal death. Secondary outcomes included stillbirth, neonatal death, post-neonatal death, preterm, small-for-gestational-age and low birthweight birth. Multilevel logistic regression was used to obtain the adjusted odds ratios (aOR) controlling for maternal age, marital status, parity, education, infant sex and plurality, community size and community-level random effects. Results The aORs (95% confidence interval) for perinatal death comparing the Hudson Bay vs Ungava Bay communities were 1.29 (0.63 to 2.64) for all Inuit births and 1.13 (0.48 to 2.47) for Inuit births at ≥28 weeks of gestation. There were no statistically significant differences in the crude or adjusted risks of any of the outcomes examined. Conclusion Risks of perinatal death were somewhat but not significantly higher in the Hudson Bay communities with midwife-led maternity care compared with the Ungava Bay communities with physician-led maternity care. These findings are inconclusive, although the results excluding extremely preterm births are more reassuring concerning the safety of midwife-led maternity care in remote indigenous communities. PMID:19286689

  19. The lithosphere-asthenosphere system in the Calabrian Arc and surrounding seas

    Energy Technology Data Exchange (ETDEWEB)

    Panza, G F [Department of Earth Sciences, University of Trieste, Trieste (Italy); [Abdus Salam International Centre for Theoretical Physics, SAND Group, Trieste (Italy)]. E-mail: panza@dst.univ.trieste.it; Pontevivo, A [Department of Earth Sciences, University of Trieste, Trieste (Italy)

    2002-10-01

    Through the non-linear inversion of Surface-Wave Tomography data, using as a priori constraints seismic data from literature, it has been possible to define a fairly detailed structural model of the lithosphere-asthenosphere system (thickness, S-wave and P-wave velocities of the crust and of the upper mantle layers) in the Calabrian Arc region (Southern Tyrrhenian Sea, Calabria and the Northern-Western part of the Ionian Sea). The main features identified by our study are: (1) a very shallow (less then 10 km deep) crust-mantle transition in the Southern Tyrrhenian Sea and very low S-wave velocities just below a very thin lid in correspondence of the submarine volcanic bodies in the study area; (2) a shallow and very low S-wave velocity layer in the mantle in the areas of Aeolian islands, of Vesuvius, Ischia and Phlegraean Fields, representing their shallow-mantle magma source; (3) a thickened continental crust and lithospheric doubling in Calabria; (4) a crust about 25 km thick and a mantle velocity profile versus depth consistent with the presence of a continental rifled, now thermally relaxed, lithosphere in the investigated part of the Ionian Sea; (5) the subduction of the Ionian lithosphere towards NW below the Tyrrhenian Basin; (6) the subduction of the Adriatic lithosphere underneath the Vesuvius and Phlegraean Fields. (author)

  20. Magma explains low estimates of lithospheric strength based on flexure of ocean island loads

    Science.gov (United States)

    Buck, W. Roger; Lavier, Luc L.; Choi, Eunseo

    2015-04-01

    One of the best ways to constrain the strength of the Earth's lithosphere is to measure the deformation caused by large, well-defined loads. The largest, simple vertical load is that of the Hawaiian volcanic island chain. An impressively detailed recent analysis of the 3D response to that load by Zhong and Watts (2013) considers the depth range of seismicity below Hawaii and the seismically determined geometry of lithospheric deflection. These authors find that the friction coefficient for the lithosphere must be in the normal range measured for rocks, but conclude that the ductile flow strength has to be far weaker than laboratory measurements suggest. Specifically, Zhong and Watts (2013) find that stress differences in the mantle lithosphere below the island chain are less than about 200 MPa. Standard rheologic models suggest that for the ~50 km thick lithosphere inferred to exist below Hawaii yielding will occur at stress differences of about 1 GPa. Here we suggest that magmatic accommodation of flexural extension may explain Hawaiian lithospheric deflection even with standard mantle flow laws. Flexural stresses are extensional in the deeper part of the lithosphere below a linear island load (i.e. horizontal stresses orthogonal to the line load are lower than vertical stresses). Magma can accommodate lithospheric extension at smaller stress differences than brittle and ductile rock yielding. Dikes opening parallel to an island chain would allow easier downflexing than a continuous plate, but wound not produce a freely broken plate. The extensional stress needed to open dikes at depth depends on the density contrast between magma and lithosphere, assuming magma has an open pathway to the surface. For a uniform lithospheric density ρL and magma density ρM the stress difference to allow dikes to accommodate extension is: Δσxx (z) = g z (ρM - gρL), where g is the acceleration of gravity and z is depth below the surface. For reasonable density values (i.e.

  1. Selective analysis of power plant operation on the Hudson River with emphasis on the Bowline Point Generating Station. Volume 1

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Cannon, J.B.; Christensen, S.G.

    1977-07-01

    A comprehensive study of the effects of power plant operation on the Hudson River was conducted. The study included thermal, biological, and air quality effects of existing and planned electrical generating stations. This section on thermal impacts presents a comprehensive mathematical modeling and computer simulation study of the effects of heat rejection from the plants. The overall study consisted of three major parts: near-field analysis; far-field analysis; and zone-matched near-field/far-field analysis. Near-field analyses were completed for Roseton, Danskammer, and Bowline Point Generating Stations, and near-field dilution ratios range from a low of about 2 for Bowline Point and 3 for Roseton to a maximum of 6 for both plants. The far-field analysis included a critical review of existing studies and a parametric review of operating plants. The maximum thermal load case, based on hypothetical 1974 river conditions, gives the daily maximum cross-section-averaged and 2-mile-segment-averaged water temperatures as 83.80 0 F in the vicinity of the Indian Point Station and 83.25 0 F in the vicinity of the Bowline Station. This maximum case will be significantly modified if cooling towers are used at certain units. A full analysis and discussion of these cases is presented. A study of the Hudson River striped bass population is divided into the following eight subsections: distribution of striped bass eggs, larvae, and juveniles in the Hudson River; entrainment mortality factor; intake factor; impingement; effects of discharges; compensation; model estimates of percent reduction; and Hudson River striped bass stock

  2. Interaction between mantle and crustal detachments: a non-linear system controlling lithospheric extension

    Science.gov (United States)

    Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.

    2009-12-01

    We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.

  3. Seismic structure of the lithosphere beneath NW Namibia: Impact of the Tristan da Cunha mantle plume

    Science.gov (United States)

    Yuan, Xiaohui; Heit, Benjamin; Brune, Sascha; Steinberger, Bernhard; Geissler, Wolfram H.; Jokat, Wilfried; Weber, Michael

    2017-01-01

    Northwestern Namibia, at the landfall of the Walvis Ridge, was affected by the Tristan da Cunha mantle plume during continental rupture between Africa and South America, as evidenced by the presence of the Etendeka continental flood basalts. Here we use data from a passive-source seismological network to investigate the upper mantle structure and to elucidate the Cretaceous mantle plume-lithosphere interaction. Receiver functions reveal an interface associated with a negative velocity contrast within the lithosphere at an average depth of 80 km. We interpret this interface as the relic of the lithosphere-asthenosphere boundary (LAB) formed during the Mesozoic by interaction of the Tristan da Cunha plume head with the pre-existing lithosphere. The velocity contrast might be explained by stagnated and "frozen" melts beneath an intensively depleted and dehydrated peridotitic mantle. The present-day LAB is poorly visible with converted waves, indicating a gradual impedance contrast. Beneath much of the study area, converted phases of the 410 and 660 km mantle transition zone discontinuities arrive 1.5 s earlier than in the landward plume-unaffected continental interior, suggesting high velocities in the upper mantle caused by a thick lithosphere. This indicates that after lithospheric thinning during continental breakup, the lithosphere has increased in thickness during the last 132 Myr. Thermal cooling of the continental lithosphere alone cannot produce the lithospheric thickness required here. We propose that the remnant plume material, which has a higher seismic velocity than the ambient mantle due to melt depletion and dehydration, significantly contributed to the thickening of the mantle lithosphere.

  4. Hydrocarbons in the Bay of Bengal and Central Indian Basin bottom sediments: Indicators of geochemical processes in the lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Chernova, T.G.; Paropkari, A.L.; Pikovskii, Yu.I.; Alekseeva, T.A.

    A study on the bulk distributions and molecular structures of n-alkanes and polycyclic aromatic hydrocarbons (PAH) in organic matter of the sediments from the Bay of Bengal and the Eastern and Central Indian Basins was underdaken. The former two...

  5. Lithosphere erosion and continental breakup : Interaction of extension, plume upwelling and melting

    NARCIS (Netherlands)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2017-01-01

    We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by

  6. Using natural laboratories and modeling to decipher lithospheric rheology

    Science.gov (United States)

    Sobolev, Stephan

    2013-04-01

    Rheology is obviously important for geodynamic modeling but at the same time rheological parameters appear to be least constrained. Laboratory experiments give rather large ranges of rheological parameters and their scaling to nature is not entirely clear. Therefore finding rheological proxies in nature is very important. One way to do that is finding appropriate values of rheological parameter by fitting models to the lithospheric structure in the highly deformed regions where lithospheric structure and geologic evolution is well constrained. Here I will present two examples of such studies at plate boundaries. One case is the Dead Sea Transform (DST) that comprises a boundary between African and Arabian plates. During the last 15- 20 Myr more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Lithospheric structure and geological evolution of DST and DSB is rather well constrained by a number of interdisciplinary projects including DESERT and DESIRE projects leaded by the GFZ Potsdam. Detailed observations reveal apparently contradictory picture. From one hand widespread igneous activity, especially in the last 5 Myr, thin (60-80 km) lithosphere constrained from seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow of less than 50-60mW/m2 and deep seismicity in the lower crust ( deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what I call the "DST heat-flow paradox", a 3D numerical thermo-mechanical model was developed operating with non-linear elasto-visco-plastic rheology of the lithosphere. Results of the numerical experiments show that the entire set of

  7. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    Science.gov (United States)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2018-01-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  8. The impact of lateral variations in lithospheric thickness on glacial isostatic adjustment in West Antarctica

    Science.gov (United States)

    Nield, Grace A.; Whitehouse, Pippa L.; van der Wal, Wouter; Blank, Bas; O'Donnell, John Paul; Stuart, Graham W.

    2018-04-01

    Differences in predictions of Glacial Isostatic Adjustment (GIA) for Antarctica persist due to uncertainties in deglacial history and Earth rheology. The Earth models adopted in many GIA studies are defined by parameters that vary in the radial direction only and represent a global average Earth structure (referred to as 1D Earth models). Over-simplifying actual Earth structure leads to bias in model predictions in regions where Earth parameters differ significantly from the global average, such as West Antarctica. We investigate the impact of lateral variations in lithospheric thickness on GIA in Antarctica by carrying out two experiments that use different rheological approaches to define 3D Earth models that include spatial variations in lithospheric thickness. The first experiment defines an elastic lithosphere with spatial variations in thickness inferred from seismic studies. We compare the results from this 3D model with results derived from a 1D Earth model that has a uniform lithospheric thickness defined as the average of the 3D lithospheric thickness. Irrespective of deglacial history and sub-lithospheric mantle viscosity, we find higher gradients of present-day uplift rates (i.e. higher amplitude and shorter wavelength) in West Antarctica when using the 3D models, due to the thinner-than-1D-average lithosphere prevalent in this region. The second experiment uses seismically-inferred temperature as input to a power-law rheology thereby allowing the lithosphere to have a viscosity structure. Modelling the lithosphere with a power-law rheology results in behaviour that is equivalent to a thinner-lithosphere model, and it leads to higher amplitude and shorter wavelength deformation compared with the first experiment. We conclude that neglecting spatial variations in lithospheric thickness in GIA models will result in predictions of peak uplift and subsidence that are biased low in West Antarctica. This has important implications for ice-sheet modelling

  9. Accidents involving off-road motor vehicles in a northern community.

    Science.gov (United States)

    Hasselback, P; Wilding, H R

    1987-01-01

    The increasing number of accidents associated with off-road motor vehicles used for recreational purposes prompted this prospective study. During 1985 the records of victims of all motor vehicle accidents who were seen at the Hudson Bay Union Hospital, Hudson Bay, Sask., were studied; patients involved in on-road vehicle accidents were included for comparison. Emphasis was placed on age, vehicle type, mechanism of accident, injury severity and the use of safety features. Almost half of the victims of off-road vehicle accidents were under 16 years of age. The poor adherence to government legislation and manufacturer recommendations was evident in the number of people who did not wear helmets or use headlights. PMID:3651929

  10. National Status and Trends: Bioeffects Program - Magnitude and Extent of Sediment Toxicity in the Hudson-Raritan Estuary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A survey of the toxicity of sediments was performed by NOAA's National Status and Trends (NSandT) Program throughout the Hudson-Raritan Estuary. The objectives of...

  11. Demographic, ecological, and physiological responses of ringed seals to an abrupt decline in sea ice availability.

    Science.gov (United States)

    Ferguson, Steven H; Young, Brent G; Yurkowski, David J; Anderson, Randi; Willing, Cornelia; Nielsen, Ole

    2017-01-01

    To assess whether demographic declines of Arctic species at the southern limit of their range will be gradual or punctuated, we compared large-scale environmental patterns including sea ice dynamics to ringed seal ( Pusa hispida ) reproduction, body condition, recruitment, and stress in Hudson Bay from 2003 to 2013. Aerial surveys suggested a gradual decline in seal density from 1995 to 2013, with the lowest density occurring in 2013. Body condition decreased and stress (cortisol) increased over time in relation to longer open water periods. The 2010 open water period in Hudson Bay coincided with extremes in large-scale atmospheric patterns (North Atlantic Oscillation, Arctic Oscillation, El Nino-Southern Oscillation) resulting in the earliest spring breakup and the latest ice formation on record. The warming event was coincident with high stress level, low ovulation rate, low pregnancy rate, few pups in the Inuit harvest, and observations of sick seals. Results provide evidence of changes in the condition of Arctic marine mammals in relation to climate mediated sea ice dynamics. We conclude that although negative demographic responses of Hudson Bay seals are occurring gradually with diminishing sea ice, a recent episodic environmental event played a significant role in a punctuated population decline.

  12. Measurement Error Affects Risk Estimates for Recruitment to the Hudson River Stock of Striped Bass

    Directory of Open Access Journals (Sweden)

    Dennis J. Dunning

    2002-01-01

    Full Text Available We examined the consequences of ignoring the distinction between measurement error and natural variability in an assessment of risk to the Hudson River stock of striped bass posed by entrainment at the Bowline Point, Indian Point, and Roseton power plants. Risk was defined as the probability that recruitment of age-1+ striped bass would decline by 80% or more, relative to the equilibrium value, at least once during the time periods examined (1, 5, 10, and 15 years. Measurement error, estimated using two abundance indices from independent beach seine surveys conducted on the Hudson River, accounted for 50% of the variability in one index and 56% of the variability in the other. If a measurement error of 50% was ignored and all of the variability in abundance was attributed to natural causes, the risk that recruitment of age-1+ striped bass would decline by 80% or more after 15 years was 0.308 at the current level of entrainment mortality (11%. However, the risk decreased almost tenfold (0.032 if a measurement error of 50% was considered. The change in risk attributable to decreasing the entrainment mortality rate from 11 to 0% was very small (0.009 and similar in magnitude to the change in risk associated with an action proposed in Amendment #5 to the Interstate Fishery Management Plan for Atlantic striped bass (0.006— an increase in the instantaneous fishing mortality rate from 0.33 to 0.4. The proposed increase in fishing mortality was not considered an adverse environmental impact, which suggests that potentially costly efforts to reduce entrainment mortality on the Hudson River stock of striped bass are not warranted.

  13. Sub-Moho Reflectors, Mantle Faults and Lithospheric Rheology

    Science.gov (United States)

    Brown, L. D.

    2013-12-01

    One of the most unexpected and dramatic observations from the early years of deep reflection profiling of the continents using multichannel CMP techniques was the existing of prominent reflections from the upper mantle. The first of these, the Flannan thrust/fault/feature, was traced by marine profiling of the continental margin offshore Britain by the BIRPS program, which soon found them to be but one of several clear sub-crustal discontinuities in that area. Subsequently, similar mantle reflectors have been observed in many areas around the world, most commonly beneath Precambrian cratonic areas. Many, but not all, of these mantle reflections appear to arise from near the overlying Moho or within the lower crust before dipping well into the mantle. Others occur as subhorizontal events at various depths with the mantle, with one suite seeming to cluster at a depth of about 75 km. The dipping events have been variously interpreted as mantle roots of crustal normal faults or the deep extension of crustal thrust faults. The most common interpretation, however, is that these dipping events are the relicts of ancient subduction zones, the stumps of now detached Benioff zones long since reclaimed by the deeper mantle. In addition to the BIRPS reflectors, the best known examples include those beneath Fennoscandia in northern Europe, the Abitibi-Grenville of eastern Canada, and the Slave Province of northwestern Canada (e.g. on the SNORCLE profile). The most recently reported example is from beneath the Sichuan Basin of central China. The preservation of these coherent, and relatively delicate appearing, features beneath older continental crust and presumably within equally old (of not older) mantle lithosphere, has profound implications for the history and rheology of the lithosphere in these areas. If they represent, as widely believe, some form of faulting with the lithosphere, they provide corollary constraints on the nature of faulting in both the lower crust and

  14. Interaction between mantle and crustal detachments: A nonlinear system controlling lithospheric extension

    Science.gov (United States)

    Rosenbaum, Gideon; Regenauer-Lieb, Klaus; Weinberg, Roberto F.

    2010-11-01

    We use numerical modeling to investigate the development of crustal and mantle detachments during lithospheric extension. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate heat flow (60-70 mW m-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup.

  15. Methods to assess impacts on Hudson River striped bass: report for the period October 1, 1977 to September 30, 1979

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Christensen, S.W.; Kirk, B.L.; Kumar, K.D.; Van Winkle, W.

    1980-06-01

    The overall objective of this project is to develop and apply quantitative methods for assessing the effects of power plant entrainment and impingement on the Hudson River striped bass population. During the two years covered in this reporting period, our work dealt with five interrelated aspects of this assessment problem: (1) young-of-the year models, (2) mortality of entrained eggs, larvae, and juveniles, (3) projection of long-term impacts using stock recruitment models, (4) relative contribution of the Hudson River stock to the Atlantic coastal striped bass population, and (5) distribution of entrainable striped bass life stages in the immediate vicinity of power plant intakes

  16. Lithosphere destabilization by melt percolation during pre-oceanic rifting: Evidence from Alpine-Apennine ophiolitic peridotites

    Science.gov (United States)

    Piccardo, Giovanni; Ranalli, Giorgio

    2017-04-01

    Orogenic peridotites from Alpine-Apennine ophiolite Massifs (Lanzo, Voltri, External and Internal Ligurides, - NW Italy, and Mt. Maggiore - Corsica) derive from the mantle lithosphere of the Ligurian Tethys. Field/structural and petrologic/geochemical studies provide constraints on the evolution of the lithospheric mantle during pre-oceanic passive rifting of the late Jurassic Ligurian Tethys ocean. Continental rifting by far-field tectonic forces induced extension of the lithosphere by means of km-scale extensional shear zones that developed before infiltration of melts from the asthenosphere (Piccardo and Vissers, 2007). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent spinel-facies decompression melting along the axial zone of the extensional system. Silica-undersaturated melt fractions percolated through the lithospheric mantle via diffuse/focused porous flow and interacted with the host peridotite through pyroxenes-dissolving/olivine-precipitating melt/rock reactions. Pyroxene dissolution and olivine precipitation modified the composition of the primary silica-undersaturated melts into derivative silica-saturated melts, while the host lithospheric spinel lherzolites were transformed into pyroxene-depleted/olivine-enriched reactive spinel harzburgites and dunites. The derivative liquids interacted through olivine-dissolving/orthopyroxene+plagioclase-crystallizing reactions with the host peridotites that were impregnated and refertilized (Piccardo et al., 2015). The saturated melts stagnated and crystallized in the shallow mantle lithosphere (as testified by diffuse interstitial crystallization of euhedral orthopyroxene and anhedral plagioclase) and locally ponded, forming orthopyroxene-rich/olivine-free gabbro-norite pods (Piccardo and Guarnieri, 2011). Reactive and impregnated peridotites are characterized by high equilibration temperatures (up to 1250 °C) even at low pressure, plagioclase-peridotite facies

  17. Life in the lithosphere, kinetics and the prospects for life elsewhere.

    Science.gov (United States)

    Cockell, Charles S

    2011-02-13

    The global contiguity of life on the Earth today is a result of the high flux of carbon and oxygen from oxygenic photosynthesis over the planetary surface and its use in aerobic respiration. Life's ability to directly use redox couples from components of the planetary lithosphere in a pre-oxygenic photosynthetic world can be investigated by studying the distribution of organisms that use energy sources normally bound within rocks, such as iron. Microbiological data from Iceland and the deep oceans show the kinetic limitations of living directly off igneous rocks in the lithosphere. Using energy directly extracted from rocks the lithosphere will support about six orders of magnitude less productivity than the present-day Earth, and it would be highly localized. Paradoxically, the biologically extreme conditions of the interior of a planet and the inimical conditions of outer space, between which life is trapped, are the locations from which volcanism and impact events, respectively, originate. These processes facilitate the release of redox couples from the planetary lithosphere and might enable it to achieve planetary-scale productivity approximately one to two orders of magnitude lower than that produced by oxygenic photosynthesis. The significance of the detection of extra-terrestrial life is that it will allow us to test these observations elsewhere and establish an understanding of universal relationships between lithospheres and life. These data also show that the search for extra-terrestrial life must be accomplished by 'following the kinetics', which is different from following the water or energy.

  18. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere-application to basin evolution

    DEFF Research Database (Denmark)

    Elesin, Y; Gerya, T; Artemieva, Irina

    2010-01-01

    We present a new 2D finite difference code, Samovar, for high-resolution numerical modeling of complex geodynamic processes. Examples are collision of lithospheric plates (including mountain building and subduction) and lithosphere extension (including formation of sedimentary basins, regions...... of extended crust, and rift zones). The code models deformation of the lithosphere with viscoelastoplastic rheology, including erosion/sedimentation processes and formation of shear zones in areas of high stresses. It also models steady-state and transient conductive and advective thermal processes including...... partial melting and magma transport in the lithosphere. The thermal and mechanical parts of the code are tested for a series of physical problems with analytical solutions. We apply the code to geodynamic modeling by examining numerically the processes of lithosphere extension and basin formation...

  19. Preferential mantle lithospheric extension under the South China margin

    International Nuclear Information System (INIS)

    Clift, P.; Jian Lin

    2001-01-01

    Continental rifting in the South China Sea culminated in seafloor spreading at ∼ 30Ma (Late Oligocene). The basin and associated margins form a classic example of break-up in a relatively juvenile arc crust environment. In this study, we documented the timing, distribution and amount of extension in the crust and mantle lithosphere on the South China Margin during this process. Applying a one-dimensional backstripping modeling technique to drilling data from the Pearl River Mouth Basin (PRMB) and Beibu Gulf Basin, we calculated subsidence rates of the wells and examined the timing and amount of extension. Our results show that extension of the crust exceeded that in the mantle lithosphere under the South China Shelf, but that the two varied in phase, suggesting depth-dependent extension rather than a lithospheric-scale detachment. Estimates of total crustal extension derived in this way are similar to those measured by seismic refraction, indicating that isostatic compensation is close to being local. Extension in the Beibu Gulf appears to be more uniform with depth, a difference that we attribute to the different style of strain accommodation during continental break-up compared to intra-continental rifting. Extension in PRMB and South China slope continues for ∼ 5m.y. after the onset of seafloor spreading due to the weakness of the continental lithosphere. The timing of major extension is broadly mid-late Eocene to late Oligocene (∼ 45-25Ma), but is impossible to correlate in detail with poorly dated strike-slip deformation in the Red River Fault Zone. (author)

  20. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    Science.gov (United States)

    Artemieva, Irina

    2014-05-01

    This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the

  1. Thermal classification of lithospheric discontinuities beneath USArray

    Science.gov (United States)

    Hansen, Steven M.; Dueker, Ken; Schmandt, Brandon

    2015-12-01

    Broadband seismic data from the United States were processed into Ps and Sp receiver function image volumes for the purpose of constraining negative velocity gradients (NVG) at depths between the Moho and 200 km. Moho depth picks from the two independent datasets are in good agreement, however, large discrepancies in NVG picks occur and are attributed to free-surface multiples which obscure deep NVG arrivals in the Ps data. From the Sp data, shallow NVG are found west of the Rockies and in the central US while deep and sporadic NVG are observed beneath the Great Plains and northern Rockies. To aid the interpretation of the observed NVG arrivals, the mantle thermal field is estimated by mapping surface wave tomography velocities to temperature assuming an anelastic olivine model. The distribution of temperature versus NVG depth is bi-modal and displays two distinct thermal populations that are interpreted to represent both the lithosphere-asthenosphere boundary (LAB) and mid-lithosphere discontinuities (MLD). LAB arrivals occur in the western US at 60-85 km and 1200-1400 °C depth suggesting that they manifest partial melt near the base of the thermal plate. MLD arrivals primarily occur at 70-110 km depth and 700-900 °C and we hypothesize that these arrivals are caused by a low-velocity metasomatic layer containing phlogopite resulting from magma crystallization products that accumulate within long-lived thick lithosphere.

  2. Computer simulation model for the striped bass young-of-the-year population in the Hudson River

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Van Winkle, W.; Sharp, R.D.; Christensen, S.W.; Goodyear, C.P.; Rush, R.M.; Fulkerson, W.

    1975-09-01

    This report presents a daily transient (tidal-averaged), longitudinally one-dimensional (cross-section-averaged) computer simulation model for the assessment of the entrainment and impingement impacts of power plant operations on young-of-the-year populations of the striped bass, Morone saxatilis, in the Hudson River

  3. Mantle Earthquakes in Thinned Proterozoic Lithosphere: Harrat Lunayyir, Saudi Arabia

    Science.gov (United States)

    Blanchette, A. R.; Klemperer, S. L.; Mooney, W. D.; Zahran, H. M.

    2017-12-01

    Harrat Lunayyir is an active volcanic field located in the western Arabian Shield 100 km outside of the Red Sea rift margin. We use common conversion point (CCP) stacking of P-wave receiver functions (PRFs) to show that the Moho is at 38 km depth, close to the 40 km crustal thickness measured in the center of the craton, whereas the lithosphere-asthenosphere boundary (LAB) is at 60 km, far shallower than the 150 km furthest in the craton. We locate 67 high-frequency earthquakes with mL ≤ 2.5 at depths of 40-50 km below the surface, located clearly within the mantle lid. The occurrence of earthquakes within the lithospheric mantle requires a geothermal temperature profile that is below equilibrium. The lithosphere cannot have thinned to its present thickness earlier than 15 Ma, either during an extended period of rifting possibly beginning 24 Ma or, more likely, as part of the second stage of rifting following collision between Arabia and Eurasia.

  4. Strain localization at the margins of strong lithospheric domains: insights from analogue models

    NARCIS (Netherlands)

    Calignano, Elisa; Sokoutis, Dimitrios; Willingshofer, Ernst; Gueydan, Frederic; Cloetingh, Sierd

    The lateral variation of the mechanical properties of continental lithosphere is an important factor controlling the localization of deformation and thus the deformation history and geometry of intra-plate mountain belts. A series of three-layer lithospheric-scale analog models, with a strong domain

  5. Robust high resolution models of the continental lithosphere: Methodology and application to Asia

    NARCIS (Netherlands)

    Stolk, W.|info:eu-repo/dai/nl/323259170

    2013-01-01

    Asia is a key natural laboratory for the study of active intra-continental deformation in far-field response to the ongoing collision ofIndiaandEurasia. The resulting tectonic processes strongly depend on the thermo-mechanical structure of the lithosphere. This lithosphere can be separated into

  6. Plutonium, cesium and uranium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, 1 December 1980-30 November 1981

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.

    1981-01-01

    Radionuclide activities were measured in sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs, 60 Co, 239 240 Pu, and 238 Pu indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in 239 240 Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Fallout 239 240 Pu reaching the Hudson is almost completely retained within the systems by particle deposition, while 80 to 90% of the 137 Cs derived from both reactor releases and fallout is exported to the coastal waters in solution. Depth profiles of radionuclides in Hudson sediments are not significantly altered by physical mixing processes in the sediments in areas accumulating particles at greater than 1 cm/yr. Measurements of fallout 239 2 xperimental quantities

  7. "mus co shee": Indigenous Plant Foods and Horticultural Imperialism in the Canadian Sub-Arctic.

    Science.gov (United States)

    Soloway, Beverly

    2015-01-01

    The 17th-century arrival of the Hudson's Bay Company in Rupert's Land disrupted Mushkegowuk (Cree) hunter-gatherer society by replacing the collection of indigenous plant foods with a British planted-food model. Within a hundred years of British contact, new foodways relied upon hunting and gardening, bringing a loss in heritage plant food knowledge. Mushkegowuk living in the sub-arctic today have minimal knowledge of edible indigenous plants. Dependence on limited local gardening or imported grocery store vegetables has affected diet, nutrition, and cultural systems. In addition to exploring plant food gathering and gardening history in the Hudson Bay Lowlands, this paper demonstrates how re-discovering lost foodway knowledge can contribute to the health and well-being of those living in the far north.

  8. Using destination image to predict visitors' intention to revisit three Hudson River Valley, New York, communities

    Science.gov (United States)

    Rudy M. Schuster; Laura Sullivan; Duarte Morais; Diane Kuehn

    2009-01-01

    This analysis explores the differences in Affective and Cognitive Destination Image among three Hudson River Valley (New York) tourism communities. Multiple regressions were used with six dimensions of visitors' images to predict future intention to revisit. Two of the three regression models were significant. The only significantly contributing independent...

  9. Implications for anomalous mantle pressure and dynamic topography from lithospheric stress patterns in the North Atlantic Realm

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, Søren Bom

    2016-01-01

    With convergent plate boundaries at some distance, the sources of the lithospheric stress field of the North Atlantic Realm are mainly mantle tractions at the base of the lithosphere, lithospheric density structure and topography. Given this, we estimate horizontal deviatoric stresses using a wel...

  10. Use of along-track magnetic field differences in lithospheric field modelling

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils

    2015-01-01

    . Experiments in modelling the Earth's lithospheric magnetic field with along-track differences are presented here as a proof of concept. We anticipate that use of such along-track differences in combination with east–west field differences, as are now provided by the Swarm satellite constellation......We demonstrate that first differences of polar orbiting satellite magnetic data in the along-track direction can be used to obtain high resolution models of the lithospheric field. Along-track differences approximate the north–south magnetic field gradients for non-polar latitudes. In a test case......, using 2 yr of low altitude data from the CHAMP satellite, we show that use of along-track differences of vector field data results in an enhanced recovery of the small scale lithospheric field, compared to the use of the vector field data themselves. We show that the along-track technique performs...

  11. The electrical lithosphere in Archean cratons: examples from Southern Africa

    Science.gov (United States)

    Khoza, D. T.; Jones, A. G.; Muller, M. R.; Webb, S. J.

    2011-12-01

    The southern African tectonic fabric is made up of a number Archean cratons flanked by Proterozoic and younger mobile belts, all with distinctly different but related geological evolutions. The cratonic margins and some intra-cratonic domain boundaries have played major roles in the tectonics of Africa by focusing ascending magmas and localising cycles of extension and rifting. Of these cratons the southern extent of the Congo craton is one of the least-constrained tectonic boundaries in the African tectonic architecture and knowledge of its geometry and in particular the LAB beneath is crucial for understanding geological process of formation and deformation prevailing in the Archean and later. In this work, which forms a component of the hugely successful Southern African MagnetoTelluric Experiment (SAMTEX), we present the lithospheric electrical resistivity image of the southern boundary of the enigmatic Congo craton and the Neoproterozoic Damara-Ghanzi-Chobe (DGC) orogenic belt on its flanks. Magnetotelluric data were collected along profiles crossing all three of these tectonic blocks. The two dimensional resistivity models resulting from inverting the distortion-corrected responses along the profiles all indicate significant lateral variations in the crust and upper mantle structure along and across strike from the younger DGC orogen to the older adjacent craton. The are significant lithospheric thickness variations from each terrane. The The Moho depth in the DGC is mapped at 40 km by active seismic methods, and is also well constrained by S-wave receiver function models. The Damara belt lithosphere, although generally more conductive and significantly thinner (approximately 150 km) than the adjacent Congo and Kalahari cratons, exhibits upper crustal resistive features interpreted to be caused by igneous intrusions emplaced during the Gondwanan Pan-African magmatic event. The thinned lithosphere is consistent with a 50 mW.m-2 steady-state conductive

  12. Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

    Science.gov (United States)

    Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.

    2018-05-01

    The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic

  13. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    Science.gov (United States)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault

  14. Deformation of the Pannonian lithosphere and related tectonic topography: a depth-to-surface analysis

    NARCIS (Netherlands)

    Dombrádi, E.

    2012-01-01

    Fingerprints of deep-seated, lithospheric deformation are often recognised on the surface, contributing to topographic evolution, drainage organisation and mass transport. Interactions between deep and surface processes were investigated in the Carpathian-Pannonian region. The lithosphere beneath

  15. Craton stability and continental lithosphere dynamics during plume-plate interaction

    Science.gov (United States)

    Wang, H.; Van Hunen, J.; Pearson, D.

    2013-12-01

    Survival of thick cratonic roots in a vigorously convecting mantle system for billions of years has long been studied by the geodynamical community. A high cratonic root strength is generally considered to be the most important factor. We first perform and discuss new numerical models to investigate craton stability in both Newtonian and non-Newtonian rheology in the stagnant lid regime. The results show that only a modest compositional rheological factor of Δη=10 with non-Newtonian rheology is required for the survival of cratonic roots in a stagnant lid regime. A larger rheological factor (100 or more) is needed to maintain similar craton longevity in a Newtonian rheology environment. Furthermore, chemical buoyancy plays an important role on craton stability and its evolution, but could only work with suitable compositional rheology. During their long lifespan, cratons experienced a suite of dynamic, tectonothermal events, such as nearby subduction and mantle plume activity. Cratonic nuclei are embedded in shorter-lived, more vulnerable continental areas of different thickness, composition and rheology, which would influence the lithosphere dynamic when tectonothermal events happen nearby. South Africa provides a very good example to investigate such dynamic processes as it hosts several cratons and there are many episodic thermal events since the Mesozoic as indicated by a spectrum of magmatic activity. We numerically investigate such an integrated system using the topographic evolution of cratons and surrounding lithosphere as a diagnostic observable. The post-70Ma thinning of pericratonic lithosphere by ~50km around Kaapvaal craton (Mather et al., 2011) is also investigated through our numerical models. The results show that the pericratonic lithosphere cools and grows faster than cratons do, but is also more likely to be effected by episodic thermal events. This leads to surface topography change that is significantly larger around the craton than within

  16. Localization instability and the origin of regularly- spaced faults in planetary lithospheres

    Science.gov (United States)

    Montesi, Laurent Gilbert Joseph

    2002-10-01

    Brittle deformation is not distributed uniformly in planetary lithospheres but is instead localized on faults and ductile shear zones. In some regions such as the Central Indian Basin or martian ridged plains, localized shear zones display a characteristic spacing. This pattern can constrain the mechanical structure of the lithosphere if a model that includes the development of localized shear zones and their interaction with the non- localizing levels of the lithosphere is available. I construct such a model by modifying the buckling analysis of a mechanically-stratified lithosphere idealization, by allowing for rheologies that have a tendency to localize. The stability of a rheological system against localization is indicated by its effective stress exponent, ne. That quantity must be negative for the material to have a tendency to localize. I show that a material deforming brittly or by frictional sliding has ne mechanical properties. When this model is subjected to horizontal extension or compression, infinitesimal perturbation of its interfaces grow at a rate that depends on their wavelength. Two superposed instabilities develop if ne Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  17. Amount of Asian lithospheric mantle subducted during the India/Asia collision

    OpenAIRE

    Replumaz, A.; Guillot, S.; Villaseñor, Antonio; Negredo, A. M.

    2013-01-01

    Body wave seismic tomography is a successful technique for mapping lithospheric material sinking into the mantle. Focusing on the India/Asia collision zone, we postulate the existence of several Asian continental slabs, based on seismic global tomography. We observe a lower mantle positive anomaly between 1100 and 900 km depths, that we interpret as the signature of a past subduction process of Asian lithosphere, based on the anomaly position relative to positive anomalies related to Indian c...

  18. Mantle weakening and strain localization: Implications for the long-term strength of the continental lithosphere

    OpenAIRE

    Précigout , Jacques; Gueydan , Frédéric

    2009-01-01

    International audience; Mechanics of the continental lithosphere require the presence of a high-strength uppermost mantle that defines the "jelly sandwich" model for lithosphere strength layering. However, in deforming regions, growing numbers of geological and geophysical data predict a sub-Moho mantle strength lower than the crustal strength, or a "crème brûlée" model. To reconcile these two opposite views of lithosphere strength layering, we account for a new olivine rheology, which could ...

  19. Lu-Hf isotope constraints on plume-lithosphere interaction during emplacement of the Bushveld Large Igneous Province at 2.06 Ga: Implications for the structure and evolution of the Kaapvaal Craton's lithospheric mantle

    Science.gov (United States)

    Zirakparvar, N. A.; Mathez, E. A.; Rajesh, H.; Vervoort, J. D.; Choe, S.

    2016-12-01

    The Bushveld Large Igneous Province (B-LIP) comprises a diverse array of >30 magma bodies that intruded the Kaapvaal Craton at 2.06 Ga. In this talk we use zircon and bulk-rock Lu-Hf isotope data to show that the B-LIP formed in response to the arrival of a plume(s) from the deep mantle. New zircon Hf isotope compositions for four B-LIP bodies yield intrusion-specific average ɛHf (2.06 Ga) values that range from -20.7 ± 2.8 to -2.7 ± 2.8, largely consistent with literature zircon data for other B-LIP intrusions. Bulk-rock solution ɛHf (2.06 Ga) values for a variety of B-LIP intrusions range from -2.1 ± 0.2 to -10.6 ± 0.2. Because the most radiogenic Hf isotope compositions across the entire B-LIP are nearly primordial with an ɛHf (2.06 Ga) close to 0, it is likely that the heat source of the B-LIP was a plume(s) from deep mantle. The Hf isotope data further suggests that individual intrusions in the B-LIP can be grouped into four categories based on their ultimate sources: 1) melts generated in subduction and plume modified continental lithospheric mantle; 2) melts generated by melting of a mafic-ultramafic reservoir composed of older ( 2.7 Ga) plume-related material trapped in the Kaapvaal lithosphere; 3) melts generated in the mid- to upper crust; and 4) melts generated from the 2.06 Ga mantle plume itself. The presence of 2.7 Ga mafic-ultramafic material in the Kaapvaal lithosphere may have acted to strengthen the lithosphere so that it was able to resist being dispered by the arrival of the B-LIP plume at 2.06 Ga. Because the B-LIP extends into a 2.7 Ga aged suture zone between the Kaapvaal and Zimbabwe cratons, it is also possible to understand the role of the lithospheric mantle in producing the Lu-Hf signatures observed in the various B-LIP intrusions as a function of two different types of the continental lithosphere: The very old lithosphere comprising the Kaapvaal Craton and the somewhat younger lithosphere comprising the suture zone. A basic

  20. 33 CFR 100.124 - Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York. 100.124 Section 100.124 Navigation and Navigable... NAVIGABLE WATERS § 100.124 Maggie Fischer Memorial Great South Bay Cross Bay Swim, Great South Bay, New York...

  1. De vluchtige olie van enkele chemotypen van mentha suaveolens EHRH. en van hybriden met mentha longifolia (L.) HUDSON

    NARCIS (Netherlands)

    Hendriks, Hindrik

    1974-01-01

    De opvatting dat Mentha x piperita L. een bastaard zou zijn van Mentha spicata L. en Mentha aquatica L. werd nader besproken. Hierbij werd Mentha spicata beschouwd als een bastaard van Mentha longifolia (L.) HUDSON en Mentha suaveolens EHRH. ... Zie: Samenvatting.

  2. The lithosphere-asthenosphere boundary beneath the Korean Peninsula from S receiver functions

    Science.gov (United States)

    Lee, S. H.; Rhie, J.

    2017-12-01

    The shallow lithosphere in the Eastern Asia at the east of the North-South Gravity Lineament is well published. The reactivation of the upper asthenosphere induced by the subducting plates is regarded as a dominant source of the lithosphere thinning. Additionally, assemblage of various tectonic blocks resulted in complex variation of the lithosphere thickness in the Eastern Asia. Because, the Korean Peninsula located at the margin of the Erasian Plate in close vicinity to the trench of subducting oceanic plate, significant reactivation of the upper asthenosphere is expected. For the study of the tectonic history surrounding the Korean Peninsula, we determined the lithosphere-asthenosphere boundary (LAB) beneath the Korean Peninsula using common conversion point stacking method with S receiver functions. The depth of the LAB beneath the Korean Peninsula ranges from 60 km to 100 km and confirmed to be shallower than that expected for Cambrian blocks as previous global studies. The depth of the LAB is getting shallower to the south, 95 km at the north and 60 km at the south. And rapid change of the LAB depth is observed between 36°N and 37°N. The depth change of the LAB getting shallower to the south implies that the source of the lithosphere thinning is a hot mantle upwelling induced by the northward subduction of the oceanic plates since Mesozoic. Unfortunately, existing tectonic models can hardly explain the different LAB depth in the north and in the south as well as the rapid change of the LAB depth.

  3. Lithospheric Strength and Stress State: Persistent Challenges and New Directions in Geodynamics

    Science.gov (United States)

    Hirth, G.

    2017-12-01

    The strength of the lithosphere controls a broad array of geodynamic processes ranging from earthquakes, the formation and evolution of plate boundaries and the thermal evolution of the planet. A combination of laboratory, geologic and geophysical observations provides several independent constraints on the rheological properties of the lithosphere. However, several persistent challenges remain in the interpretation of these data. Problems related to extrapolation in both scale and time (rate) need to be addressed to apply laboratory data. Nonetheless, good agreement between extrapolation of flow laws and the interpretation of microstructures in viscously deformed lithospheric mantle rocks demonstrates a strong foundation to build on to explore the role of scale. Furthermore, agreement between the depth distribution of earthquakes and predictions based on extrapolation of high temperature friction relationships provides a basis to understand links between brittle deformation and stress state. In contrast, problems remain for rationalizing larger scale geodynamic processes with these same rheological constraints. For example, at face value the lab derived values for the activation energy for creep are too large to explain convective instabilities at the base of the lithosphere, but too low to explain the persistence of dangling slabs in the upper mantle. In this presentation, I will outline these problems (and successes) and provide thoughts on where new progress can be made to resolve remaining inconsistencies, including discussion of the role of the distribution of volatiles and alteration on the strength of the lithosphere, new data on the influence of pressure on friction and fracture strength, and links between the location of earthquakes, thermal structure, and stress state.

  4. COMPOSITIONAL AND THERMAL DIFFERENCES BETWEEN LITHOSPHERIC AND ASTHENOSPHERIC MANTLE AND THEIR INFLUENCE ON CONTINENTAL DELAMINATION

    Directory of Open Access Journals (Sweden)

    A. I. Kiselev

    2015-01-01

    Full Text Available The lower part of lithosphere in collisional orogens may delaminate due to density inversion between the asthenosphere and the cold thickened lithospheric mantle. Generally, standard delamination models have neglected density changes within the crust and the lithospheric mantle, which occur due to phase transitions and compositional variations upon changes of P-T parameters. Our attention is focused on effects of phase and density changes that may be very important and even dominant when compared with the effect of a simple change of the thermal mantle structure. The paper presents the results of numerical modeling for eclogitization of basalts of the lower crust as well as phase composition changes and density of underlying peridotite resulted from tectonic thickening of the lithosphere and its foundering into the asthenosphere. As the thickness of the lower crust increases, the mafic granulite (basalt passes into eclogite, and density inversion occurs at the accepted crust-mantle boundary (P=20 kbar because the newly formed eclogite is heavier than the underlying peridotite by 6 % (abyssal peridotite, according to [Boyd, 1989]. The density difference is a potential energy for delamination of the eclogitic portion of the crust. According to the model, P=70 kbar and T=1300 °C correspond to conditions at the lower boundary of the lithosphere. Assuming the temperature adiabatic distribution within the asthenosphere, its value at the given parameters ranges from 1350 °C to 1400 °C. Density inversion at dry conditions occurs with the identical lithospheric and asthenospheric compositions at the expense of the temperature difference at 100 °C with the density difference of only 0.0022 %. Differences of two other asthenospheric compositions (primitive mantle, and lherzolite KH as compared to the lithosphere (abyssal peridotite are not compensated for by a higher temperature. The asthenospheric density is higher than that of the lithospheric base

  5. Global strength and elastic thickness of the lithosphere

    NARCIS (Netherlands)

    Tesauro, M.; Kaban, M.K.; Cloetingh, S.A.P.L.

    2012-01-01

    Thestrengthand effective elasticthickness (Te) ofthelithosphere control its response to tectonic and surface processes. Here, we present the first globalstrengthand effective elasticthickness maps, which are determined using physical properties from recent crustal and lithospheric models. Pronounced

  6. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for the Hudson River, classified according to the Environmental...

  7. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    Science.gov (United States)

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  8. Seismological Constraints on Lithospheric Evolution in the Appalachian Orogen

    Science.gov (United States)

    Fischer, K. M.; Hopper, E.; Hawman, R. B.; Wagner, L. S.

    2017-12-01

    Crust and mantle structures beneath the Appalachian orogen, recently resolved by seismic data from the EarthScope SESAME Flexible Array and Transportable Array, provide new constraints on the scale and style of the Appalachian collision and subsequent lithospheric evolution. In the southern Appalachians, imaging with Sp and Ps phases reveals the final (Alleghanian) suture between the crusts of Laurentia and the Gondwanan Suwannee terrane as a low angle (Kellogg, 2017) isostatic arguments indicate crustal thicknesses were 15-25 km larger at the end of the orogeny, indicating a thick crustal root across the region. The present-day residual crustal root beneath the Blue Ridge mountains is estimated to have a density contrast with the mantle of only 104±20 kg/m3. This value is comparable to other old orogens but lower than values typical of young or active orogens, indicating a loss of lower crustal buoyancy over time. At mantle depths, the negative shear velocity gradient that marks the transition from lithosphere to asthenosphere, as illuminated by Sp phases, varies across the Appalachian orogen. This boundary is shallow beneath the northeastern U.S. and in the zone of Eocene volcanism in Virginia, where low velocity anomalies occur in the upper mantle. These correlations suggest recent active lithosphere-asthenosphere interaction.

  9. Global equivalent magnetization of the oceanic lithosphere

    Science.gov (United States)

    Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.

    2015-11-01

    As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.

  10. The extending lithosphere (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    Brun, Jean-Pierre

    2017-04-01

    Extension of the lithosphere gives birth to a wide range of structures, with characteristic widths between 10 and 1000 km, which includes continental rifts, passive margins, oceanic rifts, core complexes, or back-arc basins. Because the rheology of rocks strongly depends on temperature, this variety of extensional structures falls in two broad categories of extending lithospheres according to the initial Moho temperature TM. "Cold extending systems", with TM 750°C and crustal-dominated strength, lead, depending on strain rate, to either wide rifts or metamorphic core complexes. A much less quoted product of extension is the exhumation of high-pressure (HP ) metamorphic rocks occurring in domains of back-arc extension driven by slab rollback (e.g. Aegean; Appennines-Calabrian) or when the subduction upper plate undergoes extension for plate kinematics reasons (e.g. Norwegian Caledonides; Papua New Guinea). In these tectonic environments, well-documented pressure-temperature-time (P - T - t) paths of HP rocks show a two-stage retrogression path whose the first part corresponds to an isothermal large pressure drop ΔP proportional to the maximum pressure Pmax recorded by the rocks. This linear relation between ΔP and Pmax, which likely results from a stress switch between compression and extension at the onset of exhumation, is in fact observed in all HP metamorphism provinces worldwide, suggesting that the exhumation of HP rocks in extension is a general process rather than an uncommon case. In summary, the modes and products of extension are so diverse that, taken all together, they constitute a very versatile natural laboratory to decipher the rheological complexities of the continental lithosphere and their mechanical implications.

  11. Implications of a visco-elastic model of the lithosphere for calculating yield strength envelopes

    NARCIS (Netherlands)

    Ershov, A.V.; Stephenson, R.A.

    2006-01-01

    The dominant deformation mechanism in the ductile part of the lithosphere is creep. From a mechanical point of view, creep can be modelled as a viscous phenomenon. On the other hand, yield-strength envelopes (YSEs), commonly used to describe lithosphere rheology, are constructed supposing creep to

  12. A numerical model of mantle convection with deformable, mobile continental lithosphere within three-dimensional spherical geometry

    Science.gov (United States)

    Yoshida, M.

    2010-12-01

    A new numerical simulation model of mantle convection with a compositionally and rheologically heterogeneous, deformable, mobile continental lithosphere is presented for the first time by using three-dimensional regional spherical-shell geometry (Yoshida, 2010, Earth Planet. Sci. Lett.). The numerical results revealed that one of major factor that realizes the supercontinental breakup and subsequent continental drift is a pre-existing, weak (low-viscosity) continental margin (WCM) in the supercontinent. Characteristic tectonic structures such as young orogenic belts and suture zones in a continent are expected to be mechanically weaker than the stable part of the continental lithosphere with the cratonic root (or cratonic lithosphere) and yield lateral viscosity variations in the continental lithosphere. In the present-day Earth's lithosphere, the pre-existing, mechanically weak zones emerge as a diffuse plate boundary. However, the dynamic role of the WCM in the stability of continental lithosphere has not been understood in terms of geophysics. In my numerical model, a compositionally buoyant and highly viscous continental assemblage with pre-existing WCMs, analogous to the past supercontinent, is modeled and imposed on well-developed mantle convection whose vigor of convection, internal heating rate, and rheological parameters are appropriate for the Earth's mantle. The visco-plastic oceanic lithosphere and the associated subduction of oceanic plates are incorporated. The time integration of the advection of continental materials with zero chemical diffusion is performed by a tracer particle method. The time evolution of mantle convection after setting the model supercontinent is followed over 800 Myr. Earth-like continental drift is successfully reproduced, and the characteristic thermal interaction between the mantle and the continent/supercontinent is observed in my new numerical model. Results reveal that the WCM protects the cratonic lithosphere from being

  13. Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full-waveform inversion

    Science.gov (United States)

    Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.; Paul, A.; Zhao, L.

    2018-02-01

    The Western Alps, although being intensively investigated, remains elusive when it comes to determining its lithospheric structure. New inferences on the latter are important for the understanding of processes and mechanisms of orogeny needed to unravel the dynamic evolution of the Alps. This situation led to the deployment of the CIFALPS temporary experiment, conducted to address the lack of seismological data amenable to high-resolution seismic imaging of the crust and the upper mantle. We perform a 3-D isotropic full-waveform inversion (FWI) of nine teleseismic events recorded by the CIFALPS experiment to infer 3-D models of both density and P- and S-wave velocities of the Alpine lithosphere. Here, by FWI is meant the inversion of the full seismograms including phase and amplitude effects within a time window following the first arrival up to a frequency of 0.2 Hz. We show that the application of the FWI at the lithospheric scale is able to generate images of the lithosphere with unprecedented resolution and can furnish a reliable density model of the upper lithosphere. In the shallowest part of the crust, we retrieve the shape of the fast/dense Ivrea body anomaly and detect the low velocities of the Po and SE France sedimentary basins. The geometry of the Ivrea body as revealed by our density model is consistent with the Bouguer anomaly. A sharp Moho transition is followed from the external part (30 km depth) to the internal part of the Alps (70-80 km depth), giving clear evidence of a continental subduction event during the formation of the Alpine Belt. A low-velocity zone in the lower lithosphere of the S-wave velocity model supports the hypothesis of a slab detachment in the western part of the Alps that is followed by asthenospheric upwelling. The application of FWI to teleseismic data helps to fill the gap of resolution between traditional imaging techniques, and enables integrated interpretations of both upper and lower lithospheric structures.

  14. Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments

    International Nuclear Information System (INIS)

    Olsen, C.R.; Simpson, H.J.; Peng, T.; Bopp, R.F.; Trier, R.M.

    1981-01-01

    Measured anthropogenic radionuclide profiles in sediment cores from the Hudson River estuary were compared with profiles computed by using known input histories of radionuclides to the estuary and mixing coefficients which decreased exponentially with depth in the sediment. Observed 134 Cs sediment depth profiles were used in the mixing rate computation because reactor releases were the only significant source for this nuclide, whereas the inputs of 137 Cs and /sup 239.240/Pu to the estuary were complicated by runoff or erosion in upstream areas, in addition to direct fallout from precipitation. Our estimates for the rates of surface sediment mixing in the low salinity reach of the estuary range from 0.25 to 1 cm 2 /yr, or less. In some areas of the harbor adjacent to New York City, were fine-particle accumulation rates are generally >3 cm/yr, and often as high as 10 to 20 cm/yr, sediment mixing rates as high as 10 cm 2 /yr would have little effect on radionuclide peak distributions. Consequently, anthropogenic radionuclide maximum activities in subsurface sediments of the Hudson appear to be useful as time-stratigraphic reference levels, which can be correlated with periods of maximum radionuclide inputs for estimating rates and patterns of sediment accumulation

  15. Benthic habitat classification in Lignumvitae Key Basin, Florida Bay, using the U.S. Geological Survey Along-Track Reef Imaging System (ATRIS)

    Science.gov (United States)

    Reich, C.D.; Zawada, D.G.; Thompson, P.R.; Reynolds, C.E.; Spear, A.H.; Umberger, D.K.; Poore, R.Z.

    2011-01-01

    The Comprehensive Everglades Restoration Plan (CERP) funded in partnership between the U.S. Army Corps of Engineers, South Florida Water Management District, and other Federal, local and Tribal members has in its mandate a guideline to protect and restore freshwater flows to coastal environments to pre-1940s conditions (CERP, 1999). Historic salinity data are sparse for Florida Bay, so it is difficult for water managers to decide what the correct quantity, quality, timing, and distribution of freshwater are to maintain a healthy and productive estuarine ecosystem. Proxy records of seasurface temperature (SST) and salinity have proven useful in south Florida. Trace-element chemistry on foraminifera and molluscan shells preserved in shallow-water sediments has provided some information on historical salinity and temperature variability in coastal settings, but little information is available for areas within the main part of Florida Bay (Brewster-Wingard and others, 1996). Geochemistry of coral skeletons can be used to develop subannually resolved proxy records for SST and salinity. Previous studies suggest corals, specifically Solenastrea bournoni, present in the lower section of Florida Bay near Lignumvitae Key, may be suitable for developing records of SST and salinity for the past century, but the distribution and species composition of the bay coral community have not been well documented (Hudson and others, 1989; Swart and others, 1999). Oddly, S. bournoni thrives in the study area because it can grow on a sandy substratum and can tolerate highly turbid water. Solenastrea bournoni coral heads in this area should be ideally located to provide a record (~100-150 years) of past temperature and salinity variations in Florida Bay. The goal of this study was to utilize the U.S. Geological Survey's (USGS) Along-Track Reef Imaging System (ATRIS) capability to further our understanding of the abundance, distribution, and size of corals in the Lignumvitae Key Basin. The

  16. The lithospheric mantle below southern West Greenland

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Waight, Tod Earle; Pearson, D. Graham

    2009-01-01

    Geothermobarometry of primarily garnet lherzolitic xenoliths from several localities in southern West Greenland is applied to address the diamond potential, pressure and temperature distribution and the stratigraphy of the subcontinental lithospheric mantle ~600 Ma ago. The samples are from kimbe...... into the reworked Archean North of the Naqssugtoqidian deformation front....

  17. 77 FR 63873 - Johnson Controls, Inc. Including On-Site Leased Workers of Valley Staffing and AZ Quality Hudson...

    Science.gov (United States)

    2012-10-17

    ... workers of Johnson Controls, Inc., including on-site leased workers from Valley Staffing, Hudson..., Wisconsin location of Johnson Controls, Inc. The Department has determined that these workers were sufficiently under the control of the subject firm to be considered leased workers. Based on these findings...

  18. Peeling back the lithosphere: Controlling parameters, surface expressions and the future directions in delamination modeling

    Science.gov (United States)

    Göğüş, Oğuz H.; Ueda, Kosuke

    2018-06-01

    Geodynamical models investigate the rheological and physical properties of the lithosphere that peels back (delaminates) from the upper-middle crust. Meanwhile, model predictions are used to relate to a set of observations in the geological context to the test the validity of delamination. Here, we review numerical and analogue models of delamination from these perspectives and provide a number of first-order topics which future modeling studies may address. Models suggest that the presence of the weak lower crust that resides between the strong mantle lithosphere (at least 100 times more viscous/stronger) and the strong upper crust is necessary to develop delamination. Lower crustal weakening may be induced by melt infiltration, shear heating or it naturally occurs through the jelly sandwich type strength profile of the continental lithosphere. The negative buoyancy of the lithosphere required to facilitate the delamination is induced by the pre-existing ocean subduction and/or the lower crustal eclogitization. Surface expression of the peeling back lithosphere has a distinct transient and migratory imprint on the crust, resulting in rapid surface uplift/subsidence, magmatism, heating and shortening/extension. New generation of geodynamical experiments can explain how different types of melting (e.g hydrated, dry melting) occurs with delamination. Reformation of the lithosphere after removal, three dimensional aspects, and the termination of the process are key investigation areas for future research. The robust model predictions, as with other geodynamic modeling studies should be reconciled with observations.

  19. Detachments of the subducted Indian continental lithosphere based on 3D finite-frequency tomographic images

    Science.gov (United States)

    Liang, X.; Tian, X.; Wang, M.

    2017-12-01

    Indian plate collided with Eurasian plate at 60 Ma and there are about 3000 km crustal shortening since the continental-continental collision. At least one third of the total amount of crustal shortening between Indian and Eurasian plates could not be accounted by thickened Tibetan crust and surface erosion. It will need a combination of possible transfer of lower crust to the mantle by eclogitization and lateral extrusion. Based on the lithosphere-asthenosphere boundary images beneath the Tibetan plateau, there is also at least the same amount deficit for lithospheric mantle subducted into upper/lower mantle or lateral extrusion with the crust. We have to recover a detailed Indian continental lithosphere image beneath the plateau in order to explain this deficit of mass budget. Combining the new teleseismic body waves recorded by SANDWICH passive seismic array with waveforms from several previous temporary seismic arrays, we carried out finite-frequency tomographic inversions to image three-dimensional velocity structures beneath southern and central Tibetan plateau to examine the possible image of subducted Indian lithosphere in the Tibetan upper mantle. We have recovered a continuous high velocity body in upper mantle and piece-wised high velocity anomalies in the mantle transition zone. Based on their geometry and relative locations, we interpreted these high velocity anomalies as the subducted and detached Indian lithosphere at different episodes of the plateau evolution. Detachments of the subducted Indian lithosphere should have a crucial impact on the volcanism activities and uplift history of the plateau.

  20. The Natural Palette: Hudson River Artists and the Land. Teacher's Guide. Curriculum Resource: Grades 4 through 12.

    Science.gov (United States)

    Lind, Ted; Sorin, Gretchen Sullivan; Mack, Stevie; Fiore, Jennifer, Ed.

    This interdisciplinary curriculum guide resource kit focuses on 19th-century Euro-American painters of the Hudson River School. Lessons are designed to encourage student recognition of the significant impact of North American Indians, the natural environment, and the romantic period writers and philosophers artists and their work. The guide…

  1. Linking plate reconstructions with deforming lithosphere to geodynamic models

    Science.gov (United States)

    Müller, R. D.; Gurnis, M.; Flament, N.; Seton, M.; Spasojevic, S.; Williams, S.; Zahirovic, S.

    2011-12-01

    While global computational models are rapidly advancing in terms of their capabilities, there is an increasing need for assimilating observations into these models and/or ground-truthing model outputs. The open-source and platform independent GPlates software fills this gap. It was originally conceived as a tool to interactively visualize and manipulate classical rigid plate reconstructions and represent them as time-dependent topological networks of editable plate boundaries. The user can export time-dependent plate velocity meshes that can be used either to define initial surface boundary conditions for geodynamic models or alternatively impose plate motions throughout a geodynamic model run. However, tectonic plates are not rigid, and neglecting plate deformation, especially that of the edges of overriding plates, can result in significant misplacing of plate boundaries through time. A new, substantially re-engineered version of GPlates is now being developed that allows an embedding of deforming plates into topological plate boundary networks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions can then be used as a time-dependent surface boundary condition in regional or global 3-D geodynamic models, or alternatively as an initial boundary condition for a particular plate configuration at a given time. For time-dependent models with imposed plate motions (e.g. using CitcomS) we incorporate the continental lithosphere by embedding compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using a half-space cooling model. We also

  2. Sediment toxicity data from stations in U.S. coastal waters from 19910318 to 19930303 (NCEI Accession 9400004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains Sediment Toxicity data collected from Gulf of Mexico, Hudson Bay, New York Bight, North American Coastline-North, and Pamlico Sound as part of...

  3. Distribution and behavior of major and trace elements in Tokyo Bay, Mutsu Bay and Funka Bay marine sediments

    International Nuclear Information System (INIS)

    Honda, Teruyuki; Kimura, Ken-ichiro

    2003-01-01

    Fourteen major and trace elements in marine sediment core samples collected from the coasts along eastern Japan, i.e. Tokyo Bay (II) (the recess), Tokyo Bay (IV) (the mouth), Mutsu Bay and Funka Bay and the Northwest Pacific basin as a comparative subject were determined by the instrumental neutron activation analysis (INAA). The sedimentation rates and sedimentary ages were calculated for the coastal sediment cores by the 210 Pb method. The results obtained in this study are summarized as follows: (1) Lanthanoid abundance patterns suggested that the major origin of the sediments was terrigenous material. La*/Lu* and Ce*/La* ratios revealed that the sediments from Tokyo Bay (II) and Mutsu Bay more directly reflected the contribution from river than those of other regions. In addition, the Th/Sc ratio indicated that the coastal sediments mainly originated in the materials from the volcanic island-arcs, Japanese islands, whereas those from the Northwest Pacific mainly from the continent. (2) The correlation between the Ce/U and Th/U ratios with high correlation coefficients of 0.920 to 0.991 indicated that all the sediments from Tokyo Bay (II) and Funka Bay were in reducing conditions while at least the upper sediments from Tokyo Bay (IV) and Mutsu Bay were in oxidizing conditions. (3) It became quite obvious that the sedimentation mechanism and the sedimentation environment at Tokyo Bay (II) was different from those at Tokyo Bay (IV), since the sedimentation rate at Tokyo Bay (II) was approximately twice as large as that at Tokyo Bay (IV). The sedimentary age of the 5th layer (8∼10 cm in depth) from Funka Bay was calculated at approximately 1940∼50, which agreed with the time, 1943∼45 when Showa-shinzan was formed by the eruption of the Usu volcano. (author)

  4. Influence of Aroclor 1242 Concentration on Polychlorinated Biphenyl Biotransformations in Hudson River Test Tube Microcosms

    Science.gov (United States)

    Fish, K. M.

    1996-01-01

    When 93.3 to 933 (mu)mol of Aroclor 1242 per kg was added to Hudson River sediment test tube microcosms, the rates of polychlorinated biphenyl biotransformations increased with increasing Aroclor 1242 concentration after a 4- to 8-week acclimation period. In contrast, when 37.3 (mu)mol of Aroclor 1242 per kg was added, polychlorinated biphenyl biotransformations occurred at slow constant rates. PMID:16535387

  5. Garnet Pyroxenites from Kaula, Hawaii: Implications for Plume-Lithosphere Interaction

    Science.gov (United States)

    Bizimis, M.; Garcia, M. O.; Norman, M. D.

    2006-12-01

    The presence of garnet pyroxenite xenoliths on Oahu and Kaula Islands, Hawaii, provides the rare opportunity to investigate the composition of the deeper oceanic mantle lithosphere and the nature of plume-lithosphere interaction in two dimensions, downstream from the center of the Hawaiian plume. Kaula (60 miles SW of Kauai) is on the same bathymetric shallow as Kauai and the Kaula-Niihau-Kauai islands form a cross-trend relationship to the Hawaiian Island ridge. Here, we present the first Sr-Nd isotope data on clinopyroxenes (cpx) from Kaula pyroxenites, and we compare them with the Salt Lake Crater (SLC) pyroxenites from Oahu. The Kaula cpx major element compositions overlap those of the (more variable) SLC pyroxenites (e.g. Mg# = 0.79-0.83), except for their higher Al2O3 contents (9% vs. 5-8%) than the SLC. The Kaula cpx are LREE enriched with elevated Dy/Yb ratios, similar to the SLC pyroxenites and characteristic of the presence of garnet that preferentially incorporates the HREE. In Sr-Nd isotope space, the Kaula pyroxenite compositions (87Sr/86Sr= 0.70312-0.70326, ɛNd= 7.2-8.6) overlap those of both the Oahu-Kauai post erosional lavas and the SLC pyroxenites, falling at the isotopically depleted end of the Hawaiian lava compositions. The depleted Sr-Nd isotope compositions of the Kaula pyroxenites suggest that they are not related to the isotopically enriched shield stage Hawaiian lavas, either as a source material (i.e. recycled eclogite) or as cumulates. Their elevated 87Sr/86Sr ratios relative to MORB also suggests that they are not likely MORB-related cumulates. The similarities between the Oahu and Kaula pyroxenites, some 200 km apart, suggest the widespread presence of pyroxenitic material in the deeper (>60km) Pacific lithosphere between Oahu and Kaula-Kauai, as high pressure cumulates from melts isotopically similar to the secondary Hawaiian volcanism. The presence of this material within the lower lithosphere is consistent with seismic observations

  6. Oceanographic and surface meteorological data collected from station Schodack Island hydro/weather by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2008-04-25 to 2017-05-31 (NCEI Accession 0163416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163416 contains oceanographic and surface meteorological data collected at Schodack Island hydro/weather, a fixed station in the Hudson River. These...

  7. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the

  8. Building and Modification of the Continental Lithosphere: the History of the Contiguous U.S. as told by MLDs and LABs

    Science.gov (United States)

    Hopper, E.; Fischer, K. M.

    2016-12-01

    The lithosphere preserves a record of past and present tectonic processes in its internal structures and its boundary with the underlying asthenosphere. We use common conversion point stacked Sp converted waves recorded by EarthScope's Transportable Array, as well as other available permanent and temporary broadband stations, to image such structures in the lithospheric mantle of the contiguous U.S. In the tectonically youngest western U.S., a shallow, sharp velocity gradient at the base of the lithosphere suggests a boundary defined by ponded melt. The lithosphere thickens with age of volcanism, implying the lithosphere is a melt-mitigated, conductively cooling thermal boundary layer. Beneath older, colder lithosphere where melt fractions are likely much lower, the velocity gradient at the base of such a layer should be a more diffuse, primarily thermal boundary. This is consistent with observations in the eastern U.S. where the lithosphere-asthenosphere boundary (LAB) is locally sharp and shallower only in areas of inferred enhanced upwelling - such as ancient hot spot tracks and areas of inferred delamination. In the cratonic interior, the LAB is even more gradual in depth, and is transparent to Sp waves with dominant periods of 10 s. Although seismic imaging only provides a snapshot of the lithosphere as it is today, preserved internal structures extend the utility of this imaging back into deep geological time. Ancient accretion within the cratonic lithospheric mantle is preserved as dipping structures associated with relict subducted slabs from Paleoproterozoic continental accretion, suggesting that lateral accretion was integral to the cratonic mantle root formation process. Metasomatism, melt migration and ponding below a carbonated peridotite solidus explain a sub-horizontal mid-lithospheric discontinuity (MLD) commonly observed at 70-100 km depth. This type of MLD is strongest in Mesoproterozoic and older lithosphere, suggesting that it formed more

  9. The Lithosphere-asthenosphere Boundary beneath the South Island of New Zealand

    Science.gov (United States)

    Hua, J.; Fischer, K. M.; Savage, M. K.

    2017-12-01

    Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. This study takes advantage of the long-duration and high-density seismometer networks deployed on or near the South Island, especially 29 broadband stations of the New Zealand permanent seismic network (GeoNet). We obtained 24,980 individual receiver functions by extended-time multi-taper deconvolution, mapping to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography (Ball et al., 2015) and geochemical studies. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the west of the Alpine fault. The deeper LAB to the west of the Alpine fault is consistent with oceanic lithosphere attached to the Australian plate that was partially subducted while also translating parallel to the Alpine fault (e.g. Sutherland, 2000). However, models in which the Pacific lithosphere has been underthrust to the west past the Alpine fault cannot be ruled out. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the west of the fault, juxtaposed against a region of anomalously weak LAB conversions to the east of the fault. This structure, similar to results of Sp imaging beneath the central segment of the San Andreas fault (Ford et al., 2014), also suggests that lithospheric blocks with contrasting LAB properties meet beneath the Alpine fault. The observed variations in

  10. Electromagnetic study of lithospheric structure in Trans-European Suture Zone in Poland

    Science.gov (United States)

    Jóźwiak, Waldemar; Ślęzak, Katarzyna; Nowożyński, Krzysztof; Neska, Anne

    2016-04-01

    The area covered by magnetotelluric surveys in Poland is mostly related to the Trans-European Suture Zone (TESZ), the largest tectonic boundary in Europe. Numerous 1D, 2D, and pseudo-3D and 3D models of the electrical resistivity distribution were constructed, and a new interpretation method based on Horizontal Magnetic Tensor analysis has been applied recently. The results indicate that the TESZ is a lithospheric discontinuity and there are noticeable differences in geoelectric structures between the East European Craton (EEC), the transitional zone (TESZ), and the Paleozoic Platform (PP). The electromagnetic sounding is a very efficient tool for recognizing the lithospheric structure especially it helps in identification of important horizontal (or lateral) inhomogeneities in the crust. Due to our study we can clearly determine the areas of the East European Craton of high resistivity, Paleozoic Platform of somewhat lower resistivity value, and transitional TESZ of complicated structure. At the East European Craton, we observe very highly resistive lithosphere, reaching 220-240 km depth. Underneath, there is distinctly greater conductivity values, most probably resulting from partial melting of rocks; this layer may represent the asthenosphere. The resistivity of the lithosphere under the Paleozoic Platform is somewhat lower, and its thickness does not exceed 150 km. The properties of the lithosphere in the transition zone, under the TESZ, differ significantly. The presented models include prominent, NW-SE striking conductive lineaments. These structures, that related with the TESZ, lie at a depth of 10-30 km. They are located in a mid-crustal level and they reach the boundary of the EEC. The structures we initially connect to the Variscan Deformation Front (VDF) and the Caledonian Deformation Front (CDF). The differentiation of conductivity visible in the crust continues in the upper mantle.

  11. Short wavelength lateral variability of lithospheric mantle beneath the Middle Atlas (Morocco) as recorded by mantle xenoliths

    Science.gov (United States)

    El Messbahi, Hicham; Bodinier, Jean-Louis; Vauchez, Alain; Dautria, Jean-Marie; Ouali, Houssa; Garrido, Carlos J.

    2015-05-01

    The Middle Atlas is a region where xenolith-bearing volcanism roughly coincides with the maximum of lithospheric thinning beneath continental Morocco. It is therefore a key area to study the mechanisms of lithospheric thinning and constrain the component of mantle buoyancy that is required to explain the Moroccan topography. Samples from the two main xenolith localities, the Bou Ibalghatene and Tafraoute maars, have been investigated for their mineralogy, microstructures, crystallographic preferred orientation, and whole-rock and mineral compositions. While Bou Ibalghatene belongs to the main Middle Atlas volcanic field, in the 'tabular' Middle Atlas, Tafraoute is situated about 45 km away, on the North Middle Atlas Fault that separates the 'folded' Middle Atlas, to the South-East, from the 'tabular' Middle Atlas, to the North-West. Both xenolith suites record infiltration of sub-lithospheric melts that are akin to the Middle Atlas volcanism but were differentiated to variable degrees as a result of interactions with lithospheric mantle. However, while the Bou Ibalghatene mantle was densely traversed by high melt fractions, mostly focused in melt conduits, the Tafraoute suite records heterogeneous infiltration of smaller melt fractions that migrated diffusively, by intergranular porous flow. As a consequence the lithospheric mantle beneath Bou Ibalghaten was strongly modified by melt-rock interactions in the Cenozoic whereas the Tafraoute mantle preserves the record of extensional lithospheric thinning, most likely related to Mesozoic rifting. The two xenolith suites illustrate distinct mechanisms of lithospheric thinning: extensional thinning in Tafraoute, where hydrous incongruent melting triggered by decompression probably played a key role in favouring strain localisation, vs. thermal erosion in Bou Ibalghatene, favoured and guided by a dense network of melt conduits. Our results lend support to the suggestion that lithospheric thinning beneath the Atlas

  12. Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir?

    Science.gov (United States)

    Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François

    2017-08-01

    Subduction of carbonated crust is widely believed to generate a flux of carbon into the base of the continental lithospheric mantle, which in turn is the likely source of widespread volcanic and non-volcanic CO2 degassing in active tectonic intracontinental settings such as rifts, continental margin arcs and back-arc domains. However, the magnitude of the carbon flux through the lithosphere and the budget of stored carbon held within the lithospheric reservoir are both poorly known. We provide new constraints on the CO2 budget of the lithospheric mantle below the Pannonian Basin (Central Europe) through the study of a suite of xenoliths from the Bakony-Balaton Highland Volcanic Field. Trails of secondary fluid inclusions, silicate melt inclusions, networks of melt veins, and melt pockets with large and abundant vesicles provide numerous lines of evidence that mantle metasomatism affected the lithosphere beneath this region. We obtain a quantitative estimate of the CO2 budget of the mantle below the Pannonian Basin using a combination of innovative analytical and modeling approaches: (1) synchrotron X-ray microtomography, (2) NanoSIMS, Raman spectroscopy and microthermometry, and (3) thermodynamic models (Rhyolite-MELTS). The three-dimensional volumes reconstructed from synchrotron X-ray microtomography allow us to quantify the proportions of all petrographic phases in the samples and to visualize their textural relationships. The concentration of CO2 in glass veins and pockets ranges from 0.27 to 0.96 wt.%, higher than in typical arc magmas (0-0.25 wt.% CO2), whereas the H2O concentration ranges from 0.54 to 4.25 wt.%, on the low end for estimated primitive arc magmas (1.9-6.3 wt.% H2O). Trapping pressures for vesicles were determined by comparing CO2 concentrations in glass to CO2 saturation as a function of pressure in silicate melts, suggesting pressures between 0.69 to 1.78 GPa. These values are generally higher than trapping pressures for fluid inclusions

  13. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton.

    Science.gov (United States)

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M; Xiao, Yan

    2014-03-04

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ(7)Li in Archean lithospheric mantle. The δ(7)Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from -27 to +21, in marked deviation from the δ(7)Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1-2 ppm). The Li abundances and δ(7)Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ(7)Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ(7)Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust.

  14. Contrast of lithospheric dynamics across the southern and eastern margins of the Tibetan Plateau: a numerical study

    Science.gov (United States)

    Sun, Yujun; Fan, Taoyuan; Wu, Zhonghai

    2018-05-01

    Both of the southern and eastern margins of the Tibetan Plateau are bounded by the cratonic blocks (Indian plate and Sichuan basin). However, there are many differences in tectonic deformation, lithospheric structure and surface heat flow between these two margins. What dynamics cause these differences? With the constraints of the lithospheric structure and surface heat flow across the southern and eastern margins of Tibetan Plateau, we constructed 2-D thermal-mechanical finite-element models to investigate the dynamics across these two margins. The results show that the delamination of mantle lithosphere beneath the Lhasa terrane in Oligocene and the rheological contrast between the Indian and Tibetan crust are the two main factors that control the subduction of the Indian plate. The dynamics across the eastern margin of the Tibetan Plateau are different from the southern margin. During the lateral expansion of the Tibetan Plateau, pure shear thickening is the main deformation characteristic for the Songpan-Ganzi lithosphere. This thickening results in the reduction of geothermal gradient and surface heat flow. From this study, it can be seen that the delamination of the mantle lithosphere and the rheological contrast between the Tibetan Plateau and its bounding blocks are the two main factors that control the lithospheric deformation and surface heat flow.

  15. Lithospheric structure of northwest Africa: Insights into the tectonic history and influence of mantle flow on large-scale deformation

    Science.gov (United States)

    Miller, Meghan S.; Becker, Thorsten

    2014-05-01

    Northwest Africa is affected by late stage convergence of Africa with Eurasia, the Canary Island hotspot, and bounded by the Proterozoic-age West African craton. We present seismological evidence from receiver functions and shear-wave splitting along with geodynamic modeling to show how the interactions of these tectonic features resulted in dramatic deformation of the lithosphere. We interpret seismic discontinuities from the receiver functions and find evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that have been reactivated during the Cenozoic, further suggesting that inherited, lithospheric-scale zones of weakness were involved in the formation of the Atlas. Another significant step in lithospheric thickness is inferred within the Middle Atlas. Its location corresponds to the source of regional Quaternary alkali volcanism, where the influx of melt induced by the shallow asthenosphere appears restricted to a lithospheric-scale fault on the northern side of the mountain belt. Inferred stretching axes from shear-wave splitting are aligned with the topographic grain in the High Atlas, suggesting along-strike asthenospheric shearing in a mantle channel guided by the lithospheric topography. Isostatic modeling based on our improved lithospheric constraints indicates that lithospheric thinning alone does not explain the anomalous Atlas topography. Instead, an mantle upwelling induced by a hot asthenospheric anomaly appears required, likely guided by the West African craton and perhaps sucked northward by subducted lithosphere beneath the Alboran. This dynamic support scenario for the Atlas also suggests that the timing of uplift is contemporaneous with the recent volcanismin the Middle Atlas.

  16. Lateral heterogeneity and vertical stratification of cratonic lithospheric keels: a case study of the Siberian craton

    DEFF Research Database (Denmark)

    Artemieva, Irina; Cherepanova, Yulia; Herceg, Matija

    2014-01-01

    by regional xenolith P-T arrays,lithosphere density heterogeneity as constrained by free-board and satellite gravity data, and the non-thermalpart of upper mantle seismic velocity heterogeneity based on joint analysis of thermal and seismic tomography data.Density structure of the cratonic lithosphere...... and strongly depleted lithospheric mantle of the Archean nuclei, particularly below the Anabar shield.Since we cannot identify the depth distribution of density anomalies, we complement the approach by seismicdata. An analysis of temperature-corrected seismic velocity structure indicates strong vertical...

  17. Humic Substances from Manila Bay and Bolinao Bay Sediments

    Directory of Open Access Journals (Sweden)

    Elma Llaguno

    1997-12-01

    Full Text Available The C,H,N composition of sedimentary humic acids (HA extracted from three sites in Manila Bay and six sites in Bolinao Bay yielded H/C atomic ratios of 1.1-1.4 and N/C atomic ratios of 0.09 - 0.16. The Manila Bay HA's had lower H/C and N/C ratios compared to those from Bolinao Bay. The IR spectra showed prominent aliphatic C-H and amide I and II bands. Manila Bay HA's also had less diverse molecular composition based on the GC-MS analysis of the CuO and alkaline permanganate oxidation products of the humic acids.

  18. Estimation of Water Within the Lithospheric Mantle of Central Tibet from Petrological-Geophysical Investigations

    Science.gov (United States)

    Vozar, J.; Fullea, J.; Jones, A. G.

    2013-12-01

    Investigations of the lithosphere and sub-lithospheric upper mantle by integrated petrological-geophysical modeling of magnetotelluric (MT) and seismic surface-wave data, which are differently sensitive to temperature and composition, allows us to reduce the uncertainties associated with modeling these two data sets independently, as commonly undertaken. We use selected INDEPTH MT data, which have appropriate dimensionality and large penetration depths, across central Tibet for 1D modeling. Our deep resistivity models from the data can be classified into two different and distinct groups: (i) the Lhasa Terrane and (ii) the Qiangtang Terrane. For the Lhasa Terrane group, the models show the existence of upper mantle conductive layer localized at depths of 200 km, whereas for the Qiangtang Terrane, this conductive layer is shallower at depths of 120 km. We perform the integrated geophysical-petrological modeling of the MT and surface-wave data using the software package LitMod. The program facilitates definition of realistic temperature and pressure distributions within the upper mantle for given thermal structure and oxide chemistry in the CFMAS system. This allows us to define a bulk geoelectric and seismic model of the upper mantle based on laboratory and xenolith data for the most relevant mantle minerals, and to compute synthetic geophysical observables. Our results suggest an 80-120 km-thick, dry lithosphere in the central part of the Qiangtang Terrane. In contrast, in the central Lhasa Terrane the predicted MT responses are too resistive for a dry lithosphere regardless its thickness; according to seismic and topography data the expected lithospheric thickness is about 200 km. The presence of small amounts of water significantly decreases the electrical resistivity of mantle rocks and is required to fit the MT responses. We test the hypothesis of small amounts of water (ppm scale) in the nominally anhydrous minerals of the lithospheric mantle. Such a small

  19. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2014-01-01

    with no or low quality heat flow data. This analysis requires knowledge oflithosphere age globally.A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg 1 deg grid forms the basis forthe statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends......This presentation reports a 1 deg 1 deg global thermal model for the continental lithosphere (TC1). The modelis digitally available from the author’s web-site: www.lithosphere.info.Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliabledata...... on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publicationsfor data quality, and corrected for paleo-temperature effects where needed. These data are supplemented bycratonic geotherms based on xenolith data.Since heat flow measurements cover not more than half...

  20. Gravity signals from the lithosphere in the Central European Basin System

    Science.gov (United States)

    Yegorova, T.; Bayer, U.; Thybo, H.; Maystrenko, Y.; Scheck-Wenderoth, M.; Lyngsie, S. B.

    2007-01-01

    We study the gravity signals from different depth levels in the lithosphere of the Central European Basin System (CEBS). The major elements of the CEBS are the Northern and Southern Permian Basins which include the Norwegian-Danish Basin (NDB), the North-German Basin (NGB) and the Polish Trough (PT). An up to 10 km thick sedimentary cover of Mesozoic-Cenozoic sediments, hides the gravity signal from below the basin and masks the heterogeneous structure of the consolidated crust, which is assumed to be composed of domains that were accreted during the Paleozoic amalgamation of Europe. We performed a three-dimensional (3D) gravity backstripping to investigate the structure of the lithosphere below the CEBS. Residual anomalies are derived by removing the effect of sediments down to the base of Permian from the observed field. In order to correct for the influence of large salt structures, lateral density variations are incorporated. These sediment-free anomalies are interpreted to reflect Moho relief and density heterogeneities in the crystalline crust and uppermost mantle. The gravity effect of the Moho relief compensates to a large extent the effect of the sediments in the CEBS and in the North Sea. Removal of the effects of large-scale crustal inhomogeneities shows a clear expression of the Variscan arc system at the southern part of the study area and the old crust of Baltica further north-east. The remaining residual anomalies (after stripping off the effects of sediments, Moho topography and large-scale crustal heterogeneities) reveal long wavelength anomalies, which are caused mainly by density variations in the upper mantle, though gravity influence from the lower crust cannot be ruled out. They indicate that the three main subbasins of the CEBS originated on different lithospheric domains. The PT originated on a thick, strong and dense lithosphere of the Baltica type. The NDB was formed on a weakened Baltica low-density lithosphere formed during the Sveco

  1. Lateral heterogeneity and vertical stratification of cratonic lithospheric keels: examples from Europe, Siberia, and North America

    DEFF Research Database (Denmark)

    Artemieva, Irina; Cherepanova, Yulia; Herceg, Matija

    of the Precambrian lithosphere based on surface heat flow data, (ii) non-thermal part of upper mantle seismic velocity heterogeneity based on a joint analysis of thermal and seismic tomography data, and (iii) lithosphere density heterogeneity as constrained by free-board and satellite gravity data. The latter...... of the Gondwanaland does not presently exceed 250 km depth. An analysis of temperature-corrected seismic velocity structure indicates strong vertical and lateral heterogeneity of the cratonic lithospheric mantle, with a pronounced stratification in many Precambrian terranes; the latter is supported by xenolith data...

  2. Interaction Between Downwelling Flow and the Laterally-Varying Thickness of the North American Lithosphere Inferred from Seismic Anisotropy

    Science.gov (United States)

    Behn, M. D.; Conrad, C. P.; Silver, P. G.

    2005-12-01

    Shear flow in the asthenosphere tends to align olivine crystals in the direction of shear, producing a seismically anisotropic asthenosphere that can be detected using a number of seismic techniques (e.g., shear-wave splitting (SWS) and surface waves). In the ocean basins, where the asthenosphere has a relatively uniform thickness and lithospheric anisotropy appears to be small, observed azimuthal anisotropy is well fit by asthenospheric shear flow in global flow models driven by a combination of plate motions and mantle density heterogeneity. In contrast, beneath the continents both the lithospheric ceiling and asthenospheric thickness may vary considerably across cratonic regions and ocean-continent boundaries. To examine the influence of a continental lithosphere with variable thickness on predictions of continental seismic anisotropy, we impose lateral variations in lithospheric viscosity in global models of mantle flow driven by plate motions and mantle density heterogeneity. For the North American continent, the Farallon slab descends beneath a deep cratonic root, producing downwelling flow in the upper mantle and convergent flow beneath the cratonic lithosphere. We evaluate both the orientation of the predicted azimuthal anisotropy and the depth dependence of radial anisotropy for this downwelling flow and find that the inclusion of a strong continental root provides an improved fit to observed SWS observations beneath the North American craton. Thus, we hypothesize that at least some continental anisotropy is associated with sub-lithospheric viscous shear, although fossil anisotropy in the lithospheric layer may also contribute significantly. Although we do not observe significant variations in the direction of predicted anisotropy with depth, we do find that the inclusion of deep continental roots pushes the depth of the anisotropy layer deeper into the upper mantle. We test several different models of laterally-varying lithosphere and asthenosphere

  3. Oceanographic and surface meteorological data collected from station Port of Albany weather/hydro by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2011-01-04 to 2017-07-31 (NCEI Accession 0163364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163364 contains oceanographic and surface meteorological data collected at Port of Albany weather/hydro, a fixed station in the Hudson River. These...

  4. Earth's evolving subcontinental lithospheric mantle: inferences from LIP continental flood basalt geochemistry

    Science.gov (United States)

    Greenough, John D.; McDivitt, Jordan A.

    2018-04-01

    Archean and Proterozoic subcontinental lithospheric mantle (SLM) is compared using 83 similarly incompatible element ratios (SIER; minimally affected by % melting or differentiation, e.g., Rb/Ba, Nb/Pb, Ti/Y) for >3700 basalts from ten continental flood basalt (CFB) provinces representing nine large igneous provinces (LIPs). Nine transition metals (TM; Fe, Mn, Sc, V, Cr, Co, Ni, Cu, Zn) in 102 primitive basalts (Mg# = 0.69-0.72) from nine provinces yield additional SLM information. An iterative evaluation of SIER values indicates that, regardless of age, CFB transecting Archean lithosphere are enriched in Rb, K, Pb, Th and heavy REE(?); whereas P, Ti, Nb, Ta and light REE(?) are higher in Proterozoic-and-younger SLM sources. This suggests efficient transfer of alkali metals and Pb to the continental lithosphere perhaps in association with melting of subducted ocean floor to form Archean tonalite-trondhjemite-granodiorite terranes. Titanium, Nb and Ta were not efficiently transferred, perhaps due to the stabilization of oxide phases (e.g., rutile or ilmenite) in down-going Archean slabs. CFB transecting Archean lithosphere have EM1-like SIER that are more extreme than seen in oceanic island basalts (OIB) suggesting an Archean SLM origin for OIB-enriched mantle 1 (EM1). In contrast, OIB high U/Pb (HIMU) sources have more extreme SIER than seen in CFB provinces. HIMU may represent subduction-processed ocean floor recycled directly to the convecting mantle, but to avoid convective homogenization and produce its unique Pb isotopic signature may require long-term isolation and incubation in SLM. Based on all TM, CFB transecting Proterozoic lithosphere are distinct from those cutting Archean lithosphere. There is a tendency for lower Sc, Cr, Ni and Cu, and higher Zn, in the sources for Archean-cutting CFB and EM1 OIB, than Proterozoic-cutting CFB and HIMU OIB. All CFB have SiO2 (pressure proxy)-Nb/Y (% melting proxy) relationships supporting low pressure, high % melting

  5. Seismic evidence of the lithosphere-asthenosphere boundary beneath Izu-Bonin area

    Science.gov (United States)

    Cui, H.; Gao, Y.; Zhou, Y.

    2016-12-01

    The lithosphere-asthenosphere boundary (LAB), separating the rigid lithosphere and the ductile asthenosphere layers, is the seismic discontinuity with the negative velocity contrast of the Earth's interior [Fischer et al., 2010]. The LAB has been also termed the Gutenberg (G) discontinuity that defines the top of the low velocity zone in the upper mantle [Gutenberg, 1959; Revenaugh and Jordan, 1991]. The seismic velocity, viscosity, resistivity and other physical parameters change rapidly with the depths across the boundary [Eaton et al., 2009]. Seismic detections on the LAB in subduction zone regions are of great help to understand the interactions between the lithosphere and asthenosphere layers and the geodynamic processes related with the slab subductions. In this study, the vertical broadband waveforms are collected from three deep earthquake events occurring from 2000 to 2014 with the focal depths of 400 600 km beneath the Izu-Bonin area. The waveform data is processed with the linear slant stack method [Zang and Zhou, 2002] to obtain the vespagrams in the relative travel-time to slowness domain and the stacked waveforms. The sP precursors reflected on the LAB (sLABP), which have the negative polarities with the amplitude ratios of 0.17 0.21 relative to the sP phases, are successfully extracted. Based on the one-dimensional modified velocity model (IASP91-IB), we obtain the distributions for six reflected points of the sLABP phases near the source region. Our results reveal that the LAB depths range between 58 and 65 km beneath the Izu-Bonin Arc, with the average depth of 62 km and the small topography of 7 km. Compared with the results of the tectonic stable areas in Philippine Sea [Kawakatsu et al., 2009; Kumar and Kawakatsu, 2011], the oceanic lithosphere beneath the Izu-Bonin Arc shows the obvious thinning phenomena. We infer that the lithospheric thinning is closely related with the partial melting, which is caused by the volatiles continuously released

  6. Salt Marsh Formation in the Lower Hudson River Estuary

    Science.gov (United States)

    Merley, Michael; Peteet, Dorothy; Hansen, James E. (Technical Monitor)

    2001-01-01

    Salt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island (40 36 N, 74 77W), Piermont marsh (N 4100; 73 55W) Croton Point (41 14 N; 73 50W) and Iona Island (41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8 m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10 m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77 m) is lacking any identifiable macrofossils between 150 and 500 microns. The basal material from Iona Island (10 m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high

  7. Lithospheric strength variations in Mainland China : Tectonic implications

    NARCIS (Netherlands)

    Deng, Yangfan; Tesauro, M.

    2016-01-01

    We present a new thermal and strength model for the lithosphere of Mainland China. To this purpose, we integrate a thermal model for the crust, using a 3-D steady state heat conduction equation, with estimates for the upper mantle thermal structure, obtained by inverting a S wave tomography model.

  8. Global maps of the magnetic thickness and magnetization of the Earth’s lithosphere

    OpenAIRE

    Foteini Vervelidou; Erwan Thébault

    2015-01-01

    We have constructed global maps of the large-scale magnetic thickness and magnetization of Earth’s lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses wer...

  9. Lithospheric Structure of the Yamato Basin Inferred from Trans-dimensional Inversion of Receiver Functions

    Science.gov (United States)

    Akuhara, T.; Nakahigashi, K.; Shinohara, M.; Yamada, T.; Yamashita, Y.; Shiobara, H.; Mochizuki, K.

    2017-12-01

    The Yamato Basin, located at the southeast of the Japan Sea, has been formed by the back-arc opening of the Japan Sea. Wide-angle reflection surveys have revealed that the basin has anomalously thickened crust compared with a normal oceanic crust [e.g., Nakahigashi et al., 2013] while deeper lithospheric structure has not known so far. Revealing the lithospheric structure of the Yamato Basin will lead to better understanding of the formation process of the Japan Sea and thus the Japanese island. In this study, as a first step toward understanding the lithospheric structure, we aim to detect the lithosphere-asthenosphere boundary (LAB) using receiver functions (RFs). We use teleseismic P waveforms recorded by broad-band ocean-bottom seismometers (BBOBS) deployed at the Yamato Basin. We calculated radial-component RFs using the data with the removal of water reverberations from the vertical-component records [Akuhara et al., 2016]. The resultant RFs are more complicated than those calculated at an on-land station, most likely due to sediment-related reverberations. This complexity does not allow either direct detection of a Ps conversion from the LAB or forward modeling by a simple structure composed of a handful number of layers. To overcome this difficulty, we conducted trans-dimensional Markov Chain Monte Carlo inversion of RFs, where we do not need to assume the number of layers in advance [e.g., Bodin et al., 2012; Sambridge et al., 2014]. Our preliminary results show abrupt velocity reduction at 70 km depth, far greater depth than the expected LAB depth from the age of the lithosphere ( 20 Ma, although still debated). If this low-velocity jump truly reflects the LAB, the anomalously thickened lithosphere will provide a new constraint on the complex formation history of the Japan Sea. Further study, however, is required to deny the possibility that the obtained velocity jump is an artificial brought by the overfitting of noisy data.

  10. Origin of Starting Earthquakes under Complete Coupling of the Lithosphere Plates and a Base

    Science.gov (United States)

    Babeshko, V. A.; Evdokimova, O. V.; Babeshko, O. M.; Zaretskaya, M. V.; Gorshkova, E. M.; Mukhin, A. S.; Gladskoi, I. B.

    2018-02-01

    The boundary problem of rigid coupling of lithospheric plates modeled by Kirchhoff plates with a base represented by a three-dimensional deformable layered medium is considered. The possibility of occurrence of a starting earthquake in such a block structure is investigated. For this purpose, two states of this medium in the static mode are considered. In the first case, the semi-infinite lithospheric plates in the form of half-planes are at a distance so that the distance between the end faces is different from zero. In the second case, the lithospheric plates come together to zero spacing between them. Calculations have shown that in this case more complex movements of the Earth's surface are possible. Among such movements are the cases described in our previous publications [1, 2].

  11. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-01-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  12. Crustal seismicity and the earthquake catalog maximum moment magnitude (Mcmax) in stable continental regions (SCRs): Correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-12-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  13. Observatory geoelectric fields induced in a two-layer lithosphere during magnetic storms

    Science.gov (United States)

    Love, Jeffrey J.; Swidinsky, Andrei

    2015-01-01

    We report on the development and validation of an algorithm for estimating geoelectric fields induced in the lithosphere beneath an observatory during a magnetic storm. To accommodate induction in three-dimensional lithospheric electrical conductivity, we analyze a simple nine-parameter model: two horizontal layers, each with uniform electrical conductivity properties given by independent distortion tensors. With Laplace transformation of the induction equations into the complex frequency domain, we obtain a transfer function describing induction of observatory geoelectric fields having frequency-dependent polarization. Upon inverse transformation back to the time domain, the convolution of the corresponding impulse-response function with a geomagnetic time series yields an estimated geoelectric time series. We obtain an optimized set of conductivity parameters using 1-s resolution geomagnetic and geoelectric field data collected at the Kakioka, Japan, observatory for five different intense magnetic storms, including the October 2003 Halloween storm; our estimated geoelectric field accounts for 93% of that measured during the Halloween storm. This work demonstrates the need for detailed modeling of the Earth’s lithospheric conductivity structure and the utility of co-located geomagnetic and geoelectric monitoring.

  14. 3D Numerical Examination of Continental Mantle Lithosphere Response to Lower Crust Eclogitization and Nearby Slab Subduction

    Science.gov (United States)

    Janbakhsh, P.; Pysklywec, R.

    2017-12-01

    2D numerical modeling techniques have made great contribution to understanding geodynamic processes involved in crustal and lithospheric scale deformations for the past 20 years. The aim of this presentation is to expand the scope covered by previous researchers to 3 dimensions to address out-of-plane intrusion and extrusion of mantle material in and out of model space, and toroidal mantle wedge flows. In addition, 3D velocity boundary conditions can create more realistic models to replicate real case scenarios. 3D numerical experiments that will be presented are designed to investigate the density and viscosity effects of lower crustal eclogitization on the decoupling process of continental mantle lithosphere from the crust and its delamination. In addition, these models examine near-field effects of a subducting ocean lithosphere and a lithospheric scale fault zone on the evolution of the processes. The model solutions and predictions will also be compared against the Anatolian geology where subduction of Aegean and Arabian slabs, and the northern boundary with the North Anatolian Fault Zone are considered as two main contributing factors to anomalous crustal uplift, missing mantle lithosphere, and anomalous surface heat flux.

  15. Deformation of the Pannonian lithosphere and related tectonic topography: a depth-to-surface analysis

    OpenAIRE

    Dombrádi, E.

    2012-01-01

    Fingerprints of deep-seated, lithospheric deformation are often recognised on the surface, contributing to topographic evolution, drainage organisation and mass transport. Interactions between deep and surface processes were investigated in the Carpathian-Pannonian region. The lithosphere beneath the Pannonian basin has formerly been extended, significantly stretched and heated up and thus became extremely weak from a rheological point of view. From Pliocene times onward the ‘crème brulee’ ty...

  16. 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia-Eurasia collision (Iran)

    Science.gov (United States)

    Jiménez-Munt, I.; Fernãndez, M.; Saura, E.; Vergés, J.; Garcia-Castellanos, D.

    2012-09-01

    The aim of this work is to propose a first-order estimate of the crustal and lithospheric mantle geometry of the Arabia-Eurasia collision zone and to separate the measured Bouguer anomaly into its regional and local components. The crustal and lithospheric mantle structure is calculated from the geoid height and elevation data combined with thermal analysis. Our results show that Moho depth varies from ˜42 km at the Mesopotamian-Persian Gulf foreland basin to ˜60 km below the High Zagros. The lithosphere is thicker beneath the foreland basin (˜200 km) and thinner underneath the High Zagros and Central Iran (˜140 km). Most of this lithospheric mantle thinning is accommodated under the Zagros mountain belt coinciding with the suture between two different mantle domains on the Sanandaj-Sirjan Zone. The regional gravity field is obtained by calculating the gravimetric response of the 3-D crustal and lithospheric mantle structure obtained by combining elevation and geoid data. The calculated regional Bouguer anomaly differs noticeably from those obtained by filtering or just isostatic methods. The residual gravity anomaly, obtained by subtraction of the regional components to the measured field, is analyzed in terms of the dominating upper crustal structures. Deep basins and areas with salt deposits are characterized by negative values (˜-20 mGal), whereas the positive values are related to igneous and ophiolite complexes and shallow basement depths (˜20 mGal).

  17. What we didn't learn about the Hudson River, why, and what it means for environmental assessment

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Klauda, R.J.; Vaughan, D.S.

    1988-01-01

    Many of the major objectives of utility-sponsored and agency-sponsored Hudson River research programs were not achieved. Among these were identification and quantification of regulatory mechanisms and discovery of factors controlling year-class strength in striped bass and other important fish populations. Questions about community-level and ecosystem-level effects were not seriously addressed. Because of these limitations, an unambiguous assessment of the effects of power plants on the long-term production and persistence of Hudson River fish populations was not possible. It is argued that the failure to reach a scientifically defensible bottom line was largely due to: (1) institutional constraints on the design and conduct of assessment studies; (2) the complexity and spatiotemporal variability of estuarine ecosystems; and (3) the inadequacy of existing population and ecosystem theory. It is concluded that, for the foreseeable future, estimates of short-term impacts on populations will continue to be the most useful indices of power plants effects. Long-term monitoring and basic research on ecological processes in estuaries, funded and managed independently of the regulatory process, are essential to improving future environmental impact assessments. 44 refs

  18. Tectonically asymmetric Earth: From net rotation to polarized westward drift of the lithosphere

    Directory of Open Access Journals (Sweden)

    Carlo Doglioni

    2015-05-01

    Full Text Available The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR reference frame, and low (1°/Ma net rotation (shallow hotspots source, all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries.

  19. Earthquake Source Depths in the Zagros Mountains: A "Jelly Sandwich" or "Creme Brulee" Lithosphere?

    Science.gov (United States)

    Adams, A. N.; Nyblade, A.; Brazier, R.; Rodgers, A.; Al-Amri, A.

    2006-12-01

    The Zagros Mountain Belt of southwestern Iran is one of the most seismically active mountain belts in the world. Previous studies of the depth distribution of earthquakes in this region have shown conflicting results. Early seismic studies of teleseismically recorded events found that earthquakes in the Zagros Mountains nucleated within both the upper crust and upper mantle, indicating that the lithosphere underlying the Zagros Mountains has a strong upper crust and a strong lithospheric mantle, separated by a weak lower crust. Such a model of lithospheric structure is called the "Jelly Sandwich" model. More recent teleseismic studies, however, found that earthquakes in the Zagros Mountains occur only within the upper crust, thus indicating that the strength of the Zagros Mountains' lithosphere is primarily isolated to the upper crust. This model of lithospheric structure is called the "crème brûlée" model. Analysis of regionally recorded earthquakes nucleating within the Zagros Mountains is presented here. Data primarily come from the Saudi Arabian National Digital Seismic Network, although data sources include many regional open and closed networks. The use of regionally recorded earthquakes facilitates the analysis of a larger dataset than has been used in previous teleseismic studies. Regional waveforms have been inverted for source parameters using a range of potential source depths to determine the best fitting source parameters and depths. Results indicate that earthquakes nucleate in two distinct zones. One seismogenic zone lies at shallow, upper crustal depths. The second seismogenic zone lies near the Moho. Due to uncertainty in the source and Moho depths, further study is needed to determine whether these deeper events are nucleating within the lower crust or the upper mantle.

  20. Elysium region, mars: Tests of lithospheric loading models for the formation of tectonic features

    International Nuclear Information System (INIS)

    Hall, J.L.; Solomon, S.C.; Head, J.W.

    1986-01-01

    The second largest volcanic province on Mars lies in the Elysium region. Like the larger Tharsis province, Elysium is marked by a topographic rise and a broad free air gravity anomaly and also exhibits a complex assortment of tectonic and volcanic features. We test the hypothesis that the tectonic features in the Elysium region are the product of stresses produced by loading of the Martian lithosphere. We consider loading at three different scales: local loading by individual volcanoes, regional loading of the lithosphere from above or below, and quasi-global loading by Tharsis. A comparison of flexural stresses with lithospheric strength and with the inferred maximum depth of faulting confirms that concentric graben around Elysium Mons can be explained as resulting from local flexure of an elastic lithosphere about 50 km thick in response to the volcano load. Volcanic loading on a regional scale, however, leads to predicted stresses inconsistent with all observed tectonic features, suggesting that loading by widespread emplacement of thick plains deposits was not an important factor in the tectonic evolution of the Elysium region. A number of linear extensional features oriented generally NW-SE may have been the result of flexural uplift of the lithosphere on the scale of the Elysium rise. The global stress field associated with the support of the Tharsis rise appears to have influenced the development of many of the tectonic features in the Elysium region, including Cerberus Rupes and the systems of ridges in eastern and western Elysium. The comparisons of stress models for Elysium with the preserved tectonic features support a succession of stress fields operating at different times in the region

  1. Evidence for multiphase folding of the central Indian Ocean lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    Long-wavelength (100-300 km) folding in the central Indian Ocean associated with the diffuse plate boundary separating the Indian, Australian, and Capricorn plates is Earth's most convincing example of organized large-scale lithospheric deformation...

  2. European Lithospheric Mantle; geochemical, petrological and geophysical processes

    Science.gov (United States)

    Ntaflos, Th.; Puziewicz, J.; Downes, H.; Matusiak-Małek, M.

    2017-04-01

    The second European Mantle Workshop occurred at the end of August 2015, in Wroclaw, Poland, attended by leading scientists in the study the lithospheric mantle from around the world. It built upon the results of the first European Mantle Workshop (held in 2007, in Ferrara, Italy) published in the Geological Society of London Special Publication 293 (Coltorti & Gregoire, 2008).

  3. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  4. Lithospheric-scale analogue modelling of collision zones with a pre-existing weak zone, in "Deformation Mechanisms, Rheology and Tectonics: from Minerals to the Lithosphere"

    NARCIS (Netherlands)

    Willingshofer, E.; Sokoutis, D.; Burg, J.P.

    2005-01-01

    Lithospheric-scale analogue experiments have been conducted to investigate the influence of strength heterogeneities on the distribution and mode of crustal-scale deformation, on the resulting geometry of the deformed area, and on its topographic expression. Strength heterogeneities were

  5. The importance of polynyas, ice edges, and leads to marine mammals and birds

    Science.gov (United States)

    Stirling, Ian

    1997-01-01

    The correlation between areas of open water in ice-covered seas and increased biological productivity has been noted for some time. To date, most attention has been focused on larger polynyas, such as the Northeast Water and the Northwater. Although spectacular in their own right, these large polynyas represent only part of a vitally important continuum of biological productivity that varies significantly between geographic areas and ice habitats, that includes the multi-year pack of the polar ocean and small localized polynyas in annual ice. Surveys of the distribution and abundance of ringed seals in the Canadian Arctic Archipelago have shown differences in density that are correlated with the presence or absence of polynyas. There is also significant variation in the biological productivity of polynya areas of the Canadian High Arctic Archipelago and northern Greenland, all of which receive inflow from the polar basin. Long-term studies of polar bears and ringed seals in western Hudson Bay and the eastern Beaufort Sea show significant but dissimilar patterns of change in condition and reproductive rates between the two regions and suggest that fundamentally different climatic or oceanographic processes may be involved. Projections of climate models suggest that, if warming occurs, then the extent of ice cover in Hudson Bay may be among the first things affected. Long-term studies of polar bears and ringed seals in the eastern Beaufort Sea and Hudson Bay would suggest these two species to be suitable indicators of significant climatic or oceanographic changes in the marine ecosystem.

  6. Natural activity in Hudson River estuary samples and their influence on the detection limits for gamma emitting radionuclides using NaI gamma spectrometry

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Jinks, S.M.; Hairr, L.M.; Paschoa, A.S.; Lentsch, J.W.

    1972-01-01

    Sources of natural radioactivity in Hudson River Estuary are described. The technique of analysis for gamma spectrometry of environmental samples is presented and its pros and cons discussed. The distribution of natural radioactivity in water, biota and sediment was reported as well as the role played by the vertical distribution of cesium-137 in sediments as an indicator of the rate of sedimentation. The effect of the presence of natural radionuclides on the detection limits of man-made nuclides in the Hudson River environment is thoroughly examined. The results obtained with a 4-in. sodium iodide well crystal housed in a low background mercury shielding compare favorably with a more sophisticated Ge(Li) system which uses anticoincidence, as far as the analysis of environmental samples is concerned. (U.S.)

  7. 33 CFR 100.919 - International Bay City River Roar, Bay City, MI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false International Bay City River Roar, Bay City, MI. 100.919 Section 100.919 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Bay City River Roar, Bay City, MI. (a) Regulated Area. A regulated area is established to include all...

  8. Attenuation of S-waves in the lithosphere of the Sea of Crete according to OBS observations

    Science.gov (United States)

    Kovachev, S. A.; Kuzin, I. P.; Shoda, O. Yu.; Soloviev, S. L.

    1991-11-01

    Five OBS were installed in the Sea of Crete in 1987. During a period of nine days 430 local earthquakes were recorded. Hypocentres were determined for 85 microearthquakes. A correlation between magnitude ML and duration of seismic events on the records of the ocean bottom seismographs (OBS) was found from data of 14 shocks recorded simultaneously by OBS and some land-based Greek stations. A magnitude-frequency relationship for earthquakes recorded by OBS was obtained in the magnitude range ML = 2-4. Amplitude curves describing the attenuation of body waves in the lithosphere of the Sea of Crete were compiled. Assessment of quality factor Qs was made by comparison of empirical and theoretical amplitude curves. The values of Qs for the lithosphere of the Sea of Crete were calculated and found equal to 200-300. Low values of Qs and consequently strong attenuation of S-waves in the lithosphere of the Sea of Crete could be explained by extension of the lithosphere accompanied by its partial contamination with melted magma.

  9. Low Seismic Attenuation in Southern New England Lithosphere Implies Little Heating by the Upwelling Asthenosphere

    Science.gov (United States)

    Lamoureux, J. M.; Menke, W. H.

    2017-12-01

    The Northern Appalachian Anomaly (NAA) is a patch of the asthenosphere in southern New England that is unusually hot given its passive margin setting. Previous research has detected large seismic wave delays that imply a temperature of 770 deg C higher than the mantle below the adjacent craton at the same depth. A key outstanding issue is whether the NAA interacts with the lithosphere above it (e.g. by heating it up). We study this issue using Po and So waves from two magnitude >5.5 earthquakes near the Puerto Rico Trench. These waves, propagating in the cold oceanic lithosphere at near Moho speeds, deliver high frequency energy to the shallow continental lithosphere. We hypothesized that: (1) once within the continental lithosphere, Po and So experience attenuation with distance that can be quantified by a quality factor Q, and that (2) any heating of the lithosphere above the NAA would lead to a higher Q than in regions further north or south along the continental margin. Corresponding Po and So velocities would also be lower. The decay rates of Po and So are estimated using least-squares applied to RMS coda amplitudes measured from digital seismograms from stations in northeastern North America, corrected for instrument response. A roughly log-linear decrease in amplitude is observed, corresponding to P and S wave quality factors in the range of 394-1500 and 727-6847, respectively. Measurements are made for four margin-perpendicular geographical bands, with one band overlapping the NAA. We detect no effect on these amplitudes by the NAA; 95% confidence bounds overlap in every case; Furthermore, all quality factors are much higher than the 100 predicted by lab experiments for near-solidus mantle rocks. These results suggest that the NAA is not causing significant heating of the lithosphere above it. The shear velocities, however, are about 10% slower above the NAA - an effect that may be fossil, reflecting processes that occurred millions of years ago.

  10. Comprehensive analysis of Curie-point depths and lithospheric effective elastic thickness at Arctic Region

    Science.gov (United States)

    Lu, Y.; Li, C. F.

    2017-12-01

    Arctic Ocean remains at the forefront of geological exploration. Here we investigate its deep geological structures and geodynamics on the basis of gravity, magnetic and bathymetric data. We estimate Curie-point depth and lithospheric effective elastic thickness to understand deep geothermal structures and Arctic lithospheric evolution. A fractal exponent of 3.0 for the 3D magnetization model is used in the Curie-point depth inversion. The result shows that Curie-point depths are between 5 and 50 km. Curie depths are mostly small near the active mid-ocean ridges, corresponding well to high heat flow and active shallow volcanism. Large curie depths are distributed mainly at continental marginal seas around the Arctic Ocean. We present a map of effective elastic thickness (Te) of the lithosphere using a multitaper coherence technique, and Te are between 5 and 110 km. Te primarily depends on geothermal gradient and composition, as well as structures in the lithosphere. We find that Te and Curie-point depths are often correlated. Large Te are distributed mainly at continental region and small Te are distributed at oceanic region. The Alpha-Mendeleyev Ridge (AMR) and The Svalbard Archipelago (SA) are symmetrical with the mid-ocean ridge. AMR and SA were formed before an early stage of Eurasian basin spreading, and they are considered as conjugate large igneous provinces, which show small Te and Curie-point depths. Novaya Zemlya region has large Curie-point depths and small Te. We consider that fault and fracture near the Novaya Zemlya orogenic belt cause small Te. A series of transform faults connect Arctic mid-ocean ridge with North Atlantic mid-ocean ridge. We can see large Te near transform faults, but small Curie-point depths. We consider that although temperature near transform faults is high, but mechanically the lithosphere near transform faults are strengthened.

  11. The contribution of the Precambrian continental lithosphere to global H2 production.

    Science.gov (United States)

    Lollar, Barbara Sherwood; Onstott, T C; Lacrampe-Couloume, G; Ballentine, C J

    2014-12-18

    Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 10(11) moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 10(11) moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 10(11) moles per year is comparable to estimates from marine systems.

  12. Report on the geological and geomorphological field operation in the Amundsen Bay region, western Enderby Land, 1998-99 (JARE-40

    Directory of Open Access Journals (Sweden)

    Yoichi Motoyoshi

    1999-11-01

    Full Text Available The 40th Japanese Antarctic Research Expedition (JARE-40 conducted field operations on geology and geomorphology in the Amundsen Bay region, Enderby Land, for 34 days from December 21,1998 to January 23,1999. This was a part of the 5-year SEAL (Structure and Evolution of East Antarctic Lithosphere project, and two helicopters were installed for field support. Geological and geomorphological teams established base camps at Tonagh Island and Mt. Riiser-Larsen, respectively, and tried to conduct surveys in western Enderby Land. At the early stage of the operation, an unexpected gusty wind destroyed one of the helicopters at Tonagh Island, and planned surveys have not been completed. This report gives details of the logistics including planning, preparation and results.

  13. Comparing gravity-based to seismic-derived lithosphere densities : A case study of the British Isles and surrounding areas

    NARCIS (Netherlands)

    Root, B.C.; Ebbing, J; van der Wal, W.; England, R.W.; Vermeersen, L.L.A.

    2017-01-01

    Lithospheric density structure can be constructed from seismic tomography, gravity modelling, or using both data sets. The different approaches have their own uncertainties and limitations. This study aims to characterize and quantify some of the uncertainties in gravity modelling of lithosphere

  14. Implications for anomalous mantle pressure and dynamic topography from lithospheric stress patterns in the North Atlantic Realm

    Science.gov (United States)

    Schiffer, Christian; Nielsen, Søren Bom

    2016-08-01

    With convergent plate boundaries at some distance, the sources of the lithospheric stress field of the North Atlantic Realm are mainly mantle tractions at the base of the lithosphere, lithospheric density structure and topography. Given this, we estimate horizontal deviatoric stresses using a well-established thin sheet model in a global finite element representation. We adjust the lithospheric thickness and the sub-lithospheric pressure iteratively, comparing modelled in plane stress with the observations of the World Stress Map. We find that an anomalous mantle pressure associated with the Iceland and Azores melt anomalies, as well as topography are able to explain the general pattern of the principle horizontal stress directions. The Iceland melt anomaly overprints the classic ridge push perpendicular to the Mid Atlantic ridge and affects the conjugate passive margins in East Greenland more than in western Scandinavia. The dynamic support of topography shows a distinct maximum of c. 1000 m in Iceland and amounts <150 m along the coast of south-western Norway and 250-350 m along the coast of East Greenland. Considering that large areas of the North Atlantic Realm have been estimated to be sub-aerial during the time of break-up, two components of dynamic topography seem to have affected the area: a short-lived, which affected a wider area along the rift system and quickly dissipated after break-up, and a more durable in the close vicinity of Iceland. This is consistent with the appearance of a buoyancy anomaly at the base of the North Atlantic lithosphere at or slightly before continental breakup, relatively fast dissipation of the fringes of this, and continued melt generation below Iceland.

  15. 77 FR 2972 - Thunder Bay Power Company, Thunder Bay Power, LLC, et al.

    Science.gov (United States)

    2012-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Thunder Bay Power Company, Thunder Bay Power, LLC, et al.; Notice of Application for Transfer of Licenses, and Soliciting Comments and Motions To Intervene Thunder Bay Power Company Project No. 2404-095 Thunder Bay Power, LLC Midwest Hydro, Inc...

  16. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    Science.gov (United States)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  17. Preservation of an Archaean whole rock Re-Os isochron for the Venetia lithospheric mantle: Evidence for rapid crustal recycling and lithosphere stabilisation at 3.3 Ga

    Science.gov (United States)

    van der Meer, Quinten H. A.; Klaver, Martijn; Reisberg, Laurie; Riches, Amy J. V.; Davies, Gareth R.

    2017-11-01

    Re-Os and platinum group element analyses are reported for peridotite xenoliths from the 533 Ma Venetia kimberlite cluster situated in the Limpopo Mobile Belt, the Neoarchaean collision zone between the Kaapvaal and Zimbabwe Cratons. The Venetian xenoliths provide a rare opportunity to examine the state of the cratonic lithosphere prior to major regional metasomatic disturbance of Re-Os systematics throughout the Phanerozoic. The 32 studied xenoliths record Si-enrichment that is characteristic of the Kaapvaal lithospheric mantle and can be subdivided into five groups based on Re-Os analyses. The most pristine group I samples (n = 13) display an approximately isochronous relationship and fall on a 3.28 ± 0.17 Ga (95 % conf. int.) reference line that is based on their mean TMA age. This age overlaps with the formation age of the Limpopo crust at 3.35-3.28 Ga. The group I samples derive from ∼50 to ∼170 km depth, suggesting coeval melt depletion of the majority of the Venetia lithospheric mantle column. Group II and III samples have elevated Re/Os due to Re addition during kimberlite magmatism. Group II has otherwise undergone a similar evolution as the group I samples with overlapping 187Os/188Os at eruption age: 187Os/188OsEA, while group III samples have low Os concentrations, unradiogenic 187Os/188OsEA and were effectively Re-free prior to kimberlite magmatism. The other sample groups (IV and V) have disturbed Re-Os systematics and provide no reliable age information. A strong positive correlation is recorded between Os and Re concentrations for group I samples, which is extended to groups II and III after correction for kimberlite addition. This positive correlation precludes a single stage melt depletion history and indicates coupled remobilisation of Re and Os. The combination of Re-Os mobility, preservation of the isochronous relationship, correlation of 187Os/188Os with degree of melt depletion and lack of radiogenic Os addition puts tight constraints on

  18. Three-Dimensional Rheological Structure of North China Craton Determined by Integration of Multiple observations: Controlling Role for Lithospheric Rifting

    Science.gov (United States)

    Xiong, X.; Shan, B.; Li, Y.

    2017-12-01

    The North China Craton (NCC) has undergone significant lithospheric rejuvenation in late Mesozoic and Cenozoic, one feature of which is the widespread extension and rifting. The extension is distinct between the two parts of NCC: widespread rifting in the eastern NCC and localized narrow rifting in the west. The mechanism being responsible for this difference is uncertain and highly debated. Since lithospheric deformation can be regarded as the response of lithosphere to various dynamic actions, the rheological properties of lithosphere must have a fundamental influence on its tectonics and deformation behavior. In this study, we investigated the 3D thermal and rheological structure of NCC by developing a model integrating several geophysical observables (such as surface heatflow, regional elevation, gravity and geoid anomalies, and seismic tomography models). The results exhibit obvious lateral variation in rheological structure between the eastern and western NCC. The overall lithospheric strength is higher in the western NCC than in the east. Despite of such difference in rheology, both parts of NCC are characterized by mantle dominated strength regime, which facilitates the development of narrow rifting. Using ancient heatflow derived from mantle xenoliths studies, and taking the subduction-related dehydration reactions during Mesozoic into account, we constructed the thermal and rheological structure of NCC in Ordovician, early Cretaceous and early Cenozoic. Combining the evidence from numerical simulations, we proposed an evolution path of the rifting in NCC. The lithosphere of NCC in Ordovician was characterized by a normal craton features: low geotherm, high strength and mantle dominated regime. During Jurassic and Cretaceous, the mantle lithosphere in the eastern NCC was hydrated by fluid released by the suduction of the Pacific plate, resulting in weakening of the lithosphere and a transition from mantle dominated to crust dominated regime, which

  19. Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations

    Science.gov (United States)

    Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.

    2016-12-01

    This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a tide, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the tide and results are compared to those obtained for a static reference level. We first separately simulate the tide and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one

  20. Regional Crustal Deformation and Lithosphere Thickness Observed with Geodetic Techniques

    Science.gov (United States)

    Vermeer, M.; Poutanen, M.; Kollo, K.; Koivula, H.; Ahola, J.

    2009-04-01

    The solid Earth, including the lithosphere, interacts in many ways with other components of the Earth system, oceans, atmosphere and climate. Geodesy is a key provider of data needed for global and environmental research. Geodesy provides methods and accurate measurements of contemporary deformation, sea level and gravity change. The importance of the decades-long stability and availability of reference frames must be stressed for such studies. In the future, the need to accurately monitor 3-D crustal motions will grow, both together with increasingly precise GNSS (Global Navigation Satellite System) positioning, demands for better follow-up of global change, and local needs for crustal motions, especially in coastal areas. These demands cannot yet be satisfied. The project described here is a part of a larger entity: Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas, DynaQlim, an International Lithosphere Project (ILP) -sponsored initiative. The aims of DynaQlim are to understand the relations between upper mantle dynamics, mantle composition, physical properties, temperature and rheology, to study the postglacial uplift and ice thickness models, sea level change and isostatic response, Quaternary climate variations and Weichselian (Laurentian and other) glaciations during the late Quaternary. We aim at studying various aspects of lithospheric motion within the Finnish and Fennoscandian area, but within a global perspective, by the newest geodetic techniques in a multidisciplinary setting. The studies involve observations of three-dimensional motions and gravity change in a multidisciplinary context on a range of spatial scales: the whole of Fennoscandia, Finland, a regional test area of Satakunta, and the local test site Olkiluoto. Objectives of the research include improving our insight into the 3-D motion of a thick lithosphere, and into the gravity effect of the uplift, using novel approaches; improving the kinematic 3-D models in the

  1. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary

    International Nuclear Information System (INIS)

    Li, Y.-H.

    1979-01-01

    The pronounced desorption of Ba and 226 Ra from river-borne sediments in the Hudson estuary can be explained quantitatively by the drastic decrease in the distribution coefficients of both elements from a fresh to a salty water medium. The desorption in estuaries can augment, at least, the total global river fluxes of dissolved Ba and 226 Ra by one and nine times, respectively. The desorption flux of 226 Ra from estuaries accounts for 17-43% of the total 226 Ra flux from coastal sediments. Two mass balance models depicting mixing and adsorption-desorption processes in estuaries are discussed. (Auth.)

  2. Lithospheric-scale structures from the perspective of analogue continental collision.

    NARCIS (Netherlands)

    Sokoutis, D.; Burg, J.P.; Bonini, M.; Corti, G.; Cloetingh, S.A.P.L.

    2005-01-01

    Analogue models were employed to investigate continental collision addressing the roles of (1) a suture zone separating different crustal blocks, (2) mid-crustal weak layers and (3) mantle strengths. These models confirmed that low-amplitude lithospheric and crustal buckling is the primary response

  3. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis

    Science.gov (United States)

    Stern, Robert J.; Johnson, Peter

    2010-07-01

    The Arabian Plate originated ˜ 25 Ma ago by rifting of NE Africa to form the Gulf of Aden and Red Sea. It is one of the smaller and younger of the Earth's lithospheric plates. The upper part of its crust consists of crystalline Precambrian basement, Phanerozoic sedimentary cover as much as 10 km thick, and Cenozoic flood basalt (harrat). The distribution of these rocks and variations in elevation across the Plate cause a pronounced geologic and topographic asymmetry, with extensive basement exposures (the Arabian Shield) and elevations of as much as 3000 m in the west, and a Phanerozoic succession (Arabian Platform) that thickens, and a surface that descends to sea level, eastward between the Shield and the northeastern margin of the Plate. This tilt in the Plate is partly the result of marginal uplift during rifting in the south and west, and loading during collision with, and subduction beneath, the Eurasian Plate in the northeast. But a variety of evidence suggests that the asymmetry also reflects a fundamental crustal and mantle heterogeneity in the Plate that dates from Neoproterozoic time when the crust formed. The bulk of the Plate's upper crystalline crust is Neoproterozoic in age (1000-540 Ma) reflecting, in the west, a 300-million year process of continental crustal growth between ˜ 850 and 550 Ma represented by amalgamated juvenile magmatic arcs, post-amalgamation sedimentary and volcanic basins, and granitoid intrusions that make up as much as 50% of the Shield's surface. Locally, Archean and Paleoproterozoic rocks are structurally intercalated with the juvenile Neoproterozoic rocks in the southern and eastern parts of the Shield. The geologic dataset for the age, composition, and origin of the upper crust of the Plate in the east is smaller than the database for the Shield, and conclusions made about the crust in the east are correspondingly less definitive. In the absence of exposures, furthermore, nothing is known by direct observation about the

  4. Technical descriptions of Hudson River electricity generating stations

    International Nuclear Information System (INIS)

    Hutchison, J.B.

    1988-01-01

    Six fossil-fueled and one nuclear electricity generating plants are sited along the Hudson River estuary between kilometers 8 and 228, measured from the river mouth. Their aggregate rated capacity is 5,798 MW of electricity; operating at that capacity they would withdraw cooling water from the river at the rate of 1.5 x 10 to the 9th power cu m/d and reject heat at the rate of 155 x 10 to the 9th power kcal/d. Three of these plants, the fossil-fueled Roseton and Bowline and the nuclear Indian Point facilities; account for 75% of total rated capacity, 62% of maximum water withdrawal, and 79% of potential heat rejection. These three plants and a proposed pumped-storage facility at Cornwall, all sited between km 60 and 106, were the focus of environmental litigation. The Indian Point plant normally operates at 100% generation capacity; the other plants may experience daily operating load changes that vary from approximately 50% to 100% of total generation capacity, depending on system electrical demand or economic considerations. All plants experience periodic unscheduled outages for repairs. 6 refs., 7 figs

  5. 33 CFR 162.125 - Sturgeon Bay and the Sturgeon Bay Ship Canal, Wisc.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sturgeon Bay and the Sturgeon Bay Ship Canal, Wisc. 162.125 Section 162.125 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.125 Sturgeon Bay and the Sturgeon Bay Ship...

  6. Generation of continental rifts, basins, and swells by lithosphere instabilities

    Science.gov (United States)

    Fourel, Loïc.; Milelli, Laura; Jaupart, Claude; Limare, Angela

    2013-06-01

    Continents may be affected simultaneously by rifting, uplift, volcanic activity, and basin formation in several different locations, suggesting a common driving mechanism that is intrinsic to continents. We describe a new type of convective instability at the base of the lithosphere that leads to a remarkable spatial pattern at the scale of an entire continent. We carried out fluid mechanics laboratory experiments on buoyant blocks of finite size that became unstable due to cooling from above. Dynamical behavior depends on three dimensionless numbers, a Rayleigh number for the unstable block, a buoyancy number that scales the intrinsic density contrast to the thermal one, and the aspect ratio of the block. Within the block, instability develops in two different ways in an outer annulus and in an interior region. In the outer annulus, upwellings and downwellings take the form of periodically spaced radial spokes. The interior region hosts the more familiar convective pattern of polygonal cells. In geological conditions, such instabilities should manifest themselves as linear rifts striking at a right angle to the continent-ocean boundary and an array of domal uplifts, volcanic swells, and basins in the continental interior. Simple scaling laws for the dimensions and spacings of the convective structures are derived. For the subcontinental lithospheric mantle, these dimensions take values in the 500-1000 km range, close to geological examples. The large intrinsic buoyancy of Archean lithospheric roots prevents this type of instability, which explains why the widespread volcanic activity that currently affects Western Africa is confined to post-Archean domains.

  7. Plutonium, cesium, uranium, and thorium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1982-November 30, 1983

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.; Anderson, R.F.

    1983-01-01

    We have measured radionuclide activities in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs and 60 Co determined by gamma spectrometry and 239 240 Pu and 238 Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in 239 240 Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Fallout 239 240 Pu moving downstream in the Hudson appears to be almost completely retained within the system by particle deposition, while more than 50% of the 137 Cs derived from both reactor releases and fallout has been exported from the tidal Hudson to coastal waters. Measurements of fallout 239 240 Pu in a saline lake with a high carbonate ion concentration yielded water column activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ion is likely to be a critical factor in regulating plutonium solubility in some environments and that low molecular weight complexes are primarily responsible for enhanced plutonium solubility. 5 references

  8. Bird surveys at McKinley Bay and Hutchison Bay, Northwest Territories, in 1991

    Energy Technology Data Exchange (ETDEWEB)

    Cornish, B J; Dickson, D L; Dickson, H L

    1992-03-01

    McKinley Bay is a shallow protected bay along the eastern Beaufort Sea coast which provides an important habitat for diving ducks. Since 1979, the bay has been the site of a winter harbor and support base for oil and gas exploraton in the Beaufort Sea. Aerial surveys for bird abundance and distribution were conducted in August 1991 as a continuation of long-term monitoring of birds in McKinley Bay and Hutchison Bay, a nearby area used as a control. The main objectives of the 1991 surveys were to expand the set of baseline data on natural annual fluctuations in diving duck numbers, and to determine if numbers of diving ducks had changed since the initial 1981-85 surveys. On the day with the best survey conditions, the population of diving ducks at McKinley bay was estimated at ca 32,000, significantly more than 1981-85. At Hutchison Bay, there were an estimated 11,000 ducks. As in previous years, large numbers of diving ducks were observed off Atkinson Point at the northwest corner of McKinley Bay, at the south end of the bay, and in the northeast corner near a long spit. Most divers in Hutchison Bay were at the west side. Diving ducks, primarily Oldsquaw and scoter, were the most abundant bird group in the study area. Observed distribution patterns of birds are discussed with reference to habitat preferences. 16 refs., 7 figs., 30 tabs.

  9. Pb’s high sedimentation inside the bay mouth of Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2017-12-01

    Sedimentation is one of the key environmental behaviors of pollutants in the ocean. This paper analyzed the seasonal and temporal variations of Pb’s sedimentation process in Jiaozhou Bay in 1987. Results showed that Pb contents in bottom waters in Jiaozhou Bay in May, July and November 1987 were 1.87-2.60 μg L-1, 15.11-19.68 μg L-1 and 11.08-15.18 μg L-1, and the pollution levels of Pb in May, July and November 1987 were slight, heavy and heavy, respectively. In May 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the middle and inside of the bay mouth. In July and November 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the inside of the bay mouth. The seasonal-temporal variation of sedimentation processes of Pb were determined by the variations of sources input and the vertical water’s effect.

  10. The electrical conductivity of the upper mantle and lithosphere from the magnetic signal due to ocean tidal flow

    DEFF Research Database (Denmark)

    Schnepf, Neesha Regmi; Kuvshinov, Alexey; Grayver, Alexander

    galvanically with Earth’s lithosphere (i.e. by direct coupling of the source currents in the ocean with the underlying substrate), enabling conductivity estimations at shallower depths. Here we present the results of determining a 1-D conductivity-depth profile of oceanic lithosphere and upper mantle using...

  11. Influence of the lithosphere-asthenosphere boundary on the stress field northwest of the Alps

    Science.gov (United States)

    Maury, J.; Cornet, F. H.; Cara, M.

    2014-11-01

    In 1356, a magnitude 6-7 earthquake occurred near Basel, in Switzerland. But recent compilations of GPS measurements reveal that measured horizontal deformation rates in northwestern continental Europe are smaller than error bars on the measurements, proving present tectonic activity, if any, is very small in this area. We propose to reconcile these apparently antinomic observations with a mechanical model of the lithosphere that takes into account the geometry of the lithosphere-asthenosphere boundary, assuming that the only loading mechanism is gravity. The lithosphere is considered to be an elastoplastic material satisfying a Von Mises plasticity criterion. The model, which is 400 km long, 360 km wide and 230 km thick, is centred near Belfort in eastern France, with its width oriented parallel to the N145°E direction. It also takes into account the real topography of both the ground surface and that of the Moho discontinuity. Not only does the model reproduce observed principal stress directions orientations, it also identifies a plastic zone that fits roughly the most seismically active domain of the region. Interestingly, a somewhat similar stress map may be produced by considering an elastic lithosphere and an ad-hoc horizontal `tectonic' stress field. However, for the latter model, examination of the plasticity criterion suggests that plastic deformation should have taken place. It is concluded that the present-day stress field in this region is likely controlled by gravity and rheology, rather than by active Alpine tectonics.

  12. Extension of thickened and hot lithospheres: Inferences from laboratory modeling

    NARCIS (Netherlands)

    Tirel, C.; Brun, J.P.; Sokoutis, D.

    2006-01-01

    The extension of a previously thickened lithosphere is studied through a series of analogue experiments. The models deformed in free and boundary-controlled gravity spreading conditions that simulate the development of wide rift-type and core complex-type structures. In models, the development of

  13. Lithospheric expression of geological units in central and eastern North America from full waveform tomography

    Science.gov (United States)

    Yuan, Huaiyu; French, Scott; Cupillard, Paul; Romanowicz, Barbara

    2014-09-01

    The EarthScope TA deployment has provided dense array coverage throughout the continental US and with it, the opportunity for high resolution 3D seismic velocity imaging of both lithosphere and asthenosphere in the continent. Building upon our previous long-period waveform tomographic modeling in North America, we present a higher resolution 3D isotropic and radially anisotropic shear wave velocity model of the North American lithospheric mantle, constructed tomographically using the spectral element method for wavefield computations and waveform data down to 40 s period. The new model exhibits pronounced spatial correlation between lateral variations in seismic velocity and anisotropy and major tectonic units as defined from surface geology. In the center of the continent, the North American craton exhibits uniformly thick lithosphere down to 200-250 km, while major tectonic sutures of Proterozoic age visible in the surface geology extend down to 100-150 km as relatively narrow zones of distinct radial anisotropy, with Vsv >Vsh. Notably, the upper mantle low velocity zone is present everywhere under the craton between 200 and 300 km depth. East of the continental rift margin, the lithosphere is broken up into a series of large, somewhat thinner (150 km) high velocity blocks, which extend laterally 200-300 km offshore into the Atlantic Ocean. Between the craton and these deep-rooted blocks, we find a prominent narrow band of low velocities that roughly follows the southern and eastern Laurentia rift margin and extends into New England. We suggest that the lithosphere along this band of low velocities may be thinned due to the combined effects of repeated rifting processes and northward extension of the hotspot related Bermuda low-velocity channel across the New England region. We propose that the deep rooted high velocity blocks east of the Laurentia margin represent the Proterozoic Gondwanian terranes of pan-African affinity, which were captured during the Rodinia

  14. Source parameters of the Bay of Bengal earthquake of 21 May 2014 and related seismotectonics of 85°E and 90°E ridges

    Science.gov (United States)

    Prakash, Rajesh; Prajapati, Sanjay Kumar; Srivastava, Hari Narain

    2018-01-01

    Source parameters of the Bay of Bengal earthquake of 21 May 2014 have been studied using full waveform inversion. Its source mechanism thus determined the orientation of the strike slip faulting as NW-SE/NE-SW. The occurrence of past earthquakes along the NE-SW nodal plane suggested its preference as the main fault which could result from the transmission of stresses from the Indian plate boundary. High stress drop of this earthquake (216 bar) is attributed to its location in the intraplate region, strike slip faulting and focus in the colder upper mantle. Comparison of the stress drop of deeper focus Hindukush earthquakes with that of the Bay of Bengal earthquake showed a smaller felt radius due to fractured lithosphere in the Himalayas vis-a-vis more efficient propagation of seismic waves in the peninsular region from the source region of this recent earthquake. The seismological evidence presented for the 85°E and 90°E ridges shows the predominance of strike slip faulting with thrusting on both the ridges. Integrating their source mechanism with that of the May 2014 earthquake, it could be inferred that the Bay of Bengal region (excluding Andaman Sumatra subduction zone) is characterised predominantly by strike slip faulting in the region north of latitude 20°N and strike slip with thrusting in the remaining portion.

  15. An Equivalent Source Method for Modelling the Lithospheric Magnetic Field Using Satellite and Airborne Magnetic Data

    DEFF Research Database (Denmark)

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris

    . Advantages of the equivalent source method include its local nature and the ease of transforming to spherical harmonics when needed. The method can also be applied in local, high resolution, investigations of the lithospheric magnetic field, for example where suitable aeromagnetic data is available......We present a technique for modelling the lithospheric magnetic field based on estimation of equivalent potential field sources. As a first demonstration we present an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010. Three component vector field...... for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid with an increasing grid resolution towards the airborne survey area. The corresponding source values are estimated using an iteratively reweighted least squares algorithm that includes model...

  16. Using crustal thickness, subsidence and P-T-t history on the Iberia-Newfoundland & Alpine Tethys margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.

    2013-12-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere

  17. Improvements in Hudson River Water Quality Create the Need for a new Approach to Monitoring and Management

    Science.gov (United States)

    O'Mullan, G. D.; Juhl, A.; Sambrotto, R.; Lipscomb, J.; Brown, T.

    2008-12-01

    The lower Hudson River is a well-flushed temperate estuary that continues to support diverse wildlife populations although its shores are home to the nation's most populated metropolitan area. Data sets from the last hundred years clearly demonstrate extreme nutrient concentrations, pathogen loading, and periods of persistent hypoxia. These data also show a clear trend of steadily improving water quality in the last thirty years. Recent increases in recreational activity, expanded shoreline parks, and waterfront redevelopment, indicate the return of the people of New York to the River, concomitant with improved water quality. While mean seasonal water quality indicators are now often acceptable for large portions of the River, there remains a lack of information about the finer scale spatial and temporal variability of water quality. A new water quality sampling program was initiated in the Fall of 2006 to address this challenge. Monthly sampling cruises collected continuous underway surface measurements of hydrographic variables in parallel with discrete sampling for nutrients and microbiology. In general, these data indicate that mid-channel locations are often within acceptable water quality standards during dry weather, but that wet weather events deliver large quantities of sewage to the River, leading to short-term deterioration in water quality. In 2006-2007, only 6 of 27 sample sites had geometric mean values for Enterococcus , a sewage-indicating microorganism, that suggest consistently poor water quality. In contrast, single-day exceedances of EPA recommended guidelines for Enterococcus were found at 21 of the 27 sites. Although the mid-channel of the River was relatively homogenous with respect to sewage indicators, large changes were observed at tributary mixing interfaces and along the shallow edges of the River where human contact is most likely. The changing use of the River, together with new information about the importance of episodic and

  18. Plutonium and cesium radionuclides in the Hudson River Estuary. Annual technical progress report, 1 December 1975--30 November 1976

    International Nuclear Information System (INIS)

    Simpson, H.J.; Williams, S.C.

    1976-01-01

    We have obtained a large set of cores from the Hudson Estuary covering nearly all of the ambient salinity range. A number of core sections have been analyzed for 137 Cs, 134 Cs, 60 Co and 40 K by direct gamma counting and for 239 , 240 Pu and 238 Pu by alpha-spectrometry. Rapid accumulation, up to 20 cm/year, of sediments containing 239 , 240 Pu, 137 Cs, 134 Cs and 60 Co occurs in New York Harbor. Marginal coves upstream from the harbor also serve as depositional environments. The ratio of sediment /sup 239,240/Pu to 137 Cs is higher than the fallout ratio in the seaward end of New York Harbor, despite the presence of a significant component of reactor 137 Cs in the sediments, but lower than the range of ratios observed by others for nearshore environments with low sediment deposition rates. A substantial portion of gamma emitting fission product and activation nuclides released from the Indian Point nuclear facility have accumulated in New York Harbor, more than 60 km downstream from the release area. We have not yet established whether local transuranic releases to the Hudson have occurred

  19. Deep magmatism alters and erodes lithosphere and facilitates decoupling of Rwenzori crustal block

    Science.gov (United States)

    Wallner, Herbert; Schmeling, Harro

    2013-04-01

    The title is the answer to the initiating question "Why are the Rwenzori Mountains so high?" posed at the EGU 2008. Our motivation origins in the extreme topography of the Rwenzori Mountains. The strong, cold proterozoic crustal horst is situated between rift segments of the western branch of the East African Rift System. Ideas of rift induced delamination (RID) and melt induced weakening (MIW) have been tested with one- and two-phase flow physics. Numerical model parameter variations and new observations lead to a favoured model with simple and plausible definitions. Results coincide in the scope of their comparability with different observations or vice versa reduce ambiguity and uncertainties in model input. Principle laws of the thermo-mechanical physics are the equations of conservation of mass, momentum, energy and composition for a two-phase (matrix-melt) system with nonlinear rheology. A simple solid solution model determines melting and solidification under consideration of depletion and enrichment. The Finite Difference Method with markers is applied to visco-plastic flow using the streamfunction in an Eulerian formulation in 2D. The Compaction Boussinesq and the high Prandtl number Approximation are employed. Lateral kinematic boundary conditions provide long-wavelength asthenospheric upwelling and extensional stress conditions. Partial melts are generated in the asthenosphere, extracted above a critical fraction, and emplaced into a given intrusion level. Temperature anomalies positioned beneath the future rifts, the sole specialization to the Rwenzori situation, localize melts which are very effective in weakening the lithosphere. Convection patterns tend to generate dripping instabilities at the lithospheric base; multiple slabs detach and distort uprising asthenosphere; plumes migrate, join and split. In spite of appearing chaotic flow behaviour a characteristic recurrence time of high velocity events (drips, plumes) emerges. Chimneys of increased

  20. Using open sidewalls for modelling self-consistent lithosphere subduction dynamics

    NARCIS (Netherlands)

    Chertova, M.V.; Geenen, T.; van den Berg, A.; Spakman, W.

    2012-01-01

    Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable) vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free

  1. Adult tree swallow survival on the polychlorinated biphenyl-contaminated Hudson River, New York, USA, between 2006 and 2010

    Science.gov (United States)

    Custer, Christine M.; Custer, Thomas W.; Hines, James E.

    2012-01-01

    The upper Hudson River basin in east central New York, USA, is highly contaminated, primarily with polychlorinated biphenyls (PCBs). Reduced adult survival has been documented in tree swallows (Tachycineta bicolor) at a similarly PCB-contaminated river system in western Massachusetts. The purpose of the present study was to assess whether adult survival of tree swallows was likewise affected in the Hudson River basin. Between 2006 and 2010, a total of 521 female tree swallows were banded, of which 148 were retrapped at least once. The authors used Program MARK and an information theoretic approach to test the hypothesis that PCB contamination reduced annual survival of female tree swallows. The model that best described the processes that generated the capture history data included covariate effects of year and female plumage coloration on survival but not PCB/river. Annual survival rates of brown-plumaged females (mostly one year old) were generally lower (mean phi = 0.39) than those of blue-plumaged females (mean phi = 0.50, one year or older). Poor early spring weather in 2007 was associated with reduced survival in both plumage-color groups compared to later years. Models with the effects of PCB exposure on survival (all ΔAICc values >5.0) received little support.

  2. An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field

    DEFF Research Database (Denmark)

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris

    2014-01-01

    We present a new technique for modelling the global lithospheric magnetic field at Earth's surface based on the estimation of equivalent potential field sources. As a demonstration we show an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010 when...... are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid. The corresponding source values are estimated using an iteratively reweighted least squares algorithm...... in the CHAOS-4 and MF7 models using more conventional spherical harmonic based approaches. Advantages of the equivalent source method include its local nature, allowing e.g. for regional grid refinement, and the ease of transforming to spherical harmonics when needed. Future applications will make use of Swarm...

  3. Effect of the lithospheric thermal state on the Moho interface: A case study in South America

    Science.gov (United States)

    Bagherbandi, Mohammad; Bai, Yongliang; Sjöberg, Lars E.; Tenzer, Robert; Abrehdary, Majid; Miranda, Silvia; Alcacer Sanchez, Juan M.

    2017-07-01

    Gravimetric methods applied for Moho recovery in areas with sparse and irregular distribution of seismic data often assume only a constant crustal density. Results of latest studies, however, indicate that corrections for crustal density heterogeneities could improve the gravimetric result, especially in regions with a complex geologic/tectonic structure. Moreover, the isostatic mass balance reflects also the density structure within the lithosphere. The gravimetric methods should therefore incorporate an additional correction for the lithospheric mantle as well as deeper mantle density heterogeneities. Following this principle, we solve the Vening Meinesz-Moritz (VMM) inverse problem of isostasy constrained by seismic data to determine the Moho depth of the South American tectonic plate including surrounding oceans, while taking into consideration the crustal and mantle density heterogeneities. Our numerical result confirms that contribution of sediments significantly modifies the estimation of the Moho geometry especially along the continental margins with large sediment deposits. To account for the mantle density heterogeneities we develop and apply a method in order to correct the Moho geometry for the contribution of the lithospheric thermal state (i.e., the lithospheric thermal-pressure correction). In addition, the misfit between the isostatic and seismic Moho models, attributed mainly to deep mantle density heterogeneities and other geophysical phenomena, is corrected for by applying the non-isostatic correction. The results reveal that the application of the lithospheric thermal-pressure correction improves the RMS fit of the VMM gravimetric Moho solution to the CRUST1.0 (improves ∼ 1.9 km) and GEMMA (∼1.1 km) models and the point-wise seismic data (∼0.7 km) in South America.

  4. Dynamics of Lithospheric Extension and Residual Topography in Southern Tibet

    Science.gov (United States)

    Chen, B.; Shahnas, M. H.; Pysklywec, R.; Sengul Uluocak, E.

    2017-12-01

    Although the north-south (N-S) convergence between India and Eurasia is ongoing, a number of north-south trending rifts (e.g., Tangra Yum Co Rift, Yadong-Gulu Rift and Cona Rift) and normal faulting are observed at the surface of southern Tibet, suggesting an east-west (E-W) extension tectonic regime. The earthquake focal mechanisms also show that deformation of southern Tibet is dominated by E-W extension across these N-S trending rifts. Because the structure of the lithosphere and underlying mantle is poorly understood, the origin of the east-west extension of southern Tibet is still under debate. Gravitational collapse, oblique convergence, and mantle upwelling are among possible responsible mechanisms. We employ a 3D-spherical control volume model of the present-day mantle flow to understand the relationship between topographic features (e.g., rifts and the west-east extension), intermediate-depth earthquakes, and tectonic stresses induced by mantle flow beneath the region. The thermal structure of the mantle and crust is obtained from P and S-wave seismic inversions and heat flow data. Power-law creep with viscous-plastic rheology, describing the behavior of the lithosphere and mantle material is employed. We determine the models which can best reconcile the observed features of southern Tibet including surface heat flow, residual topography with uplift and subsidence, reported GPS rates of the vertical movements, and the earthquake events. The 3D geodynamic modeling of the contemporary mantle flow-lithospheric response quantifies the relative importance of the various proposed mechanism responsible for the E-W extension and deep earthquakes in southern Tibet. The results also have further implications for the magmatic activities and crustal rheology of the region.

  5. The onset of deglaciation of Cumberland Bay and Stromness Bay, South Georgia

    NARCIS (Netherlands)

    Van Der Putten, N.; Verbruggen, C.

    Carbon dating of basal peat deposits in Cumberland Bay and Stromness Bay and sediments from a lake in Stromness Bay, South Georgia indicates deglaciation at the very beginning of the Holocene before c. 9500 14C yr BP. This post-dates the deglaciation of one local lake which has been ice-free since

  6. Simultaneous estimation of lithospheric uplift rates and absolute sea level change in southwest Scandinavia from inversion of sea level data

    DEFF Research Database (Denmark)

    Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt

    2014-01-01

    the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative...... sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest...... Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality...

  7. Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan

    Science.gov (United States)

    Kersting; Arculus; Gust

    1996-06-07

    Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts.

  8. Magnetotelluric Imaging of Lower Crustal Melt and Lithospheric Hydration in the Rocky Mountain Front Transition Zone, Colorado, USA

    Science.gov (United States)

    Feucht, D. W.; Sheehan, A. F.; Bedrosian, P. A.

    2017-12-01

    We present an electrical resistivity model of the crust and upper mantle from two-dimensional (2-D) anisotropic inversion of magnetotelluric data collected along a 450 km transect of the Rio Grande rift, southern Rocky Mountains, and High Plains in Colorado, USA. Our model provides a window into the modern-day lithosphere beneath the Rocky Mountain Front to depths in excess of 150 km. Two key features of the 2-D resistivity model are (1) a broad zone ( 200 km wide) of enhanced electrical conductivity (minerals, with maximum hydration occurring beneath the Rocky Mountain Front. This lithospheric "hydration front" has implications for the tectonic evolution of the continental interior and the mechanisms by which water infiltrates the lithosphere.

  9. Spatial variations of effective elastic thickness of the Lithosphere in the Southeast Asia regions

    Science.gov (United States)

    Shi, Xiaobin; Kirby, Jon; Yu, Chuanhai; Swain, Chris; Zhao, Junfeng

    2016-04-01

    The effective elastic thickness Te corresponds to the thickness of an idealized elastic beam that would bend similarly to the actual lithosphere under the same applied loads, and could provide important insight into rheology and state of stress. Thus, it is helpful to improve our understanding of the relationship between tectonic styles, distribution of earthquakes and lithospheric rheology in various tectonic settings. The Southeast Asia, located in the southeastern part of the Eurasian Plate, comprises a complex collage of continental fragments, volcanic arcs, and suture zones and marginal oceanic basins, and is surrounded by tectonically active margins which exhibit intense seismicity and volcanism. The Cenozoic southeastward extrusion of the rigid Indochina Block due to the Indo-Asian collision resulted in the drastic surface deformation in the western area. Therefore, a high resolution spatial variation map of Te might be a useful tool for the complex Southeast Asia area to examine the relationships between surface deformation, earthquakes, lithospheric structure and mantle dynamics. In this study, we present a high-resolution map of spatial variations of Te in the Southeast Asia area using the wavelet method, which convolves a range of scaled wavelets with the two data sets of Bouguer gravity anomaly and topography. The topography and bathymetry grid data was extracted from the GEBCO_08 Grid of GEBCO digital atlas. The pattern of Te variations agrees well with the tectonic provinces in the study area. On the whole, low lithosphere strength characterizes the oceanic basins, such as the South China Sea, the Banda sea area, the Celebes Sea, the Sulu Sea and the Andaman Sea. Unlike the oceanic basins, the continental fragments show a complex pattern of Te variations. The Khorat plateau and its adjacent area show strong lithosphere characteristics with a Te range of 20-50 km, suggesting that the Khorat plateau is the strong core of the Indochina Block. The West

  10. Lithospheric structure of southern Indian shield and adjoining oceans: integrated modelling of topography, gravity, geoid and heat flow data

    Science.gov (United States)

    Kumar, Niraj; Zeyen, H.; Singh, A. P.; Singh, B.

    2013-07-01

    For the present 2-D lithospheric density modelling, we selected three geotransects of more than 1000 km in length each crossing the southern Indian shield, south of 16°N, in N-S and E-W directions. The model is based on the assumption of local isostatic equilibrium and is constrained by the topography, gravity and geoid anomalies, by geothermal data, and where available by seismic data. Our integrated modelling approach reveals a crustal configuration with the Moho depth varying from ˜40 km beneath the Dharwar Craton, and ˜39 km beneath the Southern Granulite Terrane to about 15-20 km beneath the adjoining oceans. The lithospheric thickness varies significantly along the three profiles from ˜70-100 km under the adjoining oceans to ˜130-135 km under the southern block of Southern Granulite Terrane including Sri Lanka and increasing gradually to ˜165-180 km beneath the northern block of Southern Granulite Terrane and the Dharwar Craton. This step-like lithosphere-asthenosphere boundary (LAB) structure indicates a normal lithospheric thickness beneath the adjoining oceans, the northern block of Southern Granulite Terrane and the Dharwar Craton. The thin lithosphere below the southern block of Southern Granulite Terrane including Sri Lanka is, however, atypical considering its age. Our results suggest that the southern Indian shield as a whole cannot be supported isostatically only by thickened crust; a thin and hot lithosphere beneath the southern block of Southern Granulite Terrane including Sri Lanka is required to explain the high topography, gravity, geoid and crustal temperatures. The widespread thermal perturbation during Pan-African (550 Ma) metamorphism and the breakup of Gondwana during late Cretaceous are proposed as twin cause mechanism for the stretching and/or convective removal of the lower part of lithospheric mantle and its replacement by hotter and lighter asthenosphere in the southern block of Southern Granulite Terrane including Sri Lanka

  11. Gravity anomalies and flexure of the lithosphere at the Middle Amazon Basin, Brazil

    Science.gov (United States)

    Nunn, Jeffrey A.; Aires, Jose R.

    1988-01-01

    The Middle Amazon Basin is a large Paleozoic sedimentary basin on the Amazonian craton in South America. It contains up to 7 km of mainly shallow water sediments. A chain of Bouguer gravity highs of approximately +40 to +90 mGals transects the basin roughly coincident with the axis of maximum thickness of sediment. The gravity highs are flanked on either side by gravity lows of approximately -40 mGals. The observed gravity anomalies can be explained by a steeply sided zone of high density in the lower crust varying in width from 100 to 200 km wide. Within this region, the continental crust has been intruded/replaced by more dense material to more than half its original thickness of 45-50 km. The much wider sedimentary basin results from regional compensation of the subsurface load and the subsequent load of accumulated sediments by flexure of the lithosphere. The observed geometry of the basin is consistent with an elastic lithosphere model with a mechanical thickness of 15-20 km. Although this value is lower than expected for a stable cratonic region of Early Proterozoic age, it is within the accepted range of effective elastic thicknesses for the earth. Rapid subsidence during the late Paleozoic may be evidence of a second tectonic event or lithospheric relaxation which could lower the effective mechanical thickness of the lithosphere. The high-density zone in the lower crust, as delineated by gravity and flexural modeling, has a complex sinuous geometry which is narrow and south of the axis of maximum sediment thickness on the east and west margins and wide and offset to the north in the center of the basin. The linear trough geometry of the basin itself is a result of smoothing by regional compensation of the load in the lower crust.

  12. Bridging the gap between the deep Earth and lithospheric gravity field

    Science.gov (United States)

    Root, B. C.; Ebbing, J.; Martinec, Z.; van der Wal, W.

    2017-12-01

    Global gravity field data obtained by dedicated satellite missions can be used to study the density distribution of the lithosphere. The gravitational signal from the deep Earth is usually removed by high-pass filtering of the data. However, this will also remove any long-wavelength signal of the lithosphere. Furthermore, it is still unclear what value for the truncation limit is best suited. An alternative is to forward model the deep situated mass anomalies and subtract the gravitational signal from the observed data. This requires knowledge of the mantle mass anomalies, dynamic topography, and CMB topography. Global tomography provides the VS distribution in the mantle, which is related to the density distribution in the mantle. There are difficulties in constructing a density model from this data. Tomography relies on regularisation which smoothens the mantle anomalies. Also, the VS anomalies need to be converted to density anomalies with uncertain conversion factors. We study the observed reduction in magnitude of the density anomalies due to the regularisation of the global tomography models. The reduced magnitude of the anomalies cannot be recovered by increasing the conversion factor from VS-to-density transformation. The reduction of the tomographic results seems to resemble the effect of a spatial Gaussian filter. By determining the spectral difference between tomographic and gravimetric models a reverse filter can be constructed to reproduce correct density variations in the complete mantle. The long-wavelengths of the global tomography models are less affected by the regularisation and can fix the value of the conversion factor. However, the low degree gravity signals are also dominated by the D" region. Therefore, different approaches are used to determine the effect of this region on the gravity field. The density anomalies in the mantle, as well as the effect of CMB undulations, are forward modelled into their gravitational potential field, such that

  13. Lithospheric low-velocity zones associated with a magmatic segment of the Tanzanian Rift, East Africa

    Science.gov (United States)

    Plasman, M.; Tiberi, C.; Ebinger, C.; Gautier, S.; Albaric, J.; Peyrat, S.; Déverchère, J.; Le Gall, B.; Tarits, P.; Roecker, S.; Wambura, F.; Muzuka, A.; Mulibo, G.; Mtelela, K.; Msabi, M.; Kianji, G.; Hautot, S.; Perrot, J.; Gama, R.

    2017-07-01

    Rifting in a cratonic lithosphere is strongly controlled by several interacting processes including crust/mantle rheology, magmatism, inherited structure and stress regime. In order to better understand how these physical parameters interact, a 2 yr long seismological experiment has been carried out in the North Tanzanian Divergence (NTD), at the southern tip of the eastern magmatic branch of the East African rift, where the southward-propagating continental rift is at its earliest stage. We analyse teleseismic data from 38 broad-band stations ca. 25 km spaced and present here results from their receiver function (RF) analysis. The crustal thickness and Vp/Vs ratio are retrieved over a ca. 200 × 200 km2 area encompassing the South Kenya magmatic rift, the NTD and the Ngorongoro-Kilimanjaro transverse volcanic chain. Cratonic nature of the lithosphere is clearly evinced through thick (up to ca. 40 km) homogeneous crust beneath the rift shoulders. Where rifting is present, Moho rises up to 27 km depth and the crust is strongly layered with clear velocity contrasts in the RF signal. The Vp/Vs ratio reaches its highest values (ca. 1.9) beneath volcanic edifices location and thinner crust, advocating for melting within the crust. We also clearly identify two major low-velocity zones (LVZs) within the NTD, one in the lower crust and the second in the upper part of the mantle. The first one starts at 15-18 km depth and correlates well with recent tomographic models. This LVZ does not always coexist with high Vp/Vs ratio, pleading for a supplementary source of velocity decrease, such as temperature or composition. At a greater depth of ca. 60 km, a mid-lithospheric discontinuity roughly mimics the step-like and symmetrically outward-dipping geometry of the Moho but with a more slanting direction (NE-SW) compared to the NS rift. By comparison with synthetic RF, we estimate the associated velocity reduction to be 8-9 per cent. We relate this interface to melt ponding

  14. Lithospheric Structure, Crustal Kinematics, and Earthquakes in North China: An Integrated Study

    Science.gov (United States)

    Liu, M.; Yang, Y.; Sandvol, E.; Chen, Y.; Wang, L.; Zhou, S.; Shen, Z.; Wang, Q.

    2007-12-01

    The North China block (NCB) is geologically part of the Archaean Sino-Korean craton. But unusual for a craton, it was thermally rejuvenated since late Mesozoic, and experienced widespread extension and volcanism through much of the Cenozoic. Today, the NCB is characterized by strong internal deformation and seismicity, including the 1976 Tangshan earthquake that killed ~250,000 people. We have started a multidisciplinary study to image the lithospheric and upper mantle structure using seismological methods, to delineate crustal kinematics and deformation via studies of neotectonics and space geodesy, and to investigate the driving forces, the stress states and evolution, and seismicity using geodynamic modeling. Both seismic imaging and GPS results indicate that the Ordos plateau, which is the western part of the NCB and a relic of the Sino-Korean craton, has been encroached around its southern margins by mantle flow and thus is experiencing active cratonic destruction. Some of the mantle flow may be driven by the Indo-Asian collision, although the cause of the broad mantle upwelling responsible for the Mesozoic thinning of the NCB lithosphere remains uncertain. At present, crustal deformation in the NCB is largely driven by gravitational spreading of the expanding Tibetan Plateau. Internal deformation within the NCB is further facilitated by the particular tectonic boundary conditions around the NCB, and the large lateral contrasts of lithospheric strength and rheology. Based on the crustal kinematics and lithospheric structure, we have developed a preliminary geodynamic model for stress states and strain energy in the crust of the NCB. The predicted long-term strain energy distribution is comparable with the spatial pattern of seismic energy release in the past 2000 years. We are exploring the cause of the spatiotemporal occurrence of large earthquakes in the NCB, especially the apparent migration of seismicity from the Weihe-Shanxi grabens around the Ordos to

  15. Lithospheric Structure of Northeastern Tibet Plateau from P and S Receiver Functions

    Science.gov (United States)

    Zhang, C.; Guo, Z.; Chen, Y. J.

    2017-12-01

    We obtain the lithospheric structure of the Northeast Tibet (NE Tibet) along an N-S trending profile using P- and S-wave receiver function recorded by ChinArray-Himalaya II project. Both P- and S-receiver function migration images show highly consistent lithospheric features. The Moho depth is estimated to be 50 km beneath the Songpan-ganzi (SPGZ) and Qaidam-Kunlun-West Qinling (QD) blocks with little or no fluctuation. However, at the northern boundary of QD, the crust abruptly uplifts to 40 km depth within a distance of 50 km. Meanwhile, at the southernmost of QD, the Moho is found at the depth of 60 km, which forms a double Moho conversion beneath the western Qinling fault (WQF). At the Qilian block, the first order feature of the PRF image is the northward crustal thinning from 60 km to 45 km. The strong Moho fluctuations beneath the Qilian block reflects the on-going mountain building processes. Further to the north, the Moho depth begins to deepen to 55 km and then gradually thins to 40 km at the Alxa block. We observe significant Moho variations at the Central Asian Orogenic belt (CAOB). Furthermore, Moho jumps and offsets are shown beneath major thrust and strike-slip faults zones, such as the a >5 km Moho uplift across the North Qilian Fault (NQF), implying that these faults cut through the crust and partly accommodate the continuous deformation/crustal shorting that is propagated from the India-Eurasia collision. Strong negative signals found in both P and S receiver functions at around 100-150 km depth can be interpreted as the lithosphere-asthenosphere boundary (LAB). The LAB deepens from 100 km at the northern to a maximum of 150 km at the southern end of the CAOB. A relatively flat LAB with the depth of 150 km is shown beneath the Alax block, and then it gradually thins to 100 km from the QD to SPGZ. Beneath the SPGZ, our results indicate a thin and flat lithosphere ( 100 km).

  16. Recycling of Oceanic Lithosphere: Water, fO2 and Fe-isotope Constraints

    Science.gov (United States)

    Bizmis, M.; Peslier, A. H.; McCammon, C. A.; Keshav, S.; Williams, H. M.

    2014-01-01

    Spinel peridotite and garnet pyroxenite xenoliths from Hawaii provide important clues about the composition of the oceanic lithosphere, and can be used to assess its contribution to mantle heterogeneity upon recycling. The peridotites have lower bulk H2O (approximately 70-114 ppm) than the MORB source, qualitatively consistent with melt depletion. The garnet pyroxenites (high pressure cumulates) have higher H2O (200-460 ppm, up to 550 ppm accounting for phlogopite) and low H2O/Ce ratios (less than 100). The peridotites have relatively light Fe-isotopes (delta Fe -57 = -0.34 to 0.13) that decrease with increasing depletion, while the pyroxenites are significantly heavier (delta Fe-57 up to 0.3). The observed xenolith, as well as MORB and OIB total Fe-isotope variability is larger that can be explained by existing melting models. The high H2O and low H2O/Ce ratios of pyroxenites are similar to estimates of EM-type OIB sources, while their heavy delta Fe-57 are similar to some Society and Cook-Austral basalts. Therefore, recycling of mineralogically enriched oceanic lithosphere (i.e. pyroxenites) may contribute to OIB sources and mantle heterogeneity. The Fe(3+)/Sigma? systematics of these xenoliths also suggest that there might be lateral redox gradients within the lithosphere, between juxtaposed oxidized spinel peridotites (deltaFMQ = -0.7 to 1.6, at 15 kb) and more reduced pyroxenites (deltaFMQ = -2 to -0.4, at 20-25kb). Such mineralogically and compositionally imposed fO2 gradients may generate local redox melting due to changes in fluid speciation (e.g. reduced fluids from pyroxenite encountering more oxidized peridotite). Formation of such incipient, small degree melts could further contribute to metasomatic features seen in peridotites, mantle heterogeneity, as well as the low velocity and high electrical conductivity structures near the base of the lithosphere and upper mantle.

  17. Plutonium, radiocesium and radiocobalt in sediments of the Hudson River estuary

    International Nuclear Information System (INIS)

    Olsen, C.R.; Simpson, H.J.; Trier, R.M.; Columbia Univ., Palisades, NY

    1981-01-01

    Anthropogenic radionuclides have reached the Hudson estuary as global fallout from nuclear weapons testing and through local releases from commercial nuclear reactors. Significant activities of 238 Pu and 239 , 240 Pu (fallout-derived), 134 Cs and 60 Co (reactor-released), and 137 Cs (derived from both sources), have accumulated in the sediments throughout the estuary, with the primary zone of accumulation near the downstream end of the system in New York harbor. The estuary appears to have trapped nearly all of the 239 , 240 Pu delivered as fallout, and consequently, ocean dumping of dredged harbor sediment is currently the primary means for the net transport of these nuclides to coastal waters. In contrast, only 10-30% of the 137 Cs, 134 Cs and 60 Co delivered to the estuary have been retained on the fine particles which accumulate at a rapid rate in the harbor. (orig./HAE)

  18. Recent progress in modelling 3D lithospheric deformation

    Science.gov (United States)

    Kaus, B. J. P.; Popov, A.; May, D. A.

    2012-04-01

    Modelling 3D lithospheric deformation remains a challenging task, predominantly because the variations in rock types, as well as nonlinearities due to for example plastic deformation result in sharp and very large jumps in effective viscosity contrast. As a result, there are only a limited number of 3D codes available, most of which are using direct solvers which are computationally and memory-wise very demanding. As a result, the resolutions for typical model runs are quite modest, despite the use of hundreds of processors (and using much larger computers is unlikely to bring much improvement in this situation). For this reason we recently developed a new 3D deformation code,called LaMEM: Lithosphere and Mantle Evolution Model. LaMEM is written on top of PETSc, and as a result it runs on massive parallel machines and we have a large number of iterative solvers available (including geometric and algebraic multigrid methods). As it remains unclear which solver combinations work best under which conditions, we have implemented most currently suggested methods (such as schur complement reduction or Fully coupled iterations). In addition, we can use either a finite element discretization (with Q1P0, stabilized Q1Q1 or Q2P-1 elements) or a staggered finite difference discretization for the same input geometry, which is based on a marker and cell technique). This gives us he flexibility to test various solver methodologies on the same model setup, in terms of accuracy, speed, memory usage etc. Here, we will report on some features of LaMEM, on recent code additions, as well as on some lessons we learned which are important for modelling 3D lithospheric deformation. Specifically we will discuss: 1) How we combine a particle-and-cell method to make it work with both a finite difference and a (lagrangian, eulerian or ALE) finite element formulation, with only minor code modifications code 2) How finite difference and finite element discretizations compare in terms of

  19. 75 FR 8297 - Tongass National Forest, Thorne Bay Ranger District, Thorne Bay, AK

    Science.gov (United States)

    2010-02-24

    ..., Thorne Bay, AK AGENCY: Forest Service, USDA. ACTION: Cancellation of Notice of intent to prepare an... Roberts, Zone Planner, Thorne Bay Ranger District, Tongass National Forest, P.O. Box 19001, Thorne Bay, AK 99919, telephone: 907-828-3250. SUPPLEMENTARY INFORMATION: The 47,007-acre Kosciusko Project Area is...

  20. 77 FR 44140 - Drawbridge Operation Regulation; Sturgeon Bay Ship Canal, Sturgeon Bay, WI

    Science.gov (United States)

    2012-07-27

    ... Maple-Oregon Bridges so vehicular traffic congestion would not develop on downtown Sturgeon Bay streets... movement of vehicular traffic in Sturgeon Bay. The Sturgeon Bay Ship Canal is approximately 8.6 miles long... significant increase in vehicular and vessel traffic during the peak tourist and navigation season between...

  1. Thermodynamic, geophysical and rheological modeling of the lithosphere underneath the North Atlantic Porcupine Basin (Ireland).

    Science.gov (United States)

    Botter, C. D.; Prada, M.; Fullea, J.

    2017-12-01

    The Porcupine is a North-South oriented basin located southwest of Ireland, along the North Atlantic continental margin, formed by several rifting episodes during Late Carboniferous to Early Cretaceous. The sedimentary cover is underlined by a very thin continental crust in the center of the basin (10 in the South. In spite of the abundant literature, most of the oil and gas exploration in the Porcupine Basin has been targeting its northern part and is mostly restricted to relatively shallow depths, giving a restrained overview of the basin structure. Therefore, studying the thermodynamic and composition of the deep and broader structures is needed to understand the processes linked to the formation and the symmetry signature of the basin. Here, we model the present-day thermal and compositional structure of the continental crust and lithospheric mantle underneath the Porcupine basin using gravity, seismic, heat flow and elevation data. We use an integrated geophysical-petrological framework where most relevant rock properties (density, seismic velocities) are determined as a function of temperature, pressure and composition. Our modelling approach solves simultaneously the heat transfer, thermodynamic, geopotential, seismic and isostasy equations, and fit the results to all available geophysical and petrological observables (LitMod software). In this work we have implemented a module to compute self-consistently a laterally variable lithospheric elastic thickness based on mineral physics rheological laws (yield strength envelopes over the 3D volume). An appropriate understanding of local and flexural isostatic behavior of the basin is essential to unravel its tectonic history (i.e. stretching factors, subsidence etc.). Our Porcupine basin 3D model is defined by four lithological layers, representing properties from post- and syn-rift sequences to the lithospheric mantle. The computed yield strength envelopes are representative of hyperextended lithosphere and

  2. Anomalous variations of lithosphere magnetic field before several earthquakes

    Science.gov (United States)

    Ni, Z.; Chen, B.

    2015-12-01

    Based on the geomagnetic vector data measured each year since 2011 at more than 500 sites with a mean spatial interval of ~70km.we observed anomalous variations of lithospheric magnetic field before and after over 15 earthquakes having magnitude > 5. We find that the field in near proximity (about 50km) to the epicenter of large earthquakes shows high spatial and temporal gradients before the earthquake. Due to the low frequency of repeat measurements it is unclear when these variations occurred and how do them evolve. We point out anomalous magnetic filed using some circles with radius of 50km usually in June of each year, and then we would check whether quake will locat in our circles during one year after that time (June to next June). Now we caught 10 earthquakes of 15 main shocks having magnitude > 5, most of them located at less than10km away from our circles and some of them were in our circles. Most results show that the variations of lithosphere magnetic filed at the epicenter are different with surrending backgroud usually. When we figure out horizontal variations (vector) of lithosphere magnetic field and epicenter during one year after each June, we found half of them show that the earthquakes will locat at "the inlands in a flowing river", that means earthquakes may occur at "quiet"regions while the backgroud show character as"flow" as liquid. When we compared with GPS results, it appears that these variations of lithospere magnetic field may also correlate with displacement of earth's surface. However we do not compared with GPS results for each earthquake, we are not clear whether these anomalous variations of lithospere magnetic field may also correlate with anomalous displacement of earth's surface. Future work will include developing an automated method for identifying this type of anomalous field behavior and trying to short repeat measurement period to 6 month to try to find when these variations occur.

  3. The lithosphere-asthenosphere boundary observed with USArray receiver functions

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2012-05-01

    Full Text Available The dense deployment of seismic stations so far in the western half of the United States within the USArray project provides the opportunity to study in greater detail the structure of the lithosphere-asthenosphere system. We use the S receiver function technique for this purpose, which has higher resolution than surface wave tomography, is sensitive to seismic discontinuities, and is free from multiples, unlike P receiver functions. Only two major discontinuities are observed in the entire area down to about 300 km depth. These are the crust-mantle boundary (Moho and a negative boundary, which we correlate with the lithosphere-asthenosphere boundary (LAB, since a low velocity zone is the classical definition of the seismic observation of the asthenosphere by Gutenberg (1926. Our S receiver function LAB is at a depth of 70–80 km in large parts of westernmost North America. East of the Rocky Mountains, its depth is generally between 90 and 110 km. Regions with LAB depths down to about 140 km occur in a stretch from northern Texas, over the Colorado Plateau to the Columbia basalts. These observations agree well with tomography results in the westernmost USA and on the east coast. However, in the central cratonic part of the USA, the tomography LAB is near 200 km depth. At this depth no discontinuity is seen in the S receiver functions. The negative signal near 100 km depth in the central part of the USA is interpreted by Yuan and Romanowicz (2010 and Lekic and Romanowicz (2011 as a recently discovered mid-lithospheric discontinuity (MLD. A solution for the discrepancy between receiver function imaging and surface wave tomography is not yet obvious and requires more high resolution studies at other cratons before a general solution may be found. Our results agree well with petrophysical models of increased water content in the asthenosphere, which predict a sharp and shallow LAB also in continents (Mierdel et al., 2007.

  4. Physical processes in a coupled bay-estuary coastal system: Whitsand Bay and Plymouth Sound

    Science.gov (United States)

    Uncles, R. J.; Stephens, J. A.; Harris, C.

    2015-09-01

    Whitsand Bay and Plymouth Sound are located in the southwest of England. The Bay and Sound are separated by the ∼2-3 km-wide Rame Peninsula and connected by ∼10-20 m-deep English Channel waters. Results are presented from measurements of waves and currents, drogue tracking, surveys of salinity, temperature and turbidity during stratified and unstratified conditions, and bed sediment surveys. 2D and 3D hydrodynamic models are used to explore the generation of tidally- and wind-driven residual currents, flow separation and the formation of the Rame eddy, and the coupling between the Bay and the Sound. Tidal currents flow around the Rame Peninsula from the Sound to the Bay between approximately 3 h before to 2 h after low water and form a transport path between them that conveys lower salinity, higher turbidity waters from the Sound to the Bay. These waters are then transported into the Bay as part of the Bay-mouth limb of the Rame eddy and subsequently conveyed to the near-shore, east-going limb and re-circulated back towards Rame Head. The Simpson-Hunter stratification parameter indicates that much of the Sound and Bay are likely to stratify thermally during summer months. Temperature stratification in both is pronounced during summer and is largely determined by coastal, deeper-water stratification offshore. Small tidal stresses in the Bay are unable to move bed sediment of the observed sizes. However, the Bay and Sound are subjected to large waves that are capable of driving a substantial bed-load sediment transport. Measurements show relatively low levels of turbidity, but these respond rapidly to, and have a strong correlation with, wave height.

  5. 3D Thermo-Mechanical Models of Plume-Lithosphere Interactions: Implications for the Kenya rift

    Science.gov (United States)

    Scheck-Wenderoth, M.; Koptev, A.; Sippel, J.

    2017-12-01

    We present three-dimensional (3D) thermo-mechanical models aiming to explore the interaction of an active mantle plume with heterogeneous pre-stressed lithosphere in the Kenya rift region. As shown by the recent data-driven 3D gravity and thermal modeling (Sippel et al., 2017), the integrated strength of the lithosphere for the region of Kenya and northern Tanzania appears to be strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localization and propagation of rifting. In order to test this hypothesis, we have performed a series of ultra-high resolution 3D numerical experiments that include a coupled mantle/lithosphere system in a dynamically and rheologically consistent framework. In contrast to our previous studies assuming a simple and quasi-symmetrical initial condition (Koptev et al., 2015, 2016, 2017), the complex 3D distribution of rock physical properties inferred from geological and geophysical observations (Sippel et al., 2017) has been incorporated into the model setup that comprises a stratified three-layer continental lithosphere composed of an upper and lower crust and lithospheric mantle overlaying the upper mantle. Following the evidence of the presence of a broad low-velocity seismic anomaly under the central parts of the East African Rift system (e.g. Nyblade et al, 2000; Chang et al., 2015), a 200-km radius mantle plume has been seeded at the bottom of a 635 km-depth model box representing a thermal anomaly of 300°C temperature excess. In all model runs, results show that the spatial distribution of surface deformation is indeed strongly controlled by crustal structure: within the southern part of the model box, a localized narrow zone stretched in NS direction (i.e. perpendicularly to applied far-field extension) is aligned along a structural boundary within the lower crust, whereas in the northern part of the model domain, deformation is more diffused and its eastern limit coincides with

  6. Understanding Spatial and Temporal Shifts in Blue Carbon, Piermont Marsh, Lower Hudson Estuary, NY

    Science.gov (United States)

    Peteet, D. M.; Nichols, J. E.; Kenna, T. C.; Corbett, E. J.; Allen, K. A.; Newton, R.; Vincent, S.; Haroon, A.; Shumer, M.

    2015-12-01

    Piermont Marsh is a National Estuarine Research Reserve (NERR) protected brackish wetland in the lower Hudson Valley. It serves as a nursery for fish, a coastal buffer in storms, a repository of native wetland species unique to the Hudson, and a paleoenvironmental archive. At risk for disappearance due to rising sea level, we assess the present carbon stores and their spatial and temporal variability through time. Determining the depth of peat in transects throughout Piermont Marsh (41°N, 73°55'W), is one step in reconstructing the stores of carbon in the marsh and how they have shifted over millennia. Through the last decade, we have focused field efforts on probing the depths of the marsh through a series of transects and in acquiring sediment cores from which we establish sedimentation rates and carbon storage through time. AMS C-14 dating, XRF fluorescence, pollen analysis, and Cesium-137 provide chronological control for the sedimentation rates, pollution history, and an understanding of the regional and local shifts in vegetation. C-13 and pollen measurements in selected cores indicate major shifts in local vegetation with coastal eutrophication as the marsh has been invaded, first by Typha angustifolia in the nineteenth century and then by Phragmites australis in the twentieth century up to the present. N-15 measurements indicate a large shift in nitrogen as humans have impacted the marsh. We present a comprehensive, three-dimensional view of the effects of climate, vegetation, and human impact on the carbon storage of Piermont Marsh. This project provided a site for a place- and project-based learning through Lamont-Doherty's Secondary School Field Research Program. Many of the field samples were collected by young investigators from schools in New York City and towns near Piermont.

  7. If it quacks like a duck: reviewing health care providers' speech restrictions under the first prong of Central Hudson.

    Science.gov (United States)

    Fultz, Shawn L

    2013-01-01

    The First Amendment protects the speech of health care providers. This protection can limit states' abilities to protect patients from harmful therapies involving speech, such as sexual orientation change efforts. Because providers' speech is more similar to commercial speech than traditional political discourse, it is possible to create a First Amendment review analysis that better balances states' police powers with providers' First Amendment rights. Under a "single-prong" approach, the first prong of Central Hudson can be used to identify quackery, which is analogous to false or misleading commercial speech and would therefore be outside the protection of the First Amendment. Because health care must be tailored to individual patients, restrictions on speech that survive the first prong of Central Hudson would be subject to strict scrutiny in order to leave the therapeutic decision to the provider and her patient, and maintain consistency with current jurisprudence. This Comment examines litigation from California's attempted ban on sexual orientation change therapy to illustrate the conflicts created by the current approach to First Amendment review of health care provider speech. This Comment then demonstrates the benefit of the proposed single-prong approach, including how it simultaneously protects patients from harm while protecting health care providers' speech.

  8. Subduction initiation, recycling of Alboran lower crust, and intracrustal emplacement of subcontinental lithospheric mantle in the Westernmost Mediterranean

    Science.gov (United States)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly; Booth-Rea, Guillermo; Acosta-Vigil, Antonio

    2015-04-01

    Unraveling the tectonic settings and processes involved in the annihilation of subcontinental mantle lithosphere is of paramount importance for our understanding of the endurance of continents through Earth history. Unlike ophiolites -- their oceanic mantle lithosphere counterparts -- the mechanisms of emplacement of the subcontinental mantle lithosphere in orogens is still poorly known. The emplacement of subcontinental lithospheric mantle peridotites is often attributed to extension in rifted passive margins or continental backarc basins, accretionary processes in subduction zones, or some combination of these processes. One of the most prominent features of the westernmost Mediterranean Alpine orogenic arcs is the presence of the largest outcrops worldwide of diamond facies, subcontinental mantle peridotite massifs; unveiling the mechanisms of emplacement of these massifs may provide important clues on processes involved in the destruction of continents. The western Mediterranean underwent a complex Alpine evolution of subduction initiation, slab fragmentation, and rollback within a context of slow convergence of Africa and Europe In the westernmost Mediterranean, the alpine orogeny ends in the Gibraltar tight arc, which is bounded by the Betic, Rif and Tell belts that surround the Alboran and Algero-Balearic basins. The internal units of these belts are mostly constituted of an allochthonous lithospheric domain that collided and overthrusted Mesozoic and Tertiary sedimentary rocks of the Mesozoic-Paleogene, South Iberian and Maghrebian rifted continental paleomargins. Subcontinental lithospheric peridotite massifs are intercalated between polymetamorphic internal units of the Betic (Ronda, Ojen and Carratraca massifs), Rif (Beni Bousera), and Tell belts. In the Betic chain, the internal zones of the allochthonous Alboran domain include, from bottom to top, polymetamorphic rock of the Alpujarride and Malaguide complexes. The Ronda peridotite massif -- the

  9. Continents as lithological icebergs: The importance of buoyant lithospheric roots

    Science.gov (United States)

    Abbott, D.H.; Drury, R.; Mooney, W.D.

    1997-01-01

    An understanding of the formation of new continental crust provides an important guide to locating the oldest terrestrial rocks and minerals. We evaluated the crustal thicknesses of the thinnest stable continental crust and of an unsubductable oceanic plateau and used the resulting data to estimate the amount of mantle melting which produces permanent continental crust. The lithospheric mantle is sufficiently depleted to produce permanent buoyancy (i.e., the crust is unsubductable) at crustal thicknesses greater than 25-27 km. These unsubductable oceanic plateaus and hotspot island chains are important sources of new continental crust. The newest continental crust (e.g., the Ontong Java plateau) has a basaltic composition, not a granitic one. The observed structure and geochemistry of continents are the result of convergent margin magmatism and metamorphism which modify the nascent basaltic crust into a lowermost basaltic layer overlain by a more silicic upper crust. The definition of a continent should imply only that the lithosphere is unsubductable over ??? 0.25 Ga time periods. Therefore, the search for the oldest crustal rocks should include rocks from lower to mid-crustal levels.

  10. Isotopic characterisation of the sub-continental lithospheric mantle beneath Zealandia, a rifted fragment of Gondwana

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Scott, James M.; van der Meer, Quinten Har Adriaan

    2013-01-01

    The greater New Zealand region, known as Zealandia, represents an amalgamation of crustal fragments accreted to the paleo-Pacific Gondwana margin and which underwent significant thinning during the subsequent split from Australia and Antarctica in the mid-Cretaceous following opening of the Tasma...... Sea and the Southern Ocean. We present Sr, Nd and Pb isotopes and laser ablation trace element data for a comprehensive suite of clinopyroxene separates from spinel peridotite xenoliths (lherzolite to harzburgite) from the sub-continental lithospheric mantle across southern New Zealand...... composition, age or geographical separation. These isotopic compositions indicate that the sub-continental lithospheric mantle under southern New Zealand has a regionally distinct and pervasive FOZO to HIMU – like signature. The isotopic signatures are also similar to those of the alkaline magmas...... that transported the xenoliths and suggest that most of the HIMU signature observed in the volcanics could be derived from a major source component in the sub-continental lithospheric mantle. Trace element abundances in clinopyroxene are highly heterogeneous and vary from LREE-enriched, relatively flat and MORB...

  11. 78 FR 46813 - Safety Zone; Evening on the Bay Fireworks; Sturgeon Bay, WI

    Science.gov (United States)

    2013-08-02

    ...-AA00 Safety Zone; Evening on the Bay Fireworks; Sturgeon Bay, WI AGENCY: Coast Guard, DHS. ACTION.... This temporary safety zone will restrict vessels from a portion of Sturgeon Bay due to a fireworks... hazards associated with the fireworks display. DATES: This rule is effective from 8 p.m. until 10 p.m. on...

  12. Modeling the interaction between lithospheric and surface processes in foreland basins

    NARCIS (Netherlands)

    Garcia-Castellanos, D.; Cloetingh, S.

    2012-01-01

    This chapter reviews a number of key advances in quantitative understanding of foreland basins since the early 1990s, with a focus on the interplay between lithospheric flexure, erosion, and river transport. Flexure can be the result of topographic loading and slab-pull forces, though can also

  13. 77 FR 38488 - Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence River, Alexandria Bay, NY

    Science.gov (United States)

    2012-06-28

    ... 1625-AA00 Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence River, Alexandria Bay, NY... restrict vessels from a portion of the St. Lawrence River during the Alexandria Bay Chamber of Commerce... of proposed rulemaking (NPRM) entitled Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence...

  14. Fundamentals of converging mining technologies in integrated development of mineral resources of lithosphere

    Science.gov (United States)

    Trubetskoy, KN; Galchenko, YuP; Eremenko, VA

    2018-03-01

    The paper sets forth a theoretical framework for the strategy of the radically new stage in development of geotechnologies under conditions of rapidly aggravating environmental crisis of the contemporary technocratic civilization that utilizes the substance extracted from the lithosphere as the source of energy and materials. The authors of the paper see the opportunity to overcome the conflict between the techno- and bio-spheres in the area of mineral raw materials by means of changing the technological paradigm of integrated mineral development by implementing nature-like technologies oriented to the ideas and methods of converging resources of natural biota as the object of the environmental protection and geotechnologies as the major source of ecological hazards induced in the course of development of mineral resources of lithosphere.

  15. Lithospheric architecture of NE China from joint Inversions of receiver functions and surface wave dispersion through Bayesian optimisation

    Science.gov (United States)

    Sebastian, Nita; Kim, Seongryong; Tkalčić, Hrvoje; Sippl, Christian

    2017-04-01

    The purpose of this study is to develop an integrated inference on the lithospheric structure of NE China using three passive seismic networks comprised of 92 stations. The NE China plain consists of complex lithospheric domains characterised by the co-existence of complex geodynamic processes such as crustal thinning, active intraplate cenozoic volcanism and low velocity anomalies. To estimate lithospheric structures with greater detail, we chose to perform the joint inversion of independent data sets such as receiver functions and surface wave dispersion curves (group and phase velocity). We perform a joint inversion based on principles of Bayesian transdimensional optimisation techniques (Kim etal., 2016). Unlike in the previous studies of NE China, the complexity of the model is determined from the data in the first stage of the inversion, and the data uncertainty is computed based on Bayesian statistics in the second stage of the inversion. The computed crustal properties are retrieved from an ensemble of probable models. We obtain major structural inferences with well constrained absolute velocity estimates, which are vital for inferring properties of the lithosphere and bulk crustal Vp/Vs ratio. The Vp/Vs estimate obtained from joint inversions confirms the high Vp/Vs ratio ( 1.98) obtained using the H-Kappa method beneath some stations. Moreover, we could confirm the existence of a lower crustal velocity beneath several stations (eg: station SHS) within the NE China plain. Based on these findings we attempt to identify a plausible origin for structural complexity. We compile a high-resolution 3D image of the lithospheric architecture of the NE China plain.

  16. Detailed Configuration of the Underthrusting Indian Lithosphere Beneath Western Tibet Revealed by Receiver Function Images

    Science.gov (United States)

    Xu, Qiang; Zhao, Junmeng; Yuan, Xiaohui; Liu, Hongbing; Pei, Shunping

    2017-10-01

    We analyze the teleseismic waveform data recorded by 42 temporary stations from the Y2 and ANTILOPE-1 arrays using the P and S receiver function techniques to investigate the lithospheric structure beneath western Tibet. The Moho is reliably identified as a prominent feature at depths of 55-82 km in the stacked traces and in depth migrated images. It has a concave shape and reaches the deepest location at about 80 km north of the Indus-Yarlung suture (IYS). An intracrustal discontinuity is observed at 55 km depth below the southern Lhasa terrane, which could represent the upper border of the eclogitized underthrusting Indian lower crust. Underthrusting of the Indian crust has been widely observed beneath the Lhasa terrane and correlates well with the Bouguer gravity low, suggesting that the gravity anomalies in the Lhasa terrane are induced by topography of the Moho. At 20 km depth, a midcrustal low-velocity zone (LVZ) is observed beneath the Tethyan Himalaya and southern Lhasa terrane, suggesting a layer of partial melts that decouples the thrust/fold deformation of the upper crust from the shortening and underthrusting in the lower crust. The Sp conversions at the lithosphere-asthenosphere boundary (LAB) can be recognized at depths of 130-200 km, showing that the Indian lithospheric mantle is underthrusting with a ramp-flat shape beneath southern Tibet and probably is detached from the lower crust immediately under the IYS. Our observations reconstruct the configuration of the underthrusting Indian lithosphere and indicate significant along strike variations.

  17. Lithosphere and upper-mantle structure of the southern Baltic Sea estimated from modelling relative sea-level data with glacial isostatic adjustment

    Science.gov (United States)

    Steffen, H.; Kaufmann, G.; Lampe, R.

    2014-06-01

    During the last glacial maximum, a large ice sheet covered Scandinavia, which depressed the earth's surface by several 100 m. In northern central Europe, mass redistribution in the upper mantle led to the development of a peripheral bulge. It has been subsiding since the begin of deglaciation due to the viscoelastic behaviour of the mantle. We analyse relative sea-level (RSL) data of southern Sweden, Denmark, Germany, Poland and Lithuania to determine the lithospheric thickness and radial mantle viscosity structure for distinct regional RSL subsets. We load a 1-D Maxwell-viscoelastic earth model with a global ice-load history model of the last glaciation. We test two commonly used ice histories, RSES from the Australian National University and ICE-5G from the University of Toronto. Our results indicate that the lithospheric thickness varies, depending on the ice model used, between 60 and 160 km. The lowest values are found in the Oslo Graben area and the western German Baltic Sea coast. In between, thickness increases by at least 30 km tracing the Ringkøbing-Fyn High. In Poland and Lithuania, lithospheric thickness reaches up to 160 km. However, the latter values are not well constrained as the confidence regions are large. Upper-mantle viscosity is found to bracket [2-7] × 1020 Pa s when using ICE-5G. Employing RSES much higher values of 2 × 1021 Pa s are obtained for the southern Baltic Sea. Further investigations should evaluate whether this ice-model version and/or the RSL data need revision. We confirm that the lower-mantle viscosity in Fennoscandia can only be poorly resolved. The lithospheric structure inferred from RSES partly supports structural features of regional and global lithosphere models based on thermal or seismological data. While there is agreement in eastern Europe and southwest Sweden, the structure in an area from south of Norway to northern Germany shows large discrepancies for two of the tested lithosphere models. The lithospheric

  18. The mechanism behind internally generated centennial-to-millennial scale climate variability in an earth system model of intermediate complexity

    Directory of Open Access Journals (Sweden)

    T. Friedrich

    2010-08-01

    Full Text Available The mechanism triggering centennial-to-millennial-scale variability of the Atlantic Meridional Overturning Circulation (AMOC in the earth system model of intermediate complexity LOVECLIM is investigated. It is found that for several climate boundary conditions such as low obliquity values (~22.1° or LGM-albedo, internally generated centennial-to-millennial-scale variability occurs in the North Atlantic region. Stochastic excitations of the density-driven overturning circulation in the Nordic Seas can create regional sea-ice anomalies and a subsequent reorganization of the atmospheric circulation. The resulting remote atmospheric anomalies over the Hudson Bay can release freshwater pulses into the Labrador Sea and significantly increase snow fall in this region leading to a subsequent reduction of convective activity. The millennial-scale AMOC oscillations disappear if LGM bathymetry (with closed Hudson Bay is prescribed or if freshwater pulses are suppressed artificially. Furthermore, our study documents the process of the AMOC recovery as well as the global marine and terrestrial carbon cycle response to centennial-to-millennial-scale AMOC variability.

  19. Lithospheric Shear Velocity Structure of South Island, New Zealand from Rayleigh Wave Tomography of Amphibious Array Data

    Science.gov (United States)

    Ball, J. S.; Sheehan, A. F.; Stachnik, J. C.; Lin, F. C.; Collins, J. A.

    2015-12-01

    We present the first 3D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath Campbell and Challenger plateaus. Our model is constructed via linearized inversion of both teleseismic (18 -70 s period) and ambient noise-based (8 - 25 s period) Rayleigh wave dispersion measurements. We augment an array of 29 ocean-bottom instruments deployed off the South Island's east and west coasts in 2009-2010 with 28 New Zealand land-based seismometers. The ocean-bottom seismometers and 4 of the land seismometers were part of the Marine Observations of Anisotropy Near Aotearoa (MOANA) experiment, and the remaining land seismometers are from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs<4.3km/s) body extending to at least 75km depth beneath the Banks and Otago peninsulas, a high-velocity (Vs~4.7km/s) upper mantle anomaly underlying the Southern Alps to a depth of 100km, and discontinuous lithospheric velocity structure between eastern and western Challenger Plateau. Using the 4.5km/s contour as a proxy for the lithosphere-asthenosphere boundary, our model suggests that the lithospheric thickness of Challenger Plateau is substantially greater than that of Campbell Plateau. The high-velocity anomaly we resolve beneath the central South Island exhibits strong spatial correlation with subcrustal earthquake hypocenters along the Alpine Fault (Boese et al., 2013). The ~400km-long low velocity zone we image beneath eastern South Island underlies Cenozoic volcanics and mantle-derived helium observations (Hoke et al., 2000) on the surface. The NE-trending low-velocity zone dividing Challenger Plateau in our model underlies a prominent magnetic discontinuity (Sutherland et al., 1999). The latter feature has been interpreted to represent a pre-Cretaceous crustal boundary, which our results suggest may involve the entire mantle lithosphere.

  20. Combined constraints on the structure and physical properties of the East Antarctic lithosphere from geology and geophysics.

    Science.gov (United States)

    Reading, A. M.; Staal, T.; Halpin, J.; Whittaker, J. M.; Morse, P. E.

    2017-12-01

    The lithosphere of East Antarctica is one of the least explored regions of the planet, yet it is gaining in importance in global scientific research. Continental heat flux density and 3D glacial isostatic adjustment studies, for example, rely on a good knowledge of the deep structure in constraining model inputs.In this contribution, we use a multidisciplinary approach to constrain lithospheric domains. To seismic tomography models, we add constraints from magnetic studies and also new geological constraints. Geological knowledge exists around the periphery of East Antarctica and is reinforced in the knowledge of plate tectonic reconstructions. The subglacial geology of the Antarctic hinterland is largely unknown but the plate reconstructions allow the well-posed extrapolation of major terranes into the interior of the continent, guided by the seismic tomography and magnetic images. We find that the northern boundary of the lithospheric domain centred on the Gamburtsev Subglacial Mountains has a possible trend that runs south of the Lambert Glacier region, turning coastward through Wilkes Land. Other periphery-to-interior connections are less well constrained and the possibility of lithospheric domains that are entirely sub-glacial is high. We develop this framework to include a probabilistic method of handling alternate models and quantifiable uncertainties. We also show first results in using a Bayesian approach to predicting lithospheric boundaries from multivariate data.Within the newly constrained domains, we constrain heat flux (density) as the sum of basal heat flux and upper crustal heat flux. The basal heat flux is constrained by geophysical methods while the upper crustal heat flux is constrained by geology or predicted geology. In addition to heat flux constraints, we also consider the variations in friction experienced by moving ice sheets due to varying geology.

  1. Gradient Analysis and Classification of Carolina Bay Vegetation: A Framework for Bay Wetlands Conservation and Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Diane De Steven,Ph.D.; Maureen Tone,PhD.

    1997-10-01

    This report address four project objectives: (1) Gradient model of Carolina bay vegetation on the SRS--The authors use ordination analyses to identify environmental and landscape factors that are correlated with vegetation composition. Significant factors can provide a framework for site-based conservation of existing diversity, and they may also be useful site predictors for potential vegetation in bay restorations. (2) Regional analysis of Carolina bay vegetation diversity--They expand the ordination analyses to assess the degree to which SRS bays encompass the range of vegetation diversity found in the regional landscape of South Carolina's western Upper Coastal Plain. Such comparisons can indicate floristic status relative to regional potentials and identify missing species or community elements that might be re-introduced or restored. (3) Classification of vegetation communities in Upper Coastal Plain bays--They use cluster analysis to identify plant community-types at the regional scale, and explore how this classification may be functional with respect to significant environmental and landscape factors. An environmentally-based classification at the whole-bay level can provide a system of templates for managing bays as individual units and for restoring bays to desired plant communities. (4) Qualitative model for bay vegetation dynamics--They analyze present-day vegetation in relation to historic land uses and disturbances. The distinctive history of SRS bays provides the possibility of assessing pathways of post-disturbance succession. They attempt to develop a coarse-scale model of vegetation shifts in response to changing site factors; such qualitative models can provide a basis for suggesting management interventions that may be needed to maintain desired vegetation in protected or restored bays.

  2. Pool Structures: A New Type of Interaction Zones of Lithospheric Plate Flows

    Science.gov (United States)

    Garetskyi, R. G.; Leonov, M. G.

    2018-02-01

    Study of tectono-geodynamic clusters of the continental lithosphere (the Sloboda cluster of the East European Platform and the Pamir cluster of Central Asia) permitted identification of pool structures, which are a specific type of zone of intraplate interaction of rock masses.

  3. A Seismic Transmission System for Continuous Monitoring of the Lithosphere : A Proposition

    NARCIS (Netherlands)

    Unger, R.

    2002-01-01

    The main objective of this thesis is to enhance earthquake prediction feasibility. We present the concept and the design layout of a novel seismic transmission system capable of continuously monitoring the Lithosphere for changes in Earth physics parameters governing seismic wave propagation.

  4. Insights into the lithospheric architecture of Iberia and Morocco from teleseismic body-wave attenuation

    Science.gov (United States)

    Bezada, Maximiliano J.

    2017-11-01

    The long and often complicated tectonic history of continental lithosphere results in lateral strength heterogeneities which in turn affect the style and localization of deformation. In this study, we produce a model for the attenuation structure of Iberia and northern Morocco using a waveform-matching approach on P-wave data from teleseismic deep-focus earthquakes. We find that attenuation is correlated with zones of intraplate deformation and seismicity, but do not find a consistent relationship between attenuation and recent volcanism. The main features of our model are low to moderate Δt* in the undeformed Tertiary basins of Spain and high Δt* in areas deformed by the Alpine orogeny. Additionally, low Δt* is found in areas where the Alboran slab is thought to be attached to the Iberian and African lithosphere, and high Δt* where it has detached. These features are robust with respect to inversion parameters, and are consistent with independent data. Very mild backazimuthal dependence of the measurements and comparison with previous results suggest that the source of the attenuation is sub-crustal. In line with other recent studies, the range of Δt* we observe is much larger than can be expected from lithospheric thickness or temperature variations.

  5. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2013-01-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  6. SPECIFIC FEATURES OF DEFORMATION OF THE CONTINENTAL AND OCEANIC LITHOSPHERE AS A RESULT OF THE EARTH CORE NORTHERN DRIFT

    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov

    2012-01-01

    Full Text Available Drifting and submeridional compression of the continental and oceanic lithosphere, both with the northward vector (Figure 1 are revealed at the background of various directions of horizontal displacement combined with deformations of horizontal extension, compression and shear of the lithosphere (Figures 7–14. Among various structural forms and their paragenezises, indicators of such compression, the north vergence thrusts play the leading role (Figures 15–17, 19, and 22–24. This process was discontinuous, manifested discretely in time, and superimposed on processes of collisional orogenesis and platform deformations of the continental lithosphere and accretion of the oceanic lithosphere in spreading zones. Three main stages of submeridional compression of the oceanic lithosphere are distinguished as follows: Late Jurassic-Late Cretaceous, Late Miocene, and the contemporary stages.Based on the concept of balanced tectonic flow in the Earth’s body, a model of meridional convection (Figure 25 is proposed. In this case, meridional convection is considered as an integral element of the overglobal convective geodynamic system of the largest-scale rank, which also includes the western component of the lithosphere drift (Figure 6 and the Earth’s ‘wrenching’. At the background of this system, geodynamic systems of smaller scale ranks are functioning (Table 1; Figures 2, and 3. The latters are responsible for the periodic creation and break-up of supercontinents, plate tectonics and regional geodynamical processes; they also produce the ‘structural background’, in the presence of which it is challenging to reveal the above mentioned submeridional compression structures. Formation of such structures is caused by the upper horizontal flow of meridional convection.Meridional convection occurs due to drifting of the Earth core towards the North Pole (which is detected by a number of independent methods and resistance of the mantle to

  7. Impact of entrainment and impingement on fish populations in the Hudson River Estuary. Volume II. Impingement impact analyses, evaluations of alternative screening devices, and critiques of utility testimony relating to density-dependent growth, the age-composition of the striped bass spawning stock, and the LMS real-time life cycle model

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Van Winkle, W.; Golumbek, J.; Cada, G.F.; Goodyear, C.P.; Christensen, S.W.; Cannon, J.B.; Lee, D.W.

    1982-04-01

    This volume includes a series of four exhibits relating to impacts of impingement on fish populations, together with a collection of critical evaluations of testimony prepared for the utilities by their consultants. The first exhibit is a quantitative evaluation of four sources of bias (collection efficiency, reimpingement, impingement on inoperative screens, and impingement survival) affecting estimates of the number of fish killed at Hudson River power plants. The two following exhibits contain, respectively, a detailed assessment of the impact of impingement on the Hudson River white perch population and estimates of conditional impingement mortality rates for seven Hudson River fish populations. The fourth exhibit is an evaluation of the engineering feasibility and potential biological effectiveness of several types of modified intake structures proposed as alternatives to cooling towers for reducing impingement impacts. The remainder of Volume II consists of critical evaluations of the utilities' empirical evidence for the existence of density-dependent growth in young-of-the-year striped bass and white perch, of their estimate of the age-composition of the striped bass spawning stock in the Hudson River, and of their use of the Lawler, Matusky, and Skelly (LMS) Real-Time Life Cycle Model to estimate the impact of entrainment and impingement on the Hudson River striped bass population

  8. Discharge, water-quality characteristics, and nutrient loads from McKay Bay, Delaney Creek, and East Bay, Tampa, Florida, 1991-1993

    Science.gov (United States)

    Stoker, Y.E.; Levesque, V.A.; Fritz, E.M.

    1996-01-01

    Nutrient enrichment in Tampa Bay has caused a decline in water quality in the estuary. Efforts to reduce the nutrient loading to Tampa Bay have resulted in improvement in water quality from 1981 to 1991. However, Tampa Bay still is onsidered enriched with nutrients. Water quality in East Bay (located at the northeastern part of Hillsborough Bay, which is an embayment in Tampa Bay) is not improving at the same rate as the rest of the bay. East Bay is the center of shipping activity in Tampa Bay and the seventh largest port in the United States. One of the primary cargoes is phosphate ore and related products such as fertilizer. The potential for nutrient loading to East Bay from shipping activities is high and has not previously been measured. Nitrogen and phosphorus loads from East Bay to Hillsborough Bay were measured during selected time periods during June 1992 through May 1993; these data were used to estimate seasonal and annual loads. These loads were evaluated to determine whether the loss of fertilizer products from shipping activities resulted in increased nutrient loading to Hillsborough Bay. Discharge was measured, and water-quality samples were collected at the head of East Bay (exiting McKay Bay), and at the mouth of East Bay. Discharge and nitrogen and phosphorus concentrations for the period June 1992 through May 1993 were used to compute loads. Discharges from McKay Bay, Delaney Creek, and East Bay are highly variable because of the effect of tide. Flow patterns during discharge measurements generally were unidirectional in McKay Bay and Delaney Creek, but more complex, bidirectional patterns were observed at the mouth of East Bay. Tidally affected discharge data were digitally filtered with the Godin filter to remove the effects of tide so that residual, or net, discharge could be determined. Daily mean discharge from McKay Bay ranged from -1,900 to 2,420 cubic feet per second; from Delaney Creek, -3.8 to 162 cubic feet per second; and from East

  9. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  10. 33 CFR 165.1182 - Safety/Security Zone: San Francisco Bay, San Pablo Bay, Carquinez Strait, and Suisun Bay, CA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety/Security Zone: San... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY... Areas Eleventh Coast Guard District § 165.1182 Safety/Security Zone: San Francisco Bay, San Pablo Bay...

  11. 78 FR 62293 - Safety Zone, Oyster Festival 30th Anniversary Fireworks Display, Oyster Bay; Oyster Bay, NY

    Science.gov (United States)

    2013-10-15

    ... Safety Zone, Oyster Festival 30th Anniversary Fireworks Display, Oyster Bay; Oyster Bay, NY AGENCY: Coast... zone on the navigable waters of Oyster Bay near Oyster Bay, NY for the Oyster Festival 30th Anniversary... Oyster Festival 30th Anniversary Fireworks Display is scheduled for October 19, 2013 and is one of...

  12. Constraints on the Lithospheric Strength at Volcanic Rifted Margins from the Geometry of Seaward Dipping Reflectors Using Analytic and Numerical Models

    Science.gov (United States)

    Tian, X.; Buck, W. R.

    2017-12-01

    Seaward dipping reflectors (SDRs) are found at many rifted margins. Drilling indicates SDRs are interbedded layers of basalts and sediments. Multi-channel seismic reflection data show SDRs with various width (2 100 km), thickness (1 15 km) and dip angles (0 30). Recent studies use analytic thin plate models (AtPM) to describe plate deflections under volcanic loads. They reproduce a wide range of SDRs structures without detachment faulting. These models assume that the solidified dikes provide downward loads at the rifting center. Meanwhile, erupted lava flows and sediments fill in the flexural depression and further load the lithosphere. Because the strength of the lithosphere controls the amount and wavelength of bending, the geometries of SDRs provide a window into the strength of the lithosphere during continental rifting. We attempt to provide a quantitative mapping between the SDR geometry and the lithospheric strength and thickness during rifting. To do this, we first derive analytic solutions to two observables that are functions of effective elastic thickness (Te). One observable (Xf) is the horizontal distance for SDRs to evolve from flat layers to the maximum bent layers. Another observable is the ratio between the thickness and the tangent of the maximum slope of SDRs at Xf. We then extend the AtPM to numerical thin plate models (NtPM) with spatially restricted lava flows. AtPM and NtPM show a stable and small relative difference in terms of the two observables with different values of Te. This provides a mapping of Te between NtPM and AtPM models. We also employ a fully two-dimensional thermal-mechanical treatment with elasto-visco-plastic rheology to simulate SDRs formation. These models show that brittle yielding due to bending can reduce the Te of the lithosphere by as much as 50% of the actual brittle lithospheric thickness. Quantification of effects of plastic deformation on bending allow us to use Te to link SDRs geometries to brittle lithospheric

  13. The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere

    Science.gov (United States)

    Day, James M. D.; Barry, Peter H.; Hilton, David R.; Burgess, Ray; Pearson, D. Graham; Taylor, Lawrence A.

    2015-03-01

    New helium isotope and trace-element abundance data are reported for pyroxenites and eclogites from South Africa, Siberia, and the Beni Bousera Massif, Morocco that are widely interpreted to form from recycled oceanic crustal protoliths. The first He isotope data are also presented for Archaean peridotites from the Kaapvaal (South Africa), Slave (Canada), and Siberian cratons, along with recently emplaced off-craton peridotite xenoliths from Kilbourne Hole, San Carlos (USA) and Vitim (Siberia), to complement existing 3He/4He values obtained for continental and oceanic peridotites. Helium isotope compositions of peridotite xenoliths vary from 7.3 to 9.6 RA in recently (volcanics that contain a contribution from asthenospheric sources. Using the new He isotope data for cratonic peridotites and assuming that significant portions (>50%) of the Archaean and Proterozoic continental lithospheric mantle are stable and unaffected by melt or fluid infiltration on geological timescales (>0.1 Ga), and that U and Th contents vary between cratonic lithosphere and non-cratonic lithosphere, calculations yield a 3He flux of 0.25-2.2 atoms/s/cm2 for the continental lithospheric mantle. These estimates differ by a factor of ten from non-cratonic lithospheric mantle and are closer to the observed 3He flux from the continents (<1 atoms/s/cm2). Pyroxenites and eclogites from the continental regions are all characterized by 3He/4He (0.03-5.6 RA) less than the depleted upper mantle, and relatively high U and Th contents. Together with oceanic and continental lithospheric peridotites, these materials represent reservoirs with low time-integrated 3He/(U + Th) in the mantle. Pyroxenites and eclogites are also characterized by higher Fe/Mg, more radiogenic Os-Pb isotope compositions, and more variable δ18O values (∼3‰ to 7‰), compared with peridotitic mantle. These xenoliths are widely interpreted to be the metamorphic/metasomatic equivalents of recycled oceanic crustal protoliths. The

  14. Formation of cratonic lithosphere: An integrated thermal and petrological model

    Science.gov (United States)

    Herzberg, Claude; Rudnick, Roberta

    2012-09-01

    The formation of cratonic mantle peridotite of Archean age is examined within the time frame of Earth's thermal history, and how it was expressed by temporal variations in magma and residue petrology. Peridotite residues that occupy the lithospheric mantle are rare owing to the effects of melt-rock reaction, metasomatism, and refertilization. Where they are identified, they are very similar to the predicted harzburgite residues of primary magmas of the dominant basalts in greenstone belts, which formed in a non-arc setting (referred to here as "non-arc basalts"). The compositions of these basalts indicate high temperatures of formation that are well-described by the thermal history model of Korenaga. In this model, peridotite residues of extensive ambient mantle melting had the highest Mg-numbers, lowest FeO contents, and lowest densities at ~ 2.5-3.5 Ga. These results are in good agreement with Re-Os ages of kimberlite-hosted cratonic mantle xenoliths and enclosed sulfides, and provide support for the hypothesis of Jordan that low densities of cratonic mantle are a measure of their high preservation potential. Cratonization of the Earth reached its zenith at ~ 2.5-3.5 Ga when ambient mantle was hot and extensive melting produced oceanic crust 30-45 km thick. However, there is a mass imbalance exhibited by the craton-wide distribution of harzburgite residues and the paucity of their complementary magmas that had compositions like the non-arc basalts. We suggest that the problem of the missing basaltic oceanic crust can be resolved by its hydration, cooling and partial transformation to eclogite, which caused foundering of the entire lithosphere. Some of the oceanic crust partially melted during foundering to produce continental crust composed of tonalite-trondhjemite-granodiorite (TTG). The remaining lithosphere gravitationally separated into 1) residual eclogite that continued its descent, and 2) buoyant harzburgite diapirs that rose to underplate cratonic nuclei

  15. Using open sidewalls for modelling self-consistent lithosphere subduction dynamics

    Directory of Open Access Journals (Sweden)

    M. V. Chertova

    2012-10-01

    Full Text Available Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free slip sidewalls while comparing results for two model aspect ratios of 3:1 and 6:1. Slab buoyancy driven subduction with open boundaries and free plates immediately develops into strong rollback with high trench retreat velocities and predominantly laminar asthenospheric flow. In contrast, free-slip sidewalls prove highly restrictive on subduction rollback evolution, unless the lithosphere plates are allowed to move away from the sidewalls. This initiates return flows pushing both plates toward the subduction zone speeding up subduction. Increasing the aspect ratio to 6:1 does not change the overall flow pattern when using open sidewalls but only the flow magnitude. In contrast, for free-slip boundaries, the slab evolution does change with respect to the 3:1 aspect ratio model and slab evolution does not resemble the evolution obtained with open boundaries using 6:1 aspect ratio. For models with open side boundaries, we could develop a flow-speed scaling based on energy dissipation arguments to convert between flow fields of different model aspect ratios. We have also investigated incorporating the effect of far-field generated lithosphere stress in our open boundary models. By applying realistic normal stress conditions to the strong part of the overriding plate at the sidewalls, we can transfer intraplate stress to influence subduction dynamics varying from slab roll-back, stationary subduction, to advancing subduction. The relative independence of the flow field on model aspect ratio allows for a smaller modelling domain. Open boundaries allow for subduction to evolve freely and avoid the adverse effects (e.g. forced return flows of free-slip boundaries. We

  16. How does continental lithosphere break-apart? A 3D seismic view on the transition from magma-poor rifted margin to magmatic oceanic lithosphere

    Science.gov (United States)

    Emmanuel, M.; Lescanne, M.; Picazo, S.; Tomasi, S.

    2017-12-01

    In the last decade, high-quality seismic data and drilling results drastically challenged our ideas about how continents break apart. New models address their observed variability and are presently redefining basics of rifting as well as exploration potential along deepwater rifted margins. Seafloor spreading is even more constrained by decades of scientific exploration along Mid Oceanic Ridges. By contrast, the transition between rifting and drifting remains a debated subject. This lithospheric breakup "event" is geologically recorded along Ocean-Continent Transitions (OCT) at the most distal part of margins before indubitable oceanic crust. Often lying along ultra-deepwater margin domains and buried beneath a thick sedimentary pile, high-quality images of these domains are rare but mandatory to get strong insights on the processes responsible for lithospheric break up and what are the consequences for the overlying basins. We intend to answer these questions by studying a world-class 3D seismic survey in a segment of a rifted margin exposed in the Atlantic. Through these data, we can show in details the OCT architecture between a magma-poor hyper-extended margin (with exhumed mantle) and a classical layered oceanic crust. It is characterized by 1- the development of out-of-sequence detachment systems with a landward-dipping geometry and 2- the increasing magmatic additions oceanwards (intrusives and extrusives). Geometry of these faults suggests that they may be decoupled at a mantle brittle-ductile interface what may be an indicator on thermicity. Furthermore, magmatism increases as deformation migrates to the future first indubitable oceanic crust what controls a progressive magmatic crustal thickening below, above and across a tapering rest of margin. As the magmatic budget increases oceanwards, full-rate divergence is less and less accommodated by faulting. Magmatic-sedimentary architectures of OCT is therefore changing from supra-detachment to magmatic

  17. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

    Science.gov (United States)

    Mahatsente, Rezene

    2017-12-01

    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  18. Lithosphere/asthenosphere interaction during continental breakup: preliminary isotopic date on the passive Galicia margin (North-Atlantic)

    International Nuclear Information System (INIS)

    Charpentier, S.; Kornprobst, J.; Chazot, G.; Cornen, G.

    1998-01-01

    The Galicia Margin ultramafic ridge has been cross-cut by diorites, pyroxenites and gabbros before the end of the rifting stage, and then by dolerites, after the continental break-full; it has been further overlaid by basaltic lava flows. The younger the rocks, the higher the initial ξ Nd (2.2-8.8). This evolution would be the result of the contamination of liquids extracted from the asthenosphere, by the enriched (ξ Ndi =4.0) and partially melted previous continental lithosphere. Time-decreasing contamination is related to progressive lithospheric thinning from the end to the beginning of oceanic spreading. (authors)

  19. High-Resolution Gravity Field Modeling for Mercury to Estimate Crust and Lithospheric Properties

    Science.gov (United States)

    Goossens, S.; Mazarico, E.; Genova, A.; James, P. B.

    2018-05-01

    We estimate a gravity field model for Mercury using line-of-sight data to improve the gravity field model at short wavelengths. This can be used to infer crustal density and infer the support mechanism of the lithosphere.

  20. Microstructure, CTD and ADCP data collected from R/V ONRUST in Hudson River Estuary during 6 short cruises from 1994-05-19 to 2001-05-01 (NCEI Accession 0146260)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations of turbulent mixing, stratification and currents in the Hudson River Estuary made in 6 short cruises in 1994/1995 and 2001 were assembled. The lower...

  1. Potential well yields from unconsolidated deposits in the lower Hudson and Delaware River basins, New York

    Science.gov (United States)

    Wolcott, Stephen W.

    1987-01-01

    A comprehensive groundwater protection plan, developed by the New York State Department of Environmental Conservation in 1985, identified the need to delineate significant aquifers within the state. A map of the unconsolidated aquifers in the lower Hudson and Delaware River basins was compiled from available data on the surficial geology and well yields. It delineates the significant unconsolidated aquifers and indicates the potential yield of wells that tap these aquifers. The potential well yield is categorized into three ranges: 100 gal/min. No yield range is given for till, but some large diameter or dug wells in till may yield up 10 gal/min. (Lantz-PTT)

  2. Plutonium, cesium and uranium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1979-November 30, 1980

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.; Olsen, C.R.

    1980-01-01

    Radionuclide activities were measured in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs and 60 Co determined by gamma spectrometry and 239 240 Pu and 238 Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in 239 240 Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Measurable amounts of reactor-derived 134 Cs and 60 Co are found in nearly al sediment samples containing appreciable 137 Cs between 15 km upstream of Indian Point and the downstream extent of our sampling about 70 km south of the reactor. Fallout 239 240 Pu reaching the Hudson appears to be almost completely retained within the systems by particle deposition, while 70 to 90% of the 137 Cs derived from both reactor releases and fallout has been exported to the coastal waters in solution. Activity levels of 239 240 Pu in New York harbor sediments indicate a significant source in addition to suspended particles carried down the Hudson. The most likely cause appears to be transport into the estuary of particles from offshore waters having higher specific activities of 239 240 Pu. Measurements of fallout 239 240 Pu in a saline lake with a high carbonate ion concentration yielded water column activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ion may indeed be a critical factor in regulating plutonium solubility and that low molecular weight complexes are primarily responsible for enhanced plutonium solubility

  3. eBay.com

    DEFF Research Database (Denmark)

    Engholm, Ida

    2014-01-01

    Celebrated as one of the leading and most valuable brands in the world, eBay has acquired iconic status on par with century-old brands such as Coca-Cola and Disney. The eBay logo is now synonymous with the world’s leading online auction website, and its design is associated with the company...

  4. Discharge between San Antonio Bay and Aransas Bay, southern Gulf Coast, Texas, May-September 1999

    Science.gov (United States)

    East, Jeffery W.

    2001-01-01

    Along the Gulf Coast of Texas, many estuaries and bays are important habitat and nurseries for aquatic life. San Antonio Bay and Aransas Bay, located about 50 and 30 miles northeast, respectively, of Corpus Christi, are two important estuarine nurseries on the southern Gulf Coast of Texas (fig. 1). According to the Texas Parks and Wildlife Department, “Almost 80 percent of the seagrasses [along the Texas Gulf Coast] are located in the Laguna Madre, an estuary that begins just south of Corpus Christi Bay and runs southward 140 miles to South Padre Island. Most of the remaining seagrasses, about 45,000 acres, are located in the heavily traveled San Antonio, Aransas and Corpus Christi Bay areas” (Shook, 2000).Population growth has led to greater demands on water supplies in Texas. The Texas Water Development Board, the Texas Parks and Wildlife Department, and the Texas Natural Resource Conservation Commission have the cooperative task of determining inflows required to maintain the ecological health of the State’s streams, rivers, bays, and estuaries. To determine these inflow requirements, the three agencies collect data and conduct studies on the need for instream flows and freshwater/ saline water inflows to Texas estuaries.To assist in the determination of freshwater inflow requirements, the U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board, conducted a hydrographic survey of discharge (flow) between San Antonio Bay and Aransas Bay during the period May–September 1999. Automated instrumentation and acoustic technology were used to maximize the amount and quality of data that were collected, while minimizing personnel requirements. This report documents the discharge measured at two sites between the bays during May–September 1999 and describes the influences of meteorologic (wind and tidal) and hydrologic (freshwater inflow) conditions on discharge between the two bays. The movement of water between the bays is

  5. Imaging rifting at the lithospheric scale in the northern East African Rift using S-to-P receiver functions

    Science.gov (United States)

    Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.

    2017-12-01

    The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.

  6. Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii

    Science.gov (United States)

    Bizimis, Michael; Sen, Gautam; Salters, Vincent J. M.

    2004-01-01

    We present a detailed geochemical investigation on the Hf, Nd and Sr isotope compositions and trace and major element contents of clinopyroxene mineral separates from spinel lherzolite xenoliths from the island of Oahu, Hawaii. These peridotites are believed to represent the depleted oceanic lithosphere beneath Oahu, which is a residue of a MORB-related melting event some 80-100 Ma ago at a mid-ocean ridge. Clinopyroxenes from peridotites from the Salt Lake Crater (SLC) show a large range of Hf isotopic compositions, from ɛHf=12.2 (similar to the Honolulu volcanics series) to extremely radiogenic, ɛHf=65, at nearly constant 143Nd/ 144Nd ratios ( ɛNd=7-8). None of these samples show any isotopic evidence for interaction with Koolau-type melts. A single xenolith from the Pali vent is the only sample with Hf and Nd isotopic compositions that falls within the MORB field. The Hf isotopes correlate positively with the degree of depletion in the clinopyroxene (e.g. increasing Mg#, Cr#, decreasing Ti and heavy REE contents), but also with increasing Zr and Hf depletions relative to the adjacent REE in a compatibility diagram. The Lu/Hf isotope systematics of the SLC clinopyroxenes define apparent ages of 500 Ma or older and these compositions cannot be explained by mixing between any type of Hawaiian melts and the depleted Pacific lithosphere. Metasomatism of an ancient (e.g. 1 Ga or older) depleted peridotite protolith can, in principle, explain these apparent ages and the Nd-Hf isotope decoupling, but requires that the most depleted samples were subject to the least amount of metasomatism. Alternatively, the combined isotope, trace and major element compositions of these clinopyroxenes are best described by metasomatism of the 80-100 Ma depleted oceanic lithosphere by melts products of extensive mantle-melt interaction between Honolulu Volcanics-type melts and the depleted lithosphere.

  7. Density heterogeneity of the cratonic lithosphere

    DEFF Research Database (Denmark)

    Cherepanova, Yulia; Artemieva, Irina

    2015-01-01

    Using free-board modeling, we examine a vertically-averaged mantle density beneath the Archean-Proterozoic Siberian craton in the layer from the Moho down to base of the chemical boundary layer (CBL). Two models are tested: in Model 1 the base of the CBL coincides with the LAB, whereas in Model 2...... the base of the CBL is at a 180 km depth. The uncertainty of density model is density structure of the Siberian lithospheric mantle with a strong...... correlation between mantle density variations and the tectonic setting. Three types of cratonic mantle are recognized from mantle density anomalies. 'Pristine' cratonic regions not sampled by kimberlites have the strongest depletion with density deficit of 1.8-3.0% (and SPT density of 3.29-3.33 t/m3...

  8. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  9. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  10. Urban Greening Bay Area

    Science.gov (United States)

    Information about the San Francisco Bay Water Quality Project (SFBWQP) Urban Greening Bay Area, a large-scale effort to re-envision urban landscapes to include green infrastructure (GI) making communities more livable and reducing stormwater runoff.

  11. Asymmetric lithosphere as the cause of rifting and magmatism in the Permo-Carboniferous Oslo Graben, in Permo-Carboniferous Rifting and Magmatism in Europe.

    NARCIS (Netherlands)

    Pascal Candas, C.; Cloetingh, S.A.P.L.; Davies, G.R.

    2004-01-01

    Compared to other Permo-Carboniferous rift basins of NW Europe, the Oslo Graben has two distinct characteristics. First, it initiated inside cold and stable Precambrian lithosphere, whereas most Permo-Carboniferous basins developed in weaker Phanerozoic lithosphere, and second, it is characterized

  12. GENETIC SOURCES AND TECTONOPHYSICAL REGULARITIES OF DIVISIBILITY OF THE LITHOSPHERE INTO BLOCKS OF VARIOUS RANKS AT DIFFERENT STAGES OF ITS FORMATION: TECTONOPHYSICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Semen I. Sherman

    2015-01-01

    Full Text Available The paper presents the first tectonophysical reconstruction of initial divisibility of the protolithosphere as a result of convection in the cooling primitive mantle. Initial division of the protolithosphere into separate masses, i.e. prototypes of the blocks, and their size are predetermined by the emerging Rayleigh-Benard convection cells. In studies of geology and geodynamics, the Rayleigh-Benard convection cells were first referred to as a factor to explain the formation of initial continental cores. Considering the Rayleigh-Benard cells and their structural relics can help clarify initial divisibility of the protolithosphere and the origin of the major lithospheric plates, i.e. prototypes of continents. In our opinion, the initial mega-scale block structure of the protolithosphere and the emerging lithosphere were predetermined by the Rayleigh-Benard cells as they were preserved in the emerging lithosphere and their lower boundaries corresponded to the core-mantle boundary, i.e. one of the major discontinuities of the planet. Our theoretical estimations are in good agreement with the number and sizes of the Earth's theorized first supercontinents, Vaalbara and Ur. In our tectonophysical discussion of the formation of the lithospheric block structure, we analyze in detail the map of modern lithospheric plates [Bird, 2003] in combination with the materials from [Sherman et al., 2000]. In the hierarchy of the blocks comprising the contemporary lithosphere, which sizes are widely variable, two groups of blocks are clearly distinguished. The first group includes megablocks with the average geometric size above 6500 km. Their formation is related to convection in the Earth mantle at the present stage of the geodynamic evolution of the Earth, as well as at all the previous stages, including the earliest one, when the protolithosphere emerged. The second group includes medium-sized blocks with the average geometric size of less than 4500 km and

  13. USGS Tampa Bay Pilot Study

    Science.gov (United States)

    Yates, K.K.; Cronin, T. M.; Crane, M.; Hansen, M.; Nayeghandi, A.; Swarzenski, P.; Edgar, T.; Brooks, G.R.; Suthard, B.; Hine, A.; Locker, S.; Willard, D.A.; Hastings, D.; Flower, B.; Hollander, D.; Larson, R.A.; Smith, K.

    2007-01-01

    Many of the nation's estuaries have been environmentally stressed since the turn of the 20th century and will continue to be impacted in the future. Tampa Bay, one the Gulf of Mexico's largest estuaries, exemplifies the threats that our estuaries face (EPA Report 2001, Tampa Bay Estuary Program-Comprehensive Conservation and Management Plan (TBEP-CCMP)). More than 2 million people live in the Tampa Bay watershed, and the population constitutes to grow. Demand for freshwater resources, conversion of undeveloped areas to resident and industrial uses, increases in storm-water runoff, and increased air pollution from urban and industrial sources are some of the known human activities that impact Tampa Bay. Beginning on 2001, additional anthropogenic modifications began in Tampa Bat including construction of an underwater gas pipeline and a desalinization plant, expansion of existing ports, and increased freshwater withdrawal from three major tributaries to the bay. In January of 2001, the Tampa Bay Estuary Program (TBEP) and its partners identifies a critical need for participation from the U.S. Geological Survey (USGS) in providing multidisciplinary expertise and a regional-scale, integrated science approach to address complex scientific research issue and critical scientific information gaps that are necessary for continued restoration and preservation of Tampa Bay. Tampa Bay stakeholders identified several critical science gaps for which USGS expertise was needed (Yates et al. 2001). These critical science gaps fall under four topical categories (or system components): 1) water and sediment quality, 2) hydrodynamics, 3) geology and geomorphology, and 4) ecosystem structure and function. Scientists and resource managers participating in Tampa Bay studies recognize that it is no longer sufficient to simply examine each of these estuarine system components individually, Rather, the interrelation among system components must be understood to develop conceptual and

  14. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    Science.gov (United States)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  15. Lithospheric Structure of Antarctica and Implications for Geological and Cryospheric Evolution

    Science.gov (United States)

    Wiens, Douglas; Heeszel, David; Sun, Xinlei; Lloyd, Andrew; Nyblade, Andrew; Anandakrishnan, Sridhar; Aster, Richard; Chaput, Julien; Huerta, Audrey; Hansen, Samantha; Wilson, Terry

    2013-04-01

    Recent broadband seismic deployments, including the AGAP/GAMSEIS array of 24 broadband seismographs over the Gamburtsev Subglacial Mountains (GSM) in East Antarctica and the POLENET/ANET deployment of 33 seismographs across much of West Antarctica, reveal the detailed crust and upper mantle structure of Antarctica for the first time. The seismographs operate year-around even in the coldest parts of Antarctica, due to novel insulated boxes, power systems, and modified instrumentation developed in collaboration with the IRIS PASSCAL Instrument Center. We analyze the data using several different techniques to develop high-resolution models of Antarctic seismic structure. We use Rayleigh wave phase velocities at periods of 20-180 s determined using a modified two-plane wave decomposition of teleseismic Rayleigh waves to invert for the three dimensional shear velocity structure. In addition, Rayleigh wave group and phase velocities obtained by ambient seismic noise correlation methods provide constraints at shorter periods and shallower depths. Receiver functions provide precise estimates of crustal structure beneath the stations, and P and S wave tomography provides models of upper mantle structure down to ~ 500 km depth along transects of greater seismic station density. The new seismic results show that the high elevations of the GSM are supported by thick crust (~ 55 km), and are underlain by thick Precambrian continental lithosphere that initially formed during Archean to mid-Proterozoic times. The absence of lithospheric thermal anomalies suggests that the mountains were formed by a compressional orogeny during the Paleozoic, thus providing a locus for ice sheet nucleation throughout a long period of geological time. Within West Antarctica, the crust and lithosphere are extremely thin near the Transantarctic Mountain Front and topographic lows such as the Bentley Trench and Byrd Basin, which represent currently inactive Cenozoic rift systems. Slow seismic

  16. Concentration of PSP (Paralytic Shellfish Poisoning) Toxin On Shellfish From Inner Ambon Bay and Kao Bay North Halmahera

    Science.gov (United States)

    Pello, F. S.; Haumahu, S.; Huliselan, N. V.; Tuapattinaja, M. A.

    2017-10-01

    The Inner Ambon Bay and Kao Bay have potential on fisheries resources which one of them is molluscs. Molluscs especially for class bivalve have economical values and are consumed by coastal community. The research had been done to analyze saxitoxin (STX) concentration on bivalves from Kao Bay and Inner Ambon Bay. The Saxitoxin Elisa Test Kit Protocol was used to determine saxitoxin concentration. The measurement showed that the highest concentration of saxitoxin (392.42 µg STXeq/100g shellfish meat) was Gafrarium tumidum from Ambon Bay, whereas concentration of saxitoxin (321.83 µg STXeq/100g shellfish meat) was Mactra mera from Kao Bay

  17. Marine littoral diatoms from the Gordon’s bay region of False Bay, Cape Province, South Africa

    CSIR Research Space (South Africa)

    Giffen, MH

    1971-01-01

    Full Text Available and Comic/i for Scientific and Industrial Research, Pretoria (Received: 5.2. 1970) The Gordon?s Bay region occupies the north western corner of False Bay, a large rectangular bay, bounded on the west by the Cape Peninsula ending at Cape Point...

  18. Description of gravity cores from San Pablo Bay and Carquinez Strait, San Francisco Bay, California

    Science.gov (United States)

    Woodrow, Donald L.; John L. Chin,; Wong, Florence L.; Fregoso, Theresa A.; Jaffe, Bruce E.

    2017-06-27

    Seventy-two gravity cores were collected by the U.S. Geological Survey in 1990, 1991, and 2000 from San Pablo Bay and Carquinez Strait, California. The gravity cores collected within San Pablo Bay contain bioturbated laminated silts and sandy clays, whole and broken bivalve shells (mostly mussels), fossil tube structures, and fine-grained plant or wood fragments. Gravity cores from the channel wall of Carquinez Strait east of San Pablo Bay consist of sand and clay layers, whole and broken bivalve shells (less than in San Pablo Bay), trace fossil tubes, and minute fragments of plant material.

  19. Lithospheric Expressions of the Precambrian Shield, Mesozoic Rifting, and Cenozoic Subduction and Mountain Building in Venezuela

    Science.gov (United States)

    Levander, A.; Masy, J.; Niu, F.

    2013-05-01

    The Caribbean (CAR)-South American (SA) plate boundary in Venezuela is a broad zone of faulting and diffuse deformation. GPS measurements show the CAR moving approximately 2 cm/yr relative to SA, parallel to the strike slip fault system in the east, with more oblique convergence in the west (Weber et al., 2001) causing the southern edge of the Caribbean to subduct beneath northwestern South America. The west is further complicated by the motion of the triangular Maracaibo block, which is escaping northeastward relative to SA along the Bocono and Santa Marta Faults. In central and eastern Venezuela, plate motion is accommodated by transpression and transtension along the right lateral San Sebastian- El Pilar strike-slip fault system. The strike-slip system marks the northern edge of coastal thrust belts and their associated foreland basins. The Archean-Proterozoic Guayana Shield, part of the Amazonian Craton, underlies southeastern and south-central Venezuela. We used the 87 station Venezuela-U.S. BOLIVAR array (Levander et al., 2006) to investigate lithospheric structure in northern South America. We combined finite-frequency Rayleigh wave tomography with Ps and Sp receiver functions to determine lithosphere-asthenosphere boundary (LAB) depth. We measured Rayleigh phase velocities from 45 earthquakes in the period band 20-100s. The phase velocities were inverted for 1D shear velocity structure on a 0.5 by 0.5 degree grid. Crustal thickness for the starting model was determined from active seismic experiments and receiver function analysis. The resulting 3D shear velocity model was then used to determine the depth of the LAB, and to CCP stack Ps and Sp receiver functions from ~45 earthquakes. The receiver functions were calculated in several frequency bands using iterative deconvolution and inverse filtering. Lithospheric thickness varies by more a factor of 2.5 across Venezuela. We can divide the lithosphere into several distinct provinces, with LAB depth

  20. John Rae (1813-93): explorer of the Canadian Arctic, the great pedestrian.

    Science.gov (United States)

    Loosmore, Brian

    2009-11-01

    Born and raised in the Orkney Islands, Dr John Rae joined the Hudson's Bay Company and rose to be Chief Factor. Unusually tough and intelligent, he explored much of northern Canada, mapping the north eastern shore and finding controversial evidence of the lost Franklin expedition of 1845. A talented botanist, geologist, anthropologist and cartographer, he was northern Canada's most distinguished explorer.

  1. Structure of the lithosphere-asthenosphere and volcanism in the Tyrrhenian Sea and surroundings

    International Nuclear Information System (INIS)

    Panza, G.F.; Aoudia, A.; Pontevivo, A.; Sarao, A.; Peccerillo, A.

    2003-01-01

    The Italian peninsula and the Tyrrhenian Sea are some of the geologically most complex regions on Earth. Such a complexity is expressed by large lateral and vertical variations of the physical properties as inferred from the lithosphere-asthenosphere structure and by the wide varieties of Polio-Quaternary magmatic rocks ranging from teacloth to calcalkaline to sodium- and potassium-alkaline and ultra- alkaline compositions. The integration of geophysical, petrological and geochemical data allows us to recognise various sectors in the Tyrrhenian Sea and surrounding areas and compare different volcanic complexes in order to better constrain the regional geodynamics. A thin crust overlying a soft mantle (10% of partial melting) is typical of the back arc volcanism of the central Tyrrhenian Sea (Magnaghi, Vavilov and Marsili) where tholeiitic rocks dominate. Similar lithosphere-asthenosphere structure is observed for Ustica, Vulture and Etna volcanoes where the geochemical signatures could be related to the contamination of the side intraplate mantle by material coming from the either ancient or active roll-back. The lithosphere-asthenosphere structure and geochemical-isotopic composition do not change significantly when we move to the Stromboli-Campanian volcanoes, where we identify a well developed low-velocity layer, about 10 km thick, below a thin lid, overlain by a thin continental crust. The geochemical signature of the nearby Ischia volcano is characteristic of the Campanian sector and the relative lithosphere-asthenosphere structure may likely represent a transition to the back arc volcanism sector acting in the central Tyrrhenian. The difference in terms of structure beneath Stromboli and the nearby Vulcano and Lipari is confirmed by different geochemical signatures. The affinity between Vulcano, Lipari and Etna could be explained by their common position along the Tindari-Letoianni-Malta fault zone. A low velocity mantle wedge, just below the Moho, is present

  2. Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere.

    Science.gov (United States)

    Roy, Mousumi; Jordan, Thomas H; Pederson, Joel

    2009-06-18

    The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.

  3. 75 FR 15343 - Regulated Navigation Area: Narragansett Bay, RI and Mount Hope Bay, RI and MA, Including the...

    Science.gov (United States)

    2010-03-29

    ...: Narragansett Bay, RI and Mount Hope Bay, RI and MA, Including the Providence River and Taunton River AGENCY... River and Mount Hope Bay in the vicinity of the two Brightman Street bridges have not been adopted and... Island and Mt. Hope Bay, MA.'' The notice was prompted primarily by two events: (1) The U.S. Army Corps...

  4. Computer simulation model for the striped bass young-of-the-year population in the Hudson River. [Effects of entrainment and impingement at power plants on population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Eraslan, A.H.; Van Winkle, W.; Sharp, R.D.; Christensen, S.W.; Goodyear, C.P.; Rush, R.M.; Fulkerson, W.

    1975-09-01

    This report presents a daily transient (tidal-averaged), longitudinally one-dimensional (cross-section-averaged) computer simulation model for the assessment of the entrainment and impingement impacts of power plant operations on young-of-the-year populations of the striped bass, Morone saxatilis, in the Hudson River.

  5. The Kenya rift revisited: insights into lithospheric strength through data-driven 3-D gravity and thermal modelling

    Science.gov (United States)

    Sippel, Judith; Meeßen, Christian; Cacace, Mauro; Mechie, James; Fishwick, Stewart; Heine, Christian; Scheck-Wenderoth, Magdalena; Strecker, Manfred R.

    2017-01-01

    We present three-dimensional (3-D) models that describe the present-day thermal and rheological state of the lithosphere of the greater Kenya rift region aiming at a better understanding of the rift evolution, with a particular focus on plume-lithosphere interactions. The key methodology applied is the 3-D integration of diverse geological and geophysical observations using gravity modelling. Accordingly, the resulting lithospheric-scale 3-D density model is consistent with (i) reviewed descriptions of lithological variations in the sedimentary and volcanic cover, (ii) known trends in crust and mantle seismic velocities as revealed by seismic and seismological data and (iii) the observed gravity field. This data-based model is the first to image a 3-D density configuration of the crystalline crust for the entire region of Kenya and northern Tanzania. An upper and a basal crustal layer are differentiated, each composed of several domains of different average densities. We interpret these domains to trace back to the Precambrian terrane amalgamation associated with the East African Orogeny and to magmatic processes during Mesozoic and Cenozoic rifting phases. In combination with seismic velocities, the densities of these crustal domains indicate compositional differences. The derived lithological trends have been used to parameterise steady-state thermal and rheological models. These models indicate that crustal and mantle temperatures decrease from the Kenya rift in the west to eastern Kenya, while the integrated strength of the lithosphere increases. Thereby, the detailed strength configuration appears strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localisation and propagation of rifting.

  6. A Swarm lithospheric magnetic field model to SH degree 80

    OpenAIRE

    Thébault, Erwan; Vigneron, Pierre; Langlais, Benoit; Hulot, Gauthier

    2016-01-01

    International audience; The Swarm constellation of satellites was launched in November 2013 and since then has delivered high-quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency to provide a number of scientific products to be made available to the scientific community on a regular basis. In this study, we present the dedicated lithospheric field inversion model. It uses carefully selected magnetic fiel...

  7. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones

    Science.gov (United States)

    Fullea, J.; Fernàndez, M.; Zeyen, H.; Vergés, J.

    2007-02-01

    We present a method based on the combination of elevation and geoid anomaly data together with thermal field to map crustal and lithospheric thickness. The main assumptions are local isostasy and a four-layered model composed of crust, lithospheric mantle, sea water and the asthenosphere. We consider a linear density gradient for the crust and a temperature dependent density for the lithospheric mantle. We perform sensitivity tests to evaluate the effect of the variation of the model parameters and the influence of RMS error of elevation and geoid anomaly databases. The application of this method to the Gibraltar Arc System, Atlas Mountains and adjacent zones reveals the presence of a lithospheric thinning zone, SW-NE oriented. This zone affects the High and Middle Atlas and extends from the Canary Islands to the eastern Alboran Basin and is probably linked with a similarly trending zone of thick lithosphere constituting the western Betics, eastern Rif, Rharb Basin, and Gulf of Cadiz. A number of different, even mutually opposite, geodynamic models have been proposed to explain the origin and evolution of the study area. Our results suggest that a plausible slab-retreating model should incorporate tear and asymmetric roll-back of the subducting slab to fit the present-day observed lithosphere geometry. In this context, the lithospheric thinning would be caused by lateral asthenospheric flow. An alternative mechanism responsible for lithospheric thinning is the presence of a hot magmatic reservoir derived from a deep ancient plume centred in the Canary Island, and extending as far as Central Europe.

  8. Peridotites and mafic igneous rocks at the foot of the Galicia Margin: an oceanic or continental lithosphere? A discussion

    Energy Technology Data Exchange (ETDEWEB)

    Korprobst, J.; Chazot, G.

    2016-10-01

    An ultramafic/mafic complex is exposed on the sea floor at the foot of the Galicia Margin (Spain and Portugal). It comprises various types of peridotites and pyroxenites, as well as amphibole-diorites, gabbros, dolerites and basalts. For chronological and structural reasons (gabbros were emplaced within peridotites before the continental break-up) this unit cannot be assigned to the Atlantic oceanic crust. The compilation of all available petrological and geochemical data suggests that peridotites are derived from the sub-continental lithospheric mantle, deeply transformed during Cretaceous rifting. Thus, websterite dykes extracted from the depleted MORB mantle reservoir (DMM), were emplaced early within the lithospheric harzburgites; subsequent boudinage and tectonic dispersion of these dykes in the peridotites, during deformation stages at the beginning of rifting, resulted in the formation of fertile but isotopically depleted lherzolites. Sterile but isotopically enriched websterites, would represent melting residues in the peridotites, after significant partial melting and melt extraction related to the thermal erosion of the lithosphere. The latter melts are probably the source of brown amphibole metasomatic crystallization in some peridotites, as well as of the emplacement of amphibole-diorite dykes. Melts directly extracted from the asthenosphere were emplaced as gabbro within the sub-continental mantle. Mixing these DMM melts together with the enriched melts extracted from the lithosphere, provided the intermediate isotopic melt-compositions - in between the DMM and Oceanic Islands Basalts reservoir - observed for the dolerites and basalts, none of which are characterized by a genuine N-MORB signature. An enriched lithospheric mantle, present prior to rifting of the Galicia margin, is in good agreement with data from the Messejana dyke (Portugal) and more generally, with those of all continental tholeiites of the Central Atlantic Magmatic Province (CAMP

  9. Upper mantle beneath foothills of the western Himalaya: subducted lithospheric slab or a keel of the Indian shield?

    Science.gov (United States)

    Vinnik, L.; Singh, A.; Kiselev, S.; Kumar, M. Ravi

    2007-12-01

    The fate of the mantle lithosphere of the Indian Plate in the India-Eurasia collision zone is not well understood. Tomographic studies reveal high P velocity in the uppermost mantle to the south of the western Himalaya, and these high velocities are sometimes interpreted as an image of subducting Indian lithosphere. We suggest that these high velocities are unrelated to the ongoing subduction but correspond to a near-horizontal mantle keel of the Indian shield. In the south of the Indian shield upper-mantle velocities are anomalously low, and relatively high velocities may signify a recovery of the normal shield structure in the north. Our analysis is based on the recordings of seismograph station NIL in the foothills of the western Himalaya. The T component of the P receiver functions is weak relative to the Q component, which is indicative of a subhorizontally layered structure. Joint inversion of the P and S receiver functions favours high uppermost mantle velocities, typical of the lithosphere of Archean cratons. The arrival of the Ps converted phase from 410 km discontinuity at NIL is 2.2 s earlier than in IASP91 global model. This can be an effect of remnants of Tethys subduction in the mantle transition zone and of high velocities in the keel of the Indian shield. Joint inversion of SKS particle motions and P receiver functions reveals a change in the fast direction of seismic azimuthal anisotropy from 60° at 80-160 km depths to 150° at 160-220 km. The fast direction in the lower layer is parallel to the trend of the Himalaya. The change of deformation regimes at a depth of 160 km suggests that this is the base of the lithosphere of the Indian shield. A similar boundary was found with similar techniques in central Europe and the Tien Shan region, but the base of the lithosphere in these regions is relatively shallow, in agreement with the higher upper-mantle temperatures. The ongoing continental collision is expressed in crustal structure: the crust

  10. Large scale deformation of the oceanic lithosphere: insights from numerical modeling of the Indo-Australian intraplate deformation

    Science.gov (United States)

    Royer, J.; Brandon, V.

    2011-12-01

    The large-scale deformation observed in the Indo-Australian plate seems to challenge tenets of plate tectonics: plate rigidity and narrow oceanic plate boundaries. Its distribution along with kinematic data inversions however suggest that the Indo-Australian plate can be viewed as a composite plate made of three rigid component plates - India, Capricorn, Australia - separated by wide and diffuse boundaries either extensional or compressional. We tested this model using the SHELLS numerical code (Kong & Bird, 1995) where the Indo-Australian plate was meshed into 5281 spherical triangular finite elements. Model boundary conditions are defined only by the plate velocities of the rigid parts of the Indo-Australian plate relative to their neighboring plates. Different plate velocity models were tested. From these boundary conditions, and taking into account the age of the lithosphere, seafloor topography, and assumptions on the rheology of the oceanic lithosphere, SHELLS predicts strain rates within the plate. We also tested the role of fossil fracture zones as potential lithospheric weaknesses. In a first step, we considered different component plate pairs (India/Capricorn, Capricorn/Australia, India/Australia). Since the limits of their respective diffuse boundary (i.e. the limits of the rigid component plates) are not known, we let the corresponding edge free. In a second step, we merged the previous meshes to consider the whole Indo-Australian plate. In this case, the velocities on the model boundaries are all fully defined and were set relative to the Capricorn plate. Our models predict deformation patterns very consistent with that observed. Pre-existing structures of the lithosphere play an important role in the intraplate deformation and its distribution. The Chagos Bank focuses the extensional deformation between the Indian and Capricorn plates. Reactivation of fossil fracture zones may accommodate large part of the deformation both in extensional areas, off

  11. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    Science.gov (United States)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness 8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that

  12. Plume-stagnant slab-lithosphere interactions: Origin of the late Cenozoic intra-plate basalts on the East Eurasia margin

    Science.gov (United States)

    Kimura, Jun-Ichi; Sakuyama, Tetsuya; Miyazaki, Takashi; Vaglarov, Bogdan S.; Fukao, Yoshio; Stern, Robert J.

    2018-02-01

    Intra-plate basalts of 35-0 Ma in East Eurasia formed in a broad backarc region above the stagnant Pacific Plate slab in the mantle transition zone. These basalts show regional-scale variations in Nd-Hf isotopes. The basalts with the most radiogenic Nd-Hf center on the Shandong Peninsula with intermediate Nd-Hf at Hainan and Datong. The least radiogenic basalts occur in the perimeters underlain by the thick continental lithosphere. Shandong basalts possess isotopic signatures of the young igneous oceanic crust of the subducted Pacific Plate. Hainan and Datong basalts have isotopic signatures of recycled subduction materials with billions of years of storage in the mantle. The perimeter basalts have isotopic signatures similar to pyroxenite xenoliths from the subcontinental lithospheric mantle beneath East Eurasia. Hainan basalts exhibit the highest mantle potential temperature (Tp), while the Shandong basalts have the lowest Tp. We infer that a deep high-Tp plume interacted with the subducted Pacific Plate slab in the mantle transition zone to form a local low-Tp plume by entraining colder igneous oceanic lithosphere. We infer that the subducted Izanagi Plate slab, once a part of the Pacific Plate mosaic, broke off from the Pacific Plate slab at 35 Ma to sink into the lower mantle. The sinking Izanagi slab triggered the plume that interacted with the stagnant Pacific slab and caused subcontinental lithospheric melting. This coincided with formation of the western Pacific backarc marginal basins due to Pacific Plate slab rollback and stagnation.

  13. Bay breeze climatology at two sites along the Chesapeake bay from 1986-2010: Implications for surface ozone.

    Science.gov (United States)

    Stauffer, Ryan M; Thompson, Anne M

    Hourly surface meteorological measurements were coupled with surface ozone (O 3 ) mixing ratio measurements at Hampton, Virginia and Baltimore, Maryland, two sites along the Chesapeake Bay in the Mid-Atlantic United States, to examine the behavior of surface O 3 during bay breeze events and quantify the impact of the bay breeze on local O 3 pollution. Analyses were performed for the months of May through September for the years 1986 to 2010. The years were split into three groups to account for increasingly stringent environmental regulations that reduced regional emissions of nitrogen oxides (NO x ): 1986-1994, 1995-2002, and 2003-2010. Each day in the 25-year record was marked either as a bay breeze day, a non-bay breeze day, or a rainy/cloudy day based on the meteorological data. Mean eight hour (8-h) averaged surface O 3 values during bay breeze events were 3 to 5 parts per billion by volume (ppbv) higher at Hampton and Baltimore than on non-bay breeze days in all year periods. Anomalies from mean surface O 3 were highest in the afternoon at both sites during bay breeze days in the 2003-2010 study period. In conjunction with an overall lowering of baseline O 3 after the 1995-2002 period, the percentage of total exceedances of the Environmental Protection Agency (EPA) 75 ppbv 8-h O 3 standard that occurred on bay breeze days increased at Hampton for 2003-2010, while remaining steady at Baltimore. These results suggest that bay breeze circulations are becoming more important to causing exceedance events at particular sites in the region, and support the hypothesis of Martins et al. (2012) that highly localized meteorology increasingly drives air quality events at Hampton.

  14. The interplay between rheology and pre-existing structures in the lithosphere and its influence on intraplate tectonics: Insights from scaled physical analogue models.

    Science.gov (United States)

    Santimano, T. N.; Adiban, P.; Pysklywec, R.

    2017-12-01

    The primary controls of deformation in the lithosphere are related to its rheological properties. In addition, recent work reveals that inherited zones of weakness in the deep lithosphere are prevalent and can also define tectonic activity. To understand how deformation is genetically related to rheology and/or pre-existing structures, we compare a set of physical analogue models with the presence and absence of a fault in the deep lithosphere. The layered lithosphere scaled models of a brittle upper crust, viscous lower crust and viscous mantle lithosphere are deformed in a convergent setting. Deformation of the model is recorded using high spatial and temporal stereoscopic cameras. We use Particle Image Velocimetry (PIV) to acquire a time-series dataset and study the velocity field and subsequently strain in the model. The finished model is also cut into cross-section revealing the finite internal structures that are then compared to the topography of the model. Preliminary results show that deformation in models with an inherited fault in the mantle lithosphere is accommodated by displacement along the fault plane that propagates into the overlying viscous lower crust and brittle upper crust. Here, the majority of the deformation is localized along the fault in a brittle manner. This is in contrast to the model absent of a fault that also displays significant amounts of deformation. In this setting, ductile deformation is accommodated by folding and thickening of the viscous layers and flexural shearing of the brittle upper crust. In these preliminary experiments, the difference in the strength profile between the mantle lithosphere and the lower crust is within the same order of magnitude. Future experiments will include models where the strength difference is an order of magnitude. This systematic study aids in understanding the role of rheology and deep structures particularly in transferring stress over time to the surface and is therefore fundamental in

  15. Monitoring of bird abundance and distribution at McKinley Bay and Hutchison Bay, Northwest Territories, 1981 to 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cornish, B J; Dickson, D L

    1994-04-01

    McKinley Bay has been identified as a preferred site for a harbor to support oil and gas production in the Beaufort Sea. As the bay is a molting area for several species of diving duck, a study was initiated to monitor the effect of harbor development on birds using the bay. Baseline information on the natural annual fluctuations in the number of birds were collected for nine years at McKinley Bay and eight years at neighboring Hutchinson Bay, an area chosen as the control. The final report of the predevelopment phase of the monitoring study is presented, including results of the 1993 surveys and a summary of results of all years of surveys. There were significantly more diving ducks in McKinley Bay in early August 1990 to 1993, on average, than from 1981 to 1985. No statistically significant change in total diving ducks was noted at Hutchinson Bay. Numbers of species of divers varied substantially between years at the two bays but not to the same degree. Significantly more Pacific loons, red-throated loons, and northern pintails were recorded in the 1990-1993 surveys at McKinley Bay than in earlier surveys. Potential explanations for the large between-year fluctuations in diving duck numbers are discussed. The variations may be due to bird responses to changes in the physical environment or related to the limitations of the aerial survey techniques used. Because of the large natural fluctuations in numbers of molting diving ducks using these bays in early August, it will be difficult to detect future impacts of industrial disturbance, even when sources of survey bias are minimized. It is concluded that aerial surveys of molting diving ducks in the two bays are unsuitable for monitoring the effects of industrial development. 41 refs., 7 figs., 23 tabs.

  16. S-Wave's Velocities of the Lithosphere-Asthenosphere System in the Caribbean Region

    International Nuclear Information System (INIS)

    Gonzalez, O'Leary; Alvarez, Jose Leonardo; Moreno, Bladimir; Panza, Giuliano F.

    2010-06-01

    An overview of the S-wave velocity (Vs) structural model of the Caribbean is presented with a resolution of 2 o x2 o . As a result of the frequency time analysis (FTAN) of more than 400 trajectories epicenter-stations in this region, new tomographic maps of Rayleigh waves group velocity dispersion at periods ranging from 10 s to 40 s have been determined. For each 2 o x2 o cell, group velocity dispersion curves were determined and extended to 150 s adding data from a larger scale tomographic study (Vdovin et al., 1999). Using, as independent a priori information, the available geological and geophysical data of the region, each dispersion curve has been mapped, by non-linear inversion, into a set of Vs vs. depth models in the depth range from 0 km to 300 km. Due to the non-uniqueness of the solutions for each cell a Local Smoothness Optimization (LSO) has been applied to the whole region to identify a tridimensional model of Vs vs. depth in cells of 2 o x2 o , thus satisfying the Occam razor concept. Through these models some main features of the lithosphere and asthenosphere are evidenced, such as: the west directed subduction zone of the eastern Caribbean region with a clear mantle wedge between the Caribbean lithosphere and the subducted slab; the complex and asymmetric behavior of the crustal and lithospheric thickness in the Cayman ridge; the diffused presence of oceanic crust in the region; the presence of continental type crust in the South America, Central America and North America plates, as well as the bottom of the upper asthenosphere that gets shallower going from west to east. (author)

  17. Building sustainable communities using sense of place indicators in three Hudson River Valley, NY, tourism destinations: An application of the limits of acceptable change process

    Science.gov (United States)

    Laura E. Sullivan; Rudy M. Schuster; Diane M. Kuehn; Cheryl S. Doble; Duarte. Morais

    2010-01-01

    This study explores whether measures of residents' sense of place can act as indicators in the Limits of Acceptable Change (LAC) process to facilitate tourism planning and management. Data on community attributes valued by residents and the associated values and meanings were collected through focus groups with 27 residents in three Hudson River Valley, New York,...

  18. The lithospheric structure of the Western Carpathian-Pannonian Basin region based on the CELEBRATION 2000 seismic experiment and gravity modelling

    Science.gov (United States)

    Tašárová, Alasonati; Afonso, J. C.; Bielik, M.; Götze, H.-J.; Hók, J.

    2009-10-01

    The lithospheric structure of the Western Carpathian-Pannonian Basin region was studied using 3-D modelling of the Bouguer gravity anomaly constrained by seismic models and other geophysical data. The thermal structure and density distribution in the shallow upper mantle were also estimated using a combination of petrological, geophysical, and mineral physics information (LitMod). This approach is necessary if the more complicated structure of the Pannonian Basin is to be better constrained. As a result, we have constructed the first 3-D gravity model of the region that combines various geophysical datasets and is consistent with petrological data. The model provides improved estimates of both the density distribution within the lithosphere and the depth to major density discontinuities. We present new maps of the thickness of major sedimentary basins and of the depth to the Moho and the lithosphere-asthenosphere boundary. In our best-fitting model, the Pannonian Basin is characterised by extremely thin crust and lithospheric mantle, both of which have low density. A low-density uppermost asthenospheric mantle layer is also included at depths of 60-100 km. The Western Carpathians have only a thin crustal root and moderate densities. In contrast, the European Platform and Eastern Alps are characterised by lithosphere that is considerably thicker and denser. This inference is also supported by stripped gravity anomalies from which sediment, Moho and asthenospheric gravity contributions have been removed. These residual anomalies are characteristically low in the Western Carpathian-Pannonian Basin region, which suggests that both the ALCAPA and Tisza-Dacia microplates are 'exotic terranes' that are markedly different to the European Platform.

  19. Default Bayes factors for ANOVA designs

    NARCIS (Netherlands)

    Rouder, Jeffrey N.; Morey, Richard D.; Speckman, Paul L.; Province, Jordan M.

    2012-01-01

    Bayes factors have been advocated as superior to p-values for assessing statistical evidence in data. Despite the advantages of Bayes factors and the drawbacks of p-values, inference by p-values is still nearly ubiquitous. One impediment to the adoption of Bayes factors is a lack of practical

  20. 77 FR 21890 - Drawbridge Operation Regulation; Sturgeon Bay Ship Canal, Sturgeon Bay, WI

    Science.gov (United States)

    2012-04-12

    ... Street and Maple-Oregon Bridges so vehicular traffic congestion would not develop on downtown Sturgeon... the efficient movement of vehicular traffic in Sturgeon Bay. The Sturgeon Bay Ship Canal is... experiences a significant increase in vehicular and vessel traffic during the peak tourist and navigation...

  1. Thermo-mechanical models of the European lithosphere for geothermal exploration

    Science.gov (United States)

    Limberger, Jon; van Wees, Jan-Diederik; Tesauro, Magdala; Bonté, Damien; Lipsey, Lindsay; Beekman, Fred; Cloetingh, Sierd

    2015-04-01

    One of the critical exploration parameters for geothermal systems is the subsurface temperature. Temperature data are reliable up to a depth of 1 km in most parts of Europe. Accordingly, the robustness of temperature estimation rapidly decreases with depth, as temperature data from wells become sparser and unevenly distributed. We developed a two-layer temperature model for assessing the prospective resource base of enhanced geothermal systems in Europe. The surface heat flow and the Moho depth were used to constrain the radiogenic heat production in the upper crust. Only conduction was considered for heat transfer. The most recent and comprehensive regional temperature models and maps available were directly used to constrain the 3D temperature distribution up to a depth of 6 km. The model shows high average geothermal gradients of up to 60 °C in volcanically active regions such as Iceland, parts of Italy, Greece and Turkey. Temperatures at 5 km depth range between 40 °C and 310 °C and at 10 km depth between 80 °C and 590 °C. However, this direct use of regional models is not fully consistent with the calculated and observed heat flow. Furthermore, only fixed thermal conductivity values were assigned to the sediments and the crystalline basement. As part of the EU FP7-funded Integrated Methods for Advanced Geothermal Exploration (IMAGE) project we are going to develop a methodology to obtain a more advanced 3D lithosphere-scale thermal model of Europe. This will include a more realistic distribution of thermal properties, according with lithological variations of the European crust. Further improvements of the thermal model, aiming at consistency between temperature and heat flow observations and tectonic model predictions, will be obtained by adopting data assimilation techniques derived from reservoir engineering best practices. The newly derived thermal model of the European lithosphere together with compositional data will be used to estimate the strength

  2. Mars: Lithospheric Flexure of the Tharsis Montes Volcanoes and the Evolutionary Relationship to Their Tectonic History

    Science.gov (United States)

    Chute, H.; Dombard, A. J.; Byrne, P. K.

    2017-12-01

    Lithospheric flexure associated with Arsia, Pavonis, and Ascraeus Montes has been previously studied to constrain the timeline and breadth of endogenic surface features surrounding these volcanoes. Here, we simulate the radial extent of two specific load-related features: annular graben and flank terraces. Detailed mapping of Ascraeus Mons (the youngest of the three volcanoes) showed a phase of compression of the edifice, forming the terraces and an annulus of graben immediately off the flanks, followed by a period of extension that formed additional graben superposed on the terraces on the lower flanks of the edifice. This transition from compression to extension on the lower flanks has been difficult to reconcile in mechanical models. We explore, with finite-element simulations, the effects of a thermal anomaly associated with an intrusive crustal underplate, which results in locally thinning the lithosphere (in contrast to past efforts that assumed a constant-thickness lithosphere). We find that it is primarily the horizontal extent of this thermal anomaly that governs how the lithosphere flexes under a volcano, as well as the transition from flank compression to a tight annulus of extensional stresses. Specifically, we propose that the structures on Ascraeus may be consistent with an early stage of volcanic growth accompanied by an underplate about the same width as the edifice that narrowed as volcanism waned, resulting in an inward migration of the extensional horizontal stresses from the surrounding plains onto the lower flanks. By linking the surface strains on the volcano with the volcano-tectonic evolution predicted by our flexure model, we can further constrain a more accurate timeline for the tectonic history of Ascraeus Mons. More broadly, because these tectonic structures are commonly observed, our results provide a general evolutionary model for large shield volcanoes on Mars.

  3. Dynamics of the Pacific Northwest Lithosphere and Asthenosphere

    Science.gov (United States)

    Humphreys, E.

    2013-12-01

    Seismic imaging resolves a complex structure beneath the Pacific Northwest (PNW) that is interpreted as: an high-velocity piece of accreted (~50 Ma) Farallon lithosphere that deepens from being exposed (at coast, where it is called Siletzia) to lower crust in SE Washington and then descending vertically to ~600 km as a 'curtain' beneath central Idaho; a stubby Juan de Fuca slab (to directed tractions on the Cascadia mega-thrust average ~4 TN per meter of along-strike fault length, or probably a shear stress of ~40 MPa over much of the locked mega-thrust (i.e., much more shear stress than the typical earthquake stress drop of 1-10 MPa). Normal to the coast, southern Cascadia is relatively tensional (where margin-normal compression is less than typical ridge push by ~4 TN/m of along-strike fault length) whereas northern Cascadia is compressional. This indicates that the southern Cascadia mega-thrust is more weakly coupled than the northern mega-thrust. Southern Cascadia slab rollback and extension of the Cascade graben and Basin-and-Range are enabled by the weak coupling, in conjunction with high gravitational potential energy of the southern Oregon arc and back-arc. Juan de Fuca-Gorda lithosphere experiences the same stress on its eastern margin as North America does on the PNW Cascadia margin (by stress continuity), although current models of the individual plates do not show this continuity. Gorda plate is strongly compressed across the Mendocino transform by the north-moving Pacific Plate. Development of the NW-trending Blanco transform has created a fault that avoids this strong compression.

  4. Study on origin and sedimentary environment of marine sediments from Kii Channel, Hiroshima Bay and Tosa Bay

    International Nuclear Information System (INIS)

    Suzuki, Misaki

    2008-01-01

    The trace amounts of elements in the sediments of sea bottom in Kii Channel, Hiroshima Bay and Tosa Bay were determined quantitatively by the neutron activation analysis. The following facts were illustrated particularly from the quantitative analysis of scandium, rare earths, thorium and uranium: 1) It was known from Ce/La ratio that the geological feature in the west part of Japan is reflected in Kii Channel, Hiroshima Bay and Tosa Bay; 2) The rare-earth element pattern and La/Lu ratio suggest the fact that Kii Channel, Hiroshima Bay and Tosa Bay are essentially composed of the materials of which origin is land; 3) From the fact that Ce/La ratio in these sites are slightly under 1.0, these sites are considered to be affected mainly by the materials of which origin is land; 4) The sedimentary environment in the marine bottom of the Japanese coasts has been found to be mostly under a reductive state. (M.H.)

  5. Numerical Simulation of the Variation of Schumann Resonance Associated with Seismogenic Processe in the Lithosphere-Atmosphere-Ionosphere system

    Science.gov (United States)

    Liu, L.; Huang, Q.; Wang, Y.

    2012-12-01

    The variations in the strength and frequency shift of the Schumann resonance (SR) of the electromagnetic (EM) field prior to some significance earthquakes were reported by a number of researchers. As a robust physical phenomenon constantly exists in the resonant cavity formed by the lithosphere-atmosphere-ionosphere system, irregular variations in SR parameters can be naturally attributed to be the potential precursory observables for forecasting earthquake occurrences. Schumann resonance (SR) of the EM field between the lithosphere and the ionosphere occurs because the space between the surface of the Earth and the conductive ionosphere acts as a closed waveguide. The cavity is naturally excited by electric currents generated by lightning. SR is the principal background in the electromagnetic spectrum at extremely low frequencies (ELF) between 3-69 Hz. We simulated the EM field in the lithosphere-ionosphere waveguide with a 2-dimensional (2D), cylindrical whole-earth model by the hybrid pseudo-spectral and finite difference time domain method. Considering the seismogensis as a fully coupled seismoelectric process, we simulate the seismic wave and EM wave in this 2D model. The excitation of SR in the background EM field are generated by the electric-current impulses due to lightning thunderstorms within the lowest 10 kilometers of the atmosphere . The diurnal variation and the latitude-dependence in ion concentration in the ionosphere are included in the model. After the SR has reached the steady state, the impulse generated by the seismogenic process (pre-, co- and post-seismic) in the crust is introduced to assess the possible precursory effects on SR strength and frequency. The modeling results explain the observed fact of why SR has a much more sensitive response to continental earthquakes, and much less response to oceanic events; the reason is simply due to the shielding effect of the conductive ocean that prevents effective radiation of the seismoelectric

  6. ICESat-derived lithospheric flexure as caused by an endorheic lake's expansion on the Tibetan Plateau and the comparison to modeled flexural responses

    Science.gov (United States)

    Madson, Austin; Sheng, Yongwei; Song, Chunqiao

    2017-10-01

    A substantial and rapid expansion beginning in the late 1990s of Siling Co, the largest endorheic lake on the central Tibetan Plateau (TP), has caused a measurable lithospheric deflection in the region adjacent to the lake. Current broad-scale measuring of this flexural response is mainly derived from InSAR processing techniques or time-consuming field campaigns. The rheological constraints of the lithosphere from the underlying lithospheric response to large lake loads in this region are not well understood. This paper highlights a more efficient spaceborne LiDAR remote sensing technique to measure the deflection in the vicinity of Siling Co and to investigate the mechanisms of the observed lithospheric response in order to garner a better understanding of the local rheology. A lake-adjacent deflection rate and Siling Co water load variations are calculated utilizing the Geoscience Laser Altimeter System (GLAS) onboard NASA's Ice, Cloud and land Elevation Satellite (ICESat) and the joint NASA/USGS Landsat series of Earth observing satellites. A downward deflection rate of ∼5.6 mm/yr for the first 4 km of lake-adjacent land is calculated from the GLAS instrument, and this response is compared to the flexural outputs from a spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth model in order to better understand the underlying mechanisms of the lithospheric response to the rapid increase of Siling Co loads. The modeled elastic response is ∼6.9 times lower than the GLAS derived flexure, thereby providing further evidence that a purely elastic lithospheric response cannot explain the deflection in this region. The relationship between the modeled elastic response and the GLAS derived flexure is applied to a long-term lake load change dataset to create the longest-running flexural response curve as caused by the last ∼40 years of Siling Co load variations, and these results show an accumulated lake-adjacent flexure of ∼12.6 cm from an

  7. 76 FR 28309 - Drawbridge Operation Regulation; Sturgeon Bay Ship Canal, Sturgeon Bay, WI

    Science.gov (United States)

    2011-05-17

    ... vehicular traffic congestion would not develop on downtown Sturgeon Bay streets due to unscheduled bridge... schedules during the peak tourist and navigation seasons to provide for the efficient movement of vehicular... between Lake Michigan and Green Bay. The area experiences a significant increase in vehicular and vessel...

  8. Lithosphere stress changes due to groundwater unloading in North China Plain

    Science.gov (United States)

    Pang, Yajin; Zhang, Huai; Shi, Yaolin

    2015-04-01

    During the past 50 years, excessive groundwater pumping has led to the continuous decline of groundwater table in North China Plain, which becomes one of the global hotspots of groundwater depletion. Over most of the rural areas of the plain, the shallow aquifer has experienced a water-table decline of more than 15m, with greater declines up to 50m in most urban centres, such as Beijing, Tangshan, Shijiangzhuang and so forth in 1960-2000. The entire groundwater depletion area covers a total area of approximately 56,273 km2 , more than 40% of the North China Plain. The vast area of enormous groundwater exploitation in North China Plain will definitely unload the lithosphere and create stress perturbations, the problem is if the stresses change large enough to affect tectonic activities. In this essay, we set up a 3 dimensional numerical visco-elastic model to discuss the effect of groundwater over-pumping on the lithosphere deformation and stress state in North China Plain. Based on the records of total groundwater-table decline during 1960-2010 in North China Plain, we estimate the accumulated deformation and lithosphere stress due to unloading of human-induced groundwater depletion. The area in the model ranges from 34° To 42°N, and 112° To 119°E, including the major groundwater depression cones in North China Plain. According to the simulating result, the maximum surface vertical uplift caused by groundwater unloading is 8cm. Meanwhile cumulative horizontal crustal stress changes near the surface goes up to 100kPa, and up to 40kPa at 15km depth where most earthquakes occurred in this area. The tectonic compressive stress rate is about 0.25kPa per year. Therefore, the stress changes due to groundwater pumping is significant compared with the tectonic driven stress changes. As China developed rapidly since 1978, the groundwater table mainly declined after 1978. Taking the earthquake catalog in the vicinity of groundwater depression zone into consideration, we

  9. Spatial Patterns in Distribution of Kimberlites: Relationship to Tectonic Processes and Lithosphere Structure

    DEFF Research Database (Denmark)

    Chemia, Zurab; Artemieva, Irina; Thybo, Hans

    2014-01-01

    of kimberlite melts through the lithospheric mantle, which forms the major pipe. Stage 2 (second-order process) begins when the major pipe splits into daughter sub-pipes (tree-like pattern) at crustal depths. We apply cluster analysis to the spatial distribution of all known kimberlite fields with the goal...

  10. Shallow and buoyant lithospheric subduction : causes and implications from thermo-chemical numerical modeling

    NARCIS (Netherlands)

    Hunen, Jeroen van

    2001-01-01

    Where two lithospheric plates converge on the Earth, one of them disappears into the mantle. The dominant driving mechanism for plate motion is regarded to be `slab pull': the subducted plate, the slab, exerts a pulling force on the attached plate at the surface. However, what has been puzzling

  11. 76 FR 22809 - Safety Zone; Bay Ferry II Maritime Security Exercise; San Francisco Bay, San Francisco, CA

    Science.gov (United States)

    2011-04-25

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2011-0196] RIN 1625-AA00 Safety Zone; Bay Ferry II Maritime Security Exercise; San Francisco Bay, San Francisco, CA AGENCY... Security Exercise; San Francisco Bay, San Francisco, CA. (a) Location. The limits of this safety zone...

  12. Calculation of temperature distribution and rheological properties of the lithosphere along geotransect in the Red Sea region

    Science.gov (United States)

    Dérerová, Jana; Kohút, Igor; Radwan, Anwar H.; Bielik, Miroslav

    2017-12-01

    The temperature model of the lithosphere along profile passing through the Red Sea region has been derived using 2D integrated geophysical modelling method. Using the extrapolation of failure criteria, lithology and calculated temperature distribution, we have constructed the rheological model of the lithosphere in the area. We have calculated the strength distribution in the lithosphere and constructed the strength envelopes for both compressional and extensional regimes. The obtained results indicate that the strength steadily decreases from the Western desert through the Eastern desert towards the Red Sea where it reaches its minimum for both compressional and extensional regime. Maximum strength can be observed in the Western desert where the largest strength reaches values of about 250-300 MPa within the upper crust on the boundary between upper and lower crust. In the Eastern desert we observe slightly decreased strength with max values about 200-250 MPa within upper crust within 15 km with compression being dominant. These results suggest mostly rigid deformation in the region or Western and Eastern desert. In the Red Sea, the strength rapidly decreases to its minimum suggesting ductile processes as a result of higher temperatures.

  13. Responses of upland herpetofauna to the restoration of Carolina Bays and thinning of forested Bay Margins.

    Energy Technology Data Exchange (ETDEWEB)

    Ledvina, Joseph A.

    2008-05-01

    Research on the effects of wetland restoration on reptiles and amphibians is becoming more common, but almost all of these studies have observed the colonization of recently disturbed habitats that were completely dry at the time of restoration. In a similar manner, investigations herpetofaunal responses to forest management have focused on clearcuts, and less intensive stand manipulations are not as well studied. To evaluate community and population responses of reptiles and amphibians to hydrology restoration and canopy removal in the interior of previously degraded Carolina bays, I monitored herpetofauna in the uplands adjacent to six historically degraded Carolina bays at the Savannah River Site (SRS) in South Carolina for four years after restoration. To evaluate the effects of forest thinning on upland herpetofauna, forests were thinned in the margins of three of these bays. I used repeated measures ANOVA to compare species richness and diversity and the abundance of selected species and guilds between these bays and with those at three reference bays that were not historically drained and three control bays that remained degraded. I also used Non-metric Multidimensional Scaling (NMDS) to look for community-level patterns based treatments.

  14. Detrital Carbonate Events on the Labrador Shelf, a 13 to 7 kyr Template for Freshwater Forcing From the Laurentide Ice Sheet

    Science.gov (United States)

    Jennings, A. E.; Andrews, J. T.

    2008-12-01

    A complex sequence of abrupt glacial advances and retreats punctuate the late phases of Laurentide Ice Sheet deglaciation. These episodes have been reconstructed from interpretation and mapping of glacial deposits on land and in marine basins proximal to the former ice margins in Hudson Strait, Hudson Bay, and the SE Baffin Island shelf. As these events likely produced pulses of freshwater discharge into the North Altantic, which may be responsible for rapid climate change, their timing and magnitude need to be understood. The timing of these events is well constrained by radiocarbon ages, but the ocean reservoir age in ice proximal areas is subject to very large uncertainties, making it difficult to determine calibrated ages for the glacial events so that they can be compared to other climate records. We suggest that the sequence of high detrital carbonate peaks in Holocene and Late Glacial sediments in the Cartwright Saddle of the Labrador shelf provides a template of the abrupt glacial events of the NE margin of the Laurentide Ice Sheet, particularly events that issued from Hudson Strait and Hudson Bay, but possibly including events in Baffin Bay. Once the Labrador Shelf was deglaciated and the local ice had retreated inland, the Cartwright Saddle was a distal trap for sediments released from Hudson Strait and other ice sheet outlets farther north as their sediments and meltwater were carried southwards by surface currents. Core MD99-2236 contains a sediment record beginning c. 13.9 cal ka. We assume a marine reservoir age for the Cartwright Saddle of 450 yrs, which is reasonable given the ice distal and oceanic position of the site. Carbonate was measured on average at a 30 yr time resolution. Carbonate values are elevated between 11.7 and 7 cal kyr BP, with six spikes exceeding 30 percent. Each spike corresponds to a light isotope spike in foraminifers, suggesting that each major spike is associated with a pulse of glacial meltwater. Elevated IRD counts

  15. A Bayes linear Bayes method for estimation of correlated event rates.

    Science.gov (United States)

    Quigley, John; Wilson, Kevin J; Walls, Lesley; Bedford, Tim

    2013-12-01

    Typically, full Bayesian estimation of correlated event rates can be computationally challenging since estimators are intractable. When estimation of event rates represents one activity within a larger modeling process, there is an incentive to develop more efficient inference than provided by a full Bayesian model. We develop a new subjective inference method for correlated event rates based on a Bayes linear Bayes model under the assumption that events are generated from a homogeneous Poisson process. To reduce the elicitation burden we introduce homogenization factors to the model and, as an alternative to a subjective prior, an empirical method using the method of moments is developed. Inference under the new method is compared against estimates obtained under a full Bayesian model, which takes a multivariate gamma prior, where the predictive and posterior distributions are derived in terms of well-known functions. The mathematical properties of both models are presented. A simulation study shows that the Bayes linear Bayes inference method and the full Bayesian model provide equally reliable estimates. An illustrative example, motivated by a problem of estimating correlated event rates across different users in a simple supply chain, shows how ignoring the correlation leads to biased estimation of event rates. © 2013 Society for Risk Analysis.

  16. Evaluation of surface-wave waveform modeling for lithosphere velocity structure

    Science.gov (United States)

    Chang, Tao-Ming

    Surface-waveform modeling methods will become standard tools for studying the lithosphere structures because they can place greater constraints on earth structure and because of interest in the three-dimensional earth. The purpose of this study is to begin to learn the applicabilities and limitations of these methods. A surface-waveform inversion method is implemented using generalized seismological data functional theory. The method has been tested using synthetic and real seismic data and show that this method is well suited for teleseismic and regional seismograms. Like other linear inversion problems, this method also requires a good starting model. To ease reliance on good starting models, a global search technique, the genetic algorithm, has been applied to surface waveform modeling. This method can rapidly find good models for explaining surface-wave waveform at regional distance. However, this implementation also reveals that criteria which are widely used in seismological studies are not good enough to indicate the goodness of waveform fit. These two methods with the linear waveform inversion method, and traditional surface wave dispersion inversion method have been applied to a western Texas earthquake to test their abilities. The focal mechanism of the Texas event has been reestimated using a grid search for surface wave spectral amplitudes. A comparison of these four algorithms shows some interesting seismic evidences for lithosphere structure.

  17. Satellite Tidal Magnetic Signals Constrain Oceanic Lithosphere-Asthenosphere Boundary Earth Tomography with Tidal Magnetic Signals

    Science.gov (United States)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Chandrasekharan, Manoj; Olsen, Niles

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. Here we use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals an Approximately 72 km thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  18. Three-dimensional simulation of flow, salinity, sediment, and radionuclide movements in the Hudson River estuary

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1985-04-01

    The three-dimensional, finite difference model, FLESCOT simulates time-varying movements of flow, turbulent kinetic energy, salinity, water temperature, sediment, and contaminants in estuarine, coastal, and ocean waters. The model was applied to a 106-km (66-mi) reach of the Hudson River estuary in New York between Chelsea and the mouth of the river. It predicted the time-varying, three-dimensional distributions of tidal flow, salinity, three separate groups of sediments (i.e., sand, silt, and clay), and a radionuclide ( 137 Cs) in both dissolved and particulate (those sorbed by sediments) forms for over 40 days. The model also calculated riverbed elevation changes caused by sediment deposition and bed erosion, bed sediment size distribution and armoring, and distributions of the particulate 137 Cs sorbed by sand, silt, and clay in the bed

  19. Florida Bay: A history of recent ecological changes

    Science.gov (United States)

    Fourqurean, J.W.; Robblee, M.B.

    1999-01-01

    Florida Bay is a unique subtropical estuary at the southern tip of the Florida peninsula. Recent ecological changes (seagrass die-off, algal blooms, increased turbidity) to the Florida Bay ecosystem have focused the attention of the public, commercial interests, scientists, and resource managers on the factors influencing the structure and function of Florida Bay. Restoring Florida Bay to some historic condition is the goal of resource managers, but what is not clear is what an anthropogenically-unaltered Florida Bay would look like. While there is general consensus that human activities have contributed to the changes occurring in the Florida Bay ecosystem, a high degree of natural system variability has made elucidation of the links between human activity and Florida Bay dynamics difficult. Paleoecological analyses, examination of long-term datasets, and directed measurements of aspects of the ecology of Florida Bay all contribute to our understanding of the behavior of the bay, and allow quantification of the magnitude of the recent ecological changes with respect to historical variability of the system.

  20. GPS coordinate time series measurements in Ontario and Quebec, Canada

    Science.gov (United States)

    Samadi Alinia, Hadis; Tiampo, Kristy F.; James, Thomas S.

    2017-06-01

    New precise network solutions for continuous GPS (cGPS) stations distributed in eastern Ontario and western Québec provide constraints on the regional three-dimensional crustal velocity field. Five years of continuous observations at fourteen cGPS sites were analyzed using Bernese GPS processing software. Several different sub-networks were chosen from these stations, and the data were processed and compared to in order to select the optimal configuration to accurately estimate the vertical and horizontal station velocities and minimize the associated errors. The coordinate time series were then compared to the crustal motions from global solutions and the optimized solution is presented here. A noise analysis model with power-law and white noise, which best describes the noise characteristics of all three components, was employed for the GPS time series analysis. The linear trend, associated uncertainties, and the spectral index of the power-law noise were calculated using a maximum likelihood estimation approach. The residual horizontal velocities, after removal of rigid plate motion, have a magnitude consistent with expected glacial isostatic adjustment (GIA). The vertical velocities increase from subsidence of almost 1.9 mm/year south of the Great Lakes to uplift near Hudson Bay, where the highest rate is approximately 10.9 mm/year. The residual horizontal velocities range from approximately 0.5 mm/year, oriented south-southeastward, at the Great Lakes to nearly 1.5 mm/year directed toward the interior of Hudson Bay at stations adjacent to its shoreline. Here, the velocity uncertainties are estimated at less than 0.6 mm/year for the horizontal component and 1.1 mm/year for the vertical component. A comparison between the observed velocities and GIA model predictions, for a limited range of Earth models, shows a better fit to the observations for the Earth model with the smallest upper mantle viscosity and the largest lower mantle viscosity. However, the

  1. Anthropogenic inputs of dissolved organic matter in New York Harbor

    Science.gov (United States)

    Gardner, G. B.; Chen, R. F.; Olavasen, J.; Peri, F.

    2016-02-01

    The Hudson River flows into the Atlantic Ocean through a highly urbanized region which includes New York City to the east and Newark, New Jersey to the west. As a result, the export of Dissolved Organic Carbon (DOC) from the Hudson to the Atlantic Ocean includes a significant anthropogenic component. A series of high resolution studies of the DOC dynamics of this system were conducted between 2003 and 2010. These included both the Hudson and adjacent large waterways (East River, Newark Bay, Kill Van Kull and Arthur Kill) using coastal research vessels and smaller tributaries (Hackensack, Pasaic and Raritan rivers) using a 25' boat. In both cases measurements were made using towed instrument packages which could be cycled from near surface to near bottom depths with horizontal resolution of approximately 20 to 200 meters depending on depth and deployment strategy. Sensors on the instrument packages included a CTD to provide depth and salinity information and a chromophoric dissolved organic matter(CDOM) fluorometer to measure the fluorescent fraction of the DOC. Discrete samples allowed calibration of the fluorometer and the CDOM data to be related to DOC. The combined data set from these cruises identified multiple scales of source and transport processes for DOC within the Hudson River/New York Harbor region. The Hudson carries a substantial amount of natural DOC from its 230 km inland stretch. Additional sources exist in fringing salt marshes adjacent to the Hackensack and Raritan rivers. However the lower Hudson/New Harbor region receives a large input of DOC from multiple publically owned treatment works (POTW) discharges. The high resolution surveys allowed us to elucidate the distribution of these sources and the manner in which they are rapidly mixed to create the total export. We estimate that anthropogenic sources account for up to 2.5 times the DOC flux contributed by natural processes.

  2. Images of lithospheric heterogeneities in the Armorican segment of the Hercynian Range in France

    Czech Academy of Sciences Publication Activity Database

    Judenherc, S.; Granet, M.; Brun, J. P.; Poupinet, G.; Plomerová, Jaroslava; Mocquet, A.; Achauer, U.

    2002-01-01

    Roč. 358, 1/4 (2002), s. 121-134 ISSN 0040-1951 Institutional research plan: CEZ:AV0Z3012916 Keywords : seismic tomography * seismic anisotropy * continental collision * Hercynian lithosphere Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.409, year: 2002

  3. Seismic and mechanical anisotropy and the past and present deformation of the Australian lithosphere

    NARCIS (Netherlands)

    Simons, Frederik J.; Hilst, R.D. van der

    2003-01-01

    We interpret the three-dimensional seismic wave-speed structure of the Australian upper mantle by comparing its azimuthal anisotropy to estimates of past and present lithospheric deformation. We infer the fossil strain field from the orientation of gravity anomalies relative to topography,

  4. Widespread melt/rock interaction and seismic properties of the lithosphere above mantle plumes: Evidence from mantle xenoliths from French Polynesia

    Science.gov (United States)

    Tommasi, A.; Godard, M.; Coromina, G.; Dautria, J. M.; Barczus, H.

    2003-04-01

    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2.5 (2

  5. Plutonium, cesium and uranium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1979-November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, H. J.; Trier, R. M.; Olsen, C. R.

    1980-01-01

    Radionuclide activities were measured in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of /sup 137/Cs, /sup 134/Cs and /sup 60/Co determined by gamma spectrometry and /sup 239/ /sup 240/Pu and /sup 238/Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in /sup 239/ /sup 240/Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Measurable amounts of reactor-derived /sup 134/Cs and /sup 60/Co are found in nearly al sediment samples containing appreciable /sup 137/Cs between 15 km upstream of Indian Point and the downstream extent of our sampling about 70 km south of the reactor. Fallout /sup 239/ /sup 240/Pu reaching the Hudson appears to be almost completely retained within the systems by particle deposition, while 70 to 90% of the /sup 137/Cs derived from both reactor releases and fallout has been exported to the coastal waters in solution. Activity levels of /sup 239/ /sup 240/Pu in New York harbor sediments indicate a significant source in addition to suspended particles carried down the Hudson. The most likely cause appears to be transport into the estuary of particles from offshore waters having higher specific activities of /sup 239/ /sup 240/Pu. Measurements of fallout /sup 239/ /sup 240/Pu in a saline lake with a high carbonate ion concentration yielded water column activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ion may indeed be a critical factor in regulating plutonium solubility and that low molecular weight complexes are primarily responsible for enhanced plutonium solubility.

  6. Bird surveys at McKinley Bay and Hutchinson Bay, Northwest Territories, in 1990

    Energy Technology Data Exchange (ETDEWEB)

    Cornish, B J; Dickson, D L; Dickson, H L

    1991-03-01

    Monitoring surveys of bird abundance and distribution were conducted in 1990 at McKinley Bay in the Northwest Territories, the site of a winter harbour for drillships and the proposed location for a major year-round support base for oil and gas exploration. Primary objectives of the survey were to determine whether diving duck numbers had changed since the initial phase of the study from 1981-1985, and to provide additional baseline data on natural annual fluctuations in diving duck numbers. Three aerial surveys at each bay were carried out using techniques identical to those in previous years. On 5 August 1990, when survey conditions were considered best of the three surveys, more than twice as many diving ducks were found in McKinley Bay and Hutchinson Bay than on average during the five years of 1981-1985. Old squaw and scooters comprised ca 90% of the diving ducks observed, and both species showed significant increases in numbers. The increase in abundance of diving ducks was likely unrelated to industrial activity in the area since a similar increase occurred in the control area, Hutchinson Bay. Many factors, including both environmental factors such as those affecting nesting success and timing of the moult, and factors related to the survey methods, could be involved in causing the large fluctuations observed. 9 refs., 8 figs., 10 tabs.

  7. Bird surveys at McKinley Bay and Hutchinson Bay, Northwest Territories, in 1990

    International Nuclear Information System (INIS)

    Cornish, B.J.; Dickson, D.L.; Dickson, H.L.

    1991-01-01

    Monitoring surveys of bird abundance and distribution were conducted in 1990 at McKinley Bay in the Northwest Territories, the site of a winter harbour for drillships and the proposed location for a major year-round support base for oil and gas exploration. Primary objectives of the survey were to determine whether diving duck numbers had changed since the initial phase of the study from 1981-1985, and to provide additional baseline data on natural annual fluctuations in diving duck numbers. Three aerial surveys at each bay were carried out using techniques identical to those in previous years. On 5 August 1990, when survey conditions were considered best of the three surveys, more than twice as many diving ducks were found in McKinley Bay and Hutchinson Bay than on average during the five years of 1981-1985. Old squaw and scooters comprised ca 90% of the diving ducks observed, and both species showed significant increases in numbers. The increase in abundance of diving ducks was likely unrelated to industrial activity in the area since a similar increase occurred in the control area, Hutchinson Bay. Many factors, including both environmental factors such as those affecting nesting success and timing of the moult, and factors related to the survey methods, could be involved in causing the large fluctuations observed. 9 refs., 8 figs., 10 tabs

  8. Oceanization of the lithospheric mantle: the study case of the spinel peridotites from Monte Maggiore (Corsica, France).

    Science.gov (United States)

    Piccardo, G. B.

    2009-04-01

    The Monte Maggiore peridotite body, cropping out within the Alpine Corsica metamorphic belt, is an ophiolite massif derived from the more internal setting of the Jurassic Ligurian Tethys basin. It is mostly composed by spinel and plagioclase peridotites that are cut by MORB gabbroic dykes. The spinel peridotites, similarly to other ophiolitic peridotites from the Internal Ligurides, have been considered, on the basis of their low abundance of fusible components, low Si and high Mg contents, as refractory residua after MORB-type partial melting related to the formation of the Jurassic basin (e.g. Rampone et al., 1997). Recent studies (e.g. Müntener & Piccardo 2003; Rampone et al. 2008) have evidenced that these depleted spinel peridotites show diffuse melt-rock interaction micro-textures and contrasting bulk vs. mineral chemistry features which cannot be simply reconciled with partial melting. Accordingly, these peridotites have been recognized as reactive peridotites, formed by interaction of pristine peridotites with melts percolating by porous flow. Geochemical data have evidenced the depleted MORB signature of the percolating melts. Recent field studies at Monte Maggiore (Piccardo, 2007; Piccardo & Guarnieri, 2009), have revealed: 1) the presence and local abundance of pyroxenite-bearing, cpx-rich spinel lherzolites and 2) the replacement relationships of the reactive peridotites on the pyroxenite-bearing lherzolite rock-types. The pyroxenite-veined spinel lherzolites record a composite history of subsolidus evolution under lithospheric P-T conditions, thus indicating their provenance from the sub-continental lithospheric mantle. Accordingly, the pristine sub-continental mantle protoliths were infiltrated by MORB melts and transformed by melt-rock interaction to reactive spinel peridotites and refertilized by melt impregnation to plagioclase-enriched peridotites. Available isotopic data on the Mt. Maggiore spinel and plagioclase peridotites and gabbroic rocks

  9. Plutonium and cesium radionuclides in the Hudson River estuary. Annual technical progress report, December 1, 1976--November 30, 1977

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.

    1977-01-01

    We have obtained a large set of sediment cores from the Hudson estuary through much of the ambient salinity range. A number of core sections and samples of suspended particles have been analyzed for 137 Cs, 134 Cs and 60 Co by direct gamma counting, and 239 Pu, 240 Pu, and 238 Pu by alpha spectrometry. The distribution of both 137 Cs and 239 Pu, 240 Pu indicates rapid accumulation in marginal cover areas, and especially in the harbor region adjacent to New York City. The distributions of both 137 Cs and 239 Pu, 240 Pu are similar in surface sediments and with depth in cores, but there are deviations from the fallout ratio due to addition of reactor 137 Cs and loss of 137 Cs from the particle phases at higher salinities. Measureable amounts of reactor-derived 134 Cs and 60 Co are found in nearly all sediment samples containing appreciable 137 Cs, between 15 km upstream of Indian Point and the downstream extent of our sampling, 70 km south of the reactor. Accumulations of 239 Pu, 240 Pu in New York harbor sediments are more than an order of magnitude greater than the fallout delivery rate. The most likely explanation is accumulation of fine particles in the harbor which have been transported from upstream areas of the Hudson. Our evidence so far indicates that Indian Point is probably not a significant source of 239 Pu, 240 Pu or 238 Pu compared with the fallout burden of these nuclides already in the sediments

  10. 78 FR 27126 - East Bay, St. Andrews Bay and the Gulf of Mexico at Tyndall Air Force Base, Florida; Restricted...

    Science.gov (United States)

    2013-05-09

    ... DEPARTMENT OF DEFENSE Department of the Army, Corps of Engineers 33 CFR Part 334 East Bay, St. Andrews Bay and the Gulf of Mexico at Tyndall Air Force Base, Florida; Restricted Areas AGENCY: U.S. Army... read as follows: Sec. 334.665 East Bay, St. Andrews Bay and the Gulf of Mexico, Restricted Areas...

  11. Organochlorine residues in harp seals, Phoca groenlandica, from the Gulf of St. Lawrence and Hudson Strait: An evaluation of contaminant concentrations and burdens

    Energy Technology Data Exchange (ETDEWEB)

    Beck, G.G.; Smith, T.G. (Dept. of Fisheries and Oceans, Nanaimo, BC (Canada)); Addison, R.F. (Dept. of Fisheries and Oceans, Sidney, BC (Canada))

    1994-01-01

    Organochlorine contaminant concentrations and burdens were evaluated in blubber samples from 50 harp seals (Phoca groenlandica) obtained from the estuary and northern Gulf of St. Lawrence and Hudson Strait, Canada between December 1988 and December 1989. The concentration and burden of polychlorinated biphenyls (PCBs) increased significantly during the winter months for males occupying the St. Lawrence estuary. The potential for rapid accumulation of contaminants in the estuary was also observed among females: nine postpartum females (1 month after weaning) had higher organochlorine levels than prepartum females from the same location. The lowest observed contaminant concentrations and burdens were in seals from Hudson Strait in autumn. In winter specimens, males had DDT and PCB concentrations about 4 and 2 times as great, respectively, as females of similar age distribution and collection date. Congeners with IUPAC Nos. 138 and 153 accounted for more than 50% of total identifiable PCBs, which is consistent with their prevalence in other marine biota. The concentration of PCBs has declined and the percent p,p'-DDE of total DDT has increased between 1982 and the present study. Unlike the beluga whale (Delphinapterus leucas), harp seals occupy the more polluted waters of the estuary only seasonally, and this may account for their lower residue concentrations. 59 refs., 1 fig., 5 tabs.

  12. Spill management strategy for the Chesapeake Bay

    International Nuclear Information System (INIS)

    Butler, H.L.; Chapman, R.S.; Johnson, B.H.

    1990-01-01

    The Chesapeake Bay Program is a unique cooperative effort between state and Federal agencies to restore the health and productivity of America's largest estuary. To assist in addressing specific management issues, a comprehensive three-dimensional, time-varying hydrodynamic and water quality model has ben developed. The Bay modeling strategy will serve as an excellent framework for including submodules to predict the movement, dispersion, and weathering of accidental spills, such as for petroleum products or other chemicals. This paper presents sample results from the Bay application to illustrate the success of the model system in simulating Bay processes. Also, a review of model requirements for successful spill modeling in Chesapeake Bay is presented. Recommendations are given for implementing appropriate spill modules with the Bay model framework and establishing a strategy for model use in addressing management issues

  13. The stretching amplitude and thermal regime of the lithosphere in the nonvolcanic passive margin of Antarctica in the Mawson Sea region

    Science.gov (United States)

    Galushkin, Yu. I.; Leitchenkov, G. L.; Guseva, Yu. B.; Dubinin, E. P.

    2018-01-01

    The burial history and thermal evolution of the lithosphere within the passive nonvolcanic Antarctic margin in the region of the Mawson Sea are numerically reconstructed for the margin areas along the seismic profile 5909 with the use of the GALO basin modeling system. The amplitudes of the lithosphere stretching at the different stages of continental rifting which took place from 160 to 90 Ma ago are calculated from the geophysical estimates of the thickness of the consolidated crust and the tectonic analysis of the variations in the thickness of the sedimentary cover and sea depths during the evolution of the basin. It is hypothesized that the formation of the recent sedimentary section sequence in the studied region of the Antarctic margin began 140 Ma ago on a basement that was thinned by a factor of 1.6 to 4.5 during the first episode of margin stretching (160-140 Ma) under a fairly high heat flux. The reconstruction of the thermal regime of the lithosphere has shown that the mantle rocks could occur within the temperature interval of serpentinization and simultaneously within the time interval of lithospheric stretching (-160 serpentinization could take place in these areas as in the other margin segments at the stage of presedimentation ultra slow basement stretching.

  14. Ancient melt depletion overprinted by young carbonatitic metasomatism in the New Zealand lithospheric mantle

    DEFF Research Database (Denmark)

    Scott, James M.; Hodgkinson, A.; Palin, J.M.

    2014-01-01

    radiogenic than, the HIMU mantle reservoir. Metasomatism appears to pre-date ubiquitous pyroxene core to rim Al diffusion zoning, which may have resulted from cooling of the lithospheric mantle following cessation of Late Cretaceous-Eocene rifting of Zealandia from Gondwana. Nd isotope data, however, suggest...

  15. Engineering Condition Survey and Evaluation of Troy Lock and Dam, Hudson River, New York Report 2. Evaluation and Rehabilitation.

    Science.gov (United States)

    1981-01-01

    boats in both the spring and fall make seasonal trips from the sunny south to the more mountainous , wooded north, as well as completing many short...back- ground of Troy Lock and Dam 8. The Hudson River originates in the Adirondack Mountains in northern New York State among the highest peaks of the...0.00 0.00 0.00 ___ ___ __ ___ ___ __ __is_ B C BC 25.24 34.14 0.00 0.00 C 25.24 36.00 0. 00 0.06 &M~E ALEA D 3.45 36.00 0.00 6.10 E 3.45 17.00 0.00

  16. Unraveling African plate structure from elevation, geoid and geology data: implications for the impact of mantle flow and sediment transfers on lithospheric deformation

    Science.gov (United States)

    Bajolet, Flora; Robert, Alexandra; Chardon, Dominique; Rouby, Delphine

    2017-04-01

    The aim of our project is to simulate the long-wavelength, flexural isostatic response of the African plate to sediment transfers due to Meso-Cenozoic erosion - deposition processes in order to extract the residual topography driven by mantle dynamics. The first step of our project consists in computing crustal and lithospheric thickness maps of the African plate considering its main geological components (cratons, mobile belts, basins, rifts and passive margins of various ages and strengths). In order to consider these heterogeneities, we compute a 2D distribution of crustal densities and thermal parameters from geological data and use it as an input of our modeling. We combine elevation and geoid anomaly data using a thermal analysis, following the method of Fullea et al. (2007) in order to map crustal and lithospheric thicknesses. In this approach, we assume local isostasy and consider a four-layer model made of crust and lithospheric mantle plus seawater and asthenosphere. In addition, we compare our results with crustal and lithospheric thickness datasets compiled from bibliography and existing global models. The obtained crustal thicknesses range from 28 to 42km, with the thickest crust confined to the northern part of the West African Craton, the Kaapvaal craton, and the Congo cuvette. The crust in the East African Rift appears unrealistically thick (40-45 km) as it is not isotatically compensated, highlighting the dynamic effect of the African superswell. The thinnest crust (28-34km) follows a central East-West trend coinciding with Cretaceous rifts and the Cameroon volcanic line. The lithosphere reaches 220 km beneath the Congo craton, but remains globally thin (ca. 120-180 km) compared to tomographic models and considering the age of most geological provinces. As for the crust, the thinnest lithosphere is located in areas of Cretaceous-Jurassic rifting, suggesting that the lithosphere did not thermally recover from Mesozoic rifting. A new elastic

  17. Potential yields of wells in unconsolidated aquifers in upstate New York--Hudson-Mohawk sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.; Casey, George D.

    1988-01-01

    This map shows the location and potential well yields of unconsolidated aquifers in the Hudson-Mohawk region at a scale of 1:250,000. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply ' aquifers, and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciations of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, greater than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  18. Potential yields of wells in unconsolidated aquifers in upstate New York--lower Hudson sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.

    1988-01-01

    This map shows the location and potential well yields from unconsolidated aquifers in the lower-Hudson region at a 1:250 ,000 scale. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary water supply ' aquifers and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciation of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, more than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  19. Chesapeake Bay plume dynamics from LANDSAT

    Science.gov (United States)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  20. Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples

    Science.gov (United States)

    Ranalli, G.; Rybach, L.

    2005-10-01

    Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m - 2 , in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal areas show various signs of subsurface fluid movement, depending on position in the active system. The heat transfer regime is dominated by heat advection (mainly free convection). The onset of free convection depends on various factors, such as permeability, temperature gradient and fluid properties. The features of heat transfer are different for single or two-phase flow. Characteristic heat flow and heat transfer features in active geothermal systems are demonstrated by examples from Iceland, Italy, New Zealand and the USA. Two main factors affect the rheology of the lithosphere in active geothermal areas: steep temperature gradients and high pore fluid pressures. Combined with lithology and structure, these factors result in a rheological zonation with important consequences both for geodynamic processes and for the exploitation of geothermal energy. As a consequence of anomalously high temperature, the mechanical lithosphere is thin and its total strength can be reduced by almost one order of magnitude with respect to the average strength of continental lithosphere of comparable age and thickness. The top of the brittle/ductile transition is located within the upper crust at depths less than 10 km, acts as the root zone of listric normal faults in extensional environments and, at least in some cases, is visible on seismic reflection lines. These structural and rheological features are well illustrated in the Larderello geothermal field in Tuscany.

  1. Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms

    Science.gov (United States)

    Rodgers, Arthur J.; Schwartz, Susan Y.

    We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.

  2. Structure of the Lithosphere-Asthenosphere Boundary Onshore and Offshore the California Continental Margin from Three-Dimensional Seismic Anisotropy

    Science.gov (United States)

    Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer

  3. Asthenosphere versus lithosphere as possible sources for basaltic magmas erupted during formation of the Red Sea

    International Nuclear Information System (INIS)

    Altherr, R.; Henjes-Kunst, F.; Baumann, A.

    1990-01-01

    Representative basalts from the axial trough of the Red Sea and from volcanic fields of the Arabian Peninsula ranging in composition from N-type MORB to basanite and in age from Early Miocene to Recent show a limited variation in their isotopic compositions: 87 Sr/ 86 Sr = 0.70240-0.70361, 206 Pb/ 204 Pb = 18.040-19.634, 207 Pb/ 204 Pb = 15.496-15.666, 208 Pb/ 204 Pb = 37.808-39.710, 143 Nd/ 144 Nd = 0.513194-0.512670. There is a poorly constrained correlation between chemical composition and isotope ratios: with increasing alkalinity, Sr and Pb isotope ratios increase and the Nd isotope ratio tends to decrease. In Pb isotope variation diagrams most of the basalts plot significantly above the NHRLs, irrespective of tectonic setting, i.e. thickness of underlying crust and/or lithosphere. MORBs from the axial trough of the Red Sea have higher Pb isotope ratios for a given 87 Sr/ 86 Sr than MORBs from the Indian Ocean ridges, including the Carlsberg Ridge. It is therefore suggested that both spreading ridges tap different convective systems in the asthenosphere. The tectonic setting of the basalts is reflected in their Nd-Sr isotope characteristics. Basalts from areas where the continental lithosphere is drastically thinned or absent (i.e. Red Sea axial trough and coastal plain, Afar) plot along a reference line defined by N-type MORB and Tristan da Cunha. Basalts erupted in areas with Pan-African crust of normal thickness and moderately thinned lithospheric mantle (i.e. rift shoulder) are characterized by relative low 143 Nd/ 144 Nd ratios and plot below the reference line towards an EM I component which is also found in the subcontinental lithospheric mantle. These differences in the Nd-Sr isotopic compositions of the basalts are independent of bulk-rock chemistry and are therefore controlled by tectonic setting alone. (orig./WL)

  4. Southward Ejection of Subcontinental Lithosphere and large-scale Asthenospheric Enrichment beneath central Chile resulting from Flat Subduction

    Science.gov (United States)

    Jacques, G.; Hoernle, K.; Schaefer, B. F.; Hauff, F.; Gill, J.; Holm, P. M.; Bindeman, I. N.; Folguera, A.; Lara, L.; Ramos, V. A.

    2015-12-01

    Flat subduction is a common process in subduction zones, causing crustal shortening and thickening and possibly subduction erosion. These processes can lead to the contamination of asthenospheric melts either by lithospheric assimilation (e.g. MASH) or by subduction erosion of lithosphere into the asthenospheric source. We present new major and trace element and Sr-Nd-Pb-Hf-O-Os isotope data for a transect of Quaternary volcanic rocks across the Northern Southern Volcanic Front (NSVZ) of Chile at ~33.5°S, just south of the area of flat subduction, extending from the volcanic front (VF) to the rear arc (RA). The newly discovered calc-alkaline to alkaline RA rocks are more mafic (MgO~4-9wt.%) than the VF rocks (MgO~2.0-4.5wt.%). Both groups have overlapping Sr-Nd-Hf isotopic compositions that are more enriched than lavas from further south in the SVZ with two RA trachybasalts displaying extreme 87Sr/86Sr (0.710), eNd (-6) and eHf (-9). The RA samples, however, have less radiogenic Pb isotopic compositions with the two extreme RA trachybasalt samples having the least radiogenic Pb. The 207Pb/204Pb vs. Nd/Pb, Ce/Pb and Nb/U form good inverse linear correlations extending from subducted sediments to a mantle-like component. Mesozoic/Paleozoic crust and Grenvillian Argentinian lower crust do not fall on or along an extension of these arrays. The ol, plag and groundmassd18O (normalized to melt) of samples covering the full range in Sr-Nd-Pb-Hf isotopic composition lie within the mantle range (5.5-5.9). High Os abundances (~330ppt) in radiogenic Os (187Os/188Os=0.18) samples are not consistent with derivation from a mantle plume or continental crust. eNd and eHf increase to the south along the VF, e.g. eHf ranges from -9 to +10, forming an excellent linear correlation (r2=0.99), indicating that the enriched component is present in the source for >1000km to at least ~43°S. We propose that flattening of the Pampean slab 1) triggered subduction erosion of enriched

  5. Long memory of mantle lithosphere fabric — European LAB constrained from seismic anisotropy

    Czech Academy of Sciences Publication Activity Database

    Plomerová, Jaroslava; Babuška, Vladislav

    2010-01-01

    Roč. 120, č. 1-2 (2010), s. 131-143 ISSN 0024-4937 R&D Projects: GA AV ČR IAA300120709; GA ČR GA205/07/1088 Institutional research plan: CEZ:AV0Z30120515 Keywords : lithosphere-asthenosphere boundary * fossil anisotropy * travel - time residuals Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.121, year: 2010

  6. Spatial patterns in the distribution of kimberlites: relationship to tectonic processes and lithosphere structure

    DEFF Research Database (Denmark)

    Chemia, Zurab; Artemieva, Irina; Thybo, Hans

    2015-01-01

    of kimberlite melts through the lithospheric mantle, which forms the major pipe. Stage 2 (second-order process) begins when the major pipe splits into daughter sub-pipes (tree-like pattern) at crustal depths. We apply cluster analysis to the spatial distribution of all known kimberlite fields with the goal...

  7. Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Hemant, K.

    2006-01-01

    of the lithospheric field down to an altitude of about 50 km at lower latitudes, with reduced accuracy in the polar regions. Crustal features come out significantly sharper than in previous models. In particular, bands of magnetic anomalies along subduction zones become visible by satellite for the first time....

  8. Short Term Sediment Exchange Between Marshes and Bays Using Beryllium-7 as a Tracer, Fourleague Bay, Louisiana.

    Science.gov (United States)

    Restreppo, G. A.; Bentley, S. J.; Xu, K.; Wang, J.

    2016-12-01

    Modern delta models focus on the availability and exchange of coarse sediment as one of the major factors of deltaic growth or decay. Fine-grained sediment exchange within a river's delta is relatively poorly understood, as is the impact that this exchange has on land building and land loss. To better understand the dynamics of fine grain sediment exchange between river mouth, adjacent bays, and marshland, sediment cores from Fourleague Bay, LA, were collected and analyzed for 7Be, a naturally occurring radioisotope that serves as a marker for recently deposited sediment. Time-series push cores were collected every two months at ten sites, five located across a longitudinal transect in the middle bay and five located along adjacent marshes, from May 2015 to May 2016. All sites fall within 11 to 28 km of the Atchafalaya Delta, along a gradient extending towards the open ocean. Cores were extruded in 2 cm intervals, dried, ground, and analyzed via gamma spectrometry for the presence of 7Be. Inventories of 7Be were then calculated and used to determine bimonthly sedimentation rates over the course twelve months. Sediment deposition on the bay floor and marsh surface were then compared to Atchafalaya River discharge, wind speed and direction, and wave action. Preliminary results indicate patterns of initial fluvial sediment transfer from river to bay floor, then bay floor to marsh surface, with decreasing fluvial influence towards the open ocean. Sediment transport from bay to marsh appears to be coupled with meteorological forcing that induces bay-floor sediment resuspension and the flooding of marsh surfaces. This indirect mechanism of fluvial sediment supply to wetland surfaces may extend the region of influence for sediment delivery from man-made river-sediment diversions.

  9. Nature of the basement of the East Anatolian plateau: Implications for the lithospheric foundering processes

    Science.gov (United States)

    Topuz, G.; Candan, O.; Zack, T.; Yılmaz, A.

    2017-12-01

    The East Anatolian Plateau (Turkey) is characterized by (1) an extensive volcanic-sedimentary cover of Neogene to Quaternary age, (2) crustal thicknesses of 42-50 km, and (3) an extremely thinned lithospheric mantle. Its basement beneath the young cover is thought to consist of oceanic accretionary complexes of Late Cretaceous to Oligocene age. The attenuated state of the lithospheric mantle and the causes of the young volcanism are accounted for by slab steepening and subsequent break-off. We present field geological, petrological and geochronological data on three basement inliers (Taşlıçay, Akdağ and Ilıca) in the region. These areas are made up of amphibolite- to granulite-facies rocks, comprising marble, amphibolite, metapelite, quartzite and metagranite. The granulite-facies domain is equilibrated at 0.7 GPa and 800 ˚C at 83 ± 2 Ma (2σ). The metamorphic rocks are intruded by subduction-related coeval gabbroic, quartz monzonitic to tonalitic rocks. Both the metamorphic rocks and the intrusions are tectonically overlain by ophiolitic rocks. All these crystalline rocks are unconformably overlain by lower Maastrichtien clastic rocks and reefal limestone, suggesting that the exhumation at the earth's surface and juxtaposition with ophiolitic rocks occurred by early Maastrichtien. U-Pb dating on igneous zircon from metagranite yielded a protolith age of 445 ± 10 Ma (2σ). The detrital zircons from a metaquartzite point to Neoproterozoic to Early Paleozoic provenance. All these data favor a more or less continuous continental substrate to the allochthonous ophiolitic rocks beneath the young volcanic-sedimentary cover. The metamorphism and coeval magmatism can be regarded as the middle- to lower-crustal root of the Late Cretaceous magmatic arc that developed due to northward subduction along the Bitlis-Zagros suture. The presence of a continental basement beneath the young cover requires that the loss of the lithospheric mantle from beneath the East

  10. BOOK REVIEW OF "CHESAPEAKE BAY BLUES: SCIENCE, POLITICS, AND THE STRUGGLE TO SAVE THE BAY"

    Science.gov (United States)

    This is a book review of "Chesapeake Bay Blues: Science, Politics, and the Struggle to Save the Bay". This book is very well written and provides an easily understandable description of the political challenges faced by those proposing new or more stringent environmental regulat...

  11. Latest results from Daya Bay

    Science.gov (United States)

    Vorobel, Vit; Daya Bay Collaboration

    2017-07-01

    The Daya Bay Reactor Neutrino Experiment was designed to measure θ 13, the smallest mixing angle in the three-neutrino mixing framework, with unprecedented precision. The experiment consists of eight functionally identical detectors placed underground at different baselines from three pairs of nuclear reactors in South China. Since Dec. 2011, the experiment has been running stably for more than 4 years, and has collected the largest reactor anti-neutrino sample to date. Daya Bay is able to greatly improve the precision on θ 13 and to make an independent measurement of the effective mass splitting in the electron antineutrino disappearance channel. Daya Bay can also perform a number of other precise measurements, such as a high-statistics determination of the absolute reactor antineutrino flux and spectrum, as well as a search for sterile neutrino mixing, among others. The most recent results from Daya Bay are discussed in this paper, as well as the current status and future prospects of the experiment.

  12. Immersion in a Hudson Valley Tidal Marsh and Climate Research Community - Lamont-Doherty's Secondary School Field Research Program

    Science.gov (United States)

    Peteet, D. M.; Newton, R.; Vincent, S.; Sambrotto, R.; Bostick, B. C.; Schlosser, P.; Corbett, J. E.

    2015-12-01

    A primary advantage of place-based research is the multidisciplinary and interdisciplinary research that can be applied to a single locale, with a depth of continued study through time. Through the last decade, Lamont-Doherty's Secondary School Field Research Program (SSFRP) has promoted scientific inquiry, mostly among groups under-represented in STEM fields, in Piermont Marsh, a federally protected marsh in the Hudson estuary. At the same time, Lamont Doherty Earth Observatory (LDEO) scientists have become more involved, through mentoring by researchers, postdocs and graduate students, often paired with high school teachers. The sustained engagement of high school students in a natural environment, experiencing the Hudson River and its tidal cycles, protection of coastline, water quality improvement, native and invasive plant communities, is fundamental to their understanding of the importance of wetlands with their many ecosystem services. In addition, the Program has come to see "place" as inclusive of the Observatory itself. The students' work at Lamont expands their understanding of educational opportunities and career possibilities. Immersing students in a research atmosphere brings a level of serious inquiry and study to their lives and provides them with concrete contributions that they make to team efforts. Students select existing projects ranging from water quality to Phragmites removal, read papers weekly, take field measurements, produce lab results, and present their research at the end of six weeks. Ongoing results build from year to year in studies of fish populations, nutrients, and carbon sequestration, and the students have presented at professional scientific meetings. Through the Program students gain a sense of ownership over both their natural and the academic environments. Challenges include sustained funding of the program; segmenting the research for reproducible, robust results; fitting the projects to PIs' research goals, time

  13. A note on 2-D lithospheric deformation due to a blind strike-slip fault

    Indian Academy of Sciences (India)

    mic deformation. Several researchers have devel- oped models of coseismic lithospheric deformation. Rybicki (1971) found a closed-form analytical solu- tion for the problem of a long vertical strike-slip fault in a two-layer model of the earth. Chinnery and Jovanovich (1972) extended the solution to a three-layer model.

  14. The Lu-Hf isotope composition of cratonic lithosphere: disequilibrium between garnet and clinopyroxene in kimberlite xenoliths

    NARCIS (Netherlands)

    Simon, N.S.C.; Carlson, R.W.; Pearson, D.G.; Davies, G.R.

    2002-01-01

    12th Annual V.M. Goldschmidt Conference Davos Switzerland, The Lu-Hf isotope composition of cratonic lithosphere: disequilibrium between garnet and clinopyroxene in kimberlite xenoliths (DTM, Carnegie Institution of Washington), Pearson, D.G. (University of Durham)

  15. The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia

    Science.gov (United States)

    Delph, Jonathan R.; Abgarmi, Bijan; Ward, Kevin M.; Beck, Susan L.; Arda Ozacar, A.; Zandt, George; Sandvol, Eric; Turkelli, Niyazi; Kalafat, Dogan

    2017-04-01

    The lithospheric evolution of Anatolia is largely defined by processes associated with the terminal stages of subduction along its southern margin. Central Anatolia represents the transition from the subduction of oceanic lithosphere at the Aegean trench in the west to the Arabian - Eurasian continental collision in the east. In the overriding plate, this complicated transition is contemporaneous with uplift along the southern margin of central Anatolia (2 km in 6 Myr), voluminous felsic-intermediate ignimbrite eruptions (>1000 km3), extension, and tectonic deformation reflected by abundant low-magnitude seismic activity. The addition of 72 seismic stations as part of the Continental Dynamics - Central Anatolian Tectonics project, along with development of a new approach to the joint inversion of receiver functions and dispersion data, enables us obtain a high-resolution 3D shear wave velocity model of central Anatolia down to 150 km. This new velocity model has important implications for the complex interactions between the downgoing, segmenting African lithosphere and the overriding Anatolian Plate. These results reveal that the lithosphere of central Anatolia and the northern Arabian Plate is thin (4.5 km/s), indicating the presence of the Cyprean slab beneath central Anatolia. Thus, uplift of the Central Taurus Mountains may be due to slab rebound after the detachment of the oceanic portion of the Cyprean slab beneath Anatolia rather than the presence of shallow asthenospheric material. These fast velocities extend to the northern margin of the Central Taurus Mountains, giving way to a NE-SW trend of very slow upper mantle shear wave velocities (interpreted to be shallow, warm asthenosphere in which melt is present. The combination of a shallow asthenosphere and lithospheric-scale weaknesses associated with relict tectonic structures formed during the assembly of Anatolia are responsible for the spatial distribution of volcanism in the Central Anatolian

  16. Convective removal of the Tibetan Plateau mantle lithosphere by 26 Ma

    Science.gov (United States)

    Lu, Haijian; Tian, Xiaobo; Yun, Kun; Li, Haibing

    2018-04-01

    During the late Oligocene-early Miocene there were several major geological events in and around the Tibetan Plateau (TP). First, crustal shortening deformation ceased completely within the TP before 25 Ma and instead adakitic rocks and potassic-ultrapotassic volcanics were emplaced in the Lhasa terrane since 26-25 Ma. Several recent paleoelevation reconstructions suggest an Oligocene-early Miocene uplift of 1500-3000 m for the Qiangtang (QT) and Songpan-Ganzi (SG) terranes, although the exact timing is unclear. As a possible response to this uplift, significant desertification occurred in the vicinity of the TP at 26-22 Ma, and convergence between India and Eurasia slowed considerably at 26-20 Ma. Subsequently, E-W extension was initiated no later than 18 Ma in the Lhasa and QT terranes. In contrast, the tectonic deformation around the TP was dominated by radial expansion of shortening deformation since 25-22 Ma. The plateau-wide near-synchroneity of these events calls for an internally consistent model which can be best described as convective removal of the lower mantle lithosphere. Geophysical and petrochemical evidence further confirms that this extensive removal occurred beneath the QT and SG terranes. The present review concludes that, other than plate boundary stress, the internal stress within the TP lithosphere could have contributed to rapid wholesale uplift and a series of concomitant tectonic events, accompanied by major aridification, since 26 Ma.

  17. Dreamers in dialogue: evolution, sex and gender in the utopian visions of William Morris and William Henry Hudson

    Directory of Open Access Journals (Sweden)

    Caterina Novák

    2013-12-01

    Full Text Available The aim of this article is to explore the parallels between two late-nineteenth-century utopias,William Henry Hudsons A Crystal Age (1882 and William Morriss News from Nowhere (1891. Itaims to explore how these two works respond to the transition from a kinetic to a static conception ofutopia that under pressure from evolutionary and feminist discourses took place during the period.Particular focus lies on the way in which this is negotiated through the depiction of evolution, sexuality,and gender roles in the respective novels, and how the depiction of these disruptive elements may workas a means of ensuring the readers active engagement in political, intellectual and emotional terms.

  18. Comparison of Oceanic and Continental Lithosphere, Asthenosphere, and the LAB Through Shear Velocity Inversion of Rayleigh Wave Data from the ALBACORE Amphibious Array in Southern California

    Science.gov (United States)

    Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.

  19. POTENTIAL HAZARDS OF SEDIMENT IN KENDARI BAY, SOUTHEAST SULAWESI

    Directory of Open Access Journals (Sweden)

    Nur Adi Kristanto

    2017-07-01

    Full Text Available Kendari bay is located in front of Kendari city. There are two harbors in the inner part of bay which very important to support economic activities such as shipping and passenger transportation. The result of coastal characteristic mapping and physical oceanography survey show various coastal morphology, vegetation, weathering processes, sedimentation, currents, and water depth and sea floor morphology. Kendari bay is an enclosed bay; the area is wide in the inner part and narrow in mouth of bay (outlet, the morphology look like a bottle’s neck. Numerous mouth rivers are concentrate around the bay. The rivers load material from land since erosion on land is intensive enough. There is indication that sediment supplies from land trough river mouth not equivalent with outlet capacity. Sediment load is trapped in the inner bay caused the outlet morphology. So high sediment rate play an important role in the process of shallow of water depth in Kendari bay. This condition make the Kendari bay is a prone area of sediment hazard due to height rate of sedimentary process. Therefore, to anticipate the hazards, precaution should be taken related to the Kendari bay as the center of activities in southeast of Sulawesi. The further survey is needed such as marine geotechnique and on land environmental to collect data, which can be used as database for development planning. Key words: Potential hazard, sediment, Kendari Bay Teluk

  20. MODELING THE 1958 LITUYA BAY MEGA-TSUNAMI, II

    Directory of Open Access Journals (Sweden)

    Charles L. Mader

    2002-01-01

    Full Text Available Lituya Bay, Alaska is a T-Shaped bay, 7 miles long and up to 2 miles wide. The two arms at the head of the bay, Gilbert and Crillon Inlets, are part of a trench along the Fairweather Fault. On July 8, 1958, an 7.5 Magnitude earthquake occurred along the Fairweather fault with an epicenter near Lituya Bay.A mega-tsunami wave was generated that washed out trees to a maximum altitude of 520 meters at the entrance of Gilbert Inlet. Much of the rest of the shoreline of the Bay was denuded by the tsunami from 30 to 200 meters altitude.In the previous study it was determined that if the 520 meter high run-up was 50 to 100 meters thick, the observed inundation in the rest of Lituya Bay could be numerically reproduced. It was also concluded that further studies would require full Navier-Stokes modeling similar to those required for asteroid generated tsunami waves.During the Summer of 2000, Hermann Fritz conducted experiments that reproduced the Lituya Bay 1958 event. The laboratory experiments indicated that the 1958 Lituya Bay 524 meter run-up on the spur ridge of Gilbert Inlet could be caused by a landslide impact.The Lituya Bay impact landslide generated tsunami was modeled with the full Navier- Stokes AMR Eulerian compressible hydrodynamic code called SAGE with includes the effect of gravity.