WorldWideScience

Sample records for htgr technology development

  1. HTGR fuel reprocessing technology

    International Nuclear Information System (INIS)

    Brooks, L.H.; Heath, C.A.; Shefcik, J.J.

    1976-01-01

    The following aspects of HTGR reprocessing technology are discussed: characteristics of HTGR fuels, criteria for a fuel reprocessing flowsheet; selection of a reference reprocessing flowsheet, and waste treatment

  2. HTGR technology development in Japan advances so much. Leading world technology to global standards

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Hino, Ryutaro; Kunitomi, Kazuhiko; Onuki, Kaoru; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Sawa, Kazuhiro

    2007-01-01

    The JAEA has conducted research and development of HTGR for hydrogen production since 1969 and attained the operation of 950degC at reactor coolant outlet of the HTTR in 2004. This article describes present status and future plan of R and D in the area of HTGR technology and high temperature heat utilization and also introduces the design of the commercial HTGR cogeneration system based on R and D results leading to world standards. (T. Tanaka)

  3. HTGR technology development: status and direction

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1982-01-01

    During the last two years there has been an extensive and comprehensive effort expended primarily by General Atomic (GA) in generating a revised technology development plan. Oak Ridge National Laboratory (ORNL) has assisted in this effort, primarily through its interactions over the past years in working together with GA in technology development, but also through detailed review of the initial versions of the technology development plan as prepared by GA. The plan covers Fuel Technology, Materials Technology (including metals, graphite, and ceramics), Plant Technology (including methods, safety, structures, systems, heat exchangers, control and electrical, and mechanical), and Component Design Verification and Support areas

  4. Status of international HTGR development

    International Nuclear Information System (INIS)

    Homan, F.J.; Simon, W.A.

    1988-01-01

    Programs for the development of high-temperature gas-cooled reactor (HTGR) technology over the past 30 years in eight countries are briefly described. These programs have included both government sector and industrial sector participation. The programs have produced four electricity-producing prototype/demonstration reactors, two in the United States, and two in the Federal Republic of Germany. Key design parameters for these ractors are compared with the design parameters planned for follow-on commercial-scale HTGRs. The development of HTGR technology has been enhanced by numerous cooperative agreements over the years, involving both government-sponsored national laboratories and industrial participants. Current bilateral cooperative agreements are described. A relatively new component in the HTGR international cooperation is that of multinational industrial alliances focused on supplying commercial-scale HTGR power plants. Current industrial cooperative agreements are briefly discussed

  5. Generator technology for HTGR power plants

    International Nuclear Information System (INIS)

    Lomba, D.; Thiot, D.

    1997-01-01

    Approximately 15% of the worlds installed capacity in electric energy production is from generators developed and manufactured by GEC Alsthom. GEC Alsthom is now working on the application of generators for HTGR power conversion systems. The main generator characteristics induced by the different HTGR power conversion technology include helium immersion, high helium pressure, brushless excitation system, magnetic bearings, vertical lineshaft, high reliability and long periods between maintenance. (author)

  6. HTGR generic technology program plan (FY 80)

    International Nuclear Information System (INIS)

    1980-01-01

    Purpose of the program is to develop base technology and to perform design and development common to the HTGR Steam Cycle, Gas Turbine, and Process Heat Plants. The generic technology program breaks into the base technology, generic component, pebble-bed study, technology transfer, and fresh fuel programs

  7. HTGR generic technology program. Semiannual report ending March 31, 1980

    International Nuclear Information System (INIS)

    1980-05-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an MEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbine and process heat plants

  8. HTGR Generic Technology Program. Semiannual report for the period ending September 30, 1979

    International Nuclear Information System (INIS)

    1979-11-01

    The technical accomplishments on the HTGR Generic Technology Program at General Atomic during the second half of FY-79 are reported. The report covers a period when the major design direction of the National HTGR Program is in the process of changing from the HTGR-SC emphasis to an HTGR-GT emphasis in the near term. The HTGR Generic Technology Program activities have been redirected to ensure that the tasks covered are supportive of this changing emphasis in HTGR applications. The activities include the need to develop an MEU fuel, and the need to qualify materials and components for the higher temperatures of the gas turbine plant

  9. HTGR Generic Technology Program. Semiannual report for the period ending March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-79. It covers a period when the major design direction of the National HTGR Program is in the process of changing from the HTGR-SC emphasis to an HTGR-GT emphasis in the near term. The HTGR Generic Technology Program activities have been redirected to ensure that the tasks covered are supportive of this changing emphasis in HTGR applications. The activities include the need to develop a medium enriched uranium (MEU) fuel, and the need to qualify materials and components for the higher temperatures of the gas turbine plant.

  10. HTGR Generic Technology Program. Semiannual report for the period ending March 31, 1979

    International Nuclear Information System (INIS)

    1979-06-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-79. It covers a period when the major design direction of the National HTGR Program is in the process of changing from the HTGR-SC emphasis to an HTGR-GT emphasis in the near term. The HTGR Generic Technology Program activities have been redirected to ensure that the tasks covered are supportive of this changing emphasis in HTGR applications. The activities include the need to develop a medium enriched uranium (MEU) fuel, and the need to qualify materials and components for the higher temperatures of the gas turbine plant

  11. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  12. Flowsheet development for HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Baxter, B.; Benedict, G.E.; Zimmerman, R.D.

    1976-01-01

    Development studies to date indicate that the HTGR fuel blocks can be effectively crushed with two stages of eccentric jaw crushing, followed by a double-roll crusher, a screener and an eccentrically mounted single-roll crusher for oversize particles. Burner development results indicate successful long-term operation of both the primary and secondary fluidized-bed combustion systems can be performed with the equipment developed in this program. Aqueous separation development activities have centered on adapting known Acid-Thorex processing technology to the HTGR reprocessing task. Significant progress has been made on dissolution of burner ash, solvent extraction feed preparation, slurry transfer, solids drying and solvent extraction equipment and flowsheet requirements

  13. HTGR Generic Technology Program. Semiannual report for the period ending September 30, 1980

    International Nuclear Information System (INIS)

    1980-11-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the second half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an LEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbines and process heat plants

  14. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  15. HTGR steam generator development

    International Nuclear Information System (INIS)

    Schuetzenduebel, W.G.; Hunt, P.S.; Weber, M.

    1976-01-01

    More than 40 gas-cooled reactor plants have produced in excess of 400 reactor years of operating experience which have proved a reasonably high rate of gas-cooled reactor steam generator availability. The steam generators used in these reactors include single U-tube and straight-tube steam generators as well as meander type and helically wound or involute tube steam generators. It appears that modern reactors are being equipped with helically wound steam generators of the once-through type as the end product of steam generator evolution in gas-cooled reactor plants. This paper provides a general overview of gas-cooled reactor steam generator evolution and operating experience and shows how design criteria and constraints, research and development, and experience data are factored into the design/development of modern helically wound tube steam generators for the present generation of gas-cooled reactors

  16. Significance and prospects of the energo-technological usage of HTGR for nuclear power development in the beginning of the XXI century

    International Nuclear Information System (INIS)

    Breger, A.Kh.; Putilov, A.V.; Bogoyavlensky, R.G.; Glebov, V.P.

    1993-01-01

    This report describes the economic efficiency of atomic stations (HTGR plants). The realization of the complex (energy radiation-technological) using of nuclear fuel leads to the economically effective mastering of nuclear energy sources instead of organic ones for supplying inductry and municipal economy. It is necessary to include in the power engineering development programme, under the circumstances of fulfillment of requirements of safety and reliability, research and development by the end of the century of the pattern of complex unit on the base of the HTGR with spherical fuel elements and (by 2010-15), mastering the energy-technological plants in high-energy branches of industry and municipal economy. Solving the mentioned problems will make a perceptible contribution into scientific progress, will allow to fulfill the conversion of war industry, attract highly qualified specialists to solving the tasks of national economy

  17. Public acceptance of HTGR technology - HTR2008-58218

    International Nuclear Information System (INIS)

    Hannink, R.; Kuhr, R.; Morris, T.

    2008-01-01

    Nuclear energy projects continue to evoke strong emotional responses from the general public throughout the world. High Temperature Gas-Cooled Reactor (HTGR) technology offers improved safety and performance characteristics that should enhance public acceptance but is burdened with demonstrating a different set of safety principles. This paper summarizes key issues impacting public acceptance and discusses the importance of openly engaging the public in the early stages of new HTGR projects. The public gets information about new technologies through schools and universities, news and entertainment media, the internet, and other forms of information exchange. Development of open public forums, access to information in understandable formats, participation of universities in preparing and distributing educational materials, and other measures will be needed to support widespread public confidence in the improved safety and performance characteristics of HTGR technology. This confidence will become more important as real projects evolve and participants from outside the nuclear industry begin to evaluate the real and perceived risks, including potential impacts on public relations, branding, and shareholder value when projects are announced. Public acceptance and support will rely on an informed understanding of the issues and benefits associated with HTGR technology. Major issues of public concern include nuclear safety, avoidance of greenhouse gas emissions, depletion of natural gas resources, energy security, nuclear waste management, local employment and economic development, energy prices, and nuclear proliferation. Universities, the media, private industry, government entities, and other organizations will all have roles that impact public acceptance, which will likely play a critical role in the future markets, siting, and permitting of HTGR projects. (authors)

  18. HTGR development in the United States of America

    International Nuclear Information System (INIS)

    Fox, J.E.

    1991-01-01

    The status of high temperature gas-cooled reactors (HTGR) development in the United States of America is described, including the organizational structure for the development support, HTGR development programme, and plans for future activities in the field

  19. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2008

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Tachibana, Yukio; Sun Yuliang

    2009-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2008. (author)

  20. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2009

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Wang Hong

    2010-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2009. (author)

  1. Status of reprocessing technology in the HTGR fuel cycle

    International Nuclear Information System (INIS)

    Kaiser, G.; Merz, E.; Zimmer, E.

    1977-01-01

    For more than ten years extensive R and D work has been carried out in the Federal Republic of Germany in order to develop the technology necessary for closing the fuel cycle of high-temperature gas-cooled reactors. The efforts are concentrated primarily on fuel elements having either highly enriched 235 U or recycled 233 U as the fissile and thorium as the fertile material embedded in a graphite matrix. They include the development of processes and equipment for reprocessing and remote preparation of coated microspheres from the recovered uranium. The paper reviews the issues and problems associated with the requirements to deal with high burn-up fuel from HTGR's of different design and composition. It is anticipated that a grind-burn-leach head-end treatment and a modified THOREX-type chemical processing are the optimum choice for the flowsheet. An overview of the present status achieved in construction of a small reprocessing facility, called JUPITER, is presented. It includes a discussion of problems which have already been solved and which have still to be solved like the treatment of feed/breed particle systems and for minimizing environmental impacts envisaged with a HTGR fuel cycle technology. Also discussed is the present status of remote fuel kernel fabrication and coating technology. Additional activities include the design of a mock-up prototype burning head-end facility, called VENUS, with a throughput equivalent to about 6000 MW installed electrical power, as well as a preliminary study for the utilisation of the Karlsruhe LWR prototype reprocessing plant (WAK) to handle HTGR fuel after remodelling of the installations. The paper concludes with an outlook of projects for the future

  2. An introduction to our activities supporting HTGR developments in Japan

    International Nuclear Information System (INIS)

    An, S.; Hayashi, T.; Tsuchie, Y.

    1997-01-01

    On the view point the most important for the HTGR development promotion now in Japan is to have people know about HTGR, the Research Association of HTGR Plants(RAHP) has paid the best efforts for making an appealing report for the past two years. The outline of the report is described with an introduction of some basic experiments done on the passive decay heat removal as one of the activities carried out in a member of the association. (author)

  3. Status of the HTGR development program in Japan

    International Nuclear Information System (INIS)

    Saito, S.

    1991-01-01

    According to the revision of the Long-Term Program for Development and Utilization of Nuclear Energy issued by the Japanese Atomic Energy Commission, High Temperature Engineering Test Reactor (HTTR), which is the first HTGR in Japan, will be constructed by the Japan Atomic Energy Research Institute (JAERI) in order to establish and upgrade the technology basis for an HTGR, serving at the same time as a potential tool for new and innovative basic research. The budget for the construction of the HTTR was approved by the Government and JAERI is now proceeding with the construction design of the HTTR, focussing the first criticality in the end of FY 1995. In order to establish and upgrade HTGR technology basis systematically and efficiently, and also to carry out innovative basic research on high temperature technologies, Japan will perform necessary R and D mainly at JAERI, which is a leading organization of the R and D. In addition, in order to promote the R and D on HTGRs more efficiently, Japan will promote the existing international cooperation with the research organizations in foreign countries. (author). 5 figs, 3 tabs

  4. Status of international HTGR [high-temperature gas-cooled reactor] development

    International Nuclear Information System (INIS)

    Homan, F.J.; Simon, W.A.

    1988-01-01

    Programs for the development of high-temperature gas-cooled reactor (HTGR) technology over the past 30 years in eight countries are briefly described. These programs have included both government sector and industrial participation. The programs have produced four electricity-producing prototype/demonstration reaactors, two in the United States, and two in the Federal Republic of Germany. Key design parameters for these reactors are compared with the design parameters planned for follow-on commercial-scale HTGRs. The development of HTGR technology has been enhanced by numerous cooperative agreements over the years, involving both government-sponsored national laboratories and industrial participants. Current bilateral cooperative agreements are described. A relatively new component in the HTGR international cooperation is that of multinational industrial alliances focused on supplying commercial-scale HTGR power plants. Current industrial cooperative agreements are briefly discussed

  5. HTGR Fuel-Technology Program. Semiannual report for the period ending September 30, 1982

    International Nuclear Information System (INIS)

    1982-11-01

    This document reports the technical accomplishments on the HTGR Fuel Technology Program at GA Technologies Inc. during the second half of FY-1982. The activities include the fuel process, fuel materials, fuel cycle, fission product transport, and core component verification testing tasks necessary to support the design and development of a steam cycle/cogeneration (SC/C) version of the HTGR with a follow-on reformer (R) version. An important effort which was completed during this period was the preparation of input data for a long-range technology program plan

  6. Proceedings of the 1st JAERI symposium on HTGR technologies

    International Nuclear Information System (INIS)

    1990-07-01

    This report was edited as the Proceedings of the 1st JAERI Symposium on HTGR Technologies, - Design, Licensing Requirements and Supporting Technologies -, collecting the 21 papers presented in the Symposium. The 19 of the presented papers are indexed individually. (J.P.N.)

  7. Proceedings of the 1st JAEA/KAERI information exchange meeting on HTGR and nuclear hydrogen technology

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sakaba, Nariaki; Nishihara, Tetsuo; Yan, Xing L.; Hino, Ryutaro

    2007-03-01

    Japan Atomic Energy Agency (JAEA) has completed an implementation with Korea Atomic Energy Research Institute (KAERI) on HTGR and nuclear hydrogen technology, 'The Implementation of Cooperative Program in the Field of Peaceful Uses of Nuclear Energy between KAERI and JAEA. 'To facilitate efficient technology development on HTGR and nuclear hydrogen by the IS process, an information exchange meeting was held at the Oarai Research and Development Center of JAEA on August 28-30, 2006 under Program 13th of the JAEA/KAERI Implementation, 'Development of HTGR and Nuclear Hydrogen Technology'. JAEA and KAERI mutually showed the status and future plan of the HTTR (High-Temperature Engineering Test Reactor) project in Japan and of the NHDD (Nuclear Hydrogen Development and Demonstration) project in Korea, respectively, and discussed collaboration items. This proceedings summarizes all materials of presented technical discussions on HTGR and hydrogen production technology as well as the meeting briefing including collaboration items. (author)

  8. HTGR Fuel Technology Program. Semiannual report for the period ending March 31, 1981

    International Nuclear Information System (INIS)

    1981-05-01

    This document reports the technical accomplishments on the HTGR Fuel Technology Program at General Atomic during the first half of FY-81. The activities include the fuel process, fuel materials, fuel cycle, fission product transport, and core component verification testing tasks necessary to support the design and development of a steam cycle/cogeneration (SC/C) version of the HTGR with a follow-on reformer (R) version. An important effort which was initiated during this period was the preparation of input data for a long-range technology program plan

  9. Present Status of HTGR Utilization System Development in Japan

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiaki

    2000-01-01

    Efforts are to be continuously devoted to establish and upgrade HTGR technology in the world. Japan Atomic Energy Research Institute (JAERI) has conducted the R and D of HTGRs since the 1960's in Japan, focusing on mainly the construction of High Temperature engineering Test Reactor (HTTR) which is an HTGR with a maximum helium gas temperature of 950 o C at the reactor outlet and HTGR utilization systems. The HTTR achieved first criticality on November 10, 1998 and will restart from January in 2001. In the R and D program of HTGR utilization systems, JAERI has conducted hydrogen production systems with HTGR to demonstrate the applicability of nuclear heat for extensive energy demands besides the electric power generation. JAERI has developed a hydrogen production system by steam reforming process of natural gas using nuclear heat supplied from the HTTR. Prior to the demonstration test of HTTR hydrogen production system, a 1/30-scale out-of-pile test facility is under construction for safety review and detailed design of the system. The out-of-pile test facility will be started in 2001 and will be continued about 4 years. The hydrogen permeation and corrosion tests have been carried out since 1997. Check and review for the demonstration program in the HTTR hydrogen production system will be made in 2001. Then the HTTR hydrogen production system is scheduled to be constructed from 2003 and demonstratively operated from around 2006. In parallel with the R and D of the HTTR hydrogen production system, hydrogen production method by thermochemical water splitting, so-called IS process, has been studied in JAERI. The IS process is placed as one of future candidates of the heat utilization systems of the HTTR following the steam reforming system. Continuous and stoichiometric production of hydrogen and oxygen for 48 hours was successfully achieved with a laboratory-scale apparatus mainly made of glass. Following this achievement, the study has been continued with a larger

  10. Proceedings of the 2nd JAERI symposium on HTGR technologies October 21 ∼ 23, 1992, Oarai, Japan

    International Nuclear Information System (INIS)

    1993-01-01

    The Japan Atomic Energy Research Institute (JAERI) held the 2nd JAERI Symposium on HTGR Technologies on October 21 to 23, 1992, at Oarai Park Hotel at Oarai-machi, Ibaraki-ken, Japan, with support of International Atomic Energy Agency (IAEA), Science and Technology Agency of Japan and the Atomic Energy Society of Japan on the occasion that the construction of the High Temperature Engineering Test Reactor (HTTR), which is the first high temperature gas-cooled reactor (HTGR) in Japan, is now being proceeded smoothly. In this symposium, the worldwide present status of research and development (R and D) of the HTGRs and the future perspectives of the HTGR development were discussed with 47 papers including 3 invited lectures, focusing on the present status of HTGR projects and perspectives of HTGR Development, Safety, Operation Experience, Fuel and Heat Utilization. A panel discussion was also organized on how the HTGRs can contribute to the preservation of global environment. About 280 participants attended the symposium from Japan, Bangladesh, Germany, France, Indonesia, People's Republic of China, Poland, Russia, Switzerland, United Kingdom, United States of America, Venezuela and the IAEA. This paper was edited as the proceedings of the 2nd JAERI Symposium on HTGR Technologies, collecting the 47 papers presented in the oral and poster sessions along with 11 panel exhibitions on the results of research and development associated to the HTTR. (author)

  11. Summary report on focusing HTGR technology programs

    International Nuclear Information System (INIS)

    The program effort to focus technology development activities consists of work in three areas: the identification of Reference Plant Options; the identification of design data needs and supporting program requirements for these plants; and the development of management plans and tools consistent with the execution of candidate systems

  12. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  13. Overview of HTGR heat utilization system development at JAERI

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Ogawa, M.; Akino, N.; Shimizu, S.; Hada, K.; Inagaki, Y.; Onuki, K.; Takeda, T.; Nishihara, T.

    1998-01-01

    The Japan Atomic Energy Research Institute (JAERI) has conducted research and development of nuclear heat utilization systems of a High Temperature Gas cooled Reactor (HTGR), which are capable to meet a large amount of energy demand without significant CO 2 emission to relax the global warming issue. The High Temperature engineering Test Reactor (HTTR) with thermal output of 30 MW and outlet coolant temperature of 950 deg C, the first HTGR in Japan, is under construction on the JAERI site, and its first criticality is scheduled for mid-1998. After the reactor performance and safety demonstration tests for several years, a hydrogen production system will be connected to the HTTR. A demonstration program on hydrogen production started in January 1997, in JAERI, as a study consigned by the Science and Technology Agency. A hydrogen production system connected to the HTTR is designed to be able to produce hydrogen by steam reforming of natural gas, using nuclear heat of 10 MW from the HTTR. The safety principle and standard are investigated for the HTTR hydrogen production system. In order to confirm safety, controllability and performance of key components in the HTTR hydrogen production system, an out-of-pile test facility on the scale of approximately 1/30 of the HTTR hydrogen production system is installed. It is equipped with an electric heater as a heat source instead of the HTTR. The out-of-pile test will be performed for four years after 2001. The HTTR hydrogen production system will be demonstratively operated after 2005 at its earliest plan. Other basic studies on the hydrogen production system using thermochemical water splitting, an iodine sulphur (IS) process, and technology of distant heat transport with microencapsulated phase change material have been carried out for more effective and various uses of nuclear heat. (author)

  14. Developments of HTGR thermofluid dynamic analysis codes and HTGR plant dynamic simulation code

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1983-01-01

    In nuclear power plants as well as high temperature gas-cooled reactor plants, the design is mostly performed on the basis of the results after their characteristics have been grasped by carrying out the numerical simulation using the analysis code. Also in Kawasaki Heavy Industries Ltd., on the basis of the system engineering accumulated with gas-cooled reactors since several years ago, the preparation and systematization of analysis codes have been advanced, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In this report, a part of the results is described. The example of the analysis applying the two-dimensional compressible flow analysis codes SOLA-VOF and SALE-2D, which were developed by Los Alamos National Laboratory in USA and modified for use in Kawasaki, to HTGR system is reported. Besides, Kawasaki has developed the control characteristics analyzing code DYSCO by which the change of system composition is easy and high versatility is available. The outline, fundamental equations, fundamental algorithms and examples of application of the SOLA-VOF and SALE-2D, the present status of system characteristic simulation codes and the outline of the DYSCO are described. (Kako, I.)

  15. Overview of HTGR utilization system developments at JAERI

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Inagaki, Y.

    1997-01-01

    JAERI has been constructing a 30-MWt HTGR, named HTTR, to develop technology and to demonstrate effectiveness of high-temperature nuclear heat utilization. A hydrogen production system by natural gas steam reforming is to be the first heat utilization system of the HTTR since its technology matured in fossil-fired plant enables to couple with HTTR in the early 2000's and technical solutions demonstrated by the coupling will contribute to all other hydrogen production systems. The HTTR steam reforming system is designed to utilize the nuclear heat effectively and to achieve hydrogen productivity competitive to that of a fossil-fired plant with operability, controllability and safety acceptable enough to commercialization, and an arrangement of key components was already decided. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test is planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions. The out-of-pile system is an approximately 1/20-1/30 scale system of the HTTR steam reforming system and simulates key components downstream from an IHX

  16. Examination on small-sized cogeneration HTGR for developing countries

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Tachibana, Yukio; Shimakawa, Satoshi; Ohashi, Hirofumi; Sato, Hiroyuki; Yan, Xing; Murakami, Tomoyuki; Ohashi, Kazutaka; Nakagawa, Shigeaki; Goto, Minoru; Ueta, Shohei; Mozumi, Yasuhiro; Imai, Yoshiyuki; Tanaka, Nobuyuki; Okuda, Hiroyuki; Iwatsuki, Jin; Kubo, Shinji; Takada, Shoji; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-03-01

    The small-sized and safe cogeneration High Temperature Gas-cooled Reactor (HTGR) that can be used not only for electric power generation but also for hydrogen production and district heating is considered one of the most promising nuclear reactors for developing countries where sufficient infrastructure such as power grids is not provided. Thus, the small-sized cogeneration HTGR, named High Temperature Reactor 50-Cogeneration (HTR50C), was studied assuming that it should be constructed in developing countries. Specification, equipment configuration, etc. of the HTR50C were determined, and economical evaluation was made. As a result, it was shown that the HTR50C is economically competitive with small-sized light water reactors. (author)

  17. Present status of HTGR research and development, 1995

    International Nuclear Information System (INIS)

    1996-02-01

    Based on the Long-term Program for Development and Utilization of Nuclear Energy which was revised in 1987, the Japan Atomic Energy Research Institute (JAERI) has carried out the Research and Development (R and D) on the High Temperature Gas-cooled Reactors (HTGRs) in Japan. The JAERI obtained the installation permit of the High Temperature Engineering Test Reactor (HTTR) from the Government in November 1990 and started the construction of the HTTR facility in the Oarai Research Establishment in March 1991. The HTTR is a test reactor with thermal output of 30MW and outlet coolant temperature of 850degC at the rated operation and 950degC at the high temperature test operation, using the pin-in-block type fuel, and has capability to demonstrate nuclear process heat utilization. The reactor pressure vessel and intermediate heat exchanger were installed in the reactor containment vessel in 1994, and reactor internals were also installed in the reactor pressure vessel in 1995. The first criticality will be attained in December 1997. This report describes the design outline and construction progress of the HTTR, R and D of fuel, materials and components for the HTGR and high temperature nuclear heat application, and innovative and basic researches for high temperature technologies at the HTTR. (J.P.N.)

  18. Interim development report: engineering-scale HTGR fuel particle crusher

    International Nuclear Information System (INIS)

    Baer, J.W.; Strand, J.B.

    1978-09-01

    During the reprocessing of HTGR fuel, a double-roll crusher is used to fracture the silicon carbide coatings on the fuel particles. This report describes the development of the roll crusher used for crushing Fort-St.Vrain type fissile and fertile fuel particles, and large high-temperature gas-cooled reactor (LHTGR) fissile fuel particles. Recommendations are made for design improvements and further testing

  19. Present status of HTGR research and development

    International Nuclear Information System (INIS)

    1992-08-01

    This report briefly describes the progress of the construction of the High Temperature Engineering Test Reactor (HTTR), Research and Development (R and D) on the advanced technologies for the High Temperature Gas-cooled Reactors (HTGRs) and international cooperation in the Japan Atomic Energy Research Institute (JAERI) in 1991. (J.P.N.)

  20. HTGR Economic / Business Analysis and Trade Studies Market Analysis for HTGR Technologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Matt [Ultra Safe Nuclear Corporation, Los Alamos, NM (United States); Hamilton, Chris [Ultra Safe Nuclear Corporation, Los Alamos, NM (United States)

    2013-11-01

    This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal to liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.

  1. HTGR type reactors for the heat market

    International Nuclear Information System (INIS)

    Oesterwind, D.

    1981-01-01

    Information about the standard of development of the HTGR type reactor are followed by an assessment of its utilization on the heat market. The utilization of HTGR type reactors is considered suitable for the production of synthesis gas, district heat, and industrial process heat. A comparison with a pit coal power station shows the economy of the HTGR. Finally, some aspects of introducing new technologies into the market, i.e. small plants in particular are investigated. (UA) [de

  2. Selected studies in HTGR reprocessing development

    International Nuclear Information System (INIS)

    Notz, K.J.

    1976-03-01

    Recent work at ORNL on hot cell studies, off-gas cleanup, and waste handling is reviewed. The work includes small-scale burning tests with irradiated fuels to study fission product release, development of the KALC process for the removal of 85 Kr from a CO 2 stream, preliminary work on a nonfluidized bed burner, solvent extraction studies including computer modeling, characterization of reprocessing wastes, and initiation of a development program for the fixation of 14 C as CaCO 3

  3. Development of HTGR plant dynamics simulation code

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Tazawa, Yujiro; Mitake, Susumu; Suzuki, Katsuo.

    1987-01-01

    Plant dynamics simulation analysis plays an important role in the design work of nuclear power plant especially in the plant safety analysis, control system analysis, and transient condition analysis. The authors have developed the plant dynamics simulation code named VESPER, which is applicable to the design work of High Temperature Engineering Test Reactor, and have been improving the code corresponding to the design changes made in the subsequent design works. This paper describes the outline of VESPER code and shows its sample calculation results selected from the recent design work. (author)

  4. Research program of the high temperature engineering test reactor for upgrading the HTGR technology

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Tachibana, Yukio; Takeda, Takeshi; Saikusa, Akio; Sawa, Kazuhiro

    1997-07-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium-cooled reactor with an outlet power of 30 MW and outlet coolant temperature of 950degC, and its first criticality will be attained at the end of 1997. In the HTTR, researches establishing and upgrading the technology basis necessary for an HTGR and innovative basic researches for a high temperature engineering will be conducted. A research program of the HTTR for upgrading the technology basis for the HTGR was determined considering realization of future generation commercial HTGRs. This paper describes a research program of the HTTR. (author)

  5. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Samuel E. Bays; Nick Soelberg

    2010-08-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  6. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Soelberg, Nick

    2010-01-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR 'full recycle' service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the 'pebble bed' approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R and D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in 'limited separation' or 'minimum fuel treatment' separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  7. Uncertainties in HTGR neutron-physical characteristics due to computational errors and technological tolerances

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Grebennik, V.N.; Davidenko, V.G.; Kosovskij, V.G.; Smirnov, O.N.; Tsibul'skij, V.F.

    1991-01-01

    The paper is dedicated to the consideration of uncertainties is neutron-physical characteristics (NPC) of high-temperature gas-cooled reactors (HTGR) with a core as spherical fuel element bed, which are caused by calculations from HTGR parameters mean values affecting NPC. Among NPC are: effective multiplication factor, burnup depth, reactivity effect, control element worth, distribution of neutrons and heat release over a reactor core, etc. The short description of calculated methods and codes used for HTGR calculations in the USSR is given and evaluations of NPC uncertainties of the methodical character are presented. Besides, the analysis of the effect technological deviations in parameters of reactor main elements such as uranium amount in the spherical fuel element, number of neutron-absorbing impurities in the reactor core and reflector, etc, upon the NPC is carried out. Results of some experimental studies of NPC of critical assemblies with graphite moderator are given as applied to HTGR. The comparison of calculations results and experiments on critical assemblies has made it possible to evaluate uncertainties of calculated description of HTGR NPC. (author). 8 refs, 8 figs, 6 tabs

  8. HTGR Industrial Application Functional and Operational Requirements

    International Nuclear Information System (INIS)

    Demick, L.E.

    2010-01-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  9. Development of processes and equipment for the refabrication of HTGR fuels

    International Nuclear Information System (INIS)

    Sease, J.D.; Lotts, A.L.

    1976-06-01

    Refabrication is in the step in the HTGR thorium fuel cycle that begins with a nitrate solution containing 238 U and culminates in the assembly of this material into fuel elements for use in an HTGR. Refabrication of HTGR fuel is essentially a manufacturing operation and consists of preparation of fuel kernels, application of multiple layers of pyrolytic carbon and SiC, preparation of fuel rods, and assembly of fuel rods in fuel elements. All the equipment for refabrication of 238 U-containing fuel must be designed for completely remote operation and maintenance in hot cell facilities. This paper describes the status of processes and equipment development for the remote refabrication of HTGR fuels. The feasibility of HTGR refabrication processes has been proven by laboratory development. Engineering-scale development is now being performed on a unit basis on the majority of the major equipment items. Engineering-scale equipment described includes full-scale resin loading equipment, a 5-in.-dia (0.13-m) microsphere coating furnace, a fuel rod forming machine, and a cure-in-place furnace

  10. High-temperature gas-cooled reactor (HTGR): long term program plan

    International Nuclear Information System (INIS)

    1980-01-01

    The FY 1980 effort was to investigate four technology options identified by program participants as potentially viable candidates for near-term demonstration: the Gas Turbine system (HTGR-GT), reflecting its perceived compatibility with the dry-cooling market, two systems addressing the process heat market, the Reforming (HTGR-R) and Steam Cycle (HTGR-SC) systems, and a more developmental reactor system, The Nuclear Heat Source Demonstration Reactor (NHSDR), which was to serve as a basis for both the HTGR-GT and HTGR-R systems as well as the further potential for developing advanced applications such as steam-coal gasification and water splitting

  11. Development of seismic analysis model for HTGR core on commercial FEM code

    International Nuclear Information System (INIS)

    Tsuji, Nobumasa; Ohashi, Kazutaka

    2015-01-01

    The aftermath of the Great East Japan Earthquake prods to revise the design basis earthquake intensity severely. In aseismic design of block-type HTGR, the securement of structural integrity of core blocks and other structures which are made of graphite become more important. For the aseismic design of block-type HTGR, it is necessary to predict the motion of core blocks which are collided with adjacent blocks. Some seismic analysis codes have been developed in 1970s, but these codes are special purpose-built codes and have poor collaboration with other structural analysis code. We develop the vertical 2 dimensional analytical model on multi-purpose commercial FEM code, which take into account the multiple impacts and friction between block interfaces and rocking motion on contact with dowel pins of the HTGR core by using contact elements. This model is verified by comparison with the experimental results of 12 column vertical slice vibration test. (author)

  12. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  13. Advanced Fuel UCO Preparation Technology for HTGR (Characteristics of Carbon Black)

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Oh, S. C.; Kim, Y. K.; Cho, M. S.; Kim, W. K.; Kim, Y. M.; Lee, Y. W.; Cho, H. J.; Shin, E. J.

    2010-06-01

    NGNP program for high specification of HTGR nuclear fuel through the GEN IV study is be progressed. Furthermore, because the NGNP program have a highly focused goal like UCO kernel, kernel fabrication and coating types varied which made selection of a US reference fabrication process. In this study, it was evaluated from the reviews on the UO2 and UCO kernel fabrication technologies and its particle characteristics. For improving the UCO qualities, first it was improved the kernel fabrication processes and carbon dispersion method also. New method for carbon dispersion in broth solution was developed, and its characteristics was evaluated from the AGR irradiation tests used the UCO kernel. In fabrication process, also process parameter variation tests in both forming and sintering steps led to an increased understanding of the acceptable ranges for process parameters and additional reduction in required operating times. Another result of this test program was to double the kernel production rate. Following the development tests, approximately 40 kg of natural uranium UCO kernels have been produced for use in coater scale up tests, and approximately 10 kg of low enriched uranium UCO kernels for use in the AGR-2 experiment

  14. The study of the HTGR technology and its industry applications

    International Nuclear Information System (INIS)

    Lu Yingzhong; Wang Dazhong; Zhong Daxin

    1987-01-01

    This paper summarizes the progress and main results of R and D on High Temperature Reactor technology in INET of Tsinghua University. Several HTR design studies have been carried out and briefly introduced in this paper. While the primary study of the modular HTR process steam application in heavy oil recovery is discussed. A lot of experiments and developmental work, e.g., some HTR component experiments, fuel and material developments have been done, and the major progresses are briefed. (author)

  15. Recent developments in graphite. [Use in HTGR and aerospace

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications.

  16. European research and development on HTGR process heat applications

    International Nuclear Information System (INIS)

    Verfondern, Karl; Lensa, Werner von

    2003-01-01

    The High-Temperature Gas-Cooled Reactor represents a suitable and safe concept of a future nuclear power plant with the potential to produce process heat to be utilized in many industrial processes such as reforming of natural gas, coal gasification and liquefaction, heavy oil recovery to serve for the production of the storable commodities hydrogen or energy alcohols as future transportation fuels. The paper will include a description of the broad range of applications for HTGR process heat and describe the results of the German long-term projects ''Prototype Nuclear Process Heat Reactor Project'' (PNP), in which the technical feasibility of an HTGR in combination with a chemical facility for coal gasification processes has been proven, and ''Nuclear Long-Distance Energy Transportation'' (NFE), which was the demonstration and verification of the closed-cycle, long-distance energy transmission system EVA/ADAM. Furthermore, new European research initiatives are shortly described. A particular concern is the safety of a combined nuclear/chemical facility requiring a concept against potential fire and explosion hazards. (author)

  17. Review of fatigue criteria development for HTGR core supports

    International Nuclear Information System (INIS)

    Ho, F.H.; Vollman, R.E.

    1979-10-01

    Fatigue criteria for HTGR core support graphite structure are presented. The criteria takes into consideration the brittle nature of the material, and emphasizes the probabilistic approach in the treatment of strength data. The stress analysis is still deterministic. The conventional cumulative damage approach is adopted here. A specified minimum S-N curve is defined as the curve with 99% probability of survival at a 95% confidence level to accommodate random variability of the material strength. A constant life diagram is constructed to reconcile the effect of mean stress. The linear damage rule is assumed to account for the effect of random cycles. An additional factor of safety of three on cycles is recommended. The uniaxial S-N curve is modified in the medium-to-high cycle range (> 2 x 10 3 cycles) for mutiaxial fatigue effects

  18. Construction of the HTTR and its testing program for advanced HTGR development

    International Nuclear Information System (INIS)

    Tanaka, T.; Baba, O.; Shiozawa, S.; Okubo, M.; Kunitomi, K.

    1996-01-01

    Concerning about global warming due to emission of greenhouse effect gas like CO 2 , it is essentially important to make efforts to obtain more reliable and stable energy supply by extended use of nuclear energy including high temperature heat from nuclear reactors, because it can supply a large amount of energy and its plants emit only little amount of CO 2 during their lifetime. Hence, efforts are to be continuously devoted to establish and upgrade technologies of High Temperature Gas-cooled Reactor (HTGR) which can supply high-temperature heat with high thermal efficiency as well as high heat-utilizing efficiency. It is also expected that making basic researches at high temperature using HTGR will contribute to innovative basic research in future. Then, the construction of High Temperature engineering Test Reactor (HTTR), which is an HTGR with a maximum helium coolant temperature of 950 deg. C at the reactor outlet, was decided by the Japanese Atomic Energy Commission (JAEC) in 1987 and is now under way by the Japan Atomic Energy Research Institute (JAERI). 2 refs, 2 figs, 1 tab., 2 photos

  19. HTGR safety research concerns at NRC

    International Nuclear Information System (INIS)

    Minogue, R.B.

    1982-01-01

    A general discussion of HTGR technical and safety-related problems is given. The broad areas of current research programs specific to the Fort St. Vrain reactor and applicable to HTGR technology are summarized

  20. Survey on the activities in Switzerland in the field of HTGR-development

    International Nuclear Information System (INIS)

    Sarlos, G.; Brogli, R.; Mathews, D.; Bucher, K.H.; Helbling, W.

    1991-01-01

    The activities of the Swiss industry and of the ''Paul Scherrer Institute'' in the development and production of components and systems for the nuclear industry are reviewed. For the HTGR, major programs include the German HTR-500 project, the gas-cooled district heating reactor (GHR), and the PROTEUS critical experiments. The experiments are being performed in the framework of an IAEA coordinated research program. (author)

  1. The commercial application prospect of HTGR plant in China

    International Nuclear Information System (INIS)

    Wang Yingsu

    2008-01-01

    With an introduction of the features and current situation of the HTGR power generation as well as the development of HTGR demonstration project in China, the article analyzes the necessity of developing HTGR power plants. The article proposes to exercise the advantages of HTGR to full extent so as to further develop HTGR power plants. It is believed that HTGR is of great commercial promotion value under appropriate circumstances. (authors)

  2. The HTTR project as the world leader of HTGR research and development

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Komori, Yoshihiro; Ogawa, Masuro

    2005-01-01

    As a next generation type nuclear system which will expand nuclear energy use area with high temperature nuclear heat utilization and improve economic competitiveness greatly, High Temperature Gas-cooled Reactor (HTGR) has become the R and D item of prime importance at home as well as abroad to establish hydrogen society to cope with global environmental problems. JAERI has conducted R and D on HTGR as the world leader such as to achieve a reactor outlet coolant temperature of 950 degC in the HTTR (High Temperature Engineering Test Reactor) in April 2004 as the world's first and also to succeed in continuous hydrogen production with a bench-scale apparatus of closed cycle iodine-sulfur (IS) process for six and half hours in August 2003 as the world's first. Overview and present status of HTTR program were presented in details with background and main R and D results as well as international trend of HTGR development and future program on pilot tests facilities for hydrogen production demonstration in Japan. (T. Tanaka)

  3. HTGR fuel cycle

    International Nuclear Information System (INIS)

    1987-08-01

    In the spring of 1987, the HTGR fuel cycle project has been existing for ten years, and for this reason a status seminar has been held on May 12, 1987 in the Juelich Nuclear Research Center, that gathered the participants in this project for a discussion on the state of the art in HTGR fuel element development, graphite development, and waste management. The papers present an overview of work performed so far and an outlook on future tasks and goals, and on taking stock one can say that the project has been very successful so far: The HTGR fuel element now available meets highest requirements and forms the basis of today's HTGR safety philosophy; research work on graphite behaviour in a high-temperature reactor has led to complete knowledge of the temperature or neutron-induced effects, and with the concept of direct ultimate waste disposal, the waste management problem has found a feasible solution. (orig./GL) [de

  4. The prospects of HTGR in China

    International Nuclear Information System (INIS)

    Sun, Y.; Tong, Y.; Wu, Z.

    1994-01-01

    Present situations of the energy market in China are briefly introduced, while the forecast of the possible development of the Chinese energy market is shortly discussed. The discussion focuses on the expected roles of high temperature gas-cooled reactors (HTGR) in the Chinese energy market in the next century. The history and present status of the development of HTGR technologies in China are presented. In the National High-Tech Programme, a 10 MW helium-cooled test reactor (HTR-10) is projected to be built within this century. The main technical and safety features of the HTR-10 reactor are discussed. (author)

  5. Development of a pneumatic transfer system for HTGR recycle fuel particles

    International Nuclear Information System (INIS)

    Mack, J.E.; Johnson, D.R.

    1978-02-01

    In support of the High-Temperature Gas-Cooled Reactor (HTGR) Fuel Refabrication Development Program, an experimental pneumatic transfer system was constructed to determine the feasibility of pneumatically conveying pyrocarbon-coated fuel particles of Triso and Biso designs. Tests were conducted with these particles in each of their nonpyrophoric forms to determine pressure drops, particle velocities, and gas flow requirements during pneumatic transfer as well as to evaluate particle wear and breakage. Results indicated that the material can be pneumatically conveyed at low pressures without excessive damage to the particles or their coatings

  6. HTGR fuel development: investigations of breakages of uranium-loaded weak acid resin microspheres

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.

    1977-11-01

    During the HTGR fuel development program, a high percentage of uranium-loaded weak acid resin microspheres broke during pneumatic transfer, carbonization, and conversion. One batch had been loaded by the UO 3 method; the other by the ammonia neutralization method. To determine the causes of failure, samples of the two failed batches were investigated by optical microscopy, scanning electron microscopy, electron beam microprobe, and other techniques. Causes of failure are postulated and methods are suggested to prevent recurrence of this kind of failure

  7. Present status of research on and development of HTGR techniques in the People's Republic of China

    International Nuclear Information System (INIS)

    Zhu Yongjun

    1989-01-01

    China is a developing country rich in coal, petroleum and hydropower resources. In the past ten years, energy production in China has had a large increase, but along with the development of economy, energy demands increase even more rapidly. Many problems exist in China's energy system. Considering the large energy demand in the near future and long-term energy strategy, China has already decided to develop nuclear power gradually. The first several nuclear power stations are being and will be built in the South-east sea shore region. Two 900 MW PWRs (from France) and one 300 MW PWR (home made) are now under construction at Daya Bay (Kwangton Province) and Qin Shan (Zhejiang Province). The succeeding PWR power plants are being planned. PWR nuclear power station has been selected for the beginning of China's nuclear power plan. For large scale utilization of nuclear power in the next century, the development of advanced reactor type with good safety and economy performances and high uranium utilization rate (uranium resources in China is not rich enough) is strategically important. HTGR, due to its inherent safety characteristics, high heat efficiency, flexible fuel system and wide application fields, is a prospective advanced reactor type. Research and development on HTGR have already been included in China's national technical development program and are going on smoothly

  8. Status of CHAP: composite HTGR analysis program

    International Nuclear Information System (INIS)

    Secker, P.A.; Gilbert, J.S.

    1975-12-01

    Development of an HTGR accident simulation program is in progress for the prediction of the overall HTGR plant transient response to various initiating events. The status of the digital computer program named CHAP (Composite HTGR Analysis Program) as of June 30, 1975, is given. The philosophy, structure, and capabilities of the CHAP code are discussed. Mathematical descriptions are given for those HTGR components that have been modeled. Component model validation and evaluation using auxiliary analysis codes are also discussed

  9. HTGR analytical methods and design verification

    International Nuclear Information System (INIS)

    Neylan, A.J.; Northup, T.E.

    1982-05-01

    Analytical methods for the high-temperature gas-cooled reactor (HTGR) include development, update, verification, documentation, and maintenance of all computer codes for HTGR design and analysis. This paper presents selected nuclear, structural mechanics, seismic, and systems analytical methods related to the HTGR core. This paper also reviews design verification tests in the reactor core, reactor internals, steam generator, and thermal barrier

  10. Status of the United States National HTGR program

    International Nuclear Information System (INIS)

    1981-01-01

    The HTGR continues to appear as an increasingly attractive option for application to US energy markets. To examine that potential, a program is being pursued to examine the various HTGR applications and to provide information to decision-makers in both the public and private sectors. To date, this effort has identified a substantial technical and economic potential for Steam Cycle/Cogeneration applications. Advanced HTGR systems are currently being evaluated to determine their appropriate role and timing. The encouraging results which have been obtained lead to heightened anticipation that a role for the HTGR will be found in the US energy market and that an initiative culminating in a lead project will be evolved in the forseeable future. The US Program can continue to benefit from international cooperative activities to develop the needed technologies. Expansion of these cooperative activities will be actively pursued

  11. Safety Design Approach for the Development of Safety Requirements for Design of Commercial HTGR

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Nishihara, Tetsuo; Yan, Xing; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-01-01

    The research committee on “Safety requirements for HTGR design” was established in 2013 under the Atomic Energy Society of Japan to develop the draft safety requirements for the design of commercial High Temperature Gas-cooled Reactors (HTGRs), which incorporate the HTGR safety features demonstrated using the High Temperature Engineering Test Reactor (HTTR), lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the integration of the hydrogen production plants. The safety design approach for the commercial HTGRs which is a basement of the safety requirements is determined prior to the development of the safety requirements. The safety design approaches for the commercial HTGRs are to confine the radioactive materials within the coated fuel particles not only during normal operation but also during accident conditions, and the integrity of the coated fuel particles and other requiring physical barriers are protected by the inherent and passive safety features. This paper describes the main topics of the research committee, the safety design approaches and the safety functions of the commercial HTGRs determined in the research committee. (author)

  12. Design and operation of equipment used to develop remote coating capability for HTGR fuel particles

    International Nuclear Information System (INIS)

    Suchomel, R.R.; Stinton, D.P.; Preston, M.K.; Heck, J.L.; Bolfing, B.J.; Lackey, W.J.

    1978-12-01

    Refabrication of HTGR fuels is a manufacturing process that consists of preparation of fuel kernels, application of multiple layers of pyrolytic carbon and silicon carbide, preparation of fuel rods, and assembly of fuel rods into fuel elements. All the equipment for refabrication of 233 U-containing fuel must be designed for completely remote operation and maintenance in hot-cell facilities. Equipment to remotely coated HTGR fuel particles has been designed and operated. Although not all of the equipment development needed for a fully remote coating system has been completed, significant progress has been made. The most important component of the coating furnace is the gas distributor, which must be simple, reliable, and easily maintainable. Techniques for loading and unloading the coater and handling microspheres have been developed. An engineering-scale system, currently in operation, is being used to verify the workability of these concepts. Coating crucible handling components are used to remove the crucible from the furnace, remove coated particles, and exchange the crucible, if necessary. After the batch of particles has been unloaded, it is transferred, weighed, and sampled. The components used in these processes have been tested to ensure that no particle breakage or holdup occurs. Tests of the particle handling system have been very encouraging because no major problems have been encountered. Instrumentation that controls the equipment performed very smoothly and reliably and can be operated remotely

  13. Development of a fissile particle for HTGR fuel recycle

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.; Lindemer, T.B.; Beatty, R.L.; Tiegs, T.N.

    1976-12-01

    Recycle fissile fuel particles for high-temperature gas-cooled reactors (HTGRs) have been under development since the mid-1960s. Irradiation performance on early UO 2 and Th 0 . 8 U 0 . 2 O 2 kernels is described in this report, and the performance limitations associated with the dense oxide kernels are presented. The development of the new reference fuel kernel, the weak-acid-resin-derived (WAR) UO 2 --UC 2 , is discussed in detail, including an extensive section on the irradiation performance of this fuel in HFIR removable beryllium capsules HRB-7 through -10. The conclusion is reached that the irradiation performance of the WAR fissile fuel kernel is better than that of any coated particle fuel yet tested. Further, the present fissile kernel is adequate for steam cycle HTGRs as well as for many advanced applications such as gas turbine and process heat HTGRs

  14. HTGR Dust Safety Issues and Needs for Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Paul W. Humrickhouse

    2011-06-01

    This report presents a summary of high temperature gas-cooled reactor dust safety issues. It draws upon a literature review and the proceedings of the Very High Temperature Reactor Dust Assessment Meeting held in Rockville, MD in March 2011 to identify and prioritize the phenomena and issues that characterize the effect of carbonaceous dust on high temperature reactor safety. It reflects the work and input of approximately 40 participants from the U.S. Department of Energy and its National Labs, the U.S. Nuclear Regulatory Commission, industry, academia, and international nuclear research organizations on the topics of dust generation and characterization, transport, fission product interactions, and chemical reactions. The meeting was organized by the Idaho National Laboratory under the auspices of the Next Generation Nuclear Plant Project, with support from the U.S. Nuclear Regulatory Commission. Information gleaned from the report and related meetings will be used to enhance the fuel, graphite, and methods technical program plans that guide research and development under the Next Generation Nuclear Plant Project. Based on meeting discussions and presentations, major research and development needs include: generating adsorption isotherms for fission products that display an affinity for dust, investigating the formation and properties of carbonaceous crust on the inside of high temperature reactor coolant pipes, and confirming the predominant source of dust as abrasion between fuel spheres and the fuel handling system.

  15. National HTGR safety program

    International Nuclear Information System (INIS)

    Davis, D.E.; Kelley, A.P. Jr.

    1982-01-01

    This paper presents an overview of the National HTGR Program in the US with emphasis on the safety and licensing strategy being pursued. This strategy centers upon the development of an integrated approach to organizing and classifying the functions needed to produce safe and economical nuclear power production. At the highest level, four plant goals are defined - Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness. The HTGR features which support the attainment of each goal are described and finally a brief summary is provided of the current status of the principal safety development program supporting the validation of the four plant goals

  16. HTGR technology economic/ business analysis and trade studies impacts. Impacts of HTGR commericialization on the U.S. economy

    Energy Technology Data Exchange (ETDEWEB)

    Silady, Fred [Technology Insights, Marlborough, MA (United States)

    2013-12-07

    The approach to this task was to initially review the 2012 Business Plan and supporting analyses for the above impacts. With that understanding as a base, the Business Plan impacts are updated in terms of the GDP and job creation as a result of additional studies and inputs such as the revised market assessment from Task 1.1. For the impacts on U.S. competitiveness, the NGNP Industry Alliance team members have been utilized to provide inputs on supplier infrastructure development and on vendor capability.

  17. Benefits of reactor physics experiments for the HTGR industrial development - an attempt to a quantitative approach

    Energy Technology Data Exchange (ETDEWEB)

    Cuniberti, R; Graziani, G; Massino, L; Rinaldini, C; Zanantoni, C

    1972-10-15

    The available results of reactor physics experiments on HTGRs and their accuracies are briefiy reviewed. The physical quantities of interest are grouped into three categories: basic nuclear data, lattice parameters and integral design data. The last two are considered and their possible improvements in accuracy by means of experimental measurements are assessed. The cost penalty on fuel cycle and capital cost due to each physical quantity is then considered, and consequently the benefits of reactor physics experiments are evaluated for a number of hypotheses concerning the foreseeable HTGR development and the delay in taking practical advantage of experimental results. It is concluded that, at the present state of knowledge of basic nuclear data and with the available calculation methods, the economic incentive to new reactor physics experiments is small, and a previous careful analysis is recommended to those intending to perform such experiments.

  18. A proposal to develop a high temperature structural design guideline for HTGR components

    International Nuclear Information System (INIS)

    Hada, K.

    1989-01-01

    This paper presents some proposals for developing a high-temperature structural design guideline for HTGR structural components. It is appropriate that a basis for developing high-temperature structural design rules is rested on well-established elevated-temperature design guidelines, if the same failure modes are expected for high-temperature components as considered in such design guidelines. As for the applicability of ASME B and PV Code Case N-47 to structural design rules for high-temperature components (service temperatures ≥ 900 deg. C), the following critical issues on material properties and service life evaluation rules have been pointed out. (i) no work-hardening of stress-strain curves at high temperatures due to dynamic recrystallization; (ii) issues relating to very significant creep; (iii) ductility loss after long-term ageing at high temperatures; (iv) validity of life-fraction rule (Robinson-Taira rule) as creep-fatigue damage evaluation rule. Furthermore, the validity of design margins of elevated-temperature structural design guidelines to high-temperature design rules should be clarified. Solutions and proposals to these issues are presented in this paper. Concerning no work-hardening due to dynamic recrystallization, it is shown that viscous effects cannot be neglected even at high extension rate for tensile tests, and that changes in viscous deformation rates by dynamic recrystallization should be taken into account. The extension rate for tensile tests is proposed to change at high temperatures. The solutions and proposals to the above-mentioned issues lead to the conclusion that the design methodologies of N-47 are basically applicable to the high-temperature structural design guideline for HTGR structural components in service at about 900 deg. C. (author). 9 refs, 5 figs

  19. Applications of high-strength concrete to the development of the prestressed concrete reactor vessel (PCRV) design for an HTGR-SC/C plant

    International Nuclear Information System (INIS)

    Naus, D.J.

    1984-01-01

    The PCRV research and development program at ORNL consists of generic studies to provide technical support for ongoing PCRV-related studies, to contribute to the technological data base, and to provide independent review and evaluation of the relevant technology. Recent activities under this program have concentrated on the development of high-strength concrete mix designs for the PCRV of a 2240 MW(t) HTGR-SC/C plant, and the testing of models to both evaluate the behavior of high-strength concretes (plain and fibrous) and to develop model testing techniques. A test program to develop and evaluate high-strength (greater than or equal to 63.4 MPa) concretes utilizing materials from four sources which are in close proximity to potential sites for an HTGR plant is currently under way. The program consists of three phases. Phase I involves an evaluation of the cement, fly ash, admixtures and aggregate materials relative to their capability to produce concretes having the desired strength properties. Phase II is concerned with the evaluation of the effects of elevated temperatures (less than or equal to 316 0 C) on the strength properties of mixes selected for detailed evaluation. Phase III involves a determination of the creep characteristics and thermal properties of the selected mixes. An overview of each of these phases is presented as well as results obtained to date under Phase I which is approximately 75% completed

  20. Approach on a global HTGR R and D network

    International Nuclear Information System (INIS)

    Lensa, W. von

    1997-01-01

    The present situation of nuclear power in general and of the innovative nuclear reactor systems in particular requires more comprehensive, coordinated R and D efforts on a broad international level to respond to today's requirements with respect to public and economic acceptance as well as to globalization trends and global environmental problems. HTGR technology development has already reached a high degree of maturity that will be complemented by the operation of the two new test reactors in Japan and China, representing technological milestones for the demonstration of HTGR safety characteristics and Nuclear Process Heat generation capabilities. It is proposed by the IAEA 'International Working Group on Gas-Cooled Reactors' to establish a 'Global HTGR R and D Network' on basic HTGR technology for the stable, long-term advancement of the specific HTGR features and as a basis for the future market introduction of this innovative reactor system. The background and the motivation for this approach are illustrated, as well as first proposals on the main objectives, the structure and the further procedures for the implementation of such a multinational working sharing R and D network. Modern telecooperation methods are foreseen as an interactive tool for effective communication and collaboration on a global scale. (author)

  1. Assessment and status report High-Temperature Gas-Cooled Reactor gas-turbine technology

    International Nuclear Information System (INIS)

    1981-01-01

    Purpose of this report is to present a brief summary assessment of the High Temperature Gas-Cooled Reactor - Gas Turbine (HTGR-GT) technology. The focal point for the study was a potential 2000 MW(t)/800 MW(e) HTGR-GT commercial plant. Principal findings of the study were that: the HTGR-GT is feasible, but with significantly greater development risk than the HTGR-SC (Steam Cycle). At the level of performance corresponding to the reference design, no incremental economic incentive can be identified for the HTGR-GT to offset the increased development costs and risk relative to the HTGR-SC. The relative economics of the HTGR-GT and HTGR-SC are not significantly impacted by dry cooling considerations. While reduced cycel complexity may ultimately result in a reliability advantage for the HTGR-GT, the value of that potential advantage was not quantified

  2. Development of THYDE-HTGR: computer code for transient thermal-hydraulics of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Hirano, Masashi; Hada, Kazuhiko

    1990-04-01

    The THYDE-HTGR code has been developed for transient thermal-hydraulic analyses of high-temperature gas-cooled reactors, based on the THYDE-W code. THYDE-W is a code developed at JAERI for the simulation of Light Water Reactor plant dynamics during various types of transients including loss-of-coolant accidents. THYDE-HTGR solves the conservation equations of mass, momentum and energy for compressible gas, or single-phase or two-phase flow. The major code modification from THYDE-W is to treat helium loops as well as water loops. In parallel to this, modification has been made for the neutron kinetics to be applicable to helium-cooled graphite-moderated reactors, for the heat transfer models to be applicable to various types of heat exchangers, and so forth. In order to assess the validity of the modifications, analyses of some of the experiments conducted at the High Temperature Test Loop of ERANS have been performed. In this report, the models applied in THYDE-HTGR are described focusing on the present modifications and the results from the assessment calculations are presented. (author)

  3. Preliminary Study on the Development of MIDAS/GCR to Simulate the Plate-out Phenomena from a HTGR

    International Nuclear Information System (INIS)

    Park, Jong-Hwa; Kim, Dong-Ha; Lee, Won-Jae

    2006-01-01

    In HTGR, the dominant removal mechanism of the condensable fission product gas is a 'plate-out' on various kinds of surfaces over the primary coolant loop. The plate-outs are complex phenomena that are dependent on the mass transfer rate from the coolant to the fixed surface, the adsorption and desorption of the gas fission product, the material of the surfaces, the operation temperature, the fission product species, etc. In a normal operation, the important information on a plate-out is the amount and the distribution and the type of isotope. This information is applied to construct a safety engineering system, to calculate the necessary shielding and to estimate the impact on the environment. The status of a model development and available data are performed extensively but the data still has a large uncertainty. The objective of this study is to compare the condensation model of a gas fission product in the MIDAS for a PWR with the PADLOC model for a HTGR developed by GA and to perform a feasibility calculation on OGL-1 with MIDAS. The results of the model review on MIDAS and PADLOC, the feasibility calculation results on OGL-1 with MIDAS and the phenomena to be implemented into MIDAS to simulate the plate-out phenomena from HTGR are identified and listed

  4. HTGR Cost Model Users' Manual

    International Nuclear Information System (INIS)

    Gandrik, A.M.

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  5. Steam generator design considerations for modular HTGR plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; DeFur, D.D.

    1986-01-01

    Studies are in progress to develop a standard High Temperature Gas-Cooled Reactor (HTGR) plant design that is amenable to serial production and is licensable. Based on the results of trade studies performed in the DOE-funded HTGR program, activities are being focused to emphasize a modular concept based on a 350 MW(t) annular reactor core with prismatic fuel elements. Utilization of a multiplicity of the standard module affords flexibility in power rating for utility electricity generation. The selected modular HTGR concept has the reactor core and heat transport systems housed in separate steel vessels. This paper highlights the steam generator design considerations for the reference plant, and includes a discussion of the major features of the heat exchanger concept and the technology base existing in the U.S

  6. Development of structural design procedure of plate-fin heat exchanger for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Mizokami, Yorikata, E-mail: yorikata_mizokami@mhi.co.jp [Mitsubishi Heavy Industries, Ltd., 1-1, Wadasaki-cho 1-Chome, Hyogo-ku, Kobe 652-8585 (Japan); Igari, Toshihide [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Kawashima, Fumiko [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan); Sakakibara, Noriyuki [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Tanihira, Masanori [Mitsubishi Heavy Industries, Ltd., 16-5, Konan 2-Chome, Minato-ku, Tokyo 108-8215 (Japan); Yuhara, Tetsuo [The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hiroe, Tetsuyuki [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan)

    2013-02-15

    Highlights: ► We propose high temperature structural design procedure for plate-fin heat exchanger ► Allowable stresses for brazed structures will be newly discussed ► Validity of design procedure is confirmed by carrying out partial model tests ► Proposed design procedure is applied to heat exchangers for HTGR. -- Abstract: Highly efficient plate-fin heat exchanger for application to HTGR has been focused on recently. Since this heat exchanger is fabricated by brazing a lot of plates and fins, a new procedure for structural design of brazed structures in the HTGR temperature region up to 950 °C is required. Firstly in this paper influences on material strength due to both thermal aging during brazing process and helium gas environment were experimentally examined, and failure mode and failure limit of brazed side-bar structures were experimentally clarified. Secondly allowable stresses for aging materials and brazed structures were newly determined on the basis of the experimental results. For the purpose of validating the structural design procedure including homogenization FEM modeling, a pressure burst test and a thermal fatigue test of partial model for plate-fin heat exchanger were carried out. Finally, results of reference design of plate-fin heat exchangers of recuperator and intermediate heat exchanger for HTGR plant were evaluated by the proposed design criteria.

  7. Prospects of HTGR process heat application and role of HTTR

    International Nuclear Information System (INIS)

    Shiozawa, S.; Miyamoto, Y.

    2000-01-01

    At Japan Atomic Energy Research Institute, an effort on development of process heat application with high temperature gas cooled reactor (HTGR) has been continued for providing a future clean alternative to the burning of fossil energy for the production of industrial process heat. The project is named 'HTTR Heat Utilization Project', which includes a demonstration of hydrogen production using the first Japanese HTGR of High Temperature Engineering Test Reactor (HTTR). In the meantime, some countries, such as China, Indonesia, Russia and South Africa are trying to explore the HTGR process heat application for industrial use. One of the key issues for this application is economy. It has been recognized for a long time and still now that the HTGR heat application system is not economically competitive to the current fossil ones, because of the high cost of the HTGR itself. However, the recent movement on the HTGR development, as represented by South Africa Pebble Beds Modular Reactor (SA-PBMR) Project, has revealed that the HTGRs are well economically competitive in electricity production to fossil fuel energy supply under a certain condition. This suggests that the HTGR process heat application will also possibly get economical in the near future. In the present paper, following a brief introduction describing the necessity of the HTGRs for the future process heat application, Japanese activities and prospect of the development on the process heat application with the HTGRs are described in relation with the HTTR Project. In conclusion, the process heat application system with HTGRs is thought technically and economically to be one of the most promising applications to solve the global environmental issues and energy shortage which may happen in the future. However, the commercialization for the hydrogen production system from water, which is the final goal of the HTGR process heat application, must await the technology development to be completed in 2030's at the

  8. Information exchange mainly on HTGR operation and maintenance technique between JAEA and INET in 2005

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Hino, Ryutaro; Yu Suyuan

    2006-06-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation with emphasis on HTGR operation and maintenance techniques between JAEA and INET and outlines cooperation activities during the fiscal year 2005. (author)

  9. Operating experience of gas bearing helium circulators in HTGR development facility

    International Nuclear Information System (INIS)

    Shimomura, H.; Kawaji, S.; Fujisaki, K.; Ihizuka, T.

    1988-01-01

    The large scale helium gas test facility (HENDEL) has been constructed and operated since March 1982 at the Japan Atomic Energy Research Institute to develop HTGR components. The five electric driven gas circulators with dynamic gas bearings are used to circulate the helium gas of 4MPa and 400 deg. C in loops for their compactness, gas tightness, easy maintenance and free from gas contamination. All of these circulators are variable speed types of 3,000 to 12,000 rpm and have the same gas bearings and electric motors. The four machines among them are equipped with centrifugal impeller and one other machine has regenerative type, and the weight of both type rotors are nearly the same. After the troubles and repairing, both type of circulators were tested and the vibration characteristics were measured as preventing maintenance. From the test and measurements of the circulators, it was presumed that the first trouble on regenerative type was caused from excess unbalance force by falling off of a small pin from the rotating part and the second severe trouble on it was caused by the whipping in gas bearing. The static load on tilting pads indicated close relations to occurrence of the whirling through the measurements. It is recognized that fine balancing of the rotors and delicate clearance adjustment of the bearings are very important for the rotor stability and that the mechanism should be designed and machined so precise as to be adjustable. As the gas bearing would be damaged in an instantaneously short time, the monitoring technique for it should be so fast and predictive as to prevent serious damage. Through the tests, the vibration spectrum monitoring method seems to be predictive and useful for early detection of the shaft instability. It will be concluded that the gas bearing machine is an excellent system in its design philosophy, however, it also needs highly precise machining and delicate maintenance technique. 4 refs, 10 figs, 1 tab

  10. Development of a system code for transient analysis in a HTGR

    International Nuclear Information System (INIS)

    Lee, Tae Beom

    2004-02-01

    A GAMMA (GAs Multi-component Multi-dimensional Analysis) code is developed for transient analysis and air ingress analysis in High Temperature Gas-cooled Reactors (HTGR). The PBMR of ESKOM is selected as a reference plant for the High Temperature Gas-cooled Reactor here, which uses a direct helium cycle and pebble fuel. Physical models included in GAMMA are the pebble conduction model, radiation heat transfer model, point kinetics model, decay heat model, and component models for break flow, valve, pump, cooler, power conversion unit model. The temperature distribution and the flow distribution of the PBMR are calculated for initial and accident core in the present study. In the accident analysis, typical design basis accident (DBA), including the load transient accident and depressurization accident into the system are selected and analyzed in detail. The predictions by GAMMA for PBMR at 100% power are compared with those by VSOP and PBR S IM. It turns out that the temperature in the upper region in the third channel predicted by GAMMA is about 62 .deg. C at maximum higher than that by VSOP, but is pretty close to that by PBR S IM. The center temperature of the fuel shows that that predicted by considering swelling effect is higher than that without swelling effect by about 10 .deg. C. The net efficiency of direct system is higher than that of indirect system due to an effect of the circulator power. The transient capability of GAMMA is validated through analytical solution and PBR S IM analyzing the depressurization (Loss Of Coolant Accident, LOCA) and load transient accident. After the LOCA the system pressure decreases dramatically from 8MPa to 0.4MPa within 2 sec. After the PI (Proportional-plus-Integral) controller senses that the power shaft is over the set-point of 3,600 rpm, the bypass valve makes shaft speed back to the set-point

  11. Consideration on developing of leaked inflammable gas detection system for HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Nakamura, Masashi

    1999-09-01

    One of most important safety design issues for High Temperature Gas-cooled Reactor (HTGR) - Hydrogen Production System (HTGR-HPS) is to ensure reactor safety against fire and explosion at the hydrogen production plant. The inflammable gas mixture in the HTGR-HPS does not use oxygen in any condition and are kept in high pressure in the normal operation. The piping system and/or heat transfer tubes which have the potential possibility of combustible materials ingress into the Reactor Building (R/B) due to the failure are designed to prevent the failure against any events. Then, it is not necessary to consider their self-combustion in vessels nor leakage in the R/B. The only one case which we must consider is the ex-building fire or explosion caused by their leakage from piping or vessel. And it is important to mitigate their effects by means of early detection of gas leakage. We investigated our domestic standards on gas detection, applications of gas detectors, their detection principles, performance, sensitivity, reliability, their technical trends, and so on. We proposed three gas detection systems which may be applied in HTGR-HPS. The first one is the universal solid sensor system; it may be applied when there is no necessity to request their safety credits. The second is the combination of the improved solid sensor system and enhanced beam detector system; it may be applied when it is necessary to request their safety credit. And the third is the combination of the universal solid sensor system and the existing beam detector system; it may be applied when the plant owner request higher detector sensitivity than usual, from the view point of public acceptance, though there is not necessity to request their safety credits. To reduce the plant cost by refusing of safety credits to the gas leakage detection system, we proposed that the equipment required to isolate from others should be installed in the inertrized compartments. (author)

  12. Safety-related Innovative Nuclear Reactor Technology Elements R and D (SINTER) Network and Global HTGR R and D Network (GHTRN). Strategic benefits of international networking

    International Nuclear Information System (INIS)

    Von Lensa, W.

    1998-01-01

    The nuclear industries and the nuclear research and development (R and D) programmes world-wide have undergone considerable changes over recent years which have resulted in the formation of international industrial consortiums on the one hand and the need for synergistic collaboration in the R and D area due to the reductions of national R and D activities in the nuclear field on the other hand. International networking starting from precompetitive medium- or long-term oriented R and D could be an efficient mean to overcome the problems nuclear energy is facing today with respect to the lack of public acceptance and economic attractivity in a joint effort. Additional motivation is provided by the fact that there is not only a globalisation of markets but also a 'globalisation of problems' to be addressed internationally like reductions of environmental impacts and long-term availability of economic energy supply. The tools for telecommunication and telecollaboration are evolving in parallel and offer better conditions for closer collaboration of different R and D teams at distant locations than ever before. It is obvious that these trends and boundary conditions will drastically influence the structures of collaboration not only in the industries, but for R and D on an international level, too. The chances emerging from the creation of a European Union and from the globalisation trends have to be converted into strategic benefits by active response on these 'historic changes'. New initiatives have been undertaken in Europe to push for innovations of nuclear reactor technologies via international R and D Networks under the European R and D Framework Programmes (FWP). Innovative approaches are already addressed with limited funding under the actual 4th FWP and should be extended for complementing the commercial efforts on evolutionary LWR concepts by medium- and long-term oriented innovations and R and D. The MICHELANGELO initiative as well as the EU-funded Concerted

  13. Innovative and basic researches for high temperature technologies at HTTR

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    1995-01-01

    The HTTR is the first HTGR which is under construction at JAERI. The objectives of the HTTR are to establish basic technologies for HTGRs, to upgrade technologies for HTGRs and to conduct innovative and basic researches for high temperature technologies. The first two are concerned with HTGR developments. The last one is not necessarily for HTGR developments, but for future innovative researches which are expected to be applied to various technologies. (author)

  14. HTGR R and D programs

    International Nuclear Information System (INIS)

    Neylan, A.J.; Brisbois, J.

    1979-01-01

    A significant R and D program (including in certain cases full-scale prototype tests) formed the basis for the design and key elements in the foregoing projects and is continuing to provide a basis for generic design development. HTGR R and D programs are both privately and government sponsored. This paper provides an overview of the background, current status and outstanding design issues/problems remaining in the area of NSS Plant, Materials and Fuel. The specific objectives and scope of all recently completed, ongoing and planned major HTGR R and D programs are presented

  15. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  16. HTGR Application Economic Model Users' Manual

    International Nuclear Information System (INIS)

    Gandrik, A.M.

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  17. Heat exchanger design considerations for high temperature gas-cooled reactor (HTGR) plants

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.; Van Hagan, T.H.; King, J.H.; Spring, A.H.

    1980-02-01

    Various aspects of the high-temperature heat exchanger conceptual designs for the gas turbine (HTGR-GT) and process heat (HTGR-PH) plants are discussed. Topics include technology background, heat exchanger types, surface geometry, thermal sizing, performance, material selection, mechanical design, fabrication, and the systems-related impact of installation and integration of the units in the prestressed concrete reactor vessel. The impact of future technology developments, such as the utilization of nonmetallic materials and advanced heat exchanger surface geometries and methods of construction, is also discussed

  18. US HTGR Deployment Challenges and Strategies HTR 2014 Conference Proceedings

    International Nuclear Information System (INIS)

    Shahrokhi, Farshid; Lommers, Lewis; Mayer, John III; Southworth, Finis

    2014-01-01

    The NGNP Industry Alliance (NIA), LLC (www.NGNPAliance.org), is a consortium of high temperature gas-cooled reactor (HTGR) designers, utility plant owner/operators, critical plant hardware suppliers, and end-user groups. The NIA is promoting the design and commercialization of a HTGR for industrial process heat applications and electricity generation. In 2012, NIA selected the AREVA Steam Cycle HTGR (SC-HTGR) as its primary reactor design choice for its first implementation in mid -2020s. The SC-HTGR can produce 625 MWth of process steam at 550°C or 275 MWe of electricity in a co-generation configuration. The standard plant is a four-pack of 625MWth modules providing steam and electricity co-generation. The safety characteristics of the HTGR technology allows close colocation of the nuclear plant and the industrial end-user. The plant design also allows the process steam used for the industrial applications to be completely segregated and separate from primary Helium coolant and the secondary nuclear steam supply systems. The process steam at temperatures up to 550°C is provided for a variety of direct or indirect applications. End-user requirements are met for a wide range of steam flow, pressure and temperature conditions. Very high reliability (>99.99%) is maintained by the use of multi-reactor modules and conventional gas-fired back-up. Intermittent steam loads can also be efficiently met through co-generation of electricity for internal use or external distribution and sale. The NIA technology development and deployment challenges are met with strategies that provide investment and partnerships opportunities for plant design and equipment supply, and by cooperative government research, sovereign or private investment, and philanthropic opportunities. Our goal is to create intellectual property (IP) and investor value as the design matures and a license is obtained. The strategy also includes involvement of the initial customer in sharing the value created in

  19. FY 1981 HTGR program summary-level program outline (revision 1/30/81)

    International Nuclear Information System (INIS)

    1981-01-01

    The objective of the DOE HTGR Program is the development of technology for the most important HTGR applications. Through this support, DOE seeks to encourage private sector initiatives which will lead to the development of commercially attractive HTGR applications that concurrently support national energy goals. Currently perceived as important to national energy goals are applications that primarily address the process heat market with a view toward reduction of national requirements for oil, natural gas and coal. A high priority during FY 1981, therefore, will be to further identify and define the details of the Technology Program so as to assure that it is both necessary and sufficient to provide the required support. In the establishment of a supportive Technology Program, key elements which will be addressed are as follows: studies will be conducted to further identify and characterize important unique HTGR applications and to evaluate their potential in the context of market opportunities, utility/user interest, and national objectives to develop new energy supply options; based upon the configurations and operating characteristics projected for selected applications, Technology Program requirements must be identified to support development, verification, and ultimately licensing of components and systems comprising the facilities of interest; and in the context of limited resources, sufficient analysis and evaluation must be accomplished so as to prioritize technology elements in accordance with appropriately developed criteria

  20. Is there a chance for commercializing the HTGR in Indonesia?

    International Nuclear Information System (INIS)

    Arbie, B.; Akhmad, Y.R.

    1997-01-01

    Indonesia is one of the developing countries in Asia-Pacific regions that actively improving or at least continuously maintain its economic growth. For this purpose, to fulfill a domestic energy demand is a vital role to achieve the goals of Indonesian development. Pertamina, the state-owned oil company, has recently called for a significant increase in domestic gas consumption in a bid to delay Indonesia becoming a net oil importer. Therefore, there is good chance for gas industry to increase their roles in generating electricity and producing automotive fuels. The latter is an interesting field of study to be correlated with the utilization of HTGR technology where the heat source could be used in the reforming process to convert natural gas into syngas as feed material in producing automotive fuels. Since the end of 1995 National Atomic Energy Agency of Indonesia (BATAN) has made an effort to increase its role in the national energy program and Batan is also able to revolve in the Giant Natuna Project or the other natural gas field projects to promote syngas production applying HTGR technology. A series of meeting with Pertamina and BPPT (the Agency for the Assessment and Application of Technology) had been performed to promote utilization of HTGR technology in the Natuna Project. In this paper governmental policy for natural gas production that may closely relate to syngas production and preliminary study for production of syngas at the Natuna Project will be discussed. It is concluded that to gain the possibility of the HTGR acceptance in the project a scenario for production and distribution should be arranged in other to achieve the break even point for automotive fuel price at about 10 US$/GJ (fuel price in 1996) in Indonesia. (author)

  1. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs

  2. Development of a surveillance robot for dimensional and visual inspection of fuel and reflector elements from the Fort St. Vrain HTGR

    International Nuclear Information System (INIS)

    Wallroth, C.F.; Marsh, N.I.; Miller, C.M.; Saurwein, J.J.; Smith, T.L.

    1979-11-01

    A robotic device has been developed for dimensional and visual inspection of irradiated HTGR core components. The robot consists of a rotary table and a two-finger probe, driven by stepping motors, and four remotely controlled television cameras. Automated operation is accomplished via minicomputer control. A total of 51 irradiated fuel and reflector elements were inspected at a fraction of the time and cost required for conventional methods

  3. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  4. Development of the krypton absorption in liquid carbon dioxide (KALC) process for HTGR off-gas reprocessing

    International Nuclear Information System (INIS)

    Glass, R.W.; Beaujean, H.W.R.; Cochran, H.D. Jr.; Haas, P.A.; Levins, D.M.; Woods, W.M.

    1975-01-01

    Reprocessing of High-Temperature Gas-Cooled Reactor (HTGR) fuel involves burning of the graphite-matrix elements to release the fuel for recovery purposes. The resulting off-gas is primarily CO 2 with residual amounts of N 2 , O 2 , and CO, together with fission products. Trace quantities of krypton-85 must be recovered in a concentrated form from the gas stream, but processes commonly employed for rare gas removal and concentration are not suitable for use with off-gas from graphite burning. The KALC (Krypton Absorption in Liquid CO 2 ) process employs liquid CO 2 as a volatile solvent for the krypton and is, therefore, uniquely suited to the task. Engineering development of the KALC process is currently under way at the Oak Ridge National Laboratory (ORNL) and the Oak Ridge Gaseous Diffusion Plant (ORGDP). The ORNL system is designed for close study of the individual separation operations involved in the KALC process, while the ORGDP system provides a complete pilot facility for demonstrating combined operations on a somewhat larger scale. Packed column performance and process control procedures have been of prime importance in the initial studies. Computer programs have been prepared to analyze and model operational performance of the KALC studies, and special sampling and in-line monitoring systems have been developed for use in the experimental facilities. (U.S.)

  5. CHAP: a composite nuclear plant simulation program applied to the 3000 MW(t) HTGR

    International Nuclear Information System (INIS)

    Secker, P.A.; Bailey, P.G.; Gilbert, J.S.; Willcutt, G.J.E. Jr.; Vigil, J.C.

    1977-01-01

    The Composite HTGR Analysis Program (CHAP) is a general systems analysis program which has been developed at LASL. The program is being used for simulating large HTGR nuclear power plant operation and accident transients. The general features and analytical methods of the CHAP program are discussed. Features of the large HTGR model and results of model transients are also presented

  6. Status of the research and development at JAERI on the C/C composite control rod for HTGR

    International Nuclear Information System (INIS)

    Eto, M.; Ishiyama, S.; Ugachi, H.

    1996-01-01

    Control rod elements made of carbon-carbon composites were prepared and fracture-tested, aiming at the development of the more heat-resistant control rod which may impose the less restriction on the operation and shutdown of the HTGR. The control rod elements included pellet holder, lace truck and pin of PAN- or pitch-based composite material. On the basis of the results of fracture tests on the unirradiated elements, those made of PAN-based material were selected for an irradiation experiment. The irradiation was carried out in JRR-3 at 900 ± 50 deg. C to a maximum neutron fluence of 1 x 10 25 n/m 2 (E>29fJ). Fracture tests of the elements indicated that both fracture load and fracture displacement enough to assure the integrity of a control rod were maintained even after the irradiation. It was also found that both fracture strength and strain increased when applied load was parallel to the fiber felt plane, whereas the strength increase and strain decrease were observed for the load applied against the plane. (author). 11 refs, 16 figs

  7. HTGR fuel development: loading of uranium on carboxylic acid cation-exchange resins using solvent extraction of nitrate

    International Nuclear Information System (INIS)

    Haas, P.A.

    1975-09-01

    The reference fuel kernel for recycle of 233 U to HTGR's (High-Temperature Gas-Cooled Reactors) is prepared by loading carboxylic acid cation-exchange resins with uranium and carbonizing at controlled conditions. The purified 233 UO 2 (NO 3 ) 2 solution from a fuel reprocessing plant contains excess HNO 3 (NO 3 - /U ratio of approximately 2.2). The reference flowsheet for a 233 U recycle fuel facility at Oak Ridge uses solvent extraction of nitrate by a 0.3 M secondary amine in a hydrocarbon diluent to prepare acid-deficient uranyl nitrate. This nitrate extraction, along with resin loading and amine regeneration steps, was demonstrated in 14 runs. No significant operating difficulties were encountered. The process is controlled via in-line pH measurements for the acid-deficient uranyl nitrate solutions. Information was developed on pH values for uranyl nitrate solution vs NO 3 - /U mole ratios, resin loading kinetics, resin drying requirements, and other resin loading process parameters. Calculations made to estimate the capacities of equipment that is geometrically safe with respect to control of nuclear criticality indicate 100 kg/day or more of uranium for single nitrate extraction lines with one continuous resin loading contactor or four batch loading contactors. (auth)

  8. HTGR market assessment: interim report

    International Nuclear Information System (INIS)

    1979-09-01

    The purpose of this Assessment is to establish the utility perspective on the market potential of the HTGR. The majority of issues and conclusions in this report are applicable to both the HTGR-Gas Turbine (GT) and the HTGR-Steam Cycle (SC). This phase of the HTGR Market Assessment used the HTGR-GT as the reference design as it is the present focus of the US HTGR Program. A brief system description of the HTGR-GT is included in Appendix A. This initial report provides the proposed structure for conducting the HTGR Market Assessment plus preliminary analyses to establish the magnitude and nature of key factors that affect the HTGR market. The HTGR market factors and their relationship to the present HTGR Program are discussed. This report discusses two of these factors in depth: economics and water availability. The water availability situation in the US and its impact on the potential HTGR market are described. The approach for applying the HTGR within a framework of utility systems analyses is presented

  9. Future Development of Modular HTGR in China after HTR-PM

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Wang, Haitao; Dong Yujie; Li Fu

    2014-01-01

    The modular high temperature gas-cooled reactor (MHTGR) is an inherently safe nuclear energy technology for efficient electricity generation and process heat applications. The MHTGR is promising in China as it may replace fossil fuels in broader energy markets. In line with China’s long-term development plan of nuclear power, the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University developed and designed a MHTGR demonstration plant, named high-temperature gas-cooled reactor-pebble bed module (HTR-PM). The HTR-PM came into the construction phase at the end of 2012. The HTR-PM aims to demonstrate safety, economic potential and modularization technologies towards future commercial applications. Based on experiences obtained from the HTR-PM project with respect to design, manufacture, construction, licensing and project management, a further step aiming to promote commercialization and market applications of the MHTGR is expected. To this purpose, INET is developing a commercialized MHTGR named HTR-PM600 and a conceptual design is under way accordingly. HTR-PM600 is a pebble-bed MHTGR power generation unit with a six-pack of 250MWth reactor modules. The objective is to cogenerate electricity and process heat flexibly and economically in order to meet a variety of market needs. The design of HTR-PM600 closely follows HTR-PM with respect to safety features, system configuration and plant layout. HTR-PM600 has the six modules feeding one steam turbine to generate electricity with capacity to extract high temperature steam from various interfaces of the turbine for further process heat applications. A standard plant consists of two HTR-PM600 units. Based on the economic information of HTR-PM, a preliminary study is carried out on the economic prospect of HTR-PM600. (author)

  10. INVESTIGATION ON THERMAL-FLOW CHARACTERISTICS OF HTGR CORE USING THERMIX-KONVEK MODULE AND VSOP'94 CODE

    OpenAIRE

    Sudarmono Sudarmono

    2015-01-01

    The failure of heat removal system of water-cooled reactor such as PWR in Three Mile Islands and Fukushima Daiichi BWR makes nuclear society starting to consider the use of high temperature gas-cooled reactor (HTGR). Reactor Physics and Technology Division – Center for Nuclear Reactor Safety and Technology  (PTRKN) has tasks to perform research and development on the conceptual design of cogeneration gas cooled reactor with medium power level of 200 MWt. HTGR is one of nuclear energy generati...

  11. Reprocessing yields and material throughput: HTGR recycle demonstration facility

    International Nuclear Information System (INIS)

    Holder, N.; Abraham, L.

    1977-08-01

    Recovery and reuse of residual U-235 and bred U-233 from the HTGR thorium-uranium fuel cycle will contribute significantly to HTGR fuel cycle economics and to uranium resource conservation. The Thorium Utilization National Program Plan for HTGR Fuel Recycle Development includes the demonstration, on a production scale, of reprocessing and refabrication processes in an HTGR Recycle Demonstration Facility (HRDF). This report addresses process yields and material throughput that may be typically expected in the reprocessing of highly enriched uranium fuels in the HRDF. Material flows will serve as guidance in conceptual design of the reprocessing portion of the HRDF. In addition, uranium loss projections, particle breakage limits, and decontamination factor requirements are identified to serve as guidance to the HTGR fuel reprocessing development program

  12. HTGR safety research program. Progress report, April--June 1975

    International Nuclear Information System (INIS)

    Kirk, W.L.

    1975-09-01

    Progress in HTGR safety research is reported under the following headings: fission product technology; primary coolant impurities; structural investigation; safety instrumentation and control systems; phenomena modeling and systems analysis. (JWR)

  13. The essential trends of HGR development in the Russian Federation

    International Nuclear Information System (INIS)

    Sukharev, Yu.P.

    1997-01-01

    The up-to-day Russian concept of HTGR technology development is presented in paper. At present it reduces to the following: the modular HTGR measured up to modern safety requirements with pebble bed core and spherical fuel elements of up to 200 MW thermal power have being developed for production of process heat; for electricity production with maximal efficiency through gas turbine cycle the plant design with modular HTGR containing prismatic block annular core has being carried out. Conceptual design of GT-MHR reactor plant of 600 MW thermal, developing with General Atomics cooperation is the base of Russia activity in HTGR technology in current time

  14. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  15. High temperature gas cooled reactor technology development. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-12-01

    The successful introduction of an advanced nuclear power plant programme depends on many key elements. It must be economically competitive with alternative sources of energy, its technical development must assure operational dependability, the support of society requires that it be safe and environmentally acceptable, and it must meet the regulatory standards developed for its use and application. These factors interrelate with each other, and the ability to satisfy the established goals and criteria of all of these requirements is mandatory if a country or a specific industry is to proceed with a new, advanced nuclear power system. It was with the focus on commercializing the high temperature gas cooled reactor (HTGR) that the IAEA's International Working Group on Gas Cooled Reactors recommended this Technical Committee Meeting (TCM) on HTGR Technology Development. Over the past few years, many Member States have instituted a re-examination of their nuclear power policies and programmes. It has become evident that the only realistic way to introduce an advanced nuclear power programme in today's world is through international co-operation between countries. The sharing of expertise and technical facilities for the common development of the HTGR is the goal of the Member States comprising the IAEA's International Working Group on Gas Cooled Reactors. This meeting brought together key representatives and experts on the HTGR from the national organizations and industries of ten countries and the European Commission. The state electric utility of South Africa, Eskom, hosted this TCM in Johannesburg, from 13 to 15 November 1996. This TCM provided the opportunity to review the status of HTGR design and development activities, and especially to identify international co-operation which could be utilized to bring about the commercialization of the HTGR

  16. HTGR gas turbine power plant preliminary design

    International Nuclear Information System (INIS)

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  17. Peach Bottom HTGR decommissioning and component removal

    International Nuclear Information System (INIS)

    Kohler, E.J.; Steward, K.P.; Iacono, J.V.

    1977-07-01

    The prime objective of the Peach Bottom End-of-Life Program was to validate specific HTGR design codes and predictions by comparison of actual and predicted physics, thermal, fission product, and materials behavior in Peach Bottom. Three consecutive phases of the program provide input to the HTGR design methods verifications: (1) Nondestructive fuel and circuit gamma scanning; (2) removal of steam generator and primary circuit components; and (3) Laboratory examinations of removed components. Component removal site work commenced with establishment of restricted access areas and installation of controlled atmosphere tents to retain relative humidity at <30%. A mock-up room was established to test and develop the tooling and to train operators under simulated working conditions. Primary circuit ducting samples were removed by trepanning, and steam generator access was achieved by a combination of arc gouging and grinding. Tubing samples were removed using internal cutters and external grinding. Throughout the component removal phase, strict health physics, safety, and quality assurance programs were implemented. A total of 148 samples of primary circuit ducting and steam generator tubing were removed with no significant health physics or safety incidents. Additionally, component removal served to provide access fordetermination of cesium plateout distribution by gamma scanning inside the ducts and for macroexamination of the steam generator from both the water and helium sides. Evaluations are continuing and indicate excellent performance of the steam generator and other materials, together with close correlation of observed and predicted fission product plateout distributions. It is concluded that such a program of end-of-life research, when appropriately coordinated with decommissioning activities, can significantly advance nuclear plant and fuel technology development

  18. Nuclear closed-cycle gas turbine (HTGR-GT): dry cooled commercial power plant studies

    International Nuclear Information System (INIS)

    McDonald, C.F.; Boland, C.R.

    1979-11-01

    Combining the modern and proven power conversion system of the closed-cycle gas turbine (CCGT) with an advanced high-temperature gas-cooled reactor (HTGR) results in a power plant well suited to projected utility needs into the 21st century. The gas turbine HTGR (HTGR-GT) power plant benefits are consistent with national energy goals, and the high power conversion efficiency potential satisfies increasingly important resource conservation demands. Established technology bases for the HTGR-GT are outlined, together with the extensive design and development program necessary to commercialize the nuclear CCGT plant for utility service in the 1990s. This paper outlines the most recent design studies by General Atomic for a dry-cooled commercial plant of 800 to 1200 MW(e) power, based on both non-intercooled and intercooled cycles, and discusses various primary system aspects. Details are given of the reactor turbine system (RTS) and on integrating the major power conversion components in the prestressed concrete reactor vessel

  19. HTGR Application Economic Model Users' Manual

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  20. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements.

  1. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  2. Continuous solvent extraction feed adjustment for HTGR fuel reprocessing. Interim development report

    International Nuclear Information System (INIS)

    Olguin, L.J.

    1978-06-01

    The two-cycle Acid-Thorex solvent extraction process requires that the feed stream to each thorium cycle be processed to reduce its nitric acid concentration (feed adjustment). This interim development report presents the results of bench-scale and pilot-plant-scale feed adjustment experiments using a continuous mode of operation. An examination of formic acid denitration and fluoride ion volatilization is also included

  3. Regulatory Framework of Safety for HTGR

    International Nuclear Information System (INIS)

    Huh, Chang Wook; Suh, Nam Duk

    2011-01-01

    Recent accident in Fukushima Daiichi plant in Japan makes big impacts on the future of nuclear business. Many countries are changing their nuclear projects and increased safety of nuclear plants is asked for from the public. Without providing safety the society accepts, it might be almost impossible to build new plants further. In this sense high temperature gas-cooled reactor (HTGR) which is under development needs to be licensed reflecting this new expectation regarding safety. It means we should have higher level of safety goal and a systematic regulatory framework to assure the safety. In our previous paper, we evaluated the current safety goal and design practice in view of this new safety expectation after Fukushima accident. It was argued that a top-down approach starting from safety goal is necessary to develop safety requirements or to assure safety. Thus we need to propose an ultimate safety goal public accepts and then establish a systematic regulatory framework. In this paper we are going to provide a conceptual regulatory framework to guarantee the safety of HTGR. Section 2 discusses the recent trend of IAEA safety requirements and then summarize the HTGR design approach. Incorporating these discussions, we propose a conceptual framework of regulation for safety of HTGR

  4. FY1983 HTGR summary level program plan

    International Nuclear Information System (INIS)

    1983-01-01

    The major focus and priority of the FY1983 HTGR Program is the development of the HTGR-SC/C Lead Project through one of the candidate lead utilities. Accordingly, high priority will be given to work described in WBS 04 for site and user specific studies toward the development of the Lead Project. Asessment of advanced HTGR systems will continue during FY1983 in accordance with the High Temperature Process Heat (HTPH) Concept Evaluation Plan. Within the context of that plan, the assessment of the monolithic HTPH concepts has been essentially completed in FY1982 and FY1983 activities and will be limited to documentation only. the major advanced HTGR systems efforts in FY1983 will be focused on the further definition of the Modular Reactor Systems concepts in both the reforming (MRS-R) and Steam Cycle/Cogeneration 9MRS-SC/C) configurations in WBS 41. The effort will concentrate upon key technical issues and trade studies oriented to reduction in expected cost and schedule duration. With regard to the latter, the most significant will be trade study addressing the degree of modularization of reactor plant structures. particular attention will be given to the confinement building which currently defines the critical path for construction

  5. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1980

    International Nuclear Information System (INIS)

    1981-08-01

    Research activities are described concerning HTGR chemistry; fueled graphite development; prestressed concrete pressure vessel development; structural materials; HTGR graphite studies; HTR core evaluation; reactor physics; shielding; application and project assessments; and HTR Core Flow Test Loop studies

  6. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    Research activities are described concerning HTGR chemistry; fueled graphite development; prestressed concrete pressure vessel development; structural materials; HTGR graphite studies; HTR core evaluation; reactor physics; shielding; application and project assessments; and HTR Core Flow Test Loop studies.

  7. Development status on hydrogen production technology using high-temperature gas-cooled reactor at JAEA, Japan

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Hino, Ryutaro

    2006-01-01

    The high-temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is attractive due to its unique capability of producing high temperature helium gas and its fully inherent reactor safety. In particular, hydrogen production using the nuclear heat from HTGR (up to 900 deg. C) offers one of the most promising technological solutions to curb the rising level of CO 2 emission and resulting risk of climate change. The interests in HTGR as an advanced nuclear power source for the next generation reactor, therefore, continue to rise. This is represented by the Japanese HTTR (High-Temperature Engineering Test Reactor) Project and the Chinese HTR-10 Project, followed by the international Generation IV development program, US nuclear hydrogen initiative program, EU innovative HTR technology development program, etc. To enhance nuclear energy application to heat process industries, the Japan Atomic Energy Agency (JAEA) has continued extensive efforts for development of hydrogen production system using the nuclear heat from HTGR in the framework of the HTTR Project. The HTTR Project has the objectives of establishing both HTGR technology and heat utilization technology. Using the HTTR constructed at the Oarai Research and Development Center of JAEA, reactor performance and safety demonstration tests have been conducted as planned. The reactor outlet temperature of 950 deg. C was successfully achieved in April 2004. For hydrogen production as heat utilization technology, R and D on thermo-chemical water splitting by the 'Iodine-Sulfur process' (IS process) has been conducted step by step. Proof of the basic IS process was made in 1997 on a lab-scale of hydrogen production of 1 L/h. In 2004, one-week continuous operation of the IS process was successfully demonstrated using a bench-scale apparatus with hydrogen production rate of 31 L/h. Further test using a pilot scale facility with greater hydrogen production rate of 10 - 30 m 3 /h is planned as

  8. HTGR safety philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Joksimovic, V.; Fisher, C. R. [General Atomic Co., San Diego, CA (USA)

    1981-01-15

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity.

  9. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joksimovic, V.; Fisher, C.R.

    1981-01-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity. (author)

  10. HTGR Fuel performance basis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600 0 C, and complete fuel failure occurs at 2660 0 C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents

  11. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joskimovic, V.; Fisher, C.R.

    1980-08-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the US. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity

  12. Small demonstration HTGR concept

    International Nuclear Information System (INIS)

    Kiryushin, A.I.

    1989-01-01

    Currently the USSR is investigating two high-temperature gas-cooled reactors. The first plant is the VGM, a modular type HTGR with power rating of 180-250 MWth. The second plant is the VG-400 with 1000 MWth and a prestressed concrete reactor vessel. The paper contains the description of the VGM design and its main components. (author). 1 fig., 1 tab

  13. HTGR fuel performance basis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-01-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600 0 C, and complete fuel failure occurs at 2660 0 C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents. The slow release of fission products over hundreds of hours allows for decay of short-lived isotopes. The slow and limited release of fission products under HTGR accident conditions results in very low off-site doses. The slow nature of the accident provides more time for operator action to mitigate the accident and for local and state authorities to respond. These features can be used to take advantage of close-in siting for process applications, flexibility in site selection, and emergency planning

  14. Development of Coated Particle Fuel Technology

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, B. G.; Kim, S. H.

    2007-06-01

    Uranium kernel fabrication technology using a wet chemical so-gel method, a key technology in the coated particle fuel area, is established up to the calcination step and the first sintering of UO2 kernel was attempted. Experiments on the parametric study of the coating process using the surrogate ZrO2 kernel give the optimum conditions for the PyC and SiC coating layer and ZrC coating conditions were obtained for the vaporization of the ZrCl4 precursor and coating condition from ZrC coating experiments using plate-type graphite substrate. In addition, by development of fuel performance analysis code a part of the code system is completed which enables the participation to the benchmark calculation and comparison in the IAEA collaborated research program. The technologies for irradiation and post irradiation examination, which are important in developing the HTGR fuel technology of its first kind in Korea was started to develop and, through a feasibility study and preliminary analysis, the technologies required to be developed are identified for further development as well as the QC-related basic technologies are reviewed, analyzed and identified for the own technology development. Development of kernel fabrication technology can be enhanced for the remaining sintering technology and completed based on the technologies developed in this phase. In the coating technology, the optimum conditions obtained using a surrogate ZrO2 kernel material can be applied for the uranium kernel coating process development. Also, after completion of the code development in the next phase, more extended participation to the international collaboration for benchmark calculation can be anticipated which will enable an improvement of the whole code system. Technology development started in this phase will be more extended and further focused on the detailed technology development to be required for the related technology establishment

  15. The investigation of HTGR fuel regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, L N; Bertina, L E; Popik, V P; Isakov, V P; Alkhimov, N B; Pokhitonov, Yu A

    1985-07-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning.

  16. The investigation of HTGR fuel regeneration process

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Bertina, L.E.; Popik, V.P.; Isakov, V.P.; Alkhimov, N.B.; Pokhitonov, Yu.A.

    1985-01-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning

  17. Volume 1. Probabilistic analysis of HTGR application studies. Technical discussion

    International Nuclear Information System (INIS)

    May, J.; Perry, L.

    1980-01-01

    The HTGR Program encompasses a number of decisions facing both industry and government which are being evaluated under the HTGR application studies being conducted by the GCRA. This report is in support of these application studies, specifically by developing comparative probabilistic energy costs of the alternative HTGR plant types under study at this time and of competitive PWR and coal-fired plants. Management decision analytic methodology was used as the basis for the development of the comparative probabilistic data. This study covers the probabilistic comparison of various HTGR plant types at a commercial development stage with comparative PWR and coal-fired plants. Subsequent studies are needed to address the sequencing of HTGR plants from the lead plant to the commercial plants and to integrate the R and D program into the plant construction sequence. The probabilistic results cover the comparison of the 15-year levelized energy costs for commercial plants, all with 1995 startup dates. For comparison with the HTGR plants, PWR and fossil-fired plants have been included in the probabilistic analysis, both as steam electric plants and as combined steam electric and process heat plants

  18. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    International Nuclear Information System (INIS)

    Dodd, D.H.; Hienen, J.F.A. van.

    1995-10-01

    This report presents the results of task B.3 of the 'Technology Assessment of the High Temperature Reactor' project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL)

  19. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, D.H.; Hienen, J.F.A. van

    1995-10-01

    This report presents the results of task B.3 of the `Technology Assessment of the High Temperature Reactor` project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL).

  20. HTGR depressurization analysis

    International Nuclear Information System (INIS)

    Boccio, J.L.; Colman, J.; Skalyo, J.; Beerman, J.

    1979-01-01

    Relaxation of the prima facie assumption of complete mixing of primary and secondary containment gases during HTGR depressurization has led to a study program designed to identify and selectively quantify the relevant gas dynamic processes which prevail during the depressurization event. Uncertainty in the degree of gas mixedness naturally leads to uncertainty in containment vessel design pressure and heat loads and possible combustion hazards therein. This paper succinctly details an analytical approach and modeling methodology of the exhaust jet structure/containment vessel interaction during penetration failures. (author)

  1. HTGR fuel element structural design consideration

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1987-01-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabilistic stress analysis techniques coupled with probabilistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistant with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the U.S.A. is discussed in the context of stress analysis uncertainty and structural criteria development. (author)

  2. HTGR fuel element structural design considerations

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development

  3. New small HTGR power plant concept with inherently safe features - an engineering and economic challenge

    International Nuclear Information System (INIS)

    McDonald, C.F.; Sonn, D.L.

    1983-01-01

    Studies are in a very early design stage to establish a modular concept High-Temperature Gas-Cooled Reactor (HTGR) plant of about 100-MW(e) size to meet the special needs of small energy users in the industrialized and developing nations. The basic approach is to design a small system in which, even under the extreme conditions of loss of reactor pressure and loss of forced core cooling, the temperature would remain low enough so that the fuel would retain essentially all the fission products and the owner's investment would not be jeopardized. To realize economic goals, the designer faces the challenge of providing a standardized nuclear heat source, relying on a high percentage of factory fabrication to reduce site construction time, and keeping the system simple. While the proposed nuclear plant concept embodies new features, there is a large technology base to draw upon for the design of a small HTGR

  4. HTGR experience, programs, and future applications

    International Nuclear Information System (INIS)

    Moore, R.A.; Kantor, M.E.; Brey, H.L.; Olson, H.G.

    1982-01-01

    This paper reviews the current status of the programs for the development of high-temperature gas-cooled reactors (HTGRs) in the major industrial countries of the world. Existing demonstration plants and facilities are briefly described, and national programs for exploiting the unique high-temperature capabilities of the HTGR for commercial production of electricity and in process steam/heat application are discussed. (orig.)

  5. Strategy to support HTGR fuel for the 10 MW Indonesia’s experimental power reactor (RDE)

    International Nuclear Information System (INIS)

    Taswanda Taryo; Geni Rina Sunaryo; Ridwan; Meniek Rachmawati

    2018-01-01

    The Indonesia’s 10 MW experimental power reactor (RDE) is developed based on high temperature gas-cooled reactor (HTGR) and the program of the RDE was firstly introduced to the Agency for National Development Planning (BAPPENAS) at the beginning of 2014. The RDE program is expected to have positive impacts on community prosperity, self-reliance and sovereignty of Indonesia. The availability of RDE will be able to accelerate advanced nuclear power technology development and hence elevate Indonesia to be the nuclear champion in the ASEAN region. The RDE is expected to be operable in 2022/2023. In terms of fuel supply for the reactor, the first batch of RDE fuel will be inclusive in the RDE engineering, procurement and construction (RDE-EPC) contract for the assurance of the RDE reactor operation from 2023 to 2027. Consideration of RDE fuel plant construction is important as RDE can be the basis for the development of reactors of similar type with small-medium power(25 MWe–200/300 MWe), which are preferable for eastern part of Indonesia. To study the feasibility of the construction of RDE fuel plant, current state of the art of the R&D on HTGR fuel in some advanced countries such as European countries, the United States, South Africa and Japan will be discussed and overviewed to draw a conclusion about the prospective countries for supporting the fuel for long-term RDE operation. The strategy and road map for the preparation of the RDE fuel plant construction with the involvement of national stake holders have been developed. The best possible vendor country to support HTGR fuel for long-term operation is finally accomplished. In the end, this paper can be assigned as a reference for the planning and construction of HTGR RDE fuel fabrication plant in Indonesia. (author)

  6. Overview of HTGR fuel recycle

    International Nuclear Information System (INIS)

    Notz, K.J.

    1976-01-01

    An overview of HTGR fuel recycle is presented, with emphasis placed on reprocessing and fuel kernel refabrication. Overall recycle operations include (1) shipment and storage, (2) reprocessing, (3) refabrication, (4) waste handling, and (5) accountability and safeguards

  7. Radiation resistance of pyrocarbon-boned fuel and absorbing elements for HTGR

    International Nuclear Information System (INIS)

    Gurin, V.A.; Konotop, Yu.F.; Odejchuk, N.P.; Shirochenkov, S.D.; Yakovlev, V.K.; Aksenov, N.A.; Kuprienko, V.A.; Lebedev, I.G.; Samsonov, B.V.

    1990-01-01

    In choosing the reactor type, problems of nuclear and radiation safety are outstanding. The analysis of the design and experiments show that HTGR type reactors helium cooled satisfy all the safety requirements. It has been planned in the Soviet Union to construct two HTGR plants, VGR-50 and VG-400. Later it was decided to construct an experimental plant with a low power high temperature reactor (VGM). Spherical uranium-graphite fuel elements with coated fuel particles are supposed to be used in HTGR core. A unique technology for producing spherical pyrocarbon-bound fuel and absorbing elements of monolithic type has been developed. Extended tests were done to to investigate fuel elements behaviour: radiation resistance of coated fuel particles with different types of fuel; influence of the coated fuel particles design on gaseous fission products release; influence of non-sphericity on coated fuel particle performance; dependence of gaseous fission products release from fuel elements on the thickness of fuel-free cans; confining role of pyrocarbon as a factor capable of diminishing the rate of fission products release; radiation resistance of spherical fuel elements during burnup; radiation resistance of spherical absorbing elements to fast neutron fluence and boron burnup

  8. Conceptual design of small-sized HTGR system (1). Major specifications and system designs

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Tazawa, Yujiro; Yan, Xing L.; Tachibana, Yukio

    2011-06-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a 50MWt small-sized high temperature gas cooled reactor (HTGR) for steam supply and electricity generation (HTR50S), which is a first-of-kind of the commercial plant or a demonstration plant of a small-sized HTGR system for steam supply to the industries and district heating and electricity generation by a steam turbine, to deploy in developing countries in the 2030s. The design philosophy is that the HTR50S is a high advanced reactor, which is reducing the R and D risk based on the HTTR design, upgrading the performance and reducing the cost for commercialization by utilizing the knowledge obtained by the HTTR operation and the GTHTR300 design. The major specifications of the HTR50S were determined and targets of the technology demonstration using the HTR50S (e.g., the increasing the power density, reduction of the number of uranium enrichment in the fuel, increasing the burn up, side-by-side arrangement between the reactor pressure vessel and the steam generator) were identified. In addition, the system design of HTR50S, which offers the capability of electricity generation, cogeneration of electricity and steam for a district heating and industries, was performed. Furthermore, a market size of small-sized HTGR systems was investigated. (author)

  9. MHTGR [Modular High-Temperature Gas-Cooled Reactor] technology development plan

    International Nuclear Information System (INIS)

    Homan, F.J.; Neylan, A.J.

    1988-01-01

    This paper presents the approach used to define the technology program needed to support design and licensing of a Modular High-Temperature Gas-Cooled Reactor (MHTGR). The MHTGR design depends heavily on data and information developed during the past 25 years to support large HTGR (LHTGR) designs. The technology program focuses on MHTGR-specific operating and accident conditions, and on validation of models and assumptions developed using LHTGR data. The technology program is briefly outlined, and a schedule is presented for completion of technology work which is consistent with completion of a Final Safety Summary Analysis Report (FSSAR) by 1992

  10. USNRC HTGR safety research program overview

    International Nuclear Information System (INIS)

    Foulds, R.B.

    1982-01-01

    An overview is given of current activities and planned research efforts of the US Nuclear Regulatory Commission (NRC) HTGR Safety Program. On-going research at Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Pacific Northwest Laboratory are outlined. Tables include: HTGR Safety Issues, Program Tasks, HTGR Computer Code Library, and Milestones for Long Range Research Plan

  11. Utilization of HTGR on active carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yukitaka, E-mail: yukitaka@nr.titech.ac.jp

    2014-05-01

    A new energy transformation concept based on carbon recycling, called as active carbon recycling energy system, ACRES, was proposed for a zero carbon dioxide emission process. The ACRES is driven availably by carbon dioxide free primary energy. High temperature gas cooled reactor (HTGR) is a candidate of the energy sources for ACRES. A smart ironmaking system with ACRES (iACRES) is one of application examples. The contribution of HTGR on iACRES was discussed thermodynamically in this study. A carbon material is re-used cyclically as energy carrier media in ACRES. Carbon monoxide (CO) had higher energy densities than hydrogen and was compatible with conventional process. Thus, CO was suitable recycling media for ACRES. Efficient regeneration of CO was a key technology for ACRES. A combined system of hydrogen production by water electrolysis and CO{sub 2} hydrogen reduction was candidate. CO{sub 2} direct electrolysis was also one of the candidates. HTGR was appropriate heat source for both water and CO{sub 2} electrolysises, and CO{sub 2} hydrogen reduction. Thermodynamic energy balances were calculated for both systems with HTGR for an ironmaking system. The direct system showed relatively advantage to the combined system in the stand point of enthalpy efficiency and simplicity of the process. One or two plants of HTGR are corresponding with ACRES system for one unit of conventional blast furnace. The proposed ACRES system with HTGR was expected to form the basis of a new energy industrial process that had low CO{sub 2} emission.

  12. HTGR structural-materials efforts in the US

    International Nuclear Information System (INIS)

    Rittenhouse, P.L.; Roberts, D.I.

    1982-07-01

    The status of ongoing structural materials programs being conducted in the US to support development and deployment of the high-temperature gas-cooled reactor (HTGR) is described. While the total US program includes work in support of all variants of this reactor system, the emphasis of this paper is on the work aimed at support of the steam cycle/cogeneration (SC/C) version of the HTGR. Work described includes activities to develop design and performance prediction data on metals, ceramics, and graphite

  13. Personnel radiation exposure in HTGR plants

    International Nuclear Information System (INIS)

    Su, S.; Engholm, B.A.

    1981-01-01

    Occupational radiation exposures in high-temperature gas-cooled reactor (HTGR) plants were assessed. The expected rate of dose accumulations for a large HTGR steam cycle unit is 0.07 man-rem/MW(e)y, while the design basis is 0.17 man-rem/MW(e)y. The comparable figure for actual light water reactor experience is 1.3 man-rem/MW(e)y. The favorable HTGR occupational exposure is supported by results from the Peach Bottom Unit No. 1 HTGR and Fort St. Vrain HTGR plants and by operating experience at British gas-cooled reactor stations

  14. Summary of foreign HTGR programs

    International Nuclear Information System (INIS)

    1980-06-01

    This report contains pertinent information on the status, objectives, budgets, major projects and facilities, as well as user, industrial and governmental organizations involved in major foreign gas-cooled thermal reactor programs. This is the second issue of this document (the first was issued in March 1979). The format has been revised to consolidate material according to country. These sections are followed by the foreign HTGR program index which serves as a quick reference to some of the many acronyms associated with the foreign HTGR programs

  15. Feasibility study of the Dragon reactor for HTGR fuel testing

    International Nuclear Information System (INIS)

    Wallroth, C.F.

    1975-01-01

    The Organization of European Community Development (OECD) Dragon high-temperature reactor project has performed HTGR fuel and fuel element testing for about 10 years. To date, a total of about 250 fuel elements have been irradiated and the test program continues. The feasibility of using this test facility for HTGR fuel testing, giving special consideration to U. S. needs, is evaluated. A detailed description for design, preparation, and data acquisition of a test experiment is given together with all possible options on supporting work, which could be carried out by the experienced Dragon project staff. 11 references. (U.S.)

  16. Status, results and usefulness of risk analyses for HTGR type reactors of different capacity accessory to planning

    International Nuclear Information System (INIS)

    Kroeger, W.; Mertens, J.

    1985-01-01

    As regards system-inherent risks, HTGR type reactors are evaluated with reference to the established light-water-moderated reactor types. Probabilistic HTGR risk analyses have shown modern HTGR systems to possess a balanced safety concept with a risk remaining distinctly below legally accepted values. Inversely, the development and optimization of the safety concepts have been (and are being) essentially co-determined by the probabilistic analyses, as it is technically sensible and economically necessary to render the specific safety-related HTGR properties eligible for licensing. (orig./HP) [de

  17. The HTR-10 test reactor project and potential use of HTGR for non-electric application in China

    International Nuclear Information System (INIS)

    Sun Yuliang; Zhong Daxin; Xu Yuanhui; Wu Zhongxin

    1997-01-01

    Coal is the dominant source of energy in China. This use of coal results in two significant problems for China; it is a major burden on the train, road and waterway transportation infrastructures and it is a significant source of environmental pollution. In order to ease the problems caused by the burning of coal and to help reduce the energy supply shortage in China, national policy has directed the development of nuclear power. This includes the erection of nuclear power plants with water cooled reactors and the development of advanced nuclear reactor types, specifically, the high temperature gas cooled reactor (HTGR). The HTGR was chosen for its favorable safety features and its ability to provide high reactor outlet coolant temperatures for efficient power generation and high quality process heat for industrial applications. As the initial modular HTGR development activity within the Chinese High Technology Programme, a 10MW helium cooled test reactor is currently under construction on the site of the Institute of Nuclear Energy Technology northwest of Beijing. This plant features a pebble-bed helium cooled reactor with initial criticality anticipated in 1999. There will be two phases of high temperature heat utilization from the HTR-10. The first phase will utilize a reactor outlet temperature of 700 deg. C with a steam generator providing steam for a steam turbine cycle which works on an electrical/heat co-generation basis. The second phase is planned for a core outlet temperature of 900 deg. C to investigate a steam cycle/gas turbine combined cycle system with the gas turbine and the steam cycle being independently parallel in the secondary side of the plant. This paper provides a review of the technical design, licensing, safety and construction schedule for the HTR-10. It also addresses the potential uses of the HTGR for non-electric applications in China including process steam for the petrochemical industry, heavy oil recovery, coal conversion and

  18. HTGR accident and risk assessment

    International Nuclear Information System (INIS)

    Silady, F.A.; Everline, C.J.; Houghton, W.J.

    1982-01-01

    This paper is a synopsis of the high-temperature gas-cooled reactor probabilistic risk assessments (PRAs) performed by General Atomic Company. Principal topics presented include: HTGR safety assessments, peer interfaces, safety research, process gas explosions, quantitative safety goals, licensing applications of PRA, enhanced safety, investment risk assessments, and PRA design integration

  19. Safety and licensing analyses for the Fort St. Vrain HTGR

    International Nuclear Information System (INIS)

    Ball, S.J.; Conklin, J.C.; Harrington, R.M.; Cleveland, J.C.; Clapp, N.E. Jr.

    1982-01-01

    The Oak Ridge National Laboratory (ORNL) safety analysis program for the HTGR includes development and verification of system response simulation codes, and applications of these codes to specific Fort St. Vrain reactor licensing problems. Licensing studies addressed the oscillation problems and the concerns about large thermal stresses in the core support blocks during a postulated accident

  20. Features of spherical uranium-graphite HTGR fuel elements control

    International Nuclear Information System (INIS)

    Kreindlin, I.I.; Oleynikov, P.P.; Shtan, A.S.

    1985-01-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described

  1. Features of spherical uranium-graphite HTGR fuel elements control

    Energy Technology Data Exchange (ETDEWEB)

    Kreindlin, I I; Oleynikov, P P; Shtan, A S

    1985-07-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described.

  2. CONTEMPT-G computer program and its application to HTGR containments

    International Nuclear Information System (INIS)

    Macnab, D.I.

    1976-03-01

    The CONTEMPT-G computer program has been developed by General Atomic Company to simulate the temperature-pressure response of a containment atmosphere to postulated depressurization of High-Temperature Gas-Cooled Reactor (HTGR) primary or secondary coolant circuits. The mathematical models currently used in the code are described, and applications of the code in examples of the atmospheric response of a representative containment to a variety of postulated HTGR accident conditions are presented. In particular, maximum containment temperature and pressure, equilibrated long-term prestressed concrete reactor vessel and containment pressures, and peak containment conditions following steam pipe ruptures are examined for a representative 770-MW(e) HTGR

  3. Improvement of Modeling HTGR Neutron Physics by Uncertainty Analysis with the Use of Cross-Section Covariance Information

    Science.gov (United States)

    Boyarinov, V. F.; Grol, A. V.; Fomichenko, P. A.; Ternovykh, M. Yu

    2017-01-01

    This work is aimed at improvement of HTGR neutron physics design calculations by application of uncertainty analysis with the use of cross-section covariance information. Methodology and codes for preparation of multigroup libraries of covariance information for individual isotopes from the basic 44-group library of SCALE-6 code system were developed. A 69-group library of covariance information in a special format for main isotopes and elements typical for high temperature gas cooled reactors (HTGR) was generated. This library can be used for estimation of uncertainties, associated with nuclear data, in analysis of HTGR neutron physics with design codes. As an example, calculations of one-group cross-section uncertainties for fission and capture reactions for main isotopes of the MHTGR-350 benchmark, as well as uncertainties of the multiplication factor (k∞) for the MHTGR-350 fuel compact cell model and fuel block model were performed. These uncertainties were estimated by the developed technology with the use of WIMS-D code and modules of SCALE-6 code system, namely, by TSUNAMI, KENO-VI and SAMS. Eight most important reactions on isotopes for MHTGR-350 benchmark were identified, namely: 10B(capt), 238U(n,γ), ν5, 235U(n,γ), 238U(el), natC(el), 235U(fiss)-235U(n,γ), 235U(fiss).

  4. Application of the lines-of-protection concept to the HTGR-SC/C

    International Nuclear Information System (INIS)

    1981-09-01

    The purpose of this document is to present a method for structuring the safety related design and development plans for the HTGR. This method centers on and develops the concept that the HTGR inherently (and by design) provides independent and successive LOPs against potential core related accidents and any resulting public harm. To exemplify the LOP concept and its application to the HTGR, this document identifies some key bases and assumptions, describes the four LOPs selected for the HTGR, identifies the associated safety goals and plant success criteria, and establishes methods for safety research and development prioritization. A task breakdown structure is then described, which in a complete hierarchial fashion can be used to catalog all safety related tasks necessary to demonstrate LOP success as well as catalog safety research areas which cannot be conveniently grouped under the LOPs

  5. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  6. A new small HTGR power plant concept with inherently safe features--An engineering and economic challenge

    International Nuclear Information System (INIS)

    McDonald, C.F.; Sonn, D.L.

    1983-01-01

    This paper outlines a small nuclear plant concept which is not meant to replace the large nuclear power plants that will continue to be needed by the industrialized nations, but rather recognizes the needs of the smaller energy user, both for special applications in the US and for the developing nations. The small High-Temperature Gas-Cooled Reactor (HTGR), whose introduction will be very dependent on market forces, represents only one approach to meet these needs. The design of a small power plant that could be inherently safer and that might have costs less than those indicated by the traditional reverse-economy-of-scale effect is discussed. Topics considered include power plant economics, the small steam cycle HTGR thermodynamic cycle, the reactor nuclear heat source layout, the reactor heat removal system (main loop cooling, a vessel cooling system with reactor pressurized, vessel cooling system with reactor depressurized), safety considerations, investment risk protection, the technology base, and applications for the small HTGR plant concept

  7. Fission product release from HTGR fuel under core heatup accident conditions - HTR2008-58160

    International Nuclear Information System (INIS)

    Verfondern, K.; Nabielek, H.

    2008-01-01

    Various countries engaged in the development and fabrication of modern fuel for the High Temperature Gas-Cooled Reactor (HTGR) have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under operating and accidental conditions of future HTGRs. Within the IAEA directed Coordinated Research Project CRP6 on 'Advances in HTGR Fuel Technology Development' active since 2002, the 13 participating Member States have agreed upon benchmark studies on fuel performance during normal operation and under accident conditions. While the former has been completed in the meantime, the focus is now on the extension of the national code developments to become applicable to core heatup accident conditions. These activities are supported by the fact that core heatup simulation experiments have been resumed recently providing new, highly valuable data. Work on accident performance will be - similar to the normal operation benchmark - consisting of three essential parts comprising both code verification that establishes the correspondence of code work with the underlying physical, chemical and mathematical laws, and code validation that establishes reasonable agreement with the existing experimental data base, but including also predictive calculations for future heating tests and/or reactor concepts. The paper will describe the cases to be studied and the calculational results obtained with the German computer model FRESCO. Among the benchmark cases in consideration are tests which were most recently conducted in the new heating facility KUEFA. Therefore this study will also re-open the discussion and analysis of both the validity of diffusion models and the transport data of the principal fission product species in the HTGR fuel materials as essential input data for the codes. (authors)

  8. HTGR safety research at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stroh, K.R.; Anderson, C.A.; Kirk, W.L.

    1982-01-01

    This paper summarizes activities undertaken at the Los Alamos National Laboratory as part of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Program sponsored by the US Nuclear Regulatory Commission. Technical accomplishments and analysis capabilities in six broad-based task areas are described. These tasks are: fission-product technology, primary-coolant impurities, structural investigations, safety instrumentation and control systems, accident delineation, and phenomena modeling and systems analysis

  9. Waste management considerations in HTGR recycle operations

    International Nuclear Information System (INIS)

    Pence, D.T.; Shefcik, J.J.; Heath, C.A.

    1975-01-01

    Waste management considerations in the recycle of HTGR fuel are different from those encountered in the recycle of LWR fuel. The types of waste associated with HTGR recycle operations are discussed, and treatment methods for some of the wastes are described

  10. Development of methane conversion improvement method by recycling of residual methane for steam reforming as a part of R and D of HTGR-hydrogen production system

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Haga, Katsuhiro; Aita, Hideki; Sekita, Kenji; Hino, Ryutaro; Koiso, Hiroshi.

    1998-01-01

    The purpose of the present study is to improve methane conversion for an HTGR-steam reforming system by recycling of residual methane. The residual methane in a product gas after steam reforming was recycled with a gas separator of polyimide membrane. Gas separation characteristics of the separator were investigated experimentally and numerically, and an experimental study on recycling system was carried out. The results showed that the recycling system improves apparent methane conversion, ratio of methane conversion to methane supply from a cylinder, from 20 to 32% compared with those without recycling. (author)

  11. Twenty-five years of Brown Boveri experience in development, design and fabrication of circulators for HTGR

    International Nuclear Information System (INIS)

    Stoelzl, D.

    1988-01-01

    The two circulators for the AVR experimental reactor in Juelich, Federal Republic of Germany, were supplied. The circulators, which are equipped with oil bearings, have been operating troublefree since the start of commissioning in 1966. As a consequence of a water ingress into the reactor resulting from a steam generator damage one bearing was replaced in 1977 after 72,000 operating hours. Up to the present date, each of the circulators has scored 115,000 hours of operation, one of them without any disassembly. In the THTR 300 in Schmehausen, Federal Republic of Germany, 6 BBC circulators are in operation. The insertable circulator units equipped with oil bearings have successfully proven their operating capability without any problems during the commissioning phase and the 100% power operation which was started recently. Currently active magnetic bearings are being developed for advanced gas-cooled reactors such as the HTR 100, the HTR 500 and the heating reactor after excellent results have been furnished by a small prototype in a test loop. This ADI circulator has since scored more than 15,000 operating hours without any trouble. A retainer bearing test stand also equipped with active magnetic bearings has been in operation for nearly 2 years. This test stand serves for developing the conditions for safe rundown of the rotors of even the largest circulators after the magnetic bearings have been deenergized unintentionally. Development work is conducted on the prototype of a safety-relevant circulator held in magnetic bearings, to be used for decay heat removal in the HTR 500. The original aim to have circulators without auxiliary medium for bearing lubrication will thus be reached. The advantages to be obtained in process and systems design are a supplementary support to the inherent safety characteristics of high-temperature reactors. Another advantage of these bearings is cost reduction. 5 refs, 7 figs

  12. Advances in HTGR fuel performance models

    International Nuclear Information System (INIS)

    Stansfield, O.M.; Goodin, D.T.; Hanson, D.L.; Turner, R.F.

    1985-01-01

    Advances in HTGR fuel performance models have improved the agreement between observed and predicted performance and contributed to an enhanced position of the HTGR with regard to investment risk and passive safety. Heavy metal contamination is the source of about 55% of the circulating activity in the HTGR during normal operation, and the remainder comes primarily from particles which failed because of defective or missing buffer coatings. These failed particles make up about 5 x 10 -4 fraction of the total core inventory. In addition to prediction of fuel performance during normal operation, the models are used to determine fuel failure and fission product release during core heat-up accident conditions. The mechanistic nature of the models, which incorporate all important failure modes, permits the prediction of performance from the relatively modest accident temperatures of a passively safe HTGR to the much more severe accident conditions of the larger 2240-MW/t HTGR. (author)

  13. Development, design, and preliminary operation of a resin-feed processing facility for resin-based HTGR fuels

    International Nuclear Information System (INIS)

    Haas, P.A.; Drago, J.P.; Million, D.L.; Spence, R.D.

    1978-01-01

    Fuel kernels for recycle of 233 U to High-Temperature Gas-Cooled Reactors are prepared by loading carboxylic acid cation exchange resins with uranium and carbonizing at controlled conditions. Resin-feed processing was developed and a facility was designed, installed, and operated to control the kernel size, shape, and composition by processing the resin before adding uranium. The starting materials are commercial cation exchange resins in the sodium form. The size separations are made by vibratory screening of resin slurries in water. After drying in a fluidized bed, the nonspherical particles are separated from spherical particles on vibratory plates of special design. The sized, shape-separated spheres are then rewetted and converted to the hydrogen form. The processing capacity of the equipment tested is equivalent to about 1 kg of uranium per hour and could meet commercial recycle plant requirements without scale-up of the principal process components

  14. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Malevski, A L; Stoliarevski, A Ya; Vladimirov, V T; Larin, E A; Lesnykh, V V; Naumov, Yu V; Fedotov, I L

    1990-07-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  15. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    International Nuclear Information System (INIS)

    Malevski, A.L.; Stoliarevski, A.Ya.; Vladimirov, V.T.; Larin, E.A.; Lesnykh, V.V.; Naumov, Yu.V.; Fedotov, I.L.

    1990-01-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  16. Consuming technologies - developing routines

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2008-01-01

    technologies and in this article these processes will be investigated from three different perspectives: an historical perspective of how new technologies have entered homes, a consumer perspective of how both houses and new technologies are purchased and finally, as the primary part of the article, a user...... perspective of how routines develop while these technologies are being used. In the conclusion these insights are discussed in relation to possible ways of influencing routines....

  17. Screening of synfuel processes for HTGR application

    International Nuclear Information System (INIS)

    1981-02-01

    The aim of this study is to select for further study, the several synfuel processes which are the most attractive for application of HTGR heat and energy. In pursuing this objective, the Working Group identified 34 candidate synfuel processes, cut the number of processes to 16 in an initial screening, established 11 prime criteria with weighting factors for use in screening the remaining processes, developed a screening methodology and assumptions, collected process energy requirement information, and performed a comparative rating of the processes. As a result of this, three oil shale retorting processes, two coal liquefaction processes and one coal gasification process were selected as those of most interest for further study at this time

  18. Calorimetric assay of HTGR fuel samples

    International Nuclear Information System (INIS)

    Allen, E.J.; McNeany, S.R.; Jenkins, J.D.

    1979-04-01

    A calorimeter using a neutron source was designed and fabricated by Mound Laboratory, according to ORNL specifications. A calibration curve of the device for HTGR standard fuel rods was experimentally determined. The precision of a single measurement at the 95% confidence level was estimated to be +-0.8 μW. For a fuel sample containing 0.3 g 235 U and a neutron source containing 691 μg 252 Cf, this represents a relative standard deviation of 0.5%. Measurement time was approximately 5.5 h per sample. Use of the calorimeter is limited by its relatively poor precision, long measurement time, manual sample changing, sensitivity to room environment, and possibility of accumulated dust blocking water flow through the calorimeter. The calorimeter could be redesigned to resolve most of these difficulties, but not without significant development work

  19. Irradiation performance of HTGR recycle fissile fuel

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.

    1976-08-01

    The irradiation performance of candidate HTGR recycle fissile fuel under accelerated testing conditions is reviewed. Failure modes for coated-particle fuels are described, and the performance of candidate recycle fissile fuels is discussed in terms of these failure modes. The bases on which UO 2 and (Th,U)O 2 were rejected as candidate recycle fissile fuels are outlined, along with the bases on which the weak-acid resin (WAR)-derived fissile fuel was selected as the reference recycle kernel. Comparisons are made relative to the irradiation behavior of WAR-derived fuels of varying stoichiometry and conclusions are drawn about the optimum stoichiometry and the range of acceptable values. Plans for future testing in support of specification development, confirmation of the results of accelerated testing by real-time experiments, and improvement in fuel performance and reliability are described

  20. HTGR spent fuel storage study

    International Nuclear Information System (INIS)

    Burgoyne, R.M.; Holder, N.D.

    1979-04-01

    This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification

  1. Research and development of a high-temperature helium-leak detection system (joint research). Part 1 survey on leakage events and current leak detection technology

    Energy Technology Data Exchange (ETDEWEB)

    Sakaba, Nariaki; Nakazawa, Toshio; Kawasaki, Kozo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Urakami, Masao; Saisyu, Sadanori [Japan Atomic Power Co., Tokyo (Japan)

    2003-03-01

    In High Temperature Gas-cooled Reactors (HTGR), the detection of leakage of helium at an early stage is very important for the safety and stability of operations. Since helium is a colourless gas, it is generally difficult to identify the location and the amount of leakage when very little leakage has occurred. The purpose of this R and D is to develop a helium leak detection system for the high temperature environment appropriate to the HTGR. As the first step in the development, this paper describes the result of surveying leakage events at nuclear facilities inside and outside Japan and current gas leakage detection technology to adapt optical-fibre detection technology to HTGRs. (author)

  2. HTGR nuclear heat source component design and experience

    International Nuclear Information System (INIS)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included

  3. Pre elementary design of primary reformer for hydrogen plant coupled with HTGR type NPP

    International Nuclear Information System (INIS)

    Dedy Priambodo; Erlan Dewita; Sudi Ariyanto

    2012-01-01

    Hydrogen has a high potent for new energy, because of it availability. Steam reforming is a fully developed commercial technology and is the most economical method for production of hydrogen. Steam reforming uses an external source of hot gas to heat tubes in which a catalytic reaction takes place that converts steam and lighter hydrocarbons such as natural gas (methane) or refinery feedstock into hydrogen and carbon monoxide (syngas) at high temperature on primary reformer (800-900°C). Utilization of helium from HTGR as heating medium for primary reformer has consequence to type and shape of its reactor. The main goal of this paper is to determine type/shape and pre elementary design of chemical reactor for the cogeneration system of Hydrogen Plant and HTGR The primary reformer for this system is Fixed Bed Multitube reactor with specification tube: NPS 3,5 Sch 40 ST 40S, 0.281 in thickness, number of tube 849 pieces and ASTM HH 30 for tube material. Tube arrangement is 'triangular pitch' on shell Split-Ring Floating Head from Steel Alloy SA 301 Grade B equipted with 8 baffles. (author)

  4. Scaling laws for HTGR core block seismic response

    International Nuclear Information System (INIS)

    Dove, R.C.

    1977-01-01

    This paper discusses the development of scaling laws, physical modeling, and seismic testing of a model designed to represent a High Temperature Gas-Cooled Reactor (HTGR) core consisting of graphite blocks. The establishment of the proper scale relationships for length, time, force, and other parameters is emphasized. Tests to select model materials and the appropriate scales are described. Preliminary results obtained from both model and prototype systems tested under simulated seismic vibration are presented

  5. Development of coated particle fuel technology

    International Nuclear Information System (INIS)

    Cho, Moonsung; Kim, B. G.; Kim, D. J.

    2011-06-01

    Ammonia contacting method for prehardenning the surfaces of ADU liquid droplets and the ageing/washing/drying method and equipment for spherical dried-ADU particles were improved and tested with laboratory sacle. After the improvement of fabrication process, the sphericity of UO 2 kernel obtained to 1.1, and the sintered density and O/U ratio of final UO 2 kernel were above 10.60g/cm 3 . 2.01 respectively. Defects of SiC coating layer could be minimized by optimization of gas flow rate. The fracture strength of SiC layer increased from 450 MPa to 530 MPa by controlling the coating defects. An effort was made to develop the fundamental technology for the fuel element compact for use in High Temperature Gas-cooled Reactor(HTGR) through an establishment of fabrication process, required materials and process equipment as well as performing experiments to identify the basic process conditions and optimize them. Thermal load simulation and verification experiments were carried out for an assesment of the design feasibility of the irradiation rod. Out-of-pile testing of irradiation device such as measurement of pressure drop and vibration, endurance test was performed and the validity of its design was confirmed. A fuel performance analysis code, COPA has been developed to calculate the fuel temperature, the failure fractions of coated fuel particles, the release of fission products. The COPA code can be used to evaluate the performance of the high temperature reactor fuel under the reactor operation, irradiation, heating conditions. KAERI participated in the round robin test of IAEA CRP-6 program to characterize the diameter, sphericity, coating thickness, density and anisotropy of coated particles provided by Korea, USA and South Africa. QC technology was established for TRISO-coated fuel particle. A method for accurate measurement of the optical anisotropy factor for PyC layers of coated particles was developed. Technology and inspection procedures for density

  6. Process control of an HTGR fuel reprocessing cold pilot plant

    International Nuclear Information System (INIS)

    Rode, J.S.

    1976-10-01

    Development of engineering-scale systems for a large-scale HTGR fuel reprocessing demonstration facility is currently underway in a cold pilot plant. These systems include two fluidized-bed burners, which remove the graphite (carbon) matrix from the crushed HTGR fuel by high temperature (900 0 C) oxidation. The burners are controlled by a digital process controller with an all analog input/output interface which has been in use since March, 1976. The advantages of such a control system to a pilot plant operation can be summarized as follows: (1) Control loop functions and configurations can be changed easily; (2) control constants, alarm limits, output limits, and scaling constants can be changed easily; (3) calculation of data and/or interface with a computerized information retrieval system during operation are available; (4) diagnosis of process control problems is facilitated; and (5) control panel/room space is saved

  7. Ocean Technology Development Tank

    Data.gov (United States)

    Federal Laboratory Consortium — The new SWFSC laboratory in La Jolla incorporates a large sea- and fresh-water Ocean Technology Development Tank. This world-class facility expands NOAA's ability to...

  8. GTOROTO: a simulation system for HTGR core seismic behavior

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Nakamura, Yasuhiro; Onuma, Yoshio

    1980-07-01

    One of the most important design of HTGR core is its aseismic structure. Therefore, it is necessary to predict the forces and motion of the core blocks. To meet the requirement, many efforts to develop analytical methods and computer programs are made. A graphic simulation system GTOROTO with a CRT graphic display and lightpen was developed to analyze the HTGR core behavior in seismic excitation. Feature of the GTOROTO are as follows: (1) Behavior of the block-type HTGR core during earthquake can be shown on the CRT-display. (2) Parameters of the computing scheme can be changed with the lightpen. (3) Routines of the computing scheme can be changed with the lightpen and an alteration switch. (4) Simulation pictures are shown automatically. Hardcopies are available by plotter in stopping the progress of simulation pictures. Graphic representation can be re-start with the predetermined program. (5) Graphic representation informations can be stored in assembly language on a disk for rapid representation. (6) A computer-generated cinema can be made by COM (Computer Output Microfilming) or filming directly the CRT pictures. These features in the GTOROTO are provided in on-line conversational mode. (author)

  9. Technology research and development

    International Nuclear Information System (INIS)

    Haas, G.M.; Abdov, M.A.; Baker, C.C.; Beuligmann, R.F.

    1985-01-01

    The U.S. Dept. of Energy discusses the new program plan, the parameters of which are a broad scientific and technology knowledge base, an attractive plasma configuration to be determined, and other issues concerning uncertainty as to what constitutes attractive fusion options to be determined in the future, and increased collaboration. Tables show changing directions in magnetic fusion energy, two examples of boundary condition impacts on long-term technology development, and priority classes of the latter. The Argonne National Laboratory comments on the relationship between science, technology and the engineering aspects of the fusion program. UCLA remarks on the role of fusion technology in the fusion program plan, particularly on results from the recent studies of FINESSE. General Dynamics offers commentary on the issues of a reduced budget, and new emphasis on science which creates an image of the program. A table illustrates technology research and development in the program plan from an industrial perspective

  10. INVESTIGATION ON THERMAL-FLOW CHARACTERISTICS OF HTGR CORE USING THERMIX-KONVEK MODULE AND VSOP'94 CODE

    Directory of Open Access Journals (Sweden)

    Sudarmono Sudarmono

    2015-03-01

    Full Text Available The failure of heat removal system of water-cooled reactor such as PWR in Three Mile Islands and Fukushima Daiichi BWR makes nuclear society starting to consider the use of high temperature gas-cooled reactor (HTGR. Reactor Physics and Technology Division – Center for Nuclear Reactor Safety and Technology  (PTRKN has tasks to perform research and development on the conceptual design of cogeneration gas cooled reactor with medium power level of 200 MWt. HTGR is one of nuclear energy generation system, which has high energy efficiency, and has high and clean inherent safety level. The geometry and structure of the HTGR200 core are designed to produce the output of helium gas coolant temperature as high as 950 °C to be used for hydrogen production and other industrial processes in co-generative way. The output of very high temperature helium gas will cause thermal stress on the fuel pebble that threats the integrity of fission product confinement. Therefore, it is necessary to perform thermal-flow evaluation to determine the temperature distribution in the graphite and fuel pebble in the HTGR core. The evaluation was carried out by Thermix-Konvek module code that has been already integrated into VSOP'94 code. The HTGR core geometry was done using BIRGIT module code for 2-D model (RZ model with 5 channels of pebble flow in active core in the radial direction. The evaluation results showed that the highest and lowest temperatures in the reactor core are 999.3 °C and 886.5 °C, while the highest temperature of TRISO UO2 is 1510.20 °C in the position (z= 335.51 cm; r=0 cm. The analysis done based on reactor condition of 120 kg/s of coolant mass flow rate, 7 MPa of pressure and 200 MWth of power. Compared to the temperature distribution resulted between VSOP’94 code and fuel temperature limitation as high as 1600 oC, there is enough safety margin from melting or disintegrating. Keywords: Thermal-Flow, VSOP’94, Thermix-Konvek, HTGR, temperature

  11. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1991-01-01

    This report discusses the following topics: superconducting magnet technology high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies -- Aries; ITER physics; ITER superconducting PF scenario and magnet analysis; and safety, environmental and economic factors in fusion development

  12. Technology development for safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Song, D. Y. [and others

    2005-04-01

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency.

  13. Energy, technology, development

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [Ministerio da Educacao, Brasilia (Brazil)

    1992-02-01

    Energy and technology are essential ingredients of development, it is only through their use that it became possible to sustain a population of almost 5 billion on Earth. The challenges to eradicate poverty and underdevelopment in developing countries in the face of strong population increases can only be successfully met with the use of advanced technology, leapfrogging the path followed in the past by today's industrialized countries. It is shown in the paper that energy consumption can be decoupled from economic development. Such possibility will contribute significantly in achieving sustainable development. 10 refs., 4 figs., 3 tabs.

  14. Heat extraction from HTGR reactor

    International Nuclear Information System (INIS)

    Balajka, J.; Princova, H.

    1986-01-01

    The analysis of an HTGR reactor energy balance showed that steam reforming of natural gas or methane is the most suitable process of utilizing the high-temperature heat. Basic mathematical relations are derived allowing to perform a general energy balance of the link between steam reforming and reactor heat output. The results of the calculation show that the efficiency of the entire reactor system increases with increasing proportion of heat output for steam reforming as against heat output for the steam generator. This proportion, however, is limited with the output helium temperature from steam reforming. It is thus always necessary to use part of the reactor heat output for the steam cycle involving electric power generation or low-potential heat generation. (Z.M.)

  15. Technology transfer for development

    International Nuclear Information System (INIS)

    Abraham, D.

    1990-07-01

    The IAEA has developed a multifaceted approach to ensure that assistance to Member States results in assured technology transfer. Through advice and planning, the IAEA helps to assess the costs and benefits of a given technology, determine the basic requirements for its efficient use in conditions specific to the country, and prepare a plan for its introduction. This report describes in brief the Technical Co-operation Programmes

  16. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  17. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  18. High-temperature Gas Reactor (HTGR)

    Science.gov (United States)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  19. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  20. Remediation Technology Collaboration Development

    Science.gov (United States)

    Mahoney, John; Olsen, Wade

    2010-01-01

    This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.

  1. Maintaining a technology-neutral approach to hydrogen production process development through conceptual design of the next generation nuclear plant - HTR2008-58191

    International Nuclear Information System (INIS)

    Patterson, M. W.; Park, C. V.

    2008-01-01

    The Energy Policy Act of 2005 (EPAct) charges the Dept. of Energy (DOE) with developing and demonstrating the technical and economic feasibility of using high temperature gas-cooled reactor (HTGR) technology for the production of electricity and/or hydrogen. The design, construction and demonstration of this technology in an HTGR proto-type reactor are termed the Next Generation Nuclear Plant (NGNP) Project. Currently, parallel development of three hydrogen production processes will continue until a single process technology is recommended for final demonstration in the NGNP - a technology neutral approach. This analysis compares the technology neutral approach to acceleration of the hydrogen process down-selection at the completion of the NGNP conceptual design to improve integration of the hydrogen process development and NGNP Project schedule. The accelerated schedule activities are based on completing evaluations and achieving technology readiness levels (TRLs) identified in NGNP systems engineering and technology road-maps. The cost impact of accelerating the schedule and risk reduction strategies was also evaluated. The NGNP Project intends to design and construct a component test facility (CTF) to support testing and demonstration of HTGR technologies, including those for hydrogen production. The demonstrations will support scheduled design and licensing activities, leading to subsequent construction and operation of the NGNP. Demonstrations in the CTF are expected to start about two years earlier than similarly scaled hydrogen demonstrations planned in the technology neutral baseline. The schedule evaluation assumed that hydrogen process testing would be performed in the CTF and synchronized the progression of hydrogen process development with CTF availability. (authors)

  2. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments.

  3. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    International Nuclear Information System (INIS)

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments

  4. 1170-MW(t) HTGR-PS/C plant application study report: Geismar, Louisiana refinery/chemical complex application

    International Nuclear Information System (INIS)

    McMain, A.T. Jr.; Stanley, J.D.

    1981-05-01

    This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to an industrial complex at Geismar, Louisiana. This study compares the HTGR with coal and oil as process plant fuels. This study uses a previous broad energy alternative study by the Stone and Webster Corporation on refinery and chemical plant needs in the Gulf States Utilities service area. The HTGR-PS/C was developed by General Atomic (GA) specifically for industries which require both steam and electric energy. The GA 1170-MW(t) HTGR-PC/C design is particularly well suited to industrial applications and is expected to have excellent cost benefits over other energy sources

  5. SBWR technology and development

    International Nuclear Information System (INIS)

    Rao, A.S.; McCandless, R.J.; Sawyer, C.D.

    1991-01-01

    The simplified boiling water reactor (SBWR) is based on utilizing to the maximum extent possible proven light water reactor (LWR) technology developed through 30 years of operating plant experience plus the advanced boiling water reactor (ABWR) technology development program. For the unique features, developmental programs have been put in place to qualify the design. Thus, the focus of technology development has been on the passive safety features - the gravity-driven ECCS (GDCS) and the containment heat removal (PCCS). General Electric constructed a full-height, scaled, integral facility to demonstrate the GDCS concept and provide data for methods qualification. For the PCCS, a three-pronged program was implemented. Basic heat transfer data were obtained via testing at the Massachusetts Institute of Technology and the University of California at Berkeley. A full-height scaled integral facility to demonstrate the PCCS concept and provide data for methods qualification was constructed in Japan in 1989. Initial testing is now complete. Design of a full-scale heat exchanger unit is underway and testing is planned for completion in early 1993

  6. ABC Technology Development Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: 'Provide a weapon's grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon's grade plutonium to be disposed on in [20] years.' This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments

  7. New HTGR plant concept with inherently safe features aimed at small energy users needs

    International Nuclear Information System (INIS)

    McDonald, C.F.; Silady, F.S.; Shenoy, A.S.

    1982-01-01

    A small high-temperature gas-cooled reactor (HTGR) concept is proposed which could provide the energy needs for certain sectors of industrialized nations and the developing countries. The key to the economic success for small reactors, which have potential benefits for special markets, lies in altering the traditional scaling laws. Toward this goal, a small HTGR concept embodying passive decay heat removal features is currently being evaluated. This paper emphasizes the safety-related aspects of a small HTGR. The proposed small reactor concept is new and still in the design development stage, and a significant effort must be expended to establish a design which is technically and economically feasible and will meet the increasingly demanding safety and licensing goals for reactors of the future

  8. Robotics Technology Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ''needs-driven'' effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination ampersand Dismantlement (D ampersand D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D ampersand D and CC ampersand AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  9. Transmutation Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Song, T. Y.; Park, W. S.; Kim, Y. H. (and others)

    2007-06-15

    The spent fuel coming from the PWR is one of the most difficult problems to be solved for the continuous use of nuclear power. It takes a few million years to be safe under the ground. Therefore, it is not easy to take care of the spent fuel for such a long time. Transmutation technology is the key technology which can solve the spent fuel problem basically. Transmutation is to transmute long-lived radioactive nuclides in the spent fuel into short-lived or stable nuclide through nuclear reactions. The long-lived radioactive nuclides can be TRU and fission products such as Tc-99 and I-129. Although the transmutation technology does not make the underground disposal totally unnecessary, the period to take care of the spent fuel can be reduced to the order of a few hundred years. In addition to the environmental benefit, transmutation can be considered to recycle the energy in the spent fuel since the transmutation is performed through nuclear fission reaction of the TRU in the spent fuel. Therefore, transmutation technology is worth being developed in economical aspect. The results of this work can be a basis for the next stage research. The objective of the third stage research was to complete the core conceptual design and verification of the key technologies. The final results will contribute to the establishment of Korean back end fuel cycle policy by providing technical guidelines.

  10. Textile technology development

    Science.gov (United States)

    Shah, Bharat M.

    1995-01-01

    The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.

  11. ECH Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  12. Recent activities on the HTGR for its commercialization in the 21st century

    International Nuclear Information System (INIS)

    Minatsuki, I.; Uchida, S.; Nomura, S.; Yamada, S.

    1997-01-01

    Currently, the greatest concern about energy is the need to rapidly increase the energy supply, while also conserving energy reserves and protecting the worldwide environment in the coming century. Furthermore, the direct use of thermal energy from nuclear reactors is an effective way to widen the application of nuclear energy. From this standpoint, Mitsubishi Heavy Industries (MHI) has been continuing the various activities related to the High Temperature Gas Cooled Reactor (HTGR). At present, MHI is participating in the High Temperature Engineering Test Reactor (HTTR) project, which is under construction at Oarai promoted by the Japan Atomic Energy Research Institute, as the primary fabricator. Moreover MHI has been conducting research and development to investigate the feasibility of HTGR commercialization in future. In this paper, the results of various studies are summarized to introduce our HTGR activities

  13. Subharmonic excitation in an HTGR core

    International Nuclear Information System (INIS)

    Bezler, P.; Curreri, J.R.

    1977-01-01

    The occurrence of subharmonic resonance in a series of blocks with clearance between blocks and with springs on the outer most ends is the subject of this paper. This represents an HTGR core response to an earthquake input. An analytical model of the cross section of this type of core is a series of blocks arranged horizontally between outer walls. Each block represents many graphite hexagonal core elements acting in unison as a single mass. The blocks are of unequal size to model the true mass distribution through the core. Core element elasticity and damping characteristics are modeled with linear spring and viscous damping units affixed to each block. The walls and base represent the core barell or core element containment structure. For forced response calculations, these boundaries are given prescribed motions. The clearance between each block could be the same or different with the total clearance duplicating that of the entire core. Spring packs installed between the first and last block and the boundaries model the boundary elasticity. The system non-linearity is due to the severe discontinuity in the interblock elastic forces when adjacent blocks collide. A computer program using a numerical integration scheme was developed to solve for the response of the system to arbitrary inputs

  14. Cesium transport data for HTGR systems

    International Nuclear Information System (INIS)

    Myers, B.F.; Bell, W.E.

    1979-09-01

    Cesium transport data on the release of cesium from HTGR fuel elements are reviewed and discussed. The data available through 1976 are treated. Equations, parameters, and associated variances describing the data are presented. The equations and parameters are in forms suitable for use in computer codes used to calculate the release of metallic fission products from HTGR fuel elements into the primary circuit. The data cover the following processes: (1) diffusion of cesium in fuel kernels and pyrocarbon, (2) sorption of cesium on fuel rod matrix material and on graphite, and (3) migration of cesium in graphite. The data are being confirmed and extended through work in progress

  15. HTGR fuel particle crusher design evaluation

    International Nuclear Information System (INIS)

    Johanson, N.W.

    1978-10-01

    This report describes an evaluation of the design of the existing engineering-scale fuel particle crushing system for the HTGR reprocessing cold pilot plant at General Atomic Company (GA). The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Reference Facility (HRRF) particle crushing system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for an upgraded design incorporating improvements in bearing and seal arrangement, housing construction, and control of roll gap thermal expansion. 23 figures, 6 tables

  16. Bibliographical survey of heat exchangers for nuclear power plants and problems of HTGR

    International Nuclear Information System (INIS)

    Yamao, Hiroyuki; Okamoto, Yoshizo; Sanokawa, Konomo

    1977-04-01

    The problems in development of heat exchangers for nuclear reactors have been examined in literature survey through Annual Index Subjects of NSA (Nuclear Science Abstracts) for the past ten years. R and D on heat exchangers for LMFBR, HTGR, LWR and HWR are on the increase. In the case of HTGRs, R and D on heat resisting materials including the corrosion and on hydrogen permeation of heat exchanger walls in high temperature pressure helium environment are important. Future R and D subjects for HTGR heat exchangers in showing the high temperature endurance are presented. (auth.)

  17. A Benchmark Study of a Seismic Analysis Program for a Single Column of a HTGR Core

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A seismic analysis program, SAPCOR (Seismic Analysis of Prismatic HTGR Core), was developed in Korea Atomic Energy Research Institute. The program is used for the evaluation of deformed shapes and forces on the graphite blocks which using point-mass rigid bodies with Kelvin-Voigt impact models. In the previous studies, the program was verified using theoretical solutions and benchmark problems. To validate the program for more complicated problems, a free vibration analysis of a single column of a HTGR core was selected and the calculation results of the SAPCOR and a commercial FEM code, Abaqus, were compared in this study.

  18. Selection of LEU/Th reference fuel for the HTGR-SC/C lead plant

    International Nuclear Information System (INIS)

    Turner, R.F.; Neylan, A.J.; Baxter, A.M.; McEachern, D.W.; Stansfield, O.M.

    1983-05-01

    This paper describes the reference fuel materials for the high-temperature gas-cooled reactor (HTGR) plant for steam cycle/cogeneration (SC/C). A development and testing program carried out in 1978 through 1982 led to the selection of coated fuel particles of uranium-oxycarbide (UCO) for fissile materials and thorium oxide (ThO 2 ) for fertiel materials. Low-enriched uranium (LEU) is the enrichment basis for the HTGR-SC/C application. While UC 2 and UO 2 would also meet the essential criteria for fissile fuel, the UCO, alternative was selected on the basis of improved performance, economics, and process conditions

  19. Air ingress behavior during a primary-pipe rupture accident of HTGR

    International Nuclear Information System (INIS)

    Takeda, Tetsuaki

    1997-11-01

    The inherent properties of a HTGR facilitates the design with high degree of passive safe performances, compared to other type. However, it is still not clear if the present HTGR can maintain a passive safe function during a primary-pipe rupture accident, or what would be design criteria to guarantee the HTGR with the high degree of passive safe performances during the accident. To investigate safe characteristics, the study has been performed experimentally and analytically on the air ingress behavior during the accident. It was indicated that there are two stages in the accident of the HTGR having a reverse U-shaped channel. In the first stage, an air ingress process limits molecular diffusion and natural circulation of the gas mixture having a very slow velocity. In the second stage, the air ingress process limits the ordinary natural circulation of air throughout the reactor. A numerical calculation code has been developed to analyze thermal-hydraulic behavior during the first stage. This code provides a numerical method for analyzing a transport phenomena in a multi-component gas system by solving one-dimensional basic equations and using a flow network model. It was possible to predict or analyze the air ingress process regarding the density of the gas mixture, concentration of each gas species and duration of the first stage of the accident. It was indicated that the safe characteristics of the HTGR from the present experiment as follows. The safety cooling rate that the air ingress process terminates during the first stage exists in the HTGR having the reverse U-shaped channel. Moreover, the ordinary natural circulation of air can not produce in the second stage by injecting helium from the bottom of the pressure vessel corresponding the low-temperature side channel. Therefore, it was found that the idea of helium injection is one of useful methods for the prevention of air ingress and of graphite corrosion in the future HTGRs. (J.P.N.). 74 refs

  20. Development of Sodium Technology

    International Nuclear Information System (INIS)

    Choi, Jong Hyun; Nam, H. Y.; Kim, T. J.; Jeong, K. C.; Park, J. H.; Kim, B. H.; Jeong, J. Y.; Kim, J. M.; Choi, B. H.; Kim, B. S.

    2003-02-01

    The basic P and ID and fabrication method for IHTS simplification experiment were prepared for the experimental apparatus. In order to investigate the later phase of a SWR event, an experimental apparatus was designed and manufactured. The 620 data set have been obtained in the experiment of free surface fluctuation and an experimental correlation for the critical gas entertainment condition is additionally developed. For development of water into sodium leak detection technology, the properties from leak noises were extracted, and the tools for analyzing acoustic noises were constructed. The state-of-the-art on the flow and differential pressure measuring techniques in the piping system is investigated to develop new techniques which are applicable to high temperature sodium flow environment. The plan for the minimization of errors in temperature measurement was drawn up by analysing the error factors in temperature measurement. And the countermeasures for the minimization of errors in temperature measurement due to complex heat transfer were prepared

  1. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal

  2. HTGR-Integrated Coal To Liquids Production Analysis

    International Nuclear Information System (INIS)

    Gandrik, Anastasia M.; Wood, Rick A.

    2010-01-01

    As part of the DOE's Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to 'shift' the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700 C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: (1) 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66

  3. Developing technologies and resources

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.S. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Our success as a nuclear nation rests on interdependent pillars involving industry, governments, regulators, and academia. In a context of coherent public policy, we must achieve: 5 Nuclear Industry Priorities: Ensure refurbishments are completed to cost and schedule; Achieve Canadian supply chain success in international nuclear business; Support a strong Canadian nuclear science, technology and innovation agenda; Enhance the supply of skilled workers; Develop a coordinated and integrated strategy for the long term management of all radioactive waste materials; Refine communication strategies informed by insights from social sciences. Canada's nuclear sector has the opportunity to adapt to the opportunities presented by having a national laboratory in Canada.

  4. Developing technologies and resources

    International Nuclear Information System (INIS)

    Walker, R.S.

    2015-01-01

    Our success as a nuclear nation rests on interdependent pillars involving industry, governments, regulators, and academia. In a context of coherent public policy, we must achieve: 5 Nuclear Industry Priorities: Ensure refurbishments are completed to cost and schedule; Achieve Canadian supply chain success in international nuclear business; Support a strong Canadian nuclear science, technology and innovation agenda; Enhance the supply of skilled workers; Develop a coordinated and integrated strategy for the long term management of all radioactive waste materials; Refine communication strategies informed by insights from social sciences. Canada's nuclear sector has the opportunity to adapt to the opportunities presented by having a national laboratory in Canada.

  5. Design of the HTGR for process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1980-05-01

    This paper discusses a design study of an advanced 842-MW(t) HTGR with a reactor outlet temperature of 850 0 C (1562 0 F), coupled with a chemical process whose product is hydrogen (or a mixture of hydrogen and carbon monoxide) generated by steam reforming of a light hydrocarbon mixture. This paper discusses the plant layout and design for the major components of the primary and secondary heat transfer systems. Typical parametric system study results illustrate the capability of a computer code developed to model the plant performance and economics

  6. Treatment of operator actions in the HTGR risk assessment study

    International Nuclear Information System (INIS)

    Fleming, K.N.; Silady, F.A.; Hannaman, G.W.

    1979-12-01

    Methods are presented for the treatment of operator actions, developed in the AIPA risk assessment study. Some examples are given of how these methods were applied to the analysis of potential HTGR accidents. Realistic predictions of accident risks required a balanced treatment of both beneficial and detrimental actions and responses of human operators and maintenance crews. Th essential elements of the human factors methodology used in the AIPA study include event tree and fault tree analysis, time-dependent operator response and repair models, a method for quantifying common cause failure probabilities, and synthesis of relevant experience data for use in these models

  7. The calculation - experimental investigations of the HTGR fuel element construction

    International Nuclear Information System (INIS)

    Eremeev, V.S.; Kolesov, V.S.; Chernikov, A.S.

    1985-01-01

    One of the most important problems in the HTGR development is the creation of the fuel element gas-tight for the fission products. This problem is being solved by using fuel elements of dispersion type representing an ensemble of coated fuel particles dispersed in the graphite matrix. Gas-tightness of such fuel elements is reached at the expense of deposing a protective coating on the fuel particles. It is composed of some layers serving as diffusion barriers for fission products. It is apparent that the rate of fission products diffusion from coated fuel particles is determined by the strength and temperature of the protective coating

  8. An Experiment on the Carbonization of Fuel Compact Matrix Graphite for HTGR

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, Joo Hyoung; Cho, Moon Sung

    2012-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a properly prepared matrix graphite powder, pressed into a spherical shape or a cylindrical compact, and finally heat-treated at about 1800 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, over coating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K, In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is of extreme importance to investigate the relationship among the process parameters of the matrix graphite powder preparation, fabrication parameters of fuel element green compact and the carbonization condition, which has a strong influence on further steps and the material properties of fuel element. In this work, the carbonization behavior of green compact samples prepared from the matrix graphite powder mixtures with different binder materials was investigated in order to elucidate the behavior of binders during the carbonization heat treatment by analyzing the change in weight, density and its

  9. Development of sodium technology

    International Nuclear Information System (INIS)

    Hwang, Sung Tai; Nam, H. Y.; Choi, Y. D.

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, τ c = δ·g -0.83 ·10 (3570/T Na -3.34) , in 400-500 deg C of liquid sodium atmosphere. The characteristics of pressure propagation and gas flow, and

  10. Development of sodium technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Nam, H Y; Choi, Y D [and others

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, {tau}{sub c} = {delta}{center_dot}g{sup -0.83}{center_dot}10{sup (3570/T{sub Na}-3.34)}, in 400-500 deg C of liquid sodium atmosphere. The characteristics

  11. Technology Development Facility (TDF)

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1982-01-01

    We have been studying small, driven, magnetic-mirror-based fusion reactors for the Technology Development Facility (TDF), that will test fusion reactor materials, components, and subsystems. Magnetic mirror systems are particularly interesting for this application because of their inherent steady-state operation, potentially high neutron wall loading, and relatively small size. Our design is a tandem mirror device first described by Fowler and Logan, based on the physics of the TMX experiments at Lawrence Livermore National Laboratory (LLNL). The device produces 20 MW of fusion power with a first-wall, uncollided 14-MeV neutron flux of 1.4 MW/m 2 on an area of approximately 8 m 2 , while consuming approximately 250 MW of electrical power. The work was done by a combined industrial-laboratory-university group

  12. Development and technology

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This program is aimed at developing the technology required for carrying out the mirror reactor program. Much of this work applies to the national program and fusion in general; it covers the following areas: Neutral-beam program (including beam direct conversion and vacuum technology). Direct conversion: In addition to direct conversion associated with neutral beams, we have a continuing program to develop efficient direct recovery systems, which are required for reducing power losses from future mirror reactors. Materials program, several key problems on tritium control and handling that must be solved for any large D-T fusion device are being investigated in the LLL tritium laboratory; emphasis is on cleanup of low tritium concentrations in reactor containment buildings and on the containment of tritium by using various low-permeability barriers and coatings to be applied to metal walls. The effects of neutrons on properties of superconducting materials are being investigated using a unique apparatus in which superconducting properties are measured while the specimen is continuously maintained at liquid-helium temperature. Reactor design studies: Design studies of mirror reactors form a basis for evaluation of mirror concepts and for guiding our long-range program. Present emphasis is on delineating features of reactors based on the tandem mirror concept (TMR), on a fission/fusion hybrid reactor based on the TMR, and on an engineering evaluation of a small reactor system based on field reversal. Reactors that are small and candidates for construction the next decade are being investigated in a program sponsored by the Electric Power Research Institute

  13. Development of Korea telecommunication technology

    International Nuclear Information System (INIS)

    1992-06-01

    It concentrates on development of Korea telecommunication technology, which is made up seven chapters. It gives description of manual central telephone exchange or private automatic telephone exchange, transmission technology on wire line and cable line technology and optical transmission, radio communication technology on mobile and natural satellite communication, network technology with intelligent network, broadband ISDN and packet switched Data Network, terminal technology with telephone and data communication terminal and development of Information Technology in Korea. It has an appendix about development of military communication system.

  14. Technology Development of Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Ko, W. I. (and others)

    2007-04-15

    The objective of this project is to perform R and D on the essential technologies in nuclear material measurement and surveillance and verification system, and to improve the state of being transparent on the nuclear material management of DUPIC Fuel Development Facility (DFDF) through the evaluation of safeguard ability on non-proliferation fuel cycle and nuclear proliferation resistance. Nuclear material position scan system for the reduction of measurement error was developed for the spatial distribution search of spent fuel in DUPIC facility. Web-based realtime remote monitoring system was designed and constructed for satisfying the IAEA's performance criteria of continuous monitoring, and also developed a software for the function of remote control and message. And diversion paths in a proliferation resistant pyroprocess for SFR were analyzed and its protecting system against the diversion paths were suggested for enhancing proliferation resistance of advanced nuclear fuel cycle. These results could be used for planning the further R and D items in the area of safeguards. Those R and D results mentioned above would be helpful for increasing Korean nuclear transparency in the future.

  15. Developments in lubricant technology

    CERN Document Server

    Srivastava, S P

    2014-01-01

    Provides a fundamental understanding of lubricants and lubricant technology including emerging lubricants such as synthetic and environmentally friendly lubricants Teaches the reader to understand the role of technology involved in the manufacture of lubricants Details both major industrial oils and automotive oils for various engines Covers emerging lubricant technology such as synthetic and environmentally friendly lubricants Discusses lubricant blending technology, storage, re-refining and condition monitoring of lubricant in equipment

  16. Mars Technology Program: Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  17. Technical Meeting on Developing Deep-Burn Concepts using HTGRs. Objectives and Expectations

    International Nuclear Information System (INIS)

    Tyobeka, Bismark

    2013-01-01

    The objectives of the meeting are: • To explore various Deep-Burn options and concepts being developed in Member States; • To appraise the progress made towards the maturity of Deep-Burn concepts based on HTGR designs; • To identify technology development challenges towards the realization of Deep-Burn concepts; • To propose collaborative ways to address technology development challenges

  18. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-12-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  19. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-06-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  20. Mars Technology Program Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  1. Tribological study on machine elements of HTGR components

    International Nuclear Information System (INIS)

    Nemoto, M.; Asanabe, S.; Kawaguchi, K.; Ono, S.; Oyamada, T.

    1980-01-01

    There are some tribological features peculiar to machines used in a high-temperature gas-cooled reactor (HTGR) plant. In this kind of plant, water-lubricated bearing combined with the buffer gas sealing system and/or gas-lubricated bearings are often applied in order to prevent degrading of the purity of coolant helium gas. And, it is essential for the reliability and safety design of the sliding members in the HTGR to obtain fundamental data on their friction and wear in high-temperature helium atmosphere. In this paper, the results of tests on these bearings and sliding members are introduced, which are summarized as follows: (1) Water-lubricated shrouded step thrust bearing and buffer gas sealing system were tested separately under the conditions simulated to those of circulators used in commercial plants. The results showed that each elements satisfies the requirements. (2) A hydrostatically gas-lubricated, pivoted pad journal bearing with a moat-shaped rectangular groove is found to be promising for use as a high-load bearing, which is indispensable for the development of a large-type circulator. (3) Use of ceramic coating and carbon graphite materials is effective for the prevention of adhesive wear which is apt to occur in metal-to-metal combinations. (author)

  2. Tribological study on machine elements of HTGR components

    International Nuclear Information System (INIS)

    Nemoto, Masaaki; Ono, Shigeharu; Asanabe, Sadao; Kawaguchi, Katsuyuki; Oyamada, Tetsuya.

    1981-11-01

    There are some tribological features peculiar to machines used in a high-temperature gas-cooled reactor (HTGR) plant. In this kind of plant, water-lubricated bearing combined with the buffer gas sealing system and/or gas-lubricated bearings are often applied in order to prevent degrading of the purity of coolant helium gas. And, it is essential for the reliability and safety design of the sliding members in the HTGR to obtain fundamental data on their friction and wear in high-temperature helium atmosphere. In this paper, the results of tests on these bearings and sliding members are introduced, which are summarized as follows: (1) Water-lubricated shrouded step thrust bearing and buffer gas sealing system were tested separately under the condition simulated to those of circulators used in commercial plants. The results showed that each elements satisfies the requirements. (2) A hydrostatically gas-lubricated, pivoted pad journal bearing with a moat-shaped rectangular groove is found to be promising for use as a high-load bearing, which is indispensable for the development of a large-type circulator. (3) Use of ceramic coating and carbon graphite materials is effective for the prevention of adhesive wear which is apt to occur in metal-to-metal combinations. (author)

  3. 1170-MW(t) HTGR-PS/C plant application study report: heavy oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    This report describes the application of a high-temperature gas-cooled reactor (HTGR) which operates in a process steam/cogeneration (PS/C) mode in supplying steam for enhanced recovery of heavy oil and in exporting electricity. The technical and economic merits of an 1170-MW(t) HTGR-PS/C are compared with those of coal-fired plants and (product) oil-fired boilers for this application. The utility requirements for enhanced oil recovery were calculated by establishing a typical pattern of injection wells and production wells for an oil field similar to that of Kern County, California. The safety and licensing issues of the nuclear plant were reviewed, and a comparative assessment of the alternative energy sources was performed. Technically and economically, the HTGR-PS/C plant has attractive merits. The major offsetting factors would be a large-scale development of a heavy oil field by a potential user for the deployment of a 1170-MW(t) HTGR-PS/C; plant and the likelihood of available prime heavy oil fields for the mid-1990 operation

  4. Technology Development and Innovation | Wind | NREL

    Science.gov (United States)

    Technology Development and Innovation Technology Development and Innovation Technology Development Technology Center (NWTC) supports efforts to reduce bird and bat fatalities at wind energy projects and photo of wind turbines at the National Wind Technology Center. Wildlife technology research and

  5. Generation of a Broad-Group HTGR Library for Use with SCALE

    International Nuclear Information System (INIS)

    Ellis, Ronald James; Lee, Deokjung; Wiarda, Dorothea; Williams, Mark L.; Mertyurek, Ugur

    2012-01-01

    With current and ongoing interest in high temperature gas reactors (HTGRs), the U.S. Nuclear Regulatory Commission (NRC) anticipates the need for nuclear data libraries appropriate for use in applications for modeling, assessing, and analyzing HTGR reactor physics and operating behavior. The objective of this work was to develop a broad-group library suitable for production analyses with SCALE for HTGR applications. Several interim libraries were generated from SCALE fine-group 238- and 999-group libraries, and the final broad-group library was created from Evaluated Nuclear Data File/B Version ENDF/B-VII Release 0 cross-section evaluations using new ORNL methodologies with AMPX, SCALE, and other codes. Furthermore, intermediate resonance (IR) methods were applied to the HTGR broadgroup library, and lambda factors and f-factors were incorporated into the library s nuclear data files. A new version of the SCALE BONAMI module named BONAMI-IR was developed to process the IR data in the new library and, thus, eliminate the need for the CENTRM/PMC modules for resonance selfshielding. This report documents the development of the HTGR broad-group nuclear data library and the results of test and benchmark calculations using the new library with SCALE. The 81-group library is shown to model HTGR cases with similar accuracy to the SCALE 238-group library but with significantly faster computational times due to the reduced number of energy groups and the use of BONAMI-IR instead of BONAMI/CENTRM/PMC for resonance self-shielding calculations.

  6. Nigerian Journal of Technological Development

    African Journals Online (AJOL)

    The Nigerian Journal of Technological Development is now a quarterly publication of the Faculty of Engineering & Technology, University of Ilorin, Ilorin, Nigeria. ... to the subject matter as a Research Paper, Review Paper or a Technical Note.

  7. Review of tritium behavior in HTGR systems

    International Nuclear Information System (INIS)

    Gainey, B.W.

    1976-01-01

    The available experimental evidence from laboratory and reactor studies pertaining to tritium production, capture, release, and transport within an HTGR leading to release to the environment is reviewed. Possible mechanisms for release, capture, and transport are considered and a simple model was used to calculate the expected tritium release from HTGRs. Comparison with Federal regulations governing tritium release confirm that expected HTGR releases will be well within the allowable release limits. Releases from HTGRs are expected to be somewhat less than from LWRs based on the published LWR operating data. Areas of research deserving further study are defined but it is concluded that a tritium surveillance at Fort St. Vrain is the most immediate need

  8. Safety criteria for advanced HTGR concepts

    International Nuclear Information System (INIS)

    Kroeger, W.

    1989-01-01

    It is commonly agreed that advanced HTGR concepts must be licensable, which means that they must fulfil existing regulatory requirements. Furthermore, it is necessary to improve their public acceptance and they must even be suitable for urban sites. Therefore, they should be 'safer' than existing plants, which mainly means with respect to low-frequency or beyond-design severe accidents. Last but not least, the realization of advanced HTGR would be easier if commonly shared safety principles could be stated ensuring this further increased level of safety internationally. These qualitative statements need to be cast into quantitative guidelines which can be used as a rationale for safety evaluation. This paper tries to describe the status reached and to stimulate international activities. (author). 12 refs, 4 figs, 3 tabs

  9. Fission-product retention in HTGR fuels

    International Nuclear Information System (INIS)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  10. Exergy analysis of HTGR-GT

    International Nuclear Information System (INIS)

    Cao Jianhua; Wang Jie; Yang Xiaoyong; Yu Suyuan

    2005-01-01

    The High Temperature Gas-cooled Reactor (HTGR) coupled with gas turbine for high efficiency in electricity production is supposed to be one of the candidates for the future nuclear power plants. The HTGR gas turbine cycle is theoretically based on the Brayton cycle with recuperated, intercooled and precooled sub-processes. In this paper, an exergy analysis of the Brayton Cycle on HTGR is presented. The analyses were done for four typical reactor outlet temperatures and the exergy loss distribution and exergy loss ratio of each sub-process was quantified. The results show that more than a half of the exergy loss takes place in the reactor, while the low pressure compressor (LPC), the high pressure compressor (HPC) and the intercooler denoted by compress system together, play a much small role in the contribution of exergy losses. With the rise of the reactor outlet temperature, both the exergy loss and exergy loss ratio of the reactor can be greatly cut down, so is the total exergy loss of the cycle; while the exergy loss ratios of the recuperator and precooler have a small rise. The total exergy efficiency of the cycle is quite high (50% more or less). (authors)

  11. Developing human technology curriculum

    Directory of Open Access Journals (Sweden)

    Teija Vainio

    2012-10-01

    Full Text Available During the past ten years expertise in human-computer interaction has shifted from humans interacting with desktop computers to individual human beings or groups of human beings interacting with embedded or mobile technology. Thus, humans are not only interacting with computers but with technology. Obviously, this shift should be reflected in how we educate human-technology interaction (HTI experts today and in the future. We tackle this educational challenge first by analysing current Master’s-level education in collaboration with two universities and second, discussing postgraduate education in the international context. As a result, we identified core studies that should be included in the HTI curriculum. Furthermore, we discuss some practical challenges and new directions for international HTI education.

  12. Management of graphite material: a key issue for High Temperature Gas Reactor system (HTGR)

    International Nuclear Information System (INIS)

    Bourdeloie, C.; Marimbeau, P.; Robin, J.C.; Cellier, F.

    2005-01-01

    Graphite material is used in nuclear High Temperature Gas-cooled Reactors (HTGR, Fig.1) as moderator, thermal absorber and also as structural components of the core (Fig.2). This type of reactor was selected by the Generation IV forum as a potential high temperature provider for supplying hydrogen production plants and is under development in France in the frame of the AREVA ANTARES program. In order to select graphite grades to be used in these future reactors, the requirements for mechanical, thermal, physical-chemical properties must match the internal environment of the nuclear core, especially with regard to irradiation effect. Another important aspect that must be addressed early in design is the waste issue. Indeed, it is necessary to reduce the amount of nuclear waste produced by operation of the reactor during its lifetime. Preliminary assessment of the nuclear waste output for an ANTARES type 280 MWe HTGR over 60 year-lifetime gives an estimated 6000 m 3 of activated graphite waste. Thus, reducing the graphite waste production is an important issue for any HTGR system. First, this paper presents a preliminary inventory of graphite waste fluxes coming from a HTGR, in mass and volume, with magnitudes of radiological activities based on activation calculations of graphite during its stay in the core of the reactor. Normalized data corresponding to an output of 1 GWe.year electricity allows comparison of the waste production with other nuclear reactor systems. Second, possible routes to manage irradiated graphite waste are addressed in both the context of French nuclear waste management rules and by comparison to other national regulations. Routes for graphite waste disposal studied in different countries (concerning existing irradiated graphite waste) will be discussed with regard to new issues of large graphite waste from HTGR. Alternative or complementary solutions aiming at lowering volume of graphite waste to be managed will be presented. For example

  13. Milling Behavior of Matrix Graphite Powders with Different Binder Materials in HTGR Fuel Element Fabrication: I. Variation in Particle Size Distribution

    International Nuclear Information System (INIS)

    Lee, Young Woo; Cho, Moon Sung

    2011-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a matrix graphite powder properly prepared and pressed into a spherical shape or a cylindrical compact finally heat-treated at about 1900 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, overcoating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. In order to develop a fuel compact fabrication technology, it is important to develop a technology to prepare the matrix graphite powder (MGP) with proper characteristics, which has a strong influence on further steps and the material properties of fuel element. In this work, the milling behavior of matrix graphite powder mixture with different binder materials and their contents was investigated by analyzing the change in particle size distribution with different milling time

  14. Study on commercial HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo

    2000-07-01

    The Japanese energy demand in 2030 will increase up to 117% in comparison with one in 2000. We have to avoid a large consumption of fossil fuel that induces a large CO 2 emission from viewpoint of global warming. Furthermore new energy resources expected to resolve global warming have difficulty to be introduced more because of their low energy density. As a result, nuclear power still has a possibility of large introduction to meet the increasing energy demand. On the other hand, in Japan, 40% of fossil fuels in the primary energy are utilized for power generation, and the remaining are utilized as a heat source. New clean energy is required to reduce the consumption of fossil fuels and hydrogen is expected as a alternative energy resource. Prediction of potential hydrogen demand in Japan is carried out and it is clarified that the demand will potentially increase up to 4% of total primary energy in 2050. In present, steam reforming method is the most economical among hydrogen generation processes and the cost of hydrogen production is about 7 to 8 yen/m 3 in Europe and the United States and about 13 yen/m 3 in Japan. JAERI has proposed for using the HTGR whose maximum core outlet temperature is at 950degC as a heat source in the steam reforming to reduced the consumption of fossil fuels and resulting CO 2 emission. Based on the survey of the production rate and the required thermal energy in conventional industry, it is clarified that a hydrogen production system by the steam reforming is the best process for the commercial HTGR nuclear heat utilization. The HTGR steam reforming system and other candidate nuclear heat utilization systems are considered from viewpoint of system layout and economy. From the results, the hydrogen production cost in the HTGR stream reforming system is expected to be about 13.5 yen/m 3 if the cost of nuclear heat of the HTGR is the same as one of the LWR. (author)

  15. Identification of key amino acid residues in the hTGR5-nomilin interaction and construction of its binding model.

    Science.gov (United States)

    Sasaki, Takashi; Mita, Moeko; Ikari, Naho; Kuboyama, Ayane; Hashimoto, Shuzo; Kaneko, Tatsuya; Ishiguro, Masaji; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2017-01-01

    TGR5, a member of the G protein-coupled receptor (GPCR) family, is activated by bile acids. Because TGR5 promotes energy expenditure and improves glucose homeostasis, it is recognized as a key target in treating metabolic diseases. We previously showed that nomilin, a citrus limonoid, activates TGR5 and confers anti-obesity and anti-hyperglycemic effects in mice. Information on the TGR5-nomilin interaction regarding molecular structure, however, has not been reported. In the present study, we found that human TGR5 (hTGR5) shows higher nomilin responsiveness than does mouse TGR5 (mTGR5). Using mouse-human chimeric TGR5, we also found that three amino acid residues (Q77ECL1, R80ECL1, and Y893.29) are important in the hTGR5-nomilin interaction. Based on these results, an hTGR5-nomilin binding model was constructed using in silico docking simulation, demonstrating that four hydrophilic hydrogen-bonding interactions occur between nomilin and hTGR5. The binding mode of hTGR5-nomilin is vastly different from those of other TGR5 agonists previously reported, suggesting that TGR5 forms various binding patterns depending on the type of agonist. Our study promotes a better understanding of the structure of TGR5, and it may be useful in developing and screening new TGR5 agonists.

  16. Smart Fabrics Technology Development

    Science.gov (United States)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  17. Sustainable and safe energy supply with seawater uranium fueled HTGR and its economy

    International Nuclear Information System (INIS)

    Fukaya, Y.; Goto, M.

    2017-01-01

    Highlights: • We discussed uranium resources with an energy security perspective. • We concluded seawater uranium is preferable for sustainability and energy security. • We evaluated electricity generation cost of seawater uranium fueled HTGR. • We concluded electricity generation with seawater uranium is reasonable. - Abstract: Sustainable and safe energy supply with High Temperature Gas-cooled Reactor (HTGR) fueled by uranium from seawater have been investigated and discussed. From the view point of safety feature of self-regulation with thermal reactor of HTGR, the uranium resources should be inexhaustible. The seawater uranium is expected to be alternative resources to conventional resources because it exists so much in seawater as a solute. It is said that 4.5 billion tons of uranium is dissolved in the seawater, which corresponds to a consumption of approximately 72 thousand years. Moreover, a thousand times of the amount of 4.5 trillion tU of uranium, which corresponds to the consumption of 72 million years, also is included in the rock on the surface of the sea floor, and that is also recoverable as seawater uranium because uranium in seawater is in an equilibrium state with that. In other words, the uranium from seawater is almost inexhaustible natural resource. However, the recovery cost with current technology is still expensive compared with that of conventional uranium. Then, we assessed the effect of increase in uranium purchase cost on the entire electricity generation cost. In this study, the economy of electricity generation of cost of a commercial HTGR was evaluated with conventional uranium and seawater uranium. Compared with ordinary LWR using conventional uranium, HTGR can generate electricity cheaply because of small volume of simple direct gas turbine system compared with water and steam systems of LWR, rationalization by modularizing, and high thermal efficiency, even if fueled by seawater uranium. It is concluded that the HTGR

  18. HTGR Metallic Reactor Internals Core Shell Cutting & Machining Antideformation Technique Study

    International Nuclear Information System (INIS)

    Xing Huiping; Xue Song

    2014-01-01

    The reactor shell assembly of HTGR nuclear power station demonstration project metallic reactor internals is key components of reactor, remains with high-precision large component with large-sized thin-walled straight cylinder-shaped structure, and is the first manufacture in China. As compared with other reactor shell, it has a larger ID (Φ5360mm), a longer length (19000mm), a smaller wall thickness (40mm) and a higher precision requirement. During the process of manufacture, the deformation due to cutting & machining will directly affect the final result of manufacture, the control of structural deformation and cutting deformation shall be throughout total manufacture process of such assembly. To realize the control of entire core shell assembly geometry, the key is to innovate and make breakthroughs on anti-deformation technique and then provide reliable technological foundations for the manufacture of HTGR metallic reactor internals. (author)

  19. HTGR-steam cycle/cogeneration plant economic potential

    International Nuclear Information System (INIS)

    1981-05-01

    The cogeneration of heat and electricity provides the potential for improved fuel utilization and corresponding reductions in energy costs. In the evaluation of the cogeneration plant product costs, it is advantageous to develop joint-product cost curves for alternative cogeneration plant models. The advantages and incentives for cogeneration are then presented in a form most useful to evaluate the various energy options. The HTGR-Steam Cycle/Cogeneration (SC/C) system is envisioned to have strong cogeneration potential due to its high-quality steam capability, its perceived nuclear siting advantages, and its projected cost advantages relative to coal. The economic information presented is based upon capital costs developed during 1980 and the economic assumptions identified herein

  20. HTGR programme in the United States of America

    International Nuclear Information System (INIS)

    Fox, J.E.

    1991-01-01

    The HTGR is being developed by the US Department of Energy within the Division of HTGRs is reported. Fuel design, development and demonstration activities are being conducted by General Atomics and Oak Ridge National Laboratory. During FY-1990 the US continued work in cooperative projects with the KFA-Forschungszentrum Juelich and the Japan Atomic Energy Research Institute on post irradiation examination of fuel capsules and continued the Fission Product Transport Test Program with the French Commissariat a l'Energie Atomique in the COMEDIE in-pile loop at the SILOE reactor at Grenoble. Other activities included installation of the high temperature core-conduction-cooldown test furnace at ORNL which will be used for testing of irradiated fuel compacts under accident conditions. Finally, the US fuel performance experts participated in the MHTGR Cost Reduction Study which is a major effort within the US commercial MHTGR program. 1 tab

  1. Present activity of the feasibility study of HTGR-GT system

    International Nuclear Information System (INIS)

    Muto, Y.; Miyamoto, Y.; Shiozawa, S.

    2001-01-01

    In JAERI a feasibility study of the High Temperature Gas-cooled Reactor-Gas Turbine (HTGR-GT) system has been carried out since January, 1997 as an assigned work by the Science and Technology Agency. The study aims at obtaining a promising concept of HTGR-GT system that yields a high thermal efficiency and at the same time is economically competitive. Designs of a few candidate systems will be undertaken and their power generation costs will be evaluated in parallel with design works, some experimental works such as the fabrication of a plate-fin type heat exchanger core and material tests will be carried out. The study will be continued till 2000 fiscal year. In 1997 fiscal year, a preliminary design of a direct cycle plant of 600 MWt was developed. A reactor inlet gas temperature of 460 deg. C, a reactor outlet gas temperature of 850 deg. C and a helium gas pressure of 6MPa were selected. Some advanced technologies were adopted such as a monolithic fuel compact and a control rod sheath made of carbon/carbon composite material. They were very effective to enhance the heat transfer of fuel and to reduce the core bypass flow. As a result, a power density of 6MW/m 3 and the maximum burnup of 10 5 MWD/ton were achieved. A single-shaft horizontal turbomachine of 3600 rpm was selected to ease the mechanical design of the rotor supported by magnetic bearings. The turbine, two compressors, a generator and six units of intercooler were placed in a turbine vessel, Plate-fin type recuperator and precooler are installed in a vertical heat exchanger vessel. By this design, a net thermal efficiency of 45.7% is expected to be achieved. To develop a high performance plate-fin recuperator, a core model of W200 mm x L200 mm x H200 mm with small fin size of 1.15 mm height was fabricated and as a result of tests, leak tightness, component strength and bonding appearance were found to be satisfactory. In 1998 fiscal year, a design of a direct cycle plant of 300 MWt is undertaken. The

  2. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  3. Gas-Cooled Reactors: the importance of their development

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1978-01-01

    Gas-Cooled Reactors are considered to have a significant future impact on the application of fission energy. The specific types are the steam-cycle High-Temperature Gas-Cooled Reactor, the Gas-Cooled Fast Breeder Reactor, the gas-turbine HTGR, and the Very High-Temperature Process Heat Reactor. The importance of developing the above systems is discussed relative to alternative fission power systems involving Light Water Reactors, Heavy Water Reactors, Spectral Shift Controlled Reactors, and Liquid-Metal-Cooled Fast Breeder Reactors. A primary advantage of developing GCRs as a class lies in the technology and cost interrelations, permitting cost-effective development of systems having diverse applications. Further, HTGR-type systems have highly proliferation-resistant characteristics and very attractive safety features. Finally, such systems and GCFRs are mutally complementary. Overall, GCRs provide interrelated systems that serve different purposes and needs; their development can proceed in stages that provide early benefits while contributing to future needs. It is concluded that the long-term importance of the various GCRs is as follows: HTGR, providing a technology for economic GCFRs and HTGR-GTs, while providing a proliferation-resistant reactor system having early economic and fuel utilization benefits; GCFR, providing relatively low cost fissile fuel and reducing overall separative work needs at capital costs lower than those for LMFBRs; HTGR-GT (in combination with a bottoming cycle), providing a very high thermal efficiency system having low capital costs and improved fuel utilization and technology pertinent to VHTRs; HTGR-GT, providing a power system well suited for dry cooling conditions for low-temperature process heat needs; and VHTR, providing a high-temperature heat source for hydrogen production processes

  4. Mobilizing technology for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C Jr

    1979-10-01

    Mr. Weiss says that the 15 years since the UN Conference on Science, Technology, and Development in Geneva have taught us that what seem at first to be technological obstacles to development frequently turn out on closer examination to have been policy failures; that introduction of technologies into developing countries must be accompanied by institutional and policy changes if the technologies are to benefit the countries. He points out that choice of alternative technology for a developing country should depend on careful overall assessment of local techno-economic, geographical, ecological, and social factors, as well as the desired balance between growth and equity. Such a technology assessment, a key element in the choice of appropriate (i.e., locally suitable) technology for particular investment projects, should be built into procedures for project preparation and appraisal in governments and development assistance agencies. Turning to technologists, Mr. Weiss says they face a double challenge: (1) to recognize potential for new efforts to harness science and technology for the benefit of the developing countries; and (2) by understanding the social, institutional, and economic framework into which an innovation is to operate, to ease its application and diffusion, and thus speed and increase its practical impact. 25 references.

  5. Current status and future development of modular high temperature gas cooled reactor technology

    International Nuclear Information System (INIS)

    2001-02-01

    This report includes an examination of the international activities with regard to the development of the modular HTGR coupled to a gas turbine. The most significant of these gas turbine programmes include the pebble bed modular reactor (PBMR) being designed by ESKOM of South Africa and British Nuclear Fuels plc. (BNFL) of the United Kingdom, and the gas turbine-modular helium reactor (GT-MHR) by a consortium of General Atomics of the United States of America, MINATOM of the Russian Federation, Framatome of France and Fuji Electric of Japan. Details of the design, economics and plans for these plants are provided in Chapters 3 and 4, respectively. Test reactors to evaluate the safety and general performance of the HTGR and to support research and development activities including electricity generation via the gas turbine and validation of high temperature process heat applications are being commissioned in Japan and China. Construction of the high temperature engineering test reactor (HTTR) by the Japan Atomic Energy Research Institute (JAERI) at its Oarai Research Establishment has been completed with the plant currently in the low power physics testing phase of commissioning. Construction of the high temperature reactor (HTR-10) by the Institute of Nuclear Energy Technology (INET) in Beijing, China, is nearly complete with initial criticality expected in 2000. Chapter 5 provides a discussion of purpose, status and testing programmes for these two plants. In addition to the activities related to the above mentioned plants, Member States of the IWGGCR continue to support research associated with HTGR safety and performance as well as development of alternative designs for commercial applications. These activities are being addressed by national energy institutes and, in some projects, private industry, within China, France, Germany, Indonesia, Japan, the Netherlands, the Russian Federation, South Africa, United Kingdom and the USA. Chapter 6 includes details

  6. Dynamic response of a multielement HTGR core

    International Nuclear Information System (INIS)

    Reich, M.; Bezler, P.; Koplik, B.; Curreri, J.; Goradia, H.; Lasker, L.

    1977-01-01

    One of the primary factors in determining the structural integrity and consequently the safety of a High Temperature Gas-Cooled Reactor (HTGR) is the dynamic response of the core when subjected to a seismic excitation. The HTGR core under consideration consists of several thousands of hexagonal elements arranged in vertical stacks containing about eight elements per stack. There are clearance gaps between adjacent elements, which can change substantially due to radiation effects produced during their active lifetime. Surrounding the outer periphery of the core are reflector blocks and restraining spring-pack arrangements which bear against the reactor vessel structure (PCRV). Earthquake input motions to this type of core arrangement will result in multiple impacts between adjacent elements as well as between the reflector blocks and the restraining spring packs. The highly complex nonlinear response associated with the multiple collisions across the clearance gaps and with the spring packs is the subject matter of this paper. Of particular importance is the ability to analyze a complex nonlinear system with gaps by employing a model with a reduced number of masses. This is necessary in order to obtain solutions in a time-frame and at a cost which is not too expensive. In addition the effect of variations in total clearance as well as the initial distribution of clearances between adjacent elements is of primary concern. Both of these aspects of the problem are treated in the present analysis. Finally, by constraining the motion of the reflector blocks, a more realistic description of the dynamic response of the multi-element HTGR core is obtained

  7. HTGR Fuels and Core Development Program. Quarterly progress report for the period ending August 31, 1977. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The work reported includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and data are presented.

  8. Utilization of plutonium in HTGR and its actinide production

    International Nuclear Information System (INIS)

    Karin, S.; Brogli, R.; Lefler, W.; Nordheim, L.

    1976-01-01

    The HTGR is a potential plutonium consumer. In this function it would burn plutonium, produce electricity and the valuable fissile isotope U-233. The advantages of this concept are discussed but particular attention is given to the production and the destruction of the higher actinides due to the high burnup achievable in such a system. The presence of the strong resonances in the plutonium isotopes demanded an extension of the methods for evaluation of self-shielding factors, a different structure for broad groups, and the adaptation of the reactor codes to these changes. Specifications for coated plutonium particles were developed. Also procedures were determined to evaluate the alpha ray and neutron emission rates of the actinide nuclides. First cycle calculations were carried out to establish in detail the characteristics of the plutonium reactors and their results are given

  9. HTGR fuel particle crusher: Mark 2 design

    International Nuclear Information System (INIS)

    Baer, J.W.

    1979-06-01

    The double-roll crusher for fracturing the silicon carbide coatings of high-temperature gas-cooled reactor (HTGR) fuel particles has been redesigned to improve the equipment. The housing was simplified and reduced to a two-piece assembly; the bearings were changed to accommodate thermal effects; the bearing protection seals were improved with triple redundancy; the bearing preload arrangement was simplified and improved; and localized wear areas were reinforced with better materials or special treatment. In addition, the crusher drive was changed for impoved characteristics and an increase in power

  10. Quantitative HTGR safety and forced outage goals

    International Nuclear Information System (INIS)

    Houghton, W.J.; Parme, L.L.; Silady, F.A.

    1985-05-01

    A key step in the successful implementation of the integrated approach is the definition of the overall plant-level goals. To be effective, the goals should provide clear statements of what is to be achieved by the plant. This can be contrasted to the current practice of providing design-prescriptive criteria which implicitly address some higher-level objective but restrict the designer's flexibility. Furthermore, the goals should be quantifiable in such a way that satisfaction of the goal can be measured. In the discussion presented, two such plant-level goals adopted for the HTGR and addressing the impact of unscheduled occurrences are described. 1 fig

  11. HTGR fuel particle crusher: Mark 2 design

    Energy Technology Data Exchange (ETDEWEB)

    Baer, J.W.

    1979-06-01

    The double-roll crusher for fracturing the silicon carbide coatings of high-temperature gas-cooled reactor (HTGR) fuel particles has been redesigned to improve the equipment. The housing was simplified and reduced to a two-piece assembly; the bearings were changed to accommodate thermal effects; the bearing protection seals were improved with triple redundancy; the bearing preload arrangement was simplified and improved; and localized wear areas were reinforced with better materials or special treatment. In addition, the crusher drive was changed for impoved characteristics and an increase in power.

  12. Selection of JAERI'S HTGR-GT concept

    International Nuclear Information System (INIS)

    Muto, Y.; Ishiyama, S.; Shiozawa, S.

    2001-01-01

    In JAERI, a feasibility study of HTGR-GT has been conducted as an assigned work from STA in Japan since January 1996. So far, the conceptual or preliminary designs of 600, 400 and 300 MW(t) power plants have been completed. The block type core and pebble-bed core have been selected in 600 MW(t) and 400/300 MW(t), respectively. The gas-turbine system adopts a horizontal single shaft rotor and then the power conversion vessel is separated into a turbine vessel and a heat exchanger vessel. In this paper, the issues related to the selection of these concepts are technically discussed. (author)

  13. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  14. National Nuclear Technology Map Development

    International Nuclear Information System (INIS)

    Shin, J. I.; Lee, T. J.; Yoon, S. W.

    2005-03-01

    The objective of NuTRM is to prepare a plan of nuclear R and D and technological innovations which is very likely to make nuclear technology a promising power source for future national developments. The NuTRM finds out systematically the nuclear R and D vision and the high-value-added strategic technologies to be developed by the efficient cooperation of actors including government, industry, academy and research institute by 2020. In other words, NuTRM aims at a long-term strategic planning of nuclear R and D and technological innovation in order to promote the socio-economic contributions of nuclear science and technology for the nation's future competitiveness and sustainable development and to raise the global status of the Korean nuclear R and D and Industry

  15. Technological development in fisheries management

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Marchal, Paul; Gislason, Henrik

    2014-01-01

    Many marine fish stocks are overexploited and considerable overcapacity exists in fishing fleets worldwide. One of the reasons for the imbalance between resource availability and fishing capacity is technological development, which continuously increases the efficiency of the vessels—a mechanism...... referred to as “technological creep.” We review how the introduction of new and more efficient electronic equipment, gear design, engines, deck equipment, and catch-handling procedures influences the capture efficiency (catchability) of commercial fishing vessels. On average, we estimate that catchability...... increases by 3.2% per year due to technological developments, an increase often ignored in fisheries management. The documentation and quantification of technological creep improves the basis for successfully integrating the effects of technological development (and catchability changes) in fisheries...

  16. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  17. A 1500-MW(e) HTGR nuclear generating station

    International Nuclear Information System (INIS)

    Stinson, R.C.; Hornbuckle, J.D.; Wilson, W.H.

    1976-01-01

    A conceptual design of a 1500-MW(e) HTGR nuclear generating station is described. The design concept was developed under a three-party arrangement among General Atomic Company as nuclear steam supply system (NSSS) supplier, Bechtel Power Corporation as engineer-constructors of the balance of plant (BOP), and Southern California Edison Company as a potential utility user. A typical site in the lower Mojave Desert in southeastern California was assumed for the purpose of establishing the basic site criteria. Various alternative steam cycles, prestressed concrete reactor vessel (PCRV) and component arrangements, fuel-handling concepts, and BOP layouts were developed and investigated in a programme designed to lead to an economic plant design. The paper describes the NSSS and BOP designs, the general plant arrangement and a description of the site and its unique characteristics. The elements of the design are: the use of four steam generators that are twice the capacity of GA's steam generators for its 770-MW(e) and 1100-MW(e) units; the rearrangement of steam and feedwater piping and support within the PCRV; the elimination of the PCRV star foundation to reduce the overall height of the containment building as well as of the PCRV; a revised fuel-handling concept which permits the use of a simplified, grade-level fuel storage pool; a plant arrangement that permits a substantial reduction in the penetration structure around the containment while still minimizing the lengths of cable and piping runs; and the use of two tandem-compound turbine generators. Plant design bases are discussed, and events leading to the changes in concept from the reference 8-loop PCRV 1500-MW(e) HTGR unit are described. (author)

  18. Multichip module technology development

    International Nuclear Information System (INIS)

    Kapustinsky, J.S.; Boissevain, J.G.; Muck, R.C.; Smith, G.D.; Wong-Swanson, B.G.; Ziock, H.J.

    1997-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). A Multichip Module (MCM) was designed and submitted for fabrication to the Lockheed Martin foundry using a licensed process called High Density Interconnect (HDI). The HDI process uses thin film techniques to create circuit interconnect patterns on multiple layers of dielectric film which are deposited directly on top of unpackaged electronic die. This results in an optimally small package that approaches the area of the bare die themselves. This project tested the capability of the Lockheed Martin foundry to produce, in an HDI process, a complex mixed-mode (analog and digital) circuit on a single MCM substrate

  19. Radioisotope Power Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the RPS's technology portfolio is to advance performance of radioisotope power systems through new and novel innovations being developed and transitioned...

  20. Gas-cooled reactor programs: High-Temperature Gas-cooled Reactor Base-Technology Program. Annual progress report for period ending December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kasten, P.R.

    1979-06-01

    Progress in HTGR studies is reported in the following areas: fission product transport and coolant impurity effects, fueled graphite development, PCRV development, structural materials, characterization and standardization of graphite, and evaluation of the pebble-bed type HTGR.

  1. Basic principles on the safety evaluation of the HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Nishihara, Tetsuo; Tazawa, Yujiro; Tachibana, Yukio; Kunitomi, Kazuhiko

    2009-03-01

    As HTGR hydrogen production systems, such as HTTR-IS system or GTHTR300C currently being developed by Japan Atomic Energy Agency, consists of nuclear reactor and chemical plant, which are without a precedent in the world, safety design philosophy and regulatory framework should be newly developed. In this report, phenomena to be considered and events to be postulated in the safety evaluation of the HTGR hydrogen production systems were investigated and basic principles to establish acceptance criteria for the explosion and toxic gas release accidents were provided. Especially for the explosion accident, quantitative criteria to the reactor building are proposed with relating sample calculation results. It is necessary to treat abnormal events occurred in the hydrogen production system as an 'external events to the nuclear plant' in order to classify the hydrogen production system as no-nuclear facility' and basic policy to meet such requirement was also provided. (author)

  2. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    Okorokov, V.R.

    1990-02-01

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  3. User's manual for the Composite HTGR Analysis Program (CHAP-1)

    International Nuclear Information System (INIS)

    Gilbert, J.S.; Secker, P.A. Jr.; Vigil, J.C.; Wecksung, M.J.; Willcutt, G.J.E. Jr.

    1977-03-01

    CHAP-1 is the first release version of an HTGR overall plant simulation program with both steady-state and transient solution capabilities. It consists of a model-independent systems analysis program and a collection of linked modules, each representing one or more components of the HTGR plant. Detailed instructions on the operation of the code and detailed descriptions of the HTGR model are provided. Information is also provided to allow the user to easily incorporate additional component modules, to modify or replace existing modules, or to incorporate a completely new simulation model into the CHAP systems analysis framework

  4. Working Environment and Technological Development

    DEFF Research Database (Denmark)

    Clausen, Christian; Nielsen, Klaus T.; Jensen, Per Langaa

    1997-01-01

    and their and their concept of working environment2) Technology renewal, which considers the role of the working environment in connection with the development and use of concrete technologies3) Working environment planning, which considers the existing efforts to place the working environment in a planning process.......The paper describes the purpose, themes, overarching research questions and specific projects of the programme: Working Environment and Technological Development. The major research themes are:1) Management concepts and the working environment, which considers the visions...

  5. Development of Radioisotope Tracer Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Jin, Joon Ha; Kim, Jong Bum; Kim, Jin Seop; Kim, Jae Jo; Park, Soon Chul; Lim, Don Soon; Choi, Byung Jong; Jang, Dong Soon; Kim, Hye Sook

    2007-06-01

    The project is aimed to develop the radiotracer technology for process optimization and trouble-shooting to establish the environmental and industrial application of radiation and radioisotopes. The advanced equipment and software such as high speed data acquisition system, RTD model and high pressure injection tool have developed. Based on the various field application to the refinery/petrochemical industries, the developed technology was transfer to NDT company for commercial service. For the environmental application of radiotracer technology, injector, detector sled, core sampler, RI and GPS data logging system are developed and field tests were implemented successfully at Wolsung and Haeundae beach. Additionally tracer technology were also used for the performance test of the clarifier in a wastewater treatment plant and for the leak detection in reservoirs. From the experience of case studies on radiotracer experiment in waste water treatment facilities, 'The New Excellent Technology' is granted from the ministry of environment. For future technology, preliminary research for industrial gamma transmission and emission tomography which are new technology combined with radioisotope and image reconstruction are carried out

  6. Nondestructive assay of HTGR fuel rods

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1974-01-01

    Performance characteristics of three different radioactive source NDA systems are compared for the assay of HTGR fuel rods and stacks of rods. These systems include the fast neutron Sb-Be assay system, the 252 Cf ''Shuffler,'' and the thermal neutron PAPAS assay system. Studies have been made to determinethe perturbation on the measurements from particle size, kernel Th/U ratio, thorium content, and hydrogen content. In addition to the total 235 U determination, the pellet-to-pellet or rod-to-rod uniformity of HTGR fuel rod stacks has been measured by counting the delayed gamma rays with a NaI through-hole in the PAPAS system. These measurements showed that rod substitutions can be detected easily in a fuel stack, and that detailed information is available on the loading variations in a uniform stack. Using a 1.0 mg 252 Cf source, assay rates of 2 to 4 rods/s are possible, thus facilitating measurement of 100 percent of a plant's throughput. (U.S.)

  7. Irradiation performance of HTGR fuel rods in HFIR experiments HRB-11 and -12

    International Nuclear Information System (INIS)

    Homan, F.J.; Tiegs, T.N.; Kania, M.J.; Long, E.L. Jr.; Thoms, K.R.; Robbins, J.M.; Wagner, P.

    1980-06-01

    Capsules HRB-11 and -12 were irradiated in support of development of weak-acid-resin-derived recycle fuel for the high-enriched uranium (HEU) fuel cycle for the HTGR. Fissil fuel particles with initial oxygen-to-metal ratios between 1.0 and 1.7 performed acceptably to full burnup for HEU fuel. Particles with ratios below 1.0 showed excessive chemical interaction between rare earth fission products and the SiC layer

  8. Assessment of modelling needs for safety analysis of current HTGR concepts

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Van Tuyle, G.J.

    1985-12-01

    In view of the recent shift in emphasis of the DOE/Industry HTGR development efforts to smaller modular designs it became necessary to review the modelling needs and the codes available to assess the safety performance of these new designs. This report provides a final assessment of the most urgent modelling needs, comparing these to the tools available, and outlining the most significant areas where further modelling is required. Plans to implement the required work are presented. 47 refs., 20 figs

  9. Engineering research, development and technology

    International Nuclear Information System (INIS)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report

  10. Feasibility of monitoring the strength of HTGR core support graphite: Part III

    International Nuclear Information System (INIS)

    Morgan, W.C.; Davis, T.J.; Thomas, M.T.

    1983-02-01

    Methods are being developed to monitor, in-situ, the strength changes of graphite core-support components in a High-Temperature Gas-Cooled Reactor (HTGR). The results reported herein pertain to the development of techniques for monitoring the core-support blocks; the PGX graphite used in these studies is the grade used for the core-support blocks of the Fort St. Vrain HTGR, and is coarser-grained than the grades used in our previous investigations. The through-transmission ultrasonic velocity technique, developed for monitoring strength of the core-support posts, is not suitable for use on the core-support blocks. Eddy-current and ultrasonic backscattering techniques have been shown to be capable of measuring the density-depth profile in oxidized PGX and, combined with a correlation of strength versus density, could yield an estimate of the strength-depth profile of in-service HTGR core support blocks. Correlations of strength versus density and other properties, and progress on the development of the eddy-current and ultrasonic backscattering techniques are reported

  11. The EM technology development strategy

    International Nuclear Information System (INIS)

    Frank, C.W.; Barainca, M.; Kubo, A.S.

    1992-01-01

    The Office of Technology Development (TD) supports research and development of technologies that will lower cost, reduce risk, improve safety, and accelerate cleanup of the Nuclear Weapons Complex and provide solutions to currently untractable environmental problems. The TD strategic plan outlines Applied Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) that will provide needed technology products to be used by Environmental Restoration and Waste Management operations (i.e., our customers). The TD strategic plan is derived from EM Goals, Objectives, and Strategy and is incorporated into DOE'S Five-Year Plan for Environmental Restoration and Waste Management. The TD strategic plan is developed based on integrating customer requirements, and is complemented by a top-down, bottom-up analysis of Site Specific Technology Needs and environmental problems. The execution of TD's strategic plan is implemented largely through Integrated Programs (IP) and Integrated Demonstrations (ID). IDs have proven to be a cost-effective method of managing technology development, testing and evaluation, and implementation of successful technology systems into the DOE Environmental Restoration and Waste Management Programs. The Savannah River ID for Volatile Organic Compounds (VOCs) in Saturated Soils resulted in a 51 percent cost savings over stand-alone demonstrations, saving over $8 million. The IPs and IDs are selected based on customer needs, technical complexity, and complex-wide regulatory and compliance agreements. New technology systems are selected for incorporation into an IP or ID from offerings of the DOE laboratories, industry, and the universities. A major TD initiative was announced in August 1991, with the release of a Program Research and Development Announcement (PRDA) requesting industry and universities to propose innovative new technologies to clean up the Weapons Complex. (author)

  12. Progress of independent feasibility study for modular HTGR demonstration plant to be built in China

    International Nuclear Information System (INIS)

    He Jiachen

    1989-01-01

    Many regions in China are suffering from shortage of energy as a result of the rapid growth of the national economy, for example, the growth rate of national production in 1988 reached 11.2%. A great number of coal fired plants have been built in many industrial areas. However, the difficulties relating to the transportation of coal and environmental pollution have become more and more serious. The construction of hydropower plants is limited due to uneven geographic conditions and seasons. For these reasons China needs to develop nuclear power plants. Nowadays, it has been decided, that PWR will be the main reactor type in our country, but in some districts or under some conditions modular HTGR may have distinct advantages and become an attractive option. The possible plant site description and preliminary result of economic analysis of modular HTGR type reactor are briefly discussed in this presentation

  13. Application of the lines of protection concept to the HTGR-SC/C

    International Nuclear Information System (INIS)

    1981-09-01

    This study of the application of the line of protection (LOP) concept to high temperature gas-cooled reactors (HTGRs) was motivated by a desire to develop a simple and straightforward HTGR safety concept that embodies many of the more complicated and seemingly conflicting concepts facing nuclear industry safety today. These concepts include: (1) defense in depth; (2) design basis events; (3) core damage events (degraded cores); (4) probabilistic analysis and risk assessment; (5) numerical safety goals; and (6) plant investment protection. The LOP concept described herein attempts to incorporate many of the important principles of each into a cohesive framework which provides an overall logic, meaning, and direction for conducting HTGR design and research activities

  14. SONATINA-1: a computer program for seismic response analysis of column in HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1980-11-01

    An computer program SONATINA-1 for predicting the behavior of a prismatic high-temperature gas-cooled reactor (HTGR) core under seismic excitation has been developed. In this analytical method, blocks are treated as rigid bodies and are constrained by dowel pins which restrict relative horizontal movement but allow vertical and rocking motions. Coulomb friction between blocks and between dowel holes and pins is also considered. A spring dashpot model is used for the collision process between adjacent blocks and between blocks and boundary walls. Analytical results are compared with experimental results and are found to be in good agreement. The computer program can be used to predict the behavior of the HTGR core under seismic excitation. (author)

  15. Summary of ORNL work on NRC-sponsored HTGR safety research, July 1974-September 1980

    International Nuclear Information System (INIS)

    Ball, S.J.; Cleveland, J.C.; Conklin, J.C.; Delene, J.G.; Harrington, R.M.; Hatta, M.; Hedrick, R.A.; Johnson, L.G.; Sanders, J.P.

    1982-03-01

    A summary is presented of the major accomplishments of the Oak Ridge National Laboratory (ORNL) research program on High-Temperature Gas-Cooled Reactor (HTGR) safety. This report is intended to help the nuclear Regulatory Commission establish goals for future research by comparing the status of the work here (as well as at other laboratories) with the perceived safety needs of the large HTGR. The ORNL program includes extensive work on dynamics-related safety code development, use of codes for studying postulated accident sequences, and use of experimental data for code verification. Cooperative efforts with other programs are also described. Suggestions for near-term and long-term research are presented

  16. The development of information technologies

    Directory of Open Access Journals (Sweden)

    Kostúr Karol

    2002-12-01

    Full Text Available The contribution analyses the tasks information technologies in industry. At present time is the problem of connecting mutual variously levels of management. Therefore, first priority is an integration of information technologies. The information technologies for enterprise management are analysed. The product SAP R/3 appears as suitable for top management. The SAP R/3 Enterprise has a new technology so call web-server. This server enables the integration with e-business. The development my SAP is based on application of Business information warehouse (BW and Strategic enterprise management (SEM. The cheaper products (SPIN + EVIS are characterized too. Whitness Miner is very interesting system. The contribution this technology is programming realization of method KDD – knowledge discovery in databases.

  17. Titanium Aluminide Casting Technology Development

    Science.gov (United States)

    Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander

    2017-12-01

    Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.

  18. Overview of current research and development programmes for fuel in Japan

    International Nuclear Information System (INIS)

    Shiozawa, S.

    1991-01-01

    The Research and Development (R and D) programmes for HTGR fuel have been performed since 1969 by Japan Atomic Energy Research Institute (JAERI) as a leading organization in Japan. The R and D covers all fields necessary for the construction of the High Temperature Engineering Test Reactor (HTTR), which is the first HTGR in Japan. This R and D includes fuel fabrication, fuel property data, irradiation performance under normal operating conditions, safety-related research and fuel inspection technology. The R and D for the HTTR has been completed from a licensing point of view. Some R and D including future advanced fuel development continue. 2 figs, 3 tabs

  19. VLBI Technology Development at SHAO

    Science.gov (United States)

    Zhang, Xiuzhong; Shu, Fengchun; Xiang, Ying; Zhu, Renjie; Xu, Zhijun; Chen, Zhong; Zheng, Weimin; Luo, Jintao; Wu, Yajun

    2010-01-01

    VLBI technology development made significant progress at SHAO in the last few years. The development status of the Chinese DBBC, the software and FPGA-based correlators, and the new VLBI antenna, as well as VLBI applications are summarized in this paper.

  20. Study on methodology to estimate isotope generation and depletion for core design of HTGR

    International Nuclear Information System (INIS)

    Fukaya, Yuji; Ueta, Shohei; Goto, Minoru; Shimakawa, Satoshi

    2013-12-01

    An investigation on methodology to estimate isotope generation and depletion had been performed in order to improve the accuracy for HTGR core design. The technical problem for isotope generation and depletion can be divided into major three parts, for solving the burn-up equations, generating effective cross section and employing nuclide data. Especially for the generating effective cross section, the core burn-up calculation has a technological problem in common with point burn-up calculation. Thus, the investigation had also been performed for the core burn-up calculation to develop new code system in the future. As a result, it was found that the cross section with the extended 108 energy groups structure from the SRAC 107 groups structure to 20 MeV and the cross section collapse using the flux obtained by the deterministic code SRAC is proper for the use. In addition, it becomes clear the needs for the nuclear data from an investigation on the preparation condition for nuclear data for a safety analysis and a fuel design. (author)

  1. European innovation and technology development

    International Nuclear Information System (INIS)

    Johnson, R.W.

    1991-01-01

    The promotion of technological innovation by European national governments and the EC in pursuit of both increased recovery and the anchoring of technology in supply, manufacturing and service sector companies has been a feature of the strategic involvement by European states in exploration and production research and development. This paper summaries past trends in this activity and reviews the targets for future industry innovation which will enable European (primarily the North Sea) production to be sustained for a further generation

  2. High-temperature process heat applications with an HTGR

    International Nuclear Information System (INIS)

    Quade, R.N.; Vrable, D.L.

    1980-04-01

    An 842-MW(t) HTGR-process heat (HTGR-PH) design and several synfuels and energy transport processes to which it could be coupled are described. As in other HTGR designs, the HTGR-PH has its entire primary coolant system contained in a prestressed concrete reactor vessel (PCRV) which provides the necessary biological shielding and pressure containment. The high-temperature nuclear thermal energy is transported to the externally located process plant by a secondary helium transport loop. With a capability to produce hot helium in the secondary loop at 800 0 C (1472 0 F) with current designs and 900 0 C (1652 0 F) with advanced designs, a large number of process heat applications are potentially available. Studies have been performed for coal liquefaction and gasification using nuclear heat

  3. Safety aspects of solvent nitration in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Wilbourn, R.G.

    1977-06-01

    Reprocessing of HTGR fuels requires evaporative concentration of uranium and thorium nitrate solutions. The results of a bench-scale test program conducted to assess the safety aspects of planned concentrator operations are reported

  4. GCRA perspective on the HTGR-GT plant configuration

    International Nuclear Information System (INIS)

    1979-06-01

    Design specifications for the HTGR type reactor and gas turbine combination are presented concerning the turbomachinery; generator and isophase bus duct; PCRV and internals; heat exchangers; operability; maintenance; safety and licensing; core design; and fuel design

  5. Development of Radiochemical Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Kim, K. W.; Yang, H. B. (and others)

    2007-06-15

    This project of the second phase was aimed at the development of basic unit technologies for advanced partitioning, and the application tests of pre-developed partitioning technologies for separation of actinides by using a simulated multi-component radioactive waste containing Am, Np, Tc, U and so on. The goals for recovery yield of TRU, and for purity of Tc are high than 99% and about 99%, respectively. The work scopes and contents were as follows. 1). For the development of basic unit technologies for advanced partitioning. 1. Development of technologies for co-removal of TRU and for mutual separation of U and TRU with a reduction-complexation reaction. 2. Development of extraction system for high-acidity co-separation of An(+3) and Ln(+3) and its radiolytic evaluation. 3. Synthesis of extractants for the selective separation of An(+3) and its relevant extraction system development. 4. Development of a hybrid system for the recovery of noble metals and its continuous separation tests. 5. Development of electrolytic system for the decompositions of N-NO3 and N-NH3 compounds to nitrogen gas. 2). For the application test of pre-developed partitioning technologies for the separation of actinide elements in a simulated multi-component solution equivalent to HLW level. 1. Co-separation of Tc, Np and U by a (TBP-TOA)/NDD system. 2. Mutual-separation of Am, Cm and RE elements by a (Zr-DEHPA)/NDD system. All results will be used as the fundamental data for the development of advanced partitioning process in the future.

  6. Present status of HTGR research and development

    International Nuclear Information System (INIS)

    1991-04-01

    The HTTR is a test reactor with thermal output of 30MW and outlet coolant temperature of 950degC, employing the pin-in-block type fuel, and has the capability to demonstrate nuclear process heat utilization using an intermediate heat exchanger. The official construction of the HTTR facility is scheduled to start on March 15, 1991. This publication summarizes the present status of R and D of high temperature gas cooled reactors in JAERI. (J.P.N.)

  7. Volume 2. Probabilistic analysis of HTGR application studies. Supporting data

    International Nuclear Information System (INIS)

    1980-09-01

    Volume II, Probabilistic Analysis of HTGR Application Studies - Supporting Data, gives the detail data, both deterministic and probabilistic, employed in the calculation presented in Volume I. The HTGR plants and the fossil plants considered in the study are listed. GCRA provided the technical experts from which the data were obtained by MAC personnel. The names of the technical experts (interviewee) and the analysts (interviewer) are given for the probabilistic data

  8. Technical review of process heat applications using the HTGR

    International Nuclear Information System (INIS)

    Brierley, G.

    1976-06-01

    The demand for process heat applications is surveyed. Those applications which can be served only by the high temperature gas-cooled reactor (HTGR) are identified and the status of process heat applications in Europe, USA, and Japan in December 1975 is discussed. Technical problems associated with the HTGR for process heat applications are outlined together with an appraisal of the safety considerations involved. (author)

  9. Characteristics of radioactive waste streams generated in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Lin, K.H.

    1976-01-01

    Results are presented of a study concerned with identification and characterization of radioactive waste streams from an HTGR fuel reprocessing plant. Approximate quantities of individual waste streams as well as pertinent characteristics of selected streams have been estimated. Most of the waste streams are unique to HTGR fuel reprocessing. However, waste streams from the solvent extraction system and from the plant facilities do not differ greatly from the corresponding LWR fuel reprocessing wastes

  10. HTGR high temperature process heat design and cost status report

    International Nuclear Information System (INIS)

    1981-12-01

    This report describes the status of the studies conducted on the 850 0 C ROT indirect cycle and the 950 0 C ROT direct cycle through the end of Fiscal Year 1981. Volume I provides summaries of the design and optimization studies and the resulting capital and product costs, for the HTGR/thermochemical pipeline concept. Additionally, preliminary evaluations are presented for coupling of candidate process applications to the HTGR system

  11. Assessment of the licensing aspects of HTGR in Yugoslavia

    International Nuclear Information System (INIS)

    Varazdinec, Z.

    1990-01-01

    This paper deals not only with the licensing procedure in Yugoslavia, but also reflects the Utility/Owner approach to the assessment of the licensability of the HTGR during the site selection process and especially during bid evaluation process. Besides the description of the existing procedure which was implemented on licensing of LWR program, the assessment of some licensing aspects of HTGR has been presented to describe possible implementation on licensing procedure. (author)

  12. Assessment of the licensing aspects of HTGR in Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Varazdinec, Z [Institut za Elektroprivredu-Zagreb, Zagreb (Yugoslavia)

    1990-07-01

    This paper deals not only with the licensing procedure in Yugoslavia, but also reflects the Utility/Owner approach to the assessment of the licensability of the HTGR during the site selection process and especially during bid evaluation process. Besides the description of the existing procedure which was implemented on licensing of LWR program, the assessment of some licensing aspects of HTGR has been presented to describe possible implementation on licensing procedure. (author)

  13. Integrating Product and Technology Development

    DEFF Research Database (Denmark)

    Meijer, Ellen Brilhuis; Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.

    2016-01-01

    .g. managing dependencies) and opportunities (e.g. streamlining development). This paper presents five existing reference models for technology development (TD), which were identified via a systematic literature review, where their possible integration with product development (PD) reference models......Although dual innovation projects, defined in this article as the concurrent development of products and technologies, often occur in industry, these are only scarcely supported methodologically. Limited research has been done about dual innovation projects and their inherent challenges (e...... was investigated. Based on the specific characteristics desired for dual innovation projects, such as integrated product development and coverage of multiple development stages, a set of selection criteria was employed to select suitable PD and TD reference models. The integration and adaptation of the selected...

  14. Pyroprocessing technology development at KAERI

    International Nuclear Information System (INIS)

    Lee, Han Soo; Park, Geun Il; Kang, Kweon Ho; Hur, Jin Mok; Kim, Jeong Guk; Ahn, Do Hee; Cho, Yung Zun; Kim, Eung Ho

    2011-01-01

    Pyroprocessing technology was developed in the beginning for metal fuel treatment in the US in the 1960s. The conventional aqueous process, such as PUREX, is not appropriate for treating metal fuel. Pyroprocessing technology has advantages over the aqueous process: less proliferation risk, treatment of spent fuel with relatively high heat and radioactivity, compact equipment, etc. The addition of an oxide reduction process to the pyroprocessing metal fuel treatment enables handling of oxide spent fuel, which draws a potential option for the management of spent fuel from the PWR. In this context, KAERI has been developing pyroprocessing technology to handle the oxide spent fuel since the 1990s. This paper describes the current status of pyroprocessing technology development at KAERI from the head-end process to the waste treatment. A unit process with various scales has been tested to produce the design data associated with the scale up. A performance test of unit processes integration will be conducted at the PRIDE facility, which will be constructed by early 2012. The PRIDE facility incorporates the unit processes all together in a cell with an Ar environment. The purpose of PRIDE is to test the processes for unit process performance, operability by remote equipment, the integrity of the unit processes, process monitoring, Ar environment system operation, and safeguards related activities. The test of PRIDE will be promising for further pyroprocessing technology development

  15. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  16. Sensitivity and Uncertainty Analysis of IAEA CRP HTGR Benchmark Using McCARD

    International Nuclear Information System (INIS)

    Jang, Sang Hoon; Shim, Hyung Jin

    2016-01-01

    The benchmark consists of 4 phases starting from the local standalone modeling (Phase I) to the safety calculation of coupled system with transient situation (Phase IV). As a preliminary study of UAM on HTGR, this paper covers the exercise 1 and 2 of Phase I which defines the unit cell and lattice geometry of MHTGR-350 (General Atomics). The objective of these exercises is to quantify the uncertainty of the multiplication factor induced by perturbing nuclear data as well as to analyze the specific features of HTGR such as double heterogeneity and self-shielding treatment. The uncertainty quantification of IAEA CRP HTGR UAM benchmarks were conducted using first-order AWP method in McCARD. Uncertainty of the multiplication factor was estimated only for the microscopic cross section perturbation. To reduce the computation time and memory shortage, recently implemented uncertainty analysis module in MC wielandt calculation was adjusted. The covariance data of cross section was generated by NJOY/ERRORR module with ENDF/B-VII.1. The numerical result was compared with evaluation result of DeCART/MUSAD code system developed by KAERI. IAEA CRP HTGR UAM benchmark problems were analyzed using McCARD. The numerical results were compared with Serpent for eigenvalue calculation and DeCART/MUSAD for S/U analysis. In eigenvalue calculation, inconsistencies were found in the result with ENDF/B-VII.1 cross section library and it was found to be the effect of thermal scattering data of graphite. As to S/U analysis, McCARD results matched well with DeCART/MUSAD, but showed some discrepancy in 238U capture regarding implicit uncertainty.

  17. Determining the minimum required uranium carbide content for HTGR UCO fuel kernels

    International Nuclear Information System (INIS)

    McMurray, Jacob W.; Lindemer, Terrence B.; Brown, Nicholas R.; Reif, Tyler J.; Morris, Robert N.; Hunn, John D.

    2017-01-01

    Highlights: • The minimum required uranium carbide content for HTGR UCO fuel kernels is calculated. • More nuclear and chemical factors have been included for more useful predictions. • The effect of transmutation products, like Pu and Np, on the oxygen distribution is included for the first time. - Abstract: Three important failure mechanisms that must be controlled in high-temperature gas-cooled reactor (HTGR) fuel for certain higher burnup applications are SiC layer rupture, SiC corrosion by CO, and coating compromise from kernel migration. All are related to high CO pressures stemming from O release when uranium present as UO 2 fissions and the O is not subsequently bound by other elements. In the HTGR kernel design, CO buildup from excess O is controlled by the inclusion of additional uranium apart from UO 2 in the form of a carbide, UC x and this fuel form is designated UCO. Here general oxygen balance formulas were developed for calculating the minimum UC x content to ensure negligible CO formation for 15.5% enriched UCO taken to 16.1% actinide burnup. Required input data were obtained from CALPHAD (CALculation of PHAse Diagrams) chemical thermodynamic models and the Serpent 2 reactor physics and depletion analysis tool. The results are intended to be more accurate than previous estimates by including more nuclear and chemical factors, in particular the effect of transmuted Pu and Np oxides on the oxygen distribution as the fuel kernel composition evolves with burnup.

  18. Very small HTGR nuclear power plant concepts for special terrestrial applications

    International Nuclear Information System (INIS)

    McDonald, C.F.; Goodjohn, A.J.

    1983-01-01

    The role of the very small nuclear power plant, of a few megawatts capacity, is perceived to be for special applications where an energy source as required but the following prevail: 1) no indigenous fossil fuel source, in long transport distances that add substantially to the cost of oil, coal in gas, and 3) secure long-term power production for defense applications with freedom from fuel supply lines. A small High Temperature Gas-Cooled reactor (HTGR) plant could provide the total energy needs for 1) a military installation, 2) an island base of strategic significance, 3) an industrial community or 4) an urban area. The small HTGR is regarded as a fixed-base installation (as opposed to a mobile system). All of the major components would be factory fabricated and transported to the site where emphasis would be placed on minimizing the construction time. The very small HTGR plant, currently in an early stage of design definition, has the potential for meeting the unique needs of the small energy user in both the military and private sectors. The plant may find acceptance for specialized applications in the industrialized nations and to meet the energy needs of developing nations. Emphasis in the design has been placed on safety, simplicity and compactness

  19. Evaluation of creep-fatigue/ environment interaction in Ni-base wrought alloys for HTGR application

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1986-01-01

    High Temperature Gas-cooled Reactor (HTGR) systems should be designed based on the high temperature structural strength design procedures. On the development of design code, the determination of failure criteria under cyclic loading and severe environments is one of the most important items. By using the previous experimental data for Ni-base wrought alloys, Inconel 617 and Hastelloy XR, several evaluation methods for creep-fatigue interaction were examined for their capability to predict their cyclic loading behavior for HTGR application. At first, the strainrange partitioning method, the frequency modified damage function and the linear damage summation rule were discussed. However, these methods were not satisfactory with the above experimental results. Thus, in this paper, a new fracture criterion, which is a modification of the linear damage summation rule, is proposed based on the experimental data. In this criterion, fracture is considered to occur when the sum of the fatigue damage, which is the function of the applied cyclic strain magnitude, and the modified creep damage, which is the function of the applied cyclic stress magnitude (determined as time devided by cyclic creep rupture time reflecting difference of creep damages by tensile creep and compressive creep), reaches a constant value. This criterion was successfully applied to the life prediction of materials at HTGR temperatures. (author)

  20. Availability of steam generator against thermal disturbance of hydrogen production system coupled to HTGR

    International Nuclear Information System (INIS)

    Shibata, Taiju; Nishihara, Tetsuo; Hada, Kazuhiko; Shiozawa, Shusaku

    1996-01-01

    One of the safety issues to couple a hydrogen production system to an HTGR is how the reactor coolability can be maintained against anticipated abnormal reduction of heat removal (thermal disturbance) of the hydrogen production system. Since such a thermal disturbance is thought to frequently occur, it is desired against the thermal disturbance to keep reactor coolability by means other than reactor scram. Also, it is thought that the development of a passive cooling system for such a thermal disturbance will be necessary from a public acceptance point of view in a future HTGR-hydrogen production system. We propose a SG as the passive cooling system which can keep the reactor coolability during a thermal disturbance of a hydrogen production system. This paper describes the proposed steam generator (SG) for the HTGR-hydrogen production system and a result of transient thermal-hydraulic analysis of the total system, showing availability of the SG against a thermal disturbance of the hydrogen production system in case of the HTTR-steam reforming hydrogen production system. (author)

  1. Conceptual design of small-sized HTGR system (3). Core thermal and hydraulic design

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Sato, Hiroyuki; Goto, Minoru; Ohashi, Hirofumi; Tachibana, Yukio

    2012-06-01

    The Japan Atomic Energy Agency has started the conceptual designs of small-sized High Temperature Gas-cooled Reactor (HTGR) systems, aiming for the 2030s deployment into developing countries. The small-sized HTGR systems can provide power generation by steam turbine, high temperature steam for industry process and/or low temperature steam for district heating. As one of the conceptual designs in the first stage, the core thermal and hydraulic design of the power generation and steam supply small-sized HTGR system with a thermal power of 50 MW (HTR50S), which was a reference reactor system positioned as a first commercial or demonstration reactor system, was carried out. HTR50S in the first stage has the same coated particle fuel as HTTR. The purpose of the design is to make sure that the maximum fuel temperature in normal operation doesn't exceed the design target. Following the design, safety analysis assuming a depressurization accident was carried out. The fuel temperature in the normal operation and the fuel and reactor pressure vessel temperatures in the depressurization accident were evaluated. As a result, it was cleared that the thermal integrity of the fuel and the reactor coolant pressure boundary is not damaged. (author)

  2. HTGR reactor physics, thermal-hydraulics and depletion uncertainty analysis: a proposed IAEA coordinated research project

    International Nuclear Information System (INIS)

    Tyobeka, Bismark; Reitsma, Frederik; Ivanov, Kostadin

    2011-01-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis and uncertainty analysis methods. In order to benefit from recent advances in modeling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Uncertainty and sensitivity studies are an essential component of any significant effort in data and simulation improvement. In February 2009, the Technical Working Group on Gas-Cooled Reactors recommended that the proposed IAEA Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling be implemented. In the paper the current status and plan are presented. The CRP will also benefit from interactions with the currently ongoing OECD/NEA Light Water Reactor (LWR) UAM benchmark activity by taking into consideration the peculiarities of HTGR designs and simulation requirements. (author)

  3. Control rod for HTGR type reactor

    International Nuclear Information System (INIS)

    Mogi, Haruyoshi; Saito, Yuji; Fukamichi, Kenjiro.

    1990-01-01

    Upon dropping control rod elements into the reactor core, impact shocks are applied to wire ropes or spines to possibly deteriorate the integrity of the control rods. In view of the above in the present invention, shock absorbers such as springs or bellows are disposed between a wire rope and a spine in a HTGR type reactor control rod comprising a plurality of control rod elements connected axially by means of a spine that penetrates the central portion thereof, and is suspended at the upper end thereof by a wire rope. Impact shocks of about 5 kg are applied to the wire rope and the spine and, since they can be reduced by the shock absorbers, the control rod integrity can be maintained and the reactor safety can be improved. (T.M.)

  4. The acoustic environment in large HTGR's

    International Nuclear Information System (INIS)

    Burton, T.E.

    1979-01-01

    Well-known techniques for estimating acoustic vibration of structures have been applied to a General Atomic high-temperature gas-cooled reactor (HTGR) design. It is shown that one must evaluate internal loss factors for both fluid and structure modes, as well as radiation loss factors, to avoid large errors in estimated structural response. At any frequency above 1350 rad/s there are generally at least 20 acoustic modes contributing to acoustic pressure, so statistical energy analysis may be employed. But because the gas circuit consists mainly of high-aspect-ratio cavities, reverberant fields are nowhere isotropic below 7500 rad/s, and in some regions are not isotropic below 60 000 rad/s. In comparison with isotropic reverberant fields, these anistropic fields enhance the radiation efficiencies of some structural modes at low frequencies, but have surprisingly little effect at most frequencies. The efficiency of a dipole sound source depends upon its orientation. (Auth.)

  5. HTGR strategy for reduced proliferation potential

    International Nuclear Information System (INIS)

    Stewart, H.B.; Dahlberg, R.C.

    1978-01-01

    The HTGR stratregy for reduced proliferation potential is one aspect of a potential broader nuclear strategy aimed primarily toward a transition nuclear period between today's uranium-consumption reactors and the long-range balanced system of breeder and advanced near-breeder reactors. In particular, the normal commerce of U-233 could be made acceptable by: (a) dependence on the gamma radiation from U-232 daughter products, (b) enhancement of that radioactivity by incomplete fission-product decontamination of the bred-fuel, or (c) denaturing of the U-233 with U-238. These approaches would, of course, supplement institutional initiatives to improve proliferation resistance such as the collocation of facilities and the establishment of secure energy centers. 6 refs

  6. HTGR-GT systems optimization studies

    International Nuclear Information System (INIS)

    Kammerzell, L.L.; Read, J.W.

    1980-06-01

    The compatibility of the inherent features of the high-temperature gas-cooled reactor (HTGR) and the closed-cycle gas turbine combined into a power conversion system results in a plant with characteristics consistent with projected utility needs and national energy goals. These characteristics are: (1) plant siting flexibility; (2) high resource utilization; (3) low safety risks; (4) proliferation resistance; and (5) low occupational exposure for operating and maintenance personnel. System design and evaluation studies on dry-cooled intercooled and nonintercooled commercial plants in the 800-MW(e) to 1200-MW(e) size range are described, with emphasis on the sensitivity of plant design objectives to variation of component and plant design parameters. The impact of these parameters on fuel cycle, fission product release, total plant economics, sensitivity to escalation rates, and plant capacity factors is examined

  7. Technology and Motor Ability Development

    Science.gov (United States)

    Wang, Lin; Lang, Yong; Luo, Zhongmin

    2014-01-01

    As a new member joining the technology family, active video games have been developed to promote physical exercise. This working-in-progress paper shares an ongoing project on examining the basic motor abilities that are enhanced through participating in commercially available active video games. [For the full proceedings see ED557181.

  8. Development of radioisotope tracer technology

    International Nuclear Information System (INIS)

    Jin, Joon Ha; Lee, Myun Joo; Jung, Sung Hee; Park, Soon Chul; Lim, Dong Soon; Kim, Jae Ho; Lee, Jae Choon; Lee, Doo Sung; Cho, Yong Suk; Shin, Sung Kuan

    2000-04-01

    The purpose of this study is to develop the radioisotope tracer technology, which can be used in solving industrial and environmental problems and to build a strong tracer group to support the local industries. In relation to the tracer technology in 1999, experiments to estimate the efficiencies of a sludge digester of a waste water treatment plant and a submerged biological reactor of a dye industry were conducted. As a result, the tracer technology for optimization of facilities related to wastewater treatment has been developed and is believed to contribute to improve their operation efficiency. The quantification of the experimental result was attempted to improve the confidence of tracer technology by ECRIN program which basically uses the MCNP simulation principle. Using thin layer activation technique, wear of tappet shim was estimated. Thin layer surface of a tappet shim was irradiated by proton beam and the correlation between the measured activity loss and the amount of wear was established. The equipment was developed to adjust the energy of proton which collides with the surface of tappet. The tracer project team has participated into the tracer test for estimating the efficiency of RFCC system in SK cooperation. From the experiment the tracer team has obtained the primary elements to be considered for judging the efficiency of RFCC unit. By developing the tracer techniques to test huge industrial units like RFCC, the tracer team will be able to support the local industries that require technical services to solve any urgent trouble. (author)

  9. competitive technologies for sustainable development

    International Nuclear Information System (INIS)

    Chriqui, Vincent; Bergougnoux, Jean; Hossie, Gaelle; Beeker, Etienne; Buba, Johanne; Delanoe, Julien; Ducos, Geraldine; Hilt, Etienne; Rigard-Cerison, Aude; Teillant, Aude; Auverlot, Dominique; Martinez, Elise; Dambrine, Fabrice; Roure, Francoise

    2012-08-01

    By letter dated 27 April 2011, the Director General of the Centre for Strategic Analysis, Vincent Chriqui, confided to Jean Bergougnoux, honorary president of the SNCF, Honorary General Director of EDF, the task of animating a reflection Prospective Technological Studies of the sectors of energy, transport and construction. This synthesis report, prepared with the assistance of rapporteurs Centre for Strategic Analysis, attempts to summarize and put into perspective all the work which show these specific reports. Admittedly some very complex issues still need supplements. It may therefore be useful to extend this work in a number of areas. Beyond its role in the competitiveness of a country, technological innovation is essential to provide appropriate responses to the challenges of our commitment to sustainable development in terms of economic growth, preservation of the environmental and social progress. Mission for Prospective Technological conducted by the Centre for Strategic Analysis has sought to clarify this dual problem by proposing a long-term vision for the energy, transport and construction. For each technology studied, it has attempted to assess both the possible contribution to sustainable development and the competitive potential of our country on the international scene. His work, chaired by Jean Bergougnoux have reviewed the technological advances that may occur in the coming decades in the sectors concerned. They examined the conditions for integration of these advances in systems and subsystems existing (or create) and the conditions of a mature technical, economic but also social. Wherever possible, two time horizons were identified: a medium-term horizon, 2030, for which we have a fairly clear vision of future developments and long-term horizon, 2050, which allows to consider jumps Scientists are still uncertain. Finally, the mission is interested in four transverse technologies involved consistently in the three study areas, which are likely to

  10. Developing fossil fuel based technologies

    International Nuclear Information System (INIS)

    Manzoori, A.R.; Lindner, E.R.

    1991-01-01

    Some of the undesirable effects of burning fossil fuels in the conventional power generating systems have resulted in increasing demand for alternative technologies for power generation. This paper describes a number of new technologies and their potential to reduce the level of atmospheric emissions associated with coal based power generation, such as atmospheric and pressurized fluid bed combustion systems and fuel cells. The status of their development is given and their efficiency is compared with that of conventional pc fired power plants. 1 tab., 7 figs

  11. Genetic technology and agricultural development.

    Science.gov (United States)

    Staub, W J; Blase, M G

    1971-07-09

    The genetic technologies being adopted in South Asia are significant factors in the agricultural development of the area. But, labeling them " miracle seeds," solely responsible for recent agricultural growth, is misleading. Certainly the introduction of new genetic technology has catalyzed South Asian agriculture and has instilled a new dynamism essential to economic development. Somewhat similar phenomena have, however, been observed in other parts of the world in other periods of history. The nature of these genetic technologies, how they are being applied, and their limits and potential have been explored above. Also, the effects of these varieties on the generation of employment, and the distribution of benefits accruing from them have been examined in preliminary fashion. Stemming from the preceding discussion, two areas of priority appear obvious. First, the close association of genetic technologies with irrigation suggests that irrigation should receive more attention than it has in the past. Large-scale public irrigation schemes are expensive and have tended to yield low rates of return. However, there appears to be room for marginal increases in, or improvements of, existing irrigation facilities. Second, even with a rapid spread of the practices associated with highyeild varieties, it may be too much to expect the farm sector to absorb the expected increases in the rural labor force. The generation of employment is a major problem in India as well as in most other developing countries. Hence, possibilities for expanding rural, nonfarm employment and controlling population growth should be sought vigorously.

  12. Technology development life cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  13. Technical meeting on development of 'Deep Burn' concepts using coated particle fuel for incineration of nuclear waste, surplus fissile materials and plutonium without recourse to multiple reprocessing. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The purpose of this meeting is to explore various Deep-Burn options and concepts being developed in Member States and to appraise the progress made towards the maturity of Deep-Burn concepts based on HTGR designs. The meeting will also identify technology development challenges towards the realization of Deep-Burn concepts and propose collaborative ways to address them

  14. Present status of HTGR projects and their heat applications in Russia

    International Nuclear Information System (INIS)

    Grebennik, V.N.; Glushkov, E.S.; Kukharkin, N.E.; Ponomarev-Stepnoi, N.N.

    1996-01-01

    This paper describes the main technical decision and parameters of the HTGR of different power and considers a few schemes of HTGR plants with a gas turbine cycle. Also, the future prospects on heat utilization of HTGR in Russia is presented. (J.P.N.)

  15. Results for Phase I of the IAEA Coordinated Research Program on HTGR Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, Friederike [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    The quantification of uncertainties in design and safety analysis of reactors is today not only broadly accepted, but in many cases became the preferred way to replace traditional conservative analysis for safety and licensing analysis. The use of a more fundamental methodology is also consistent with the reliable high fidelity physics models and robust, efficient, and accurate codes available today. To facilitate uncertainty analysis applications a comprehensive approach and methodology must be developed and applied. High Temperature Gas-cooled Reactors (HTGR) has its own peculiarities, coated particle design, large graphite quantities, different materials and high temperatures that also require other simulation requirements. The IAEA has therefore launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling (UAM) in 2013 to study uncertainty propagation specifically in the HTGR analysis chain. Two benchmark problems are defined, with the prismatic design represented by the General Atomics (GA) MHTGR-350 and a 250 MW modular pebble bed design similar to the HTR-PM (INET, China). This report summarizes the contributions of the HTGR Methods Simulation group at Idaho National Laboratory (INL) up to this point of the CRP. The activities at INL have been focused so far on creating the problem specifications for the prismatic design, as well as providing reference solutions for the exercises defined for Phase I. An overview is provided of the HTGR UAM objectives and scope, and the detailed specifications for Exercises I-1, I-2, I-3 and I-4 are also included here for completeness. The main focus of the report is the compilation and discussion of reference results for Phase I (i.e. for input parameters at their nominal or best-estimate values), which is defined as the first step of the uncertainty quantification process. These reference results can be used by other CRP participants for comparison with other codes or their own reference

  16. Science and technology, development factors

    International Nuclear Information System (INIS)

    Nascimento, J.O.

    1982-01-01

    Attention is drawn to the present effort in science, technology, research and development in the countries of the northern hemisphere. In the ligh to the data collected, some predictions are made about advances, especially in the metallugical field. The corresponding activities in Brazil are examined, both the more important official and state-controlled ones and those of private companies. Finally, a detailed presentation is given of what has been achieved in the specific case of niobium, whose prospects are examined. (Author) [pt

  17. Utilization of Plutonium and Higher Actinides in the HTGR as Possibility to Maintain Long-Term Operation on One Fuel Loading

    International Nuclear Information System (INIS)

    Tsvetkova, Galina V.; Peddicord, Kenneth L.

    2002-01-01

    Promising existing nuclear reactor concepts together with new ideas are being discussed worldwide. Many new studies are underway in order to identify prototypes that will be analyzed and developed further as systems for Generation IV. The focus is on designs demonstrating full inherent safety, competitive economics and proliferation resistance. The work discussed here is centered on a modularized small-size High Temperature Gas-cooled Reactor (HTGR) concept. This paper discusses the possibility of maintaining long-term operation on one fuel loading through utilization of plutonium and higher actinides in the small-size pebble-bed reactor (PBR). Acknowledging the well-known flexibility of the PBR design with respect to fuel composition, the principal limitations of the long-term burning of plutonium and higher actinides are considered. The technological challenges and further research are outlined. The results allow the identification of physical features of the PBR that significantly influence flexibility of the design and its applications. (authors)

  18. Development of National Technology Audit Policy

    Directory of Open Access Journals (Sweden)

    Subiyanto Subiyanto

    2017-07-01

    Full Text Available The Laws have mandated implementation of technology audit, nevertheless such implementation needs an additional policy that is more technical. The concept of national audit technology policy shall make technology audit as a tool to ensure the benefit of technology application for society and technology advance for nation independency. This article discusses on technology audit policy concept especially infrastructure requirement, with emphasis on regulation, implementation tools, and related institution. The development of technology audit policy for national interest requires provision of mandatory audit implementation, accompanied by tools for developing technology auditor’s competence and technology audit institutional’s mechanism. To guide technology auditor’s competence, concept of national audit technology policy shall classify object of technology audit into product technology, production technology, and management of technology, accompanied by related parameters of technology performance evaluation.

  19. Irradiation Performance of HTGR Fuel in WWR-K Research Reactor

    International Nuclear Information System (INIS)

    Ueta, Shohei; Sakaba, Nariaki; Shaimerdenov, Asset; Gizatulin, Shamil; Chekushina, Lyudmila; Chakrov, Petr; Honda, Masaki; Takahashi, Masashi; Kitagawa, Kenichi

    2014-01-01

    A capsule irradiation test with the high temperature gas-cooled reactor (HTGR) fuel is being carried out using WWR-K research reactor in the Institute of Nuclear Physics of the Republic of Kazakhstan (INP) to attain 100 GWd/t-U of burnup under normal operating condition of a practical small-sized HTGR. This is the first HTGR fuel irradiation test for INP in Kazakhstan collaborated with Japan Atomic Energy Agency (JAEA) in frame of International Science and Technology Center (ISTC) project. In the test, TRISO coated fuel particle with low-enriched UO_2 (less than 10 % of "2"3"5U) is used, which was newly designed by JAEA to extend burnup up to 100 GWd/t-U comparing with that of the HTTR (33 GWd/t-U). Both TRISO and fuel compact as the irradiation test specimen were fabricated in basis of the HTTR fuel technology by Nuclear Fuel Industries, Ltd. in Japan. A helium-gas-swept capsule and a swept-gas sampling device installed in WWR-K were designed and constructed by INP. The irradiation test has been started in October 2012 and will be completed up to the end of February 2015. The irradiation test is in the progress up to 69 GWd/t of burnup, and integrity of new TRISO fuel has been confirmed. In addition, as predicted by the fuel design, fission gas release was observed due to additional failure of as-fabricated SiC-defective fuel. (author)

  20. NGNP Research and Development Status

    Energy Technology Data Exchange (ETDEWEB)

    David A. Petti

    2010-08-01

    At the inception of the Next Generation Nuclear Plant (NGNP) project, experts from the Department of Energy (DOE) national laboratories, gas reactor vendors, and universities collaborated to establish technology research and development (R&D) roadmaps. These roadmaps outlined the testing and computational development activities needed to qualify the materials and validate the modeling and simulation tools to be used in the design and safe operation of the NGNP, a helium-cooled, high temperature gas reactor (HTGR).

  1. Development of atomic spectroscopy technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Hyung Ki; Song, Kyu Seok; Yang, Ki Ho; Baik, Dae Hyun; Lee, Young Joo; Yi, Jong Hoon; Jeong, Do Young; Jeong, Eui Chang; Yoo, Byung Duk; Cha, Byung Heon; Kim, Seong Ho; Nam, Seong Mo; Kim, Sun Kuk; Lee, Byung Cheol; Choi, Hwa Lim; Ko, Dok Yung; Han, Jae Min; Rho, Si Pyo; Lim, Chang Hwan; Choi, An Seong

    1992-12-01

    This project is aimed for the 'Development of extraction and separation techniques for stable isotopes by atomic laser spectroscopy technique'. The project is devided by two sub-projects. One is the 'Development of the selective photoionization technology' and the other is 'Development of ultrasensitive spectroscopic analysis technololgy'. This year studies on Hg and Yb, both of which have 7 isotopes, have been performed and, as a result, it was proved that specific isotopes of these elements could be selectively extracted. In addition study on plasma extraction technique, development of atomizers, design of electron gun have been the result of the project in 1992. In second sub-project trace determination of Pb has been performed with laser resonance ionization spectroscopy. As a result 20 picogram of detection limit has been obtained. In addition to these results, design of high sensitive laser induced fluorescence detection system as well as remote sensing DIAL system have been done. (Author)

  2. Cyberfeminism, technology, and international "development".

    Science.gov (United States)

    Gajjala, R; Mamidipudi, A

    1999-07-01

    This article reports on the implications and benefits of Internet technology among women from developing countries. Cyberfeminism is the practice of feminism in cyberspace. Feminists believe that women should take control and augment Internet technologies to empower themselves. Learning to use the computers, getting "connected," and surfing the Internet are encouraged among all women with the aim of advancing feminist causes and empowering women. The Internet has been observed to cause radical changes in the way business and social activities are conducted. A description of how two women have engaged in cyberfeminism and worked in development and technology programs is included. One contributor, Annapurna Mamipudi, is involved in a non-governmental organization working with traditional handloom weavers in India Another contributor is Radhika Gajjala, who works in academia and creates on-line "discussion lists" and Web sites from her North American geographical location. Her job is to create spaces that provide opportunities for dialogue and collaboration among women with Internet access all over the world.

  3. Technology development in market networks

    International Nuclear Information System (INIS)

    Olerup, B.

    2001-01-01

    Technology procurement is used as an environmental control means in Sweden to promote the manufacturing and sale of energy-efficient technologies. The public authority in charge makes use of the market mechanism in alternating co-operative and competitive elements. The fragmented market, with its standardised products for many small customers, is brought together to specify desired product developments. These demands also include other qualities besides energy efficiency. A contest is announced in which a possible future market is indicated to manufacturers. Efforts are made to enlarge the market to motivate their investment and to keep down the unit cost. Each side in the deal is thus given an incentive to act in the desired direction. (author)

  4. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Michael W. Patterson

    2008-01-01

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible

  5. How does technological regime affect performance of technology development projects?

    NARCIS (Netherlands)

    Song, Michael; Hooshangi, Soheil; Zhao, Y. Lisa; Halman, Johannes I.M.

    2014-01-01

    In this study, we examine how technological regime affects the performance of technology development projects (i.e., project quality, sales, and profit). Technological regime is defined as the set of attributes of a technological environment where the innovative activities of firms take place.

  6. Children's Developing Understanding of Technology

    Science.gov (United States)

    Mawson, Brent

    2010-01-01

    The issue of children's conceptions of technology and technology education is seen as important by technology educators. While there is a solid body of literature that documents groups of children's understandings of technology and technology education, this is primarily focused on snapshot studies of children aged 11 and above. There is little…

  7. Development of DUPIC safeguards technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H D; Ko, W I; Song, D Y [and others

    2000-03-01

    During the first phase of R and D program conducted from 1997 to 1999, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. For the nuclear material measurement system, the performance test was finished and received IAEA approval, and now is being used in DUPIC Fuel Fabrication Facility(DFDF) for nuclear material accounting and control. Other systems being developed in this study were already installed in DFDF and being under performance test. Those systems developed in this study will make a contribution not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author)

  8. Preliminary risk assessments of the small HTGR

    International Nuclear Information System (INIS)

    Everline, C.J.; Bellis, E.A.

    1985-05-01

    Preliminary investment and safety risk assessments were performed for a preconceptual design of a four-module 250-MW(t) side-by-side steel-vessel pebble bed HTGR plant. Broad event spectra were analyzed involving component damage resulting in unscheduled plant outages and fission product releases resulting in offsite doses. The preliminary assessment indicates at this stage of the design that two categories of events govern the investment risk envelope: primary coolant leaks which release some circulating and plate-out activity that contaminates the confinement and turbogenerator damage which involves extensive turbine blade failure. Primary coolant leaks are important contributors because associated cleanup and decontamination requirements result in longer outages that arise from other events with comparable frequencies. Turbogenerator damage is the salient low-frequency investment risk accident due to the relatively long outages being experienced in the industry. Thermal transients are unimportant investment risk contributors because pressurized core heatups cause little damage, and depressurized core heatups occur at negligible frequencies relative to the forced outage goal. These preliminary results demonstrate investment and safety risk goal compliance at this stage in the design process. Studies are continuing in order to provide valuable insights into risk-significant events to assure a balanced approach to meeting user and regulatory requirements

  9. 1170-MW(t) HTGR-PS/C plant application study report: tar sands oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to tar sands oil recovery and upgrading. The raw product recovered from the sands is a heavy, sour bitumen; upgrading, which involves coking and hydrodesulfurization, produces a synthetic crude (refinable by current technology) and petroleum coke. Steam and electric power are required for the recovery and upgrading process. Proposed and commercial plants would purchase electric power from local utilities and obtain from boilers fired with coal and with by-product fuels produced by the upgrading. This study shows that an HTGR-PS/C represents a more economical source of steam and electric power

  10. Promising materials for HTGR high temperature heat exchangers

    International Nuclear Information System (INIS)

    Kuznetsov, E.V.; Tokareva, T.B.; Ryabchenkov, A.V.; Novichkova, O.V.; Starostin, Yu.D.

    1989-01-01

    The service conditions for high-temperature heat-exchangers with helium coolant of HTGRs and requirements imposed on materials for their production are discussed. The choice of nickel-base alloys with solid-solution hardening for long-term service at high temperatures is grounded. Results of study on properties and structure of types Ni-25Cr-5W-5Mo and Ni-20Cr-20W alloy in the temperature range of 900 deg. - 1,000 deg. C are given. The ageing of Ni-25Cr-5W-5Mo alloy at 900 deg. - 950 deg. C results in decreased corrosion-mechanical properties and is caused by the change of structural metal stability. Alloy with 20% tungsten retains a high stability of both structure and properties after prolonged exposure in helium at above temperatures. The alloy has also increased resistance to delayed fracture and low-cycle fatigue at high temperatures. The developed alloy of type Ni-20Cr-20W with microalloying is recommended for production of tubes for HTGR high-temperature heat-exchangers with helium coolant. (author). 3 refs, 8 figs

  11. Development of nuclear analytical technology

    International Nuclear Information System (INIS)

    Jee, Kwang Yong; Kim, W. H.; Park, Yeong J.; Park, Yong J.; Sohn, S. C.; Song, B. C.; Jeon, Y. S.; Pyo, H. Y.; Ha, Y. K.

    2004-04-01

    The objectives of this study are to develop the technology for the determination of isotopic ratios of nuclear particles detected from swipe samples and to develop the NIPS system. The R and D contents and results of this study are firstly the production of nuclear micro particle(1 ∼ 20 μm) and standardization, the examination of variation in fission track characteristic according to nuclear particle size and enrichment( 235 U: 1-50%), the construction of database and the application of this technique to swipe samples. If this technique is verified its superiority by various field tests and inter-laboratory comparison program with other institutes in developed countries, it can be possible to join NWAL supervised under IAEA and to export our technology abroad. Secondly, characteristics of alpha track by boron (n, α) nuclear reaction were studied to measure both total boron concentration and 10B enrichment. The correlation of number of alpha tracks and various 10B concentration was studied to evaluate the reliability of this method. Especially, cadmium shielding technique was introduced to reduce the background of alpha tracks by covering the solid track detector and the multi-dot detector plate was developed to increase the reproducibility of measurement by making boron solution dried evenly in the plate. The results of the alpha track method were found to be well agreed with those of mass spectroscopy within less than 10 % deviation. Finally, the NIPS system using 252 Cf neutron source was developed and prompt gamma spectrum and its background were obtained. Monte Carlo method using MCNP-4B code was utilized for the interpretation of neutron and gamma-ray shielding condition as well as the moderation of a fast neutron. Gamma-gamma coincidence was introduced to reduce the prompt gamma background. The counting efficiency of the HPGe detector was calibrated in the energy range from 50 keV to 10 MeV using radio isotope standards and prompt gamma rays of Cl for the

  12. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Feldman, E.M.; Fisher, M.W.

    1987-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM programs, e.g., Prototypical Consolidation Demonstration Program (PCDP). The program is being conducted at the Idaho National Engineering Laboratory (INEL) by the INEL Operating Contractor EG and G Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment is used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SFSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation is accomplished by individual, horizontal rod pulling. A computerized semiautomatic control system with operator involvement is utilized to conduct consolidation operations. During consolidation operations, data is taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software was completed in September of 1986. Following installation in the hot cell, consolidation operations begins in May 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  13. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Fisher, M.W.

    1986-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a Program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM Programs, e.g., Prototypical Consolidation Demonstration Program. The Program is being conducted at the Idaho National Engineering Laboratory (INEL) by the Operating Contractor, EGandG Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment will be used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SPSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation will be accomplished by individual, horizontal rod pulling. A computerized semi-automatic control system with operator involvement will be utilized to conduct consolidation operations. Special features have been incorporated in the design to allow crud collection and measurement of rod pulling forces. During consolidation operations, data will be taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software will complete in September of 1986. Following installation in the hot cell, consolidation operations will begin in January 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  14. HTGR-GT and electrical load integrated control

    International Nuclear Information System (INIS)

    Chan, T.; Openshaw, F.; Pfremmer, D.

    1980-05-01

    A discussion of the control and operation of the HTGR-GT power plant is presented in terms of its closely coupled electrical load and core cooling functions. The system and its controls are briefly described and comparisons are made with more conventional plants. The results of analyses of selected transients are presented to illustrate the operation and control of the HTGR-GT. The events presented were specifically chosen to show the controllability of the plant and to highlight some of the unique characteristics inherent in this multiloop closed-cycle plant

  15. HTGR containment design options: an application of probabilistic risk assessment

    International Nuclear Information System (INIS)

    1977-08-01

    Through the use of probabilistic risk assessment (PRA), it is possible to quantitatively evaluate the radiological risk associated with a given reactor design and to place such risk into perspective with alternative designs. The merits are discussed for several containment alternatives for the HTGR from the viewpoints of economics and licensability, as well as public risk. The quantification of cost savings and public risk indicates that presently acceptable public risk can be maintained and cost savings of $40 million can result from use of a vented confinement for the HTGR

  16. Information Communication Technology Planning in Developing Countries

    Science.gov (United States)

    Malapile, Sandy; Keengwe, Jared

    2014-01-01

    This article explores major issues related to Information Communication Technology (ICT) in education and technology planning. Using the diffusion of innovation theory, the authors examine technology planning opportunities and challenges in Developing countries (DCs), technology planning trends in schools, and existing technology planning models…

  17. FRESCO-II: A computer program for analysis of fission product release from spherical HTGR-fuel elements in irradiation and annealing experiments

    International Nuclear Information System (INIS)

    Krohn, H.; Finken, R.

    1983-06-01

    The modular computer code FRESCO has been developed to describe the mechanism of fission product release from a HTGR-Core under accident conditions. By changing some program modules it has been extended to take into account the transport phenomena (i.e. recoil) too, which only occur under reactor operating conditions and during the irradiation experiments. For this report, the release of cesium and strontium from three HTGR-fuel elements has been evaluated and compared with the experimental data. The results show that the measured release can be described by the considered models. (orig.) [de

  18. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  19. Development of DUPIC safeguards technology

    International Nuclear Information System (INIS)

    Kim, H. D.; Kang, H. Y.; Ko, W. I.

    2002-05-01

    DUPIC safeguards R and D in the second phase has focused on the development of nuclear material measurement system and its operation and verification, the development of nuclear material control and accounting system, and the development of remote and unmanned containment/surveillance system. Of them, the nuclear material measurement system was authenticated from IAEA and officially used for IAEA and domestic safeguards activities in DFDF. It was also verified that the system could be used for quality control of DUPIC process. It is recognised that the diagnostic software using neural network and remote and unmanned containment/surveillance system developed here could be key technologies to go into remote and near-real time monitoring system. The result of this project will eventually contribute to similar nuclear fuel cycles like MOX and pyroprocessing facility as well as the effective implementation of DUPIC safeguards. In addition, it will be helpful to enhance international confidence build-up in the peaceful use of spent fuel material

  20. Inspection technologies -Development of national safeguards technology-

    International Nuclear Information System (INIS)

    Hong, J. S.; Kim, B. K.; Kwack, E. H.

    1996-12-01

    17 facility regulations prepared by nuclear facilities according to the Ministerial Notices were evaluated. Safeguards inspection activities under Safeguards are described. Safeguards inspection equipments and operation manuals to be used for national inspection are also described. Safeguards report are produced and submitted to MOST by using the computerized nuclear material accounting system at state level. National inspection support system are developed to produce the on-site information for domestic inspection. Planning and establishment of policy for nuclear control of nuclear materials, international cooperation for nuclear control, CTBT, strengthening of international safeguards system, and the supply of PWRs to North Korea are also described. (author). 43 tabs., 39 figs

  1. Technology transfer and international development: Materials and manufacturing technology

    Science.gov (United States)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  2. Further HTGR core support structure reliability studies. Interim report No. 1

    International Nuclear Information System (INIS)

    Platus, D.L.

    1976-01-01

    Results of a continuing effort to investigate high temperature gas cooled reactor (HTGR) core support structure reliability are described. Graphite material and core support structure component physical, mechanical and strength properties required for the reliability analysis are identified. Also described are experimental and associated analytical techniques for determining the required properties, a procedure for determining number of tests required, properties that might be monitored by special surveillance of the core support structure to improve reliability predictions, and recommendations for further studies. Emphasis in the study is directed towards developing a basic understanding of graphite failure and strength degradation mechanisms; and validating analytical methods for predicting strength and strength degradation from basic material properties

  3. 1170-MW(t) HTGR-PS/C plant application study report: shale oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    The US has large shale oil energy resources, and many companies have undertaken considerable effort to develop economical means to extract this oil within environmental constraints. The recoverable shale oil reserves in the US amount to 160 x 10 9 m 3 (1000 x 10 9 bbl) and are second in quantity only to coal. This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to a shale oil recovery process. Since the highest potential shale oil reserves lie in th Piceance Basin of Western Colorado, the study centers on exploiting shale oil in this region

  4. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  5. Design evaluation of the HTGR fuel element size reduction system

    International Nuclear Information System (INIS)

    Strand, J.B.

    1978-06-01

    A fuel element size reduction system for the ''cold'' pilot plant of the General Atomic HTGR Reference Recycle Facility has been designed and tested. This report is both an evaluation of the design based on results of initial tests and a description of those designs which require completion or modification for hot cell use. 11 figures

  6. Estimation and control in HTGR fuel rod fabrication

    International Nuclear Information System (INIS)

    Downing, D.J.; Bailey, J.M.

    1980-01-01

    A control algorithm has been derived for an HTGR Fuel Rod Fabrication Process utilizing the method of G.E.P. Box and G.M. Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented. 1 ref

  7. Estimation and control in HTGR fuel rod fabrication

    International Nuclear Information System (INIS)

    Downing, D.J.; Bailey, M.J.

    1980-01-01

    A control algorithm has been derived for a HTGR Fuel Rod Fabrication Process utilizing the method of Box and Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented

  8. An alternative development strategy for the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Amman, F

    1987-05-01

    Although the risk of a Chernobyl type accident is very low, social risk perception, which is not associated with a measure of probability but with the consequences of core melting, may now hinder the spread of nuclear technology. The Author promotes international cooperation in the development of the high temperature gas reactor, HTGR, which is not subject to large core melting. This type of technological innovation would reduce social risk perception and slow down opposition to nuclear power.

  9. Development of components for the gas-cooled fast breeder reactor program

    International Nuclear Information System (INIS)

    Dee, J.B.; Macken, T.

    1977-01-01

    The gas-cooled fast breeder reactor (GCFR) component development program is based on an extension of high temperature gas-cooled reactor (HTGR) component technology; therefore, the GCFR development program is addressed primarily to components which differ in design and requirements from HTGR components. The principal differences in primary system components are due to the increase in helium coolant pressure level, which benefits system size and efficiency in the GCFR, and differences in the reactor internals and fuel handling systems due to the use of the compact metal-clad core. The purpose of this paper is to present an overview of the principal component design differences between the GCFR and HTGR and the consequent influences of these differences on GCFR component development programs. Development program plans are discussed and include those for the prestressed concrete reactor vessel (PCRV), the main helium circulator and its supporting systems, the steam generators, the reactor thermal shielding, and the fuel handling system. Facility requirements to support these development programs are also discussed. Studies to date show that GCFR component development continues to appear to be incremental in nature, and the required tests are adaptations of related HTGR test programs. (Auth.)

  10. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Stern, T.

    1989-09-01

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  11. Study on the Efficient Disintegration of HTGR Fuel Elements by Electrochemical Method

    International Nuclear Information System (INIS)

    Piao Nan; Chen Ji; Xiao Cuiping; We Mingfen; Che Jing

    2014-01-01

    The spent fuel elements in High- temperature gas-cooled reactor (HTGR) have a special structure, so the head-end process of the spent fuel reprocessing is different from the process of water reactor spent fuel. The first step of head-end process of the HTGR spent fuel reprocessing process is disintegration of the graphite matrix and separation of the coated fuel particles. Electrochemical method with nitrate solution as an electrolyte for fuel element disintegration has been conducted by the Institute of Nuclear and New Energy Technology in Tsinghua University. This method allows a total disintegration of graphite matrix, while still preserving the integrity of TRISO particles. The influences of the pretreatment methods such as heating oxidation of graphite, hydrothermal and oxidants oxidation were investigated in the present work. The experimental results showed that there were no significant effects on increasing the disintegration rate when pretreatment methods were used ahead of electrochemical disintegration. This phenomenon indicated that the fuel elements which were calcined at 1073 K and pressed under 300 MPa are too compact to be broken by these pretreatment methods. And the electrochemical disintegration is an effective but slow method in breaking the graphite matrix. (author)

  12. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  13. Robotics Technology Development Program Cross Cutting and Advanced Technology

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Horschel, D.S.

    1994-01-01

    Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy's complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems

  14. Development of Stable Isotope Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Kim, Cheol Jung; Han, Jae Min

    2009-03-01

    KAERI has obtained an advanced technology with singular originality for laser stable isotope separation. Objectives for this project are to get production technology of Tl-203 stable isotope used for medical application and are to establish the foundation of the pilot system, while we are taking aim at 'Laser Isotope Separation Technology to make resistance to the nuclear proliferation'. And we will contribute to ensuring a nuclear transparency in the world society by taking part in a practical group of NSG and being collaboration with various international groups related to stable isotope separation technology

  15. Open Technology Development: Roadmap Plan

    National Research Council Canada - National Science Library

    Herz, J. C; Lucas, Mark; Scott, John

    2006-01-01

    .... Collaborative and distributed online tools; and 4. Technological Agility. Open standards and interfaces were initially established through ARPA and distributed via open source software reference implementations...

  16. 1170-MW(t) HTGR-PS/C plant application study report: SRC-II process application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    The solvent refined coal (SRC-II) process is an advanced process being developed by Gulf Mineral Resources Ltd. (a Gulf Oil Corporation subsidiary) to produce a clean, non-polluting liquid fuel from high-sulfur bituminous coals. The SRC-II commercial plant will process about 24,300 tonnes (26,800 tons) of feed coal per stream day, producing primarily fuel oil plus secondary fuel gases. This summary report describes the integration of a high-temperature gas-cooled reactor operating in a process steam/cogeneration mode (HTGR-PS/C) to provide the energy requirements for the SRC-II process. The HTGR-PS/C plant was developed by General Atomic Company (GA) specifically for industries which require energy in the form of both steam and electricity. General Atomic has developed an 1170-MW(t) HTGR-PS/C design which is particularly well suited to industrial applications and is expected to have excellent cost benefits over other sources of energy

  17. Development of superconductor application technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G W; Kim, C J; Lee, H G; Lee, H J; Kim, K B; Won, D Y; Jang, K I; Kwon, S C; Kim, W J; Ji, Y A; Yang, S W; Kim, W K; Park, S D; Lee, M H; Lee, D M; Park, H W; Yu, J K; Lee, I S; Kim, J J; Choi, H S; Chu, Y; Kim, Y S; Kim, D H

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs.

  18. Development of superconductor application technology

    International Nuclear Information System (INIS)

    Hong, G. W.; Kim, C. J.; Lee, H. G.; Lee, H. J.; Kim, K. B.; Won, D. Y.; Jang, K. I.; Kwon, S. C.; Kim, W. J.; Ji, Y. A.; Yang, S. W.; Kim, W. K.; Park, S. D.; Lee, M. H.; Lee, D. M.; Park, H. W.; Yu, J. K.; Lee, I. S.; Kim, J. J.; Choi, H. S.; Chu, Y.; Kim, Y. S.; Kim, D. H.

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm 2 was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm 2 was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs

  19. AND TECHNOLOGY FOR NATIONAL DEVELOPMENT

    African Journals Online (AJOL)

    within the interest and capabilities of all humans regardless of race, gender, national- ity or ethnicity (Byant & Swinton, ... and technology among men and women that are taken for granted have changed. The marginalization of .... Secondly, science and technology are perceived as powerful model for understanding and ...

  20. Conceptual design of primary coolant purification system using cylindrical membrane for nuclear energy system base on HTGR

    International Nuclear Information System (INIS)

    Piping Supriatna

    2011-01-01

    The recent progress of reactor technology design for next generation reactor will be implemented on cogeneration reactor, which the aim of reactor operation not only for generating electrical energy, but also for other application like desalination, industrial manufacturing process, hydrogen production, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor concept developed for generate energy effectively, efficiently and sustainable, which reserve of uranium and thorium nuclear fuel for cogeneration reactor is supply able for world energy demand until next thousand years. The cogeneration reactor produce temperature output higher than commonly Nuclear Power Plant (NPP), and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this research has been designed modeling and assessment of primary coolant gas purification system with purify and fill up helium gas continuously, by using Cylindrical Helium Splitting Membrane and helium gas inventory system. The result of flow rate helium assessment for the purification system is 0.844x10 -3 kg/sec, where helium flow rate of reactor primary coolant is 120 kg/sec. The result of study show that the Primary Coolant Gas Purification System is enable to be implemented on Cogeneration Reactor HTGR200C. (author)

  1. Success factors in technology development

    Science.gov (United States)

    Preston, John T.

    1995-01-01

    Universities in the U.S. have a significant impact on business through the transfer of technology. This paper describes goals and philosophy of the Technology Licensing Office at the Massachusetts Institute of Technology. This paper also relates the critical factors for susscessful technology transfer, particularly relating to new business formation. These critical factors include the quality of the technology, the quality of the management, the quality of the investor, the passion for success, and the image of the company. Descriptions of three different levels of investment are also given and the most successful level of investment for starting a new company is reviewed. Licensing to large companies is also briefly reviewed, as this type of licensing requires some different strategies than that of licensing to start-up companies. High quality critical factors and intelligent investment create rewards for the parties and successful ventures.

  2. Policy issues inherent in advanced technology development

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.

  3. Status of Irradiation technology development in JMTR

    International Nuclear Information System (INIS)

    Inaba, Y.; Inoue, S.; Izumo, H.; Kitagishi, S.; Tsuchiya, K.; Saito, T.; Ishitsuka, E.

    2008-01-01

    Irradiation Engineering Section of the Neutron Irradiation and Testing Reactor Center was organized to development the new irradiation technology for the application at JMTR re operation. The new irradiation engineering building was remodeled from the old RI development building, and was started to use from the end of September, 2008. Advanced in situ instrumentation technology (high temperature multi paired thermocouple, ceramic sensor, application of optical measurement), 99M o production technology by new Mo solution irradiation method, recycling technology on used beryllium reflector, and so on are planned as the development of new irradiation technologies. The development will be also important for the education and training programs through the development of young generation in not only Japan but also Asian counties. In this report, as the status of the development the new irradiation technology, new irradiation engineering building, high temperature multi paired thermocouple, experiences of optical measurement, recycling technology on used beryllium reflector are introduced

  4. Status of irradiation technology development in JMTR

    International Nuclear Information System (INIS)

    Inaba, Y.; Inoue, S.; Izumo, H.; Kitagishi, S.; Tsuchiya, K.; Saito, T.; Ishitsuka, E.

    2008-01-01

    Irradiation Engineering Section of the Neutron Irradiation and Testing Reactor Centre was organised to development the new irradiation technology for the application at JMTR re-operation. The new irradiation engineering building was remoulded from the old RI development building, and was started to use from the end of September, 2008. Advanced in-situ instrumentation technology(high temperature multi-paired thermocouple, ceramic sensor,application of optical measurement), 99 Mo production technology by new Mo solution irradiation method,recycling technology on used beryllium reflector, and so on are planned as the development of new irradiation technologies. The development will be also important for the education and training programs through the development of young generation in not only Japan but also Asian countries. In this report, as the status of the development the new irradiation technology, new irradiation engineering building, high temperature multi-paired thermocouple, experiences of optical measurement, recycling technology on used beryllium reflector are introduced

  5. Policy issues inherent in advanced technology development

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1994-01-01

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses

  6. Mobile Sensor Technologies Being Developed

    Science.gov (United States)

    Greer, Lawrence C.; Oberle, Lawrence G.

    2003-01-01

    The NASA Glenn Research Center is developing small mobile platforms for sensor placement, as well as methods for communicating between roving platforms and a central command location. The first part of this project is to use commercially available equipment to miniaturize an existing sensor platform. We developed a five-circuit-board suite, with an average board size of 1.5 by 3 cm. Shown in the preceding photograph, this suite provides all motor control, direction finding, and communications capabilities for a 27- by 21- by 40-mm prototype mobile platform. The second part of the project is to provide communications between mobile platforms, and also between multiple platforms and a central command location. This is accomplished with a low-power network labeled "SPAN," Sensor Platform Area Network, a local area network made up of proximity elements. In practice, these proximity elements are composed of fixed- and mobile-sensor-laden science packages that communicate to each other via radiofrequency links. Data in the network will be shared by a central command location that will pass information into and out of the network through its access to a backbone element. The result will be a protocol portable to general purpose microcontrollers satisfying a host of sensor networking tasks. This network will enter the gap somewhere between television remotes and Bluetooth but, unlike 802.15.4, will not specify a physical layer, thus allowing for many data rates over optical, acoustical, radiofrequency, hardwire, or other media. Since the protocol will exist as portable C-code, developers may be able to embed it in a host of microcontrollers from commercial to space grade and, of course, to design it into ASICs. Unlike in 802.15.4, the nodes will relate to each other as peers. A demonstration of this protocol using the two test bed platforms was recently held. Two NASA modified, commercially available, mobile platforms communicated and shared data with each other and a

  7. Simulation of thermal response of the 250 MWT modular HTGR during hypothetical uncontrolled heatup accidents

    International Nuclear Information System (INIS)

    Harrington, R.M.; Ball, S.J.

    1985-01-01

    One of the central design features of the 250 MWT modular HTGR is the ability to withstand uncontrolled heatup accidents without severe consequences. This paper describes calculational studies, conducted to test this design feature. A multi-node thermal-hydraulic model of the 250 MWT modular HTGR reactor core was developed and implemented in the IBM CSMP (Continuous System Modeling Program) simulation language. Survey calculations show that the loss of forced circulation accident with loss of steam generator cooling water and with accidental depressurization is the most severe heatup accident. The peak hot-spot fuel temperature is in the neighborhood of 1600 0 C. Fuel failure and fission product releases for such accidents would be minor. Sensitivity studies show that code input assumptions for thermal properties such as the side reflector conductivity have a significant effect on the peak temperature. A computer model of the reactor vessel cavity concrete wall and its surrounding earth was developed to simulate the extremely unlikely and very slowly-developing heatup accident that would take place if the worst-case loss of forced primary coolant circulation accident were further compounded by the loss of cooling water to the reactor vessel cavity liner cooling system. Results show that the ability of the earth surrounding the cavity to act as a satisfactory long-term heat sink is very sensitive to the assumed rate of decay heat generation and on the effective thermal conductivity of the earth

  8. Design and thermal dynamic analyses on the intermediate heat exchanger for HTGR

    International Nuclear Information System (INIS)

    Mori, M.; Mizuno, M.; Ito, M.; Urabe, S.

    1986-01-01

    The intermediate heat exchanger (IHX), one of the most important components in the high temperature gas cooled reactor (HTGR), is a high performance helium/helium (He/He) heat exchanger operated at a very high temperature above 900 0 C to transmit the nuclear heat from the reactor core to the nuclear heat utilization systems such as the chemical plant. Having to meet, in addition, the requirement of the pressure boundary as the Class-1 it demands the accurate estimation of thermal performance and analytical prediction of thermal behaviors to secure its integrity throughout the service life. In the present works, the newly-developed analytical codes carry out designing thermal performance and analyzing dynamic thermal behaviors of the IHX. These codes have been developed on a great deal of data and studies related to the research and development on the 1.5 MWt- and the 25 MWt-IHXs. This paper shows the design on the IHX, the results of the dynamic analyses on the 1.5 MWt-IHX with the comparison to the experimental data and the analytical predictions of the dynamic thermal behaviors on the 25 MWt-IHX. The results calculated are in fairly good agreement with the experimental data on the 1.5 MWt-IHX, the fact that has verified the analytical codes to be reasonable and much useful for the thermal design of the IHX. These presented results and data are available for the design of the IHX of HTGR

  9. 507 Developing Industrial and Technological Manpower via ...

    African Journals Online (AJOL)

    sustainable industrial and technological advancement and security for national development. ... industrial/technological manpower for Nigeria is the technical vocational education and ..... Business and Social Sciences, 2 (2), 71-77. Retrieved ...

  10. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  11. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  12. FREVAP-6, Metal Fission Products Release from HTGR Fuel Elements

    International Nuclear Information System (INIS)

    Pierce, V.H.

    2005-01-01

    1 - Description of problem or function: The FREVAP type of code for estimating the release of longer-lived metallic fission products from HTGR fuel elements has been developed to take into account the combined effects of the retention of metallic fission products by fuel particles and the rather strong absorption of these fission products by the graphite of the fuel elements. Release calculations are made on the basis that the loss of fission product nuclides such as strontium, cesium, and barium is determined by their evaporation from the graphite surfaces and their transpiration induced by the flowing helium coolant. The code is devised so that changes of fission rate (fuel element power), fuel temperature, and graphite temperature may be incorporated into the calculation. Temperature is quite important in determining release because, in general, both release from fuel particles and loss by evaporation (transpiration) vary exponentially with the reciprocal of the absolute temperature. NESC0301/02: This version differs from the previous one in the following points: The source and output files were converted from BCD to ASCII coding. 2 - Method of solution: A problem is defined as having a one-dimensional segment made up of three parts - (1) the fission product source (fuel particles) in series with, (2) a non-source and absorption part (element graphite) and (3) a surface for evaporation to the coolant (graphite-helium interface). More than one segment may be connected (possibly segments stacked axially) by way of the coolant. At any given segment, a continuity equation is solved assuming equilibrium between the source term, absorption term, evaporation at coolant interface and the partial pressure of the fission product isotope in the coolant. 3 - Restrictions on the complexity of the problem - Maxima of: 5 isotopes; 10 time intervals for time-dependent variable; 49 segments (times number of isotopes); 5 different output print time-steps

  13. Electric Aircraft Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — This project looks at multiple manned/unmanned full-scale/sub-scale flying research prototypes that will lead to the integration of electric propulsion technology on...

  14. Current status of VHTR development in Japan

    International Nuclear Information System (INIS)

    Aochi, A.; Kondo, T.

    1982-01-01

    The status of the program at the beginning of fiscal 1982 is reviewed. Special emphasis is placed on the altering of the output helium temperature of the experimental VHTR to 950 0 . The modification is aimed at establishing the technical basis for post-experimental VHTR output helium temperature of 1000 0 C. Notes are given on the design of the VHTR as well as various research and development efforts in Japan on multi-purpose nuclear heat applications and HTGR technology

  15. Development of Pollution Prevention Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Polle, Juergen [Brooklyn College, The City University of New York (CUNY), Brooklyn, New York, (United States); Sanchez-Delgado, Roberto [Brooklyn College, The City University of New York (CUNY), Brooklyn, New York, (United States)

    2013-12-30

    This project investigated technologies that may reduce environmental pollution. This was a basic research/educational project addressing two major areas: A. In the algae research project, newly isolated strains of microalgae were investigated for feedstock production to address the production of renewable fuels. An existing collection of microalgae was screened for lipid composition to determine strains with superior composition of biofuel molecules. As many microalgae store triacylglycerides in so-called oil bodies, selected candidate strains identified from the first screen that accumulate oil bodies were selected for further biochemical analysis, because almost nothing was known about the biochemistry of these oil bodies. Understanding sequestration of triacylglycerides in intracellular storage compartments is essential to developing better strains for achieving high oil productivities by microalgae. At the onset of the project there was almost no information available on how to obtain detailed profiles of lipids from strains of microalgae. Our research developed analytical methods to determine the lipid profiles of novel microalgal strains. The project was embedded into other ongoing microalgal projects in the Polle laboratory. The project benefited the public, because students were trained in cell cultivation and in the operation of state-of-the-art analytical equipment. In addition, students at Brooklyn College were introduced into the concept of a systems biology approach to study algal biofuels production. B. A series of new nanostructured catalysts were synthesized, and characterized by a variety of physical and chemical methods. Our catalyst design leads to active nanostructures comprising small metal particles in intimate contact with strongly basic sites provided by the supports, which include poly(4-vinylpyridine), magnesium oxide, functionalized multi-walled carbon nanotubes, and graphene oxide. The new materials display a good potential as catalysts

  16. A three-dimensional computer code for the nonlinear dynamic response of an HTGR core

    International Nuclear Information System (INIS)

    Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.

    1979-01-01

    A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged in layers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analytical study is directed towards an investigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathematical model which represents a vertical arrangement of layers of blocks. This comprises a 'block module' of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core. (orig.)

  17. Three-dimensional computer code for the nonlinear dynamic response of an HTGR core

    International Nuclear Information System (INIS)

    Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.

    1979-01-01

    A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged inlayers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analystical study is directed towards an invesstigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathemtical model which represents a vertical arrangement of layers of blocks. This comprises a block module of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core

  18. SONATINA-2V: a computer program for seismic analysis of the two-dimensional vertical slice HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1982-07-01

    A computer program SONATINA-2V has been developed for predicting the behavior of a two-dimensional vertical slice HTGR core under seismic excitation. SONATINA-2V is a general two-dimensional computer program capable of analyzing the vertical slice HTGR core with the permanent side reflector blocks and its restraint structures. In the analytical model, each block is treated as rigid body and is restrained by dowel pins which restrict relative horizontal movement but allow vertical and rocking motions between upper and lower blocks. Coulomb friction is taken into account between blocks and between dowel pin and hole. A spring dashpot model is used for the collision process between adjacent blocks. The core support structure is represented by a single block. The computer program SONATINA-2V is capable of analyzing the core behavior for an excitation input applied simultaneously to both vertical and horizontal directions. Analytical results obtained from SONATINA-2V are compared with experimental results and are found to be in good agreement. The computer program can thus be used to predict with a good accuracy the behavior of the HTGR core under seismic excitation. In the present report are given, the theoretical formulation of the analytical model, a user's manual to describe the input and output format, and sample problems. (author)

  19. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  20. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  1. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  2. History of nuclear technology development in Japan

    Science.gov (United States)

    Yamashita, Kiyonobu

    2015-04-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  3. History of nuclear technology development in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp [Visiting Professor, at the Faculty of Petroleum and Renewable Energy Engineering, University Teknologi Malaysia Johor Bahru 81310 (Malaysia); General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195 (Japan)

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  4. Science and Technology and Economic Development

    OpenAIRE

    Lamberte, Mario B.

    1988-01-01

    Dealing with science and technology and economic development, this paper describes the relationship between technological capability and the degree of economic development. It analyzes the structure of the Philippine economy and the structural changes that have taken place since the 1970. It also investigates the impact of economic developments and technological advances in other countries on the Philippine economy. A discussion on possible research collaboration among PIDS, DOST and regional...

  5. History of nuclear technology development in Japan

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu

    2015-01-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident

  6. Development of NDT technology of the welds

    International Nuclear Information System (INIS)

    Li Jianwen; Xu Yansen; Wang Zengyong

    2002-01-01

    Non-destructive testing (NDT) and its up-to-date development are summarized, including the advantages and disadvantages and the development of NDT technology. The up-to-date development of X-ray imaging and industrial CT is emphasised on, and the fundamental theory of ultrasonic imaging and related signal processing technology is introduced

  7. Development of NDT technology of the welds

    Energy Technology Data Exchange (ETDEWEB)

    Jianwen, Li; Yansen, Xu; Zengyong, Wang [China Academy of Engineering Physics, Mianyang (China). Inst. of Mechanical Engineering

    2002-07-01

    Non-destructive testing (NDT) and its up-to-date development are summarized, including the advantages and disadvantages and the development of NDT technology. The up-to-date development of X-ray imaging and industrial CT is emphasised on, and the fundamental theory of ultrasonic imaging and related signal processing technology is introduced.

  8. EMI Architecture and Technology Development Plan

    CERN Document Server

    Balazs, K.

    2013-01-01

    This document provides a brief overview of the EMI architecture and the technology development directions presented by the four EMI technology areas and by EMI partners. The report represents the final revision of EMI technology planning covering a time period beyond the project end.

  9. The Clean Development Mechanism and Technology Transfer

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    2017-01-01

    This study assesses the impact of the Clean Development Mechanism (CDM) on the transfer of clean technology in India. The reason this study is unique is because firstly, it adopts an outcome-oriented approach to define ‘technology transfer’, which means that technology transfer occurs if firms...

  10. The develop of technology production in Spain

    International Nuclear Information System (INIS)

    Fernandez Labastida, J. M.

    2007-01-01

    Spanish Science and Technology system has been very effective in scientific production but not in technology transfer to economic activities. A cultural change is needed to improve the knowledge transfer mechanisms. Some specific actions are proposed in order to develop useful instruments to achieve a better technology transfer system. (Author)

  11. Readiness for banking technologies in developing countries

    African Journals Online (AJOL)

    Professor in the Department of Marketing Management, University of Johannesburg. ... From the organisation's perspective, it has been suggested ... technological readiness of developing countries' consumers, in an urban environment,.

  12. Pipe Leak Detection Technology Development

    Science.gov (United States)

    The U. S. Environmental Protection Agency (EPA) has determined that one of the nation’s biggest infrastructural needs is the replacement or rehabilitation of the water distribution and transmission systems. The institution of more effective pipe leak detection technology will im...

  13. Developments in Science and Technology

    Science.gov (United States)

    1979-01-01

    all satellite systems \\,ere vestigators, is using the MAGSAT data for magneto - operating properl) and NASA \\%as looking for\\sard sphere/ionosphere...departments of the medical divisions in areas of biophysics, ophthalmology, neurophysiology, radiology and radiation therapy , cardiovascular systems...art technology has contributed to many areas of basic medical research and to clinical diagnosis and therapy by im- proving instrumentation

  14. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  15. Process options and projected mass flows for the HTGR refabrication scrap recovery system

    International Nuclear Information System (INIS)

    Tiegs, S.M.

    1979-03-01

    The two major uranium recovery processing options reviewed are (1) internal recovery of the scrap by the refabrication system and (2) transfer to and external recovery of the scrap by the head end of the reprocessing system. Each option was reviewed with respect to equipment requirements, preparatory processing, and material accountability. Because there may be a high cost factor on transfer of scrap fuel material to the reprocessing system for recovery, all of the scrap streams will be recycled internally within the refabrication system, with the exception of reject fuel elements, which will be transferred to the head end of the reprocessing system for uranium recovery. The refabrication facility will be fully remote; thus, simple recovery techniques were selected as the reference processes for scrap recovery. Crushing, burning, and leaching methods will be used to recover uranium from the HTGR refabrication scrap fuel forms, which include particles without silicon carbide coatings, particles with silicon carbide coatings, uncarbonized fuel rods, carbon furnace parts, perchloroethylene distillation bottoms, and analytical sample remnants. Mass flows through the reference scrap recovery system were calculated for the HTGR reference recycle facility operating with the highly enriched uranium fuel cycle. Output per day from the refabrication scrap recovery system is estimated to be 4.02 kg of 2355 U and 10.85 kg of 233 U. Maximum equipment capacities were determined, and future work will be directed toward the development and costing of the scrap recovery system chosen as reference

  16. Nondestructive evaluation of the oxidation and strength of the Fort Saint Vrain HTGR support block

    International Nuclear Information System (INIS)

    Tingey, G.L.; Posakony, G.J.; Morgan, W.C.; Prince, J.M.; Hill, R.W.; Lessor, D.L.

    1982-04-01

    Non-destructive detection of changes in the strength of graphite support structures in a HTGR appears to be feasible using sonic velocity measurements where access for through transmission is possible. Therefore, future HTGR designs should consider providing such access. Where access is not available, strength changes can be correlated with oxidation profiles in the support member. These oxidation profiles can be determined non-destructively by a combination of eddy current measurements to detect near surface oxidation and sonic backscattering measurements designed to determine oxidation in depth. The Fort Saint Vrain reactor provides an operating reactor to test the applicability of the eddy current and sonic backscattering techniques for determination of oxidation in a support block. Furthermore, such tests in Fort Saint Vrain will supply base line data which will be useful in assuring an adequate strength of the support structure for the lifetime of the reactor. Equipment is, therefore, being developed for tests to be conducted during the next major refueling of the reactor

  17. Developmental assessment of the Fort St. Vrain version of the composite HTGR analysis program (CHAP-2)

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1981-01-01

    The Composite HTGR Analysis Program (CHAP) consists of a model-independent systems analysis mainframe named LASAN and model-dependent linked code modules, each representing a component, subsystem, or phenomenon of an HTGR plant. The Fort St. Vrain version (CHAP-2) includes 21 coded modules that model the neutron kinetics and thermal response of the core; the thermal-hydraulics of the reactor primary coolant system, secondary steam supply system, and balance-of-plant; the actions of the control system and plant protection system; the response of the reactor building; and the relative hazard resulting from fuel particle failure. FSV steady-state and transient plant data are being used to partially verify the component modeling and dynamic simulation techniques used to predict plant response to postulated accident sequences. Results of these preliminary validation efforts are presented showing good agreement between code output and plant data for the portions of the code that have been tested. Plans for further development and assessment as well as application of the validated code are discussed. (author)

  18. Analysis of fission product release from HTGR core during transient temperature excursion

    International Nuclear Information System (INIS)

    Saito, Takao; Yamatoya, Naotoshi; Onuma, Mamoru

    1978-01-01

    The computer program ''FRANC'' was developed to calculate the release activity of fission products from a high-temperature gas cooled reactor (HTGR) core during transient temperature excursions such as a hypothetical loss of forced circulation combined with design basis depressurization. The program utilizes a segmented cylindrical core spatial model with the associated values of the prior fuel irradiation history and temperature conditions. The fission product transport and decay chain behavior is expressed by a set of differential equations. This set of equations describes the entire core inventory of fission products by means of calculated parameters based on the detailed spatial core conditions. The program determines the time-dependent amounts of fission product nuclides escaping from the core into the coolant. Coded in Continuous System Simulation Language (CSSL) with double precision, FRANC showed appropriate results for both short- and long-lived fission product nuclides. The sample calculation conducted by applying the program to a large HTGR indicated that it would take about one hour for noble gases and volatile nuclides to be released to the coolant, and several hours for metalic nuclides. (auth.)

  19. Clean Technology Evaluation & Workforce Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Glaza

    2012-12-01

    The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

  20. Lunar Surface Systems Supportability Technology Development Roadmap

    Science.gov (United States)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; hide

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  1. Technology developments for improved tritium management

    International Nuclear Information System (INIS)

    Miller, J.M.; Spagnolo, D.A.

    1994-06-01

    Tritium technology developments have been an integral part of the advancement of CANDU reactor technology. An understanding of tritium behaviour within the heavy-water systems has led to improvements in tritium recovery processes, tritium measurement techniques and overall tritium control. Detritiation technology has been put in place as part of heavy water and tritium management practices. The advances made in these technologies are summarized. (author). 20 refs., 5 figs

  2. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  3. Innovative Technology Development Program. Final summary report

    International Nuclear Information System (INIS)

    Beller, J.

    1995-08-01

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) Program. The plan is part of the DOE's program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE's clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process

  4. Computational analysis of modern HTGR fuel performance and fission product release during the HFR-EU1 irradiation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl, E-mail: k.verfondern@fz-juelich.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Xhonneux, André, E-mail: xhonneux@lrst.rwth-aachen.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Nabielek, Heinz, E-mail: heinznabielek@me.com [Research Center Jülich, Monschauerstrasse 61, 52355 Düren (Germany); Allelein, Hans-Josef, E-mail: h.j.allelein@fz-juelich.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); RWTH Aachen, Chair for Reactor Safety and Reactor Technology, 52072 Aachen (Germany)

    2014-07-01

    Highlights: • HFR-EU1 irradiation test demonstrates high quality of HTGR spherical fuel elements. • Irradiation performance is in good agreement with German fuel performance modeling. • International benchmark exercise expected first particle to fail at ∼13–17% FIMA. • EOL silver release is predicted to be in the percentage range. • EOL cesium and strontium are expected to remain at a low level. - Abstract: Various countries engaged in the development and fabrication of modern HTGR fuel have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under HTGR operating and accident conditions. Verification and validation studies are conducted by code-to-code benchmarking and code-to-experiment comparisons as part of international exercises. The methodology developed in Germany since the 1980s represents valuable and efficient tools to describe fission product release from spherical fuel elements and TRISO fuel performance, respectively, under given conditions. Continued application to new results of irradiation and accident simulation testing demonstrates the appropriateness of the models in terms of a conservative estimation of the source term as part of interactions with HTGR licensing authorities. Within the European irradiation testing program for HTGR fuel and as part of the former EU RAPHAEL project, the HFR-EU1 irradiation experiment explores the potential for high performance of the presently existing German and newly produced Chinese fuel spheres under defined conditions up to high burnups. The fuel irradiation was completed in 2010. Test samples are prepared for further postirradiation examinations (PIE) including heatup simulation testing in the KÜFA-II furnace at the JRC-ITU, Karlsruhe, to be conducted within the on-going ARCHER Project of the European Commission. The paper will describe the application of the German computer models to the HFR-EU1 irradiation test and

  5. Reduced risk HTGR concept for industrial heat application

    International Nuclear Information System (INIS)

    Boardman, C.E.; Lipps, A.J.

    1982-01-01

    The industrial process heat market has been identified as major market for the High Temperature Gas-Cooled Reactor (HTGR), however, this market introduces stringent availability requirements on the reactor system relative to electric plants which feed a large existing grid. The characteristics and requirements of the industrial heat markets are summarized; the risks associated with serving this market with a single large HTGR will be discussed; and the modular concept, which has the potential to reduce both safety and investment risks, will be described. The reference modular concept described consists of several small, relatively benign nuclear heat sources linked together to supply heat energy to a balance-of-plant incorporating a process gas train/thermochemical pipe line system and a normal steam-electric plant

  6. ORR irradiation experiment OF-1: accelerated testing of HTGR fuel

    International Nuclear Information System (INIS)

    Tiegs, T.N.; Long, E.L. Jr.; Kania, M.J.; Thoms, K.R.; Allen, E.J.

    1977-08-01

    The OF-1 capsule, the first in a series of High-Temperature Gas-Cooled Reactor fuel irradiations in the Oak Ridge Research Reactor, was irradiated for more than 9300 hr at full reactor power (30 MW). Peak fluences of 1.08 x 10 22 neutrons/cm 2 (> 0.18 MeV) were achieved. General Atomic Company's magazine P13Q occupied the upper two-thirds of the test space and the ORNL magazine OF-1 the lower one-third. The ORNL portion tested various HTGR recycle particles and fuel bonding matrices at accelerated flux levels under reference HTGR irradiation conditions of temperature, temperature gradient, and fast fluence exposure

  7. Evaluation of the significance of inverse oxidation for HTGR graphites

    International Nuclear Information System (INIS)

    Lee, B.S.; Heiser, J. III; Sastre, C.

    1983-01-01

    The inverse oxidation refers to a higher mass loss inside the graphite than the outside. In 1980, Wichner et al reported this phenomenon (referred to as inside/out corrosion) observed in some H451 graphites, and offered an explanation that a catalyst (almost certainly Fe) is activated by the progressively increasing reducing conditions found in the graphite interior. Recently, Morgan and Thomas (1982) investigated this phenomenon is PGX graphites, and agreed on the existing mechanism to explain this pheomenon. They also called for attention to the possibility that this phenomenon may occur under HTGR (High Temperature Gas-Cooled Reactor) operating conditions. The purpose of this paper is to confirm the above mentioned explanation for this phenomenon and to evaluate the significance of this effect for HTGR graphites under realistic reactor conditions

  8. Technology transfer in the Clean Development Mechanism

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Haake, F.; Van der Linden, N.H.

    2007-01-01

    Technology transfer is often mentioned as an ancillary benefit of the Kyoto Protocol's Clean Development Mechanism (CDM), but this claim has never been researched or substantiated. The question of technology transfer is important from two perspectives: for host countries, whether the CDM provides a corridor for foreign, climate-friendly technologies and investment, and for industrialised countries as it provides export potential for climate-friendly technologies developed as a consequence of stringent greenhouse gas targets. In order to better understand whether technology transfer from the EU and elsewhere is occurring through the CDM, and what is the value of the associated foreign investment, this paper examines technology transfer in the 63 CDM projects that were registered on January 1st, 2006. Technology originates from outside the host country in almost 50% of the evaluated projects. In the projects in which the technology originates from outside the host country, 80% use technology from the European Union. Technologies used in non-CO2 greenhouse gas and wind energy projects, and a substantial share of the hydropower projects, use technology from outside the host country, but biogas, agricultural and biomass projects mainly use local technology. The associated investment value with the CDM projects that transferred technology is estimated to be around 470 million Euros, with about 390 coming from the EU. As the non-CO2 greenhouse gas projects had very low capital costs, the investment value was mostly in the more capital-intensive wind energy and hydropower projects

  9. Learning in renewable energy technology development

    International Nuclear Information System (INIS)

    Junginger, M.

    2005-01-01

    The main objectives of this thesis are: to investigate technological change and cost reduction for a number of renewable electricity technologies by means of the experience curve approach; to address related methodological issues in the experience curve approach, and, based on these insights; and to analyze the implications for achieving the Dutch renewable electricity targets for the year 2020 within a European context. In order to meet these objectives, a number of research questions have been formulated: What are the most promising renewable electricity technologies for the Netherlands until 2020 under different technological, economic and environmental conditions?; To what extent is the current use of the experience curve approach to investigate renewable energy technology development sound, what are differences in the utilization of this approach and what are possible pitfalls?; How can the experience curve approach be used to describe the potential development of partially new energy technologies, such as offshore wind energy? Is it possible to describe biomass fuel supply chains with experience curves? What are the possibilities and limits of the experience curve approach when describing non-modular technologies such as large (biomass) energy plants?; What are the main learning mechanisms behind the cost reduction of the investigated technologies?; and How can differences in the technological progress of renewable electricity options influence the market diffusion of renewable electricity technologies, and what implications can varying technological development and policy have on the implementation of renewable electricity technologies in the Netherlands? The development of different renewable energy technologies is investigated by means of some case studies. The possible effects of varying technological development in combination with different policy backgrounds are illustrated for the Netherlands. The thesis focuses mainly on the development of investment

  10. Latest development of display technologies

    International Nuclear Information System (INIS)

    Gao Hong-Yue; Yao Qiu-Xiang; Liu Pan; Zheng Zhi-Qiang; Liu Ji-Cheng; Zheng Hua-Dong; Zeng Chao; Yu Ying-Jie; Sun Tao; Zeng Zhen-Xiang

    2016-01-01

    In this review we will focus on recent progress in the field of two-dimensional (2D) and three-dimensional (3D) display technologies. We present the current display materials and their applications, including organic light-emitting diodes (OLEDs), flexible OLEDs quantum dot light emitting diodes (QLEDs), active-matrix organic light emitting diodes (AMOLEDs), electronic paper (E-paper), curved displays, stereoscopic 3D displays, volumetric 3D displays, light field 3D displays, and holographic 3D displays. Conventional 2D display devices, such as liquid crystal devices (LCDs) often result in ambiguity in high-dimensional data images because of lacking true depth information. This review thus provides a detailed description of 3D display technologies. (topical review)

  11. HTGR core seismic analysis using an array processor

    International Nuclear Information System (INIS)

    Shatoff, H.; Charman, C.M.

    1983-01-01

    A Floating Point Systems array processor performs nonlinear dynamic analysis of the high-temperature gas-cooled reactor (HTGR) core with significant time and cost savings. The graphite HTGR core consists of approximately 8000 blocks of various shapes which are subject to motion and impact during a seismic event. Two-dimensional computer programs (CRUNCH2D, MCOCO) can perform explicit step-by-step dynamic analyses of up to 600 blocks for time-history motions. However, use of two-dimensional codes was limited by the large cost and run times required. Three-dimensional analysis of the entire core, or even a large part of it, had been considered totally impractical. Because of the needs of the HTGR core seismic program, a Floating Point Systems array processor was used to enhance computer performance of the two-dimensional core seismic computer programs, MCOCO and CRUNCH2D. This effort began by converting the computational algorithms used in the codes to a form which takes maximum advantage of the parallel and pipeline processors offered by the architecture of the Floating Point Systems array processor. The subsequent conversion of the vectorized FORTRAN coding to the array processor required a significant programming effort to make the system work on the General Atomic (GA) UNIVAC 1100/82 host. These efforts were quite rewarding, however, since the cost of running the codes has been reduced approximately 50-fold and the time threefold. The core seismic analysis with large two-dimensional models has now become routine and extension to three-dimensional analysis is feasible. These codes simulate the one-fifth-scale full-array HTGR core model. This paper compares the analysis with the test results for sine-sweep motion

  12. Study of air ingress accident of an HTGR

    International Nuclear Information System (INIS)

    Hishida, Makoto

    1995-01-01

    Inherent properties of high temperature gas cooled reactors (HTGR) facilitate the design of HTGRs with high degree of passive safety performances. In this context, it is very important to establish a design criteria for a passive safe function for the air ingress accident. However, it is absolutely necessary to investigate the air ingress behavior during the accident before exploring the design criteria. The present paper briefly describes major activities and results of the air ingress research in our laboratory. (author)

  13. Technology development for radiation shielding analysis

    International Nuclear Information System (INIS)

    Ha, Jung Woo; Lee, Jae Kee; Kim, Jong Kyung

    1986-12-01

    Radiation shielding analysis in nuclear engineering fields is an important technology which is needed for the calculation of reactor shielding as well as radiation related safety problems in nuclear facilities. Moreover, the design technology required in high level radioactive waste management and disposal facilities is faced on serious problems with rapidly glowing nuclear industry development, and more advanced technology has to be developed for tomorrow. The main purpose of this study is therefore to build up the self supporting ability of technology development for the radiation shielding analysis in order to achieve successive development of nuclear industry. It is concluded that basic shielding calculations are possible to handle and analyze by using our current technology, but more advanced technology is still needed and has to be learned for the degree of accuracy in two-dimensional shielding calculation. (Author)

  14. KSC Education Technology Research and Development Plan

    Science.gov (United States)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  15. Design and development of gas cooled reactors with closed cycle gas turbines. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Technological advances over the past fifteen years in the design of turbomachinery, recuperators and magnetic bearings provide the potential for a quantum improvement in nuclear power generation economics through the use of the HTGR with a closed cycle gas turbine. Enhanced international co-operation among national gas cooled reactor programmes in these common technology areas could facilitate the development of this nuclear power concept thereby achieving safety, environmental and economic benefits with overall reduced development costs. This TCM and Workshop was convened to provide the opportunity to review and examine the status of design activities and technology development in national HTGR programmes with specific emphasis on the closed cycle gas turbine, and to identify pathways which take advantage of the opportunity for international co-operation in the development of this concept. Refs, figs, tabs.

  16. Design and development of gas cooled reactors with closed cycle gas turbines. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-08-01

    Technological advances over the past fifteen years in the design of turbomachinery, recuperators and magnetic bearings provide the potential for a quantum improvement in nuclear power generation economics through the use of the HTGR with a closed cycle gas turbine. Enhanced international co-operation among national gas cooled reactor programmes in these common technology areas could facilitate the development of this nuclear power concept thereby achieving safety, environmental and economic benefits with overall reduced development costs. This TCM and Workshop was convened to provide the opportunity to review and examine the status of design activities and technology development in national HTGR programmes with specific emphasis on the closed cycle gas turbine, and to identify pathways which take advantage of the opportunity for international co-operation in the development of this concept. Refs, figs, tabs

  17. Management feature of transuranic for HTGR and LWR

    International Nuclear Information System (INIS)

    Wei Jinfeng; Li Fu; Sun Yuliang

    2013-01-01

    Long-lived actinides from spent fuels can cause potential long-term environ- mental hazards. The generation and incineration of transuranic in different closed fuel cycles were studied. U and Pu were recycled from spent fuel in the 250 MW high-temperature gas-cooled reactor-pebble-bed-module (HTR-PM) U-Pu fuelled core, and then PuO 2 and MOX fuel elements were designed based on this recycled U and Pu. These fuel elements were used to build up a new PuO 2 or MOX fuelled core with the same geometry of the original reactor. Characteristics of transuranic incineration with HTGR open and closed fuel cycles were studied with VSOP code, and the corresponding results from the light water reactor were compared and analyzed. The transuranic generation with HTGR open fuel cycle is almost half of the corresponding result of the light water reactor. Thus, HTGR closed fuel cycles can effectively burn transuranic. (authors)

  18. SC-HTGR Performance Impact for Arid Sites

    International Nuclear Information System (INIS)

    Lommers, L.; Geschwindt, J.; Southworth, F.; Shahrokhi, F.

    2014-01-01

    The SC-HTGR provides high temperature steam which can support industrial process heat applications as well as high efficiency electricity generation. The increased generating efficiency resulting from using high steam temperature provides greater plant output than lower temperature concepts, and it also reduces the fraction of waste heat which must be rejected. This capability is particularly attractive for sites with little or no water for heat rejection. This high temperature capability provides greater flexibility for these sites, and it results in a smaller performance penalty than for lower temperature systems when dry cooling must be used. The performance of the SC-HTGR for a conventional site with wet cooling is discussed first. Then the performance for arid sites is evaluated. Dry cooling performance is evaluated for both moderately arid sites and very hot sites. Offdesign performance of the dry cooling system under extreme conditions is also considered. Finally, operating strategies are explored for sites where some cooling water may be available but only in very limited quantities. Results of these assessments confirm that the higher operating temperatures of the SC-HTGR are very beneficial for arid sites, providing significant advantages for both gross and net power generation. (author)

  19. Use of non-proliferation fuel cycles in the HTGR

    International Nuclear Information System (INIS)

    Baxter, A.M.; Merrill, M.H.; Dahlberg, R.C.

    1978-10-01

    All high-temperature gas-cooled reactors (HTGRs) built or designed to date utilize a uranium-thorium fuel cycle (HEU/Th) in which fully-enriched uranium (93% U-235) is the initial fuel and thorium is the fertile material. The U-233 produced from the thorium is recycled in subsequent loadings to reduce U-235 makeup requirements. However, the recent interest in proliferation-proof fuel cycles for fission reactors has prompted a review and evaluation of possible alternate cycles in the HTGR. This report discusses these alternate fuel cycles, defines those considered usable in an HTGR core, summarizes their advantages and disadvantages, and briefly describes the effect on core design of the most important cycles. Examples from design studies are also given. These studies show that the flexibility afforded by the HTGR coated-particle fuel design allows a variety of alternative cycles, each having special advantages and attractions under different circumstances. Moreover, these alternate cycles can all use the same fuel block, core layout, control scheme, and basic fuel zoning concept

  20. Technological Developments in Networking, Education and Automation

    CERN Document Server

    Elleithy, Khaled; Iskander, Magued; Kapila, Vikram; Karim, Mohammad A; Mahmood, Ausif

    2010-01-01

    "Technological Developments in Networking, Education and Automation" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the following areas: Computer Networks: Access Technologies, Medium Access Control, Network architectures and Equipment, Optical Networks and Switching, Telecommunication Technology, and Ultra Wideband Communications. Engineering Education and Online Learning: including development of courses and systems for engineering, technical and liberal studies programs; online laboratories; intelligent

  1. Technology-development needs for magnetic fusion

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Baker, C.C.; Conn, R.W.; Krakowski, R.A.; Steiner, D.; Thomassen, K.I.

    1983-03-01

    The technology-development needs for magnetic fusion have been identified from an assessment of the conceptual design studies which have been performed. A summary of worldwide conceptual design effort is presented. The relative maturity of the various confinement concepts and the intensity and continuity of the design efforts are taken into account in identifying technology development needs. A major conclusion of this study is that there is a high degree of commonality among the technology requirements identified for the various confinement concepts

  2. New developments in PET detector technology

    International Nuclear Information System (INIS)

    Niu Lingxin; Zhao Shujun; Zhang Bin; Liu Haojia

    2010-01-01

    The researches on PET detector are always active and innovative area. The research direction of PET detector includes improving performances of scintillator-based detectors, investigating new detectors suitable for multi-modality imaging (e.g. PET/CT and PET/MRI), meeting requirements of TOF and DOI technologies and boosting the development of the technologies. In this paper, new developments in PET detector technology about scintillation crystal, photodetector and semiconductor detector is introduced. (authors)

  3. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne Leland [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  4. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    International Nuclear Information System (INIS)

    Moe, Wayne Leland

    2015-01-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a ''critical path'' for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain ''minimum'' levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial ''first step'' in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by

  5. Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-23

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  6. SRS environmental technology development field test platform

    International Nuclear Information System (INIS)

    Riha, B.D.; Rossabi, J.; Eddy-Dilek, C.A.

    1995-01-01

    A critical and difficult step in the development and implementation of new technologies for environmental monitoring and characterization is successfully transferring these technologies to industry and government users for routine assessment and compliance activities. The Environmental Sciences Section of the DOE Savannah River Technology Center provides a forum for developers, potential users, and regulatory organizations to evaluate new technologies in comparison with baseline technologies in a well characterized field test bed. The principal objective of this project is to conduct comprehensive, objective field tests of monitoring and characterization technologies that are not currently used in EPA standard methods and evaluate their performance during actual operating conditions against baseline methods. This paper provides an overview of the field test site and a description of some of the technologies demonstrated at the site including their field applications

  7. Aligning Technology Education Teaching with Brain Development

    Science.gov (United States)

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…

  8. Social and Technological Development in Context

    DEFF Research Database (Denmark)

    Koch, Christian

    1997-01-01

    This papers studies the processes developing technology and its social "sorroundings", the social networks. Positions in the debate on technological change is discussed. A central topic is the enterprise external development and decision processes and their interplay with the enterprise internal...

  9. Recent developments of gigatron technology

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Elliott, S.M.; Gray, H.; Lee, B.; Pang, Yaoqi; Popovic, M.; Naval Research Lab., Washington, DC; Texas A and M Univ., College Station, TX

    1989-01-01

    Gigatron is a new design concept for microwave power devices. A gated field-emitter array is employed as a directly modulated cathode. A ribbon beam configuration is used to mitigate space-charge effects and provide for efficient output coupling. A traveling-wave output coupler is used to obtain optimum coupling to a wide beam. Recent cathode tests are reported. Modeling of the bunched-emission process has led to an improved cathode fabrication procedure. A new application of a similar structure has led to a design for a new technology for precision tracking chambers for SSC detectors

  10. New nuclear technology; International developments. Review 1995

    International Nuclear Information System (INIS)

    Devell, L.; Aggeryd, I.; Hultgren, Aa.; Lundell, B.; Pedersen, T.

    1995-09-01

    A summary review of the development of new nuclear rector technology is presented in this report. Fuel cycle strategies and waste handling developments are also commented. Different plans for dismantling nuclear weapons are presented. 18 refs

  11. Technology Development: From Idea to Implementation - 12131

    Energy Technology Data Exchange (ETDEWEB)

    Spires, Renee H. [Savannah River Remediation (United States)

    2012-07-01

    There are good ideas and new technologies proposed every day to solve problems within the DOE complex. A process to transition a new technology from inception to the decision to launch a project with baselines is described. Examples from active technology development projects within Savannah River Remediation (SRR) will be used to illustrate the points. The process includes decision points at key junctures leading to preliminary design. At that point, normal project management tools can be employed. The technology development steps include proof-of-principle testing, scaled testing and analysis, and conceptual design. Tools are used that define the scope necessary for each step of technology development. The tools include use of the DOE technology readiness guide, Consolidated Hazards Analysis (CHA) and internal checklists developed by Savannah River Remediation. Integration with operating or planned facilities is also included. The result is a roadmap and spreadsheet that identifies each open question and how it may be answered. Performance criteria are developed that enable simple decisions to be made after the completion of each step. Conceptual design tasks should begin as the technology development continues. The most important conceptual design tasks at this point in the process include process flow diagrams (PFDs), high level Process and Instrumentation Drawings (P and IDs), and general layout drawings. These should influence the design of the scaled simulant testing. Mechanical and electrical drawings that support cost and schedule development should also be developed. An early safety control strategy developed from the CHA will also influence the cost. The combination of test results, calculations and early design output with rough order of magnitude cost and schedule information provide input into the decisions to proceed with a project and data to establish the baseline. This process can be used to mature any new technology, especially those that must be

  12. Forward-Looking Planning of Technology Development

    Directory of Open Access Journals (Sweden)

    Katarzyna Halicka

    2015-12-01

    Full Text Available The main aim of this article is to adapt the Future-Oriented Technology Analysis (FTA to prospective planning of technology development. Firstly, the article presents the assumptions, methods and idea, as well as the concept of the FTA method. Moreover, selected publications on the use of this method were analysed. Then, an original, base model of forward-looking planning of technology development was constructed and presented. The end result of this process will be the development of the localized in time, presented in graphic form, action plan referred to as the route of technology development. Basing on the literature review and the research projects a preliminary route of development of arbitrarily chosen technology was also built and presented.

  13. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Kim, Ingyu; Kim, Enhan; Keum, Dongkwon

    2012-04-01

    To develop the comprehensive environmental radiation management technology, - An urban atmospheric dispersion model and decision-aiding model have been developed. - The technologies for assessing the radiation impact to non-human biota and the environmental medium contamination have developed. - The analytical techniques of the indicator radionuclides related to decommissioning of nuclear facilities and nuclear waste repository have been developed. - The national environmental radiation impact has been assessed, and the optimum management system of natural radiation has been established

  14. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  15. Tailings technology. Decommissioning and rehabilitation remedial action technology development

    International Nuclear Information System (INIS)

    Ramsey, R.W. Jr.

    1982-01-01

    This paper is to provide an overview of technology requirements for long-term uranium mill tailings disposal and remedial actions for existing tailings to ensure their adequate disposal. The paper examines the scientific disciplines that are the basis for the technology of uranium mill tailings stabilization and the design of barriers to control radiological exposure or environmental degradation at the location of tailings disposal. The discussion is presented as a hypothetical course of instruction at a fictitious university. Features of six mechanisms of dispersal or intrusion are examined with brief discussion of the applicable technology development for each. The paper serves as an introduction to subsequent specific technology development papers in the session. (author)

  16. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  17. Development of Food Preservation and Processing Technologies by Radiation Technology

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun

    2007-07-01

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  18. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun [and others

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  19. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun (and others)

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  20. Technology development and applications at Fernald

    International Nuclear Information System (INIS)

    Pettit, P.J.; Skriba, M.C.; Warner, R.D.

    1995-01-01

    At the Fernald Environmental Management Project (FEMP) northwest of Cincinnati, Ohio, the U.S. Department of Energy and contractor Fernald Environmental Restoration Management Corporation (FERMCO) are aggressively pursuing both the development and the application of improved, innovative technology to the environmental restoration task. Application of emerging technologies is particularly challenging in a regulatory environment that places pressure on operational managers to develop and meet tight schedules. The regulatory and operational needs make close communication essential between technology developers and technology users (CERCLA/RCRA Unit managers). At Fernald this cooperation and communication has led, not only to the development and demonstration of new technologies with applications at other sites, but also to application of new technologies directly to the Fernald clean up. New technologies have been applied to improve environmental safety and health, improve the effectiveness of restoration efforts, and to cut restoration costs. The paper will describe successful efforts to develop and apply new technologies at the FEMP and will emphasize those technologies that have been applied and are planned for use in the clean up of this former uranium production facility

  1. Technology assessment HTR. Part 6. The radiological risks associated with the thorium-fuelled High Temperature Reactor. A comparative risk evaluation

    International Nuclear Information System (INIS)

    Dodd, D.H.; Van Hienen, J.F.A.

    1996-06-01

    This report presents the results of task B.3 of the 'Technology Assessment of the High Temperature Reactor' project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuel led LWR cycle was used. The structure of the report is as follows. In Chapter 2 the general methodology for assessing the radiological risks associated with nuclear installations is described. An overview is given of the measures commonly used to quantify these risks. In Chapter 3 an overview is given of the different stages of the reference uranium fuel led LWR cycle and the thorium fuel led HTGR cycle. In Chapter 4 a stage-by-stage analysis is given of the radiological risks associated with the two fuel cycles. Finally, in Chapter 5 an evaluation is made of the radiological risks associated with the LWR and HTGR cycles and with thorium and uranium fuels. In Appendix A the production and releases of 14 C for LWR and HTGR fuel cycle facilities is considered in detail. 11 figs., 10 tabs., 10 refs

  2. Mirror Fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  3. Mirror fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  4. ADVANCED TECHNOLOGIES OF ELECTRONIC EDUCATIONAL SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Shishkina

    2011-11-01

    Full Text Available Actual problems and contradictions of electronic educational systems development are described: availability of education, quality of educational services; individualization of education; exposures and advantages in using of computer technology; standardization of technologies and resources. Tendencies of their solution in the view of development of new advanced technologies of e-education are specified. The essence and advantages of using the cloud computing technologies as a new platform of distributed learning are specified. Advanced directions of cloud-based data usage in executive system of education are declared: access management, content management, asset management, communications management.

  5. Development of isotope hydrology technology in China

    International Nuclear Information System (INIS)

    Li Zhangsu

    1988-01-01

    The development of isotope hydrology technology in China is described. The isotope technology provides an independent approach for solving hydrological problems. Isotope hydrology is applied in three ways: the use of change in environmental isotopic composition of water (especially used in water resources exploitation), the use of artificial radioactive tracers and the use of redioisotope instruments. Many important achievements have been obtained in application of isotopic hydrology technology. For the sake of promoting rapid development of isotope hydrology the topics on management, technology and others are commented

  6. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  7. Development of nuclear transmutation technology

    International Nuclear Information System (INIS)

    Park, Won Seok; Song, Tae Young; Yoo, Jae Kwon; Choi, Byung Ho; Shin, Hee Sung; Gil, Chung Sup; Kim, Jung Do.

    1997-08-01

    A basic characteristics and neutronic code development for accelerator driven subcritical reactor have been performed. In the field of basic characteristic study, the world-wide technical trends for a subcritical reactor has been investigated and some new directions for the subcritical system development were investigated. For the analysis of subcritical reactor core, a Montecarlo depletion code was developed by combining LAHET code with ORIGEN2 code. In addition, one-point kinetics equation for subcritical reactor programmed in order to analyze the dynamic behavior of subcritical core. (author). 26 tabs., 49 figs

  8. Technologies for a sustainable development; Technologies pour un developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The European Event on Technology (EET), a recurrent annual event since 1992, is a major meeting opportunity for researchers and engineers as well as private and public decision-makers, on technologies, their evolution and their industrial and social implications. In less than a decade, sustainable development has become both an economic and a political priority. It was urgent and legitimate that those who are the mainsprings should take hold of the subject and give it technological content, estimate its costs and define clear timetables. The debates consist of: plenary sessions on environmental, social and economic stakes of sustainable development and the challenges for, and commitment of engineers, managers and politicians with respect to these goals; and workshops, which provide an overview of recently acquired or upcoming technologies developed by sector: energy, transports, new information technologies, new industrial manufacturing technologies (materials, products, services), waste management, global environment monitoring, water management, bio-technologies, and innovation management. This document brings together the different talks given by the participants. Among these, the following ones fall into the energy and environment scope: energy efficiency of buildings: towards energy autonomy; superconductors enable in new millennium for electric power industry; advanced gas micro-turbine-driven generator technology; environmental and technical challenges of an offshore wind farm; future nuclear energy systems; modelling combustion in engines: progress and prospects for reducing emissions; on-board computers: reduction in consumption and emissions of engine-transmission units for vehicles; polymer-lithium batteries: perspectives for zero-emission traction; hybrid vehicles and energy/environmental optimization: paths and opportunities; fuel cells and zero-emission: perspectives and developments; global change: causes, modeling and economic issues; the GMES

  9. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H S; Kim, G N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  10. High-temperature gas reactor (HTGR) market assessment, synthetic fuels analysis

    International Nuclear Information System (INIS)

    1980-08-01

    This study is an update of assessments made in TRW's October 1979 assessment of overall high-temperature gas-cooled reactor (HTGR) markets in the future synfuels industry (1985 to 2020). Three additional synfuels processes were assessed. Revised synfuel production forecasts were used. General environmental impacts were assessed. Additional market barriers, such as labor and materials, were researched. Market share estimates were used to consider the percent of markets applicable to the reference HTGR size plant. Eleven HTGR plants under nominal conditions and two under pessimistic assumptions are estimated for selection by 2020. No new HTGR markets were identified in the three additional synfuels processes studied. This reduction in TRW's earlier estimate is a result of later availability of HTGR's (commercial operation in 2008) and delayed build up in the total synfuels estimated markets. Also, a latest date for HTGR capture of a synfuels market could not be established because total markets continue to grow through 2020. If the nominal HTGR synfuels market is realized, just under one million tons of sulfur dioxide effluents and just over one million tons of nitrous oxide effluents will be avoided by 2020. Major barriers to a large synfuels industry discussed in this study include labor, materials, financing, siting, and licensing. Use of the HTGR intensifies these barriers

  11. HTGR gas turbine program. Semiannual progress report, April 1-September 30, 1978

    International Nuclear Information System (INIS)

    1979-12-01

    This report describes work performed under the gas turbine HTGR (HTGR-GT) program, Department of Energy Contract DE-AT03-76-SF70046, during the period April 1, 1978 through September 30, 1978. The work reported covers the demonstration and commercial plant concept studies including plant layout, heat exchanger studies, turbomachine studies, systems analysis, and reactor core engineering

  12. Nuclear technology for sustainable development

    International Nuclear Information System (INIS)

    2001-01-01

    Introduces three of the IAEA's current programmes: Promoting food security - use of the sterile insect technique to eradicate the tsetse fly in Sub-Saharan Africa; Managing water resources - use of isotope hydrology to check water for traces of arsenic in Bangladesh; Improving human health - use of nuclear techniques for diagnosis, imaging and cancer treatment in developing countries

  13. Development of hydrogen storage technologies

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2015-10-01

    Full Text Available The use of hydrogen to deliver energy for cars, portable devices and buildings is seen as one of the key steps to reduce greenhouse gas emissions. South Africa’s national hydrogen strategy, HySA, aims to develop and guide innovation along the value...

  14. Study on the inspection item and inspection method of HTGR fuel

    International Nuclear Information System (INIS)

    Na, Sang Ho; Kim, Y. K.; Jeong, K. C.; Oh, S. C.; Cho, M. S.; Kim, Y. M.; Lee, Y. W.

    2006-01-01

    The type of HTGR(High Temperature Gas-cooled Reactor) fuel is different according to the reactor type. Generally the HTGR fuel has two types. One is a block type, which is manufactured in Japan or America. And the other is a pebble type, which is manufactured in China. Regardless of the fuel type, the fuel manufacturing process started from the coated particle, which is consisted of fuel kernel and the 4 coating layers. Korea has a plan to fabricate a HTGR fuel in near future. The appropriate quality inspection standards are requested to produce a sound and reliable coated particle for HTGR fuel. Therefore, the inspection items and the inspection methods of HTGR fuel between Japan and China, which countries have the manufacturing process, are investigated to establish a proper inspection standards of our product characteristics

  15. An investigation of structural design methodology for HTGR reactor internals with ceramic materials (Contract research)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Nakagawa, Shigeaki; Iyoku, Tatsuo; Sawa, Kazuhiro

    2008-03-01

    To advance the performance and safety of HTGR, heat-resistant ceramic materials are expected to be used as reactor internals of HTGR. C/C composite and superplastic zirconia are the promising materials for this purpose. In order to use these new materials as reactor internals in HTGR, it is necessary to establish a structure design method to guarantee the structural integrity under environmental and load conditions. Therefore, C/C composite expected as reactor internals of VHTR is focused and an investigation on the structural design method applicable to the C/C composite and a basic applicability of the C/C composite to representative structures of HTGR were carried out in this report. As the results, it is found that the competing risk theory for the strength evaluation of the C/C composite is applicable to design method and C/C composite is expected to be used as reactor internals of HTGR. (author)

  16. Technology development for meeting with automobiles negotiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Il [Korea Institute of Machinery and Materials, Seoul (Korea)

    2000-06-01

    The direction of technology development for meeting with automobiles negotiation is to establish a development and supply policy of automobile with the minimum mileage. Furthermore the development policy of diesel car should be promoted with the same level of gasoline engine emission and a new concept of developing clean diesel engine is needed to achieve this goal. Therefore a smoke-filtering device, developed in Korea, should be promoted for supplying and post-process technology development such as SCR and DeNox catalyzer should be promoted.

  17. Technology development and transfer in environmental management

    International Nuclear Information System (INIS)

    Katz, J.; Karnovitz, A.; Yarbrough, M.

    1994-01-01

    Federal efforts to develop and employ the innovative technologies needed to clean up contaminated facilities would greatly benefit from a greater degree of interaction and integration with the energies and resources of the private sector. Yet there are numerous institutional, economic, and regulatory obstacles to the transfer and commercialization of environmental restoration and waste management technologies. These obstacles discourage private sector involvement and investment in Federal efforts to develop and use innovative technologies. A further effect is to impede market development even where private sector interest is high. Lowering these market barriers will facilitate the commercialization of innovative environmental cleanup technologies and expedite the cleanup of contaminated Federal and private facilities. This paper identifies the major barriers to transfer and commercialization of innovative technologies and suggests possible strategies to overcome them. Emphasis is placed on issues particularly relevant to the Department of Energy's Environmental Restoration and Waste Management (EM) program, but which are applicable to other Federal agencies confronting complex environmental cleanup problems

  18. Development of Nuclear Fuel Remote Fabrication Technology

    International Nuclear Information System (INIS)

    Lee, Jung Won; Yang, M. S.; Kim, S. S. and others

    2005-04-01

    The aim of this study is to develop the essential technology of dry refabrication using spent fuel materials in a laboratory scale on the basis of proliferation resistance policy. The emphasis is placed on the assessment and the development of the essential technology of dry refabrication using spent fuel materials. In this study, the remote fuel fabrication technology to make a dry refabricated fuel with an enhanced quality was established. And the instrumented fuel pellets and mini-elements were manufactured for the irradiation testing in HANARO. The design and development technology of the remote fabrication equipment and the remote operating and maintenance technology of the equipment in hot cell were also achieved. These achievements will be used in and applied to the future back-end fuel cycle and GEN-IV fuel cycle and be a milestone for Korea to be an advanced nuclear country in the world

  19. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  20. Developments in Science and Technology

    Science.gov (United States)

    1984-01-01

    ophthalmology, neurosensory re- search and instrumentation development, cardiovascular systems, patient monitor- ing, therapy and rehabilitation , clinical...session on scenarios. Although scenarios are widely used The term scenario originated in drama but now in analyses, technical evaluations, and wargames and...Wilkinson and D. W. Rabenhorst-High Speed tration Produced during Photoradiation Therapy Us- Imaging Television System, No. 4,453,182 ing a CW

  1. Development of Nuclear Analytical Technology

    International Nuclear Information System (INIS)

    Park, Yong Joon; Kim, J. Y.; Sohn, S. C.

    2007-06-01

    The pre-treatment and handling techniques for the micro-particles in swipe samples were developed for the safeguards purpose. The development of screening technique for the swipe samples has been established using the nuclear fission track method as well as the alpha track method. The laser ablation system to take a nuclear particle present in swipe was designed and constructed for the determination of the enrichment factors for uranium or plutonium, and its performance was tested in atmosphere as well as in vacuum. The optimum conditions for the synthesis of silica based micro-particles were obtained for mass production. The optimum ion exchange resin was selected and the optimum conditions for the uranium adsorption in resin bead technique were established for the development of the enrichment factor for nuclear particles in swipe. The established technique was applied to the swipe taken directly from the nuclear facility and also to the archive samples of IAEA's environmental swipes. The evaluation of dose rate of neutron and secondary gamma-ray for the radiation shields were carried out to design the NIPS system, as well as the evaluation of the thermal neutron concentration effect by the various reflectors. D-D neutron generator was introduced as a neutron source for the NIPS system to have more advantages such as easier control and moderation capability than the 252 Cf source. Simulated samples for explosive and chemical warfare were prepared to construct a prompt gamma-ray database. Based on the constructed database, a computer program for the detection of illicit chemical and nuclear materials was developed using the MATLAB software

  2. Development of Nuclear Analytical Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Joon; Kim, J. Y.; Sohn, S. C. (and others)

    2007-06-15

    The pre-treatment and handling techniques for the micro-particles in swipe samples were developed for the safeguards purpose. The development of screening technique for the swipe samples has been established using the nuclear fission track method as well as the alpha track method. The laser ablation system to take a nuclear particle present in swipe was designed and constructed for the determination of the enrichment factors for uranium or plutonium, and its performance was tested in atmosphere as well as in vacuum. The optimum conditions for the synthesis of silica based micro-particles were obtained for mass production. The optimum ion exchange resin was selected and the optimum conditions for the uranium adsorption in resin bead technique were established for the development of the enrichment factor for nuclear particles in swipe. The established technique was applied to the swipe taken directly from the nuclear facility and also to the archive samples of IAEA's environmental swipes. The evaluation of dose rate of neutron and secondary gamma-ray for the radiation shields were carried out to design the NIPS system, as well as the evaluation of the thermal neutron concentration effect by the various reflectors. D-D neutron generator was introduced as a neutron source for the NIPS system to have more advantages such as easier control and moderation capability than the {sup 252}Cf source. Simulated samples for explosive and chemical warfare were prepared to construct a prompt gamma-ray database. Based on the constructed database, a computer program for the detection of illicit chemical and nuclear materials was developed using the MATLAB software.

  3. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  4. Technological development and software piracy

    OpenAIRE

    Martínez-Sánchez, Francisco; Romeu, Andrés

    2018-01-01

    In this paper, the authors analyze the differences in piracy rates from one country to another. Like previous papers on the topic, they find that more developed countries have lower incentives for pirating. Unlike previous papers, they find that the piracy rate is positively correlated with the tax burden rate but negatively correlated with the domestic market size and exports over GDP. The authors also separate the impacts of education and R&D on piracy, and find two effects with opposite si...

  5. Integrated Micro Product and Technology Development

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    The paper addresses the issues of integrated micro product and technology development. The implications of the decisions in the design phase on the subsequent manufacturing processes are considered vital. A coherent process chain is a necessary prerequisite for the realisation of the industrial...... potential of micro technology....

  6. China's High-technology Standards Development

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There are several major technology standards, including audio video coding (AVS), automotive electronics, third generation (3G) mobile phones, mobile television, wireless networks and digital terrestrial television broadcasting, that have been released or are currently under development in China. This article offers a detailed analysis of each standard and studies their impact on China's high-technology industry.

  7. Recent developments in chemical decontamination technology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.J. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-03-01

    Chemical decontamination of parts of reactor coolant systems is a mature technology, used routinely in many BWR plants, but less frequently in PWRs. This paper reviews recent developments in the technology - corrosion minimization, waste processing and full system decontamination, including the fuel. Earlier work was described in an extensive review published in 1990.

  8. Technology development multidimensional review for engineering and technology managers

    CERN Document Server

    Neshati, Ramin; Watt, Russell; Eastham, James

    2014-01-01

    Developing new products, services, systems, and processes has become an imperative for any firm expecting to thrive in today’s fast-paced and hyper-competitive environment.  This volume integrates academic and practical insights to present fresh perspectives on new product development and innovation, showcasing lessons learned on the technological frontier.  The first part emphasizes decision making.  The second part focuses on technology evaluation, including cost-benefit analysis, material selection, and scenarios. The third part features in-depth case studies to present innovation management tools, such as customer needs identification, technology standardization, and risk management. The fourth part highlights important international trends, such as globalization and outsourcing. Finally the fifth part explores social and political aspects.

  9. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Butera, F.; Farinelli, U.

    1992-01-01

    With the use of critical analyses of some examples of technology transfer by industrialized to third world countries, this paper illustrates the importance, in technology transfer, of giving due consideration to the specific social and marketing contexts of the targeted developing country and its physical and financial capability to acquire all the technology necessary to make the total realization of a desired industrial scheme feasible from the economic, technical and social points of view. It also indicates that the most effective transfers are those in which efforts are made to optimize local work force learning levels, process scheme efficiency and cost through the careful integration of innovative with conventional technologies

  10. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  11. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  12. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    International Nuclear Information System (INIS)

    Saurwein, J.

    2011-01-01

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  13. R and D status and requirements for PIE in the fields of the HTGR fuel and the innovative basic research on High-Temperature Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Kazuhiro; Tobita, Tsutomu; Sumita, Junya [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Ishihara, Masahiro; Hayashi, Kimio; Hoshiya, Taiji; Sekino, Hajime; Ooeda, Etsurou

    1999-09-01

    The High Temperature Engineering Test Reactor (HTTR), which is the first high temperature gas-cooled reactor (HTGR) in Japan, achieved its first criticality in November 1998 at the Oarai Research Establishment of the Japan Atomic Energy Research Institute (JAERI). In the field of HTGR fuel development, JAERI will proceed research and development (R and D) works by the following steps: (STEP-1) confirmation of irradiation performance of the first-loading fuel of the HTTR, (STEP-2) study on irradiation performance of high burnup SiC-coated fuel particle and (STEP-3) development of ZrC-coated fuel particle. Requirements for post-irradiation examination (PIE) are different for each R and D step. In STEP-1, firstly, hot cells will be prepared in the HTTR reactor building to handle spent fuels. In parallel, general equipments such as those for deconsolidation of fuel compacts and for handling coated fuel particles will be installed in the Hot Laboratory at Oarai. In STEP-2, precise PIE techniques, for example, Raman spectroscopy for measurement of stress on irradiated SiC layer, will be investigated. In STEP-3, new PIE techniques should be developed to investigate irradiation behavior of ZrC-coated particle. In the field of the innovative basic research on high-temperature engineering, some preliminary tests have been made on the research areas of (1) new materials development, (2) fusion technology, (3) radiation chemistry and (4) high-temperature in-core instrumentation. Requirements for PIE are under investigation, in particular in the field of the new materials development. Besides more general apparatuses including transmission electron microscopy (TEM), some special apparatuses such as an electron spin resonance (ESR) spectrometer, a specific resistance/Hall coefficient measuring system and a differential scanning calorimeter (DSC) are planned to install in the Hot Laboratory at Oarai. Acquisition of advanced knowledge on the irradiation behavior is expected in

  14. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  15. Mixed Waste Integrated Program emerging technology development

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B. [Oak Ridge National Lab., TN (United States); Hart, P.W. [USDOE, Washington, DC (United States)

    1994-06-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m{sup 3} of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development`s Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW.

  16. INNOVATIVE DEVELOPMENT OF WAREHOUSE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Judit OLÁH

    2017-12-01

    Full Text Available The smooth operation of stocking and the warehouse play a very important role in all manufacturing companies; therefore ongoing monitoring and application of new techniques is essential to increase efficiency. The aim of our research is twofold: the utilization of the pallet shuttle racking system, and the introduction of a development opportunity by the merging of storage and order picking operations in the pallet shuttle system. It can be concluded that it is beneficial for the company to purchase two mobile cars in order to increase the utilization of the pallet shuttle racking system from 60% to 72% and that of the storage from 74% to 76%. We established that after the merging of the storage and order picking activities within the pallet shuttle system, the forklift driver can also complete the selection activities immediately after storage. By merging the two operations and saving time the number of forklift drivers can be reduced from 4 to 3 per shift.

  17. High-Speed Sealift Technology Development Plan

    National Research Council Canada - National Science Library

    2002-01-01

    .... The purpose of the project was to define the technology investments required to enable development of the high-speed commercial and military ships needed to provide realistic future mission capabilities...

  18. Information and Communication Technologies for Development in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2003-01-01

    Jan 1, 2003 ... Information and Communication Technologies for Development in Africa ... to research reports and textbooks for students in higher education. ... Special journal issue highlights IDRC-supported findings on women's paid work.

  19. Pathways to Inclusive Development through Innovation, Technology ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Technology and innovation can drive economic growth, help solve social and ... capacities within developing countries to create inclusive growth and poverty ... science, population and public health, and health systems research relevant to the ...

  20. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Choi, Wang Kyu; Won, Hui Jun; Kim, Gye Nam

    2004-02-01

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination