WorldWideScience

Sample records for hot-cathode plasma chemical

  1. Synthesis and characterization of diamond microcrystals and nanorods deposited by hot cathode direct current plasma chemical vapor deposition method

    NARCIS (Netherlands)

    Zeng, L.; Peng, H.; Wang, W.; Chen, Y.; Lei, D.; Qi, W.; Liang, J.; Zhao, J.; Kong, X.; Zhang, H.

    2008-01-01

    (111) diamond microcrystals and (100) diamond microcrystals and nanorods were synthesized on Si substrate by hot cathode direct current plasma chemical vapor deposition method. The morphology, structure, and optical properties of the diamond films were characterized by scanning electron microscopy,

  2. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  3. Investigation of plasma flow in vacuum arc with hot cathode

    Science.gov (United States)

    Amirov, R.; Vorona, N.; Gavrikov, A.; Lizyakin, G.; Polistchook, V.; Samoylov, I.; Smirnov, V.; Usmanov, R.; Yartsev, I.

    2014-11-01

    One of the crucial problems which appear under development of plasma technology processing of spent nuclear fuel (SNF) is the design of plasma source. The plasma source must use solid SNF as a raw material. This article is devoted to experimental study of vacuum arc with hot cathode made of gadolinium that may consider as the simple model of SNF. This vacuum discharge was investigated in wide range of parameters. During the experiments arc current and voltage, cathode temperature, and heat flux to the cathode were measured. The data on plasma spectrum and electron temperature were obtained. It was shown that external heating of the cathode allows change significantly the main parameters of plasma. It was established by spectral and probe methods that plasma jet in studied discharge may completely consist of single charged ions.

  4. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Hitendra K., E-mail: hkmalik@physics.iitd.ac.in [Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Singh, Omveer [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Dahiya, Raj P. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Deenbandhu Chhotu Ram University of Science and Technology, Murthal–131039 (India)

    2015-08-28

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  5. Diffuse vacuum arc with cerium oxide hot cathode

    Science.gov (United States)

    Amirov, R. Kh; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.; Ivanov, A. S.

    2016-11-01

    Diffuse vacuum arc with hot cathode is one of the perspective plasma sources for the development of spent nuclear fuel plasma reprocessing technology. Experimental data is known for such type of discharges on metal cathodes. In this work discharge with cerium dioxide hot cathode was studied. Cerium dioxide properties are similar to uranium dioxide. Its feature as dielectric is that it becomes conductive in oxygen-free atmosphere. Vacuum arc was studied at following parameters: cathode temperatures were between 2.0 and 2.2 kK, discharge currents was between 30 and 65 A and voltages was in range from 15 to 25 V. Power flows from plasma to cathode were estimated in achieved regimes. Analysis of generated plasma component composition was made by radiation spectrum diagnostics. These results were compared with calculations of equilibrium gaseous phase above solid sample of cerium dioxide in close to experimental conditions. Cerium dioxide vacuum evaporation rate and evaporation rate in arc were measured.

  6. Bohm velocity in the presence of a hot cathode

    Energy Technology Data Exchange (ETDEWEB)

    Palacio Mizrahi, J. H.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2013-08-15

    The spatial distribution of the plasma and beam electrons in a region whose extension from a hot cathode is larger than the Debye length, but smaller than the electron mean free path, is analyzed. In addition, the influence of electrons thermionically emitted from a hot cathode and the ratio of electron-to-ion mass on the Bohm velocity and on the ion and electron densities at the plasma-sheath boundary in a gas discharge are studied. It is shown that thermionic emission has the effect of increasing the Bohm velocity, and this effect is more pronounced for lighter ions. In addition, it is shown that the Bohm velocity cannot be increased to more than 24% above its value when there is no electron emission.

  7. Spontaneous L-H transitions under marginal hot cathode biasing in the Tohoku University Heliac

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, S [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Takahashi, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Tanaka, Y [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Utoh, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Yokoyama, M [National Institute for Fusion Science, Toki (Japan); Inagaki, S [National Institute for Fusion Science, Toki (Japan); Suzuki, Y [National Institute for Fusion Science, Toki (Japan); Nishimura, K [National Institute for Fusion Science, Toki (Japan); Shinde, J [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Ogawa, M [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Iwazaki, K [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Aoyama, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Okamoto, A [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Shinto, K [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Sasao, M [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan)

    2006-05-15

    A series of hot cathode biasing experiments with marginal conditions for improved mode transition were carried out in the Tohoku University Heliac (TU-Heliac). Spontaneous transitions were observed accompanied by a delay of a few milliseconds. Transition conditions were explored over a wide operation range. The transition points can be identified clearly and easily in the operation range, because the plasma parameters changed slowly until the spontaneous transition. Although operation conditions were spread over a wide range, poloidal Mach numbers for transitions were concentrated in the range of -M{sub p} = 1-2 and normalized driving forces for poloidal rotation agreed well with the local maximum value of ion viscosity predicted by neoclassical theory. The local maximum of ion viscosity against the poloidal Mach number was found to play a key role in the L-H transition. Marginal hot cathode biasing is suitable to determine the threshold conditions for the L-H transition.

  8. Improved understanding of the hot cathode current modes and mode transitions

    Science.gov (United States)

    Campanell, M. D.; Umansky, M. V.

    2017-12-01

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry, this ‘new plasma’ containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.

  9. Measurement of fluctuations in the supersonic poloidal flow driven by a hot cathode

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Takahashi, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Utoh, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Shinde, J [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Ogawa, M [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Iwazaki, K [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Aoyama, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Okamoto, A [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Shinto, K [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Kitajima, S [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Yokoyama, M [National Institute for Fusion Science, Toki (Japan); Inagaki, S [National Institute for Fusion Science, Toki (Japan); Suzuki, Y [National Institute for Fusion Science, Toki (Japan); Nishimura, K [National Institute for Fusion Science, Toki (Japan); Sasao, M [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan)

    2006-05-15

    The density and potential fluctuations were measured in hot-cathode biasing plasma at the Tohoku University Heliac. In the improved mode, high-frequency fluctuations (>100 kHz) appeared in the density signal. On the other hand, low-frequency fluctuations (<100 kHz) in the density and potential signals were suppressed. The characteristics of high-frequency fluctuation were compared with three kinds of instability, and they were consistent with those of the flute instability driven by the supersonic poloidal rotation. The suppression of low-frequency fluctuations in improved mode is considered the effect of E x B poloidal rotation or its shear. The profile of the anomalous particle flux was estimated by analysing the low-frequency fluctuation signals. The flux decreased in the improved mode in most of the region, although the decrease in flux was small near the rational surface (n/m = 5/3)

  10. The stationary vacuum arc on non-thermionic hot cathode

    Science.gov (United States)

    Amirov, R. Kh; Antonov, N. N.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-11-01

    Experimental study of vacuum arc with distributed spot on plumbum cathode at temperatures 1.25-1.45 kK has been presented. At these conditions current density of thermionic emission from cathode was less than 1 μA/cm2, while the mean current density on the cathode was about 10 A/cm2. Plumbum was placed in heat-insulated crucible (cathode) with external diameter 25 mm. Electron-beam heater was situated under the crucible. Arc current was changed in the range 20-70 A, arc voltage was about 15 V. The studied arc is characterized by the absence of the random voltage fluctuations; the micro particles of cathode erosion products were observed only in transition regimes. Spectral data of plasma radiation and values of the heat flow from plasma to cathode were obtained. It has been experimentally established that the evaporation rate in arc approximately two times less than without discharge. The average charge of plumbum particles in the cathode jet was in range 0.2-0.3e. Comparison of the characteristics of studied discharge on thermionic gadolinium cathode and non-thermionic cathodes was fulfilled. One can assume that ions provide the charge transfer on the cathode in the studied discharge.

  11. Plasma-chemical reactions: low pressure acetylene plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Benedikt, J [Faculty for Physics and Astronomy, Research Group Reactive Plasmas, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum (Germany)

    2010-02-03

    Reactive plasmas are a well-known tool for material synthesis and surface modification. They offer a unique combination of non-equilibrium electron and ion driven plasma chemistry, energetic ions accelerated in the plasma sheath at the plasma-surface interface, high fluxes of reactive species towards surfaces and a friendly environment for thermolabile objects. Additionally, small negatively charged clusters can be generated, because they are confined in the positive plasma potential. Plasmas in hydrocarbon gases, and especially in acetylene, are a good example for the discussion of different plasma-chemical processes. These plasmas are involved in a plethora of possible applications ranging from fuel conversion to formation of single wall carbon nanotubes. This paper provides a concise overview of plasma-chemical reactions (PCRs) in low pressure reactive plasmas and discusses possible experimental and theoretical methods for the investigation of their plasma chemistry. An up-to-date summary of the knowledge about low pressure acetylene plasmas is given and two particular examples are discussed in detail: (a) Ar/C{sub 2}H{sub 2} expanding thermal plasmas with electron temperatures below 0.3 eV and with a plasma chemistry initiated by charge transfer reactions and (b) radio frequency C{sub 2}H{sub 2} plasmas, in which the energetic electrons mainly control PCRs. (topical review)

  12. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  13. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  14. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  15. Microwave plasma emerging technologies for chemical processes

    NARCIS (Netherlands)

    de la Fuente, Javier F.; Kiss, Anton A.; Radoiu, Marilena T.; Stefanidis, Georgios D.

    2017-01-01

    Microwave plasma (MWP) technology is currently being used in application fields such as semiconductor and material processing, diamond film deposition and waste remediation. Specific advantages of the technology include the enablement of a high energy density source and a highly reactive medium,

  16. Investigation of the AC Plasma Torch Working Conditions for the Plasma Chemical Applications

    Science.gov (United States)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Shiryaev, V. N.; Subbotin, D. I.; Pavlov, A. V.

    2017-04-01

    The presented design and parameters of a three-phase AC plasma torch with the power up to 500 kW, flow rate of air 30-50 g/s (temperature up to 5000 K) could be used in different plasma chemical processes. Range of measured plasma temperature is 3500-5000 K. The paper presents investigations of the plasma torch operation modes for its application in plasma chemical technologies. Plasma chemical technologies for various purposes (processing, destruction of various wastes, including technological and hazardous waste, conversion or production of chemicals to obtain nanoscale materials, etc.) are very promising in terms of the process efficiency. Their industrial use is difficult due to the lack of inexpensive and reliable plasma torches providing the desired level of temperature, enthalpy of the working gas and other necessary conditions for the process. This problem can be solved using a considered design of a three-phase alternating current plasma torch with power of 150-500 kW with working gas flow rate of 30-50 g/s with mass average temperature up to 5000K on the basis of which an industrial plasma chemical plant can be created. The basis of the plasma torch operation is a railgun effect that is the principle of arc movement in the field of its own current field. Thanks to single supply of power to the arc, arcs forming in the discharge chamber of the plasma torch move along the electrodes under the action of electrodynamic forces resulting from the interaction of the arc current with its own magnetic field. Under the condition of the three-phase supply voltage, arc transits from the electrode to the electrode with change in the anodic and cathodic phases with frequency of 300 Hz. A special feature of this design is the ability to organize the movement of the arc attachment along the electrode, thus ensuring an even distribution of the thermal load and thus achieve long time of continuous operation of the plasma torch. The parameters of the plasma jet of the

  17. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    Science.gov (United States)

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. High voltage AC plasma torches with long electric arcs for plasma-chemical applications

    Science.gov (United States)

    Surov, A. V.; Popov, S. D.; Serba, E. O.; Pavlov, A. V.; Nakonechny, Gh V.; Spodobin, V. A.; Nikonov, A. V.; Subbotin, D. I.; Borovskoy, A. M.

    2017-04-01

    Powerful AC plasma torches are in demand for a number of advanced plasma chemical applications, they can provide high enthalpy of the working gas. IEE RAS specialists have developed a number of models of stationary thermal plasma torches for continuous operation on air with the power from 5 to 500 kW, and on mixture of H2O, CO2 and CH4 up to 150 kW. AC plasma torches were tested on the pilot plasmachemical installations. Powerful AC plasma torch with hollow electrodes and the gas vortex stabilization of arc in cylindrical channels and its operation characteristics are presented. Lifetime of its continuous operation on air is 2000 hours and thermal efficiency is about 92%, the electric arc length between two electrodes of the plasma torch exceeds 2 m.

  19. Physical and Chemical Characterization of the UCLA RF Plasma Dissociator

    Science.gov (United States)

    Zwi, Helio R.; Huhn, William; Lynn, Alexander W.; Wong, Alfred Y.

    1996-11-01

    The UCLA RF Plasma Dissociator is an inductively coupled plasma device, developed for the dissociation of simulated hazardous waste with either inert (Argon) or oxidizing (air) carrier gases at atmospheric pressure. The rf coil (15 cm length, 8.9 cm diameter) operates at 2.85 MHz with power ranging from 40 to 85 kW. Plasma temperature and density have been measured with emission spectrometry, infrared interferometry and shielded probes. Electron temperatures (0.4---1.2 eV) are usually higher than ion and neutral temperatures. Very high dissociation efficiencies for CCl4 and CF_2Cl2 heve been demonstrated with gas chromatography/mass spectrometry (GC/MS) and other chemical procedures.

  20. Study on discharge plasma in a cylindrical inertial electrostatic confinement fusion device

    Science.gov (United States)

    Buzarbaruah, N.; Dutta, N. J.; Borgohain, D.; Mohanty, S. R.; Bailung, H.

    2017-08-01

    Deuterium plasma has been produced in a cylindrical inertial electrostatic confinement fusion device using hot and cold cathode discharges and the plasma parameters are determined by employing an electrostatic probe. The plasma temperature and density are estimated at optimum experimental conditions and it is noted that the plasma temperature is 3 eV in the case of hot cathode discharge whereas 10 eV in the case of the cold cathode discharge. The plasma density as determined is two orders more in the case of the hot cathode discharge than the other. The probe is also used to observe the ion oscillation in the negative potential well that is formed in between the cathode grid and chamber (anode). The observation of spontaneous oscillation along with the harmonics has been reported.

  1. Substrate Effect on Plasma Clean Efficiency in Plasma Enhanced Chemical Vapor Deposition System

    Directory of Open Access Journals (Sweden)

    Shiu-Ko JangJian

    2007-01-01

    Full Text Available The plasma clean in a plasma-enhanced chemical vapor deposition (PECVD system plays an important role to ensure the same chamber condition after numerous film depositions. The periodic and applicable plasma clean in deposition chamber also increases wafer yield due to less defect produced during the deposition process. In this study, the plasma clean rate (PCR of silicon oxide is investigated after the silicon nitride deposited on Cu and silicon oxide substrates by remote plasma system (RPS, respectively. The experimental results show that the PCR drastically decreases with Cu substrate compared to that with silicon oxide substrate after numerous silicon nitride depositions. To understand the substrate effect on PCR, the surface element analysis and bonding configuration are executed by X-ray photoelectron spectroscopy (XPS. The high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS is used to analyze microelement of metal ions on the surface of shower head in the PECVD chamber. According to Cu substrate, the results show that micro Cu ion and the CuOx bonding can be detected on the surface of shower head. The Cu ion contamination might grab the fluorine radicals produced by NF3 ddissociation in the RPS and that induces the drastic decrease on PCR.

  2. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  3. Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, I; Roessler, J; Frimmer, M; Fontcuberta i Morral, A [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Yu, L; Alet, Pierre Jean; Roca i Cabarrocas, P [LPICM, Ecole Polytechnique, CNRS, F-91128 Palaiseau (France); Conesa-Boj, S; Estrade, S; Peiro, F; Arbiol, J; Morante, J R [EME/XaRMAE/IN2UB, Departamento d' Electronica, Universitat de Barcelona, MartIi Franques, E-08028, Barcelona (Spain)

    2009-04-15

    Silicon nanowires have been grown with gallium as catalyst by plasma enhanced chemical vapor deposition. The morphology and crystalline structure has been studied by electron microscopy and Raman spectroscopy as a function of growth temperature and catalyst thickness. We observe that the crystalline quality of the wires increases with the temperature at which they have been synthesized. The crystalline growth direction has been found to vary between <111> and <112>, depending on both the growth temperature and catalyst thickness. Gallium has been found at the end of the nanowires, as expected from the vapor-liquid-solid growth mechanism. These results represent good progress towards finding alternative catalysts to gold for the synthesis of nanowires.

  4. Chemical erosion of carbon at ITER relevant plasma fluxes: Results from the linear plasma generator Pilot-PSI

    NARCIS (Netherlands)

    van Rooij, G. J.; Westerhout, J.; Brezinsek, S.; Rapp, J.

    2011-01-01

    The chemical erosion of carbon was investigated in the linear plasma device Pilot-PSI for ITER divertor relevant hydrogen plasma flux densities 10(23) < Gamma < 10(25) m(-2) s(-1). The erosion was analyzed in situ by optical emission spectroscopy and post mortem by surface

  5. Plasma-Chemical Synthesis of Nanosized Powders-Nitrides, Carbides, Oxides, Carbon Nanotubes and Fullerenes

    Science.gov (United States)

    Katerina, Zaharieva; Gheorghi, Vissokov; Janis, Grabis; Slavcho, Rakovsky

    2012-11-01

    In this article the plasma-chemical synthesis of nanosized powders (nitrides, carbides, oxides, carbon nanotubes and fullerenes) is reviewed. Nanosized powders - nitrides, carbides, oxides, carbon nanotubes and fullerenes have been successfully produced using different techniques, technological apparatuses and conditions for their plasma-chemical synthesis.

  6. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics.

  7. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  8. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources.

    Science.gov (United States)

    Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L

    2016-02-01

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  9. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  10. Carbon dioxide reforming of methane on a cobalt catalyst subjected to plasma-chemical treatment

    Science.gov (United States)

    Platonov, E. A.; Bratchikova, I. G.; Yagodovskii, V. D.; Murga, Z. V.

    2017-08-01

    The effect plasma-chemical treatments of 5 wt % Co/SiO2 catalyst have on its activity in the carbonic acid conversion of methane in the interval of 700 to 900°C is studied. A plasma glow discharge in oxygen and argon was used along with high-frequency plasma in hydrogen for preliminary treatment of the catalyst. A multiple increase in CH4 and CO2 conversion and a 30-50 K drop in the temperature of the onset of the reaction are observed after plasma-chemical treatments. The strongest increase in activity is measured after the catalyst is treated with oxygen plasma. X-ray photoelectron spectroscopy is used to determine the change in the composition of the catalyst's surface after it is treated with plasma, indicating that active forms of carbon atoms can be included in new active centers.

  11. Characterisation of optical thin films obtained by plasma ion assisted deposition

    Science.gov (United States)

    Placido, Frank; Gibson, Des; Waddell, Ewan; Crossan, Edward

    2006-08-01

    Optical thin films deposited using plasma ion assisted deposition (PAD) are characterized by ellipsometry, spectrophotometry and nano-indentation. PAD utilizes a dc voltage between an anode and a hot cathode, creating a high-density plasma that is extracted by an electromagnetic field. The assisted source allows denser, more stable films with higher refractive indices to be deposited without additional heating of the substrates. The primary advantage of the plasma compared to the ion source approach is that the plasma fills the vacuum chamber and couples into the evaporant, inducing partial ionization.

  12. Absolute vacuum ultraviolet flux in inductively coupled plasmas and chemical modifications of 193 nm photoresist

    Science.gov (United States)

    Titus, M. J.; Nest, D.; Graves, D. B.

    2009-04-01

    Vacuum ultraviolet (VUV) photons in plasma processing systems are known to alter surface chemistry and may damage gate dielectrics and photoresist. We characterize absolute VUV fluxes to surfaces exposed in an inductively coupled argon plasma, 1-50 mTorr, 25-400 W, using a calibrated VUV spectrometer. We also demonstrate an alternative method to estimate VUV fluence in an inductively coupled plasma (ICP) reactor using a chemical dosimeter-type monitor. We illustrate the technique with argon ICP and xenon lamp exposure experiments, comparing direct VUV measurements with measured chemical changes in 193 nm photoresist-covered Si wafers following VUV exposure.

  13. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  14. Chemical erosion of different carbon composites under ITER-relevant plasma conditions

    NARCIS (Netherlands)

    Westerhout, J.; Borodin, D.; Al, R.S.; Brezinsek, S.; Hoen, Mhjt; Kirschner, A.; Lisgo, S.; van der Meiden, H. J.; Philipps, V.; van de Pol, M.J.; Shumack, A. E.; De Temmerman, G.; Vijvers, W. A. J.; Wright, G. M.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2009-01-01

    We have studied the chemical erosion of different carbon composites in Pilot-PSI at ITER-relevant hydrogen plasma fluxes (similar to 10(24) m(-2) s(-1)) and low electron temperatures (T-e similar to 1 eV). Optical emission spectroscopy on the CH A-X band was used to characterize the chemical

  15. Chemical modeling of a high-density inductively-coupled plasma reactor containing silane

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Boogaard, A.; Brunets, I.; Holleman, J.; Schmitz, Jurriaan

    We carried out the modeling of chemical reactions in a silane-containing remote Inductively Coupled Plasma Enhanced Chemical Vapor Deposition (ICPECVD) system, intended for deposition of silicon, silicon oxide, and silicon nitride layers. The required electron densities and Electron Energy

  16. Inactivation of Escherichia coli on blueberries using cold plasma with chemical augmentation inside a partial vacuum

    Science.gov (United States)

    Justification: The mechanism by which cold plasma inactivates pathogens is through the production of free reactive chemical species. Unfortunately, the most reactive chemical species have the shortest half-life. In a vacuum their half-life is believed to be prolonged. Additionally, these reactive sp...

  17. Comparative studies of chemically synthesized and RF plasma ...

    Indian Academy of Sciences (India)

    silicon wafer substrates have been prepared by polymerizing o-toluidine monomer under radio frequency (RF) plasma discharge in a home-built set-up. This is a custom manu- factured glass deposition chamber, coupled to a vacuum system and an RF amplifier. For controlled feeding of monomer vapours, a special ...

  18. Steam chemical reactivity of plasma-sprayed beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Pawelko, R.J.; Smolik, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Castro, R.G. [Los Alamos National Lab., NM (United States)

    1998-07-01

    Plasma-spraying with the potential for in-situ repair makes beryllium a primary candidate for plasma facing and structural components in experimental magnetic fusion machines. Deposits with good thermal conductivity and resistance to thermal cycling have been produced with low pressure plasma-spraying (LPPS). A concern during a potential accident with steam ingress is the amount of hydrogen produced by the reactions of steam with hot components. In this study the authors measure the reaction rates of various deposits produced by LPPS with steam from 350 C to above 1,000 C. They correlate these reaction rates with measurements of density, open porosity and BET surface areas. They find the reactivity to be largely dependent upon effective surface area. Promising results were obtained below 600 C from a 94% theoretical dense (TD) deposit with a BET specific surface area of 0.085 m{sup 2}/g. Although reaction rates were higher than those for dense consolidated beryllium they were substantially lower, i.e., about two orders of magnitude, than those obtained from previously tested lower density plasma-sprayed deposits.

  19. Understanding plasma spraying process and characteristics of DC-arc plasma gun (PJ-100

    Directory of Open Access Journals (Sweden)

    Jovana Ružić

    2012-12-01

    Full Text Available The thermal spray processes are a group of coating processes used to apply metallic or non-metallic coatings. In these processes energy sources are used to heat the coating material (in the form of powder, wire, or rod form to a molten or semi-molten state and accelerated towards a prepared surface by either carrier gases or atomization jets. In plasma spraying process, the spraying material is generally in the form of powder and requires a carrier gas to feed the powder into the plasma jet, which is passing between the hot cathode and the cylindrical nozzle-shaped anode. The design of DC plasma gun (PJ - 100 is designed and manufactured in Serbia. Plasma spaying process, the powder injection with the heat, momentum and mass transfers between particles and plasma jet, and the latest developments related to the production of DC plasma gun are described in this article.

  20. Membranes produced by plasma enhanced chemical vapor deposition technique for low temperature fuel cell applications

    OpenAIRE

    Ennajdaoui, Aboubakr; Roualdes, Stéphanie; Brault, Pascal; Durand, Jean

    2009-01-01

    International audience; A plasma polymerization process using a continuous glow discharge has been implemented for preparing proton conducting membranes from trifluoromethane sulfonic acid and styrene. The chemical and physical structure of plasma membranes has been investigated using FTIR and SEM. The films are homogeneous with a good adhesion on commercial gas diffusion layer (E-Tek®). Their deposition rate can be increased with increasing flow rate and input power. The thermogravimetric an...

  1. Main species and chemical pathways in cold atmospheric-pressure Ar + H2O plasmas

    Science.gov (United States)

    Liu, Dingxin; Sun, Bowen; Iza, Felipe; Xu, Dehui; Wang, Xiaohua; Rong, Mingzhe; Kong, Michael G.

    2017-04-01

    Cold atmospheric-pressure plasmas in Ar + H2O gas mixtures are a promising alternative to He + H2O plasmas as both can produce reactive oxygen species of relevance for many applications and argon is cheaper than helium. Although He + H2O plasmas have been the subject of multiple experimental and computational studies, Ar + H2O plasmas have received less attention. In this work we investigate the composition and chemical pathways in Ar + H2O plasmas by means of a global model that incorporates 57 species and 1228 chemical reactions. Water vapor concentrations from 1 ppm to saturation (32 000 ppm) are considered in the study and abrupt transitions in power dissipation channels, species densities and chemical pathways are found when the water concentration increases from 100 to 1000 ppm. In this region the plasma transitions from an electropositive discharge in which most power is coupled to electrons into an electronegative one in which most power is coupled to ions. While increasing electronegativity is also observed in He + H2O plasmas, in Ar + H2O plasmas the transition is more abrupt because Penning processes do not contribute to gas ionization and the changes in the electron energy distribution function and mean electron energy caused by the increasing water concentration result in electron-neutral excitation and ionization rates changing by many orders of magnitude in a relatively small range of water concentrations. Insights into the main chemical species and pathways governing the production and loss of electrons, O, OH, OH(A) and H2O2 are provided as part of the study.

  2. High fidelity probing of chemical moieties present in detonation plasmas

    Science.gov (United States)

    Johnson, Stephanie; Glumac, Nick

    The intersection of multiple shock waves offers new extreme conditions of pressure, temperature, and shear flow that would not be seen under normal planar detonation conditions. A significant gap in knowledge exists between the computationally modeled and actual physicochemical cascades occurring in the initial stages of the conversion/coupling of energy released during detonation. Experimental results show intensified temperatures and pressures where multiple shocks merge and exhibit a reactive behavior varying from the classical detonation theory based on C-J or ZND models. A newly-developed technique enables the collection of simultaneous imaging and spectra as detonation evolves. The HSFC data is gated to timescales fast enough to avoid the obscuring carbon soot associated with the detonation fireball and maps UV/VIS/NIR emission spectra in a 50 ?m line across the surface. This technique is able to provide information on molecular species present in and the rotational and vibrational molecular energies occurring within the ionized plasma. Extensive studies have been done on plasmas from reacting energetic materials but their role in the formation and self-propagation of the shock waves is unclear.

  3. Synergistic effect of electrical and chemical factors on endocytosis in micro-discharge plasma gene transfection

    Science.gov (United States)

    Jinno, M.; Ikeda, Y.; Motomura, H.; Isozaki, Y.; Kido, Y.; Satoh, S.

    2017-06-01

    We have developed a new micro-discharge plasma (MDP)-based gene transfection method, which transfers genes into cells with high efficiency and low cytotoxicity; however, the mechanism underlying the method is still unknown. Studies revealed that the N-acetylcysteine-mediated inhibition of reactive oxygen species (ROS) activity completely abolished gene transfer. In this study, we used laser-produced plasma to demonstrate that gene transfer does not occur in the absence of electrical factors. Our results show that both electrical and chemical factors are necessary for gene transfer inside cells by microplasma irradiation. This indicates that plasma-mediated gene transfection utilizes the synergy between electrical and chemical factors. The electric field threshold required for transfection was approximately 1 kV m-1 in our MDP system. This indicates that MDP irradiation supplies sufficient concentrations of ROS, and the stimulation intensity of the electric field determines the transfection efficiency in our system. Gene transfer by plasma irradiation depends mainly on endocytosis, which accounts for at least 80% of the transfer, and clathrin-mediated endocytosis is a dominant endocytosis. In plasma-mediated gene transfection, alterations in electrical and chemical factors can independently regulate plasmid DNA adhesion and triggering of endocytosis, respectively. This implies that plasma characteristics can be adjusted according to target cell requirements, and the transfection process can be optimized with minimum damage to cells and maximum efficiency. This may explain how MDP simultaneously achieves high transfection efficiency with minimal cell damage.

  4. Fundamental limits on gas-phase chemical reduction of NOx in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    In the plasma, the electrons do not react directly with the NOx molecules. The electrons collide mainly with the background gas molecules like N{sub 2}, O{sub 2} and H{sub 2}O. Electron impact on these molecules result partly in dissociation reactions that produce reactive species like N, O and OH. The NOx in the engine exhaust gas initially consist mostly of NO. The ground state nitrogen atom, N, is the only species that could lead to the chemical reduction of NO to N{sub 2}. The O radical oxidizes NO to NO{sub 2} leaving the same amount of NOx. The OH radical converts NO{sub 2} to nitric acid. Acid products in the plasma can easily get adsorbed on surfaces in the plasma reactor and in the pipes. When undetected, the absence of these oxidation products can often be mistaken for chemical reduction of NOx. In this paper the authors will examine the gas-phase chemical reduction of NOx. They will show that under the best conditions, the plasma can chemically reduce 1.6 grams of NOx per brake-horsepower-hour [g(NOx)/bhp-hr] when 5% of the engine output energy is delivered to the plasma.

  5. [Experimental investigation of the chemical effect of direct current arc plasma igniter].

    Science.gov (United States)

    Zhao, Bing-Bing; He, Li-Ming; Shen, Ying; Bai, Xiao-Feng; Yu, Jin-Lu

    2013-05-01

    To study the chemical effect of direct current arc plasma igniter, the emission spectrum of plasma jet was measured, and the active particles produced by the interaction of plasma jet with atmospheric air were analyzed. The NO and CO volume fractions were measured quantificationally by smoke analyzer at the 8cm downstream the plasma igniter exit, and the changing law between arc current and NO, CO volume fractions was obtained. The results show that the plasma jet interacting with atmospheric air produced active particles (H, O, N), charged particles (O2 +, N2+), and excited particles (N2 (A3), N2 (B3), N2 (C3), N2 (a1), O2 (a1), O2 (b1)). The NO and CO volume fractions increased with rising of are current and feedstock argon flow rate.

  6. Characterization of ultra-short pulsed discharge plasma for CVD processing. [Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Akira (Toyohashi Univ. of Technology (Japan). Dept. of Ecological Engineering); Okazaki, Ken (Tokyo Inst. of Technology (Japan). Research Center for Carbon Recycling and Utilization); Takekoshi, Takashi (Mitsubishi Kasei Co., Okayama (Japan). Mizushima Works); Tobe, Ryoki (Anelva Corp., Tokyo (Japan). Research Development Center)

    Characteristics of pulsed discharge plasma of methane-hydrogen gas mixture and Ar gas have been studied for active control of plasma chemical vapor deposition (CVD) processing. Voltage-current characteristics, time-lag of the current pulse, and the photon emission intensity profile have been investigated using high-voltage pulses of 50-1000 ns duration. In such a pulse discharge, voltages much higher than those in a dc glow discharge can be applied without any plasma nonuniformity or arcing because voltage amplitude falls to zero before glow to arc transition. A current value of more than 10[sup 3] times those in a glow discharge can be established. Very high photon emission intensity from CH radicals and H ions have been observed near the anode in a pulsed plasma. This is different in dc plasma, where the negative glow region near the cathode is the brightest.

  7. Plasma-Assisted Mist Chemical Vapor Deposition of Zinc Oxide Films Using Solution of Zinc Acetate

    Science.gov (United States)

    Takenaka, Kosuke; Okumura, Yusuke; Setsuhara, Yuichi

    2013-01-01

    Zinc oxide (ZnO) film deposition has been carried out by plasma-assisted mist chemical vapor deposition (CVD) using a solution of zinc acetate [Zn(CH3COO)2], and the effects of plasma exposure on film properties have been investigated in terms of RF power. With increasing RF power, the results of the X-ray diffraction (XRD) patterns of ZnO films with plasma exposure showed the existence of crystallized ZnO films with plasma exposure. Under this condition, the substrate temperature was as low as 200 °C for a plasma exposure time of 20 min. The surface morphology shown by scanning electron microscopy (SEM) images shows that the ZnO films were textured with round grains, which is attributed to the effect of the use of mist with the precursor.

  8. Diffusion in plasma: The Hall effect, compositional waves, and chemical spots

    Energy Technology Data Exchange (ETDEWEB)

    Urpin, V., E-mail: Vadim.urpin@uv.es [Ioffe Institute of Physics and Technology (Russian Federation)

    2017-03-15

    Diffusion caused by a combined influence of the electric current and Hall effect is considered, and it is argued that such diffusion can form inhomogeneities of a chemical composition in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type of waves in which the impurity number density oscillates alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure.

  9. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  10. Hydrogen chemical configuration and thermal stability in tungsten disulfide nanoparticles exposed to hydrogen plasma

    OpenAIRE

    Laikhtman, Alex; Makrinich, Gennady; Sezen, Meltem; Yıldızhan, Melike Mercan; Yildizhan, Melike Mercan; Martinez, Jose I.; Dinescu, Doru; Prodana, Mariana; Enachescu, Marius; Alonso, Julio A.; Zak, Alla

    2017-01-01

    The chemical configuration and interaction mechanism of hydrogen adsorbed in inorganic nanoparticles of WS2 are investigated. Our recent approaches of using hydrogen activated by either microwave or radiofrequency plasma dramatically increased the efficiency of its adsorption on the nanoparticle surface. In the current work we put an emphasis on elucidation of the chemical configuration of the adsorbed hydrogen. This configuration is of primary importance as it affects its adsorption stabilit...

  11. Plasma-Assisted Mist Chemical Vapor Deposition of Zinc Oxide Films for Flexible Electronics

    Science.gov (United States)

    Takenaka, Kosuke; Uchida, Giichiro; Setsuhara, Yuichi

    2015-09-01

    Plasma-assisted mist chemical vapor deposition of ZnO films was performed for transparent conductive oxide formation of flexible electronics. In this study, ZnO films deposition using atmospheric-pressure He plasma generated by a micro-hollow cathode-type plasma source has been demonstrated. To obtain detail information according to generation of species in the plasma, the optical emission spectra of the atmospheric pressure He plasma with and without mist were measured. The result without mist shows considerable emissions of He lines, emissions attributed to the excitation and dissociation of air including N2 and O2 (N, O, and NO radials, and N2 molecule; N2 second positive band and first positive band), while the results with mist showed strong emissions attributed to the dissociation of H2O (OH and H radicals). The deposition of ZnO films was performed using atmospheric-pressure He plasma. The XRD patterns showed no crystallization of the ZnO films irradiated with pure He. On the other hand, the ZnO film crystallized with the irradiation with He/O2 mixture plasma. These results indicate that the atmospheric-pressure He/O2 mixture plasma has sufficient reactivity necessary for the crystallization of ZnO films at room temperature. This work was supported partly by The Grant-in-Aid for Scientific Research (KAKENHI) (Grant-in-Aid for Scientific Research(C)) from the Japan Society for the Promotion of Science (JSPS).

  12. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing

  13. Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet

    Science.gov (United States)

    Škoro, Nikola; Puač, Nevena; Živković, Suzana; Krstić-Milošević, Dijana; Cvelbar, Uroš; Malović, Gordana; Petrović, Zoran Lj.

    2018-01-01

    Today's reality is connected with mitigation of threats from the new chemical and biological warfare agents. A novel investigation of cold plasmas in contact with liquids presented in this paper demonstrated that the chemically reactive environment produced by atmospheric pressure plasma jet (APPJ) is potentially capable of rapid destruction of chemical warfare agents in a broad spectrum. The decontamination of three different chemical warfare agent surrogates dissolved in liquid is investigated by using an easily transportable APPJ. The jet is powered by a kHz signal source connected to a low-voltage DC source and with He as working gas. The detailed investigation of electrical properties is performed for various plasmas at different distances from the sample. The measurements of plasma properties in situ are supported by the optical spectrometry measurements, whereas the high performance liquid chromatography measurements before and after the treatment of aqueous solutions of Malathion, Fenitrothion and Dimethyl Methylphosphonate. These solutions are used to evaluate destruction and its efficiency for specific neural agent simulants. The particular removal rates are found to be from 56% up to 96% during 10 min treatment. The data obtained provide basis to evaluate APPJ's efficiency at different operating conditions. The presented results are promising and could be improved with different operating conditions and optimization of the decontamination process.

  14. PLASMA PROTEIN PROFILING AS A HIGH THROUGHPUT TOOL FOR CHEMICAL SCREENING USING A SMALL FISH MODEL

    Science.gov (United States)

    Hudson, R. Tod, Michael J. Hemmer, Kimberly A. Salinas, Sherry S. Wilkinson, James Watts, James T. Winstead, Peggy S. Harris, Amy Kirkpatrick and Calvin C. Walker. In press. Plasma Protein Profiling as a High Throughput Tool for Chemical Screening Using a Small Fish Model (Abstra...

  15. Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics

    NARCIS (Netherlands)

    Worhoff, Kerstin; Driessen, A.; Lambeck, Paul; Hilderink, L.T.H.; Linders, Petrus W.C.; Popma, T.J.A.

    1999-01-01

    Silicon Oxynitride layers are grown from SiH4/N2, NH3 and N2O by Plasma Enhanced Chemical Vapor Deposition. The process is optimized with respect to deposition of layers with excellent uniformity in the layer thickness, high homogeneity of the refractive index and good reproducibility of the layer

  16. Optimization of plasma-enhanced chemical vapor deposition silicon oxynitride layers for integrated optics applications

    NARCIS (Netherlands)

    Hussein, M.G.; Worhoff, Kerstin; Sengo, G.; Sengo, G.; Driessen, A.

    2007-01-01

    Silicon oxynitride $(SiO_{x}N_{y}:H)$ layers were grown from 2% $SiH_{4}/N_{2}$ and $N_{2}O$ gas mixtures by plasma-enhanced chemical vapor deposition (PECVD). Layer properties such as refractive index, deposition rate, thickness non-uniformity and hydrogen bond content were correlated to the

  17. Plasma cortisol levels in captive wild felines after chemical restraint

    Directory of Open Access Journals (Sweden)

    Nogueira G.P.

    1997-01-01

    Full Text Available Eight Panthera onca (Po, 13 Felis concolor (Fc, 7 Felis yagouaroundi (Fy, 7 Felis tigrina (Ft and 5 Felis pardalis (Fp specimens from São Paulo State zoos were used. All animals were restrained with darts containing 10 mg/kg ketamine and 1 mg/kg xylazine. Venous blood samples were collected as soon as possible (within 15-20 min and serum was frozen until the time for cortisol quantification. Cortisol was determined using a solid phase radioimmunoassay with an intra-assay coefficient of 8.51%. Data were analyzed statistically by the Kruskal-Wallis test, followed by Dunn's multiple comparisons test, and the one-sample t-test, with the level of significance set at P<0.05. Data are reported as means ± SEM. Cortisol levels differed among the captive felines: Po = 166 ± 33a, Fc = 670 ± 118b, Fy = 480 ± 83b, Ft = 237 ± 42ab, Fp = 97 ± 12a nmol/l (values followed by different superscript letters were significantly different (P<0.001. Since most of the veterinary procedures on these species involve chemical restraint, these results show the necessity of preventive measures in order to minimize the effect of restraint stress on more susceptible species

  18. Comparative study between chemical and atmospheric pressure plasma jet cleaning on glass substrate

    Science.gov (United States)

    Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Fhong, Soon Chin; Sahdan, Mohd Zainizan; Nayan, Nafarizal

    2017-01-01

    The atmospheric pressure plasma jet with low frequency and argon as working gas is presented in this paper to demonstrate its application for glass substrate clean and modification. The glass substrate clean by atmospheric pressure plasma jet is an efficient method to replace other substrate clean method. A comparative analysis is done in this paper between substrate cleaned by chemical and plasma treatment methods. Water contact angle reading is taken for a different method of substrate clean and period of treatment. Under the plasma treatment, the sample shows low surface adhesion due to having the surface property of super hydrophilic surface 7.26°. This comparative analysis is necessary in the industrial application for cost production due to sufficient time and method of substrate clean.

  19. Diamond growth by microwave plasma enhanced chemical vapour deposition: Optical emission characterisation and effect argon addition

    Science.gov (United States)

    Mortet, V.; Hubicka, Z.; Vorlicek, V.; Jurek, K.; Rosa, J.; Vanecek, M.

    2004-09-01

    Diamond thin films were grown in an ellipsoidal 6 kWatt microwave plasma chemical vapour deposition reactor [1, 2] in a pressure range of 150 to 250 mbar. Effect of total pressure, methane concentration and argon concentration on diamond growth on mechanically seeded silicon substrates and on plasma characteristics were investigated. Optically good thick diamond films were obtained with high growth rate (4.5 m/h) at high-pressure. The argon concentration affects strongly the deposition rate, the surface morphology and the grain size. The microwave plasma was characterized by optical emission spectroscopy (OES) during deposition. Diamond films were characterized by Raman Spectroscopy and Scanning Electron Microscopy (SEM). The temperatures of the excited CH and C2 species, as well as the excitation temperature were determined from the OES measurements. The plasma composition is sensitive to the methane concentration and especially to the argon concentration in the discharge.

  20. Low-Temperature Deposition of Zinc Oxide Film by Plasma-Assisted Mist Chemical Vapor Deposition

    Science.gov (United States)

    Takenaka, Kosuke; Okumura, Yusuke; Setsuhara, Yuichi

    2012-08-01

    Zinc oxide (ZnO) film deposition using a plasma-assisted mist chemical vapor deposition (CVD) with an inductively-coupled plasma source has been performed and the effects of the plasma exposure on film properties have been investigated with oxygen mixture ratio as a parameter. With increasing oxygen mixture ratio to Ar+O2(10%), the X-ray diffraction (XRD) results showed evident peaks of ZnO(0002), indicating that highly c-axis-oriented films were grown at low substrate temperatures below 200 °C. The deposition rate of ZnO films was as high as 100 nm/min. ZnO films with an optical transmittance of 75% for the visible region and a band gap energy of 3.32 eV have been obtained by using plasma-assisted mist CVD.

  1. Impact of Seminal Chemical Elements on the Oxidative Balance in Bovine Seminal Plasma and Spermatozoa

    Science.gov (United States)

    Tvrdá, Eva; Lukáč, Norbert; Schneidgenová, Monika; Lukáčová, Jana; Szabó, Csaba; Goc, Zofia; Greń, Agnieszka; Massányi, Peter

    2013-01-01

    Mutual relationships between selected chemical elements (Na, K, Fe, Cu, Mg, and Zn), basic motility characteristics (motility and progressive motility), and markers of the oxidative balance (superoxide dismutase, catalase, glutathione, albumin, and malondialdehyde) were investigated in bovine seminal plasma and spermatozoa. Computer assisted sperm analysis was used to assess the motility parameters; mineral concentrations were determined by the voltammetric method and flame absorption spectrophotometry; antioxidants and malondialdehyde were evaluated by UV/VIS spectrophotometry. Concentrations of chemical elements in both seminal fractions were in the following descending order: Na > K > Zn > Mg > Fe > Cu. Higher amounts of all minerals and nonenzymatic antioxidants were detected in the seminal plasma (P chemical elements are integral components of bovine semen and are needed for the protection against oxidative stress development. PMID:26464901

  2. Structuring of DLC:Ag nanocomposite thin films employing plasma chemical etching and ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Tamulevičius, Tomas, E-mail: Tomas.Tamulevicius@ktu.lt; Tamulevičienė, Asta; Virganavičius, Dainius; Vasiliauskas, Andrius; Kopustinskas, Vitoldas; Meškinis, Šarūnas; Tamulevičius, Sigitas

    2014-12-15

    Highlights: • CF{sub 4}/O{sub 2} dry etching of DLC:Ag films revealed the embedded Ag nanoparticles. • Plasma processed samples with more than 5 at.% Ag demonstrated Ostwald ripening. • 4 μm period patterns in aluminum and photoresist were imposed in the DLC:Ag film. • Different micro patterns are formed depending on the selected processing route. - Abstract: We analyze structuring effects of diamond like carbon based silver nanocomposite (DLC:Ag) thin films by CF{sub 4}/O{sub 2} plasma chemical etching and Ar{sup +} sputtering. DLC:Ag films were deposited employing unbalanced reactive magnetron sputtering of silver target with Ar{sup +} in C{sub 2}H{sub 2} gas atmosphere. Films with different silver content (0.6–12.9 at.%) were analyzed. The films (as deposited and exposed to plasma chemical etching) were characterized employing scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS), optical microscopy, ultraviolet–visible light (UV–VIS) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. After deposition, the films were plasma chemically etched in CF{sub 4}/O{sub 2} mixture plasma for 2–6 min. It is shown that optical properties of thin films and silver nano particle size distribution can be tailored during deposition changing the magnetron current and C{sub 2}H{sub 2}/Ar ratio or during following plasma chemical etching. The plasma etching enabled to reveal the silver filler particle size distribution and to control silver content on the surface that was found to be dependent on Ostwald ripening process of silver nano-clusters. Employing contact lithography and 4 μm period mask in photoresist or aluminum the films were patterned employing CF{sub 4}/O{sub 2} mixture plasma chemical etching, direct Ar{sup +} sputtering or combined etching processes. It is shown that different processing recipes result in different final grating structures. Selective carbon etching in CF{sub 4}/O{sub 2} gas mixture with

  3. Fabrication and characterization of a planar gradient-index, plasma-enhanced chemical vapor deposition lens.

    Science.gov (United States)

    Beltrami, D R; Love, J D; Durandet, A; Samo, A; Cogswell, C J

    1997-10-01

    A thin, one-dimensional, gradient-index slab lens with a parabolic profile was designed and fabricated in fluorine-doped silica by use of plasma-enhanced chemical vapor deposition in a Helicon plasma reactor. The refractive-index profile of the fabricated lens was determined by the application of an inversion technique to the values of modal effective index measured with a prism coupler. The periodic refocusing property of the lens and the independence of the wavelength were measured with the fluorescence of a specially doped, thin polymer layer spin-coated onto the surface of the lens.

  4. Preparation of Bismuth Titanate Films by Electron Cyclotron Resonance Plasma Sputtering-Chemical Vapor Deposition

    OpenAIRE

    Masumoto, H.; Hirai, T.

    1995-01-01

    Bismuth titanate (Bi4Ti3O12 : BIT) thin films were prepared on the Pt courted MgO(100) substrate by electron cyclotron resonance plasma sputtering-chemical vapor deposition (ECR plasma sputtering-CVD). Bi2O3 was used as a sputtering target and tetra-isopropoxy-titanium [Ti(i-C3H7O)4] as a CVD source. The composition of films was controlled by changing RF power (PRF) of Bi2O3 target and Ti source temperature (TTi). The stoichiometric BIT film was prepared under the condition of PRF=500W, TTi=6...

  5. Remote microwave plasma enhanced chemical vapor deposition (RMPECVD) of silica and alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Desmaison, J.; Hidalgo, H.; Tristant, P.; Naudin, F.; Merle, D. [Limoges Univ. (France). Lab. de Sciences des Procedes Ceramiques et Traitements de Surface

    2002-07-01

    Alumina or silica are attractive as insulation and protective layers for sensitive substrates. Oxides are deposited by remote microwave plasma enhanced chemical vapor deposition (RMPECVD) using an oxygen plasma and a mixture of precursor gas silane or trimethylaluminum (TMA) diluted in argon, respectively for silica and alumina, injected in the afterglow. This technique allows to deposit films of SiO{sub 2} and Al{sub 2}O{sub 3} with satisfactory characteristics (density, etch rate, stoichiometry) and high deposition rate. The comparison of the best deposition conditions reveals that in case of alumina higher temperatures and lower pressures are needed. (orig.)

  6. "Plasma charging damage induced by a power ramp down step in the end of plasma enhanced chemical vapour deposition (PECVD) process

    NARCIS (Netherlands)

    Wang, Zhichun; Ackaert, Jan; Salm, Cora; Kuper, F.G.; Bessemans, Klara; de Backer, Eddy

    2003-01-01

    Plasma Enhanced Chemical Vapour Deposition (PECVD) is one of the main plasma processes which induce charging damage to gate oxides during the VLSI processes. All the previous studies, however, describe the charging phenomena only at the beginning of PECVD process, when a very thin oxide layer covers

  7. Industrial-scale proteomics: from liters of plasma to chemically synthesized proteins.

    Science.gov (United States)

    Rose, Keith; Bougueleret, Lydie; Baussant, Thierry; Böhm, Günter; Botti, Paolo; Colinge, Jacques; Cusin, Isabelle; Gaertner, Hubert; Gleizes, Anne; Heller, Manfred; Jimenez, Silvia; Johnson, Andrew; Kussmann, Martin; Menin, Laure; Menzel, Christoph; Ranno, Frederic; Rodriguez-Tomé, Patricia; Rogers, John; Saudrais, Cedric; Villain, Matteo; Wetmore, Diana; Bairoch, Amos; Hochstrasser, Denis

    2004-07-01

    Human blood plasma is a useful source of proteins associated with both health and disease. Analysis of human blood plasma is a challenge due to the large number of peptides and proteins present and the very wide range of concentrations. In order to identify as many proteins as possible for subsequent comparative studies, we developed an industrial-scale (2.5 liter) approach involving sample pooling for the analysis of smaller proteins (M(r) generally < ca. 40 000 and some fragments of very large proteins). Plasma from healthy males was depleted of abundant proteins (albumin and IgG), then smaller proteins and polypeptides were separated into 12 960 fractions by chromatographic techniques. Analysis of proteins and polypeptides was performed by mass spectrometry prior to and after enzymatic digestion. Thousands of peptide identifications were made, permitting the identification of 502 different proteins and polypeptides from a single pool, 405 of which are listed here. The numbers refer to chromatographically separable polypeptide entities present prior to digestion. Combining results from studies with other plasma pools we have identified over 700 different proteins and polypeptides in plasma. Relatively low abundance proteins such as leptin and ghrelin and peptides such as bradykinin, all invisible to two-dimensional gel technology, were clearly identified. Proteins of interest were synthesized by chemical methods for bioassays. We believe that this is the first time that the small proteins in human blood plasma have been separated and analyzed so extensively.

  8. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wallenhorst, L.M., E-mail: lena.wallenhorst@hawk-hhg.de [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Loewenthal, L.; Avramidis, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Gerhard, C. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany); Militz, H. [Wood Biology and Wood Products, Burckhardt Institute, Georg-August-University Göttingen, Büsgenweg 4, 37077 Göttingen (Germany); Ohms, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Viöl, W. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany)

    2017-07-15

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  9. The role of chemical sputtering during plasma sterilization of Bacillus atrophaeus

    Energy Technology Data Exchange (ETDEWEB)

    Opretzka, J [Center for Plasma Science and Technology, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Benedikt, J [Center for Plasma Science and Technology, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Awakowicz, P [Center for Plasma Science and Technology, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Wunderlich, J [Fraunhofer Institut for Process Engineering and Packaging, Giggenhauser Strasse 35, 85354 Freising (Germany); Keudell, A von [Center for Plasma Science and Technology, Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2007-05-07

    The inactivation of bacteria by plasma discharges offers the unique benefits of short treatment times, minimal damage to the objects being sterilized and minimal use of hazardous chemicals. Plasmas produce reactive fluxes of ions, atoms and UV photons from any given precursor gas and are expected to be a viable method for such sterilization applications. The plasma based inactivation of harmful biological systems is, however, not yet widely used, because any validation is hampered by the limited knowledge about the interaction mechanisms at the interface between a plasma and a biological system. By using quantified beams of hydrogen atoms, argon ions and UV photons, the treatment of bacteria in a typical argon-hydrogen plasma is mimicked in a very controlled manner. As an example the inactivation of endospores of Bacillus atrophaeus is studied. It is shown that the impact of H atoms alone causes no inactivation of bacteria. Instead, the simultaneous impact of atoms and low energy ions causes a perforation of the endosporic shell. The same process occurs during plasma treatment and explains the efficient inactivation of bacteria.

  10. The role of chemical sputtering during plasma sterilization of Bacillus atrophaeus

    Science.gov (United States)

    Opretzka, J.; Benedikt, J.; Awakowicz, P.; Wunderlich, J.; von Keudell, A.

    2007-05-01

    The inactivation of bacteria by plasma discharges offers the unique benefits of short treatment times, minimal damage to the objects being sterilized and minimal use of hazardous chemicals. Plasmas produce reactive fluxes of ions, atoms and UV photons from any given precursor gas and are expected to be a viable method for such sterilization applications. The plasma based inactivation of harmful biological systems is, however, not yet widely used, because any validation is hampered by the limited knowledge about the interaction mechanisms at the interface between a plasma and a biological system. By using quantified beams of hydrogen atoms, argon ions and UV photons, the treatment of bacteria in a typical argon-hydrogen plasma is mimicked in a very controlled manner. As an example the inactivation of endospores of Bacillus atrophaeus is studied. It is shown that the impact of H atoms alone causes no inactivation of bacteria. Instead, the simultaneous impact of atoms and low energy ions causes a perforation of the endosporic shell. The same process occurs during plasma treatment and explains the efficient inactivation of bacteria.

  11. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kee, R.J.; Rupley, F.M.; Meeks, E.; Miller, J.A.

    1996-05-01

    This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library. This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.

  12. Informing the Human Plasma Protein Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space: Applicability Domain and Limits of Predictability

    Science.gov (United States)

    The free fraction of a xenobiotic in plasma (Fub) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data is scarce for environmentally relevant chemicals. The presented work explores th...

  13. Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Zardo, I.; Conesa-Boj, S.; Estradé, S.; Yu, L.; Peiro, F.; Roca I Cabarrocas, P.; Morante, J. R.; Arbiol, J.; Fontcuberta I Morral, A.

    2010-07-01

    Indium was used as a catalyst for the synthesis of silicon nanowires in a plasma enhanced chemical vapor deposition reactor. In order to foster the catalytic activity of indium, the indium droplets had to be exposed to a hydrogen plasma prior to nanowire growth in a silane plasma. The structure of the nanowires was investigated as a function of the growth conditions by electron microscopy and Raman spectroscopy. The nanowires were found to crystallize along the , or growth direction. When growing on the and directions, they revealed a similar crystal quality and the presence of a high density of twins along the {111} planes. The high density and periodicity of these twins lead to the formation of hexagonal domains inside the cubic structure. The corresponding Raman signature was found to be a peak at 495 cm-1, in agreement with previous studies. Finally, electron energy loss spectroscopy indicates an occasional migration of indium during growth.

  14. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    Science.gov (United States)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  15. Pulsed plasma chemical synthesis of carbon-containing titanium and silicon oxide based nanocomposite

    Science.gov (United States)

    Kholodnaya, Galina; Sazonov, Roman; Ponomarev, Denis; Zhirkov, Igor

    2018-03-01

    The paper presents the results of the experimental investigation of the physical and chemical properties of the TixSiyCzOw composite nanopowders, which were first obtained using a pulsed plasma chemical method. The pulsed plasma chemical synthesis was achieved using a technological electron accelerator (TEA-500). The parameters of the electron beam are as follows: 400-450 keV electron energy, 60 ns half-amplitude pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. The main physical and chemical properties of the obtained composites were studied (morphology, chemical, elemental and phase composition). The morphology of the TixSiyCzOw composites is multiform. There are large round particles, with an average size of above 150 nm. Besides, there are small particles (an average size is in the range of 15-40 nm). The morphology of small particles is in the form of crystallites. In the TixSiyCzOw synthesised composite, the peak with a maximum of 946 cm-1 was registered. The presence of IR radiation in this region of the spectrum is typical for the deformation of atomic oscillations in the Si‒О‒Ti bond, which indicates the formation of the solid solution. The composites consist of two crystal phases - anatase and rutile. The prevailing phase of the crystal structure is rutile.

  16. Microscale chemical and electrostatic surface patterning of Dow Cyclotene by N 2 plasma

    Science.gov (United States)

    Yang, D.-Q.; Poulin, S.; Martinu, L.; Klemberg-Sapieha, J. E.; Zabeida, O.; Sacher, E.

    2005-04-01

    Using TEM grids as masks, we have chemically modified selected areas of the surface of Dow Cyclotene, a low permittivity polymer, by a N 2 plasma (chemical surface patterning), grafting a maximum of ˜3% N; this was verified by XPS (X-ray photoelectron spectroscopy) and TOF-S-SIMS (time-of-flight static secondary ion mass spectrometry) chemical imaging. Contact mode AFM (atomic force microscopy) studies of the modified surface morphology show unexpected, initially large, values of both etch depth and friction in the treated areas, which decrease on exposure to atmosphere; similar results were absent in tapping mode images. When Cu, which forms nanoclusters on Cyclotene, was deposited by evaporation onto freshly etched Cyclotene, the large etch depth and friction in the etched areas decreased to much lower values. The depth and friction differences occurring on surface modification, which were revealed through our use of patterning, are apparent, and are, in fact, caused by enhanced electrostatic interaction of the chemically modified surface with the AFM tip, as confirmed by the tapping mode data. Some of the electrostatic surface charge, introduced by the positively charged species chemically modifying the Cyclotene surface, is reduced by subsequent charge neutralization. XPS has shown this to be due to the oxidation of these surface charges on atmospheric exposure, initially ˜70%, to form alcohol, carbonyl and carboxylic acid groups. Contact mode AFM imaging of plasma-patterned surfaces is revealed as an excellent tool for the high-resolution characterization of such surfaces.

  17. Microscale chemical and electrostatic surface patterning of Dow Cyclotene by N{sub 2} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yang, D.-Q. [Regroupement Quebecois de Materiaux de Pointe, Departement de Genie Physique, Ecole Polytechnique, C.P. 6079, succursale Centre-Ville, Montreal, Quebec, H3C 3A7 (Canada); Poulin, S. [Regroupement Quebecois de Materiaux de Pointe, Departement de Genie Physique, Ecole Polytechnique, C.P. 6079, succursale Centre-Ville, Montreal, Quebec, H3C 3A7 (Canada); Martinu, L. [Regroupement Quebecois de Materiaux de Pointe, Departement de Genie Physique, Ecole Polytechnique, C.P. 6079, succursale Centre-Ville, Montreal, Quebec, H3C 3A7 (Canada); Klemberg-Sapieha, J.E. [Regroupement Quebecois de Materiaux de Pointe, Departement de Genie Physique, Ecole Polytechnique, C.P. 6079, succursale Centre-Ville, Montreal, Quebec, H3C 3A7 (Canada); Zabeida, O. [Regroupement Quebecois de Materiaux de Pointe, Departement de Genie Physique, Ecole Polytechnique, C.P. 6079, succursale Centre-Ville, Montreal, Quebec, H3C 3A7 (Canada); Sacher, E. [Regroupement Quebecois de Materiaux de Pointe, Departement de Genie Physique, Ecole Polytechnique, C.P. 6079, succursale Centre-Ville, Montreal, Quebec, H3C 3A7 (Canada)]. E-mail: edward.sacher@polymtl.ca

    2005-04-15

    Using TEM grids as masks, we have chemically modified selected areas of the surface of Dow Cyclotene, a low permittivity polymer, by a N{sub 2} plasma (chemical surface patterning), grafting a maximum of {approx}3% N; this was verified by XPS (X-ray photoelectron spectroscopy) and TOF-S-SIMS (time-of-flight static secondary ion mass spectrometry) chemical imaging. Contact mode AFM (atomic force microscopy) studies of the modified surface morphology show unexpected, initially large, values of both etch depth and friction in the treated areas, which decrease on exposure to atmosphere; similar results were absent in tapping mode images. When Cu, which forms nanoclusters on Cyclotene, was deposited by evaporation onto freshly etched Cyclotene, the large etch depth and friction in the etched areas decreased to much lower values. The depth and friction differences occurring on surface modification, which were revealed through our use of patterning, are apparent, and are, in fact, caused by enhanced electrostatic interaction of the chemically modified surface with the AFM tip, as confirmed by the tapping mode data. Some of the electrostatic surface charge, introduced by the positively charged species chemically modifying the Cyclotene surface, is reduced by subsequent charge neutralization. XPS has shown this to be due to the oxidation of these surface charges on atmospheric exposure, initially {approx}70%, to form alcohol, carbonyl and carboxylic acid groups. Contact mode AFM imaging of plasma-patterned surfaces is revealed as an excellent tool for the high-resolution characterization of such surfaces.

  18. Upcycling Waste Lard Oil into Vertical Graphene Sheets by Inductively Coupled Plasma Assisted Chemical Vapor Deposition

    OpenAIRE

    Wu, Angjian; Li, Xiaodong; Yang, Jian; Du, Changming; Shen, Wangjun; Yan, Jianhua

    2017-01-01

    Vertical graphene (VG) sheets were single-step synthesized via inductively coupled plasma (ICP)-enhanced chemical vapor deposition (PECVD) using waste lard oil as a sustainable and economical carbon source. Interweaved few-layer VG sheets, H2, and other hydrocarbon gases were obtained after the decomposition of waste lard oil. The influence of parameters such as temperature, gas proportion, ICP power was investigated to tune the nanostructures of obtained VG, which indicated that a proper tem...

  19. Formation of thermal flow fields and chemical transport in air and water by atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tetsuji; Morfill, Gregor E [Max-Planck Institute for Extraterrestrial Physics, 85748 Garching (Germany); Iwafuchi, Yutaka [Graduate School of Engineering, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 9808577 (Japan); Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 9808577 (Japan)

    2011-05-15

    Cold atmospheric plasma is a potential tool for medical purposes, e.g. disinfection/sterilization. In order for it to be effective and functional, it is crucial to understand the transport mechanism of chemically reactive species in air as well as in liquid. An atmospheric plasma discharge was produced between a platinum pin electrode and the surface of water. The thermal flow field of a cold atmospheric plasma as well as its chemical components was measured. A gas flow with a velocity of around 15 m s{sup -1} to the water's surface was shown to be induced by the discharge. This air flow induced a circulating flow in the water from the discharge point at the water's surface because of friction. It was also demonstrated that the chemical components generated in air dissolved in water and the properties of the water changed. The reactive species were believed to be distributed mainly by convective transport in water, because the variation in the pH profile indicated by a methyl red solution resembled the induced flow pattern.

  20. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    Science.gov (United States)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  1. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways

    Science.gov (United States)

    Aboubakr, Hamada A.; Gangal, Urvashi; Youssef, Mohammed M.; Goyal, Sagar M.; Bruggeman, Peter J.

    2016-05-01

    Cold atmospheric pressure plasma (CAP) inactivates bacteria and virus through in situ production of reactive oxygen and nitrogen species (RONS). While the bactericidal and virucidal efficiency of plasmas is well established, there is limited knowledge about the chemistry leading to the pathogen inactivation. This article describes a chemical analysis of the CAP reactive chemistry involved in the inactivation of feline calicivirus. We used a remote radio frequency CAP produced in varying gas mixtures leading to different plasma-induced chemistries. A study of the effects of selected scavengers complemented with positive control measurements of relevant RONS reveal two distinctive pathways based on singlet oxygen and peroxynitrous acid. The first mechanism is favored in the presence of oxygen and the second in the presence of air when a significant pH reduction is induced in the solution by the plasma. Additionally, smaller effects of the H2O2, O3 and \\text{NO}2- produced were also found. Identification of singlet oxygen-mediated 2-imidazolone/2-oxo-His (His  +14 Da)—an oxidative modification of His 262 comprising the capsid protein of feline calicivirus links the plasma induced singlet oxygen chemistry to viral inactivation.

  2. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Science.gov (United States)

    Wallenhorst, L. M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-07-01

    In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  3. Controlled chemical and morphological surface modifications via pulsed plasma polymerizations: Synthesis of ultrahydrophobic surfaces

    Science.gov (United States)

    Qiu, Haibo

    The RF plasma polymerization of saturated linear and cyclic perfluoroalkane monomers and vinyl acetic acid were studied in this dissertation. Film chemical compositions, deposition rates, surface wettabilities and morphologies were characterized as functions of various plasma processing conditions. Large progressive changes in chemical compositions with sequential variations in plasma duty cycle were demonstrated in polymerization of both perfluoroalkane and vinyl acetic acid monomers. As anticipated, polymer films obtained from the perfluorocarbon monomers exhibited a general trend towards more linear structures with decreasing plasma duty cycles. However, completely unexpectedly, ultrahydrophobic films were obtained from some of these monomers under restricted duty cycle and power input conditions. SEM and XPS characterizations revealed that a rough, fibrous-like surface morphology is responsible for this ultrahydrophobicity, as opposed to unusual chemical compositions. The growth of the fibrous surface is believed to arise from nucleation and hillock-like growth patterns on selectively activated sites of the growing polymer film. Surface mobility of plasma generated reactive species apparently plays an important role in the growth of the fibrous ultrahydrophobic surfaces, as shown by substrate temperature studies. Additionally, the present study revealed a number of interesting new observations of significant differences in the chemical compositions and deposition rates of polymer films obtained from the diverse range of perfluorocarbon monomers employed in this work. The ultrahydrophobic fluorocarbon films discovered in this investigation were evaluated for use in several biomaterial applications. The results obtained show excellent marine antifouling properties for these surfaces, as documented in ocean testing experiments. These surfaces have also been shown to be useful in controlling protein and peptide surface adsorptions, as well as in the inflammatory

  4. XPS Study of the Chemical Structure of Plasma Biocopolymers of Pyrrole and Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Maribel González-Torres

    2014-01-01

    Full Text Available An XPS study about the structure of plasma biocopolymers synthesized with resistive radio frequency glow discharges and random combinations of ethylene glycol, pyrrole, and iodine, as a dopant, is presented in this work. The collisions of molecules produced structures with a great variety of chemical states based in the monomers, their combinations, crosslinking, doping, fragmentation, and oxidation at different levels in the plasma environment. Iodine appears bonded in the copolymers only at high power of synthesis, mainly as C–I and N–I chemical bonds. Multiple bonds as C≡C, C≡N, C=O, and C=N were found in the copolymers, without belonging to the initial reagents, and were generated by dehydrogenation of intermediate compounds during the polymerization. The main chemical states on PEG/PPy/I indicate that all atoms in pyrrole rings participate in the polymerization resulting in crosslinked, partially fragmented, and highly oxidized structures. This kind of analysis can be used to modify the synthesis of polymers to increase the participation of the most important chemical states in their biofunctions.

  5. Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2015-03-03

    Laser ablation of organic compounds has been investigated for almost 30 years now, either in the framework of pulse laser deposition for the assembling of new materials or in the context of chemical sensing. Various monitoring techniques such as atomic and molecular fluorescence, time-of-flight mass spectrometry, and optical emission spectroscopy have been used for plasma diagnostics in an attempt to understand the spectral signature and potential origin of gas-phase ions and fragments from organic plasmas. Photochemical and photophysical processes occurring within these systems are generally much more complex than those suggested by observation of optical emission features. Together with laser ablation parameters, the structural and chemical-physical properties of molecules seem to be closely tied to the observed phenomena. The present manuscript, for the first time, discusses the role of molecular structure in the optical emission of organic plasmas. Factors altering the electronic distribution within the organic molecule have been found to have a direct impact on its ensuing optical emissions. The electron structure of an organic molecule, resulting from the presence, nature, and position of its atoms, governs the breakage of the molecule and, as a result, determines the extent of atomization and fragmentation that has proved to directly impact the emissions of CN radicals and C2 dimers. Particular properties of the molecule respond more positively depending on the laser irradiation wavelength, thereby redirecting the ablation process through photochemical or photothermal decomposition pathways. It is of paramount significance for chemical identification purposes how, despite the large energy stored and dissipated by the plasma and the considerable number of transient species formed, the emissions observed never lose sight of the original molecule.

  6. Decomposition treatment of SO2F2 using packed bed DBD plasma followed by chemical absorption.

    Science.gov (United States)

    Nie, Yong; Zheng, Qifeng; Liang, Xiaojiang; Gu, Dayong; Lu, Meizhen; Min, Min; Ji, Jianbing

    2013-07-16

    The technology of packed bed dielectric barrier discharge (DBD) plasma followed by a chemical absorption has been developed and was found to be an efficient way for decomposition treatment of sulfuryl fluoride (SO2F2) in simulated residual fumigant. The effects of energy density, initial SO2F2 concentration, and residence time on the removal efficiency of SO2F2 for the DBD plasma treatment alone were investigated. It was found that the SO2F2 could be removed completely when initial volume concentration, energy density, and residence time were 0.5%, 33.9 kJ/L, and 5.1 s, respectively. The removal mechanism of SO2F2 in the packed bed DBD reactor was discussed. Based on the detailed analysis of SO2F2 molecular stability and its exhaust products in the DBD plasma reactor, it was concluded that the energetic electrons generated in the packed bed DBD reactor played a key role on the removal of SO2F2, and the major decomposition products of SO2F2 detected were SO2, SiF4, and S (Sulfur). Among these products, SiF4 was formed by the F atom reacted with the filler-quartz glass beads (SiO2) in the packed bed DBD reactor. Aqueous NaOH solution was used as the chemical absorbent for the gaseous products of SO2F2 after plasma pretreatment. It was found that the gaseous products in the plasma exhaust could be absorbed and fixed by the subsequent aqueous NaOH solution.

  7. A Chemical Stability Study of Trimethylsilane Plasma Nanocoatings for Coronary Stents

    Science.gov (United States)

    Jones, John Eric; Yu, Qingsong; Chen, Meng

    2016-01-01

    In this study, trimethylsilane (TMS) plasma nanocoatings were deposited onto 316L stainless steel coupons in direct current (DC) and radio frequency (RF) glow discharges and additional NH3/O2 plasma treatment to tailor the coating surface properties. The chemical stability of the plasma nanocoatings were evaluated after 12 week (~3 month) storage under dry condition (25 °C) and immersion in simulated body fluid (SBF) at 37 °C. It was found that nanocoatings did not impact surface roughness of underlying stainless steel substrates. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to characterize surface chemistry and compositions. Both DC and RF TMS plasma nanocoatings had Si– and C– rich composition; and the O– and N– contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Contact angle measurements showed that DC TMS nanocoating with NH3/O2 treatment generated very hydrophilic surfaces. DC TMS nanocoatings with NH3/O2 treatment showed minimal surface chemistry change after 12 week immersion in SBF. However, nitrogen functionalities on RF-TMS coating with NH3/O2 post treatment were not as stable as in DC case. Cell culture studies revealed that the surfaces with DC coating and NH3/O2 post treatment demonstrated substantially improved proliferation of endothelial cells over the 12 week storage period at both dry and wet conditions, as compared to other coated surfaces. Therefore, DC nanocoatings with NH3/O2 post treatment may be chemically stable for long-term properties, including shelf-life storage and exposure to the bloodstream for coronary stent applications. PMID:27712432

  8. Couette Flow of Unmagnetized Plasma

    CERN Document Server

    Collins, C; Cooper, C M; Flanagan, K; Khalzov, I V; Nornberg, M D; Seidlitz, B; Wallace, J; Forest, C B

    2014-01-01

    Differentially rotating flows of unmagnetized, highly conducting plasmas have been created in the Plasma Couette Experiment. Previously, hot-cathodes have been used to control plasma rotation by a stirring technique [C. Collins et al., Phys. Rev. Lett. 108, 115001(2012)] on the outer cylindrical boundary---these plasmas were nearly rigid rotors, modified only by the presence of a neutral particle drag. Experiments have now been extended to include stirring from an inner boundary, allowing for generalized Couette flow and opening a path for both hydrodynamic and magnetohydrodynamic experiments, as well as fundamental studies of plasma viscosity. Plasma is confined in a cylindrical, axisymmetric, multicusp magnetic field, with $T_e< 10$ eV, $T_i<1$ eV, and $n_e<10^{11}$ cm$^{-3}$. Azimuthal flows (up to 12 km/s, $M=V/c_s\\sim 0.7$) are driven by edge ${\\bf J \\times B}$ torques in helium, neon, argon, and xenon plasmas. We present measurements of a self-consistent, rotation-induced, species-dependent rad...

  9. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    Science.gov (United States)

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  10. Microstructural and frictional control of diamond-like carbon films deposited on acrylic rubber by plasma assisted chemical vapor deposition

    NARCIS (Netherlands)

    Martinez-Martinez, D.; Schenkel, M.; Pei, Y.T.; Hosson, J.Th.M. De

    2011-01-01

    In this paper we concentrate on the microstructure of diamond-like carbon films prepared by plasma assisted chemical vapor deposition on acrylic rubber. The temperature variation produced by the ion impingement during plasma cleaning and subsequent film deposition was monitored and controlled as a

  11. Physical-chemical characterization of the textile dye Azo Ab52 degradation by corona plasma

    Science.gov (United States)

    Gómez, A.; Torres-Arenas, A. J.; Vergara-Sánchez, J.; Torres, C.; Reyes, P. G.; Martínez, H.; Saldarriaga-Noreña, Hugo

    2017-10-01

    This work characterizes the degradation of the textile dye azo Acid Black 52 by measuring several physical and chemical parameters. A corona plasma was created at atmospheric pressure and applied on the liquid-air interface of water samples containing the dye. 1.0 mM of ferrous sulfate (FeSO4) was added to 1.0 mM dye solution, for a total volume of 250 mL. For each treatment, a number of parameters were quantified. These were voltage, current, temperature, loss of volume, pH, electrical conductivity, concentration, optical mission spectra, chemical oxygen demand (COD), total organic carbon (TOC), and the removal ratio. Because of the increase in the sample temperature, the volume lost by evaporation was explored. The results show that the efficiency of the dye degradation by plasma is a function of treatment time. Moreover, the reactive concentration of FeSO4 and the exposition time of the plasma were varied at a constant volume, leading to the determination of the concentrations and optimal times. Considering the degradation and removal parameters, at the maximum treated time of 80 min, it found that COD was of 96.36%, TOC of 93.93%, and the removal ratio of 97.47%.

  12. Fluorinated carboxylic membranes deposited by plasma enhanced chemical vapour deposition for fuel cell applications

    Science.gov (United States)

    Thery, J.; Martin, S.; Faucheux, V.; Le Van Jodin, L.; Truffier-Boutry, D.; Martinent, A.; Laurent, J.-Y.

    Among the fuel cell technologies, the polymer electrolyte membrane fuel cells (PEMFCs) are particularly promising because they are energy-efficient, clean, and fuel-flexible (i.e., can use hydrogen or methanol). The great majority of PEM fuel cells rely on a polymer electrolyte from the family of perfluorosulfonic acid membranes, nevertheless alternative materials are currently being developed, mainly to offer the alternative workout techniques which are required for the portable energy sources. Plasma polymerization represents a good solution, as it offers the possibility to deposit thin layer with an accurate and homogeneous thickness, even on 3D surfaces. In this paper, we present the results for the growth of proton conductive fluoro carboxylic membranes elaborated by plasma enhanced chemical vapour deposition. These membranes present conductivity values of the same order than the one of Nafion ®. The properties of the membrane, such as the chemical composition, the ionic conductivity, the swelling behaviour and the permeability were correlated to the plasma process parameters. The membranes were integrated in fuel cells on porous substrates and we present here the results regarding the barrier effect and the power output. Barrier effect similar to those of 40 μm Nafion ® layers was reached for 10 μm thick carboxylic membranes. Power outputs around 3 mW cm -2 were measured. We discuss the results regarding the gas barrier effect and the power outputs.

  13. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  14. One-step synthesis of chlorinated graphene by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Liwei; Zhang, Hui; Zhang, Pingping; Sun, Xuhui, E-mail: xhsun@suda.edu.cn

    2015-08-30

    Highlights: • We developed a simple approach to synthesize the single layer chlorinated graphene. • CuCl{sub 2} on Cu surface is used as Cl source under the plasma treatment. • The formation of covalent C−Cl bond has been investigated by Raman and XPS. • Raman results indicate the p-type doping effect of chlorination. - Abstract: We developed an approach to synthesize the chlorinated single layer graphene (Cl-G) by one-step plasma enhanced chemical vapor deposition. Copper foil was simply treated with hydrochloric acid and then CuCl{sub 2} formed on the surface was used as Cl source under the assistance of plasma treatment. Compared with other two-step methods by post plasma/photochemical treatment of CVD-grown single layer graphene (SLG), one-step Cl-G synthesis approach is quite straightforward and effective. X-ray photoelectron spectroscopy (XPS) revealed that ∼2.45 atom% Cl remained in SLG. Compared with the pristine SLG, the obvious blue shifts of G band and 2D band along with the appearance of D’ band and D + G band in the Raman spectra indicate p-type doping of Cl-G.

  15. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    Science.gov (United States)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  16. Plasma-chemical simulation of negative corona near the inception voltage

    Science.gov (United States)

    Pontiga, Francisco; Duran-Olivencia, Francisco J.; Castellanos, Antonio

    2013-09-01

    The spatiotemporal development of Trichel pulses in oxygen between a spherical electrode and a grounded plane has been simulated using a fluid approximation that incorporates the plasma chemistry of the electrical discharge. Elementary plasma processes, such as ionization, electron attachment, electron detachment, recombination between ions and chemical reactions between neutral species, are all included in a chemical model consisting of 55 reactions between 8 different species (electrons, O2+,O2-,O3-,O-, O2, O, O3). Secondary emission at the cathode by the impact of positive ions and photons is also considered. The spatial distribution of species is computed in three dimensions (2D-axysimmetrical) by solving Poisson's equation for the electric field and the continuity equations for the species, with the inclusion of the chemical gain/loss rate due to the particle interaction. The results of the simulation reveal the interplay between the different negative ions during the development of every Trichel pulse, and the rate of production of atomic oxygen and ozone by the corona discharge. This work was supported by the Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) and by the Ministerio de Ciencia e Innovacion, Spain, within the European Regional Development Fund contracts FQM-4983 and FIS2011-25161.

  17. Physical and chemical modifications of PET surface using a laser-plasma EUV source

    Science.gov (United States)

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Biliński, A.; Chernyayeva, O.; Sobczak, J. W.

    2010-06-01

    Extreme ultraviolet (EUV) radiation is the electromagnetic radiation ranging from vacuum ultraviolet to soft X-rays. A single EUV photon carries enough energy to ionize any atom or molecule. The penetration depth of the radiation in any material is very short, ranging from tens to hundreds nanometers. Intense EUV pulses can remove material from the surface or modify its morphology or/and chemical structure. In this work, the radiation from a laser-plasma EUV source based on a double-stream gas-puff target was used for surface modification of polyethylene terephthalate (PET). The PET samples were irradiated with the EUV pulses emitted from krypton plasma and focused with a gold-plated ellipsoidal collector. The spectrum of the focused radiation covered the wavelength range from 9 to 70 nm. The PET samples were irradiated for 1 s-2 min at a 10-Hz repetition rate. Surface morphology of polymer samples after irradiation was investigated using a scanning electron microscope. Changes in chemical surface structure of the irradiated samples were investigated using an X-ray photoelectron spectroscopy. Different kinds of surface microstructures were obtained depending on the EUV fluence in a single pulse and the total EUV fluence. XPS measurements also revealed a modification of the chemical structure.

  18. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  19. Holographic dual of a boost-invariant plasma with chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran; Kirsch, Ingo

    2010-12-15

    We construct a gravity dual of a boost-invariant flow of an N=4 SU(N) supersymmetric Yang-Mills gauge theory plasma with chemical potential. We present both a first-order corrected late-time solution in Eddington-Finkelstein coordinates and a zeroth-order solution in parametric form in Fefferman-Graham coordinates. The resulting background takes the form of a time-dependent AdS Reissner-Nordstroem-type black hole whose horizons move into the bulk of the AdS space. The solution correctly reproduces the energy and charge density as well as the viscosity of the plasma previously computed in the literature. (orig.)

  20. Mathematical modeling of quartz particle melting process in plasma-chemical reactor

    Science.gov (United States)

    Volokitin, Oleg; Vlasov, Viktor; Volokitin, Gennady; Skripnikova, Nelli; Shekhovtsov, Valentin

    2016-01-01

    Among silica-based materials vitreous silica has a special place. The paper presents the melting process of a quartz particle under conditions of low-temperature plasma. A mathematical model is designed for stages of melting in the experimental plasma-chemical reactor. As calculation data show, quartz particles having the radius of 0.21≤ rp ≤0.64 mm completely melt at W = 0.65 l/s particle feed rate depending on the Nusselt number, while 0.14≤ rp ≤0.44 mm particles melt at W = 1.4 l/s. Calculation data showed that 2 mm and 0.4 mm quartz particles completely melted during and 0.1 s respectively. Thus, phase transformations occurred in silicon dioxide play the important part in its heating up to the melting temperature.

  1. Cylindrical dielectric barrier discharge plasma catalytic effect on chemical methods of silver nano-particle production

    Science.gov (United States)

    Bahrami, Zahra; Khani, Mohammad Reza; Shokri, Babak

    2016-11-01

    In this study, cylindrical dielectric barrier discharge plasma was used to study the catalytic effect on chemical methods of silver nano-particles for the first time. In this method, the processing time is short and the temperature of reaction is low. Also, the reactor is very simple, inexpensive, and accessible. In this work, pure AgNO3 as the precursor agent and poly vinyl pyrrolidone as the macromolecular surfactant were dissolved in ethanol as the solvent. UV-Vis and XRD were used to identify the colloidal and powder nano-particles, respectively. Optical emission spectroscopy was also used to identify the active species in plasma. Effects of gas flow rate, voltage, volume of solution, and processing time were also studied. Moreover, TEM and SEM images presented the mean diameter of nano-particle size around 10 to 20 nm. The results have been very promising.

  2. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    OpenAIRE

    Sharma, K; Williams, B. L.; Mittal, A.; Knoops, H. C. M.; Kniknie, B.J.; Bakker, N J; Kessels, W. M. M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C) can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO). In...

  3. Formation of radical and active chemical species in electrical discharge plasma in the presence of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Locke, B.R.; Shih, K.Y.; Burlica, R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering

    2010-07-01

    This study investigated the interactions of plasma with liquid water using a combination of emission spectroscopy of radical and atomic species and direct measurements of more stable chemical compounds. The study focused on electrical discharge plasma formed directly in liquid water and on discharges formed in the gas phase above liquid water, in bubbles in liquid water, and in the gas phase with water droplet spray that result in a variety of active chemical species that can be used for pollution control as well as other applications in biomedical and materials engineering. The purpose was to improve the design and operation of plasma reactors for a variety of applications. This presentation also reviewed the mechanisms for the formation of active chemical species such as hydroxyl and other radicals, hydrogen peroxide and molecular hydrogen, in electrical discharge plasma formed in the presence of water.

  4. Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, I. [Technische Universitaet Muenchen, Walter Schottky Institut and Physik Department, Garching (Germany); Conesa-Boj, S.; Estrade, S.; Peiro, F. [Universitat de Barcelona, Departament d' Electronica, Barcelona, CAT (Spain); Yu, L.; Roca i Cabarrocas, P. [Ecole Polytechnique, CNRS, LPICM, Palaiseau (France); Morante, J.R. [Universitat de Barcelona, Departament d' Electronica, Barcelona, CAT (Spain); Catalonia Institute for Energy Research, Barcelona, CAT (Spain); Arbiol, J. [Universitat de Barcelona, Departament d' Electronica, Barcelona, CAT (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA) and Institut de Ciencia de Materials de Barcelona, CSIC, Bellaterra, CAT (Spain); Fontcuberta i.Morral, A. [Technische Universitaet Muenchen, Walter Schottky Institut and Physik Department, Garching (Germany); Ecole Polytechnique Federale de Lausanne, Laboratoire des Materiaux Semiconducteurs, Institut des Materiaux, Lausanne (Switzerland)

    2010-07-15

    Indium was used as a catalyst for the synthesis of silicon nanowires in a plasma enhanced chemical vapor deposition reactor. In order to foster the catalytic activity of indium, the indium droplets had to be exposed to a hydrogen plasma prior to nanowire growth in a silane plasma. The structure of the nanowires was investigated as a function of the growth conditions by electron microscopy and Raman spectroscopy. The nanowires were found to crystallize along the <111>, <112> or <001> growth direction. When growing on the <112> and <111> directions, they revealed a similar crystal quality and the presence of a high density of twins along the {l_brace}111{r_brace} planes. The high density and periodicity of these twins lead to the formation of hexagonal domains inside the cubic structure. The corresponding Raman signature was found to be a peak at 495 cm{sup -1}, in agreement with previous studies. Finally, electron energy loss spectroscopy indicates an occasional migration of indium during growth. (orig.)

  5. Comparison of Physical-chemical and Mechanical Properties of Chlorapatite and Hydroxyapatite Plasma Sprayed Coatings.

    Science.gov (United States)

    Demnati, Imane; Grossin, David; Marsan, Olivier; Bertrand, Ghislaine; Collonges, Gérard; Combes, Christèle; Parco, Maria; Braceras, Inigo; Alexis, Joel; Balcaen, Yannick; Rey, Christian

    2015-01-01

    Chlorapatite can be considered a potential biomaterial for orthopaedic applications. Its use as plasma-sprayed coating could be of interest considering its thermal properties and particularly its ability to melt without decomposition unlike hydroxyapatite. Chlorapatite (ClA) was synthesized by a high-temperature ion exchange reaction starting from commercial stoichiometric hydroxyapatites (HA). The ClA powder showed similar characteristics as the original industrial HA powder, and was obtained in the monoclinic form. The HA and ClA powders were plasma-sprayed using a low-energy plasma spraying system with identical processing parameters. The coatings were characterized by physical-chemical methods, i.e. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, including distribution mapping of the main phases detected such as amorphous calcium phosphate (ACP), oxyapatite (OA), and HA or ClA. The unexpected formation of oxyapatite in ClA coatings was assigned to a side reaction with contaminating oxygenated species (O2, H2O). ClA coatings exhibited characteristics different from HA, showing a lower content of oxyapatite and amorphous phase. Although their adhesion strength was found to be lower than that of HA coatings, their application could be an interesting alternative, offering, in particular, a larger range of spraying conditions without formation of massive impurities.

  6. Numerical simulation of Trichel pulses of negative DC corona discharge based on a plasma chemical model

    Science.gov (United States)

    Chen, Xiaoyue; Lan, Lei; Lu, Hailiang; Wang, Yu; Wen, Xishan; Du, Xinyu; He, Wangling

    2017-10-01

    A numerical simulation method of negative direct current (DC) corona discharge based on a plasma chemical model is presented, and a coaxial cylindrical gap is adopted. There were 15 particle species and 61 kinds of collision reactions electrons involved, and 22 kinds of reactions between ions are considered in plasma chemical reactions. Based on this method, continuous Trichel pulses are calculated on about a 100 us timescale, and microcosmic physicochemical process of negative DC corona discharge in three different periods is discussed. The obtained results show that the amplitude of Trichel pulses is between 1-2 mA, and that pulse interval is in the order of 10-5 s. The positive ions produced by avalanche ionization enhanced the electric field near the cathode at the beginning of the pulse, then disappeared from the surface of cathode. The electric field decreases and the pulse ceases to develop. The negative ions produced by attachment slowly move away from the cathode, and the electric field increases gradually until the next pulse begins to develop. The positive and negative ions with the highest density during the corona discharge process are O4+ and O3- , respectively.

  7. Modelling and optimization of film thickness variation for plasma enhanced chemical vapour deposition processes

    Science.gov (United States)

    Waddell, Ewan; Gibson, Des; Lin, Li; Fu, Xiuhua

    2011-09-01

    This paper describes a method for modelling film thickness variation across the deposition area within plasma enhanced chemical vapour deposition (PECVD) processes. The model enables identification and optimization of film thickness uniformity sensitivities to electrode configuration, temperature, deposition system design and gas flow distribution. PECVD deposition utilizes a co-planar 300mm diameter electrodes with separate RF power matching to each electrode. The system has capability to adjust electrode separation and electrode temperature as parameters to optimize uniformity. Vacuum is achieved using dry pumping with real time control of butterfly valve position for active pressure control. Comparison between theory and experiment is provided for PECVD of diamond-like-carbon (DLC) deposition onto flat and curved substrate geometries. The process utilizes butane reactive feedstock with an argon carrier gas. Radiofrequency plasma is used. Deposited film thickness sensitivities to electrode geometry, plasma power density, pressure and gas flow distribution are demonstrated. Use of modelling to optimise film thickness uniformity is demonstrated. Results show DLC uniformity of 0.30% over a 200 mm flat zone diameter within overall electrode diameter of 300mm. Thickness uniformity of 0.75% is demonstrated over a 200mm diameter for a non-conformal substrate geometry. Use of the modelling method for PECVD using metal-organic chemical vapour deposition (MOCVD) feedstock is demonstrated, specifically for deposition of silica films using metal-organic tetraethoxy-silane. Excellent agreement between experimental and theory is demonstrated for conformal and non-conformal geometries. The model is used to explore scalability of PECVD processes and trade-off against film thickness uniformity. Application to MEMS, optical coatings and thin film photovoltaics is discussed.

  8. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bartlome, Richard, E-mail: richard.bartlome@alumni.ethz.ch; De Wolf, Stefaan; Demaurex, Bénédicte; Ballif, Christophe [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue de la Maladière 71b, 2000 Neuchâtel (Switzerland); Amanatides, Eleftherios; Mataras, Dimitrios [University of Patras, Department of Chemical Engineering, Plasma Technology Laboratory, P.O. Box 1407, 26504 Patras (Greece)

    2015-05-28

    We clarify the difference between the SiH{sub 4} consumption efficiency η and the SiH{sub 4} depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH{sub 4} consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH{sub 4} concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH{sub 4} concentration in the plasma c{sub p}, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH{sub 4} density measurements throughout the ignition and the termination of a plasma.

  9. Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling.

    Science.gov (United States)

    Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie

    2017-05-22

    The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2 /O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx . The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ion and electron sheath characteristics in a low density and low temperature plasma

    Science.gov (United States)

    Borgohain, Binita; Bailung, H.

    2017-11-01

    Ion and electron sheath characteristics in a low electron temperature (Te ˜ 0.25-0.40 eV) and density (ne ˜ 106-107 cm-3) plasma are described. The plasma is produced in the experimental volume through diffusion from a hot cathode discharge plasma source by using a magnetic filter. The electron energy distribution function in the experimental plasma volume is measured to be a narrow Maxwellian distribution indicating the absence of primary and energetic electrons which are decoupled in the source side by the cusp magnetic field near the filter. An emissive probe is used to measure the sheath potential profiles in front of a metal plate biased negative and positive with respect to the plasma potential. For a positive plate bias, the electron density decreases considerably and the electron sheath expands with a longer presheath region compared to the ion sheath. The sheath potential structures are found to follow the Debye sheath model.

  11. Proton-sensing transistor systems for detecting ion leakage from plasma membranes under chemical stimuli.

    Science.gov (United States)

    Imaizumi, Yuki; Goda, Tatsuro; Schaffhauser, Daniel F; Okada, Jun-Ichi; Matsumoto, Akira; Miyahara, Yuji

    2017-03-01

    The membrane integrity of live cells is routinely evaluated for cytotoxicity induced by chemical or physical stimuli. Recent progress in bioengineering means that high-quality toxicity validation is required. Here, we report a pH-sensitive transistor system developed for the continuous monitoring of ion leakage from cell membranes upon challenge by toxic compounds. Temporal changes in pH were generated with high reproducibility via periodic flushing of HepG2 cells on a gate insulator of a proton-sensitive field-effect transistor with isotonic buffer solutions with/without NH 4 Cl. The pH transients at the point of NH 4 Cl addition/withdrawal originated from the free permeation of NH 3 across the semi-permeable plasma membranes, and the proton sponge effect produced by the ammonia equilibrium. Irreversible attenuation of the pH transient was observed when the cells were subjected to a membrane-toxic reagent. Experiments and simulations proved that the decrease in the pH transient was proportional to the area of the ion-permeable pores on the damaged plasma membranes. The pH signal was correlated with the degree of hemolysis produced by the model reagents. The pH assay was sensitive to the formation of molecularly sized pores that were otherwise not measurable via detection of the leakage of hemoglobin, because the hydrodynamic radius of hemoglobin was greater than 3.1nm in the hemolysis assay. The pH transient was not disturbed by inherent ion-transporter activity. The ISFET assay was applied to a wide variety of cell types. The system presented here is fast, sensitive, practical and scalable, and will be useful for validating cytotoxins and nanomaterials. The plasma membrane toxicity and hemolysis are widely and routinely evaluated in biomaterials science and biomedical engineering. Despite the recent development of a variety of methods/materials for efficient gene/drug delivery systems to the cytosol, the methodologies for safety validation remain unchanged in

  12. Taylor-Couette flow of unmagnetized plasma

    Science.gov (United States)

    Collins, C.; Clark, M.; Cooper, C. M.; Flanagan, K.; Khalzov, I. V.; Nornberg, M. D.; Seidlitz, B.; Wallace, J.; Forest, C. B.

    2014-04-01

    Differentially rotating flows of unmagnetized, highly conducting plasmas have been created in the Plasma Couette Experiment. Previously, hot-cathodes have been used to control plasma rotation by a stirring technique [C. Collins et al., Phys. Rev. Lett. 108, 115001 (2012)] on the outer cylindrical boundary—these plasmas were nearly rigid rotors, modified only by the presence of a neutral particle drag. Experiments have now been extended to include stirring from an inner boundary, allowing for generalized circular Couette flow and opening a path for both hydrodynamic and magnetohydrodynamic experiments, as well as fundamental studies of plasma viscosity. Plasma is confined in a cylindrical, axisymmetric, multicusp magnetic field, with Te torques in helium, neon, argon, and xenon plasmas, and the experiment has already achieved Rm ˜ 65 and Pm ˜0.2-12. We present measurements of a self-consistent, rotation-induced, species-dependent radial electric field, which acts together with pressure gradient to provide the centripetal acceleration for the ions. The maximum flow speeds scale with the Alfvén critical ionization velocity, which occurs in partially ionized plasma. A hydrodynamic stability analysis in the context of the experimental geometry and achievable parameters is also explored.

  13. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  15. Metal-free plasma-enhanced chemical vapor deposition of large area nanocrystalline graphene

    Science.gov (United States)

    Schmidt, Marek E.; Xu, Cigang; Cooke, Mike; Mizuta, Hiroshi; Chong, Harold M. H.

    2014-04-01

    This paper reports on large area, metal-free deposition of nanocrystalline graphene (NCG) directly onto wet thermally oxidized 150 mm silicon substrates using parallel-plate plasma-enhanced chemical vapor deposition. Thickness non-uniformities as low as 13% are achieved over the whole substrate. The cluster size {{L}_{\\text{a}}} of the as-obtained films is determined from Raman spectra and lies between 1.74 and 2.67 nm. The film uniformity was further confirmed by Raman mapping. The sheet resistance {{R}_{\\text{sq}}} of 3.73 \\text{k}\\Omega and charge carrier mobility μ of 2.49\\;\\text{c}{{\\text{m}}^{2}}\\;{{\\text{V}}^{-1}}\\;{{\\text{s}}^{-1}} are measured. We show that the NCG films can be readily patterned by reactive ion etching. NCG is also successfully deposited onto quartz and sapphire substrates and showed >85% optical transparency in the visible light spectrum.

  16. Plasma for electrification of chemical industry: a case study on CO2 reduction

    Science.gov (United States)

    van Rooij, G. J.; Akse, H. N.; Bongers, W. A.; van de Sanden, M. C. M.

    2018-01-01

    Significant growth of the share of (intermittent) renewable power in the chemical industry is imperative to meet increasingly stricter limits on CO2 exhaust that are being implemented within Europe. This paper aims to evaluate the potential of a plasma process that converts input CO2 into a pure stream of CO to aid in renewable energy penetration in this sector. A realistic process design is constructed to serve as a basis for an economical analysis. The manufacturing cost price of CO is estimated at 1.2 kUS ton–1 CO. A sensitivity analysis shows that separation is the dominant cost factor, so that improving conversion is currently more effective to lower the price than e.g. energy efficiency.

  17. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiangling; Su Shi; Kundrat, Vojtech; Abbot, Andrew M.; Ye, Haitao [School of Engineering and Applied Science, Aston University, Birmingham B4 7ET (United Kingdom); Zhou Lei [Department of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); Mushtaq, Fajer [Department of Mechanical Engineering, ETH Zurich, Zurich 8092 (Switzerland); Ouyang Defang [School of Life and Health Science, Aston University, Birmingham B4 7ET (United Kingdom); James, David; Roberts, Darren [Thermo Fisher Scientific, Stafford House, Hemel Hempstead HP2 7GE (United Kingdom)

    2013-01-14

    We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs.

  18. Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Muñoz, R; Munuera, C; Martínez, J I; Azpeitia, J; Gómez-Aleixandre, C; García-Hernández, M

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650°C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω·sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  19. Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Broas, Mikael, E-mail: mikael.broas@aalto.fi; Vuorinen, Vesa [Department of Electrical Engineering and Automation, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sippola, Perttu; Pyymaki Perros, Alexander; Lipsanen, Harri [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä (Finland); Paulasto-Kröckel, Mervi [Department of Electrical Engineering and Automation, Aalto University. P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland)

    2016-07-15

    Plasma-enhanced atomic layer deposition was utilized to grow aluminum nitride (AlN) films on Si from trimethylaluminum and N{sub 2}:H{sub 2} plasma at 200 °C. Thermal treatments were then applied on the films which caused changes in their chemical composition and nanostructure. These changes were observed to manifest in the refractive indices and densities of the films. The AlN films were identified to contain light element impurities, namely, H, C, and excess N due to nonideal precursor reactions. Oxygen contamination was also identified in the films. Many of the embedded impurities became volatile in the elevated annealing temperatures. Most notably, high amounts of H were observed to desorb from the AlN films. Furthermore, dinitrogen triple bonds were identified with infrared spectroscopy in the films. The triple bonds broke after annealing at 1000 °C for 1 h which likely caused enhanced hydrolysis of the films. The nanostructure of the films was identified to be amorphous in the as-deposited state and to become nanocrystalline after 1 h of annealing at 1000 °C.

  20. Effects of a plasma heating procedure for inactivating Ebola virus on common chemical pathology tests.

    Science.gov (United States)

    Chong, Y K; Ng, W Y; Chen, Sammy P L; Mak, Chloe M

    2015-06-01

    The recent declaration of Ebola virus disease as epidemic by the World Health Organization indicates urgency for affected countries and their laboratories to evaluate and provide treatment to patients potentially infected by the Ebola virus. A heat inactivation procedure involving treating specimens at 60°C for 60 minutes has been suggested for inactivation of the Ebola virus. This study aimed at evaluating the effect of plasma heating on common biochemical tests. Comparative experimental study. A regional chemical pathology laboratory in Hong Kong. Forty consecutive plasma specimens for general chemistry analytes on Beckman Coulter AU5822 and another 40 plasma specimens for troponin I analysis on Access 2 Immunoassay System were obtained, anonymised, and divided into two aliquots. One aliquot was analysed directly and the other was analysed after heating at 60°C for 60 minutes. A total of 20 chemical pathology tests were evaluated. Nine tests (sodium, potassium, chloride, urea, creatinine, total calcium, phosphate, total protein, and glucose) were not significantly affected by the heat inactivation procedure and remained clinically interpretable. Results for magnesium (15% mean increase), albumin (41% mean increase), bilirubin (8% mean decrease), amylase (27% mean decrease), and troponin I (76% mean decrease) were still interpretable using regression estimation with proportional bias. However, all enzymes studied except amylase (alanine transaminase, aspartate transaminase, alkaline phosphatase, gamma-glutamyltransferase, creatine kinase, and lactate dehydrogenase) were inactivated to a significant degree. Their Pearson r or Spearman rho values ranged from no significant correlation (P≥0.05) to 0.767, and most normality was rejected. Heat inactivation results in no significant change in electrolytes, glucose, and renal function tests, but causes a significant bias for many analytes. Recognition of the relationship between pre- and post-heat inactivation

  1. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  2. Open-source Framework for Storing and Manipulation of Plasma Chemical Reaction Data

    Science.gov (United States)

    Jenkins, T. G.; Averkin, S. N.; Cary, J. R.; Kruger, S. E.

    2017-10-01

    We present a new open-source framework for storage and manipulation of plasma chemical reaction data that has emerged from our in-house project MUNCHKIN. This framework consists of python scripts and C + + programs. It stores data in an SQL data base for fast retrieval and manipulation. For example, it is possible to fit cross-section data into most widely used analytical expressions, calculate reaction rates for Maxwellian distribution functions of colliding particles, and fit them into different analytical expressions. Another important feature of this framework is the ability to calculate transport properties based on the cross-section data and supplied distribution functions. In addition, this framework allows the export of chemical reaction descriptions in LaTeX format for ease of inclusion in scientific papers. With the help of this framework it is possible to generate corresponding VSim (Particle-In-Cell simulation code) and USim (unstructured multi-fluid code) input blocks with appropriate cross-sections.

  3. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej–Curie 55, 87-100 Toruń (Poland); Żenkiewicz, Marian [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2015-08-15

    Highlights: • We modified polylactide surface layer with chemical, plasma or laser methods. • We tested selected properties and surface structure of modified samples. • We stated that the plasma treatment appears to be the most beneficial. - Abstract: The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm{sup 2} was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  4. High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition

    Science.gov (United States)

    Vohra, Yogesh K. (Inventor); McCauley, Thomas S. (Inventor)

    1997-01-01

    The deposition of high quality diamond films at high linear growth rates and substrate temperatures for microwave-plasma chemical vapor deposition is disclosed. The linear growth rate achieved for this process is generally greater than 50 .mu.m/hr for high quality films, as compared to rates of less than 5 .mu.m/hr generally reported for MPCVD processes.

  5. Relationships between organohalogen contaminants and blood plasma clinical–chemical parameters in chicks of three raptor species from Northern Norway

    DEFF Research Database (Denmark)

    Sonne, Christian; Bustnes, Jan Ove; Herzke, Dorte

    2010-01-01

    Organohalogen contaminants (OHCs) may affect various physiological parameters in birds including blood chemistry. We therefore examined blood plasma clinical-chemical parameters and OHCs in golden eagle, white-tailed eagle and goshawk chicks from Northern Norway. Correlation analyses on pooled data...

  6. Combined Effects of Long-Living Chemical Species during Microbial Inactivation Using Atmospheric Plasma-Treated Water▿

    OpenAIRE

    Naïtali, Murielle; Kamgang-Youbi, Georges; Herry, Jean-Marie; Bellon-Fontaine, Marie-Noëlle; Brisset, Jean-Louis

    2010-01-01

    Electrical discharges in humid air at atmospheric pressure (nonthermal quenched plasma) generate long-lived chemical species in water that are efficient for microbial decontamination. The major role of nitrites was evidenced together with a synergistic effect of nitrates and H2O2 and matching acidification. Other possible active compounds are considered, e.g., peroxynitrous acid.

  7. Combined Effects of Long-Living Chemical Species during Microbial Inactivation Using Atmospheric Plasma-Treated Water▿

    Science.gov (United States)

    Naïtali, Murielle; Kamgang-Youbi, Georges; Herry, Jean-Marie; Bellon-Fontaine, Marie-Noëlle; Brisset, Jean-Louis

    2010-01-01

    Electrical discharges in humid air at atmospheric pressure (nonthermal quenched plasma) generate long-lived chemical species in water that are efficient for microbial decontamination. The major role of nitrites was evidenced together with a synergistic effect of nitrates and H2O2 and matching acidification. Other possible active compounds are considered, e.g., peroxynitrous acid. PMID:20889799

  8. Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors

    DEFF Research Database (Denmark)

    Storgaard-Larsen, Torben; Leistiko, Otto

    1997-01-01

    In this paper the influence of RF power, ammonia flow, annealing temperature, and annealing time on the optical and mechanical properties of plasma-enhanced chemically vapor deposited silicon oxynitride films, is presented. A low refractive index (1.47 to 1.48) film having tensile stress has been...

  9. Influence of gas flow velocity on the transport of chemical species in an atmospheric pressure air plasma discharge

    Science.gov (United States)

    Hasan, M. I.; Walsh, J. L.

    2017-03-01

    This paper reports on a numerical study of the transport of reactive chemical species generated in an atmospheric-pressure air plasma discharge under the influence of a high velocity flowing gas. Using a 1D air plasma model, it is shown that the reactive species transported downstream of the discharge region can be categorized into three distinct groups based on their spatial distribution: (i) decaying downstream species, (ii) increasing downstream species and (iii) variable density species, where the density is a function of both spatial position and gas flow velocity. It is demonstrated that the gas flow velocity influences the dominant chemical reactions downstream of the discharge region, noticeably altering the composition of several key reactive chemical species transported to a given downstream location. As many emerging applications of atmospheric pressure plasma are driven by the flux of reactive chemical species, this study highlights the importance of gas flow velocity, not only as a means to enhance mass transport but also as a means to manipulate the very nature of the reactive plasma chemistry arriving at a given location.

  10. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    Science.gov (United States)

    Jung, Heesoo; Seo, Jin Ah; Choi, Seungki

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.

  11. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    Science.gov (United States)

    Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing

    2008-10-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  12. Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition

    Science.gov (United States)

    Perálvarez, M.; Barreto, J.; Carreras, Josep; Morales, A.; Navarro-Urrios, D.; Lebour, Y.; Domínguez, C.; Garrido, B.

    2009-10-01

    An in-depth study of the physical and electrical properties of Si-nanocrystal-based MOSLEDs is presented. The active layers were fabricated with different concentrations of Si by both ion implantation and plasma-enhanced chemical vapour deposition. Devices fabricated by ion implantation exhibit a combination of direct current and field-effect luminescence under a bipolar pulsed excitation. The onset of the emission decreases with the Si excess from 6 to 3 V. The direct current emission is attributed to impact ionization and is associated with the reasonably high current levels observed in current-voltage measurements. This behaviour is in good agreement with transmission electron microscopy images that revealed a continuous and uniform Si nanocrystal distribution. The emission power efficiency is relatively low, ~10-3%, and the emission intensity exhibits fast degradation rates, as revealed from accelerated ageing experiments. Devices fabricated by chemical deposition only exhibit field-effect luminescence, whose onset decreases with the Si excess from 20 to 6 V. The absence of the continuous emission is explained by the observation of a 5 nm region free of nanocrystals, which strongly reduces the direct current through the gate. The main benefit of having this nanocrystal-free region is that tunnelling current flow assisted by nanocrystals is blocked by the SiO2 stack so that power consumption is strongly reduced, which in return increases the device power efficiency up to 0.1%. In addition, the accelerated ageing studies reveal a 50% degradation rate reduction as compared to implanted structures.

  13. Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Peralvarez, M; Carreras, Josep; Navarro-Urrios, D; Lebour, Y; Garrido, B [MIND, IN2UB, Department of Electronics, University of Barcelona, C/Marti i Franques 1, PL2, E-08028 Barcelona (Spain); Barreto, J; DomInguez, C [IMB-CNM, CSIC, Bellaterra, E-08193 Barcelona (Spain); Morales, A, E-mail: mperalvarez@el.ub.e [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico)

    2009-10-07

    An in-depth study of the physical and electrical properties of Si-nanocrystal-based MOSLEDs is presented. The active layers were fabricated with different concentrations of Si by both ion implantation and plasma-enhanced chemical vapour deposition. Devices fabricated by ion implantation exhibit a combination of direct current and field-effect luminescence under a bipolar pulsed excitation. The onset of the emission decreases with the Si excess from 6 to 3 V. The direct current emission is attributed to impact ionization and is associated with the reasonably high current levels observed in current-voltage measurements. This behaviour is in good agreement with transmission electron microscopy images that revealed a continuous and uniform Si nanocrystal distribution. The emission power efficiency is relatively low, {approx}10{sup -3}%, and the emission intensity exhibits fast degradation rates, as revealed from accelerated ageing experiments. Devices fabricated by chemical deposition only exhibit field-effect luminescence, whose onset decreases with the Si excess from 20 to 6 V. The absence of the continuous emission is explained by the observation of a 5 nm region free of nanocrystals, which strongly reduces the direct current through the gate. The main benefit of having this nanocrystal-free region is that tunnelling current flow assisted by nanocrystals is blocked by the SiO{sub 2} stack so that power consumption is strongly reduced, which in return increases the device power efficiency up to 0.1%. In addition, the accelerated ageing studies reveal a 50% degradation rate reduction as compared to implanted structures.

  14. SiCN alloys obtained by remote plasma chemical vapour deposition from novel precursors

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, T.P.; Badalian, A.M.; Yakovkina, L.V.; Kaichev, V.V.; Bukhtiyarov, V.I.; Shmakov, A.N.; Asanov, I.P.; Rachlin, V.I.; Fomina, A.N

    2003-04-01

    Silicon carbonitride films were synthesised in a remote plasma chemical vapour deposition process using novel single-source precursors [(CH{sub 3}){sub 2}HSiNHN(CH{sub 3}){sub 2} and (CH{sub 3}){sub 2}Si[NHN(CH{sub 3}){sub 2}]{sub 2}, which are silyl derivatives of 1,1-dimethylhydrazine. The films were characterised by X-ray photoelectron (XPS), Fourier transform infrared (FTIR) and UV-Vis absorption spectroscopy. The microstructure of the films was examined by scanning electron microscopy and diffraction of synchrotron radiation methods. XPS and FTIR spectroscopic studies showed the Si-C and Si-N to be the basic bonds for the films deposited in the system with excited hydrogen, whereas the C-N and Si-N bonds are mainly peculiar to the films synthesised in the system with excited helium. The films were found to be predominately amorphous with a number of crystallites embedded in an unstructured matrix. The crystalline phase can be indexed in tetragonal cell with lattice parameters a=9.6 A and c=6.4 A. Appearance of the crystals, their dimensions and crystal forms did not depend on the substrate temperature. We hypothesised the crystallisation to be occurring either in the gas phase during deposition or in the solid as a result of the increase in mechanical stress with increasing film thickness. The FTIR and XPS data demonstrate the chemical bonding and the atomic local order in the amorphous matrix to be much more complicated than those of Si{sub 3}N{sub 4}-SiC or Si{sub 3}N{sub 4}-C{sub 3}N{sub 4} mixtures. This novel material has an optical band gap varying within the energy range from 2.0 to 4.7 eV. The films obtained were highly resistant to thermal degradation.

  15. Characteristics of SiOx-containing hard film prepared by low temperature plasma enhanced chemical vapor deposition using hexamethyldisilazane or vinyltrimethylsilane and post oxygen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yi-Syuan; Liu, Wan-Yu; Wu, Hsin-Ming [Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China); Chen, Ko-Shao, E-mail: kschen@ttu.edu.tw [Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China); Cech, Vladimir [Institute of Materials Chemistry, Brno University of Technology (Czech Republic)

    2017-03-01

    This study, monomers of hexamethyldisilazane (HMDSZ) and vinyltrimethylsilane (VTMS) were respectively used to deposit on the surface of polyethylene terephthalate (PET) substrate by plasma enhanced chemical vapor deposition. Oxygen plasma treatment follows the HMDSZ and VTMS deposition to produce a hydrophilic surface film on the deposited surface. Time for HMDSZ and VTMS plasma deposition was changed to investigate its influences on water contact angle, deposited film thickness, refractive index, and friction coefficient properties. The surface morphologies of the processed samples were observed by scanning electron microscope and their chemical compositions were measured by X-ray photoelectron spectroscopy. At 550 nm wavelength, the optical transmittance of PET after the HMDSZ treatment decreases from 89% to 83%, but increases from 89% to 95% for the VTMS treatment. With increase in HMDSZ and VTMS deposition times, the film thickness increases and the refractive index decreases. Result revealed by XPS, SiO{sub 2} film is formed on the sample surface after the O{sub 2} plasma treatment. The film adhesion capability by the HMDSZ+O{sub 2} and VTMS+O{sub 2} treatment was stronger than that by the HMDSZ and VTMS treatment only. The SiOx films produced by HMDSZ+O{sub 2} and VTMS+O{sub 2} treatment can increase the film hardness and improve light transmittance. - Highlights: • With increase in HMDSZ and VTMS deposition times, the film thickness increases and the refractive index decreases. • The optical transmittance of PET after the VTMS treatment increases from 89% to 95%. • The SiO{sub 2} films deposited by HMDSZ+O{sub 2} and VTMS+O{sub 2} plasma can increase the film hardness and improve light transmittance. • It is expected that they can be applied to the optical transmittance protective film on plastic substrate in the future.

  16. Microwave plasma-assisted chemical vapor deposition of porous carbon film as supercapacitive electrodes

    Science.gov (United States)

    Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong

    2017-07-01

    Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.

  17. Upcycling Waste Lard Oil into Vertical Graphene Sheets by Inductively Coupled Plasma Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Wu, Angjian; Li, Xiaodong; Yang, Jian; Du, Changming; Shen, Wangjun; Yan, Jianhua

    2017-10-12

    Vertical graphene (VG) sheets were single-step synthesized via inductively coupled plasma (ICP)-enhanced chemical vapor deposition (PECVD) using waste lard oil as a sustainable and economical carbon source. Interweaved few-layer VG sheets, H₂, and other hydrocarbon gases were obtained after the decomposition of waste lard oil. The influence of parameters such as temperature, gas proportion, ICP power was investigated to tune the nanostructures of obtained VG, which indicated that a proper temperature and H₂ concentration was indispensable for the synthesis of VG sheets. Rich defects of VG were formed with a high I D / I G ratio (1.29), consistent with the dense edges structure observed in electron microscopy. Additionally, the morphologies, crystalline degree, and wettability of nanostructure carbon induced by PECVD and ICP separately were comparatively analyzed. The present work demonstrated the potential of our PECVD recipe to synthesize VG from abundant natural waste oil, which paved the way to upgrade the low-value hydrocarbons into advanced carbon material.

  18. Upcycling Waste Lard Oil into Vertical Graphene Sheets by Inductively Coupled Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Angjian Wu

    2017-10-01

    Full Text Available Vertical graphene (VG sheets were single-step synthesized via inductively coupled plasma (ICP-enhanced chemical vapor deposition (PECVD using waste lard oil as a sustainable and economical carbon source. Interweaved few-layer VG sheets, H2, and other hydrocarbon gases were obtained after the decomposition of waste lard oil. The influence of parameters such as temperature, gas proportion, ICP power was investigated to tune the nanostructures of obtained VG, which indicated that a proper temperature and H2 concentration was indispensable for the synthesis of VG sheets. Rich defects of VG were formed with a high I D / I G ratio (1.29, consistent with the dense edges structure observed in electron microscopy. Additionally, the morphologies, crystalline degree, and wettability of nanostructure carbon induced by PECVD and ICP separately were comparatively analyzed. The present work demonstrated the potential of our PECVD recipe to synthesize VG from abundant natural waste oil, which paved the way to upgrade the low-value hydrocarbons into advanced carbon material.

  19. Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Zhao, Rong; Ahktar, Meysam; Alruqi, Adel; Dharmasena, Ruchira; Jasinski, Jacek B.; Thantirige, Rukshan M.; Sumanasekera, Gamini U.

    2017-05-01

    In this work, we report the electrical transport properties of uniform and vertically oriented graphene (graphene nanowalls) directly synthesized on multiple substrates including glass, Si/SiO2 wafers, and copper foils using radio-frequency plasma enhanced chemical vapor deposition (PECVD) with methane (CH4) as the precursor at relatively low temperatures. The temperature for optimum growth was established with the aid of transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. This approach offers means for low-cost graphene nanowalls growth on an arbitrary substrate with the added advantage of transfer-free device fabrication. The temperature dependence of the electrical transport properties (resistivity and thermopower) were studied in the temperature range, 30-300 K and analyzed with a combination of 2D-variable range hopping (VRH) and thermally activated (TA) conduction mechanisms. An anomalous temperature dependence of the thermopower was observed for all the samples and explained with a combination of a diffusion term having a linear temperature dependence plus a term with an inverse temperature dependence.

  20. The influence of plasma technology coupled to chemical grafting on the cell growth compliance of 3D hydroxyapatite scaffolds.

    Science.gov (United States)

    Russo, Laura; Zanini, Stefano; Giannoni, Paolo; Landi, Elena; Villa, Anna; Sandri, Monica; Riccardi, Claudia; Quarto, Rodolfo; Doglia, Silvia M; Nicotra, Francesco; Cipolla, Laura

    2012-11-01

    The development of advanced materials with biomimetic features in order to elicit desired biological responses and to guarantee tissue biocompatibility is recently gaining attention for tissue engineering applications. Bioceramics, such as hydroxyapatite-based biomaterials are now used in a number of different applications throughout the body, covering all areas of the skeleton, due to their biological and chemical similarity to the inorganic phases of bones. When bioactive sintered hydroxyapatite (HA) is desired, biomolecular modification of these materials is needed. In the present work, we investigated the influence of plasma surface modification coupled to chemical grafting on the cell growth compliance of HA 3D scaffolds.

  1. Automation of a remote plasma-enhanced chemical vapor deposition system using LabVIEW

    Science.gov (United States)

    Sharma, Rajan; Fretwell, John L.; Vaihinger, Jochen; Banerjee, Sanjay K.

    1997-08-01

    The remote plasma-enhanced chemical vapor deposition (RPCVD) system is an experimental low temperature Si/Si-Ge epitaxy system. This paper describes an integrated hardware/software automation package developed for the RPCVD system. Aspects of the system controlled by the package include pneumatic gas valves, mass flow controllers (MFCs), and a temperature controller. The package was developed on an Apple Quadra 950 platform using LabVIEWTM 3.1 and associated data acquisition and control hardware supplied by National Instruments and other vendors. The software interface allows the user to operate the system through a virtual control panel which displays critical system parameters such as chamber pressure, chamber temperature and gas flow rates, along with the states of the gas valves and the MFCs. The system can also be run in the recipe mode, in which a sequence of steps are read in from an ExcelTM file. A simulation routine scans each recipe for possible errors such as violation of valve interlocks while the recipe is being loaded. All actions, whether in the manual mode or the recipe mode, are recorded in a log file. Finally, since many of the gases used in the RPCVD process are toxic and/or flammable, there is an emphasis on safety in the entire control scheme. A safety monitor routine constantly checks for valve interlocks and pressure-valve interlocks. Upon detecting an illegal state, it automatically takes necessary action to bring the system into a safe state. In addition to these software safety features, there are also hardware interlocks to deal with such situations as power outages.

  2. Nitride film growth morphology using remote plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wintrebert-Fouquet, M.; Butcher, K.S.A.; Chen, P.P.T. [Physics Department, Macquarie University, Sydney, NSW 2109 (Australia); Wuhrer, R. [Microstructural Analysis Unit, Faculty of Science, University of Technology, Sydney, Broadway, NSW 2007 (Australia)

    2007-06-15

    Gallium nitride and indium nitride films have been grown by remote plasma enhanced chemical vapor deposition (RPECVD) at temperatures between 570 and 650 C for GaN and between 350 and 570 C for InN on different substrates. For GaN vast improvements in film morphology and quality have resulted from reductions in background impurities when compared to previous reports. Epitaxial material can now be grown at 650 C under optimized growth conditions. Columnar growth still occurs for growth on some substrates, however film coalescence is observed when using appropriate buffer layers and epitaxial growth can also be observed. High resolution SEM images show examples of this. The root-mean-square surface roughness of epitaxial samples, as measured using atomic force microscopy, shows values of as little as 10 Angstroms. While X-ray diffraction shows that these surfaces are not amorphous but have a strong (0001) preferred axis with FWHM limited by instrumental effects to (2{theta}) 0.085 degrees. The improvement in film quality has allowed heavily doped n-type films to be grown with an electron mobility of 160 cm{sup 2}/V.s for a carrier concentration of {proportional_to}1 x 10{sup 19} cm{sup -3} at 650 C. Moss-Burstein shifted absorption data confirms the high doping level. For InN film growth by RPECVD, columnar growth is commonly observed in the temperature region of interest for films grown directly on sapphire, however film coalescence and epitaxial films are also observed for this material. X-ray diffraction indicates very sharp (0002) peaks with FWHM of (2{theta}) 0.07 degrees. High resolution SEM images show examples of film morphology at different growth temperatures. Electron backscattered diffraction images indicate a wurtzite structure even for InN films with strong deviations from the accepted lattice parameters. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Characterization of the Chemical Kinetics in an O2/HMDSO RF Plasma for Material Processing

    Directory of Open Access Journals (Sweden)

    Ruggero Barni

    2012-01-01

    Full Text Available Experimental study of the plasma gas phase in low-pressure radiofrequency discharges of oxygen and hexamethyldisiloxane is presented. The plasma phase has been studied by means of optical emission spectroscopy. Mass spectroscopy of the neutral and of the charged species has been performed too, directly sampling the plasma gas phase, by a dedicated spectrometer. We also measured the ion energy distribution. We have studied the influence of the operating conditions on the plasma gas-phase composition which plays a primary role in the formation process of SiO2 films, which are known for their important applicative uses.

  4. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    Science.gov (United States)

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  5. The Influences of H2Plasma Pretreatment on the Growth of Vertically Aligned Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Wen Hua-Chiang

    2008-01-01

    Full Text Available AbstractThe effects of H2flow rate during plasma pretreatment on synthesizing the multiwalled carbon nanotubes (MWCNTs by using the microwave plasma chemical vapor deposition are investigated in this study. A H2and CH4gas mixture with a 9:1 ratio was used as a precursor for the synthesis of MWCNT on Ni-coated TaN/Si(100 substrates. The structure and composition of Ni catalyst nanoparticles were investigated using scanning electron microscopy (SEM and transmission electron microscopy (TEM. The present findings showed that denser Ni catalyst nanoparticles and more vertically aligned MWCNTs could be effectively achieved at higher flow rates. From Raman results, we found that the intensity ratio of G and D bands (ID/IG decreases with an increasing flow rate. In addition, TEM results suggest that H2plasma pretreatment can effectively reduce the amorphous carbon and carbonaceous particles. As a result, the pretreatment plays a crucial role in modifying the obtained MWCNTs structures.

  6. Electron emission from nano-structured carbon films fabricated by hot-filament chemical-vapor deposition and microwave plasma-enhanced chemical vapor deposition

    CERN Document Server

    Park, K H; Lee, K M; Oh, S G; Lee, S I; Koh, K H

    2000-01-01

    The electron-emission characteristics of nano-structured carbon films fabricated by using the HFCVD (hot- filament chemical-vapor deposition) and the MPECVD (microwave plasma-enhanced chemical-vapor deposition) methods with a metal catalyst are presented. According to our observation, neither the formation nor the alignment of nano tubes is absolutely necessary to realize carbon-based electron emitters. However, utilization of chrome as an interlayer between Si substrates and metal catalyst particles results in a great improvement in the emission characteristics and the mechanical stability. Also, fabrication of good electron-emitting carbon films on glass substrates, with sputter-deposited chrome electrodes,at a nominal temperature approx 615 .deg. C was demonstrated.

  7. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.

  8. XPS Study of the Chemical Structure of Plasma Biocopolymers of Pyrrole and Ethylene Glycol

    National Research Council Canada - National Science Library

    González-Torres, Maribel; Olayo, Ma. Guadalupe; Cruz, Guillermo J; Gómez, Lidia Ma; Sánchez-Mendieta, Víctor; González-Salgado, Francisco

    2014-01-01

    An XPS study about the structure of plasma biocopolymers synthesized with resistive radio frequency glow discharges and random combinations of ethylene glycol, pyrrole, and iodine, as a dopant, is presented in this work...

  9. CH spectroscopy for carbon chemical erosion analysis in high density low temperature hydrogen plasma

    NARCIS (Netherlands)

    Westerhout, J.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2009-01-01

    The CH A-X molecular band is measured upon seeding the hydrogen plasma in the linear plasma generator Pilot-PSI [electron temperature T-e=0.1-2.5 eV and electron density n(e)=(0.5-5) X 10(20) m(-3)] with methane. Calculated inverse photon efficiencies for these conditions range from 3 up to

  10. Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition

    Science.gov (United States)

    Peiyu, JI; Jun, YU; Tianyuan, HUANG; Chenggang, JIN; Yan, YANG; Lanjian, ZHUGE; Xuemei, WU

    2018-02-01

    A high growth rate fabrication of diamond-like carbon (DLC) films at room temperature was achieved by helicon wave plasma chemical vapor deposition (HWP-CVD) using Ar/CH4 gas mixtures. The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy. The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe. The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed. The growth rate of the DLC films reaches a maximum value of 54 μm h‑1 at the CH4 flow rate of 85 sccm, which is attributed to the higher plasma density during the helicon wave plasma discharge. The CH and H α radicals play an important role in the growth of DLC films. The results show that the H α radicals are beneficial to the formation and stabilization of C=C bond from sp2 to sp3.

  11. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.

    Science.gov (United States)

    Ma, Yifei; Kim, Daekyoung; Jang, Haegyu; Cho, Sung Min; Chae, Heeyeop

    2014-12-01

    Low-temperature graphene was synthesized at 400 degrees C with inductively coupled plasma chemical vapor deposition (PECVD) process. The effects of plasma power and flow rate of various carbon containing precursors and hydrogen on graphene properties were investigated with optical emission spectroscopy (OES). Various radicals monitored by OES were correlated with graphene film properties such as sheet resistance, I(D)/I(G) ratio of Raman spectra and transparency. C2H2 was used as a main precursor and the increase of plasma power enhanced intensity of carbon (C2) radical OES intensity in plasma, reduced sheet resistance and increased transparency of graphene films. The reduced flow rate of C2H2 decreased sheet resistance and increased transparency of graphene films in the range of this study. H2 addition was found to increase sheet resistance, transparency and attributed to reduction of graphene grain and etching graphene layers. OES analysis showed that C2 radicals contribute to graphite networking and sheet resistance reduction. TEM and AFM were applied to provide credible information that graphene had been successfully grown at low temperature.

  12. Low-Pressure H2, NH3 Microwave Plasma Treatment of Polytetrafluoroethylene (PTFE Powders: Chemical, Thermal and Wettability Analysis

    Directory of Open Access Journals (Sweden)

    Harald Hunke

    2015-04-01

    Full Text Available Functionalization of Polytetrafluoroethylene (PTFE powders of ~6 μm particle size is carried out using low-pressure 2.45 GHz H2, NH3 microwave plasmas for various durations (2.5, 10 h to chemically modify their surface and alter their surface energy. The X-ray Photoelectron Spectroscopy (XPS analyses reveal that plasma treatment leads to significant defluorination (F/C atomic ratio of 1.13 and 1.30 for 10 h NH3 and H2 plasma treatments, respectively vs. 1.86 for pristine PTFE, along with the incorporation of functional polar moieties on the surface, resulting in enhanced wettability. Analysis of temperature dependent XPS revealed a loss of surface moieties above 200 °C, however, the functional groups are not completely removable even at higher temperatures (>300 °C, thus enabling the use of plasma treated PTFE powders as potential tribological fillers in high temperature engineering polymers. Ageing studies carried over a period of 12 months revealed that while the surface changes degenerate over time, again, they are not completely reversible. These functionalised PTFE powders can be further used for applications into smart, high performance materials such as tribological fillers for engineering polymers and bio-medical, bio-material applications.

  13. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Mayo, E-mail: yokoyama@plasma.ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Johkura, Kohei, E-mail: kohei@shinshu-u.ac.jp [Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621 (Japan); Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-08

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN

  14. Evaluating the influence of half-life, milk:plasma partition coefficient, and volume of distribution on lactational exposure to chemicals in children.

    Science.gov (United States)

    Verner, Marc-André; Plouffe, Laurence; Kieskamp, Kyra K; Rodríguez-Leal, Inés; Marchitti, Satori A

    2017-05-01

    Women are exposed to multiple environmental chemicals, many of which are known to transfer to breast milk during lactation. However, little is known about the influence of the different chemical-specific pharmacokinetic parameters on children's lactational dose. Our objective was to develop a generic pharmacokinetic model and subsequently quantify the influence of three chemical-specific parameters (biological half-life, milk:plasma partition coefficient, and volume of distribution) on lactational exposure to chemicals and resulting plasma levels in children. We developed a two-compartment pharmacokinetic model to simulate lifetime maternal exposure, placental transfer, and lactational exposure to the child. We performed 10,000 Monte Carlo simulations where half-life, milk:plasma partition coefficient, and volume of distribution were varied. Children's dose and plasma levels were compared to their mother's by calculating child:mother dose ratios and plasma level ratios. We then evaluated the association between the three chemical-specific pharmacokinetic parameters and child:mother dose and level ratios through linear regression and decision trees. Our analyses revealed that half-life was the most influential parameter on children's lactational dose and plasma concentrations, followed by milk:plasma partition coefficient and volume of distribution. In bivariate regression analyses, half-life explained 72% of child:mother dose ratios and 53% of child:mother level ratios. Decision trees aiming to identify chemicals with high potential for lactational exposure (ratio>1) had an accuracy of 89% for child:mother dose ratios and 84% for child:mother level ratios. Our study showed the relative importance of half-life, milk:plasma partition coefficient, and volume of distribution on children's lactational exposure. Developed equations and decision trees will enable the rapid identification of chemicals with a high potential for lactational exposure. Copyright © 2017

  15. Characterization of Boron Carbonitride (BCN) Thin Films Deposited by Radiofrequency and Microwave Plasma Enhanced Chemical Vapor Deposition

    OpenAIRE

    M. A. Mannan; Nagano, M.; K. Shigezumi; Kida, T.; Hirao, N.; Baba, Y.

    2008-01-01

    Boron carbonitride (BCN) thin films with a thickness of ~4 µ­m were synthesized on Si (100) substrate by radiofrequency and microwave plasma enhanced chemical vapor deposition using trimethylamine borane [(CH3)3N.BH3)] as a molecular precursor. The microstructures of the films were evaluated using field emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to analyze t...

  16. In-situ characterization of trapped charges in amorphous semiconductor films during plasma-enhanced chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    S. Nunomura

    2014-09-01

    Full Text Available The subband-gap absorption current in a hydrogenated amorphous silicon film has been measured during plasma-enhanced chemical vapor deposition. The current is probed by a near-infrared laser while photoexcited carriers are generated under visible laser illumination. The trapped charge density is determined from the magnitude of current under the assumption of carrier generation and recombination kinetics. The result indicates that trapped charges are distributed uniformly in the film during growth, and they are reduced after the growth. The trapped charge density is minimized at a growth temperature of ≈ 473 K.

  17. Chemical Vapor Identification by Plasma Treated Thick Film Tin Oxide Gas Sensor Array and Pattern Recognition

    Directory of Open Access Journals (Sweden)

    J. K. Srivastava

    2011-02-01

    Full Text Available Present study deals the class recognition potential of a four element plasma treated thick film tin oxide gas sensor array exposed with volatile organic compounds (VOCs. Methanol, Ethanol and Acetone are selected as target VOCs and exposed on sensor array at different concentration in range from 100-1000 ppm. Sensor array consist of four tin oxide sensors doped with 1-4 % PbO concentrations were fabricated by thick film technology and then treated with oxygen plasma for 5-10 minute durations. Sensor signal is analyzed by principal component analysis (PCA for visual classification of VOCs. Further output of PCA is used as input for classification of VOCs by four pattern classification techniques as: linear discriminant analysis (LDA, k-nearest neighbor (KNN, back propagation neural network (BPNN and support vector machine (SVM. All the four classifier results 100 % correct classification rate of VOCs by response analysis of sensor array treated with plasma for 5 minute.

  18. Simulation of two-dimensional interior ballistics model of solid propellant electrothermal-chemical launch with discharge rod plasma generator

    Directory of Open Access Journals (Sweden)

    Yan-jie Ni

    2017-08-01

    Full Text Available Instead of the capillary plasma generator (CPG, a discharge rod plasma generator (DRPG is used in the 30 mm electrothermal-chemical (ETC gun to improve the ignition uniformity of the solid propellant. An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun (2D-IB-SPETCG is presented to describe the process of the ETC launch. Both calculated pressure and projectile muzzle velocity accord well with the experimental results. The feasibility of the 2D-IB-SPETCG model is proved. Depending on the experimental data and initial parameters, detailed distribution of the ballistics parameters can be simulated. With the distribution of pressure and temperature of the gas phase and the propellant, the influence of plasma during the ignition process can be analyzed. Because of the radial flowing plasma, the propellant in the area of the DRPG is ignited within 0.01 ms, while all propellant in the chamber is ignited within 0.09 ms. The radial ignition delay time is much less than the axial delay time. During the ignition process, the radial pressure difference is less than 5  MPa at the place 0.025 m away from the breech. The radial ignition uniformity is proved. The temperature of the gas increases from several thousand K (conventional ignition to several ten thousand K (plasma ignition. Compare the distribution of the density and temperature of the gas, we know that low density and high temperature gas appears near the exits of the DRPG, while high density and low temperature gas appears at the wall near the breech. The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch. The 2D-IB-SPETC model can be used for prediction and improvement of experiments.

  19. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    Science.gov (United States)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  20. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    Science.gov (United States)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  1. Thermodynamics of the quark-gluon plasma at finite chemical potential: color path integral Monte Carlo results

    Energy Technology Data Exchange (ETDEWEB)

    Filinov, V.S.; Fortov, V.E. [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13, bd. 2, 125412 Moscow (Russian Federation); Bonitz, M. [Institute for Theoretical Physics and Astrophysics, Christian Albrechts University Kiel, Leibnizstrasse 15, D-24098 Kiel (Germany); Ivanov, Y.B. [National Research Center ' ' Kurchatov Institute' ' , Kurchatov Sq. 1, 123182 Moscow, Russia, National Research Nuclear University ' ' MEPhI' ' , Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Reseach, Joliot-Curie str. 6, Dubna, 141980, Moscow Region (Russian Federation)

    2015-02-01

    Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), color quantum path-integral Monte-Carlo (PIMC) calculations of the thermodynamic properties of the QGP are performed. We extend our previous zero chemical potential simulations to the QGP at finite baryon chemical potential. The results indicate that color PIMC can be applied not only above the QCD critical temperature T{sub c} but also below T{sub c}. Besides reproducing the lattice equation of state our approach yields also valuable additional insight into the internal structure of the QGP, via the pair distribution functions of the various quasiparticles. In particular, the pair distribution function of gluons reflects the existence of gluon-gluon bound states at low temperatures and μ = 175 MeV, i.e. glueballs, while meson-like bound states are not found. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Remote nitrogen microwave plasma chemical vapor deposition from a tetramethyldisilazane precursor. 2. Properties of deposited silicon carbonitride films

    Energy Technology Data Exchange (ETDEWEB)

    Blaszczyk-Lezak, I. [Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Lodz (Poland); Wrobel, A.M. [Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Lodz (Poland)]. E-mail: amwrobel@bilbo.cbmm.lodz.pl; Bielinski, D.M. [Institute of Polymers, Faculty of Chemistry, Technical University of Lodz, 90-924 Lodz (Poland)

    2006-02-21

    The physical, optical, and mechanical properties of silicon carbonitride (Si:C:N) films produced by the remote nitrogen plasma chemical vapor deposition (RP-CVD) from tetramethyldisilazane have been investigated in relation to their chemical composition and structure. The films deposited at different substrate temperature (30-400 deg. C) were characterized in terms of their density, refractive index, hardness, elastic modulus, and friction coefficient. The correlations between the film compositional parameters, expressed by the atomic concentration ratios N / Si, C / Si, and N / C, as well as structural parameters described by the relative integrated intensities of the infrared absorption bands from the Si-N, Si-C, and SiMe units (controlled by substrate temperature) were investigated. On the basis of the results of these studies, reasonable structure-property relationships have been determined.

  3. Grafting of copolymer styrene maleic anhydride on poly(ethylene terephthalate) film by chemical reaction and by plasma method

    Energy Technology Data Exchange (ETDEWEB)

    Bigan, Muriel; Bigot, Julien [Laboratoire de Chimie Organique et Macromoleculaire (UMR 8009), Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France); Mutel, Brigitte [Laboratoire de Genie des Procedes d' Interactions Fluides reactifs-Materiaux (UPRES-EA 3751), Batiment C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: Brigitte.mutel@univ-lille1.fr; Coqueret, Xavier [Laboratoire Reactions Selectives et Applications (UMR-CNRS 6519) Universite de Reims Champagne-Ardennes, B.P. 1039, 51687 Reims Cedex 2 (France)

    2008-02-15

    This work deals with the chemical grafting of a styrene maleic anhydride copolymer on the surface of a previously hydrolyzed polyethylene terephthalate (PET) film 12 {mu}m thick via covalent bond. Two different ways are studied. The first one involves an activation of the hydrolyzed PET by the triethylamine before the grafting step. In the second one, the copolymer reacts with the 4-dimethylaminopyridine in order to form maleinyl pyridinium salt which reacts with alcohol function of the hydrolyzed PET. Characterization and quantification of the grafting are performed by Fourier transform infrared spectroscopy. Factorial experiment designs are used to optimize the process and to estimate experimental parameters effects. The opportunity to associate the chemical process to a cold remote nitrogen plasma one is also examined.

  4. The physical and chemical properties of plasma treated ultra-high-molecular-weight polyethylene fibers

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Teodoru, Steluta; Hansen, Charles M.

    2011-01-01

    polymer assures maximum physical adhesion to transfer loads uniformly. Plasma treatment of ultra-high-molecular-weight polyethylene (UHMWPE) fibers is shown to significantly increase the amount of oxygen in the surface. There are two distinct types of surfaces in both the plasma treated and the untreated...... UHMWPE fibers. One type is typical of polyethylene (PE) polymers while the other is characteristic of the oxygenated surface at much higher values of HSP. The oxygenated surface of the plasma treated fibers has the HSP δD, δP, and δH equal to 16.5, 15.3, and 8.2, compared to the pure PE surface with HSP...... at 18.0, 1.2, and 1.4, all in MPa½. The dispersion parameter has been lowered somewhat by the plasma treatment, while the polar and hydrogen bonding parameters are much higher. The HSP methodology predicts enhanced adhesion is possible by skillful use of anhydride and nitrile functional groups in matrix...

  5. Low temperature plasma enhanced chemical vapor deposition of thin films combining mechanical stiffness, electrical insulation, and homogeneity in microcavities

    Science.gov (United States)

    Peter, S.; Günther, M.; Hauschild, D.; Richter, F.

    2010-08-01

    The deposition of hydrogenated amorphous carbon (a-C:H) as well as hydrogenated amorphous silicon carbonitride (SiCN:H) films was investigated in view of a simultaneous realization of a minimum Young's modulus (>70 GPa), a high electrical insulation (≥1 MV/cm), a low permittivity and the uniform coverage of microcavities with submillimeter dimensions. For the a-C:H deposition the precursors methane (CH4) and acetylene (C2H2) were used, while SiCN:H films were deposited from mixtures of trimethylsilane [SiH(CH3)3] with nitrogen and argon. To realize the deposition of micrometer thick films with the aforementioned complex requirements at substrate temperatures ≤200 °C, several plasma enhanced chemical vapor deposition methods were investigated: the capacitively coupled rf discharge and the microwave electron cyclotron resonance (ECR) plasma, combined with two types of pulsed substrate bias. SiCN:H films deposited at about 1 Pa from ECR plasmas with pulsed high-voltage bias best met the requirements. Pulsed biasing with pulse periods of about 1 μs and amplitudes of about -2 kV was found to be most advantageous for the conformal low temperature coating of the microtrenches, thereby ensuring the required mechanical and insulating film properties.

  6. Modification of optical and electrical properties of chemical bath deposited SnS using O{sub 2} plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, A. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Martínez, H., E-mail: hm@fis.unam.mx [Instituto de Ciencias Fisicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Calixto-Rodríguez, M. [Centro de Investigación en Energía, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Avellaneda, D. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, México (Mexico); Reyes, P.G. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Flores, O. [Instituto de Ciencias Fisicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico)

    2013-06-15

    In this paper, we report modifications of structural and optical, electrical properties that occur in tin sulphide (SnS) treated in O{sub 2} plasma. The SnS thin films were deposited by chemical bath deposition technique. The samples were treated in an O{sub 2} plasma discharge at 3 Torr of pressure discharge, a discharge voltage of 2.5 kV and 20 mA of discharge current. The prepared and treated thin films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The photoconductivity and electrical effects of SnS have been studied. The SnS thin films had an orthorhombic crystalline structure. With the plasma treatment the optical gap and electrical properties of the SnS films changed from 1.61 to 1.84 eV, for 3.9 × 10{sup 5} to 10.42 Ω cm, respectively. These changes can be attributed to an increase in electron density, percolation effects due to porosity, surface degradation/etching that is an increase in surface roughness, where some structural changes related to crystallinity occurs like a high grain size as revealed by SEM images.

  7. Chemical fate of the nicotinic acetylcholinergic radiotracer [{sup 123}I]5-IA-85380 in baboon brain and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Ronald M. [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States) and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06510 (United States) and VA Connecticut HCS, West Haven, CT 06516 (United States)]. E-mail: ronald.baldwin@vanderbilt.edu; Zoghbi, Sami S. [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06510 (United States); Staley, Julie K. [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Brenner, Eric [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Al-Tikriti, Mohammed S. [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Amici, Louis [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Fujita, Masahiro [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Innis, Robert B. [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Tamagnan, Gilles [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States)

    2006-05-15

    The fate of the nicotinic acetylcholinergic receptor radiotracer [{sup 123}I]5-IA-85380 ([{sup 123}I]5-IA) was studied in baboon by analyzing the chemical composition of brain tissue and plasma after intravenous administration of the tracer. Acetonitrile denaturation and high-performance liquid chromatography (HPLC) analysis showed predominantly unchanged (91-98%) parent tracer in all brain tissues examined, compared to significant metabolism (23% parent) in the plasma at 90 min postinjection, and control tissue recovery of 95-98%. [{sup 123}I]5-IA was distributed to the thalamus with a standardized uptake value of 9.2 (0.04% dose/g) or a concentration 5.8 times higher than that of the cerebellum. The HPLC behavior of a synthesized sample of one hypothesized metabolite, 5-iodo-3-pyridinol (5-IP), was consistent with plasma radiometabolite fraction. Since only parent radiotracer compound was found in brain tissue, these results add confidence that information derived from single photon emission computed tomography images of {sup 123}I activity in the brain after [{sup 123}I]5-IA administration can be interpreted as distribution of an intact radiotracer.

  8. Compositions and chemical states on the co-deposition layer of lithiated tungsten of plasma-facing components of EAST

    Directory of Open Access Journals (Sweden)

    Cong Li

    2017-08-01

    Full Text Available Lithiation is beneficial to enhance plasma performance in EAST by reducing hydrogen and impurities recycling via lithium (Li wall conditioning. High-Z materials like tungsten (W have been selected as up–divertor in EAST tokamak. However, the nature of the chemical compositions and states on Li-W co-deposition layer is still unclear. In this paper, pure W plasma-facing component experiments with Li deposition layer were carried out by a cascaded-arc linear plasma generator. An in-situ laser-induced breakdown spectroscopy (LIBS system with spatial resolution about 1mm and depth resolution about 200nm was developed to real time monitor the composition and distribution on Li-W co-deposition layer. The chemical states of the co-deposition layer and laser ablation spots were determined by a post-mortem analysis of X-ray photoelectron spectroscopy (XPS. Both LIBS and XPS results shew that higher concentration of Li could be observed at the region closed to the Li source. The XPS spectra indicated that Li2CO3 peaks intensities at 289eV and 531.6eV were obviously changed with the Li distribution. In addition, high proportional W oxides were formed on the surface of Li-W co-deposition layer in the lithiated W sample. Elemental W signals corresponding to the laser ablation spots were much more obvious than them in the area of Li-W co-deposition layer surface without laser ablation. This work could improve the understanding of the Li-wall conditioning for tungsten divertor in EAST tokamak.

  9. Plasma-enhanced chemical vapor deposition of graphene on copper substrates

    Directory of Open Access Journals (Sweden)

    Nicolas Woehrl

    2014-04-01

    Full Text Available A plasma enhanced vapor deposition process is used to synthesize graphene from a hydrogen/methane gas mixture on copper samples. The graphene samples were transferred onto SiO2 substrates and characterized by Raman spectroscopic mapping and atomic force microscope topographical mapping. Analysis of the Raman bands shows that the deposited graphene is clearly SLG and that the sheets are deposited on large areas of several mm2. The defect density in the graphene sheets is calculated using Raman measurements and the influence of the process pressure on the defect density is measured. Furthermore the origin of these defects is discussed with respect to the process parameters and hence the plasma environment.

  10. Method of plasma enhanced chemical vapor deposition of diamond using methanol-based solutions

    Science.gov (United States)

    Tzeng, Yonhua (Inventor)

    2009-01-01

    Briefly described, methods of forming diamond are described. A representative method, among others, includes: providing a substrate in a reaction chamber in a non-magnetic-field microwave plasma system; introducing, in the absence of a gas stream, a liquid precursor substantially free of water and containing methanol and at least one carbon and oxygen containing compound having a carbon to oxygen ratio greater than one, into an inlet of the reaction chamber; vaporizing the liquid precursor; and subjecting the vaporized precursor, in the absence of a carrier gas and in the absence in a reactive gas, to a plasma under conditions effective to disassociate the vaporized precursor and promote diamond growth on the substrate in a pressure range from about 70 to 130 Torr.

  11. Modular and efficient ozone systems based on massively parallel chemical processing in microchannel plasma arrays: performance and commercialization

    Science.gov (United States)

    Kim, M.-H.; Cho, J. H.; Park, S.-J.; Eden, J. G.

    2017-08-01

    Plasmachemical systems based on the production of a specific molecule (O3) in literally thousands of microchannel plasmas simultaneously have been demonstrated, developed and engineered over the past seven years, and commercialized. At the heart of this new plasma technology is the plasma chip, a flat aluminum strip fabricated by photolithographic and wet chemical processes and comprising 24-48 channels, micromachined into nanoporous aluminum oxide, with embedded electrodes. By integrating 4-6 chips into a module, the mass output of an ozone microplasma system is scaled linearly with the number of modules operating in parallel. A 115 g/hr (2.7 kg/day) ozone system, for example, is realized by the combined output of 18 modules comprising 72 chips and 1,800 microchannels. The implications of this plasma processing architecture for scaling ozone production capability, and reducing capital and service costs when introducing redundancy into the system, are profound. In contrast to conventional ozone generator technology, microplasma systems operate reliably (albeit with reduced output) in ambient air and humidity levels up to 90%, a characteristic attributable to the water adsorption/desorption properties and electrical breakdown strength of nanoporous alumina. Extensive testing has documented chip and system lifetimes (MTBF) beyond 5,000 hours, and efficiencies >130 g/kWh when oxygen is the feedstock gas. Furthermore, the weight and volume of microplasma systems are a factor of 3-10 lower than those for conventional ozone systems of comparable output. Massively-parallel plasmachemical processing offers functionality, performance, and commercial value beyond that afforded by conventional technology, and is currently in operation in more than 30 countries worldwide.

  12. The component content of active particles in a plasma-chemical reactor based on volume barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Soloshenko, I A [Institute of Physics of National Academy of Sciences of Ukraine, 46 Nauki Avenue, 03028, Kiev (Ukraine); Tsiolko, V V [Institute of Physics of National Academy of Sciences of Ukraine, 46 Nauki Avenue, 03028, Kiev (Ukraine); Pogulay, S S [Institute of Physics of National Academy of Sciences of Ukraine, 46 Nauki Avenue, 03028, Kiev (Ukraine); Terent' yeva, A G [Institute of Physics of National Academy of Sciences of Ukraine, 46 Nauki Avenue, 03028, Kiev (Ukraine); Bazhenov, V Yu [Institute of Physics of National Academy of Sciences of Ukraine, 46 Nauki Avenue, 03028, Kiev (Ukraine); Shchedrin, A I [Institute of Physics of National Academy of Sciences of Ukraine, 46 Nauki Avenue, 03028, Kiev (Ukraine); Ryabtsev, A V [Institute of Physics of National Academy of Sciences of Ukraine, 46 Nauki Avenue, 03028, Kiev (Ukraine); Kuzmichev, A I [National Technical University ' KPI' , 37 Peremogy Avenue, KPI-2230, 03056, Kiev, (Ukraine)

    2007-02-01

    In this paper the results of theoretical and experimental studies of the component content of active particles formed in a plasma-chemical reactor composed of a multiple-cell generator of active particles, based on volume barrier discharge, and a working chamber are presented. For calculation of the content of uncharged plasma components an approach is proposed which is based on averaging of the power introduced over the entire volume. Advantages of such an approach lie in an absence of fitting parameters, such as the dimensions of microdischarges, their surface density and rate of breakdown. The calculation and the experiment were accomplished with the use of dry air (20% relative humidity) as the plasma generating medium. Concentrations of O{sub 3}, HNO{sub 3}, HNO{sub 2}, N{sub 2} O{sub 5} and NO{sub 3} were measured experimentally in the discharge volume and working chamber for the residence time of particles on a discharge of 0.3 s and more and discharge specific power of 1.5 W cm{sup -3}. It has been determined that the best agreement between the calculation and the experiment occurs at calculated gas medium temperatures in the discharge plasma of about 400-425 K, which correspond to the experimentally measured rotational temperature of nitrogen. In most cases the calculated concentrations of O{sub 3}, HNO{sub 3}, HNO{sub 2}, N{sub 2}O{sub 5} and NO{sub 3} for the barrier discharge and the working chamber are in fairly good agreement with the respective measured values.

  13. Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties

    Science.gov (United States)

    Heimann, Robert B.

    2016-06-01

    This contribution discusses salient properties and functions of hydroxylapatite (HA)-based plasma-sprayed coatings, including the effect on biomedical efficacy of coating thickness, phase composition and distribution, amorphicity and crystallinity, porosity and surface roughness, cohesion and adhesion, micro- and nano-structured surface morphology, and residual coating stresses. In addition, it will provide details of the thermal alteration that HA particles undergo in the extremely hot plasma jet that leads to dehydroxylated phases such as oxyhydroxylapatite (OHA) and oxyapatite (OA) as well as thermal decomposition products such as tri-(TCP) and tetracalcium phosphates (TTCP), and quenched phases such as amorphous calcium phosphate (ACP). The contribution will further explain the role of ACP during the in vitro interaction of the as-deposited coatings with simulated body fluid resembling the composition of extracellular fluid (ECF) as well as the in vivo responses of coatings to the ECF and the host tissue, respectively. Finally, it will briefly describe performance profiles required to fulfill biological functions of osteoconductive bioceramic coatings designed to improve osseointegration of hip endoprostheses and dental root implants. In large parts, the content of this contribution is a targeted review of work done by the author and his students and coworkers over the last two decades. In addition, it is considered a stepping stone toward a standard operation procedure aimed at depositing plasma-sprayed bioceramic implant coatings with optimum properties.

  14. Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Turri, Rafael G.; Santos, Ricardo M.; Rangel, Elidiane C.; Cruz, Nilson C. da; Bortoleto, José R.R. [Laboratório de Plasmas Tecnológicos, Universidade Estadual Paulista (UNESP), Av. Três de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Dias da Silva, José H. [Laboratório de Filmes Semicondutores, Depto. de Física, Faculdade de Ciências, UNESP, Bauru, SP (Brazil); Antonio, César Augusto [Laboratório de Plasmas Tecnológicos, Universidade Estadual Paulista (UNESP), Av. Três de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Durrant, Steven F., E-mail: steve@sorocaba.unesp.br [Laboratório de Plasmas Tecnológicos, Universidade Estadual Paulista (UNESP), Av. Três de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil)

    2013-09-01

    Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, E{sub Tauc}, of these films were obtained via transmission spectra in the ultraviolet–visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of E{sub Tauc} were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased E{sub Tauc}. The mechanical properties – hardness, elastic modulus and stiffness – of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD.

  15. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials.

    Science.gov (United States)

    Kocaman, Suheyla; Karaman, Mustafa; Gursoy, Mehmet; Ahmetli, Gulnare

    2017-03-01

    In this study, surface-modified grinded coconut waste (CW) particles were used as bio-fillers to prepare polymeric composite materials with enhanced properties. Epoxy resin modified with acrylated and epoxidized soybean oil (AESO) was used as the polymer matrix. Two different strategies, namely chemical treatment and plasma enhanced chemical vapor deposition (PECVD) were utilized to modify the surface of CW particles for using them as compatible bio-fillers in composite preparation. Chemical modification involved the treatment of CW particles in a highly alkali NaOH solution, while PECVD modification involved coating of a thin film of hydrophobic poly(hexafluorobutyl acrylate) (PHFBA) around individual CW particle surfaces. Untreated and surface-modified CW particles were used in 10-50wt% for preparation of epoxy composites. FTIR analysis was performed to study the effect of modification on the structures of particles and as-prepared composites. The composite morphologies were investigated by XRD and SE. TGA test was conducted to study the thermal behavior of the composites. Also, the effects of CW particle surface modification on the mechanical and water sorption properties of epoxy resin composites were investigated in detail. It was observed that PECVD-treated CW particles had much more positive effects on the thermal, mechanical, wettability and flammability properties of composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. In vitro characterization of two different atmospheric plasma jet chemical functionalizations of titanium surfaces

    Science.gov (United States)

    Mussano, F.; Genova, T.; Verga Falzacappa, E.; Scopece, P.; Munaron, L.; Rivolo, P.; Mandracci, P.; Benedetti, A.; Carossa, S.; Patelli, A.

    2017-07-01

    Plasma surface activation and plasma polymers deposition are promising technologies capable to modulate biologically relevant surface features of biomaterials. The purpose of this study was to evaluate the biological effects of two different surface modifications, i.e. amine (NH2-Ti) and carboxylic/esteric (COOH/R-Ti) functionalities obtained from 3-aminopropyltriethoxysilane (3-APTES) and methylmethacrylate (MMA) precursors, respectively, through an atmospheric plasma jet RF-APPJ portable equipment. The coatings were characterized by Scanning Electron Microscopy, FT-IR spectroscopy, XPS and surface energy calculations. Stability in water and after UV sterilization were also verified. The pre-osteoblastic murine cell line MC3T3-E1 was used to perform the in-vitro tests. The treated samples showed a higher quantity of adsorbed proteins and improved osteoblast cells adhesion on the surfaces compared to the pristine titanium, in particular the COOH/R-Ti led to a nearly two-fold improvement. Cell proliferation on coated samples was initially (at 24 h) lower than on titanium control, while, at 48 h, COOH/R-Ti reached the proliferation rate of pristine titanium. Cells grown on NH2-Ti were more tapered and elongated in shape with lower areas than on COOH/R-Ti enriched surfaces. Finally, NH2-Ti significantly enhanced osteocalcin production, starting from 14 days, while COOH/R-Ti had this effect only from 21 days. Notably, NH2-Ti was more efficient than COOH/R-Ti at 21 days. The amine functionality elicited the most relevant osteogenic effect in terms of osteocalcin expression, thus establishing an interesting correlation between early cell morphology and later differentiation stages. Taken together, these data encourage the use of the functionalization procedures here reported in further studies.

  17. Characterization of yttria-doped zirconia powders produced by plasma-chemical method

    DEFF Research Database (Denmark)

    Kuzjukevics, A.; Linderoth, Søren; Grabis, J.

    1996-01-01

    Ultrafine non-doped and yttria-doped zirconia (ZY) powders have been produced by a single-step plasma synthesis method. The amount of yttria doping was varied between 0 and about 10 mol%. The phase composition, structural parameters and morphology of the as-prepared powders have been examined by X...... transmission electron microscopy. The ZY ultrafine powders were mixtures of a cubic and a non-transformable tetragonal zirconia phases. The amount of the tetragonal phase decreased with the overall yttria content but with a composition that remained almost the same. Neutron diffraction revealed diffuse...

  18. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    . This configuration enables a gentle treatment of sensitive materials like low-density polyethylene foils and biodegradable materials. SiOx coatings deposited in the novel setup were compared with other state of the art plasma coatings and were found to possess equally good or better barrier properties. The barrier...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  19. In vitro characterization of two different atmospheric plasma jet chemical functionalizations of titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mussano, F., E-mail: federico.mussano@unito.it [CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126, Turin (Italy); Genova, T. [CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126, Turin (Italy); Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123, Turin (Italy); Verga Falzacappa, E. [Department of Molecular Science and Nanosystems, UNIVE, Via Torino 155, 30170, Venezia (Italy); Nadir srl, Via Torino 155, 30170 Venezia (Italy); Scopece, P. [Nadir srl, Via Torino 155, 30170 Venezia (Italy); Munaron, L. [Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123, Turin (Italy); Centre for Nanostructured Interfaces and Surfaces (NIS) (Italy); Rivolo, P.; Mandracci, P. [Politecnico di Torino, Department of Applied Science and Technology, Materials and Microsoystems Laboratory (ChiLab), Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Benedetti, A. [Department of Molecular Science and Nanosystems, UNIVE, Via Torino 155, 30170, Venezia (Italy); Carossa, S. [CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126, Turin (Italy); Patelli, A. [Department of Physics and Astronomy, UNIPD, via Marzolo 8, 35122 Padova (Italy)

    2017-07-01

    Highlights: • NH{sub 2}-Ti and COOH/R-Ti obtained via atmospheric plasma jet RF-APPJ portable equipment. • Higher quantity of adsorbed proteins and improved cell adhesion on treated surfaces. • More tapered and elongated cells on NH{sub 2}-Ti compared to COOH/R-Ti. • Higher osteocalcin expression on NH{sub 2}-Ti. - Abstract: Plasma surface activation and plasma polymers deposition are promising technologies capable to modulate biologically relevant surface features of biomaterials. The purpose of this study was to evaluate the biological effects of two different surface modifications, i.e. amine (NH{sub 2}-Ti) and carboxylic/esteric (COOH/R-Ti) functionalities obtained from 3-aminopropyltriethoxysilane (3-APTES) and methylmethacrylate (MMA) precursors, respectively, through an atmospheric plasma jet RF-APPJ portable equipment. The coatings were characterized by Scanning Electron Microscopy, FT-IR spectroscopy, XPS and surface energy calculations. Stability in water and after UV sterilization were also verified. The pre-osteoblastic murine cell line MC3T3-E1 was used to perform the in-vitro tests. The treated samples showed a higher quantity of adsorbed proteins and improved osteoblast cells adhesion on the surfaces compared to the pristine titanium, in particular the COOH/R-Ti led to a nearly two-fold improvement. Cell proliferation on coated samples was initially (at 24 h) lower than on titanium control, while, at 48 h, COOH/R-Ti reached the proliferation rate of pristine titanium. Cells grown on NH{sub 2}-Ti were more tapered and elongated in shape with lower areas than on COOH/R-Ti enriched surfaces. Finally, NH{sub 2}-Ti significantly enhanced osteocalcin production, starting from 14 days, while COOH/R-Ti had this effect only from 21 days. Notably, NH{sub 2}-Ti was more efficient than COOH/R-Ti at 21 days. The amine functionality elicited the most relevant osteogenic effect in terms of osteocalcin expression, thus establishing an interesting correlation

  20. Effects of the addition of blood plasma proteins on physico-chemical properties of emulsion-type pork sausage during cold storage.

    Science.gov (United States)

    Kim, Sungho; Jin, Sangkeun; Choi, Jungseok

    2017-10-01

    Most slaughter blood is discarded, resulting in problems related to costs for wastewater disposal and environmental pollution. However, animal blood contains various proteins such as albumin, globulin and globin and can be used as a natural emulsifier, stabiliser and colour additive. Thus, this study was carried out to investigate the effect of blood plasma proteins on the physico-chemical properties of emulsion-type pork sausages stored at 4°C over 5 weeks. The emulsion-type pork sausages with plasma powders had higher pH than the other treatments during week 5, and higher shear force than the control (P proteins did not have significant impact on sensory of pork sausages. The results confirmed that plasma protein powders can be considered as a binder for the production of excellent meat products compared to other binders. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. CATALYTIC EFFECTS OF FERROCENE ON BONDING, OPTICAL AND STRUCTURAL PROPERTIES OF DIAMOND-LIKE CARBON FILMS DEPOSITED BY MICROWAVE SURFACE-WAVE PLASMA CHEMICAL VAPOR DEPOSITION

    OpenAIRE

    SUDIP ADHIKARI; SUNIL ADHIKARY; HIDEO UCHIDA; MASAYOSHI UMENO

    2006-01-01

    This paper reports catalytic effects of ferrocene on bonding, optical and structural properties of diamond-like carbon (DLC) thin films grown on silicon and quartz substrates by microwave surface-wave plasma chemical vapor deposition. For film deposition, helium and methane gases were used as plasma source. Bonding, optical and structural properties of the DLC films were measured both with and without using ferrocene as a catalyst. The ferrocene content in the DLC was confirmed by X-ray spect...

  2. Analysis of human plasma metabolites across different liquid chromatography/mass spectrometry platforms: Cross-platform transferable chemical signatures.

    Science.gov (United States)

    Telu, Kelly H; Yan, Xinjian; Wallace, William E; Stein, Stephen E; Simón-Manso, Yamil

    2016-03-15

    The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different liquid chromatography/mass spectrometry (LC/MS) platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC/MS platforms using reversed-phase chromatography and different chromatographic scales (conventional HPLC, UHPLC and nanoLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (relative standard deviation (RSD) platforms or even using different chromatographic scales (conventional HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Increasing the output power of single 808-nm laser diodes using diamond submounts produced by microwave plasma chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ashkinazi, E E; Bezotosnyi, V V; Bondarev, Vadim Yu; Kovalenko, V I; Konov, Vitalii I; Krokhin, Oleg N; Oleshchenko, V A; Pevtsov, Valerii F; Popov, Yurii M; Popovich, A F; Ral' chenko, Viktor G; Cheshev, E A

    2012-11-30

    We have designed and fabricated submounts from synthetic diamond grown by microwave plasma chemical vapour deposition and developed an economical process for metallising such submounts. Laser diode chips having an 808-nm emission wavelength, 3-mm-long cavity and 130-mm-wide stripe contact were mounted on copper heat sinks with the use of diamond submounts differing in quality. The devices were tested for more than 150 h in continuous mode at an output power of 8 W on diamond with a thermal conductivity of 700 W m{sup -1} K{sup -1}, and no changes in their output power were detected. On diamond with a thermal conductivity of 1600 W m{sup -1} K{sup -1}, stable cw operation for 24 h at an output power of 12 W was demonstrated. (letters)

  4. Interaction of plasma-generated water cluster ions with chemically-modified Si surfaces investigated by infrared absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Ayumi Hirano-Iwata

    2016-03-01

    Full Text Available We have investigated the interaction of water cluster ions generated by discharge plasma, with chemically modified Si surfaces using infrared absorption spectroscopy in the multiple internal reflection geometry. We observe that water cluster ions readily adsorb on SiO2-covered Si surfaces to form water droplets. We demonstrate that positively- and negatively-charged cluster ions adsorb on the SiO2-covered Si surface in different manners, indicating ionic interaction of the water droplets with the negatively-charged SiO2 surface. Water droplets formed on the protein-coated surface rupture the amide bond of the proteins, suggesting the function of protein decomposition of water cluster ions.

  5. The SiNx films process research by plasma-enhanced chemical vapor deposition in crystalline silicon solar cells

    Science.gov (United States)

    Chen, Bitao; Zhang, Yingke; Ouyang, Qiuping; Chen, Fei; Zhan, Xinghua; Gao, Wei

    2017-07-01

    SiNx thin film has been widely used in crystalline silicon solar cell production because of the good anti-reflection and passivation effect. We can effectively optimize the cells performance by plasma-enhanced chemical vapor deposition (PECVD) method to change deposition conditions such as temperature, gas flow ratio, etc. In this paper, we deposit a new layer of SiNx thin film on the basis of double-layers process. By changing the process parameters, the compactness of thin films is improved effectively. The NH3 passivation technology is augmented in a creative way, which improves the minority carrier lifetime. In sight of this, a significant increase is generated in the photoelectric performance of crystalline silicon solar cell.

  6. Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2008-01-01

    Full Text Available We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm and also using a semiconductor laser (λex=980 nm. Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm. 

  7. Numerical model of the plasma formation at electron beam welding

    Science.gov (United States)

    Trushnikov, D. N.; Mladenov, G. M.

    2015-01-01

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  8. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  9. In situ Raman characterization of a diamond film during its growth process in a plasma jet chemical vapor deposition reactor

    Science.gov (United States)

    Rosman, N.; Abello, L.; Chabert, J. P.; Verven, G.; Lucazeau, G.

    1995-07-01

    A setup designed for characterization of a diamond film during its growth in a dc plasma jet chemical vapor deposition reactor is described. It is composed of a pulsed laser and the detector is gated in order to synchronize the Raman detection with the laser pulses. The optical components are designed for working in the visible and near UV. The installation is specially designed for remote detection and can be used in industrial reactors as well as in laboratory experiments. The detectivity of the setup is analyzed through some typical diamond spectra and it is shown that it is of the same order as that of a micro-Raman multichannel spectrometer. Some results are reported on how the temperature and the quality of the film can be controlled during the deposition process or during its etching by H2 reactive plasma. These results are discussed and confirmed by ex situ measurements including Raman, infrared, and scanning electron micrographs obtained on the same samples or in the same conditions as for in situ experiments. The secondary nucleation is responsible for the loss of Raman intensity and it could have some cyclic character.

  10. Wetting, Solubility and Chemical Characteristics of Plasma-Polymerized 1-Isopropyl-4-Methyl-1,4-Cyclohexadiene Thin Films

    Directory of Open Access Journals (Sweden)

    Jakaria Ahmad

    2014-07-01

    Full Text Available Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene using radio frequency (RF plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of O–H and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfaces’ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.

  11. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.

    Science.gov (United States)

    Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E

    2015-08-12

    The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.

  12. Vertically aligned Si nanocrystals embedded in amorphous Si matrix prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Nogay, G. [Department of Physics, Middle East Technical University (METU), Ankara 06800 (Turkey); Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Saleh, Z.M., E-mail: zaki.saleh@aauj.edu [Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Department of Physics, Arab American University–Jenin (AAUJ), Jenin, Palestine (Country Unknown); Özkol, E. [Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Department of Chemical Engineering, Middle East Technical University (METU), Ankara 06800 (Turkey); Turan, R. [Department of Physics, Middle East Technical University (METU), Ankara 06800 (Turkey); Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey)

    2015-06-15

    Highlights: • Inductively-coupled plasma is used for nanostructured silicon at room temperature. • Low temperature deposition allows device processing on various substrates. • Deposition pressure is the most effective parameter in controlling nanostructure. • Films consist of quantum dots in a-Si matrix and exhibit columnar vertical growth. • Films are porous to oxygen infusion along columnar grain boundaries. - Abstract: Vertically-aligned nanostructured silicon films are deposited at room temperature on p-type silicon wafers and glass substrates by inductively-coupled, plasma-enhanced chemical vapor deposition (ICPCVD). The nanocrystalline phase is achieved by reducing pressure and increasing RF power. The crystalline volume fraction (X{sub c}) and the size of the nanocrystals increase with decreasing pressure at constant power. Columnar growth of nc-Si:H films is observed by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). The films exhibit cauliflower-like structures with high porosity that leads to slow but uniform oxidation after exposure to air at room temperature. Films deposited at low pressures exhibit photoluminescence (PL) signals that may be deconvoluted into three distinct Gaussian components: 760–810, 920–935, and 990–1000 nm attributable to the quantum confinement and interface defect states. Hydrogen dilution is manifested in significant enhancement of the PL, but it has little effect on the nanocrystal size and X{sub c}.

  13. Catalytic Carbon Submicron Fabrication Using Home-Built Very-High Frequency Plasma Enhanced Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Sukirno

    2008-09-01

    Full Text Available In this research, carbon nanotubes (CNT fabrication is attempted by using existing home-made Plasma Enhanced Chemical Vapour Deposition (PECVD system. The fabrication is a catalytic growth process, which Fe catalyst thin film is grown on the Silicon substrate by using dc-Unbalanced Magnetron Sputtering method. By using methane (CH4 as the source of carbon and diluted silane (SiH4 in hydrogen as the source of hydrogen with 10:1 ratio, CNT fabrications have been attempted by using Very High Frequency PECVD (VHF-PECVD method. The fabrication processes are done at relatively low temperature, 250oC, but with higher operated plasma frequency, 70 MHz. Recently, it is also been attempted a fabrication process with only single gas source, but using one of the modification of the VHF-PECVD system, which is by adding hot-wire component. The attempt was done in higher growth temperature, 400oC. Morphological characterizations, by using Scanning Electron Micrograph (SEM and Scanning Probe Microscopy (SPM, as well as the composition characterization, by using Energy Dispersion Analysis by X-Ray (EDAX, show convincing results that there are some signatures of CNT present.

  14. Synthesis of large scale graphene oxide using plasma enhanced chemical vapor deposition method and its application in humidity sensing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Chen, Yuming, E-mail: yumingchen@fudan.edu.cn [Institute for Electric Light Sources, Fudan University, 220 Handan Road, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, 220 Handan Road, Shanghai 00433 (China)

    2016-03-14

    Large scale graphene oxide (GO) is directly synthesized on copper (Cu) foil by plasma enhanced chemical vapor deposition method under 500 °C and even lower temperature. Compared to the modified Hummer's method, the obtained GO sheet in this article is large, and it is scalable according to the Cu foil size. The oxygen-contained groups in the GO are introduced through the residual gas of methane (99.9% purity). To prevent the Cu surface from the bombardment of the ions in the plasma, we use low intensity discharge. Our experiment reveals that growth temperature has important influence on the carbon to oxygen ratio (C/O ratio) in the GO; and it also affects the amount of π-π* bonds between carbon atoms. Preliminary experiments on a 6 mm × 12 mm GO based humidity sensor prove that the synthesized GO reacts well to the humidity change. Our GO synthesis method may provide another channel for obtaining large scale GO in gas sensing or other applications.

  15. Preparation of hydrophobic metal-organic frameworks via plasma enhanced chemical vapor deposition of perfluoroalkanes for the removal of ammonia.

    Science.gov (United States)

    DeCoste, Jared B; Peterson, Gregory W

    2013-10-10

    Plasma enhanced chemical vapor deposition (PECVD) of perfluoroalkanes has long been studied for tuning the wetting properties of surfaces. For high surface area microporous materials, such as metal-organic frameworks (MOFs), unique challenges present themselves for PECVD treatments. Herein the protocol for development of a MOF that was previously unstable to humid conditions is presented. The protocol describes the synthesis of Cu-BTC (also known as HKUST-1), the treatment of Cu-BTC with PECVD of perfluoroalkanes, the aging of materials under humid conditions, and the subsequent ammonia microbreakthrough experiments on milligram quantities of microporous materials. Cu-BTC has an extremely high surface area (~1,800 m(2)/g) when compared to most materials or surfaces that have been previously treated by PECVD methods. Parameters such as chamber pressure and treatment time are extremely important to ensure the perfluoroalkane plasma penetrates to and reacts with the inner MOF surfaces. Furthermore, the protocol for ammonia microbreakthrough experiments set forth here can be utilized for a variety of test gases and microporous materials.

  16. Chemical grafting of poly(ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing.

    Science.gov (United States)

    D'Sa, Raechelle A; Meenan, Brian J

    2010-02-02

    This article reports the use of atmospheric pressure plasma processing to induce chemical grafting of poly(ethylene glycol) methyl ether methacrylate (PEGMA) onto polystyrene (PS) and poly(methyl methacrylate) (PMMA) surfaces with the aim of attaining an adlayer conformation which is resistant to protein adsorption. The plasma treatment was carried out using a dielectric barrier discharge (DBD) reactor with PEGMA of molecular weights (MW) 1000 and 2000, PEGMA(1000) and PEGMA(2000), being grafted in a two step procedure: (1) reactive groups are generated on the polymer surface followed by (2) radical addition reactions with the PEGMA. The surface chemistry, coherency, and topography of the resulting PEGMA grafted surfaces were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and atomic force microscopy (AFM), respectively. The most coherently grafted PEGMA layers were observed for the 2000 MW PEGMA macromolecule, DBD processed at an energy dose of 105.0 J/cm(2) as indicated by ToF-SIMS images. The effect of the chemisorbed PEGMA layer on protein adsorption was assessed by evaluating the surface response to bovine serum albumin (BSA) using XPS. BSA was used as a model protein to determine the grafted macromolecular conformation of the PEGMA layer. Whereas the PEGMA(1000) surfaces showed some protein adsorption, the PEGMA(2000) surfaces appeared to absorb no measurable amount of protein, confirming the optimum surface conformation for a nonfouling surface.

  17. Wettability and Corrosion Behavior of Chemically Modified Plasma Electrolytic Oxidation Nanocomposite Coating

    Science.gov (United States)

    Farhadi, S. S.; Aliofkhazraei, M.; Barati Darband, Gh.; Abolhasani, A.; Sabour Rouhaghdam, A.

    2017-10-01

    The aim of this paper was to investigate the effect of potassium stearate on the wettability behavior, corrosion resistance, roughness and thickness of reinforced and unreinforced plasma electrolytic oxidation (PEO) coatings with Si3N4 nanopowders. Morphological characteristic, corrosion behavior and wetting properties of the coatings were evaluated using SEM, cyclic polarization and Wilhelmy plate method, respectively. In order to obtain a better evaluation of the contact angle, roughness of the coatings was studied by AFM. The results indicated that the nanocomposite hydrophobic coatings have the best corrosion resistance. Potassium stearate could repel water from the holes of coating by reacting with aluminum and producing aluminum stearate. The contact angle of nanocomposite and normal PEO coatings was increased up to 65° due to the addition of potassium stearate. This additive could also increase the hysteresis contact angle up to 51°.

  18. Complete chemical analysis of produced water by modern inductively coupled plasma spectroscopy (ICP)

    Energy Technology Data Exchange (ETDEWEB)

    Graham, G.M.; Sorbie, K.S.; Johnston, A.; Boak, L.S.

    1996-12-31

    ICP (Inductively Coupled Plasma) spectroscopy is recognised as a very effective tool for monitoring ion compositions in many different waters. It has also been used by a number of laboratories to determine residual levels of phosphonate (PH) scale inhibitors in produced waters, based on phosphorus content. Until recently, it had not been used effectively to monitor phosphino-polycarboxylate (PPCA) returns. Large errors had frequently been observed where it had been applied. The poor detection limits and accuracy obtained for PPCA inhibitors relates to much lower amount of phosphorus present when compared with a typical phosphonate inhibitor. This paper demonstrates the effectiveness of IPC detection for PPCA and other phosphorus containing inhibitors by the use of modern instruments without the need of pre-treatment. 6 refs., 3 figs., 10 tabs.

  19. Optical thin films obtained by plasma-induced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Turner, P.; Howson, R.P.; Bishop, C.A.

    1981-09-11

    A plasma-aided deposition technique was used to prepare thin oxide coatings by the reaction of volatile chlorides with oxygen. A 13.56 MHz r.f. supply was connected to a circular electrode on which the substrates were supported. A glow discharge was set up at pressures between 5 and 100 m Torr, and a self-bias on the electrode of between -100 and -1000 V (depending on input power and pressure) creates ion-plating conditions. GeCl/sub 4/, SiCl/sub 4/, TiCl/sub 4/ and SnCl/sub 4/ were used to prepare the corresponding dioxides. The deposition conditions (pressure, bias, gas ratios and treatment time) were varied and the resultant films examined in terms of thickness (and coating rate) and their respective refractive indices. The films were generally smooth and highly transparent and were deposited at rates of tens of nanometres per minute. TiO/sub 2/ and SiO/sub 2/ were produced with refractive index values of 2.2 and 1.45 respectively at rates of 50 nm min/sup -1/; these rates were found to be relatively insensitive to the gas pressure and r.f. bias. In/sub 2/O/sub 3/ films were similarly prepared from trimethyl indium vapour and O/sub 2/. These films could be electrically conducting. In contrast with earlier published work on reactive plasma deposition of oxide films, this work was carried out at ambient temperatures.

  20. Chemical detoxification of trichloroethylene and 1,1,1-trichloroethane in a microwave discharge plasma reactor at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Krause, T.R.; Helt, J.E.

    1991-12-31

    This report focuses on the application of plasma technology to hazardous waste treatment. Microwave sustained plasmas are used to thermal degrade trichloroethylene and trichloroethane at atmospheric pressure. (JL)

  1. Effects of feed gas composition and catalyst thickness on carbon nanotube and nanofiber synthesis by plasma enhanced chemical vapor deposition.

    Science.gov (United States)

    Garg, R K; Kim, S S; Hash, D B; Gore, J P; Fisher, T S

    2008-06-01

    Many engineering applications require carbon nanotubes with specific characteristics such as wall structure, chirality and alignment. However, precise control of nanotube properties grown to application specifications remains a significant challenge. Plasma-enhanced chemical vapor deposition (PECVD) offers a variety of advantages in the synthesis of carbon nanotubes in that several important synthesis parameters can be controlled independently. This paper reports an experimental study of the effects of reacting gas composition (percentage methane in hydrogen) and catalyst film thickness on carbon nanotube (CNT) growth and a computational study of gas-phase composition for the inlet conditions of experimentally observed carbon nanotube growth using different chemical reaction mechanisms. The simulations seek to explain the observed effects of reacting gas composition and to identify the precursors for CNT formation. The experimental results indicate that gas-phase composition significantly affects the synthesized material, which is shown to be randomly aligned nanotube and nanofiber mats for relatively methane-rich inlet gas mixtures and non-tubular carbon for methane-lean incoming mixtures. The simulation results suggest that inlet methane-hydrogen mixture coverts to an acetylene-methane-hydrogen mixture with minor amounts of ethylene, hydrogen atom, and methyl radical. Acetylene appears to be the indicator species for solid carbon formation. The simulations also show that inlet methane-hydrogen mixture does not produce enough gas-phase precursors needed to form quality CNTs below 5% CH4 concentrations in the inlet stream.

  2. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  3. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  4. Novel chemical vapor deposition process of ZnO films using nonequilibrium N2 plasma generated near atmospheric pressure with small amount of O2 below 1%

    Science.gov (United States)

    Nose, Yukinori; Yoshimura, Takeshi; Ashida, Atsushi; Uehara, Tsuyoshi; Fujimura, Norifumi

    2016-05-01

    We propose a novel chemical vapor deposition (CVD) process of ZnO films involving a nonequilibrium N2 plasma generated near atmospheric pressure with small O2 concentration (O2%) below 1%. In the optical emission (OE) spectra of the plasma, OE lines corresponding to the NO-γ system ( A 2 Σ + → X 2 Πγ + ) were observed, despite the only introduced gases being N2 and O2; these vanish at an O2% of more than 1%. ZnO films were grown on a glass substrate placed in the plasma at a growth temperature of as low as 200 °C and at an O2% of below 1% in the presence of the NO-γ system. This plasma yielded almost the same growth rate for ZnO films as O2 plasma including atomic O radicals that are often observed in low-pressure O2 plasma, suggesting that some highly reactive oxidant was sufficiently generated in such a small O2%. ZnO films synthesized using this plasma exhibited excellent ( 0001 ) preferred orientation without other diffractions such as 10 1 ¯ 1 diffraction, and with an optical bandgap of 3.30 eV. Based on the analyses of the plasma and the exhaust gases, the coexistence state of NO-γ and O3 should be essential and useful for the decomposition and oxidation of Zn source material in the proposed CVD process.

  5. A hybrid plasma-chemical system for high-NOx flue gas treatment

    Science.gov (United States)

    Chmielewski, Andrzej G.; Zwolińska, Ewa; Licki, Janusz; Sun, Yongxia; Zimek, Zbigniew; Bułka, Sylwester

    2018-03-01

    The reduction of high concentrations of NOx and SO2 from simulated flue gas has been studied. Our aim was to optimise energy consumption for NOx and SO2 removal from off-gases from a diesel generator using heavy fuel oil. A hybrid process: electron beam (EB) plasma and wet scrubber has been applied. A much higher efficiency of NOx and SO2 removal was achieved in comparison to dry, ammonia free, electron beam flue gas treatment (EBFGT). A recorded removal from a concentration of 1500 ppm NOx reached 49% at a low dose of 6.5 kGy, while only 2% NOx was removed at the same dose if EB only was applied. For SO2, removal efficiency at a dose of 6.5 kGy increased from 15% (EB only) to 84% when sea water was used as a wet scrubber agent for 700 ppm SO2. The results of this study indicate that EB combined with wet scrubber is a very promising technology to be applied for removal of high concentrations of NOx and SO2 emitted from diesel engines operated e.g. on cargo ships, which are the main sources of SO2 and NOx pollution along their navigation routes.

  6. Physical and chemical interactions at the interface between atmospheric pressure plasmas and aqueous solutions

    Science.gov (United States)

    Lindsay, Alexander; Byrns, Brandon; Knappe, Detlef; Graves, David; Shannon, Steven

    2014-10-01

    Transport and reactions of charged species, neutrals, and photons at the interface between plasmas and liquids must be better quantified. The work presented here combines theoretical and experimental investigations of conditions in the gas and liquid phases in proximity to the interface for various discharges. OES is used to determine rotational and vibrational temperatures of OH, NO, and N2+; the relationship between these temperatures that characterize the distribution of internal energy states and gas and electron kinetic temperatures is considered. The deviation of OH rotational states from equilibrium under high humidity conditions is also presented. In contradiction with findings of other groups, high energy rotational states appear to become underpopulated with increasing humidity. In the aqueous phase, concentrations of longer-lived species such as nitrate, nitrite, hydrogen peroxide, and ozone are determined using ion chromatography and colorimetric methods. Spin-traps and electron paramagnetic resonance (EPR) are investigated for characterization of short-lived aqueous radicals like OH, O2-, NO, and ONOO-. Finally, experimental results are compared to a numerical model which couples transport and reactions within and between the bulk gas and liquid phases.

  7. Quantum chemical estimation of sorption/desorption of H{sub 2} and H{sub 2}O (gas) at the plasma-wall interface

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, Shinya; Tsushima, Satoru; Tanaka, Masataka; Umemura, Yasuhiro [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    By using MOPAC Code, we estimated the charge density of SiO{sub 2}-Al{sub 2}O{sub 3}-SiO{sub 2} metal oxide. We could find that the such quantum chemical calculation is a fruitful tool for understanding the plasma-wall interactions from the microscopic point of view. (author)

  8. Reduction of hydrogen-induced optical losses of plasma-enhanced chemical vapor deposition silicon oxynitride by phosphorus doping and heat treatment

    NARCIS (Netherlands)

    Hussein, M.G.; Worhoff, Kerstin; Sengo, G.; Sengo, G.; Driessen, A.

    2007-01-01

    Plasma enhanced chemical vapor deposition phosphoros-doped silicon oxynitride (SiON) layers with a refractive index of 1.505 were deposited from $N_{2}O$, 2% $SiH_{4}/N_{2}$, and 5% $PH_{3}/Ar$ gaseous mixtures. The $PH_{3}/Ar$ flow rate was varied to investigate the effect of the dopant to the

  9. The Effects of Oxygen Plasma on the Chemical Composition and Morphology of the Ru Capping Layer of the Extreme Ultraviolet (EUV) Mask Blanks

    Energy Technology Data Exchange (ETDEWEB)

    Belau, Leonid; Park, Jeong Y.; Liang, Ted; Somorjai, Gabor A.

    2008-06-07

    Contamination removal from extreme ultraviolet (EUV) mask surfaces is one of the most important aspects to improve reliability for the next generation of EUV lithography. We report chemical and morphological changes of the ruthenium (Ru) mask surface after oxygen plasma treatment using surface sensitive analytical methods: X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Chemical analysis of the EUV masks shows an increase in the subsurface oxygen concentration, Ru oxidation and surface roughness. XPS spectra at various photoelectron takeoff angles suggest that the EUV mask surface was covered with chemisorbed oxygen after oxygen plasma treatment. It is proposed that the Kirkendall effect is the most plausible mechanism that explains the Ru surface oxidation. The etching rate of the Ru capping layer by oxygen plasma was estimated to be 1.5 {+-} 0.2 {angstrom}/min, based on TEM cross sectional analysis.

  10. Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering

    Science.gov (United States)

    Munhollon, Tyler Lee

    Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with

  11. Shock tube experiments on nitromethane and Promotion of chemical reactions by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Seljeskog, Morten

    2002-06-01

    This dissertation was undertaken to study two different subjects both related to molecular decomposition by applying a shock tube and non-thermal plasma to decompose selected hydrocarbons. The first approach to molecular decomposition concerned thermal decomposition and oxidation of highly diluted nitromethane (NM) in a shock tube. Reflected shock tube experiments on NM decomposition, using mixtures of 0.2 to 1.5 vol% NM in nitrogen or argon were performed over the temperature range 850-1550 K and pressure range 190-900 kPa, with 46 experiments diluted in nitrogen and 44 diluted in argon. By residual error analysis of the measured decomposition profiles it was found that NM decomposition (CH{sub 3}NO{sub 2} + M {yields} CH{sub 3} + NO{sub 2} + M, where M = N{sub 2} /Ar) corresponds well to a law of first order. Arrhenius expressions corresponding to NM diluted either in N{sub 2} or in Ar were found as k{sub N2} = 10{sup 17.011} * exp(- 182.6 kJ/mole / R*T) and k{sub Ar} = 10{sup 17.574}*exp(-207 kJ/mole / R*T ) , respectively. A new reaction mechanism was then proposed, based on new experimental data for NM decomposition both in Ar and N{sub 2} and on three previously developed mechanisms. The new mechanism predicts well the decomposition of NM diluted in both N{sub 2} and Ar within the pressure and temperature range covered by the experiments. In parallel to, and following the decomposition experiments, oxidative experiments on the ignition delay times of NM/O{sub 2}/Ar mixtures were investigated over high temperature and low to high pressure ranges. These experiments were carried out with eight different mixtures of gaseous NM and oxygen diluted in argon, with pressures ranging between 44.3-600 kPa, and temperatures ranging between 842-1378 K. The oxidation experiments were divided into different categories according to the type of decomposition signals achieved. For signals with and without emission, the apparent quasi

  12. Effect of growth interruptions on TiO{sub 2} films deposited by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dyli@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127 (China); Goullet, A. [Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502, 2 rue de la Houssinière, 44322, Nantes (France); Carette, M. [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré, 59652, Villeneuve d' Ascq (France); Granier, A. [Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502, 2 rue de la Houssinière, 44322, Nantes (France); Landesman, J.P. [Institut de Physique de Rennes, UMR CNRS 6251, 263 av. Général Leclerc, 35042, Rennes (France)

    2016-10-01

    TiO{sub 2} films of ∼300 nm were deposited at low temperature (<140 °C) and pressure (0.4 Pa) using plasma enhanced chemical vapour deposition at the floating potential (V{sub f}) or the substrate self-bias voltage (V{sub b}) of −50 V. The impact of growth interruptions on the morphology, microstructure and optical properties of the films was investigated. The interruptions were carried out by stopping the plasma generation and gas injection once the increase of the layer thickness during each deposition step was about ∼100 nm. In one case of V{sub f}, the films of ∼300 nm exhibit a columnar morphology consisting of a bottom dense layer, an intermediate gradient layer and a top roughness layer. But the growth interruptions result in an increase of the dense layer thickness and a decrease of surface roughness. The film inhomogeneity has been identified by the in-situ real-time evolution of the kinetic ellipsometry (KE) parameters and the modeling process of spectroscopic ellipsometry (SE). The discrepancy of the refractive index measured by SE between bottom and upper layers can be reduced by growth interruptions. In the other case of V{sub b} = −50 V, the films exhibit a more compact arrangement which is homogeneous along the growth direction as confirmed by KE and SE. Both of Fourier transform infrared spectra and X-ray diffraction illustrate a phase transformation from anatase to rutile with the bias of −50 V, and also evidenced on the evolution of the refractive index dispersion curves. And a greatly increase of the refractive indice in the transparent range can be identified. However, the growth interruptions seem to have no influence on the morphology and optical properties in this case. - Highlights: • TiO{sub 2} films deposited by plasma processes at low temperature and pressure. • Influence of growth interruptions on structural and optical properties. • In-situ real-time ellipsometry measurements on film properties. • Structural and

  13. Route to Chaos due to ion sheath oscillations observed in plasma bubble

    Science.gov (United States)

    Megalingam, Mariammal; Sarma, Bornali; Sarma, Arun

    2017-10-01

    The report is intended to investigate experimentally nonlinear behavior of fluctuations in current carrying unstable plasma and compared with the theory that describes ion dynamics in the sheath and pre-sheath region. Plasma bubbles are created in bulk plasma by negatively biased spherical mesh grid of 80% optical transparency inserted in bulk plasma of the system. Argon plasma is produced in cylindrical chamber of 350 mm in length and 400 mm in diameter by hot cathode filament discharge method. The spherical mesh grid can congregate the particles from the plasma radially in presence or absence of biasing. A virtual anode structure has formed around the bubble when all electrons are reflected. A radially movable Langmuir and emissive probe are used to measure basic parameters. Sheath instability inside the bubble has observed, there appears regime of quasi-periodicity with various frequencies. Scanning has done throughout the bubble to understand fluctuations and its associated instabilities. These instabilities are leading to chaos through a region of quasi-period to period doubling at different positions inside the bubble. Experimentally observed ion sheath oscillations are confirmed with some theoretical analysis The authors would like to thank Indian Space Research Organisation(ISRO) for their Grant and support.

  14. A new perspective on structural and morphological properties of carbon nanotubes synthesized by Plasma Enhanced Chemical Vapor Deposition technique

    Directory of Open Access Journals (Sweden)

    A. Salar Elahi

    Full Text Available CNTs were produced on a silicon wafer by Plasma Enhanced Chemical Vapor Deposition (PECVD using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs. Keywords: Carbon nanotubes, Cobalt nanocatalyst, PECVD

  15. Comparative investigation of Si-C-N Films prepared by plasma enhanced chemical vapour deposition and magnetron sputtering

    Science.gov (United States)

    Kozak, A. O.; Porada, O. K.; Ivashchenko, V. I.; Ivashchenko, L. A.; Scrynskyy, P. L.; Tomila, T. V.; Manzhara, V. S.

    2017-12-01

    This paper reports on the results of comparative investigations of Si-C-N films prepared by using both plasma enhanced chemical vapor deposition (PECVD) and DC magnetron sputtering (MS) at different nitrogen flow rates (FN2). The films were characterized by an atomic force microscope, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nanoindentation and photoluminescence spectroscopy. All the deposited films were X-ray amorphous. For the PECVD films, nanohardness (H) and elastic module (E) increase with FN2, which can be assigned to decreasing the hydrogen content. On the contrary, for the films, deposited by magnetron sputtering, the values of H and E decrease, when FN2 increases. The latter is supposed to be due to decreasing a number of strong Si-C bonds and to increasing a number of weak Sisbnd N and Csbnd N bonds. The surface roughness of two types of the films is smaller compared to that of silicon substrates. An increase in nitrogen flow rate causes the smoothing of the film surfaces. The PECVD films deposited at high FN2 exhibit bright photoemission with the main peak at ∼440 nm. The intensity of this peak increases with increasing nitrogen content.

  16. Spectroscopic properties of nitrogen doped hydrogenated amorphous carbon films grown by radio frequency plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Hayashi, Y.; Yu, G.; Rahman, M. M.; Krishna, K. M.; Soga, T.; Jimbo, T.; Umeno, M.

    2001-06-01

    Nitrogen doped hydrogenated amorphous carbon thin films have been deposited by rf plasma-enhanced chemical vapor deposition using CH4 as the source of carbon and with different nitrogen flow rates (N2/CH4 gas ratios between 0 and 3), at 300 K. The dependence modifications of the optical and the structural properties on nitrogen incorporation were investigated using different spectroscopic techniques, such as, Raman spectroscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, electron spin resonance (ESR), photoluminescence (PL) and spectroscopic ellipsometry (SE). Raman spectroscopy and IR absorption reveal an increase in sp2-bonded carbon or a change in sp2 domain size with increasing nitrogen flow rate. It is found that the configuration of nitrogen atoms incorporated into an amorphous carbon network gradually changes from nitrogen atoms surrounded by three (σ bonded) to two (π bonded) neighboring carbons with increasing nitrogen flow rate. Tauc optical gap is reduced from 2.6 to 2.0 eV, and the ESR spin density and the peak-to-peak linewidth increase sharply with increasing nitrogen flow rate. Excellent agreement has been found between the measured SE data and modeled spectra, in which an empirical dielectric function of amorphous materials and a linear void distribution along the thickness have been assumed. The influence of nitrogen on the electronic density of states is explained based on the optical properties measured by UV-VIS and PL including nitrogen lone pair band.

  17. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Antonia Terriza

    2014-01-01

    Full Text Available The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide (PLGA membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD, onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR. HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes.

  18. Controlling the resistivity gradient in aluminum-doped zinc oxide grown by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Ponomarev, M. V.; Verheijen, M. A.; Keuning, W.; van de Sanden, M. C. M.; Creatore, M.

    2012-08-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO:Al layers by focusing on the control of the resistivity gradient and providing the solution towards thin (≤300 nm) ZnO:Al layers, exhibiting a resistivity value as low as 4 × 10-4 Ω cm. The approach chosen in this work is to enable the development of several ZnO:Al crystal orientations at the initial stages of the CVD-growth, which allow the formation of a densely packed structure exhibiting a grain size of 60-80 nm for a film thickness of 95 nm. By providing an insight into the growth of ZnO:Al layers, the present study allows exploring their application into several solar cell technologies.

  19. Role of hydrogen addition in the plasma phase in determining the structural and chemical properties of RF sputtered ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Gottardi, Gloria, E-mail: ggottard@fbk.eu [Fondazione Bruno Kessler, Center for Materials and Microsystems, PAM Unit, via Sommarive 18, I - 38123 Povo, Trento (Italy); Bartali, Ruben; Micheli, Victor; Laidani, Nadhira [Fondazione Bruno Kessler, Center for Materials and Microsystems, PAM Unit, via Sommarive 18, I - 38123 Povo, Trento (Italy); Avi, Damiano [University of Trento, Physics Department, Atomic and Molecular Physics Lab., Via Sommarive 14, I - 38123 Povo, Trento (Italy)

    2011-05-16

    Research highlights: {yields} Effects of H in corporation on ZnO thin films growth and properties. {yields} Modification of the sputtering mechanism according to H{sub 2} percentage in the plasma. {yields} Structural changes turns up with variations of the surface and bulk oxide chemistry. {yields} Development of an hydroxide component due to atomic H incorporation. - Abstract: In the present work, ZnO thin films were RF sputtered from a pure ZnO target, without external heating, in H{sub 2}:Ar plasma at different H{sub 2} concentrations (0-50%). Aim of the study was the identification of the effects of H incorporation on the film growth and properties. During the deposition experiments, optical emission (OES) spectra were recorded to monitor any variation in the plasma chemical species relative to different process or gas mixture settings. X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier-transformed infrared spectroscopy (ATR-FTIR) were used to study the bulk and surface chemical composition of the films, while X-ray diffraction (XRD) analysis allowed lattice structure and grain size determination. The introduction of hydrogen in the plasma phase appears to strongly affect the structural and chemical properties of ZnO films. Both FTIR spectra and X-ray diffraction patterns showed that all the films crystallized in the hexagonal wuertzite form. Nevertheless, while samples deposited in pure Ar plasma are highly textured, presenting just one dominant preferred orientation along the [0 0 2] axis, films sputtered in H{sub 2}:Ar atmosphere exhibit multiple growth directions with crystallites of noticeably reduced dimensions. Such a structural modification turns up together with clear variations in the films surface chemical state which appears to deviate from the pure oxide (Zn-O). By combining XPS, ATR-FTIR and OES data we could correlate such variations with the process induced H incorporation in the crystal structure in the form of

  20. Organohalogen contaminants and blood plasma clinical-chemical parameters in three colonies of North Atlantic Great skua (Stercorarius skua)

    DEFF Research Database (Denmark)

    Sonne, Christian; Riget, Frank Farsø; Leat, Eliza H. K.

    2013-01-01

    The present study compares blood plasma clinical-chemical parameters (BCCPs) in birds from three geographically distinct North Atlantic Great skua (Stercorarius skua) colonies. Birds from these sites bioaccumulate different POP (persistent organic pollutant) concentrations and that enabled us...... at Bjørnøya (n=42), Iceland (n=57) and Shetland (n=15). Specimens from Bjørnøya had the highest blood plasma concentrations of all contaminant groups followed by Iceland and Shetland birds, respectively (ANOVA: p0.05). Therefore correlation analyses of these seven BCCPs vs. POPs were done on the combined...

  1. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cossement, Damien, E-mail: damien.cossement@materianova.be [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Renaux, Fabian [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Thiry, Damien; Ligot, Sylvie [Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Francq, Rémy; Snyders, Rony [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium)

    2015-11-15

    Graphical abstract: - Highlights: • Plasma polymer films have a chemical selectivity and a cross-linking degree which are known to vary in opposite trends. • Three plasma polymers families were used as model organic layers for cross-linking evaluation by ToF-SIMS and principal component analysis. • The data were cross-checked with related functional properties that are known to depend on the cross-linking degree (stability in solvent, mechanical properties, …). • The suggested cross-linking evaluation method was validated for different families of plasma polymers demonstrating that it can be seen as a “general” method. - Abstract: It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH{sub 2}-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (P{sub RF}), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high P{sub RF}. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with P{sub RF} excepted for the SH-PPF. These results have

  2. Organo-Chlorinated Thin Films Deposited by Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition for Adhesion Enhancement between Rubber and Zinc-Plated Steel Monofilaments.

    Science.gov (United States)

    Vandenabeele, Cédric; Bulou, Simon; Maurau, Rémy; Siffer, Frederic; Belmonte, Thierry; Choquet, Patrick

    2015-07-08

    A continuous-flow plasma process working at atmospheric pressure is developed to enhance the adhesion between a rubber compound and a zinc-plated steel monofilament, with the long-term objective to find a potential alternative to the electrolytic brass plating process, which is currently used in tire industry. For this purpose, a highly efficient tubular dielectric barrier discharge reactor is built to allow the continuous treatment of "endless" cylindrical substrates. The best treatment conditions found regarding adhesion are Ar/O2 plasma pretreatment, followed by the deposition from dichloromethane of a 75 nm-thick organo-chlorinated plasma polymerized thin film. Ar/O2 pretreatment allows the removal of organic residues, coming from drawing lubricants, and induces external growth of zinc oxide. The plasma layer has to be preferably deposited at low power to conserve sufficient hydrocarbon moieties. Surface analyses reveal the complex chemical mechanism behind the establishment of strong adhesion levels, more than five times higher after the plasma treatment. During the vulcanization step, superficial ZnO reacts with the chlorinated species of the thin film and is converted into porous and granular bump-shaped ZnwOxHyClz nanostructures. Together, rubber additives diffuse through the plasma layer and lead to the formation of zinc sulfide on the substrate surface. Hence, two distinct interfaces, rubber/thin film and thin film/substrate, are established. On the basis of these observations, hypotheses explaining the high bonding strength results are formulated.

  3. Synthesis and characterization of silicon carbonitride films by plasma enhanced chemical vapor deposition (PECVD) using bis(dimethylamino)dimethylsilane (BDMADMS), as membrane for a small molecule gas separation

    Science.gov (United States)

    Kafrouni, W.; Rouessac, V.; Julbe, A.; Durand, J.

    2010-12-01

    Silicon carbonitride thin films have been deposited by plasma enhanced chemical vapor deposition (PECVD) from bis(dimethylamino)dimethylsilane (BDMADMS) as a function of X = (BDMADMS/(BDMADMS + NH 3)) between 0.1 and 1, and plasma power P (W) between 100 and 400 W. The microstructure of obtained materials has been studied by SEM, FTIR, EDS, ellipsometrie, and contact angle of water measurements. The structure of the materials is strongly depended on plasma parameters; we can pass from a material rich in carbon to a material rich in nitrogen. Single gas permeation tests have been carried out and we have obtained a helium permeance of about 10 -7 mol m -2 s -1 Pa -1 and ideal selectivity of helium over nitrogen of about 20.

  4. Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.; Zhu, F. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Colorado 80401 (United States); Madan, A. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Colorado 80401 (United States); MVSystems Inc, Golden Colorado 80401 (United States)

    2008-07-15

    Thin silicon intrinsic layers were deposited in the amorphous to nano-crystalline transition regime to investigate their structural and optoelectrical properties using the very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) technique. Optical emission spectroscopy (OES) was primarily used to monitor the plasma properties during the deposition. The ratio H{alpha}/Si{sup *}, estimated from OES spectra, is closely related to the microstructure of the films. With the increasing plasma power from 10 to 50 W, the ratio H{alpha}/Si{sup *} increases leading to nano-crystalline films. The ratio H{alpha}/Si{sup *} decreases with the increase of process gas pressure at constant power of 15 and 30 W. The films were nano-crystalline at low pressure and became amorphous at high pressure. (author)

  5. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    Science.gov (United States)

    Cossement, Damien; Renaux, Fabian; Thiry, Damien; Ligot, Sylvie; Francq, Rémy; Snyders, Rony

    2015-11-01

    It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH2-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (PRF), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high PRF. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with PRF excepted for the SH-PPF. These results have been cross-checked by the evaluation of functional properties of the plasma polymers namely a linear correlation with the stability of NH2-PPF in ethanol and a correlation with the mechanical properties of the COOR-PPF. For the SH-PPF family, the peculiar evolution of χ is supported by the understanding of the growth mechanism of the PPF from plasma diagnostic. The whole set of data clearly demonstrates the potential of the PCA method for extracting information on the microstructure of plasma polymers from ToF-SIMS measurements.

  6. Improving mechanical robustness of ultralow-k SiOCH plasma enhanced chemical vapor deposition glasses by controlled porogen decomposition prior to UV-hardening

    OpenAIRE

    Urbanowicz, Adam; Vanstreels, Kris; Verdonck,Patrick; Shamiryan, Denis; De Gendt, Stefan; Baklanov, Mikhail

    2010-01-01

    We report a new curing procedure of a plasma enhanced chemical vapor deposited SiCOH glasses for interlayer dielectric applications in microelectronic. It is demonstrated that SiOCH glasses with improved mechanical properties and ultralow dielectric constant can be obtained by controlled decomposition of the porogen molecules used to create nanoscale pores, prior to the UV-hardening step. The Young’s modulus (YM) of conventional SiOCH-based glasses with 32% open porosity hardened with porogen...

  7. UV–vis spectroscopy study of plasma-activated water: Dependence of the chemical composition on plasma exposure time and treatment distance

    Science.gov (United States)

    Oh, Jun-Seok; Szili, Endre J.; Ogawa, Kotaro; Short, Robert D.; Ito, Masafumi; Furuta, Hiroshi; Hatta, Akimitsu

    2018-01-01

    Plasma-activated water (PAW) is receiving much attention in biomedical applications because of its reported potent bactericidal properties. Reactive oxygen and nitrogen species (RONS) that are generated in water upon plasma exposure are thought to be the key components in PAW that destroy bacterial and cancer cells. In addition to developing applications for PAW, it is also necessary to better understand the RONS chemistry in PAW in order to tailor PAW to achieve a specific biological response. With this in mind, we previously developed a UV–vis spectroscopy method using an automated curve fitting routine to quantify the changes in H2O2, NO2 ‑, NO3 ‑ (the major long-lived RONS in PAW), and O2 concentrations. A major advantage of UV–vis is that it can take multiple measurements during plasma activation. We used the UV–vis procedure to accurately quantify the changes in the concentrations of these RONS and O2 in PAW. However, we have not yet provided an in-depth commentary of how we perform the curve fitting procedure or its implications. Therefore, in this study, we provide greater detail of how we use the curve fitting routine to derive the RONS and O2 concentrations in PAW. PAW was generated by treatment with a helium plasma jet. In addition, we employ UV–vis to study how the plasma jet exposure time and treatment distance affect the RONS chemistry and amount of O2 dissolved in PAW. We show that the plasma jet exposure time principally affects the total RONS concentration, but not the relative ratios of RONS, whereas the treatment distance affects both the total RONS concentration and the relative RONS concentrations.

  8. One-Step Reforming of CO2 and CH4 into High-Value Liquid Chemicals and Fuels at Room Temperature by Plasma-Driven Catalysis.

    Science.gov (United States)

    Wang, Li; Yi, Yanhui; Wu, Chunfei; Guo, Hongchen; Tu, Xin

    2017-10-23

    The conversion of CO2 with CH4 into liquid fuels and chemicals in a single-step catalytic process that bypasses the production of syngas remains a challenge. In this study, liquid fuels and chemicals (e.g., acetic acid, methanol, ethanol, and formaldehyde) were synthesized in a one-step process from CO2 and CH4 at room temperature (30 °C) and atmospheric pressure for the first time by using a novel plasma reactor with a water electrode. The total selectivity to oxygenates was approximately 50-60 %, with acetic acid being the major component at 40.2 % selectivity, the highest value reported for acetic acid thus far. Interestingly, the direct plasma synthesis of acetic acid from CH4 and CO2 is an ideal reaction with 100 % atom economy, but it is almost impossible by thermal catalysis owing to the significant thermodynamic barrier. The combination of plasma and catalyst in this process shows great potential for manipulating the distribution of liquid chemical products in a given process. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Influence of plasma parameters on the chemical composition of steady-state fluorocarbon films deposited on carbon-doped low-k dielectric layers during etching

    Science.gov (United States)

    Reid, I.; Hughes, G.

    2006-09-01

    This study investigates the fluorocarbon-based plasma etching (FBPE) of low dielectric constant (ULK) carbon-doped oxide (CDO) films, which have a dielectric constant (k) value of 2.4. The effects of different ion density and ion energy power settings on the chemical composition of the fluorocarbon layer deposited during the etch process were investigated. X-ray photoelectron spectroscopy (XPS) was used to analyse the chemical composition of the post-etched low-k CDO films while spectroscopic ellipsometry (SE) was used to determine the overall film thickness. XPS spectra of the C1s core levels reveal that the relative concentration of CFx species in the fluorocarbon films reduced as ion density source power and ion energy power levels were increased, and this can be correlated with a higher etch rate and thinner fluorocarbon layer. Plasma conditions which led to the deposition of a thick fluorocarbon film significantly inhibited the etch rate. This work demonstrates that the chemical composition and the thickness of the fluorocarbon film can be controlled by the plasma power parameters, and this has implications for the etching of ULK CDO layers.

  10. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma and comparison to thermal and chemical based methods

    NARCIS (Netherlands)

    Bokhorst-van de Veen, van H.; Xie, H.; Esveld, D.C.; Abee, T.; Mastwijk, H.C.; Nierop Groot, M.N.

    2015-01-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is

  11. Currents between tethered electrodes in a magnetized laboratory plasma

    Science.gov (United States)

    Stenzel, R. L.; Urrutia, J. M.

    1989-01-01

    Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.

  12. Mechanical and Chemical Characterization of a TiC/C System Synthesized Using a Focus Plasma Arc

    National Research Council Canada - National Science Library

    Mahmoodian, Reza; Hamdi, M; Hassan, M A; Akbari, Abolghasem

    2015-01-01

    Titanium carbide-graphite (TiC/C) composite was successfully synthesized from Ti and C starting elemental powders using self-propagating high-temperature synthesis technique in an ultra-high plasma inert medium in a single stage...

  13. Acute effects of chemically dispersed crude oil on gill ion regulation, plasma ion levels and haematological parameters in tambaqui (Colossoma macropomum).

    Science.gov (United States)

    Duarte, Rafael Mendonça; Honda, Rubens Tomio; Val, Adalberto Luis

    2010-04-15

    The main goal of this study was to investigate the toxicological effects of the chemical dispersant Corexit 9500, crude oil and the combination of the two components in the form of chemically dispersed crude oil (CO+DIS) on the ion regulation of the tropical fish tambaqui (Colossoma macropomum). Gill ion regulation was evaluated on the basis of unidirectional flux measurements (influx-J(in), efflux-J(out) and net flux-J(net)) of Na(+), Cl(-) and K(+). Plasma ion composition, haematocrit, haemoglobin and glucose concentrations in the blood of tambaqui were determined by classical methods. The exposure of fish to chemically dispersed crude oil promoted a significant increase in J(out) Na(+) across the gills, which, together with the inability of fish to stimulate Na(+) uptake to compensate for these losses resulted in significantly higher J(net) Na(+) outward, particularly within the first 3h of exposure. Increased outward J(net) Cl(-) was also seen in fish that were exposed to dispersed crude oil, whereas outward J(net) K(+) was only increased at crude oil dispersed in higher concentration of Corexit 9500. Plasma Na(+) and Cl(-) concentrations decreased between 6 and 12h of exposure, whereas Ca(2+) concentrations remained significantly lower than those of the control group over the entire experimental period. There were significant increases in plasma K(+) concentrations and in the haematocrit after 6 and 24h of exposure to dispersed crude oil, suggesting significant changes in the permeability of the erythrocytic membrane. Collectively, our results suggest that chemically dispersed crude oil promotes a more extensive impairment of gill ion regulation, in addition to changes in plasma ion levels and blood parameters, in tambaqui compared with exposure to Urucu crude oil or Corexit 9500 alone. Thus, in the event of an oil spill in Amazonian waters, the chemical dispersion of Urucu crude oil could represent a great risk to tambaqui, challenging their ability to

  14. Oral Administration of the Japanese Traditional Medicine Keishibukuryogan-ka-yokuinin Decreases Reactive Oxygen Metabolites in Rat Plasma: Identification of Chemical Constituents Contributing to Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Yosuke Matsubara

    2017-02-01

    Full Text Available Insufficient detoxification and/or overproduction of reactive oxygen species (ROS induce cellular and tissue damage, and generated reactive oxygen metabolites become exacerbating factors of dermatitis. Keishibukuryogan-ka-yokuinin (KBGY is a traditional Japanese medicine prescribed to treat dermatitis such as acne vulgaris. Our aim was to verify the antioxidant properties of KBGY, and identify its active constituents by blood pharmacokinetic techniques. Chemical constituents were quantified in extracts of KBGY, crude components, and the plasma of rats treated with a single oral administration of KBGY. Twenty-three KBGY compounds were detected in plasma, including gallic acid, prunasin, paeoniflorin, and azelaic acid, which have been reported to be effective for inflammation. KBGY decreased level of the diacron-reactive oxygen metabolites (d-ROMs in plasma. ROS-scavenging and lipid hydroperoxide (LPO generation assays revealed that gallic acid, 3-O-methylgallic acid, (+-catechin, and lariciresinol possess strong antioxidant activities. Gallic acid was active at a similar concentration to the maximum plasma concentration, therefore, our findings indicate that gallic acid is an important active constituent contributing to the antioxidant effects of KBGY. KBGY and its active constituents may improve redox imbalances induced by oxidative stress as an optional treatment for skin diseases.

  15. Comparison of CH, C3, CHF, and CF2 surface reactivities during plasma-enhanced chemical vapor deposition of fluorocarbon films.

    Science.gov (United States)

    Liu, Dongping; Cuddy, Michael F; Fisher, Ellen R

    2009-04-01

    The overall character of films deposited using plasma-enhanced chemical vapor deposition relies on the interactions of gas-phase molecules with the depositing film surface. The steady-state surface interactions of CH, C3, CHF, and CF2 have been characterized at the interface of depositing fluorocarbon (FC) films using the imaging of radicals interacting with surfaces (IRIS) technique. IRIS measurements show that the relative gas-phase densities of CH, C3, CHF, and CF2 in mixed FC plasmas depend on the CH2F2/C3F8 ratio. Similar results are found using optical emission spectroscopy to monitor the production of excited-state plasma species. The effects of plasma parameters, such as the feed gas composition and substrate bias on the radical surface, were measured. Under all conditions, the surface reactivity for CH radicals is near unity, whereas those for C3, CHF, and CF2 exhibit very low surface reactivity but also show some dependence on experimental parameters. Under some conditions, CF2 and CHF are generated at the surface of the depositing film. Surface reactivity measurements indicate that CF2, CHF, and C3 may contribute to FC growth only when adsorbing at reactive sites at the film surface. Moreover, the low surface reactivities of singlet species such as C3, CF2, and CHF may be related to the electronic configuration of the molecules.

  16. Simultaneous determination of cis-permethrin and trans-permethrin in rat plasma and brain tissue using gas chromatography-negative chemical ionization mass spectrometry.

    Science.gov (United States)

    Hooshfar, Shirin; Gullick, Darren R; Linzey, Michael R; Mortuza, Tanzir; Abdel Rahman, Mona Hamdy; Rogers, Clinton A; Bruckner, James V; White, Catherine A; Bartlett, Michael G

    2017-08-15

    A sensitive method for the simultaneous determination of cis-permethrin (cis-PERM) and trans-permethrin (trans-PERM) in small volumes (100μL) of rat plasma and brain homogenate was developed, using a liquid-liquid extraction for sample preparation and gas chromatography-negative chemical ionization mass spectrometry (GCNCI-MS) for detection. Quantitation of trace levels of the insecticide in small volumes of biological samples is essential to support toxicokinetic studies in small animals. There are currently no validated methods in the literature for determining cis-PERM and trans- PERM in volumes as low as 100μL of rat plasma or brain homogenate. The method provided a linear range of 0.2-150.0ng/mL for analytes in both matrices. The intra- and inter-batch precision (as% relative standard deviation, RSD) and accuracy (as relative error, RE) of the method were better than 20% at the limit of quantitation and better than 15% across the remaining linear range. The validated method was applied in a toxicokinetic study in adult rats with oral dosing of 10mg/kg (cis-PERM) and 100mg/kg (trans-PERM) in corn oil. cis-PERM and trans- PERM were monitored in rat plasma and brain tissue samples for 6h following dosing, and both analytes were detected in all plasma and brain samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Process control by optical emission spectroscopy during growth of a-C:H from a CH4 plasma by plasma-enhanced chemical vapour deposition

    DEFF Research Database (Denmark)

    Barholm-Hansen, C; Bentzon, MD; Vigild, Martin Etchells

    1994-01-01

    of the gas flow. Above a certain flow rate the intensity saturates, since the deposition process is limited by the power input. At low flow rates a large fraction of the feed gas is dissociated and the deposition is limited by the supply of feed gas. A relationship was found for the intensity of the CH 431...... in the process gas. The initial OH intensity was dependent on the ultimate vacuum prior to the plasma cleaning. A correlation was found between the vanishing of the OH line and the appearance of characteristic emission lines From sputtered electrode material....

  18. Investigation of the influence of oxygen on the rate and anisotropy of deep etching of silicon in the plasma-chemical reactor with the controlled magnetic field

    Directory of Open Access Journals (Sweden)

    Hladkovskyi V. V.

    2017-10-01

    Full Text Available The article presents the research results on the influence of the amount of oxygen in a mixture with sulfur hexafluoride on the rate and anisotropy of the silicon etching in the plasma-chemical reactor with the controlled magnetic field. The etching was performed under the pressure of (0,3-2,0·10-3 Torr in the working chamber and the energy of chemically active ions of 50-80 eV. It was possible to etch the silicon to the depth of 100 Вµm with anisotropy 10, using a thick (0.4-1 µm nickel mask. The obtained results make it evident, that maximums do not coincide for speed of etch and anisotropy. The maximum of etch rate is observed at oxygen maintained at 5%. While the maximum of anisotropy is observed at 10% oxygen. The authors discovered the influence of the magnetic field on the rate and anisotropy of etching. Etch rate of the silicon at the increase of the magnetic-field tension increases virtually twofold at other discharge parameters remaining unchanged. The anisotropy first increases, and then decreases sharply. Thus, the increase of the tension of magnetic field results in worsening of anisotropy. Thus, the process of deep plasma-chemical etching of silicon has been developed and optimized.

  19. Copper-Assisted Direct Growth of Vertical Graphene Nanosheets on Glass Substrates by Low-Temperature Plasma-Enhanced Chemical Vapour Deposition Process.

    Science.gov (United States)

    Ma, Yifei; Jang, Haegyu; Kim, Sun Jung; Pang, Changhyun; Chae, Heeyeop

    2015-12-01

    Vertical graphene (VG) nanosheets are directly grown below 500 °C on glass substrates by a one-step copper-assisted plasma-enhanced chemical vapour deposition (PECVD) process. A piece of copper foil is located around a glass substrate as a catalyst in the process. The effect of the copper catalyst on the vertical graphene is evaluated in terms of film morphology, growth rate, carbon density in the plasma and film resistance. The growth rate of the vertical graphene is enhanced by a factor of 5.6 with the copper catalyst with denser vertical graphene. The analysis of optical emission spectra suggests that the carbon radical density is increased with the copper catalyst. Highly conductive VG films having 800 Ω/□ are grown on glass substrates with Cu catalyst at a relatively low temperature.

  20. High-durability catalytic electrode composed of Pt nanoparticle-supported carbon nanowalls synthesized by radical-injection plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Imai, Shun; Kondo, Hiroki; Cho, Hyungjun; Kano, Hiroyuki; Ishikawa, Kenji; Sekine, Makoto; Hiramatsu, Mineo; Ito, Masafumi; Hori, Masaru

    2017-10-01

    For polymer electrolyte fuel cell applications, carbon nanowalls (CNWs) were synthesized by radical-injection plasma-enhanced chemical vapor deposition, and a high density of Pt nanoparticles (>1012 cm-2) was supported on the CNWs using a supercritical fluid deposition system. The high potential cycle tests were applied and the electrochemical surface area of the Pt nanoparticle-supported CNWs did not change significantly, even after 20 000 high potential cycles. According to transmission electron microscopy observations, the mean diameter of Pt changed slightly after the cycle tests, while the crystallinity of the CNWs evaluated using Raman spectroscopy showed almost no change.

  1. Spectroscopic ellipsometry characterization of nano-crystalline diamond films prepared at various substrate temperatures and pulsed plasma frequencies using microwave plasma enhanced chemical vapor deposition apparatus with linear antenna delivery

    Energy Technology Data Exchange (ETDEWEB)

    Mistrik, J., E-mail: jan.mistrik@upce.cz [Institute of Applied Physics and Mathematics, University of Pardubice, Studentska 95, 53210 Pardubice (Czech Republic); Janicek, P. [Institute of Applied Physics and Mathematics, University of Pardubice, Studentska 95, 53210 Pardubice (Czech Republic); Taylor, A.; Fendrych, F.; Fekete, L.; Jager, A. [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Prague 8 (Czech Republic); Nesladek, M. [IMOMEC Division, IMEC, Institute for Materials Research, University Hasselt, Wetenschapspark 1, B3590 (Belgium)

    2014-11-28

    A series of nanocrystalline diamond (NCD) films were deposited by a custom made microwave plasma enhanced chemical vapor deposition apparatus with linear antenna delivery at different substrate temperatures (520–600 °C) and pulsed plasma frequencies (2.7–14.3 kHz) in a hydrogen rich working gas mixture of H{sub 2}/CH{sub 4}/CO{sub 2}. Films were deposited onto naturally oxidized Si wafers pre-seeded with nanodiamond particles. Spectro-ellipsometry characterization of the NCD films was carried out considering various model structures (single and bi-layer models) and various NCD optical constant parameterizations (Tauc–Lorentz and effective medium approximation with different non-diamond component representations). It has been shown that substrate temperature can be lowered with a simultaneous increase in pulsed plasma frequency while still providing high quality NCD films with non-diamond component fraction in the bulk layer of about 5% (identically estimated by ellipsometry and Raman spectroscopy). Films' thickness and their surface roughness were found consistent with atomic force and secondary electron microscopies. Among various NCD structure models the most appropriate has been selected. - Highlights: • Assessment of most appropriate model structure for nano-crystalline diamond (NCD) films • Interrelation between deposition conditions and diamond quality of NCD films • Identification of non-diamond component in NCD films • Comparison of results obtained by ellipsometry and Raman spectroscopies.

  2. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiO{sub x} layers for application in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Klingsporn, M.; Costina, I. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Kirner, S.; Stannowski, B. [PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie, Schwarzschildstr. 3, 12489 Berlin (Germany); Villringer, C. [Technische Hochschule Wildau, Hochschulring 1, 15745 Wildau (Germany); Abou-Ras, D. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 15109 Berlin (Germany); Lehmann, M. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany)

    2016-06-14

    Nanocrystalline silicon suboxides (nc-SiO{sub x}) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO{sub 0.8}:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  3. Formation of distinctive structures of GaN by inductively-coupled-plasma and reactive ion etching under optimized chemical etching conditions

    Directory of Open Access Journals (Sweden)

    N. Okada

    2017-06-01

    Full Text Available We focused on inductively coupled plasma and reactive ion etching (ICP–RIE for etching GaN and tried to fabricate distinctive GaN structures under optimized chemical etching conditions. To determine the optimum chemical etching conditions, the flow rates of Ar and Cl2, ICP power, and chamber pressure were varied in the etching of c-plane GaN layers with stripe patterns. It was determined that the combination of Ar and Cl2 flow rates of 100 sccm, chamber pressure of 7 Pa, and ICP power of 800 W resulted in the most enhanced reaction, yielding distinctive GaN structures such as pillars with inverted mesa structures for c-plane GaN and a semipolar GaN layer with asymmetric inclined sidewalls. The selectivity and etching rate were also investigated.

  4. Solid-phase microextraction low temperature plasma mass spectrometry for the direct and rapid analysis of chemical warfare simulants in complex mixtures.

    Science.gov (United States)

    Dumlao, Morphy C; Jeffress, Laura E; Gooding, J Justin; Donald, William A

    2016-06-21

    Solid-phase microextraction (SPME) is directly integrated with low temperature plasma ionisation mass spectrometry to rapidly detect organophosphate chemical warfare agent simulants and their hydrolysis products in chemical mixtures, including urine. In this sampling and ionization method, the fibre serves: (i) to extract molecules from their native environment, and (ii) as the ionization electrode that is used to desorb and ionize molecules directly from the SPME surface. By use of a custom fabricated SPME fibre consisting of a stainless steel needle coated with a Linde Type A (LTA) zeolitic microporous material and low temperature plasma mass spectrometry, protonated dimethyl methylphosphonate (DMMP), diethyl ethylphosphonate (DEEP) and pinacolyl methylphosphonic acid (PinMPA) can be detected at less than 100 ppb directly in water and urine. Organophosphates were not readily detected by this approach using an uncoated needle in negative control experiments. The use of the LTA coating significantly outperformed the use of a high alumina Zeolite Socony Mobil-5 (ZSM-5) coating of comparable thickness that is significantly less polar than LTA. By conditioning the LTA probe by immersion in an aqueous CuSO4 solution, the ion abundance for protonated DMMP increased by more than 300% compared to that obtained without any conditioning. Sample recovery values were between 96 and 100% for each analyte. The detection of chemical warfare agent analogues and hydrolysis products required less than 2 min per sample. A key advantage of this sampling and ionization method is that analyte ions can be directly and rapidly sampled from chemical mixtures, such as urine and seawater, without sample preparation or chromatography for sensitive detection by mass spectrometry. This ion source should prove beneficial for portable mass spectrometry applications because relatively low detection limits can be obtained without the use of compressed gases, fluid pumps, and lasers. Moreover, the

  5. Simultaneous Determination of Cyanide and Thiocyanate in Plasma by Chemical Ionization Gas Chromatography Mass-Spectrometry (CI-GC-MS)

    Science.gov (United States)

    2012-09-04

    potassium cyanide. Arterial blood samples were drawn, and plasma was taken from those blood samples at 13 different time points, including a baseline, 15...44. Seto Y (1995) Oxidative conversion of thiocyanate to cyanide by oxyhemoglobin during acid denaturation. Arch Biochem Biophys 321(1):245–254. doi

  6. Blood plasma clinical-chemical parameters as biomarker endpoints for organohalogen contaminant exposure in Norwegian raptor nestlings

    DEFF Research Database (Denmark)

    Sonne, Christian; Bustnes, Jan O.; Herzke, Dorte

    2012-01-01

    ), golden eagle (n=12) and white-tailed eagle (n=36) nestlings during three consecutive breeding seasons. We found that blood plasma concentrations of calcium, sodium, creatinine, cholesterol, albumin, total protein, urea, inorganic phosphate, protein:creatinine, urea:creatinine and uric acid...

  7. Microspectroscopic imaging of solution plasma: How do its physical properties and chemical species evolve in atmospheric-pressure water vapor bubbles?

    Science.gov (United States)

    Yui, Hiroharu; Banno, Motohiro

    2018-01-01

    In this article, we review the development of scientific instruments for obtaining information on the evolution of physical properties and chemical species of solution plasma (SP). When a pulsed high voltage is applied between electrodes immersed in an aqueous solution, SP is formed in water vapor bubbles transiently generated in the solution under atmospheric pressure. To clarify how SP emerges in water vapor bubbles and is sustained in solutions, an instrument with micrometer spatial resolution and nanosecond temporal resolution is required. To meet these requirements, a microscopic system with a custom-made optical discharge cell was newly developed, where the working distance between the SP and the microscopic objective lens was minimized. A hollow electrode equipped in the discharge cell also enabled us to control the chemical composition in water vapor bubbles. To study the spatial and temporal evolutions of chemical species in micrometer and nano- to microsecond regions, a streak camera with a spectrometer and a CCD detector with a time-gated electronic device were combined with the microscope system. The developed instrument is expected to contribute to providing a new means of developing new schemes for chemical reactions and material syntheses.

  8. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  9. Influence of plasma density on the chemical composition and structural properties of pulsed laser deposited TiAlN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Quiñones-Galván, J. G.; Camps, Enrique [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, México D.F. C.P. 11801 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, UNAM, México D.F. C.P. 04510 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, Apdo. Postal 307, C.P. 45101 Zapopan, Jalisco (Mexico); Campos-González, E. [Departamento de Física, CINVESTAV-IPN, Apdo. Postal 14-740, México D.F. 07360 (Mexico)

    2014-05-15

    Incorporation of substitutional Al into the TiN lattice of the ternary alloy TiAlN results in a material with improved properties compared to TiN. In this work, TiAlN thin films were grown by the simultaneous ablation of Ti and Al targets in a nitrogen containing reactive atmosphere. The deposit was formed on silicon substrates at low deposition temperature (200 °C). The dependence of the Al content of the films was studied as a function of the ion density of the plasma produced by the laser ablation of the Al target. The plasma parameters were measured by means of a planar Langmuir probe and optical emission spectroscopy. The chemical composition of the films was measured by energy dispersive X-ray spectroscopy. The results showed a strong dependence of the amount of aluminum incorporated in the films with the plasma density. The structural characterization of the deposits was carried out by Raman spectroscopy, X-ray diffraction, and transmission electron microscopy, where the substitutional incorporation of the Al into the TiN was demonstrated.

  10. An Atmospheric Pressure Chemical Ionization MS/MS Assay Using Online Extraction for the Analysis of 11 Cannabinoids and Metabolites in Human Plasma and Urine.

    Science.gov (United States)

    Klawitter, Jelena; Sempio, Cristina; Mörlein, Sophie; De Bloois, Erik; Klepacki, Jacek; Henthorn, Thomas; Leehey, Maureen A; Hoffenberg, Edward J; Knupp, Kelly; Wang, George S; Hopfer, Christian; Kinney, Greg; Bowler, Russell; Foreman, Nicholas; Galinkin, Jeffrey; Christians, Uwe; Klawitter, Jost

    2017-10-01

    Although, especially in the United States, there has been a recent surge of legalized cannabis for either recreational or medicinal purposes, surprisingly little is known about clinical dose-response relationships, pharmacodynamic and toxicodynamic effects of cannabinoids such as Δ9-tetrahydrocannabinol (THC). Even less is known about other active cannabinoids. To address this knowledge gap, an online extraction, high-performance liquid chromatography coupled with tandem mass spectrometry method for simultaneous quantification of 11 cannabinoids and metabolites including THC, 11-hydroxy-Δ9-tetrahydrocannabinol, 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid, 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid glucuronide (THC-C-gluc), cannabinol, cannabidiol, cannabigerol, cannabidivarin, Δ9-tetrahydrocannabivarin (THCV), and 11-nor-9-carboxy-Δ9-tetrahydrocannabivarin (THCV-COOH) was developed and validated in human urine and plasma. In contrast to atmospheric pressure chemical ionization, electrospray ionization was associated with extensive ion suppression in plasma and urine samples. Thus, the atmospheric pressure chemical ionization assay was validated showing a lower limit of quantification ranging from 0.39 to 3.91 ng/mL depending on study compound and matrix. The upper limit of quantification was 400 ng/mL except for THC-C-gluc with an upper limit of quantification of 2000 ng/mL. The linearity was r > 0.99 for all analyzed calibration curves. Acceptance criteria for intrabatch and interbatch accuracy (85%-115%) and imprecision (marijuana research and clinical practice.

  11. Application of cation-exchange solid-phase extraction for the analysis of amino alcohols from water and human plasma for verification of Chemical Weapons Convention.

    Science.gov (United States)

    Kanaujia, Pankaj K; Tak, Vijay; Pardasani, Deepak; Gupta, A K; Dubey, D K

    2008-03-28

    The analysis of nitrogen containing amino alcohols, which are the precursors and degradation products of nitrogen mustards and nerve agent VX, constitutes an important aspect for verifying the compliance to the CWC (Chemical Weapons Convention). This work devotes on the development of solid-phase extraction method using silica- and polymer-based SCX (strong cation-exchange) and MCX (mixed-mode strong cation-exchange) cartridges for N,N-dialkylaminoethane-2-ols and alkyl N,N-diethanolamines, from water. The extracted analytes were analyzed by GC-MS (gas chromatography-mass spectrometry) in the full scan and selected ion monitoring modes. The extraction efficiencies of SCX and MCX cartridges were compared, and results revealed that SCX performed better. Extraction parameters, such as loading capacity, extraction solvent, its volume, and washing solvent were optimized. Best recoveries were obtained using 2 mL methanol containing 10% NH(4)OH and limits of detection could be achieved up to 5 x 10(-3) microg mL(-1) in the selected ion monitoring mode and 0.01 microg mL(-1) in full scan mode. The method was successfully employed for the detection and identification of amino alcohol present in water sample sent by Organization for Prohibition of Chemical Weapons (OPCW) in the official proficiency tests. The method was also applied to extract the analytes from human plasma. The SCX cartridge showed good recoveries of amino alcohols from human plasma after protein precipitation.

  12. Chemical resolution of Pu+ from U+ and Am+ using a band-pass reaction cell inductively coupled plasma mass spectrometer.

    Science.gov (United States)

    Tanner, Scott D; Li, Chunsheng; Vais, Vladimir; Baranov, Vladimir I; Bandura, Dmitry R

    2004-06-01

    Determination of the concentration and distribution of the Pu and Am isotopes is hindered by the isobaric overlaps between the elements themselves and U, generally requiring time-consuming chemical separation of the elements. A method is described in which chemical resolution of the elemental ions is obtained through ion-molecule reactions in a reaction cell of an ICPMS instrument. The reactions of "natural" U(+), (242)Pu(+), and (243)Am(+) with ethylene, carbon dioxide, and nitric oxide are reported. Since the net sensitivities to the isotopes of an element are similar, chemical resolution is inferred when one isobaric element reacts rapidly with a given gas and the isobar (or in this instance surrogate isotope) is unreactive or slowly reactive. Chemical resolution of the m/z 238 isotopes of U and Pu can be obtained using ethylene as a reaction gas, but little improvement in the resolution of the m/z 239 isobars is obtained. However, high efficiency of reaction of U(+) and UH(+) with CO(2), and nonreaction of Pu(+), allows the sub-ppt determination of (239)Pu, (240)Pu, and (242)Pu (single ppt for (238)Pu) in the presence of 7 orders of magnitude excess U matrix without prior chemical separation. Similarly, oxidation of Pu(+) by NO, and nonreaction of Am(+), permit chemical resolution of the isobars of Pu and Am over 2-3 orders of magnitude relative concentration. The method provides the potential for analysis of the actinides with reduced sample matrix separation.

  13. Effect of fluorine plasma treatment with chemically reduced graphene oxide thin films as hole transport layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Youn-Yeol; Kang, Byung Hyun; Lee, Yang Doo; Lee, Sang Bin; Ju, Byeong-Kwon, E-mail: bkju@korea.ac.kr

    2013-12-15

    The inorganic materials such as V{sub 2}O{sub 5}, MoO{sub 3} and WO{sub 3} were investigated to replace PEDOT:PSS as hole transport layer (HTL) in organic electronic devices such as organic solar cells (OSCs) and organic lighting emission diodes. However, these methods require vacuum techniques that are long time process and complex. Here, we report about plasma treatment with SF{sub 6} and CF{sub 4} using reactive ion etching on reduced graphene oxide (rGO) thin films that are obtained using an eco-friendly method with vitamin C. The plasma treated rGO thin films have dipoles since they consist of covalent bonds with fluorine on the surface of rGO. This means it is possible to increase the electrostatic potential energy than bare rGO. Increased potential energy on the surface of rGO films is worth applying organic electronic devices as HTL such as OSCs. Consequently, the power conversion efficiency of OSCs increased more than the rGO films without plasma treatment.

  14. Thermomechanical and chemical properties of porous W/liquid Li hybrid systems as plasma-facing self-healing surfaces

    Science.gov (United States)

    Kapat, Aveek; Lang, Eric; Neff, Anton; Allain, Jean Paul

    2017-10-01

    The environmental conditions at the plasma-material interface of a future nuclear fusion reactor interacting will be extreme. The incident plasma will carry heat fluxes of the order of 100's of MWm-2 and particle fluxes that can average 1024 m-2s-1. The fusion reactor wall would need to operate at high temperatures near 800 C and the incident energy of particles will vary from a few eV ions to MeV neutrons. A hybrid system, inspired by self-healing solid-state concepts, combines the ductile phase of liquid Li within a solid phase porous W. The liquid Li serves to control hydrogen retention and provide vapor shielding, within the framework of a tunable porosity to optimize edge plasma conditions [2]. Additionally, the porous interface can also provide for effective defect sinks for high duty cycle neutron damage. The surface chemistry of liquid Li on a porous surface varied with D irradiation is studied and its effect on retention. Prior results with refractory alloys have demonstrated effective wetting properties [3]. These hybrid systems, as well as traditional W samples, are bombarded with 500eV D2+and Ar+ at 230oC and 300oC. The Li, O, and C XPS peaks were examined and compared to controls. Additionally, the porous W is characterized for thermo-mechanical properties. Work supported by USDOE Contract DE- DE-SC0014267.

  15. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings.

    Science.gov (United States)

    Demnati, I; Grossin, D; Combes, C; Parco, M; Braceras, I; Rey, C

    2012-10-01

    Due to their bioactivity and osteoconductivity, hydroxyapatite (HA) plasma sprayed coatings have been widely developed for orthopedic uses. However, the thermodynamic instability of HA leads frequently to a mixture of phases which limit the functional durability of the coating. This study investigates the plasma spraying of chlorapatite (ClA) powder, known to melt without decomposition, onto pure titanium substrates using a low energy plasma spray system (LEPS). Pure ClA powder was prepared by a solid gas reaction at 950 °C and thermogravimetric analysis showed the good thermal stability of ClA powder in the range 30-1400 °C compared to that of the HA powder. Characterization of ClA coating showed that ClA had a very high crystalline ratio and no other crystalline phase was detected in the coating. HA and ClA coatings composition, microstructure and in vitro bioactivity potential were studied, compared and discussed. In vitro SBF test on HA and ClA coatings revealed the formation of a poorly crystalline apatite on the coating surface suggesting that we could expect a good osteoconductivity especially for the ClA coating prepared by the LEPS system.

  16. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.

    Science.gov (United States)

    Gottlieb, Steven; Wöhrl, Nicolas; Schulz, Stephan; Buck, Volker

    2016-01-01

    The simultaneous growth of both nanodiamonds and graphene on copper samples is described for the first time. A PE-CVD process is used to synthesize graphene layers and nanodiamond clusters from a hydrogen/methane gas mixture as it is typically done successfully in thermal CVD processes for graphene synthesis. However, the standard thermal CVD process is not without problems since the deposition of graphene is affected by the evaporation of a notable amount of copper caused by the slow temperature increase typical for thermal CVD resulting in a long process time. In sharp contrast, the synthesis of graphene by PE-CVD can circumvent this problem by substantially shortening the process time at holding out the prospect of a lower substrate temperature. The reduced thermal load and the possibility to industrially scale-up the PE-CVD process makes it a very attractive alternative to the thermal CVD process with respect to the graphene production in the future. Nanodiamonds are synthesized in PE-CVD reactors for a long time because these processes offer a high degree of control over the film's nanostructure and simultaneously providing a significant high deposition rate. To model the co-deposition process, the three relevant macroscopic parameters (pressure, gas mixture and microwave power) are correlated with three relevant process properties (plasma ball size, substrate temperature and C2/Hα-ratio) and the influence on the quality of the deposited carbon allotropes is investigated. For the evaluation of the graphene as well as the nanodiamond quality, Raman spectroscopy used whereas the plasma properties are measured by optical methods. It is found that the diamond nucleation can be influenced by the C2/Hα-ratio in the plasma, while the graphene quality remains mostly unchanged by this parameter. Moreover it is derived from the experimental data that the direct plasma contact with the copper surface is beneficial for the nucleation of the diamond while the growth and

  17. Quantification of monosialogangliosides in human plasma through chemical derivatization for signal enhancement in LC–ESI-MS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianyang; Liu, Danting [Clinical Chemistry Program, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Xin, Baozhong; Cechner, Karen [DDC Clinic, Center for Special Needs Children, 14567 Madison Road, Middlefield, OH 44062 (United States); Zhou, Xiang [Clinical Chemistry Program, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Wang, Heng, E-mail: Wang@ddcclinic.org [DDC Clinic, Center for Special Needs Children, 14567 Madison Road, Middlefield, OH 44062 (United States); Zhou, Aimin, E-mail: a.zhou@csuohio.edu [Clinical Chemistry Program, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Center for Gene Regulation in Health and Diseases, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States)

    2016-07-27

    Gangliosides are found in abundance in the central nervous system of vertebrates. Their metabolic disruption and dysfunction are associated with various neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. In order to improve our understanding of the etiology of these diseases, analytical ganglioside assays with sufficient specificity and sensitivity in relevant biological matrices are required. In the present work we have developed and validated a reverse-phase ultra-performance liquid chromatography (UPLC)/tandem mass spectrometry (MS) method for determining monosialogangliosides GM1, GM2, and GM3 present in human plasma. Compared with our previous method, this method enhanced, by 15 fold, MS responses of the analytes by employing 2-(2-Pyridilamino)-ethylamine (PAEA) & 4-(4, 6-Dimethoxy-1, 3, 5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM)-based derivatization. The analytes and internal standards were derivatized with PAEA&DMTMM after extraction from plasma using a protein precipitation procedure. They were then purified using liquid–liquid partitioning. When the samples were then analyzed by UPLC-MS/MS with a multiple reaction monitoring (MRM) mode, we achieved superior sensitivity and specificity. This method was evaluated for extraction recovery, calibration linearity, precision, accuracy, and lower limit of quantification (LLOQ). The validated method was successfully applied to monitor monosialoganglioside levels in the plasma from patients with GM3 synthase deficiency. With significantly increased sensitivity, we have, for the first time, detected a significant amount of GM3 in the affected patients. - Highlights: • A UPLC/MS/MS method for analyzing monosialogangliosides GM1, GM2, and GM3 in human plasma was developed and validated. • PAEA&DMTMM-based derivatization greatly improved the sensitivity. • The method was applied to measure GM1, GM2, and GM3 in the plasma from the patients with GM3 synthase

  18. Low-dielectric-constant fluorinated diamond-like carbon thin films by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Yi, Jeong Woo

    Fluorinated amorphous carbon (a-C:F) thin films are developed for a low dielectric constant interlayer dielectric material from hexafluorobenze (C 6F6) or 1,1,1,2-tetrafluoroethane (FCH2CF 4) as the source gas and argon as the diluent gas in an asymmetric capacitively coupled rf (radio frequency) plasma reactor and an inductively coupled plasma reactor. Effects of input rf power, fluorination, applied bias voltage and post annealing on the properties of a-C:F films are investigated. For depositing a-C:F films from highly diluted C6F6 (3%) and argon (97%) in the capacitively rf plasma reactor at 150 mTorr, the dielectric constant of the film increases from 2.0 to 2.8 as the rf power is increased from 10 W to 70 W, while the optical energy gap decreases from 2.6 eV to 1.9 eV and the transparency in a ultra-violet range is degraded. At input power of 100 W, the deposited film exhibits high residual stress of 40 MPa and easily peeled off by a Scotch tape test. This is due to high self-bias voltage (-230 V) developed at the substrate holder during deposition. When depositing amorphous carbon films from tetrafluoroethane (TFE) and methane in the capacitively coupled plasma reactor, the incorporation of fluorine in the film is increased with increasing TFE fraction in the feed gas mixture. The dielectric constant of the a-C:F film deposited from pure TFE is as low as 2.3, but the film exhibits poor thermal stability while a-C:H (diamond-like carbon) film deposited from pure methane has a dielectric constant of 3.8 and shows good thermal stability up to 400°C. As the TFE content in the feed is increased, the dielectric constant and the refractive index decrease while the transparency of the film is enhanced significantly. When depositing a-C:F films from C6F6 (4 sccm) and Ar (5 sccm) in the inductively coupled rf plasma reactor, the bias voltage (from a separate 100 KHz source) applied to the substrate holder affects the film properties significantly. As the negative bias

  19. Remote nitrogen microwave plasma chemical vapor deposition from a tetramethyl disilazane precursor. 1. Growth mechanism, structure, and surface morphology of silicon carbonitride films

    Energy Technology Data Exchange (ETDEWEB)

    Blaszczyk-Lezak, I. [Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Lodz (Poland); Wrobel, A.M. [Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Lodz (Poland)]. E-mail: amwrobel@bilbo.cbmm.lodz.pl; Aoki, T. [Research Institute of Electronics, Shizuoka University, Hamamatsu 432 (Japan); Nakanishi, Y. [Research Institute of Electronics, Shizuoka University, Hamamatsu 432 (Japan); Kucinska, I.; Tracz, A

    2006-02-21

    Silicon carbonitride (Si:C:N) films were produced by remote microwave nitrogen plasma chemical vapor deposition (RP-CVD) using a 1,1,3,3-tetramethyldisilazane precursor. The reactivity the precursor with atomic nitrogen was characterized using hexamethyldisilazane as a model compound. The effect of the substrate temperature (T {sub S}) on the kinetics of the RP-CVD process, chemical composition, structure, and surface morphology of resulting film has been investigated. The temperature dependencies of the mass- and thickness-based film growth rate imply that for low substrate temperature range (T {sub S} = 30-200 deg. C) film growth is limited by desorption of film-forming precursors, whereas in high substrate temperature range (T {sub S} = 200-400 deg. C) film growth is independent of the temperature and the rate of RP-CVD is mass-transport limited. The increase of the substrate temperature from 30 to 400 deg. C causes the elimination of organic moieties from the film and the formation of Si-N and Si-C network structure. The hypothetical chemical reactions contributing to film formation are discussed. The films were found to be morphologically homogeneous materials exhibiting very small surface roughness for higher substrate temperatures (T {sub S} 200-400 deg. C)

  20. Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries

    Science.gov (United States)

    Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2018-03-01

    Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.

  1. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    Science.gov (United States)

    Jha, Nayansi; Ryu, Jae Jun

    2017-01-01

    The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases. PMID:29204250

  2. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry.

    Science.gov (United States)

    Jha, Nayansi; Ryu, Jae Jun; Choi, Eun Ha; Kaushik, Nagendra Kumar

    2017-01-01

    The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found-in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases.

  3. Spinning Unmagnetized Plasma for Laboratory Studies of Astrophysical Accretion Disks & Dynamos

    Science.gov (United States)

    Collins, Cami

    2015-11-01

    A technique for creating a large, fast-flowing, unmagnetized plasma has been demonstrated experimentally. This marks an important first step towards laboratory studies of phenomenon such as magnetic field generation through self-excited dynamos, or the magnetorotational instability (MRI), the mechanism of interest for its role in the efficient outward transport of angular momentum in accretion disks. In the Plasma Couette Experiment (PCX), a sufficiently hot, steady-state plasma is confined in a cylindrical, axisymmetric multicusp magnetic field, with Tetorque using toroidally localized, biased hot cathodes in the magnetized edge region. Measurements show that momentum couples viscously from the magnetized edge to the unmagnetized core, and the core rotates when collisional ion viscosity overcomes the drag due to ion-neutral collisions. Torque can be applied at the inner or outer boundaries, resulting in controlled, differential rotation. Maximum speeds are observed (He ~ 12 km/s, Ne ~ 4 km/s, Ar ~ 3.2 km/s, Xe ~ 1.4 km/s), consistent with a critical ionization velocity limit reported to occur in partially ionized plasmas. PCX has achieved magnetic Reynolds numbers of Rm ~ 65 and magnetic Prandtl numbers of Pm ~ 0.2-10, which are approaching regimes shown to excite the MRI in a global Hall-MHD stability analysis. Ion-neutral collisions effectively add a body force that undesirably changes the flow profile shape. Recent upgrades have increased the ionization fraction with an additional 6 kW of microwave heating power and stronger magnets that reduce loss area and increase plasma volume by 150%. In addition, an alternative scheme using volume-applied JxB force will maintain the shear profile and destabilize the MRI at more easily achievable plasma parameters.

  4. Preparation of Aligned Ultra-long and Diameter-controlled Silicon Oxide Nanotubes by Plasma Enhanced Chemical Vapor Deposition Using Electrospun PVP Nanofiber Template

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2009-01-01

    Full Text Available Abstract Well-aligned and suspended polyvinyl pyrrolidone (PVP nanofibers with 8 mm in length were obtained by electrospinning. Using the aligned suspended PVP nanofibers array as template, aligned ultra-long silicon oxide (SiOx nanotubes with very high aspect ratios have been prepared by plasma-enhanced chemical vapor deposition (PECVD process. The inner diameter (20–200 nm and wall thickness (12–90 nm of tubes were controlled, respectively, by baking the electrospun nanofibers and by coating time without sacrificing the orientation degree and the length of arrays. The micro-PL spectrum of SiOx nanotubes shows a strong blue–green emission with a peak at about 514 nm accompanied by two shoulders around 415 and 624 nm. The blue–green emission is caused by the defects in the nanotubes.

  5. Microwave plasma enhanced chemical vapor deposition growth of few-walled carbon nanotubes using catalyst derived from an iron-containing block copolymer precursor.

    Science.gov (United States)

    Wang, Peng; Lu, Jennifer; Zhou, Otto

    2008-05-07

    The microwave plasma enhanced chemical vapor deposition (MPECVD) method is now commonly used for directional and conformal growth of carbon nanotubes (CNTs) on supporting substrates. One of the shortcomings of the current process is the lack of control of the diameter and diameter distribution of the CNTs due to difficulties in synthesizing well-dispersed catalysts. Recently, block copolymer derived catalysts have been developed which offer the potential of fine control of both the size of and the spacing between the metal clusters. In this paper we report the successful growth of CNTs with narrow diameter distribution using polystyrene-block-polyferrocenylethylmethylsilane (PS-b-PFEMS) as the catalyst precursor. The study shows that higher growth pressure leads to better CNT growth. Besides the pressure, the effects on the growth of CNTs of the growth parameters, such as temperature and precursor gas ratio, are also studied.

  6. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  7. Characterization of thin TiO{sub 2} films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk-Guzenda, A., E-mail: asobczyk@p.lodz.p [Institute of Materials Science and Engineering, Technical University of Lodz, Stefanowskiego 1, 90-924 Lodz (Poland); Gazicki-Lipman, M.; Szymanowski, H.; Kowalski, J. [Institute of Materials Science and Engineering, Technical University of Lodz, Stefanowskiego 1, 90-924 Lodz (Poland); Wojciechowski, P.; Halamus, T. [Department of Molecular Physics, Technical University of Lodz, Stefanowskiego 1, 90-924 Lodz (Poland); Tracz, A. [Centre for Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz (Poland)

    2009-07-31

    Thin titanium oxide films were deposited using a radio frequency (RF) plasma enhanced chemical vapour deposition method. Their optical properties and thickness were determined by means of ultraviolet-visible absorption spectrophotometry. Films of the optical parameters very close to those of titanium dioxide have been obtained at the high RF power input. Their optical quality is high enough to allow for their use in a construction of stack interference optical filters. At the same time, these materials exhibit strong photocatalytic effects. The results of structural analysis, carried out by Raman Shift Spectroscopy, show that the coatings posses amorphous structure. However, Raman spectra of the same films subjected to thermal annealing at 450 {sup o}C disclose an appearance of a crystalline form, namely that of anatase. Surface morphology of the films has also been characterized by Atomic Force Microscopy revealing granular, broccoli-like topography of the films.

  8. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frick, Daniel A., E-mail: dfrick@gfz-potsdam.de [GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Schuessler, Jan A. [GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Blanckenburg, Friedhelm von [GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Institute of Geological Science, Freie Universität Berlin, 12249 Berlin (Germany)

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ{sup 30}Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ{sup 30}Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g{sup −1}-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ

  9. NiTi shape memory alloys coated with calcium phosphate by plasma-spraying. Chemical and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Prymak, O.; Epple, M. [Institute of Inorganic Chemistry, University of Duisburg-Essen, D-45117 Essen (Germany); Bogdansk, D.; Esenwein, S.A.; Koeller, M. [Department of Surgery, BG Kliniken Bergmannsheil - Universitaetsklinik, Buerkle-de-la-Camp-Platz 1, D-44780 Bochum (Germany)

    2004-05-01

    Plates of superelastic nickel-titanium shape memory alloy (NiTi) were coated with calcium phosphate (hydroxyapatite) by high-temperature plasma-spraying. The porous layer of about 100 {mu}m thickness showed a good adhesion to the metallic substrate that withstood bending of the plate but detached upon cutting the plate. The biocompatibility was tested by cultivation of blood cells (whole blood and isolated granulocytes [a subpopulation of blood leukocytes]). As substrates, pure NiTi, plasma-spray-coated NiTi and calcium phosphate-coated NiTi prepared by a dip-coating process were used. The adhesion of whole blood cells to all materials was not significantly different. In contrast, isolated granulocytes showed an increased adhesion to both calcium phosphate-coated NiTi samples. However, compared to non-coated NiTi or dip-coated NiTi, the number of dead granulocytes adherent to plasma-sprayed surfaces was significantly increased for isolated granulocytes (p<0.01). (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Bleche aus superelastischer Nickel-Titan-Legierung (NiTi) wurden durch Hochtemperatur-Plasmaspritzen mit Calciumphosphat (Hydroxylapatit) beschichtet. Die Haftung der ca. 100 {mu}m starken poroesen Schicht auf der metallischen Unterlage ist so gut, dass das Blech gebogen werden kann. Das Schneiden des Bleches fuehrte allerdings zur Abloesung der Schicht. Die Biokompatibilitaet der beschichteten Bleche wurde im Zellkulturexperiment mit Blutzellen (Vollblut und isolierte Granulozyten, [eine Subpopulation von Blutleukozyten]) untersucht. Zum Vergleich wurden reines NiTi und Calciumphosphat-beschichtetes NiTi (hergestellt durch einen Tauchprozess) ebenfalls in der Zellkultur untersucht. Die Adhaerenz der Vollblutzellen an die Materialien war nicht signifikant unterschiedlich. Im Gegensatz dazu zeigten isolierte Granulozyten eine hoehere Adhaesion auf beiden Calciumphosphat-beschichteten NiTi-Proben. Die Anzahl von toten Granulozyten war auf

  10. Chemically adjusting plasma temperature, energy, and reactivity (CAPTEAR) method using NOx and combustion for selective synthesis of Sc3N@C80 metallic nitride fullerenes.

    Science.gov (United States)

    Stevenson, Steven; Thompson, M Corey; Coumbe, H Louie; Mackey, Mary A; Coumbe, Curtis E; Phillips, J Paige

    2007-12-26

    Goals are (1) to selectively synthesize metallic nitride fullerenes (MNFs) in lieu of empty-cage fullerenes (e.g., C60, C70) without compromising MNF yield and (2) to test our hypothesis that MNFs possess a different set of optimal formation parameters than empty-cage fullerenes. In this work, we introduce a novel approach for the selective synthesis of metallic nitride fullerenes. This new method is "Chemically Adjusting Plasma Temperature, Energy, and Reactivity" (CAPTEAR). The CAPTEAR approach with copper nitrate hydrate uses NOx vapor from NOx generating solid reagents, air, and combustion to "tune" the temperature, energy, and reactivity of the plasma environment. The extent of temperature, energy, and reactive environment is stoichiometrically varied until optimal conditions for selective MNF synthesis are achieved. Analysis of soot extracts indicate that percentages of C60 and Sc3N@C80 are inversely related, whereas the percentages of C70 and higher empty-cage C2n fullerenes are largely unaffected. Hence, there may be a "competitive link" in the formation and mechanism of C60 and Sc3N@C80. Using this CAPTEAR method, purified MNFs (96% Sc3N@C80, 12 mg) have been obtained in soot extracts without a significant penalty in milligram yield when compared to control soot extracts (4% Sc3N@C80, 13 mg of Sc3N@C80). The CAPTEAR process with Cu(NO3)2.2.5H2O uses an exothermic nitrate moiety to suppress empty-cage fullerene formation, whereas Cu functions as a catalyst additive to offset the reactive plasma environment and boost the Sc3N@C80 MNF production.

  11. Impact of In doping on GeTe phase-change materials thin films obtained by means of an innovative plasma enhanced metalorganic chemical vapor deposition process

    Science.gov (United States)

    Szkutnik, P. D.; Aoukar, M.; Todorova, V.; Angélidès, L.; Pelissier, B.; Jourde, D.; Michallon, P.; Vallée, C.; Noé, P.

    2017-03-01

    We investigated the deposition and the phase-change properties of In-doped GeTe thin films obtained by plasma enhanced metalorganic chemical vapor deposition and doped with indium using a solid delivery system. The sublimated indium precursor flow rate was calculated as a function of sublimation and deposition parameters. Indium related optical emission recorded by means of optical emission spectroscopy during deposition plasma allowed proposing the dissociation mechanisms of the [In(CH3)2N(CH3)2]2 solid precursor. In particular, using an Ar + H2 + NH3 deposition plasma, sublimated indium molecules are completely dissociated and do not induce by-product contamination by addition of nitrogen or carbon in the films. X-ray photoelectron spectroscopy evidences the formation of In-Te bonds in amorphous as-deposited In-doped GeTe films. The formation of an InTe phase after 400 °C annealing is also evidenced by means of X-ray diffraction analysis. The crystallization temperature Tx, deduced from monitoring of optical reflectivity of In-doped GeTe films with doping up to 11 at. % slightly varies as a function of the In dopant level with a decrease of Tx down to a minimum value for an In doping level of about 6-8 at. %. In this In doping range, the structure of crystallized In-GeTe films changes and is dominated by the presence of a crystalline In2Te3 phase. Finally, the Kissinger activation energy for crystallization Ea is showing to monotonically decrease as the indium content in the GeTe film is increased indicating a promising effect of In doping on crystallization speed in memory devices while keeping a good thermal stability for data retention.

  12. Atmospheric-pressure plasma-enhanced chemical vapor deposition of a-SiCN:H films: role of precursors on the film growth and properties.

    Science.gov (United States)

    Guruvenket, Srinivasan; Andrie, Steven; Simon, Mark; Johnson, Kyle W; Sailer, Robert A

    2012-10-24

    Atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) using Surfx Atomflow(TM) 250D APPJ was utilized to synthesize amorphous silicon carbonitride coatings using tetramethyldisilizane (TMDZ) and hexamethyldisilizane (HMDZ) as the single source precursors. The effect of precursor chemistry and substrate temperature (T(s)) on the properties of a-SiCN:H films were evaluated, while nitrogen was used as the reactive gas. Surface morphology of the films was evaluated using atomic force microscopy (AFM); chemical properties were determined using Fourier transform infrared spectroscopy (FTIR); thickness and optical properties were determined using spectroscopic ellipsometry and mechanical properties were determined using nanoindentation. In general, films deposited at substrate temperature (T(s)) films deposited at T(s) > 200 °C depicted strong Si-N and Si-CN absorption. Refractive indices (n) of the thin films showed values between 1.5 and 2.0, depending on the deposition parameters. Mechanical properties of the films determined using nanoindentation revealed that these films have hardness between 0.5 GPa and 15 GPa, depending on the T(s) value. AFM evaluation of the films showed high roughness (R(a)) values of 2-3 nm for the films grown at low T(s) (films grown at T(s) ≥ 300 °C exhibited atomically smooth surface with R(a) of ~0.5 nm. Based on the gas-phase (plasma) chemistry, precursor chemistry and the other experimental observations, a possible growth model that prevails in the AP-PECVD of a-SiCN:H thin films is proposed.

  13. Characterization of Plasma Enhanced Chemical Vapor Deposition-Physical Vapor Deposition transparent deposits on textiles to trigger various antimicrobial properties to food industry textiles

    Energy Technology Data Exchange (ETDEWEB)

    Brunon, Celine [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France); Chadeau, Elise; Oulahal, Nadia [Universite de Lyon, Universite Lyon 1, Laboratoire de Recherche en Genie Industriel Alimentaire (LRGIA, E.A. 3733), Rue Henri de Boissieu, F-01000 Bourg en Bresse (France); Grossiord, Carol [Science et Surface, 64, Chemin des Mouilles, F-69130 Ecully (France); Dubost, Laurent [HEF, ZI SUD, Rue Benoit Fourneyron, F-42166 Andrezieux Boutheon (France); Bessueille, Francois [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France); Simon, Farida [TDV Industrie, 43 Rue du Bas des Bois, BP 121, F-53012 Laval Cedex (France); Degraeve, Pascal [Universite de Lyon, Universite Lyon 1, Laboratoire de Recherche en Genie Industriel Alimentaire (LRGIA, E.A. 3733), Rue Henri de Boissieu, F-01000 Bourg en Bresse (France); Leonard, Didier, E-mail: didier.leonard@univ-lyon1.fr [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France)

    2011-07-01

    Textiles for the food industry were treated with an original deposition technique based on a combination of Plasma Enhanced Chemical Vapor Deposition and Physical Vapor Deposition to obtain nanometer size silver clusters incorporated into a SiOCH matrix. The optimization of plasma deposition parameters (gas mixture, pressure, and power) was focused on textile transparency and antimicrobial properties and was based on the study of both surface and depth composition (X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), as well as Transmission Electron Microscopy, Atomic Force Microscopy, SIMS depth profiling and XPS depth profiling on treated glass slides). Deposition conditions were identified in order to obtain a variable and controlled quantity of {approx} 10 nm size silver particles at the surface and inside of coatings exhibiting acceptable transparency properties. Microbiological characterization indicated that the surface variable silver content as calculated from XPS and ToF-SIMS data directly influences the level of antimicrobial activity.

  14. Performance Improvement of Microcrystalline p-SiC/i-Si/n-Si Thin Film Solar Cells by Using Laser-Assisted Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1 to 512 cm−1 as the assisting laser power increased from 0 W to 80 W, which indicated a gradual transformation from amorphous to crystalline Si. From X-ray diffraction (XRD results, the microcrystalline i-Si films with (111, (220, and (311 diffraction were obtained. Compared with the Si-based thin film solar cells deposited without laser assistance, the short-circuit current density and the power conversion efficiency of the solar cells with assisting laser power of 80 W were improved from 14.38 mA/cm2 to 18.16 mA/cm2 and from 6.89% to 8.58%, respectively.

  15. Measurement of ethyl methanesulfonate in human plasma and breast milk samples using high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Montesano, M Angela; Whitehead, Ralph D; Jayatilaka, Nayana K; Kuklenyik, Peter; Davis, Mark D; Needham, Larry L; Barr, Dana Boyd

    2010-06-05

    Ethyl methanesulfonate (EMS) is a mesylate ester, which is known to be a potent mutagen, teratogen, and possibly carcinogen. Mesylate esters have been found in pharmaceuticals as contaminants formed during the manufacturing process and may potentially pose an exposure hazard to humans. We have developed and validated a method for detection of trace amounts (ng/ml levels) of EMS in human plasma and breast milk. The samples were extracted by matrix solid-phase dispersion with ethyl acetate using Hydromatrix and the ASE 200 Accelerated Solvent Extractor. The extracts were separated by high-performance liquid chromatography (HPLC) using a HILIC column. The detection was performed with a triple quadrupole mass spectrometer (TSQ Quantum Ultra, Thermo Electron Corporation) using atmospheric pressure chemical ionization in negative-ion mode and multiple reaction monitoring. The use of a surrogate internal standard in combination with HPLC-MS/MS provided a high degree of accuracy and precision. The extraction efficiency was greater than 70%. Repeated analyses of plasma and breast milk samples spiked with high (100 ng/ml), medium (50 ng/ml) and low (5 ng/ml) concentrations of the analytes gave relative standard deviations of less than 12%. The limits of detection were in the range of 0.5-0.9 ng/ml for both matrices. Published by Elsevier B.V.

  16. Mechanical and Chemical Characterization of a TiC/C System Synthesized Using a Focus Plasma Arc.

    Directory of Open Access Journals (Sweden)

    Reza Mahmoodian

    Full Text Available Titanium carbide-graphite (TiC/C composite was successfully synthesized from Ti and C starting elemental powders using self-propagating high-temperature synthesis technique in an ultra-high plasma inert medium in a single stage. The TiC was exposed to a high-temperature inert medium to allow recrystallization. The product was then characterized using field emission scanning electron microscopy (FESEM coupled with energy dispersive X-ray analysis (EDX, X-ray diffraction (XRD, Rietveld refinement, nanoindentation, and micro-hardness to determine the product's properties. The recorded micro-hardness of the product was 3660 HV, which is a 14% enhancement and makes is comparable to TiC materials.

  17. Mechanical and Chemical Characterization of a TiC/C System Synthesized Using a Focus Plasma Arc.

    Science.gov (United States)

    Mahmoodian, Reza; Hamdi, M; Hassan, M A; Akbari, Abolghasem

    2015-01-01

    Titanium carbide-graphite (TiC/C) composite was successfully synthesized from Ti and C starting elemental powders using self-propagating high-temperature synthesis technique in an ultra-high plasma inert medium in a single stage. The TiC was exposed to a high-temperature inert medium to allow recrystallization. The product was then characterized using field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Rietveld refinement, nanoindentation, and micro-hardness to determine the product's properties. The recorded micro-hardness of the product was 3660 HV, which is a 14% enhancement and makes is comparable to TiC materials.

  18. Plasma-chemical synthesis of carbon nanotubes and fullerenes to create frost-resistant composite building materials

    Science.gov (United States)

    Semenov, A. P.; Smirnyagina, N. N.; Tsyrenov, B. O.; Dasheev, D. E.; Khaltarov, Z. M.

    2017-05-01

    This paper considers a method of synthesis fullerenes and carbon nanotubes at atmospheric pressure. Carbon evaporates into the plasma arc. The paper discusses the method of synthesis of helium at a pressure of 105 Pa. We show the dependence yield of fullerenes and carbon nanotubes from the buffer gas pressure. It has been found that the fullerene yield increased with increasing pressure. The obtained fullerenes and nanotubes find their application in the modification of construction materials. The use of carbon nanomodifiers in the modification of the construction is promising since their introduction significantly improves the physico-mechanical properties using a small quantity of additives. With the introduction of the carbon nanomodifier decrease the porosity of cement stone, which leads to high strength and frost-resistant indicators of the modified cement.

  19. Direct Fabrication of Carbon Nanotubes STM Tips by Liquid Catalyst-Assisted Microwave Plasma-Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Fa-Kuei Tung

    2009-01-01

    Full Text Available Direct and facile method to make carbon nanotube (CNT tips for scanning tunneling microscopy (STM is presented. Cobalt (Co particles, as catalysts, are electrochemically deposited on the apex of tungsten (W STM tip for CNT growth. It is found that the quantity of Co particles is well controlled by applied DC voltage, concentration of catalyst solution, and deposition time. Using optimum growth condition, CNTs are successfully synthesized on the tip apex by catalyst-assisted microwave-enhanced chemical vapor deposition (CA-MPECVD. A HOPG surface is clearly observed at an atomic scale using the present CNT-STM tip.

  20. Multi-layer haemocompatible diamond-like carbon coatings obtained by combined radio frequency plasma enhanced chemical vapor deposition and magnetron sputtering.

    Science.gov (United States)

    Popa, A C; Stan, G E; Husanu, M A; Pasuk, I; Popescu, I D; Popescu, A C; Mihailescu, I N

    2013-12-01

    Radio-frequency Plasma Enhanced Chemical Vapour Deposition (in different methane dilutions) was used to synthesize adherent and haemocompatible diamond-like carbon (DLC) films on medical grade titanium substrates. The improvement of the adherence has been achieved by interposing a functional buffer layer with graded composition TixTiC1-x (x = 0-1) synthesized by magnetron co-sputtering. Bonding strength values of up to ~67 MPa have been measured by pull-out tests. Films with different sp(3)/sp(2) ratio have been obtained by changing the methane concentration in the deposition chamber. Raman spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction were employed for the physical-chemical characterization of the samples. The highest concentration of sp(3)-C (~87 %), corresponding to a lower DLC surface energy (28.7 mJ/m(2) ), was deposited in a pure methane atmosphere. The biological response of the DLC films was assayed by a state-of-the-art biological analysis method (surface enhanced laser desorption/ionization-time of flight mass spectroscopy), in conjunction with other dedicated testing techniques: Western blot and partial thromboplastin time. The data support a cause-effect relationship between sp(3)-C content, surface energy and coagulation time, as well as between platelet-surface adherence properties and protein adsorption profiles.

  1. Optimization of Gas Composition Used in Plasma Chemical Vaporization Machining for Figuring of Reaction-Sintered Silicon Carbide with Low Surface Roughness.

    Science.gov (United States)

    Sun, Rongyan; Yang, Xu; Ohkubo, Yuji; Endo, Katsuyoshi; Yamamura, Kazuya

    2018-02-05

    In recent years, reaction-sintered silicon carbide (RS-SiC) has been of interest in many engineering fields because of its excellent properties, such as its light weight, high rigidity, high heat conductance and low coefficient of thermal expansion. However, RS-SiC is difficult to machine owing to its high hardness and chemical inertness and because it contains multiple components. To overcome the problem of the poor machinability of RS-SiC in conventional machining, the application of atmospheric-pressure plasma chemical vaporization machining (AP-PCVM) to RS-SiC was proposed. As a highly efficient and damage-free figuring technique, AP-PCVM has been widely applied for the figuring of single-component materials, such as Si, SiC, quartz crystal wafers, and so forth. However, it has not been applied to RS-SiC since it is composed of multiple components. In this study, we investigated the AP-PCVM etching characteristics for RS-SiC by optimizing the gas composition. It was found that the different etching rates of the different components led to a large surface roughness. A smooth surface was obtained by applying the optimum gas composition, for which the etching rate of the Si component was equal to that of the SiC component.

  2. The Surface Interface Characteristics of Vertically Aligned Carbon Nanotube and Graphitic Carbon Fiber Arrays Grown by Thermal and Plasma Enhanced Chemical Vapor Deposition

    Science.gov (United States)

    Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.

    2002-01-01

    The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.

  3. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  4. Synthesis of chemically-modified single-walled carbon nanotubes by counter-current ammonia gas injection into the induction thermal plasma process

    Science.gov (United States)

    Shahverdi, Ali

    Pristine single-walled carbon nanotubes (SWCNTs) are poorly dispersible and insoluble in many solvents and need to be chemically modified prior to their use in many applications. This work is focused on the investigation of the synthesis of chemically modified SWCNTs material through an in situ approach. The main objectives of the presented research are: 1) to explore the in situ chemical process during the synthesis of SWCNT and 2) to closely examine the effect of a reactive environment on SWCNTs. Effects of the catalyst type and content on the SWCNTs final product, synthesized by induction thermal plasma (ITP), were studied to replace toxic cobalt (Co) in the feedstock. In this regard, three different catalyst mixtures (i.e. Ni-Y2O3, Ni-Co-Y2O3, and Ni-Mo-Y2O3) were used. Experimental results showed that the catalyst type affects the quality of the SWCNT final product. Similar quality SWCNTs can be produced when the same amount of Co was replaced by Ni. Moreover, the results observed in this experimental work were further explained by thermodynamic calculation results. Thermogravimetry (TG) was used throughout the work to characterize the SWCNTs product. TG was firstly standardized by studying the effects of three main instrumental parameters (temperature ramp, TR, initial mass of the sample, IM, and gas flow rate, FR) on the Tonset and full-width half maximum (FWHM) obtained from TG and derivative TG graphs of carbon black, respectively. Therefore, a two-level factorial statistical design was performed. The statistical analysis showed that the effect of TR, IM, and to a lower extent, FR, is significant on FWHM and insignificant on Tonset. A methodology was then developed based upon the SWCNTs synthesis using the ITP system, through an in situ chemistry approach. Ammonia (NH3) was selected and counter-currently injected into the ITP reactor at three different flow rates and by four different nozzle designs. Numerical simulation indicated a better mixing of NH3 in

  5. Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector

    Science.gov (United States)

    Pan, Huang-Wei; Kuo, Ling-Chi; Huang, Shu-Yu; Wu, Meng-Yun; Juang, Yu-Hang; Lee, Chia-Wei; Chen, Hsin-Chieh; Wen, Ting Ting; Chao, Shiuh

    2018-01-01

    Silicon is a potential substrate material for the large-areal-size mirrors of the next-generation laser interferometer gravitational wave detector operated in cryogenics. Silicon nitride thin films uniformly deposited by a chemical vapor deposition method on large-size silicon wafers is a common practice in the silicon integrated circuit industry. We used plasma-enhanced chemical vapor deposition to deposit silicon nitride films on silicon and studied the physical properties of the films that are pertinent to application of mirror coatings for laser interferometer gravitational wave detectors. We measured and analyzed the structure, optical properties, stress, Young's modulus, and mechanical loss of the films, at both room and cryogenic temperatures. Optical extinction coefficients of the films were in the 10-5 range at 1550-nm wavelength. Room-temperature mechanical loss of the films varied in the range from low 10-4 to low 10-5 within the frequency range of interest. The existence of a cryogenic mechanical loss peak depended on the composition of the films. We measured the bond concentrations of N - H , Si - H , Si - N , and Si - Si bonds in the films and analyzed the correlations between bond concentrations and cryogenic mechanical losses. We proposed three possible two-level systems associated with the N - H , Si - H , and Si - N bonds in the film. We inferred that the dominant source of the cryogenic mechanical loss for the silicon nitride films is the two-level system of exchanging position between a H+ and electron lone pair associated with the N - H bond. Under our deposition conditions, superior properties in terms of high refractive index with a large adjustable range, low optical absorption, and low mechanical loss were achieved for films with lower nitrogen content and lower N - H bond concentration. Possible pairing of the silicon nitride films with other materials in the quarter-wave stack is discussed.

  6. Structure, mechanical, and frictional properties of hydrogenated fullerene-like amorphous carbon film prepared by direct current plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongfu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, Kaixiong; Zhang, Junyan, E-mail: zhangjunyan@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-07-28

    In this study, fullerene like carbon (FL-C) is introduced in hydrogenated amorphous carbon (a-C:H) film by employing a direct current plasma enhanced chemical vapor deposition. The film has a low friction and wear, such as 0.011 and 2.3 × 10{sup −9}mm{sup 3}/N m in the N{sub 2}, and 0.014 and 8.4 × 10{sup −8}mm{sup 3}/N m in the humid air, and high hardness and elasticity (25.8 GPa and 83.1%), to make further engineering applications in practice. It has several nanometers ordered domains consisting of less frequently cross-linked graphitic sheet stacks. We provide new evidences for understanding the reported Raman fit model involving four vibrational frequencies from five, six, and seven C-atom rings of FL-C structures, and discuss the structure evolution before or after friction according to the change in the 1200 cm{sup −1} Raman band intensity caused by five- and seven-carbon rings. Friction inevitably facilitates the transformation of carbon into FL-C nanostructures, namely, the ultra low friction comes from both such structures within the carbon film and the sliding induced at friction interface.

  7. Optical and morphological properties of SiN{sub x}/Si amorphous multilayer structures grown by Plasma Enhanced Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Santana, G.; Melo, O. de; Monroy, B.M.; Fandino, J.; Ortiz, A.; Alonso, J.C. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, A.P. 70-360, Coyoacan (Mexico); Aguilar-Hernandez, J.; Cruz, F.; Contreras-Puentes, G. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional; Edificio 9, U.P.A.L.M. (Mexico)

    2005-08-01

    Very thin layers of Si were grown in between silicon nitride layers using Plasma Enhanced Chemical Vapor Deposition (PECVD) technique and SiH{sub 2}Cl{sub 2}/H{sub 2}/NH{sub 3} mixtures. Deposition conditions were selected to favor Si cluster formation. Room Temperature Photoluminescence (RT-PL) and optical transmission in different ranges were used to evaluate the optical and structural properties of the films. Scanning Electron Microscopy (SEM) of the cross section of cleaved samples allowed to observe a clear pattern of Si clusters embedded in the SiN matrix. The UV-VIS absorption spectra present two band edges. We assume that the higher band gap is due to the amorphous Si clusters. RT-PL spectra are characterized by two broad bands: one centered at 1.5 eV and the other at 2.1 eV. The broad luminescence centered at 2.1 eV could be associated with the higher band gap observed in absorption spectrum. After vacuum annealing of the samples at 400 and ordm;C, the band at 2.1 eV disappears. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Optical properties of amorphous hydrogenated and microcrystalline silicon films prepared by plasma enhanced chemical vapor deposition and re-crystallized at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Netrvalova, Marie; Prusakova, Lucie; Sutta, Pavol [New Technologies - Research Centre, University of West Bohemia, Univerzitni 8, 30614 Plzen (Czech Republic); Mullerova, Jarmila [Faculty of Electrical Engineering, University of Zilina, ul. kpt. J. Nalepku 1390, 03101 Liptovsky Mikulas (Slovakia)

    2011-09-15

    Amorphous hydrogenated silicon films different in thickness (600 - 2400 nm) were deposited by plasma enhanced chemical vapour deposition on Corning glass substrates at 250 C using silan 10% / argon 90% gas mixture. The samples were consequently isothermally heated in a high temperature vacuum chamber at 0.1 Pa and at temperatures from 580 to 620 C. In order to evaluate structural and optical properties of the films X-ray diffraction analysis, Raman spectrometry and optical spectrophotometry were used. Crystalline state (amorphous or microcrystalline), optical band gaps, refractive indices, extinction coefficients, absorption coefficients were determined. X-ray diffraction analysis indicated that originally deposited films were amorphous with different degree of homogeneity depending on the film thickness. After the heat treatment the films became polycrystalline with crystallite sizes 40-50 nm without particular dependence on the recrystallization process used. Raman spectrometry confirmed the results obtained from X-ray diffraction and furthermore revealed the residual amorphous phase 20-25% in volume. Optical spectrophotometry has shown that the values of refractive indices of thermally treated films approach the mono-crystalline silicon refractive index. Extinction coefficients of the thermally treated films are slightly higher than those for monocrystalline silicon. Absorption coefficients for thermally treated films reached quite high values near the absorption edge of the original amorphous material, which can be advantageous for tandem solar cell technologies. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Chemical Isotope Labeling LC-MS for Monitoring Disease Progression and Treatment in Animal Models: Plasma Metabolomics Study of Osteoarthritis Rat Model

    Science.gov (United States)

    Chen, Deying; Su, Xiaoling; Wang, Nan; Li, Yunong; Yin, Hua; Li, Liang; Li, Lanjuan

    2017-01-01

    We report a chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) method generally applicable for tracking metabolomic changes from samples collected in an animal model for studying disease development and treatment. A rat model of surgically induced osteoarthritis (OA) was used as an example to illustrate the workflow and technical performance. Experimental duplicate analyses of 234 plasma samples were carried out using dansylation labeling LC-MS targeting the amine/phenol submetabolome. These samples composed of 39 groups (6 rats per group) were collected at multiple time points with sham operation, OA control group, and OA rats with treatment, separately, using glucosamine/Celecoxib and three traditional Chinese medicines (Epimedii folium, Chuanxiong Rhizoma and Bushen-Huoxue). In total, 3893 metabolites could be detected and 2923 of them were consistently detected in more than 50% of the runs. This high-coverage submetabolome dataset could be used to track OA progression and treatment. Many differentiating metabolites were found and 11 metabolites including 2-aminoadipic acid, saccharopine and GABA were selected as potential biomarkers of OA progression and OA treatment. This study illustrates that CIL LC-MS is a very useful technique for monitoring incremental metabolomic changes with high coverage and accuracy for studying disease progression and treatment in animal models.

  10. Heteroepitaxial growth of Ba1 - xSrxTiO3/YBa2Cu3O7 - x by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Chern, C. S.; Liang, S.; Shi, Z. Q.; Yoon, S.; Safari, A.; Lu, P.; Kear, B. H.; Goodreau, B. H.; Marks, T. J.; Hou, S. Y.

    1994-06-01

    Epitaxial Ba1-xSrxTiO3(BST)/YBa2Cu3O7-x heterostructures with superior electrical and dielectric properties have been fabricated by plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD). Data of x-ray diffraction and high resolution transmission electron microscopy showed that oriented Ba1-xSrxTiO3 layers were epitaxially deposited on epitaxial (001) YBa2Cu3O7-x layers. The leakage current density through the Ba1-xSrxTiO3 films was about 10-7 A/cm2 at 2 V (about 2×105 V/cm) operation. Moreover, the results of capacitance-temperature measurements showed that the PE-MOCVD Ba1-xSrxTiO3 films had Curie temperatures of about 30 °C and a peak dielectric constant of 600 at zero bias voltage. The Rutherford backscattering spectrometry and x-ray diffraction results showed that the BST film composition was controlled between Ba0.75Sr0.25TiO3 and Ba0.8Sr0.2TiO3. The structural and electrical properties of the Ba1-xSrxTiO3/YBa2Cu3O7-x heterostructure indicated that conductive oxide materials with close lattice to Ba1-xSrxTiO3 can be good candidates for the bottom electrode.

  11. Low-temperature growth and characterization of single crystalline ZnO nanorod arrays using a catalyst-free inductively coupled plasma-metal organic chemical vapor deposition.

    Science.gov (United States)

    Jeong, Sang-Hun; Lee, Chang-Bae; Moon, Won-Jin; Song, Ho-Jun

    2008-10-01

    Vertically aligned ZnO nanorod arrays have been synthesized on c-plane sapphires at a low temperature of 400 degrees C using catalyst-free inductively coupled plasma (ICP) metal organic chemical vapor deposition (MOCVD) technique by varying the ICP powers. Diameters of the ZnO nanorods changed from 200 nm to 400 nm as the ICP power increased from 200 to 400 Watt. TEM and XRD investigations indicated that the ZnO nanorod arrays grown at ICP powers above 200 Watt had a homogeneous in-plane alignment and single crystalline nature. PL study at room temperature (RT) and 6 K confirmed that the ZnO nanorod arrays in the present study are of high optical quality as well as good crystalline quality, showing only exciton-related emission peaks without any trace of defect-related deep level emissions in visible range. The blueshift of exciton emission peak in RTPL spectra was also found as rod diameter decreased and it is deduced that this shift in emission energy may be due to the surface resonance effect resulted from the increased surface-to-volume ratio, based on the observation and behavior of the surface exciton (SX) emission in the high-resolution 6 K PL spectra.

  12. Identification of the Chemical Constituents in Simiao Wan and Rat Plasma after Oral Administration by GC-MS and LC-MS.

    Science.gov (United States)

    Fan, Yunshuang; Li, Yamei; Wu, Yuanyuan; Li, Lixin; Wang, Yuming; Li, Yubo

    2017-01-01

    Simiao Wan (SMW), an important multiherbal formula used in traditional Chinese medicine, is extensively used to treat rheumatoid arthritis. However, the knowledge of the bioactive components of SMW remains unclear. Thus, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to analyze the chemical constituents of volatile and nonvolatile extracts of SMW, as well as its absorbed components in rat plasma after oral SMW administration. Identification of several compounds was enabled by comparison of retention times, MS spectra, and MS/MS spectral data with the standard substance and reference materials reported in the literature. In the volatile extracts, GC-MS identified 26 compounds in vitro, three of which observed in blood by GC-MS. In the nonvolatile extracts, LC-MS identified 49 compounds in SMW; 18 compounds containing 7 prototype compounds, 5 metabolites, and 6 unknown compounds were absorbed by blood. The proposed GC-MS and LC-MS method was appropriate not only for the rapid screening and identification of multiple components of an SMW extract but also for screening its bioactive constituents in vivo. The proposed method could be a promising tool for the quality control of other Chinese herbal medicines.

  13. Structure, mechanical, and frictional properties of hydrogenated fullerene-like amorphous carbon film prepared by direct current plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2016-07-01

    In this study, fullerene like carbon (FL-C) is introduced in hydrogenated amorphous carbon (a-C:H) film by employing a direct current plasma enhanced chemical vapor deposition. The film has a low friction and wear, such as 0.011 and 2.3 × 10-9mm3/N m in the N2, and 0.014 and 8.4 × 10-8mm3/N m in the humid air, and high hardness and elasticity (25.8 GPa and 83.1%), to make further engineering applications in practice. It has several nanometers ordered domains consisting of less frequently cross-linked graphitic sheet stacks. We provide new evidences for understanding the reported Raman fit model involving four vibrational frequencies from five, six, and seven C-atom rings of FL-C structures, and discuss the structure evolution before or after friction according to the change in the 1200 cm-1 Raman band intensity caused by five- and seven-carbon rings. Friction inevitably facilitates the transformation of carbon into FL-C nanostructures, namely, the ultra low friction comes from both such structures within the carbon film and the sliding induced at friction interface.

  14. Formation and characterization of the MgO protecting layer deposited by plasma-enhanced metal-organic chemical-vapor deposition

    CERN Document Server

    Kang, M S; Byun, J C; Kim, D S; Choi, C K; Lee, J Y; Kim, K H

    1999-01-01

    MgO films were prepared on Si(100) and soda-lime glass substrates by using plasma-enhanced metal-organic chemical-vapor deposition. Various ratios of the O sub 2 /CH sub 3 MgO sup t Bu gas mixture and various gas flow rates were tested for the film fabrications. Highly (100)-oriented MgO films with good crystallinity were obtained with a 10 sccm CH sub 3 MgO sup t Bu flow without an O sub 2 gas flow. About 5 % carbon was contained in all the MgO films. The refractive index and the secondary electron emission coefficient for the best quality film were 1.43 and 0.45, respectively. The sputtering rate was about 0.2 nm/min for 10 sup 1 sup 1 cm sup - sup 3 Ar sup + ion density. Annealing at 500 .deg. C in an Ar ambient promoted the grain size without inducing a phase transition.

  15. Corrosion resistance of amorphous hydrogenated SiC and diamond-like coatings deposited by r. f. -plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sella, C. (Lab. de Physique des Materiaux, CNRS, 92 Meudon (France)); Lecoeur, J. (Lab. d' Electrochimie Interfaciale, CNRS, 92 Meudon (France)); Sampeur, Y. (ICMC, 91 Le Coudray Montceaux (France)); Catania, P. (ICMC, 91 Le Coudray Montceaux (France))

    1993-10-08

    This paper reports on the properties and corrosion resistance of amorphous hydrogenated carbon and amorphous hydrogenated SiC films deposited by r.f.-plasma-enhanced chemical vapour deposition at low temperatures (below 200 C). SiC coatings were prepared from SiH[sub 4]-CH[sub 4] gas mixtures. Hydrogenated diamond-like coatings were deposited from classical CH[sub 4]-H[sub 2] mixtures. The influence of various deposition parameters was investigated. Microstructural and mechanical properties of the films were studied (density, hydrogen content, nanohardness, internal stress, critical load and friction coefficient). Two examples of corrosion resistance are given: (1) the corrosion resistance and biocompatibility of SiC and diamond-like coatings deposited on metal implants (Ti alloy) (the corrosion resistance is evaluated through potentiodynamic polarization tests in biological media; the biocompatibility of coated and uncoated metals is compared using differentiated human cell cultures); and (2) the corrosion resistance of SiC-coated magnesium in chloride-containing boric borate buffer at pH = 9.3 evaluated from anodic polarization curves and scanning electron microscopy studies. (orig.)

  16. Chemical vapor generation sample introduction for the determination of As, Cd, Sb, Hg, and Pb in nail polish by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Huang, Fan-Feng; Jiang, Shiuh-Jen; Chen, Yen-Ling; Sahayam, A. C.

    2018-02-01

    This paper describes a flow injection vapor generation (VG) method using inductively coupled plasma mass spectrometry (ICP-MS) for determining As, Cd, Sb, Hg, and Pb in nail polish. The samples for VG were prepared as aqueous slurries of a nail polish (0.5% m/v), thiourea (1% m/v), Co(II) (0.75 μg mL- 1), and HCl (1.2% v/v). Chemical VG of As, Cd, Sb, Hg, and Pb ions, by reduction with tetrahydroborate (3% m/v in 0.2% m/v NaOH), enabled their separation from the slurry. With VG sample introduction, As, Cd, Sb and Hg signals were increased by 1-2 orders (except Pb) compared to solution nebulization due to better sample introduction. Quantifications were performed by VG ICP-MS using isotope dilution and standard addition methods as slopes of calibration plots of analytes in the slurries were higher. Using the reported procedure, samples of three nail polishes purchased locally were analyzed for their levels of As, Cd, Sb, Hg, and Pb. The results obtained were in good agreement with those measured using electrothermal vaporization ICP-MS. In the original nail polish sample, the detection limits, calculated as 3σ of blank measurements, for As, Cd, Sb, Hg, and Pb, estimated from standard addition curves, were 0.06, 0.12, 0.14, 0.2, and 12 ng g- 1, respectively.

  17. PACKAGE (Plasma Analysis, Chemical Kinetics and Generator Efficiency): a computer program for the calculation of partial chemical equilibrium/partial chemical rate controlled composition of multiphased mixtures under one dimensional steady flow

    Energy Technology Data Exchange (ETDEWEB)

    Yousefian, V.; Weinberg, M.H.; Haimes, R.

    1980-02-01

    The NASA CEC Code was the starting point for PACKAGE, whose function is to evaluate the composition of a multiphase combustion product mixture under the following chemical conditions: (1) total equilibrium with pure condensed species; (2) total equilibrium with ideal liquid solution; (3) partial equilibrium/partial finite rate chemistry; and (4) fully finite rate chemistry. The last three conditions were developed to treat the evolution of complex mixtures such as coal combustion products. The thermodynamic variable pairs considered are either pressure (P) and enthalpy, P and entropy, at P and temperature. Minimization of Gibbs free energy is used. This report gives detailed discussions of formulation and input/output information used in the code. Sample problems are given. The code development, description, and current programming constraints are discussed. (DLC)

  18. Modeling of Plasma-Induced Ignition and Combustion

    National Research Council Canada - National Science Library

    Boyd, Iain D; Keidar, Michael

    2008-01-01

    .... Phenomena that must be considered in an electrothermal chemical gun model include the initial capillary plasma properties, the plasma-air interaction, plasma sheath effects, and the plasma-propellant interaction itself...

  19. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    , external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  20. Fabrication of ferroelectric SrBi{sub 2}Ta{sub 2}O{sub 9} capacitor films using plasma-assisted metalorganic chemical vapor deposition and their electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Moon, B. K.; Hironaka, K.; Isobe, C.; Hishikawa, S.

    2001-06-01

    The fabrication of SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) films using plasma-assisted metalorganic chemical vapor deposition (P-MOCVD) has been investigated. Optimizing the process conditions under plasma environment, amorphous SBT films were successfully deposited at a substrate temperature below 300{degree}C, suggesting that the P-MOCVD process effectively utilizes plasma energy to promote the reaction and decomposition of metal organic source molecules. The amorphous SBT films were crystallized to the bilayered perovskite SBT films by a postannealing at 725{degree}C. Thin SBT capacitors fabricated using P-MOCVD showed a good step coverage and the excellent ferroelectric properties including endurance. Low voltage operation below 1.5 V was successfully achieved using a 75 nm SBT capacitor, in which the signal level derived from the hysteresis curve suggests the feasibility of application to a 64 Mbit ferroelectric random access memories. {copyright} 2001 American Institute of Physics.

  1. Epitaxial growth of SrTiO3/YBa2Cu3O7 - x heterostructures by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Liang, S.; Chern, C. S.; Shi, Z. Q.; Lu, P.; Safari, A.; Lu, Y.; Kear, B. H.; Hou, S. Y.

    1994-06-01

    We report heteroepitaxial growth of SrTiO3 on YBa2Cu3O7-x/LaAlO3 substrates by plasma-enhanced metalorganic chemical vapor deposition. X-ray diffraction results indicated that SrTiO3 films were epitaxially grown on a (001) YBa2Cu3O7-x surface with [100] orientation perpendicular to the surface. The film composition, with Sr/Ti molar ratio in the range of 0.9 to 1.1, was determined by Rutherford backscattering spectrometry and energy dispersive spectroscopy. The thickness of the SrTiO3 films is 0.1-0.2 μm. The epitaxial growth was further evidenced by high-resolution transmission electron microscopy and selected area diffraction. Atomically abrupt SrTiO3/YBa2Cu3O7-x interface and epitaxial growth with [100]SrTiO3∥[001]YBa2Cu3O7-x were observed in this study. The superconducting transition temperature of the bottom YBa2Cu3O7-x layer, as measured by ac susceptometer, did not significantly degrade after the growth of overlayer SrTiO3. The capacitance-voltage measurements showed that the dielectric constant of the SrTiO3 films was as high as 315 at a signal frequency of 100 KHz. The leakage current density through the SrTiO3 films is about 1×10-6 A/cm2 at 2-V operation. Data analysis on the current-voltage characteristic indicated that the conduction process is related to bulk-limited Poole-Frenkel emission.

  2. Synthesis and Characterization of High c-axis ZnO Thin Film by Plasma Enhanced Chemical Vapor Deposition System and its UV Photodetector Application.

    Science.gov (United States)

    Chao, Chung-Hua; Wei, Da-Hua

    2015-10-03

    In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 (o)C. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 (o)C. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 (o)C by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application.

  3. Method development for the determination of 24S-hydroxycholesterol in human plasma without derivatization by high-performance liquid chromatography with tandem mass spectrometry in atmospheric pressure chemical ionization mode.

    Science.gov (United States)

    Sugimoto, Hiroshi; Kakehi, Masaaki; Satomi, Yoshinori; Kamiguchi, Hidenori; Jinno, Fumihiro

    2015-10-01

    We developed a highly sensitive and specific high-performance liquid chromatography with tandem mass spectrometry method with an atmospheric pressure chemical ionization interface to determine 24S-hydroxycholesterol, a major metabolite of cholesterol formed by cytochrome P450 family 46A1, in human plasma without any derivatization step. Phosphate buffered saline including 1% Tween 80 was used as the surrogate matrix for preparation of calibration curves and quality control samples. The saponification process to convert esterified 24S-hydroxycholesterol to free sterols was optimized, followed by liquid-liquid extraction using hexane. Chromatographic separation of 24S-hydroxycholesterol from other isobaric endogenous oxysterols was successfully achieved with gradient mobile phase comprised of 0.1% propionic acid and acetonitrile using L-column2 ODS (2 μm, 2.1 mm id × 150 mm). This assay was capable of determining 24S-hydroxycholesterol in human plasma (200 μL) ranging from 1 to 100 ng/mL with acceptable intra- and inter-day precision and accuracy. The potential risk of in vitro formation of 24S-hydroxycholesterol by oxidation from endogenous cholesterol in human plasma was found to be negligible. The stability of 24S-hydroxycholesterol in relevant solvents and human plasma was confirmed. This method was successfully applied to quantify the plasma concentrations of 24S-hydroxycholesterol in male and female volunteers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrosurgical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stalder, Kenneth R; McMillen, Donald F; Woloszko, Jean [ArthroCare Corp., Sunnyvale, CA 94085-3523 (United States)

    2005-06-07

    Electrosurgical medical devices based on repetitively pulsed nonequilibrium micron-scale to millimetre-scale plasma discharges in saline solutions are described. The formation of vapour layers (bubbles) around active electrodes appears to be a common feature at moderate (<300 V rms) voltages, and dissociation, excitation and ionization of the vapour in these bubbles produces chemical conditions that are thought to be the source of beneficial tissue removal and treatment. Experimental data are discussed, as are the results of modelling efforts of the plasma chemistry. Hydroxyl radicals, hydrogen atoms and other species are observed spectroscopically and their interactions with collagen, a common component of tissue encountered in surgical situations, are considered. Several pathways by which hydroxyl radicals interacting with collagen can lead to tissue removal are discussed.

  5. Plasma modification of starch.

    Science.gov (United States)

    Zhu, Fan

    2017-10-01

    Plasma is a medium of unbound negative and positive particles with the overall electrical charge being roughly zero. Non-thermal plasma processing is an emerging green technology with great potential to improve the quality and microbial safety of various food materials. Starch is a major component of many food products and is an important ingredient for food and other industries. There has been increasing interest in utilizing plasma to modify the functionalities of starch through interactions with reactive species. This mini-review summarises the impact of plasma on composition, chemical and granular structures, physicochemical properties, and uses of starch. Structure-function relationships of starch components as affected by plasma modifications are discussed. Effect of plasma on the properties of wheat flour, which is a typical example of starch based complex food systems, is also reviewed. Future research directions on how to better utilise plasma to improve the functionalities of starch are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Plasma chemistry and its applications

    Science.gov (United States)

    Hozumi, K.

    1980-01-01

    The relationship between discharge phenomena and plasma chemistry, as well as the equipment and mechanisms of plasma chemical reactions are described. Various areas in which plasma chemistry is applied are surveyed, such as: manufacturing of semiconductor integrated circuits; synthetic fibers; high polymer materials for medical uses; optical lenses; and membrane filters (reverse penetration films).

  7. Physico-chemical induced modification of seed germination and early development in artichoke (Cynara scolymus L.) using low energy plasma technology

    Science.gov (United States)

    Hosseini, Seyed Iman; Mohsenimehr, Soad; Hadian, Javad; Ghorbanpour, Mansour; Shokri, Babak

    2018-01-01

    In this study, low pressure non-thermal radiofrequency nitrogen plasma at very low power has been used to treat the artichoke seeds on the powered cathode for the first time. The influence of treatment time on the surface physical properties, germination rate, seedling growth, and enzyme activity of the seeds has been investigated. Results showed that plasma treatment considerably improved the germination rate and seedling growth. The root length grew by 28.5% and 50% and root dry weight increased by 13% and 53%, respectively, for 10 and 15 min of treatment. The same trend has been found for the shoot growth parameters although the greater stimulatory efficacy on root has been obtained. The nitrogen plasma treatment substantially made the seeds' surface hydrophilic which leads to 36.9% improvement in seed's water uptake at 15 min of treatment. Our study showed the activity of peroxidase and catalase enzymes slightly increased after the plasma treatment.

  8. Plasma heating power dissipation in low temperature hydrogen plasmas

    CERN Document Server

    Komppula, J

    2015-01-01

    Theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g. electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  9. Plasma Processing for Carbon Nanomaterials

    Science.gov (United States)

    Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto

    Plasma is a useful tool to synthesize carbon nano-materials including diamond, fullerene, nanotube and graphene. This review introduces the overview of these carbon nano-materials produced by thermal or non-thermal plasmas and also the authors' work related to plasma-enhanced chemical vapor deposition of carbon nanotubes and its correlation with numerical simulation of CH4/H2 feedstock gas plasmas. The amount of carbon atoms in the CNTs grown and that calculated from simulation showed good agreement.

  10. Radiation from an electron beam in magnetized plasma: excitation of a whistler mode wave packet by interacting, higher-frequency, electrostatic-wave eigenmodes

    Science.gov (United States)

    Brenning, N.; Axnäs, I.; Koepke, M.; Raadu, M. A.; Tennfors, E.

    2017-12-01

    Infrequent, bursty, electromagnetic, whistler-mode wave packets, excited spontaneously in the laboratory by an electron beam from a hot cathode, appear transiently, each with a time duration τ around ∼1 μs. The wave packets have a center frequency f W that is broadly distributed in the range 7 MHz electrostatic (es) plasma oscillations at values of f hf, 200 MHz < f hf < 500 MHz, that are hypothesized to match eigenmode frequencies of an axially localized hf es field in a well-defined region attached to the cathode. Features of these es-eigenmodes that are studied include: the mode competition at times of transitions from one dominating es-eigenmode to another, the amplitude and spectral distribution of simultaneously occurring es-eigenmodes that do not lead to a transition, and the correlation of these features with the excitation of whistler mode waves. It is concluded that transient coupling of es-eigenmode pairs at f hf such that | {{{f}}}1,{{h}{{f}}}-{{{f}}}2,{{h}{{f}}}| = {f}{{W}}< {f}{{g}{{e}}} can explain both the transient lifetime and the frequency spectra of the whistler-mode wave packets (f W) as observed in lab. The generalization of the results to bursty whistler-mode excitation in space from electron beams, created on the high potential side of double layers, is discussed.

  11. Introduction to Complex Plasmas

    CERN Document Server

    Bonitz, Michael; Ludwig, Patrick

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.

  12. Chemical mechanisms inducing a dc current measured in the flowing post-discharge of an RF He-O2 plasma torch

    CERN Document Server

    Dufour, Thierry; Vandencasteele, N; Reniers, F

    2016-01-01

    The post-discharge of an RF plasma torch supplied with helium and oxygen gases is characterized by mass spectrometry, optical emission spectroscopy and electrical measurements. We have proved the existence of a dc current in the post-discharge (1--20 A), attributed to the Penning ionization of atmospheric nitrogen and oxygenated species. The mechanisms ruling this dc current are investigated through experiments in which we discuss the influence of the O2 flow rate, the He flow rate and the distance separating the plasma torch from a material surface located downstream.

  13. Mechanism of the immobilization of surfactants on polymeric surfaces by means of an argon plasma treatment: influence of the chemical structure of surfactant substrate

    NARCIS (Netherlands)

    Lens, J.P.; Lens, J.P.; Terlingen, J.G.A.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1998-01-01

    In this article, a study on the mechanism of the immobilization of surfactants on polymeric surfaces by means of an argon plasma treatment is described. The unsaturated surfactant sodium 10-undecenoate [C11(:)] and the saturated surfactant sodium dodecanoate (C12) were immobilized on poly(ethylene)

  14. Physico-chemical and mechanical modifications of polyethylene and polypropylene by ion implantation, micro-wave plasma, electron beam radiation and gamma ray irradiation; Modifications physico-chimiques et mecaniques du polyethylene et du polypropylene par implantation ionique, plasma micro-ondes, bombardement d`electrons et irradiation gamma

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.D.

    1995-03-29

    A polyolefin surface becomes wettable when treated by micro-wave plasma or low-dose nitrogen ion implantation. A short time argon plasma treatment is sufficient to obtain polarizable peroxides on a polyolefin. X-ray photoelectron spectroscopy analyses, paramagnetic electronic resonance analyses, peroxides decomposition, wettability measurements and infrared active spectra analyses have shown that oxidized structures obtained from different treatment techniques play an important role in the interpretation of surface chemical properties of the polymer. Micro-wave plasma treatment, and in particular argon plasma treatment, yields more polarizable groups than ion implantation and is interesting for grafting. Hardness and elasticity modulus, measured by nano-indentation on a polyolefin, increase with an appropriate ion implantation dose. A 1.4 x 10{sup 17} ions.cm{sup -2} dose can multiply by 15 the hardness of high molecular weight polyethylene, and by 7 the elasticity modulus for a 30 nm depth. The viscous-plastic to quasi-elastic transition is shown. The thickness of the modified layer is over 300 nm. The study of friction between a metal sphere and a polyethylene cupula shows that ion implantation in the polymer creates a reticulated hard and elastic layer which improves its mechanical properties and reduces the erosion rate. Surface treatments on polymers used as biomaterials allow to adapt the surface properties to specific applications. 107 refs., 66 figs., 19 tabs., 4 annexes.

  15. Simultaneous extraction of acetylsalicylic acid and salicylic acid from human plasma and simultaneous estimation by liquid chromatography and atmospheric pressure chemical ionization/tandem mass spectrometry detection. Application to a pharmacokinetic study.

    Science.gov (United States)

    Nirogi, Ramakrishna; Kandikere, Vishwottam; Mudigonda, Koteshwara; Ajjala, Devender; Suraneni, Ramakrishna; Thoddi, Parthasarathi

    2011-01-01

    A simple analytical method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in atmospheric chemical ionization mode (APCI) for the simultaneous estimation of acetylsalicylic acid (ASA, CAS 50-78-2) and its active metabolite salicylic acid (SA, CAS 69-72-7) in human plasma has been developed and validated. ASA and SA were analyzed simultaneously despite differences in plasma concentration ranges of ASA and SA after oral administration of ASA. In spite of having different chemical, ionization and chromatographic properties, ASA and SA were extracted simultaneously from the plasma sample using acetonitrile protein precipitation followed by liquid-liquid extraction. The analytes were separated on a reversed phase column with rapid gradient program using mobile phase consisting of ammonium acetate buffer and methanol. The structural analogue diclofenac was used as an internal standard. The multiple reaction monitoring (MRM) transitions m/z 179 --> 137 for ASA, m/z 137 --> 65 for SA and m/z 294 --> 250 for IS were used. The assay exhibited a linear dynamic range of 0.02-10 microg/mL for ASA and 0.1-50 microg/mL for SA. The between-batch precision (%CV) ranged from 2.1 to 7.9% for ASA and from 0.2 to 5.2% for SA. The between-batch accuracy ranged from 95.4 to 96.7% for ASA and from 94.6 to 111.3% for SA. The validated method was successfully applied for the evaluation of pharmacokinetics of ASA after single oral administration of 650 mg test formulation versus two 325 mg reference formulations of ASA in human subjects.

  16. Comparison of palladium chemical modifiers for the determination of selenium in plasma by Zeeman-effect background corrected electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jons, O.

    1997-01-01

    of the species, The presence of chloride affected the stability of the selenium forms differently in aqueous solution, while there was no pronounced effect on the stabilization in plasma, Different amounts of palladium, varying from the application of 2 to 40 mu g into the graphite tube, were compared......, The application of 20 mu g of palladium showed the best result in terms of sensitivity and equal stabilization of the selenium species when analysing plasma, Different amounts of magnesium nitrate, varying from the application of 0.6 to 24.3 mu g of magnesium into the graphite tube, were examined, The addition...... of magnesium nitrate did not improve the results, either in terms of sensitivity or equal stabilization, but only increased the background signal, On adding 20 mu g of palladium, selenite and selenate were equally stabilized, while the sensitivity of selenomethionine was about 80% of that of the former species...

  17. Physico-chemical study of coating plasma duplex alumina/hydroxyapatite for medical applications relation elaboration/structure/properties(dissolution/adherence/residual constraints); Etude physico-chimique de depots plasma duplex alumine/hydroxyapatite pour applications medicales relations elaboration/structure/proprietes (dissolution/adherence/contraintes residuelles)

    Energy Technology Data Exchange (ETDEWEB)

    Demonet, N

    1998-11-19

    The physico-chemical behavior of porous ceramics depositing is studied in order to use them to favour the biological fixing of hip prosthesis fixed without cement. Alumina depositing, hydroxyapatite depositing and duplex (the both together) have been realized by plasma projection on a substrate in Ti-6Al-V. Tests of dissolution have been made. An original method of sound followed by radioactive tracers has allowed to establish an order of phases degradation and to consider the kinetics of calcium ions in function of several parameters of tests. (N.C.)

  18. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  19. Plasma chemistry for inorganic materials

    Science.gov (United States)

    Matsumoto, O.

    1980-01-01

    Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.

  20. Review on plasmas in extraordinary media: plasmas in cryogenic conditions and plasmas in supercritical fluids

    Science.gov (United States)

    Stauss, Sven; Muneoka, Hitoshi; Terashima, Kazuo

    2018-02-01

    Plasma science and technology has enabled advances in very diverse fields: micro- and nanotechnology, chemical synthesis, materials fabrication and, more recently, biotechnology and medicine. While many of the currently employed plasma tools and technologies are very advanced, the types of plasmas used in micro- and nanofabrication pose certain limits, for example, in treating heat-sensitive materials in plasma biotechnology and plasma medicine. Moreover, many physical properties of plasmas encountered in nature, and especially outer space, i.e. very-low-temperature plasmas or plasmas that occur in high-density media, are not very well understood. The present review gives a short account of laboratory plasmas generated under ’extreme’ conditions: at cryogenic temperatures and in supercritical fluids. The fundamental characteristics of these cryogenic plasmas and cryoplasmas, and plasmas in supercritical fluids, especially supercritical fluid plasmas, are presented with their main applications. The research on such exotic plasmas is expected to lead to further understanding of plasma physics and, at the same time, enable new applications in various technological fields.

  1. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma; Peliculas delgadas de carbono amorfo hidrogenado (a-C:H) obtenidas mediante deposito quimico de vapores asistido por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Muhl S, S. [IIM-UNAM, 04510 Mexico D.F. (Mexico)

    2004-07-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H{sub 2}/CH{sub 4} in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10{sup -4} to 6x10{sup -4} Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  2. The investigation of structure, chemical composition, hydrogen isotope trapping and release processes in deposition layers on surfaces exposed to DIII-D divertor plasma

    Energy Technology Data Exchange (ETDEWEB)

    Buzhinskij, O.I.; Opimach, I.V.; Barsuk, V.A. [TRINITI, Troitsk (Russian Federation); Arkhipov, I.I. [Russian Academy of Science, Moscow (Russian Federation). Inst. of Physical Chemistry; West, W.P.; Wong, C.P.C. [General Atomics, San Diego, CA (United States); Whyte, D. [Univ. of California, San Diego, CA (United States); Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States)

    1998-05-01

    The exposure of ATG graphite sample to DIII-D divertor plasma was provided by the DiMES (Divertor Material Evaluation System) mechanism. The graphite sample arranged to receive the parallel heat flux on a small region of the surface was exposed to 600ms of outer strike point plasma. The sample was constructed to collect the eroded material directed downward into a trapping zone onto s Si disk collector. The average heat flux onto the graphite sample during the exposure was about 200W/cm{sup 2}, and the parallel heat flux was about 10 KW/cm{sup 2}. After the exposure the graphite sample and Si collector disk were analyzed using SEM, NRA, RBS, Auger spectroscopy. IR and Raman spectroscopy. The thermal desorption was studied also. The deposited coating on graphite sample is amorphous carbon layer. Just upstream of the high heat flux zone the redeposition layer has a globular structure. The deposition layer on Si disk is composed also from carbon but has a diamond-like structure. The areal density of C and D in the deposited layer on Si disk varied in poloidal and toroidal directions. The maximum D/C areal density ratio is about 0.23, maximum carbon density is about 3.8 {times} 10{sup 18}cm{sup {minus}2}, maximum D area density is about 3 {times} 10{sup 17}cm{sup 2}. The thermal desorption spectrum had a peak at 1,250K.

  3. Plasma chemistry and organic synthesis

    Science.gov (United States)

    Tezuka, M.

    1980-01-01

    The characteristic features of chemical reactions using low temperature plasmas are described and differentiated from those seen in other reaction systems. A number of examples of applications of plasma chemistry to synthetic reactions are mentioned. The production of amino acids by discharge reactions in hydrocarbon-ammonia-water systems is discussed, and its implications for the origins of life are mentioned.

  4. Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?

    Energy Technology Data Exchange (ETDEWEB)

    Podhorodecki, A., E-mail: artur.p.podhorodecki@pwr.wroc.pl; Golacki, L. W.; Zatryb, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wang, J.; Jadwisienczak, W. [School of EECS, Ohio University, Stocker Center 363, Athens, Ohio 45701 (United States); Fedus, K. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland); Wojcik, J.; Wilson, P. R. J.; Mascher, P. [Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main St. W, Hamilton, Ontario L8S4L7 (Canada)

    2014-04-14

    In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100 °C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

  5. Kinetic analysis of the chemical processes in the decomposition of gaseous dielectrics by a non-equilibrium plasma - part 2: SF6 and SF6/O2

    Directory of Open Access Journals (Sweden)

    Bauerfeldt Glauco F.

    2000-01-01

    Full Text Available In this work, a numerical modelling analysis of the gas-phase decomposition of pure SF6 and SF6/O2 mixtures, in the presence of silicon was performed. The relative rate of individual processes, the effect of the parameters uncertainties and the sensitivity coefficients were determined. The results were compared with literature experimental data for the plasma etching of silicon and with previous simulated results to adjust the model parameters. As in the CF4 system, the main etching agent is atomic fluorine and the concentration of the major species depends on the composition of the mixture. The shape of the sensitivity curves follows the general shape of the individual rate curves and the ratio between the calculated sensitivity coefficients is closely related to the contribution of each reaction.

  6. Selective Deposition of Multiple Sensing Materials on Si Nanobelt Devices through Plasma-Enhanced Chemical Vapor Deposition and Device-Localized Joule Heating.

    Science.gov (United States)

    Lin, Ru-Zheng; Cheng, Kuang-Yang; Pan, Fu-Ming; Sheu, Jeng-Tzong

    2017-11-22

    This paper describes a novel method, using device-localized Joule heating (JH) in a plasma enhanced atomic layer deposition (PEALD) system, for the selective deposition of platinum (Pt) and zinc oxide (ZnO) in the n- regions of n+/n-/n+ polysilicon nanobelts (SNBs). COMSOL simulations were adopted to estimate device temperature distribution. However, during ALD process, the resistance of SNB device decreased gradually and reached to minima after 20 min JH. As a result, thermal decomposition of precursors occurred during PEALD process. Selective deposition in the n- region was dominated by CVD instead of ALD. Selective deposition of Pt and ZnO films has been achieved and characterized using atomic force microscopy, scanning electron microscopy, and transmission electron microscopy.

  7. Linking plasma kinetics to plasma-bio interactions

    Science.gov (United States)

    Bruggeman, Peter

    2015-05-01

    Cold non-equilibrium atmospheric pressure plasmas have received a lot of attention in the last decade due to their huge potential for biomedical applications. In my group, we have characterized an RF driven APPJ in great detail. The characterization includes electrical measurements, imaging, optical emission spectroscopy, (two photon enhanced) laser induced fluorescence, Thomson scattering, Rayleigh scattering, Raman scattering and mass spectrometry. This led to a detailed knowledge of the electron density, electron temperature, gas temperature, NO, O, OH, O3 densities, ionic species and air concentrations in the plasma effluent. Living organisms for in vitro studies are typically kept in complex solutions or culture media. Plasma-bio interactions involves not only the production of reactive species in the plasma gas phase but also transport to the liquid phase and plasma induced liquid phase chemistry and its impact on the living organisms. Reactive nitrogen and oxygen species have been identified as the key reactive species. Recent results of my group show that controlling the gas phase plasma chemistry can lead to significant different biological responses of the living organisms corresponding to different chemical pathways. The effect of plasma jet interaction with liquids containing mammalian cells, bacteria and virus will be discussed. The outcomes of these studies allow unraveling chemical pathways responsible for plasma-bio interactions and linking plasma kinetics to plasma-bio interactions.

  8. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  9. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  10. Comparative Study of Surface Chemical Composition and Oxide Layer Modification upon Oxygen Plasma Cleaning and Piranha Etching on a Novel Low Elastic Modulus Ti25Nb21Hf Alloy

    Science.gov (United States)

    Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María

    2017-08-01

    Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.

  11. Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

    Directory of Open Access Journals (Sweden)

    Hideharu Shimizu, Shuji Nagano, Akira Uedono, Nobuo Tajima, Takeshi Momose and Yukihiro Shimogaki

    2013-01-01

    Full Text Available Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs, with a low dielectric constant (k-value and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si–C2H4–Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si–C2H4–Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer.

  12. Determination of As, Hg and Pb in herbs using slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Tai, Chia-Yi; Jiang, Shiuh-Jen; Sahayam, A C

    2016-02-01

    Analysis of herbs for As, Hg and Pb has been carried out using slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) with flow injection vapor generation. Slurry containing 0.5% m/v herbal powder, 0.1% m/v citric acid and 2% v/v HCl was injected into the VG-ICP-MS system for the determination of As, Hg and Pb that obviate dissolution and mineralization. Standard addition and isotope dilution methods were used for quantifications in selected herbal powders. This method has been validated by the determination of As, Hg and Pb in NIST standard reference materials SRM 1547 Peach Leaves and SRM 1573a Tomato Leaves. The As, Hg and Pb analysis results of the reference materials agreed with the certified values. The precision obtained by the reported procedure was better than 7% for all determinations. The detection limit estimated from standard addition curve was 0.008, 0.003, and 0.007 ng mL(-1) for As, Hg and Pb, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of chemical composition on hydrophobicity and zeta potential of plasma sprayed HA/CaO-P2O5 glass coatings.

    Science.gov (United States)

    Ferraz, M P; Monteiro, F J; Serro, A P; Saramago, B; Gibson, I R; Santos, J D

    2001-12-01

    Multilayered plasma sprayed coatings on the surface of Ti-6Al-4V alloys have been prepared, which were composed of an underlayer of HA and a surface layer of a CaO-P2O5 glass-HA composite, with 2 or 4wt% of glass. Contact angle and surface tension variation with time, for both water and a protein solution, were determined by the sessile and pendent drop methods respectively using the ADSA-P software. Wettability studies showed that hydrophobicity of the coatings increase with the glass addition. The work of adhesion of albumin was also altered in a controlled manner by the addition of the CaO-P2O5 glass, being lower on the composite coatings than on HA. Zeta potential (ZP) results showed that composite coatings presented a higher net negative charge than HA coatings and that ZP values were also influenced by the content of the glass. This study demonstrated that the surface properties of those coatings may be modified by the addition of CaO-P2O5 glass.

  14. Composition of chemical species of selenium contained in selenium-enriched shiitake mushroom and vegetables determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Yoshida, Munehiro; Sugihara, Satoru; Inoue, Yuki; Chihara, Yûko; Kondô, Mariko; Miyamoto, Saori; Sukcharoen, Benjama

    2005-06-01

    Selenium (Se) species in Se-enriched shiitake mushroom (Lentinula edodes) were identified and quantified by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICPMS). Two types of Se-enriched shiitake obtained from selenite- or selenate-fertilized mushroom beds were used. More than 80% of Se in both shiitake samples could not be extracted with 0.2 M HCl. Protease digestion released a large amount of selenomethionine from the shiitake enriched with selenite. However, most of the Se in the shiitake enriched with selenate was not released by protease but was released by a cell wall digestive enzyme and most of the Se released was identified as selenate. These results indicate that the main Se species in the shiitake enriched with selenite or selenate is selenomethionine bound to protein or selenate bound to polysaccharides in the cell wall, respectively. Several Se-enriched vegetables grown on a soil fertilized with selenate were also analyzed by HPLC-ICPMS. Four Se species, selenate, Se-methylselenocysteine, selenomethionine, gamma-glutamyl-Se-methylselenocysteine, and an unknown Se compound were detected in the vegetables. The composition of Se species varied with the kinds or parts of vegetables. The main Se species in bulbs, leaves or flowers of the Se-enriched garlic, onions, cabbage and ashitaba were selenate, Se-methylselenocysteine or gamma-glutamyl-Se-methylselenocysteine, while those in fruit bodies of the peppers and pumpkin were selenomethionine bound to protein. Bioavailabilities of Se in the shiitake mushroom enriched with selenite and the vegetables enriched with selenate are expected to be high, but that in shiitake enriched with selenate may be low.

  15. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ni [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Jiang, Shiuh-Jen, E-mail: sjjiang@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chen, Yen-Ling [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Sahayam, A.C. [National Centre for Compositional Characterisation of Materials (CCCM), Hyderabad (India)

    2015-02-20

    Highlights: • Determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions in a single run. • Accurate analysis using isotope dilution and standard addition methods. • Vapor generation ICP-MS yielded superior detection limits compared to ETV-ICP-MS. • No sample dissolution increased sample through put. • Analysis of GBW09305 Cosmetic (Cream) reference material for accuracy. - Abstract: A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL{sup −1} Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g{sup −1} for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample.

  16. Plasma impregnation of wood with fire retardants

    Science.gov (United States)

    Pabeliña, Karel G.; Lumban, Carmencita O.; Ramos, Henry J.

    2012-02-01

    The efficacy of chemical and plasma treatments with phosphate and boric compounds, and nitrogen as flame retardants on wood are compared in this study. The chemical treatment involved the conventional method of spraying the solution over the wood surface at atmospheric condition and chemical vapor deposition in a vacuum chamber. The plasma treatment utilized a dielectric barrier discharge ionizing and decomposing the flame retardants into innocuous simple compounds. Wood samples are immersed in either phosphoric acid, boric acid, hydrogen or nitrogen plasmas or a plasma admixture of two or three compounds at various concentrations and impregnated by the ionized chemical reactants. Chemical changes on the wood samples were analyzed by Fourier transform infrared spectroscopy (FTIR) while the thermal changes through thermo gravimetric analysis (TGA). Plasma-treated samples exhibit superior thermal stability and fire retardant properties in terms of highest onset temperature, temperature of maximum pyrolysis, highest residual char percentage and comparably low total percentage weight loss.

  17. Fresh-frozen plasma, pathogen-reduced single-donor plasma or bio-pharmaceutical plasma?

    Science.gov (United States)

    Hellstern, Peter

    2008-08-01

    Three types of therapeutic plasma are available that differ in their manufacturing processes, composition, clinical efficacy, and side effects. Quarantine-stored, not pathogen-reduced fresh-frozen plasma (QFFP) is prepared from single whole blood or plasma donations. The manufacture of pathogen-reduced single-donor plasmas such as methylene blue-light treated (MLP) or amotosalen-ultraviolet light treated plasma (ALP) involves the addition of a chemical followed by irradiation and subsequent removal of the chemical. Both plasma types show substantial fluctuation of clotting factor and inhibitor levels according to interindividual variations, and both carry the risk of inducing transfusion-associated lung injury (TRALI). Photo-oxidation in pathogen-reduced single-donor plasmas reduces clottable fibrinogen and other clotting factors markedly, and there is a lack of clear evidence showing whether this is harmful or not. MLP also appears to be less effective clinically than QFFP. Like clotting factor or inhibitor concentrates, solvent/detergent-treated plasmas (SDP) are bio-pharmaceutical preparations derived from large plasma pools, and variations in plasma protein levels from batch-to-batch are for that reason low. The SD manufacturing process inevitably involves a considerable reduction of plasmin inhibitor (PI), and moderate reduction of all other clotting factors and inhibitors in the final plasma bags. Clinical studies and broad clinical use have however shown that this does not significantly reduce clinical efficacy or increase adverse events. SDPs obviously do not induce TRALI and the risk of allergic reactions is significantly lower than for QFFP. Common to all three plasma types is that the time between donation and freezing the plasma, and whether plasma from whole blood or apheresis plasma is used as starting material, are decisive determinants for the clotting factor and inhibitor potencies in the final bags. Plasma frozen 3-6h after donation, and apheresis

  18. Determination of iodine at ppt level in a nitric acid medium by inductively coupled plasma sector field mass spectrometry: influence of the chemical forms; Etude de la determination de traces d'iode en solution par spectrometrie de masse a secteur magnetique utilisant un plasma a couplage inductif comme source d'ionisation: influence de la forme chimique

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, B

    2001-07-01

    Inductively Coupled Plasma Sector Field Mass Spectrometry (ICP/SFMS) was used to determine several chemical forms of iodine, at ppt level, in a nitric acid media. Ascorbic acid was added as a reducing agent in order to maintain iodine as iodide. In a preliminary approach, the influence of the chemical form was studied by comparing inorganic iodine (NaI) and organic iodine (CH3I). Different signal responses were observed. With a conventional sample introduction system, sensitivities obtained for iodo-methane could differ by a factor of 5. This was not caused by a problem of atomization or by a change in the ionization efficiency of the iodo-compound into the plasma. The low volatilization temperature of iodo-methane (315.5 K) seemed to be the main explanation of this phenomena. Actually, nebulization resulted in the volatilization of a 2% nitric acid solution containing iodo-methane. As a result, the transport efficiency of iodo-methane between the nebulizer and the torch was approaching 100%. A Direct Injection High Efficiency Nebulizer (DIHEN) allowed us to minimize the behavior difference between the two iodine species, but the sensitivity ratio was inverted and still differed by 20 - 40%. Moreover, the association of a guard electrode and the direct injection system was studied in order to apply these equipments to the determination of iodine. This association allowed us to improve the sensitivity by a factor of 10 and to minimize memory effects, when compared with a conventional system. Further studies indicated that signal responses obtained with different iodine-containing species, except for iodo-methane, were found to be similar. (author)

  19. A rapid and high-precision method for sulfur isotope δ(34)S determination with a multiple-collector inductively coupled plasma mass spectrometer: matrix effect correction and applications for water samples without chemical purification.

    Science.gov (United States)

    Lin, An-Jun; Yang, Tao; Jiang, Shao-Yong

    2014-04-15

    Previous studies have indicated that prior chemical purification of samples, although complex and time-consuming, is essential in obtaining precise and accurate results for sulfur isotope ratios using multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). In this study, we introduce a new, rapid and precise MC-ICP-MS method for sulfur isotope determination from water samples without chemical purification. The analytical work was performed on an MC-ICP-MS instrument with medium mass resolution (m/Δm ~ 3000). Standard-sample bracketing (SSB) was used to correct samples throughout the analytical sessions. Reference materials included an Alfa-S (ammonium sulfate) standard solution, ammonium sulfate provided by the lab of the authors and fresh seawater from the South China Sea. A range of matrix-matched Alfa-S standard solutions and ammonium sulfate solutions was used to investigate the matrix (salinity) effect (matrix was added in the form of NaCl). A seawater sample was used to confirm the reliability of the method. Using matrix-matched (salinity-matched) Alfa-S as the working standard, the measured δ(34)S value of AS (-6.73 ± 0.09‰) was consistent with the reference value (-6.78 ± 0.07‰) within the uncertainty, suggesting that this method could be recommended for the measurement of water samples without prior chemical purification. The δ(34)S value determination for the unpurified seawater also yielded excellent results (21.03 ± 0.18‰) that are consistent with the reference value (20.99‰), thus confirming the feasibility of the technique. The data and the results indicate that it is feasible to use MC-ICP-MS and matrix-matched working standards to measure the sulfur isotopic compositions of water samples directly without chemical purification. In comparison with the existing MC-ICP-MS techniques, the new method is better for directly measuring δ(34)S values in water samples with complex matrices; therefore, it can

  20. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    to 1990 with only 31 papers per year on average, and a total of some 1300 papers, precedes a considerable growth of some 35-50% in research activity every five years, over the last 20 years or so. As shown in the table, the annual dissemination of the field is more than 1600 papers and the total number of papers is in excess of 20000. This upwards trajectory is typical of a strong and growing subject area in physical science, with considerable capacity in both fundamental science and applications. PeriodNumber of papersPapers per annum 1948-1990130031 1991-19952279456 1996-20003447689 2001-20054571914 2006-201066401328 2011 1658 In many of the dense plasma jets discussed above, strong physical forces generated by the plasma are often desired and this favours plasma generation at elevated gas pressure, including atmospheric pressure, which favours a high level of gas ionization. Historically it has been challenging to reduce and control the strong physical forces in high-pressure plasmas for applications where these are unwanted, for example, surface modification of polymeric sheets [5]. Indeed, there is a real need for a vast range of material processing applications at temperatures below 100oC (or below 400 K) and this favours atmospheric-pressure plasma jets sustained far from thermal equilibrium with the dissipated electrical energy largely used not in heat generation but in unleashing non-equilibrium chemical reactions. The long-standing difficulty of effectively controlling the level of gas ionization at atmospheric pressure was overcome by the technological breakthrough of achieving atmospheric-pressure glow discharges in the late 1980s [6]. A related challenge stemming from high collisionality of atmospheric-pressure plasmas (v >> ω0) means that large-area plasmas sustained between parallel-plate electrodes are very susceptible to strong plasma instabilities when molecular gases are introduced for processing applications. This led to an effective

  1. Investigations on the Role of N2:(N2 + CH4) Ratio on the Growth of Hydrophobic Nanostructured Hydrogenated Carbon Nitride Thin Films by Plasma Enhanced Chemical Vapor Deposition at Low Temperature

    Science.gov (United States)

    Khanis, Noor Hamizah; Ritikos, Richard; Ahmad Kamal, Shafarina Azlinda; Abdul Rahman, Saadah

    2017-01-01

    Nanostructured hydrogenated carbon nitride (CNx:H) thin films were synthesized on a crystal silicon substrate at low deposition temperature by radio-frequency plasma-enhanced chemical vapor deposition (PECVD). Methane and nitrogen were the precursor gases used in this deposition process. The effects of N2 to the total gas flow rate ratio on the formation of CNx:H nanostructures were investigated. Field-emission scanning electron microscopy (FESEM), Auger electron spectroscopy (AES), Raman scattering, and Fourier transform of infrared spectroscopies (FTIR) were used to characterize the films. The atomic nitrogen to carbon ratio and sp2 bonds in the film structure showed a strong influence on its growth rate, and its overall structure is strongly influenced by even small changes in the N2:(N2 + CH4) ratio. The formation of fibrous CNx:H nanorod structures occurs at ratios of 0.7 and 0.75, which also shows improved surface hydrophobic characteristic. Analysis showed that significant presence of isonitrile bonds in a more ordered film structure were important criteria contributing to the formation of vertically-aligned nanorods. The hydrophobicity of the CNx:H surface improved with the enhancement in the vertical alignment and uniformity in the distribution of the fibrous nanorod structures. PMID:28772460

  2. Plasma physics

    CERN Document Server

    Drummond, James E

    2013-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  3. Laser-pulsed Plasma Chemistry: Laser-initiated Plasma Oxidation Of Niobium

    OpenAIRE

    Marks R.F.; Pollak R.A.; Avouris Ph.; Lin C.T.; Thefaine Y.J.

    1983-01-01

    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limitin...

  4. Plasma spectroscopy

    CERN Document Server

    Fujimoto, Takashi

    2004-01-01

    Plasma is ubiquitous, whether it occurs in cooking gas flames, fluorescent lamps or in the sun and the stars. This book deals with the light that these plasmas emit, the characteristics of the light, and why it occurs. The author provides a framework from which a coherent account of this phenomena can be made.

  5. Low Temperature Plasma Medicine

    Science.gov (United States)

    Graves, David

    2013-10-01

    Ionized gas plasmas near room temperature are used in a remarkable number of technological applications mainly because they are extraordinarily efficient at exploiting electrical power for useful chemical and material transformations near room temperature. In this tutorial address, I will focus on the newest area of low temperature ionized gas plasmas (LTP), in this case operating under atmospheric pressure conditions, in which the temperature-sensitive material is living tissue. LTP research directed towards biomedical applications such as sterilization, surgery, wound healing and anti-cancer therapy has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that LTP readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. I will review the evidence suggesting that RONS generated by plasmas are responsible for their observed therapeutic effects. Other possible bio-active mechanisms include electric fields, charges and photons. It is common in LTP applications that synergies between different mechanisms can play a role and I will review the evidence for synergies in plasma biomedicine. Finally, I will address the challenges and opportunities for plasma physicists to enter this novel, multidisciplinary field.

  6. PLASMA ENERGIZATION

    Science.gov (United States)

    Furth, H.P.; Chambers, E.S.

    1962-03-01

    BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)

  7. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  8. [Low temperature plasma technology for biomass refinery].

    Science.gov (United States)

    Fu, Xiaoguo; Chen, Hongzhang

    2014-05-01

    Biorefinery that utilizes renewable biomass for production of fuels, chemicals and bio-materials has become more and more important in chemical industry. Recently, steam explosion technology, acid and alkali treatment are the main biorefinery treatment technologies. Meanwhile, low temperature plasma technology has attracted extensive attention in biomass refining process due to its unique chemical activity and high energy. We systemically summarize the research progress of low temperature plasma technology for pretreatment, sugar platflow, selective modification, liquefaction and gasification in biomass refinery. Moreover, the mechanism of low temperature plasma in biorefinery and its further development were also discussed.

  9. Optimization and comparison of chemical and electrochemical hydride generation for optical emission spectrometric determination of arsenic and antimony using a novel miniaturized microwave induced argon plasma exiting the microstrip wafer.

    Science.gov (United States)

    Pohl, Pawel; Zapata, Israel Jiménez; Bings, Nicolas H

    2008-01-07

    Continuous flow (CF) chemical hydride generation (CHG) and electrochemical hydride generation (ECHG) directly coupled to a novel 40W, atmospheric pressure, 2.45GHz microwave microstrip Ar plasma exiting a microstrip wafer has been developed for the emission spectrometric determination of As and Sb using a miniaturized optical fiber spectrometer and a CCD-array detector. The experimental conditions for both procedures were optimized with respect to the relative net intensities of the As I 228.8 nm and Sb I 252.8 nm lines and their signal-to-background intensity ratios. Additionally, the susceptibility to interferences from Cd, Co, Cr, Cu, Fe, Ni, Pb and Zn and other hydride-forming elements in the determination of As and Sb using the CHG and ECHG techniques was investigated in detail. Under the optimized conditions, it was found that ECHG is more prone to interferences compared to CHG. The detection limits (3sigma) of As (6 ngmL(-1)) and Sb (7 ngmL(-1)) obtained for the ECHG-MSP-OES method are about three times lower than in the case of the CHG-MSP-OES method due to a two-fold lower amount of H2 introduced into the MSP in case of the ECHG, resulting in a better plasma stability and reduced background level. The linearity ranges for both calibration curves to a concentration of up to 5 microgmL(-1) and a precision between 2% and 7% (2 microgmL(-1) and 0.050 microgmL(-1) of As and Sb, respectively) were found for both methods. The developed ECHG-MSP-OES method was validated for As through the analysis of a certified coal fly ash standard reference material (NIST SRM 1633a) after sample dissolution. The derived concentration (140+/-8 microgg(-1)) was found to agree well with the certified data (145+/-15 microgg(-1)). The method was also successfully applied to the analysis of both a galvanic bath sample, which contained Sb and was spiked with As, and a tap water sample spiked with both analytes. Recovery rates of 99-101% and a Sb concentration of 6.6 microgmL(-1) in

  10. Plasma for environment

    Science.gov (United States)

    Van Oost, G.

    2017-12-01

    Human activity is associated with the permanent emergence of a very wide range of waste streams. The most widely used treatment of waste is thermal processing such as incineration. An alternative environmentally friendly process is based on thermal plasma technology which is a very flexible tool because it allows to operate in a wide temperature range with almost any chemical composition of waste and chemicals needed for processing this waste. It allows the conversion of organic waste into energy or chemical substances as well as the destruction of toxic organic compounds in a scenario that for each specific type of waste can be considered optimal, both in terms of energy efficiency and environmental safety.

  11. Plasma for environment

    Science.gov (United States)

    Van Oost, G.

    2017-11-01

    Human activity is associated with the permanent emergence of a very wide range of waste streams. The most widely used treatment of waste is thermal processing such as incineration. An alternative environmentally friendly process is based on thermal plasma technology which is a very flexible tool because it allows to operate in a wide temperature range with almost any chemical composition of waste and chemicals needed for processing this waste, and to convert organic waste into energy or chemical substances as well as to destroy toxic organic compounds, and to vitrify radioactive waste in a scenario that for each specific type of waste can be considered optimal, both in terms of energy efficiency and environmental safety.

  12. Plasma Mass Filters For Nuclear Waste Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fisch, Nathaniel J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2011-05-01

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  13. Plasma Mass Filters For Nuclear Waste Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-26

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  14. Plasma chromograninx

    DEFF Research Database (Denmark)

    Goetze, Jens P; Hilsted, Linda M; Rehfeld, Jens F

    2014-01-01

    Cardiovascular risk assessment remains difficult in elderly patients. We examined whether chromogranin A (CgA) measurement in plasma may be valuable in assessing risk of death in elderly patients with symptoms of heart failure in a primary care setting. A total of 470 patients (mean age 73 years......) were followed for 10 years. For CgA plasma measurement, we used a two-step method including a screening test and a confirmative test with plasma pre-treatment with trypsin. Cox multivariable proportional regression and receiver-operating curve (ROC) analyses were used to assess mortality risk...... of follow-up showed significant additive value of CgA confirm measurements compared with NT-proBNP and clinical variables. CgA measurement in the plasma of elderly patients with symptoms of heart failure can identify those at increased risk of short- and long-term mortality....

  15. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  16. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  17. Features of active-medium formation for lasers with a sectioned plasma source of metal vapor

    Energy Technology Data Exchange (ETDEWEB)

    Apollonov, V.V.; Derzhavin, S.I.; Prokhorov, A.M.; Sirotkin, A.A.

    1988-06-01

    Experimental results are presented on active-medium formation mechanisms in a laser with a sectioned plasma source of metal vapor (a SPER laser). The following processes were observed in the laser active medium: buffer-gas preionization; mixing of metal vapor and buffer gas during plasma expansion; plasma-chemical reactions in the expanding plasma; and a collisional mechanism of plasma cooling.

  18. Biocompatibility of plasma nanostructured biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Slepičková Kasálková, N. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Bačáková, L. [Institute of Physiology, Academy of Sciences of the Czech Republic 142 20 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2013-07-15

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell’s adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  19. fabrics induced by cold plasma treatments

    Indian Academy of Sciences (India)

    obtain information on the chemical and physical processing involved in plasma treatment. In this work, atomic force microscopy ... yet fully considered as a viable finishing technology in industry. This is mainly due ..... of plasma gas pressure for different gases have been quantified by means of rms surface roughness and ...

  20. The nonequilibrium beam plasma

    Science.gov (United States)

    Skvortsov, V. A.

    1996-10-01

    The kinetics and the heating of nonequilibrium plasma, formed as a result of injection of intensive relativistic (or subrelativistic) electron or proton beams in the atomic-molecular gas (nitrogen or air with water vapor) at different pressures (from 0.1-10 atm) have been investigated numerically by using the mathematical model “SKIF” which was developed by the author 15 years ago. More than 200 plasma-chemical reactions and elementary processes are taken into consideration, including the action of “non-Maxwell” electrons of the cascade, formed in the ionization of the molecules by the beam particles. For the description of the deviation of energy distribution of such electrons from the equilibrium distribution, a simplified analytical model was used, with the help of which one can calculate the energy spectrum of the cascade electrons with satisfactory precision. This essentially reduces the calculating expenditure.

  1. CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design

    Science.gov (United States)

    Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, St.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W.

    2017-06-01

    In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.

  2. Plasma metallization

    CERN Document Server

    Crowther, J M

    1997-01-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of s...

  3. Recording Spatially Resolved Plasma Parameters in Microwave-Driven Plasmas

    Science.gov (United States)

    Gerhard, Franz; Florian, Schamberger; Igor, Krstev; Stefan, Umrath

    2013-01-01

    In an almost cubical reactor 90 l in volume which is intended to deposit organic polymers by plasma-enhanced chemical vapor deposition (PECVD), microwave power is coupled into the volume via a quartz window which extends to approximately 1/10 of the sidewall area. Since the plasma is excited locally, plasma parameters like electron temperature and plasma density are expected to exhibit a spatial variation. The compilation of these plasma quantities has been accomplished with a bendable single Langmuir probe. To isolate the tungsten wire against its grounded housing tube, it was coated with polyparylene. After having compared this construction with our Langmuir probe, which has been now in use for more than a decade, we have taken data of more than half the volume of the reactor with argon and have found a definitive radial inhomogenity for all plasma parameters. To investigate whether this conduct can be determined applying optical emission spectroscopy, we improved our spectrometer which had been used for endpoint detection purposes and plasma diagnostics in chlorine-containing ambients where we could detect also a spatial dependence. This behavior is discussed in terms of Lieberman's global model.

  4. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique; Etude et realisation de detecteurs de rayonnements a base de films de diamant polycristallin elabores par depot chimique en phase vapeur assiste par plasma micro-onde

    Energy Technology Data Exchange (ETDEWEB)

    Jany, Ch

    1998-10-29

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead {eta} to decrease. In contrast, {eta} was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp{sup 2} phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  5. Radiation phenomena in plasmas

    National Research Council Canada - National Science Library

    Ohnuma, Toshiro; Ohnuma, T

    1994-01-01

    ... electromagnetic and electrostatic waves can propagate. In the development of space sciences, processing plasmas and fusion plasmas etc., plasmas have been investigated in many problems and practic...

  6. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  7. Deposition rate in modulated radio-frequency silane plasmas

    NARCIS (Netherlands)

    A.C.W. Biebericher,; Bezemer, J.; W.F. van der Weg,; W. J. Goedheer,

    2000-01-01

    Plasma-enhanced chemical-vapor deposition of amorphous silicon by a square-wave amplitude-modulated radio-frequency excitation has been studied by optical emission spectroscopy and plasma modeling. By the modulation, the deposition rate is increased or reduced, depending on the plasma parameters.

  8. Characterization of Plasma-Polymerized Allylamine Using Waveguide Mode Spectroscopy

    NARCIS (Netherlands)

    van Os, M.T.; Menges, B.; Foerch, R.; Vancso, Gyula J.; Knoll, W.

    1999-01-01

    Amine-functionalized thin films were prepared by plasma-induced deposition of allylamine. Radio frequency (rf) plasma polymerization was carried out under both continuous wave (CW) and pulsed conditions to control the film chemistry. The chemical and physical nature of plasma-polymerized allylamine

  9. Plasma nitridation optimazation for sub-15 A gate dielectrics

    NARCIS (Netherlands)

    Cubaynes, F.N; Cubaynes, F.N.; Schmitz, Jurriaan; van der Marel, C.; Snijders, J.H.M.; Veloso, A.; Rothschild, A.; Olsen, C.; Date, L.

    2003-01-01

    The work investigates the impact of plasma nitridation process parameters upon the physical properties and upon the electrical performance of sub-15 A plasma nitrided gate dielectrics. The nitrogen distribution and chemical bonding of ultra-thin plasma nitrided films have been investigated using

  10. PLASMA SPECTROSCOPY

    NARCIS (Netherlands)

    Jaspers, R. J. E.

    2010-01-01

    A brief introduction into the spectroscopy of fusion plasmas is presented. Basic principles of the emission of ionic, atomic and molecular radiation is explained and a survey of the effects, which lead to the population of the respective excited levels, is given. Line radiation, continuum radiation,

  11. Foundations of atmospheric pressure non-equilibrium plasmas

    Science.gov (United States)

    Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny

    2017-12-01

    Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.

  12. Plasma filtering techniques for nuclear waste remediation.

    Science.gov (United States)

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Plasma Modeling of Electrosurgery

    Science.gov (United States)

    Jensen, Scott; Friedrichs, Daniel; Gilbert, James; Park, Wounjhang; Maksimovic, Dragan

    2014-10-01

    Electrosurgery is the use of high frequency alternating current (AC) to illicit a clinical response in tissue, such as cutting or cauterization. Power electronics converters have been demonstrated to generate the necessary output voltage and current for electrosurgery. The design goal of the converter is to regulate output power while supplying high frequency AC. The design is complicated by fast current and voltage transients that occur when the current travels through air in the form of an arc. To assist in designing a converter that maintains the desired output power during these transients, we have used the COMSOL Plasma Module to determine the output voltage and current characteristics during an arc. This plasma model, used in conjunction with linear circuit elements, allows the full electrosurgical system to be validated. Two models have been tested with the COMSOL Plasma Module. One is a four-species, four-reaction model based on the local field approximation technique. The second simulates the underlying air chemistry using 30 species, 151 chemical reactions, and a coupled electron energy distribution function. Experimental output voltage and current samples have been collected and compared to both models.

  14. Fusion plasmas

    Science.gov (United States)

    Engelmann, F.

    1995-09-01

    In the following, a synthetic review of the information reported at the Conference will be given. No attempt is made to summarize specific contributions; rather the material contributed will be looked at from a few different angles. All areas of fusion plasma physics were represented: there were experimental results on magnetic confinement (tokamaks; stellarators; mirrors; reversed field pinches; field reversed configurations; Z-pinches, with emphasis on the dense Z-pinch; plasma focus, ect.) and on inertial confinement; related modelling and diagnolstics development; theory, as well as some technological activities (power generators; RF sources, etc.) and component (e.g. antennae) development for smaller fusion devices. In particular, fusion-related research in Latin America was exhaustively covered. In addition, large future projects in fusion research were summarized. (AIP)

  15. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  16. Chemical use

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of research and activities related to chemical use on Neal Smith National Wildlife Refuge between 1992 and 2009. The chemicals used on the Refuge...

  17. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  18. Plasma and Plasma Protein Product Transfusion: A Canadian Blood Services Centre for Innovation Symposium.

    Science.gov (United States)

    Zeller, Michelle P; Al-Habsi, Khalid S; Golder, Mia; Walsh, Geraldine M; Sheffield, William P

    2015-07-01

    Plasma obtained via whole blood donation processing or via apheresis technology can either be transfused directly to patients or pooled and fractionated into plasma protein products that are concentrates of 1 or more purified plasma protein. The evidence base supporting clinical efficacy in most of the indications for which plasma is transfused is weak, whereas high-quality evidence supports the efficacy of plasma protein products in at least some of the clinical settings in which they are used. Transfusable plasma utilization remains composed in part of applications that fall outside of clinical practice guidelines. Plasma contains all of the soluble coagulation factors and is frequently transfused in efforts to restore or reinforce patient hemostasis. The biochemical complexities of coagulation have in recent years been rationalized in newer cell-based models that supplement the cascade hypothesis. Efforts to normalize widely used clinical hemostasis screening test values by plasma transfusion are thought to be misplaced, but superior rapid tests have been slow to emerge. The advent of non-vitamin K-dependent oral anticoagulants has brought new challenges to clinical laboratories in plasma testing and to clinicians needing to reverse non-vitamin K-dependent oral anticoagulants urgently. Current plasma-related controversies include prophylactic plasma transfusion before invasive procedures, plasma vs prothrombin complex concentrates for urgent warfarin reversal, and the utility of increased ratios of plasma to red blood cell units transfused in massive transfusion protocols. The first recombinant plasma protein products to reach the clinic were recombinant hemophilia treatment products, and these donor-free equivalents to factors VIII and IX are now being supplemented with novel products whose circulatory half-lives have been increased by chemical modification or genetic fusion. Achieving optimal plasma utilization is an ongoing challenge in the interconnected

  19. Toxicokinetic triage for environmental chemicals

    NARCIS (Netherlands)

    Wambaugh, J.F.; Wetmore, B.A.; Pearce, R.; Strope, C.; Goldsmith, R.; Sluka, J.P.; Sedykh, A.; Tropsha, A.; Bosgra, S.; Shah, I.; Judson, R.; Thomas, R.S.; Setzer, R.W.

    2015-01-01

    Toxicokinetic (TK) models link administered doses to plasma, blood, and tissue concentrations. High-throughput TK (HTTK) performs in vitro to in vivo extrapolation to predict TK from rapid in vitro measurements and chemical structure-based properties. A significant toxicological application of HTTK

  20. Controlling the Plasma-Polymerization Process of N-Vinyl-2-pyrrolidone

    DEFF Research Database (Denmark)

    Norrman, Kion; Winther-Jensen, Bjørn

    2005-01-01

    N-vinyl-2-pyrrolidone was plasma-polymerized on glass substrates using a pulsed AC plasma. Pulsed AC plasma produces a chemical surface structure different from that produced by conventional RF plasma; this is ascribed to the different power regimes used. A high degree of control over the structure...

  1. Electrodeless plasma thrusters for spacecraft: A review

    Science.gov (United States)

    Bathgate, S. N.; Bilek, M. M. M.; McKenzie, D. R.

    2017-08-01

    The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gridded ion, Hall thrusters, arcjets and resistojets. Like other plasma thrusters, electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust. The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined. Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field; devices that use a rotating electric field; pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma; devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force. Using metrics of specific impulse and thrust efficiency, we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.

  2. Simulations of Atmospheric Plasma Arcs

    Science.gov (United States)

    Pearcy, Jacob; Chopra, Nirbhav; Jaworski, Michael

    2017-10-01

    We present the results of computer simulation of cylindrical plasma arcs with characteristics similar to those predicted to be relevant in magnetohydrodynamic (MHD) power conversion systems. These arcs, with core temperatures on the order of 1 eV, place stringent limitations on the lifetime of conventional electrodes used in such systems, suggesting that a detailed analysis of arc characteristics will be crucial in designing more robust electrode systems. Simulations utilize results from NASA's Chemical Equilibrium with Applications (CEA) program to solve the Elenbaas-Heller equation in a variety of plasma compositions, including approximations of coal-burning plasmas as well as pure gas discharges. The effect of carbon dioxide injection on arc characteristics, emulating discharges from molten carbonate salt electrodes, is also analyzed. Results include radial temperature profiles, composition maps, and current-voltage (IV) characteristics of these arcs. Work supported by DOE contract DE-AC02-09CH11466.

  3. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications.

    Science.gov (United States)

    Kortshagen, Uwe R; Sankaran, R Mohan; Pereira, Rui N; Girshick, Steven L; Wu, Jeslin J; Aydil, Eray S

    2016-09-28

    Nonthermal plasmas have emerged as a viable synthesis technique for nanocrystal materials. Inherently solvent and ligand-free, nonthermal plasmas offer the ability to synthesize high purity nanocrystals of materials that require high synthesis temperatures. The nonequilibrium environment in nonthermal plasmas has a number of attractive attributes: energetic surface reactions selectively heat the nanoparticles to temperatures that can strongly exceed the gas temperature; charging of nanoparticles through plasma electrons reduces or eliminates nanoparticle agglomeration; and the large difference between the chemical potentials of the gaseous growth species and the species bound to the nanoparticle surfaces facilitates nanocrystal doping. This paper reviews the state of the art in nonthermal plasma synthesis of nanocrystals. It discusses the fundamentals of nanocrystal formation in plasmas, reviews practical implementations of plasma reactors, surveys the materials that have been produced with nonthermal plasmas and surface chemistries that have been developed, and provides an overview of applications of plasma-synthesized nanocrystals.

  4. [Chemical weapons and chemical terrorism].

    Science.gov (United States)

    Nakamura, Katsumi

    2005-10-01

    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary.

  5. Reactivity zones around an atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Birer, Özgür, E-mail: obirer@ku.edu.tr

    2015-11-01

    Highlights: • Polyethylene surfaces were treated with atmospheric pressure cold plasma jet. • The effect of plasma extends beyond the physical jet diameter. • Moieties of –NO, –COO, –CO and –NO{sub 3} as expanding ring patterns were detected. • Active species in the plasma are identified for specific surface moieties. - Abstract: The reactivity zones around an atmospheric pressure plasma jet are revealed by XPS mapping of chemical moieties on a polyethylene surface treated with a 3-mm plasma jet. The area directly hit by the helium plasma jet initially oxidizes and later etches away as the plasma treatment continues. The oxidation initially starts at the center and expands outwards as a ring pattern with different spatial potency. At the end of 10 min plasma jet treatment, distinct ring patterns for –NO, –COO, –CO and –NO{sub 3} species can be detected with respectively increasing diameters. The plasma jet can cause chemical changes at locations several millimeters away from the center. The spatial distribution of oxidized species suggests presence of chemical reactivity zones. Introduction of nitrogen into the helium plasma jet, not only increases the type of nitrogen moieties, but enriches the reactivity zones by generating nitrogen molecular ions within the plasma jet. The complex competing reaction mechanisms among the radicals, ions, metastable atoms and UV photons lead to unusual etching patterns on the surfaces.

  6. Chemical Composition

    Science.gov (United States)

    May, Willie; Cavanagh, Richard; Turk, Gregory; Winchester, Michael; Travis, John; Smith, Melody; Derose, Paul; Choquette, Steven; Kramer, Gary; Sieber, John; Greenberg, Robert; Lindstrom, Richard; Lamaze, George; Zeisler, Rolf; Schantz, Michele; Sander, Lane; Phinney, Karen; Welch, Michael; Vetter, Thomas; Pratt, Kenneth; Scott, John; Small, John; Wight, Scott; Stranick, Stephan

    Measurements of the chemical compositions of materials and the levels of certain substances in them are vital when assessing and improving public health, safety and the environment, are necessary to ensure trade equity, and are required when monitoring and improving industrial products and services. Chemical measurements play a crucial role in most areas of the economy, including healthcare, food and nutrition, agriculture, environmental technologies, chemicals and materials, instrumentation, electronics, forensics, energy, and transportation.

  7. Chemical oceanography

    National Research Council Canada - National Science Library

    Millero, F.J

    1996-01-01

    Chemical Oceanography presents a comprehensive examination of the chemistry of oceans through discussions of such topics as descriptive physical oceanography, the composition of seawater and the major...

  8. plasmatis Center for Innovation Competence: Controlling reactive component output of atmospheric pressure plasmas in plasma medicine

    Science.gov (United States)

    Reuter, Stephan

    2012-10-01

    The novel approach of using plasmas in order to alter the local chemistry of cells and cell environment presents a significant development in biomedical applications. The plasmatis center for innovation competence at the INP Greifswald e.V. performs fundamental research in plasma medicine in two interdisciplinary research groups. The aim of our plasma physics research group ``Extracellular Effects'' is (a) quantitative space and time resolved diagnostics and modelling of plasmas and liquids to determine distribution and composition of reactive species (b) to control the plasma and apply differing plasma source concepts in order to produce a tailored output of reactive components and design the chemical composition of the liquids/cellular environment and (c) to identify and understand the interaction mechanisms of plasmas with liquids and biological systems. Methods to characterize the plasma generated reactive species from plasma-, gas- and liquid phase and their biological effects will be presented. The diagnostic spectrum ranges from absorption/emission/laser spectroscopy and molecular beam mass spectrometry to electron paramagnetic resonance spectroscopy and cell biological diagnostic techniques. Concluding, a presentation will be given of the comprehensive approach to plasma medicine in Greifswald where the applied and clinical research of the Campus PlasmaMed association is combined with the fundamental research at plasmatis center.

  9. Ionization equilibrium of a magnetized quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Ortner, J.; Ebeling, W. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2001-07-01

    The influence of a constant uniform magnetic field on the ionization equilibrium and the thermodynamic properties of a nondegenerate partially ionized hydrogen plasma is studied for weak and strong magnetic fields. A simple interpolation formula for an effective partition function is proposed, connecting the the low- and high-field results. Furthermore, a closed analytical approximation for the thermodynamic functions in the chemical picture and a Saha equation for weakly and strongly magnetized plasmas are presented. (orig.)

  10. Atmospheric plasma processes for environmental applications

    OpenAIRE

    Shapoval, Volodymyr

    2012-01-01

    Plasma chemistry is a rapidly growing field which covers applications ranging from technological processing of materials, including biological tissues, to environmental remediation and energy production. The so called atmospheric plasma, produced by electric corona or dielectric barrier discharges in a gas at atmospheric pressure, is particularly attractive for the low costs and ease of operation and maintenance involved. The high concentrations of energetic and chemically active species (e.g...

  11. EDITORIAL: Focus on Plasma Medicine

    Science.gov (United States)

    Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.

    2009-11-01

    'Plasma Healthcare' is an emerging interdisciplinary research topic of rapidly growing importance, exploring considerable opportunities at the interface of plasma physics, chemistry and engineering with life sciences. Some of the scientific discoveries reported so far have already demonstrated clear benefits for healthcare in areas of medicine, food safety, environmental hygiene, and cosmetics. Examples include ongoing studies of prion inactivation, chronic wound treatment and plasma-mediated cancer therapy. Current research ranges from basic physical processes, plasma chemical design, to the interaction of plasmas with (i) eukaryotic (mammalian) cells; (ii) prokaryotic (bacteria) cells, viruses, spores and fungi; (iii) DNA, lipids, proteins and cell membranes; and (iv) living human, animal and plant tissues in the presence of biofluids. Of diverse interests in this new field is the need for hospital disinfection, in particular with respect to the alarming increase in bacterial resistance to antibiotics, the concomitant needs in private practices, nursing homes etc, the applications in personal hygiene—and the enticing possibility to 'design' plasmas as possible pharmaceutical products, employing ionic as well as molecular agents for medical treatment. The 'delivery' of the reactive plasma agents occurs at the gaseous level, which means that there is no need for a carrier medium and access to the treatment surface is optimal. This focus issue provides a close look at the current state of the art in Plasma Medicine with a number of forefront research articles as well as an introductory review. Focus on Plasma Medicine Contents Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination Helen C Baxter, Patricia R Richardson, Gaynor A Campbell, Valeri I Kovalev, Robert Maier, James S Barton, Anita C Jones, Greg DeLarge, Mark Casey and Robert L Baxter Inactivation factors of spore-forming bacteria using low

  12. Nanocarbon materials fabricated using plasmas

    Science.gov (United States)

    Hatakeyama, Rikizo

    2017-12-01

    Since the discovery of fullerenes more than three decades ago, new kinds of nanoscale materials of carbon allotropes called "nanocarbons" have so far been discovered or synthesized at successive intervals as cases such as carbon nanotubes, carbon nanohorns, graphene, carbon nanowalls, and a carbon nanobelt, while nanodiamonds were actually discovered before then. Their attractively excellent mechanical, physical, and chemical properties have driven researchers to continuously create one of the hottest frontiers in materials science and technology. While plasma states have often been involved in their discovery, on the other hand, plasma-based approaches to this exciting field originally hold promising and enormous potentials for advancing and expanding industrial/biomedical applications of nanocarbons of great diversity. This article provides an extensive overview on plasma-fabricated nanocarbon materials, where the term "fabrication" is defined as synthesis, functionalization, and assembly of devices to cover a wide range of issues associated with the step-by-step plasma processes. Specific attention has been paid to the comparative examination between plasma-based and non-plasma methods for fabricating the nanocarobons with an emphasis on the advantages of plasma processing, such as low-temperature/large-scale fabrication and diversity-carrying structure controllability. The review ends with current challenges and prospects including a ripple effect of the nanocarbon studies on the development of related novel nanomaterials such as transition metal dichalcogenides. It contains not only the latest progress in the field for cutting-edge scientists and engineers, but also the introductory guidance to non-specialists such as lower-class graduate students.

  13. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  14. Chemical intolerance

    DEFF Research Database (Denmark)

    Dantoft, Thomas Meinertz; Andersson, Linus; Nordin, Steven

    2015-01-01

    Chemical intolerance (CI) is a term used to describe a condition in which the sufferer experiences a complex array of recurrent unspecific symptoms attributed to low-level chemical exposure that most people regard as unproblematic. Severe CI constitutes the distinguishing feature of multiple...

  15. Chemical modification

    Science.gov (United States)

    R. M. Rowell

    2004-01-01

    Wood is a hygroscopic resource that was designed to perform, in nature, in a wet environment. Nature is programmed to recycle wood in a timely way through biological, thermal, aqueous, photochemical, chemical, and mechanical degradations. In simple terms, nature builds wood from carbon dioxide and water and has all the tools to recycle it back to the starting chemicals...

  16. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  17. Monitoring particle growth in deposition plasmas

    Science.gov (United States)

    Schlebrowski, T.; Bahre, H.; Böke, M.; Winter, J.

    2013-12-01

    Plasma-enhanced chemical vapor deposition methods are frequently used to deposit barrier layers, e.g. on polymers for food packaging. These plasmas may suffer from particle (dust) formation. We report on a flexible monitoring system for dust. It is based on scanning a 3D plasma volume for particles by laser light scattering. The lower size limit of particles detected in the presented system is 20 nm. We report on existence diagrams for obtaining dust free or dust loaded capacitively or inductively coupled rf-plasmas in C2H2 depending on pressure, flow and rf-power. We further present growth rates for dust in these plasmas and show that monodisperse particles are only obtained during the first growth cycle.

  18. RESEARCH PROCESS PLASMA ETCHING SIO2 MEMBRANE

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2014-01-01

    Full Text Available The article discusses the results of plasma chemical etching of silicon dioxide in the fluorine-containing medium in the manufacture of semiconductor devices. Delivered and processed to obtain the solution of the smoothed microrelief contact windows in SiO2 other materials. The solution of the problem is closely connected with the problem of an isotropic plasma chemical etching, when the rate of lateral (horizontal equal to the speed of the vertical etching, which allows to obtain smooth wall structures with maximum care dimensions on the border with photoresist or other masking coating. 

  19. Magnetic susceptibility and Landau diamagnetism of quantum collisional plasma

    Science.gov (United States)

    Latyshev, A. V.; Yushkanov, A. A.

    2017-04-01

    Quantum collisional plasma with an arbitrary degree of degeneracy of the electron gas is considered. Using the exact expression for the transverse electric conductivity of quantum collisional plasma, the magnetic susceptibility is described using the kinetic approach and a formula for calculating Landau diamagnetism is derived. Quantum Maxwellian plasma is considered as a special case. To this end, in the formulas derived, the limit is taken for the chemical potential tending to minus infinity. The properties of the magnetic susceptibility of quantum plasma are compared to those of degenerate and Maxwellian plasmas.

  20. Density of Vacuum-Like Plasma and Hubble Constant

    Science.gov (United States)

    Obukhov, Ilya A.

    2017-10-01

    The model in which expansion of the Universe leads to a generation of non-equilibrium vacuum-like electron-positron plasma is proposed and researched. The formulas that relate the Hubble's constant with the concentration of plasma particles and the cosmological constant are obtained. The collective properties of vacuum-like plasma are investigated. It is shown, that the coefficient of a two-photon annihilation in such plasma is nine times less than for the free particles. A simple formula for dark energy density as a function of electron mass and charge is obtained. It was demonstrated that acceleration of plasma's chemical potential fluctuations flow proportional of dark energy density.

  1. Electrostatic Debye layer formed at a plasma-liquid interface.

    Science.gov (United States)

    Rumbach, Paul; Clarke, Jean Pierre; Go, David B

    2017-05-01

    We construct an analytic model for the electrostatic Debye layer formed at a plasma-liquid interface by combining the Gouy-Chapman theory for the liquid with a simple parabolic band model for the plasma sheath. The model predicts a nonlinear scaling between the plasma current density and the solution ionic strength, and we confirmed this behavior with measurements using a liquid-anode plasma. Plots of the measured current density as a function of ionic strength collapse the data and curve fits yield a plasma electron density of ∼10^{19}m^{-3} and an electric field of ∼10^{4}V/m on the liquid side of the interface. Because our theory is based firmly on fundamental physics, we believe it can be widely applied to many emerging technologies involving the interaction of low-temperature, nonequilibrium plasma with aqueous media, including plasma medicine and various plasma chemical synthesis techniques.

  2. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  3. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  4. Influence of pregnancy, lactation and environment on some clinical chemical reference values in Danish landrace dairy goats (Capra hircus) of different parity--II. Plasma urea, creatinine, bilirubin, cholesterol, glucose and total serum proteins.

    Science.gov (United States)

    Mbassa, G K; Poulsen, J S

    1991-01-01

    1. Plasma urea, creatinine, bilirubin, glucose, cholesterol and total serum proteins were determined in Danish landrace goats from five herds in early and late gestation, during lactation and in dry goats. The purpose was to determine if there are sustained alterations in the levels of these parameters due to pregnancy and lactation and whether the changes are dependent on age, parity and environment. 2. Urea, creatinine and bilirubin were higher in young non-pregnant goats than in others. Urea decreased in goats at early and mid-lactation directly proportional to parity so that the higher the parity the more the decrease. 3. Creatinine was higher in young and adult non-pregnant goats than in others. There was an increase in late lactation that was greater in goats of higher parity than in others. 4. Bilirubin was higher in the mid-lactation stage, much more in goats of higher parity than in others. 5. Glucose concentration was lower in pregnant than in lactating goats and increased during lactation. The decrease during pregnancy was greater in higher parity goats than in others. 6. Plasma cholesterol and total serum proteins increased during lactation directly proportional to parity. 7. There were significant differences in biochemical parameters between goats from different herds (within similar physiological states). 8. Sustained alterations of these biochemical parameters occur during pregnancy and lactation in goats; the magnitude of changes depends on age and parity, and varies between herds.

  5. Chemical Peel

    Science.gov (United States)

    ... complications in chemical peeling. Journal of Cutaneous and Aesthetic Surgery. 2010;3:186. Langsdon PR, et al. ... Discovery's Edge Magazine Search Publications Training Grant Positions Education Mayo Clinic College of Medicine and Science Mayo ...

  6. Chemical carcinogens

    National Research Council Canada - National Science Library

    Searle, Charles E

    1976-01-01

    Cancer causing agents are now known to exist throughout the environment-in polluted air and tobacco smoke, in various plants and foods, and in many chemicals that are used in industry and laboratories...

  7. Chemical Carcinogenesis

    OpenAIRE

    Oliveira, Paula A.; Aura Colaço; Raquel Chaves; Henrique Guedes-Pinto; Luis F. De-La-Cruz P.; Carlos Lopes

    1980-01-01

    The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process...

  8. Chemical carcinogenesis.

    Science.gov (United States)

    Oliveira, Paula A; Colaço, Aura; Chaves, Raquel; Guedes-Pinto, Henrique; De-La-Cruz P, Luis F; Lopes, Carlos

    2007-12-01

    The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair--i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.

  9. Plasma enhanced C1 chemistry for green technology

    Science.gov (United States)

    Nozaki, Tomohiro

    2013-09-01

    Plasma catalysis is one of the innovative next generation green technologies that meet the needs for energy and materials conservation as well as environmental protection. Non-thermal plasma uniquely generates reactive species independently of reaction temperature, and these species are used to initiate chemical reactions at unexpectedly lower temperatures than normal thermochemical reactions. Non-thermal plasma thus broadens the operation window of existing chemical conversion processes, and ultimately allows modification of the process parameters to minimize energy and material consumption. We have been specifically focusing on dielectric barrier discharge (DBD) as one of the viable non-thermal plasma sources for practical fuel reforming. In the presentation, room temperature one-step conversion of methane to methanol and hydrogen using a miniaturized DBD reactor (microplasma reactor) is highlighted. The practical impact of plasma technology on existing C1-chemistry is introduced, and then unique characteristics of plasma fuel reforming such as non-equilibrium product distribution is discussed.

  10. Atmospheric pressure plasma jet applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  11. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC's Non-Thermal Sanitation by Atmospheric Pressure Plasma technology sanitizes fresh fruits and vegetables without the use of consumable chemicals and without...

  12. QSARs for Plasma Protein Binding: Source Data and Predictions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset has all of the information used to create and evaluate 3 independent QSAR models for the fraction of a chemical unbound by plasma protein (Fub) for...

  13. Plasma Treatment and Polymerization of Textile Reinforcing Materials

    Science.gov (United States)

    Ivan, Hudec; Michal, Jaššo; Henrich, Krump; Mirko, Cernák; Viera, Šuriová

    In this paper different types of surface modification of polyester cords by low-temperature plasma at atmospheric pressure was studied. The first type cords were activated by pulse surface positive corona discharge generated in a plasma reactor or by coplanar dielectric surface barier discharge (DCSBD) in nitrogen or ambient air plasma at atmospheric pressure. The values of the static and dynamic adhesion of untreated cords and the plasma treated cords demonstrated possitive influence of plasma surface treatment on the adhesion of cords to rubber. The mechanical properties were not significantly affected by plasma treatment. The second type of plasma treatment involved the modification of cords by plasma polymerization in mixture of nitrogene with butadiene. The plasma layer homogenously coated the cords surface. The results shove, that values of static and dynamic adhesion for plasma polymerisation of treated cords are comparable with the standard chemical treatment based on resorcinol-formaldehyde latex (RFL). From the study of the surface properties of the plasma treated cords by SEM, AFM and XPS is evident that both chemical interactions and morphological changes of the surface cord fibres are responsible for the improved adhesion between treated reinforcing materials and rubber blend.

  14. Communication through plasma sheaths

    OpenAIRE

    Korotkevich, A. O.; Newell, A. C.; Zakharov, V. E.

    2007-01-01

    We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent.

  15. Plasma Medicine: Current Achievements and Future Prospects

    Science.gov (United States)

    Laroussi, Mounir

    2012-10-01

    Research on the biomedical applications of low temperature plasmas started with small scale experiments that were simply aimed at discovering what happens to biological cells when exposed to the chemically rich environment of plasma. These early experiments took place in the mid to late 1990s. As interest in this multidisciplinary field dramatically rose, various engineering and physics groups collaborated with biologists and medical experts to investigate the use of plasma technology as a basis for innovative medical approaches to cure various diseases. However, many questions concerning the fundamental mechanisms involved in cell-plasma interaction remained unanswered. As a result various workshops were organized to gather the diverse research community in the field of plasma medicine in order to have a fruitful exchange of ideas regarding the scientific challenges that needed to be surmounted to advance and expand the field's knowledge base. The present GEC workshop continues this important tradition of scientific cooperation since there is still a significant lack of understanding of many of the biochemical and molecular pathways that come into play when biological cells are exposed to plasmas. In this talk, first background information on the various plasma devices developed in our institute will be presented. This will be followed by a summary of our work on the effects of plasmas on prokaryotic and eukaryotic cells. The talk will be concluded by presenting our vision of the future of the field and an outline of the main challenges that need to be overcome if practical medical applications are to be achieved.

  16. Plasma sweeper. [Patents

    Science.gov (United States)

    Motley, R.W.; Glanz, J.

    1982-10-25

    A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

  17. Introduction to plasma dynamics

    CERN Document Server

    Morozov, A I

    2013-01-01

    As the twenty-first century progresses, plasma technology will play an increasing role in our lives, providing new sources of energy, ion-plasma processing of materials, wave electromagnetic radiation sources, space plasma thrusters, and more. Studies of the plasma state of matter not only accelerate technological developments but also improve the understanding of natural phenomena. Beginning with an introduction to the characteristics and types of plasmas, Introduction to Plasma Dynamics covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock w

  18. Preface to Special Topic: Plasmas for Medical Applications

    Science.gov (United States)

    Keidar, Michael; Robert, Eric

    2015-12-01

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  19. [Determination of bilirubin in capillary plasma by a direct photometric method (DPM, bilirubinometer) and the chemical determination of bilirubin in the bilirubin determination (2,5-dichlorophenyldiazonium method) in serum of venous blood samples].

    Science.gov (United States)

    Schlebusch, H; Liappis, N; Niesen, M

    1988-01-01

    The determination of bilirubin in serum was performed by the 2.5-dichlorphenyldiazonium method (DPD) and in capillary plasma by the direct photometric method (DPM). Both methods showed a good precision and accuracy. The investigation was carried out in 135 samples with a bilirubin concentration up to 25 mg/dl. The comparison of the two methods in 62 samples with a bilirubin concentration up to 10 mg/dl showed a correlation coefficient of r = 0.862 and in 73 samples with a bilirubin concentration between 10 and 25 mg/dl a correlation coefficient of r = 0.893. In 29 cases (21.5%) we found differences between the two methods of 1.5-4.0 mg/dl. Most of them were in the critical higher range. Discussion of the DPD and DPM methods.

  20. Kinetic Modeling of Roll to Roll RFCVD Plasma

    OpenAIRE

    Ahegbebu, Kudzo S; Tholeti, Siva Sashank; Alexeenko, Alina A

    2015-01-01

    Roll-to-roll radio frequency plasma enhanced chemical vapor deposition (R2R RFCVD) is a technique for large-scale synthesis of high quality graphitic nanopetals. Graphitic nanopetals are petal-like graphene structures with remarkable electrical and mechanical properties with major industrial applications such as microsupercapacitors. RFCVD uses a non-equilibrium plasma with high energy electrons to catalyze chemical reactions, induce the creation of free radicals, and promote otherwise high t...

  1. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  2. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    Science.gov (United States)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  3. Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz, 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a ...

  4. Thermo-magneto coupling in a dipole plasma

    CERN Document Server

    Yoshida, Z; Morikawa, J; Saitoh, H

    2012-01-01

    On a dipole plasma, we observe the generation of magnetic moment, as the movement of the levitating magnet-plasma compound, in response to electron-cyclotron heating and the increase of $\\beta$ (magnetically-confined thermal energy). We formulate a thermodynamic model with interpreting heating as injection of microscopic magnetic moment; the corresponding chemical potential is the ambient magnetic field.

  5. Synthesis by plasma of halogenated poly anilines; Sintesis por plasma de polianilinas halogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, M.A.; Olayo, M.G.; Cruz, G.J. [Facultad de Quimica, UAEM, 50000 Toluca, Estado de Mexico (Mexico)

    2002-07-01

    In this work polymerization by plasma of aniline with iodine and chlorine bonded chemically to the aniline ring were realized. The results of the synthesis and characterizations are compared with those ones obtained starting from the poly aniline synthesis (P An) doped with iodine, where the dopant was aggregated in the moment of the polymerization. The objective is to study the dopant behavior in the synthesis by plasma in function of the properties of these polymers. (Author)

  6. Biomolecular Effects of Cold Plasma Exposure

    Science.gov (United States)

    Mogul, Rakesh; Bolshakov, Alexander A.; Chan, Suzanne L.; Stevens, Ramsey D.; Khare, Bishun N.; Meyyappan, M.; Trent, Jonathan D.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The effects of cold plasma exposure on Deinococcus radiodurans, plasmid DNA and model proteins were assessed using microbiological, spectrometric and biochemical techniques. Exposure of D. radiodurans, an extremely radiation resistant microbe, to O2 plasma (less than or equal to 25 W, approx. 45 mTorr, 90 min) yielded a approx. 99.999 % sterilization and the sterilization rate was increased approx. 10-fold at 100 W and 500 mTorr. AFM images shows that the exposed cells are significantly deformed and possess 50-70 nm concavities. IR analysis indicates the chemical degradation of lipids, proteins and carotenoids of the cell wall and membrane. Intracellular damage was indicated by major absorbance loss at 1245, 1651 and 1538/cm corresponding to degradation of DNA and proteins, respectively. Biochemical experiments demonstrate that plasmas induce strand scissions and crosslinking of plasmid DNA, and reduction of enzyme activity; the degradation is power dependent with total sample loss occurring in 60 s at 200 W and 500 mTorr. Emission spectroscopy shows that D. radiodurans is volatilized into CO2, CO, N2 and H2O confirming the removal of biological matter from contaminated surfaces. The O2 plasma impacts several cellular components predominantly through chemical degradation by atomic oxygen. A CO2, plasma, however, was not effective at degrading D. radiodurans, revealing the importance of plasma composition, which has implications for planetary protection and the contamination of Mars.

  7. Plasma Copper Status in Hypercholesterolemic Patients

    African Journals Online (AJOL)

    Dr Femi Olaleye

    Full Length Research Article. Plasma Copper Status in. Hypercholesterolemic Patients. Soyinka, Oluwatosin O. 1. *; Anetor John I. 2. ; Ogundaunsi. Omobola A. 1. ; Adeniyi, Francis A. 2. 1Department of Chemical Pathology and Immunology, OACHS, Olabisi-Onabanjo. University, Sagamu campus, Ogun State, Nigeria.

  8. Elevated plasma homocysteine in association with decreased ...

    African Journals Online (AJOL)

    monoamine neurotransmitters and depression of mood.7 A. Elevated plasma homocysteine in association with decreased vitamin. B12, folate, serotonin, lipids and lipoproteins in depressed patients. MO Ebesunun1, HU Eruvulobi1, T Olagunju1, OA Owoeye2. 1Chemical Pathology, Obafemi Awolowo College of Health ...

  9. Decontamination of foods by cold plasma

    Science.gov (United States)

    Cold plasma is a novel nonthermal food processing technology for meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium to inactivate microbes without the use of conventional antimicrobial chemical agents. ...

  10. Use of cold plasma in food processing

    NARCIS (Netherlands)

    Mastwijk, H.C.; Nierop Groot, M.N.

    2010-01-01

    Application of cold plasma has been reported in agriculture, food, and bioscience literature as an effective, non-chemical, gas-phase disinfection agent that can be applied at moderate temperatures. The unusual thermodynamic properties of these gases are discussed with focus on nitrogen-based

  11. Laser-pulsed plasma chemistry: Laser-initiated plasma oxidation of niobium

    Science.gov (United States)

    Marks, R. F.; Pollak, R. A.; Avouris, Ph.; Lin, C. T.; Théfaine, Y. J.

    1983-03-01

    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limiting oxide growth induced by a pulsed CO2 laser. X-ray photoelectron spectroscopy (XPS or ESCA) was used to monitor surface chemical composition changes and thickness control of thin (1 to 5 nm) reaction product layers. The dependence of single-pulse oxide growth upon laser fluence is observed to be monotonic for oxide thicknesses up to 5 nm. Composition of the oxide Nb2O5-δ, formed by such an optically driven plasma, is similar to that formed by low-temperature oxidation processes such as rf plasma oxidation; however, the valence defect δ of the LPPC oxide is a least two to five times lower. Interdiffusion at the oxide/metal interface becomes important at higher irradiances and is activated by direct optical coupling with the solid or by plasma-mediated thermal coupling. Under ultrahigh vacuum, CO2 laser irradiances greater than 0.9 J cm-2 per pulse thin the surface oxide.

  12. Elements of plasma technology

    CERN Document Server

    Wong, Chiow San

    2016-01-01

    This book presents some fundamental aspects of plasma technology that are important for beginners interested to start research in the area of plasma technology . These include the properties of plasma, methods of plasma generation and basic plasma diagnostic techniques. It also discusses several low cost plasma devices, including pulsed plasma sources such as plasma focus, pulsed capillary discharge, vacuum spark and exploding wire; as well as low temperature plasmas such as glow discharge and dielectric barrier discharge which the authors believe may have potential applications in industry. The treatments are experimental rather than theoretical, although some theoretical background is provided where appropriate. The principles of operation of these devices are also reviewed and discussed.

  13. Hydrophilization of graphite using plasma above/in a solution

    Science.gov (United States)

    Hoshino, Shuhei; Kawahara, Kazuma; Takeuchi, Nozomi

    2018-01-01

    A hydrophilization method for graphite is required for applications such as conductive ink. In typical chemical oxidation methods for graphite have the problems of producing many defects in graphite and a large environmental impact. In recent years, the plasma treatment has attracted attention because of the high quality of the treated samples and the low environmental impact. In this study, we proposed an above-solution plasma treatment with a high contact probability of graphite and plasma since graphite accumulates on the solution surface due to its hydrophobicity, which we compared with a so-called solution plasma treatment. Graphite was hydrophilized via reactions with OH radicals generated by the plasma. It was confirmed that hydroxyl and carboxyl groups were modified to the graphite and the dispersibility was improved. The above-solution plasma achieved more energy-efficient hydrophilization than the solution plasma and it was possible to enhance the dispersibility by increasing the plasma–solution contact area.

  14. Spectroscopic characterization of atmospheric pressure um-jet plasma source

    CERN Document Server

    Bibinov, Nikita; Bahre, Hendrik; Awakowicz, Peter; der Gathen, Volker Schulz-von

    2011-01-01

    A radio frequency um-jet plasma source is studied using He/O2 mixture. This um-jet can be used for different applications as a source of chemical active species e.g. oxygen atoms, molecular metastables and ozone. Using absolutely-calibrated optical emission spectroscopy and numerical simulation, the gas temperature in active plasma region and plasma parameters (electron density and electron distribution function) are determined. Concentrations of oxygen atoms and ozone in the plasma channel and in the effluent of the plasma source are measured using emission and absorption spectroscopy. To interpret the measured spatial distributions, the steady-state species' concentrations are calculated using determined plasma parameters and gas temperature. At that the influence of the surface processes and gas flow regime on the loss of the active species in the plasma source are discussed. The measured spatial distributions of oxygen atom and ozone densities are compared with the simulated ones.

  15. Modelagem dos processos químicos em plasmas de misturas gasosas usadas na corrosão de silício. Parte 1: CF4 / O2 Modeling of the chemical processes in the plasma of gaseous mixtures used in the etching of silicon. Part 1: CF4/O2

    Directory of Open Access Journals (Sweden)

    G. F. Bauerfeldt

    1998-02-01

    Full Text Available The plasma etching of semiconductor surfaces with fluorine-containing compounds has technological interest. Presently, considerable effort is being devoted to understand the chemistry involved. In this work, a numerical modeling analysis of the gas-phase decomposition of CF4/O2 mixtures, in the presence of silicon, was performed. The relative importance of individual processes was determined as well as the effect of the parameters' uncertainties. The results were compared with experimental data. The main etching agent in the system is the fluorine atom. The concentration of the main species, SiF4, CO, CO2 and COF2 depend on the composition of the mixture.

  16. Experimental study of plasma focusing in erosion plasma accelerators. V - Mechanism of plasma focusing in a magnetoplasma compressor

    Science.gov (United States)

    Kozlov, N. P.; Protasov, Iu. S.

    1982-08-01

    The dynamics, microscopic structure, and stability of successive developmental stages of high-current plasmodynamic discharges in erosion type magnetoplasma compressors are investigated under conditions of intense radiation transport. It is found that thermal instabilities, which dominate during the stages of formation and quasi-steady flow in the compressed zone, do not cause the nonideal discharge plasma to have anomalous thermodynamic and transport properties; while the accelerated plasma, which is thermalized in the compressed zone, is macroscopically stable when the current shell interacts with the relatively cold vapor. It is demonstrated that either a combined inertial and Hall mechanism of plasma focusing or a two-stage inertial compression of the plasma is possible, regardless of the chemical composition and ionization state of the electric discharge plasma. In the two stage mechanism, the plasma is compressed toward the central anode in the accelerating channel by the Hall effect and as a result of additional pinching in the outgoing Z currents. The dimensions and the dynamic and energy characteristics of the plasma stream can be controlled by a self-consistent input of energy into the MHD compression zone.

  17. Delicious Chemicals.

    Science.gov (United States)

    Barry, Dana M.

    This paper presents an approach to chemistry and nutrition that focuses on food items that people consider delicious. Information is organized according to three categories of food chemicals that provide energy to the human body: (1) fats and oils; (2) carbohydrates; and (3) proteins. Minerals, vitamins, and additives are also discussed along with…

  18. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil

  19. Chemical Oscillations

    Indian Academy of Sciences (India)

    processes at the cellular level like the glycolytic pathway, peroxi- dase-catalysed reaction or the biosynthesis of certain proteins. A systematic study of oscillating chemical reactions is of consider- able interest, since these oscillating reactions can be used as prototype examples of the behaviours possible in reactions gov-.

  20. Plasma electrolytic oxidation of tantalum

    Directory of Open Access Journals (Sweden)

    Petković Marija

    2012-01-01

    Full Text Available This paper is a review of our research on the plasma electrolytic oxidation (PEO process of tantalum in 12-tungstosilicic acid. For the characterization of microdischarges during PEO, real-time imaging and optical emission spectroscopy (OES were used. The surface morphology, chemical and phase composition of oxide coatings were investigated by AFM, SEM-EDS and XRD. Oxide coating morphology is strongly dependent on PEO time. The elemental components of PEO coatings are Ta, O, Si and W. The oxide coatings are partly crystallized and mainly composed of WO3, Ta2O5 and SiO2.

  1. Informing the Human Plasma Protein Binding of ...

    Science.gov (United States)

    The free fraction of a xenobiotic in plasma (Fub) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data is scarce for environmentally relevant chemicals. The presented work explores the merit of utilizing available pharmaceutical data to predict Fub for environmentally relevant chemicals via machine learning techniques. Quantitative structure-activity relationship (QSAR) models were constructed with k nearest neighbors (kNN), support vector machines (SVM), and random forest (RF) machine learning algorithms from a training set of 1045 pharmaceuticals. The models were then evaluated with independent test sets of pharmaceuticals (200 compounds) and environmentally relevant ToxCast chemicals (406 total, in two groups of 238 and 168 compounds). The selection of a minimal feature set of 10-15 2D molecular descriptors allowed for both informative feature interpretation and practical applicability domain assessment via a bounded box of descriptor ranges and principal component analysis. The diverse pharmaceutical and environmental chemical sets exhibit similarities in terms of chemical space (99-82% overlap), as well as comparable bias and variance in constructed learning curves. All the models exhibit significant predictability with mean absolute errors (MAE) in the range of 0.10-0.18 Fub. The models performed best for highly bound chemicals (MAE 0.07-0.12), neutrals (MAE 0

  2. Impact of small deviations in EEDF on silane-based plasma chemistry

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Boogaard, A.; Wolters, Robertus A.M.

    2009-01-01

    In this work, we emphasize the importance of using a correct Electron Energy Distribution Function (EEDF) to model chemical reactions in High-Density (HD) low-pressure silane-containing plasmas. We have modeled chemical reactions in Ar-SiH4-N2O- (N2-H2-O2) Inductively Coupled Plasma Enhanced

  3. Triglicerideos sangüíneos e composição química da carne de codornas alimentadas com bixina e niacina suplementar Plasma triglycerides and chemical composition of quail's meat fed on bixin and supplementary niacin

    Directory of Open Access Journals (Sweden)

    Newton Tavares Escocard de Oliveira

    2006-08-01

    niacin. The treatments had no effect upon triglyceride and very low-density lipoprotein levels in plasma, as well as on ether extract contents in the drumstick and thigh meat and carcass of the quails. On the 49th day of age, quails that received rations with 0.08% supplementary niacin had higher fat contents in the breast meat (1.50% than quails fed with reference ration (0.85%. The addition of spice's bixin and supplementary niacin to the rations do not reduce the fat levels in plasma, meat and carcass of japanese male quails.

  4. Study of Low Pressure Cold Plasma on Moisture Properties of Polyester Fabric

    Directory of Open Access Journals (Sweden)

    E. Masaeli

    2007-06-01

    Full Text Available Low temperature plasma technology is well established in surface modification of polymer materials on industrial scale. This method modifies surface properties of polymers without chemicals, manual work and reducing chemicals and energy consumption. In this study, low pressure plasma treatment was used to develop hydrophilic properties of polyethylene terephthalate (PET fabrics. It was found that, plasma treatment had a significant effect on the hydrophilicity properties of PET fibers. Plasma treatment increases wetting, wicking and electric conduction of fibers but the recovery of fibers was not affected by the plasma treatment. Also, scanning electron microscopy (SEM micrograph show some surface fibers etching that created some voids.

  5. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  6. Pathogen reduction in human plasma using an ultrashort pulsed laser.

    Science.gov (United States)

    Tsen, Shaw-Wei D; Kingsley, David H; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma.

  7. Pathogen reduction in human plasma using an ultrashort pulsed laser.

    Directory of Open Access Journals (Sweden)

    Shaw-Wei D Tsen

    Full Text Available Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma.

  8. Plasma technologies application for building materials surface modification

    Science.gov (United States)

    Volokitin, G. G.; Skripnikova, N. K.; Volokitin, O. G.; Shehovtzov, V. V.; Luchkin, A. G.; Kashapov, N. F.

    2016-01-01

    Low temperature arc plasma was used to process building surface materials, such as silicate brick, sand lime brick, concrete and wood. It was shown that building surface materials modification with low temperature plasma positively affects frost resistance, water permeability and chemical resistance with high adhesion strength. Short time plasma processing is rather economical than traditional processing thermic methods. Plasma processing makes wood surface uniquely waterproof and gives high operational properties, dimensional and geometrical stability. It also increases compression resistance and decreases inner tensions level in material.

  9. Growth of Single-Walled Carbon Nanotubes by Plasma CVD

    Directory of Open Access Journals (Sweden)

    Toshiaki Kato

    2010-01-01

    Full Text Available Recent research in plasma chemical vapor deposition (CVD for single-walled carbon nanotube (SWNT growth has achieved low-temperature synthesis, individually freestanding formation, and structure control of diameter, chirality, and length. Detailed growth kinetics of SWNTs are revealed using a combination of techniques for plasma control and nanomaterial analysis. Plasma CVD also allows tube metallicity to be controlled by tuning the mean diameter of SWNTs. This plasma CVD progress contributes to the next stage of nanotube fabrication, which is required for practical use of SWNTs in a variety of applications.

  10. Seminal Plasma Proteins

    OpenAIRE

    P Perumal

    2012-01-01

    The ejaculated semen consists of two major components viz. sperm cells (spermatozoa) and the fluid part obtained after centrifugation called seminal plasma. The spermatozoa originate from the semniferous tubule and are suspended in the seminal plasma. The seminal plasma is composed of secretions contributed by the testis, epididymis, seminal vesicles, ampullae, prostate and bulbourethral glands. About 60-80 % of the ejaculated semen of the bull originates from these sources. Seminal plasma is...

  11. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  12. Experimental study of plasma focusing in erosion plasma accelerators. V. Mechanism of plasma focusing in a magnetoplasma compressor

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, N.P.; Protasov, Y.S.

    1982-08-01

    Experimental results are reported from a study of the dynamics, microscopic structure, and stability of successive developmental stages of high-current plasmodynamic discharges in magnetoplasma compressors of the erosion type under conditions of intense radiation transport. Particular attention was given to the transient stage of plasma focusing behind the cutoff of the accelerating channel, and to secondary pinching processes in the second half-period of the discharge current and methods for analyzing them when limited diagnostic facilities are available. It is shown that thermal instabilities, which dominate during the stages of formation and quasisteady flow in the compressed zone, do not cause the nonideal discharge plasma to have anomalous thermodynamic and transport properties; the accelerated plasma, which is thermalized in the compressed zone, is macroscopically stable when the current shell interacts with the relatively cold vapor (this interaction is accompanied by development of an intense shock-wave structure and power instabilities in various modes). It is demonstrated that either an inertial + Hall mechanism of plasma focusing or two-stage inertial compression of the plasma is possible, regardless of the chemical composition and ionization state of the electric discharge plasma. In the two-stage method of plasma compression, the plasma is compressed toward the central anode in the accelerating channel by the Hall effect and as a result of additional pinching in the outgoing Z currents; when energy is input to the MHD compression zone in a self-consistent manner, this makes it possible to control the dimensions and the dynamic and energy characteristics of the plasma stream.

  13. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  14. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  15. Chemical carcinogenesis

    Directory of Open Access Journals (Sweden)

    Paula A. Oliveira

    2007-12-01

    Full Text Available The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair - i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.A sociedade obtém numerosos benefícios da utilização de compostos químicos. A aplicação dos pesticidas, por exemplo, permitiu obter alimento em quantidade suficiente para satisfazer as necessidades alimentares de milhões de pessoas, condição relacionada com o aumento da esperança de vida. Os benefícios estão, por

  16. Modeling of low pressure plasma sources for microelectronics fabrication

    Science.gov (United States)

    Agarwal, Ankur; Bera, Kallol; Kenney, Jason; Likhanskii, Alexandre; Rauf, Shahid

    2017-10-01

    Chemically reactive plasmas operating in the 1 mTorr-10 Torr pressure range are widely used for thin film processing in the semiconductor industry. Plasma modeling has come to play an important role in the design of these plasma processing systems. A number of 3-dimensional (3D) fluid and hybrid plasma modeling examples are used to illustrate the role of computational investigations in design of plasma processing hardware for applications such as ion implantation, deposition, and etching. A model for a rectangular inductively coupled plasma (ICP) source is described, which is employed as an ion source for ion implantation. It is shown that gas pressure strongly influences ion flux uniformity, which is determined by the balance between the location of plasma production and diffusion. The effect of chamber dimensions on plasma uniformity in a rectangular capacitively coupled plasma (CCP) is examined using an electromagnetic plasma model. Due to high pressure and small gap in this system, plasma uniformity is found to be primarily determined by the electric field profile in the sheath/pre-sheath region. A 3D model is utilized to investigate the confinement properties of a mesh in a cylindrical CCP. Results highlight the role of hole topology and size on the formation of localized hot-spots. A 3D electromagnetic plasma model for a cylindrical ICP is used to study inductive versus capacitive power coupling and how placement of ground return wires influences it. Finally, a 3D hybrid plasma model for an electron beam generated magnetized plasma is used to understand the role of reactor geometry on plasma uniformity in the presence of E  ×  B drift.

  17. Plasma Therapy: An Overview

    Directory of Open Access Journals (Sweden)

    Rajkumar Diwan

    2011-01-01

    Full Text Available Definition: Plasma, the fourth state of matter, is a collection of charged particles (electrons, ions, neutral atoms. Recent demonstration of plasma technology in treatment of living cells, tissue and organs are creating a new field at the intersection of plasma science and technology with biology and medicine known as plasma medicine. Plasma medicine is one of the newest fields of modem applied plasma chemistry. It appeared several years ago and comprises studies concerning the direct action of low-temperature, one atmosphere air plasma (cold plasma/nonthermal plasmalnonequilibrium on body tissues for various noninvasive therapeutic treatments or diagnostics purpose. The study of plasma holds promise for a myriad of applications ranging from lasers and electronics, hazardous decontamination, sterilization and disinfection of foods, soil, water, instruments, to medical uses in wound healing and treating certain types of tumors and cancers. Plasma represents a new state-of-the-art sterilization and disinfection treatment for certain oral and environmental pathogens, heat-sensitive materials, hard and soft surfaces, and may assist health care facilities in the management of various health concerns. The role that low temperature atmospheric pressure plasma (LTAPP could play in the inactivation of pathogenic microorganisms might prove to be a new, faster, more economical alternative.

  18. Chemical cosmology

    CERN Document Server

    Boeyens, Jan CA

    2010-01-01

    The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp

  19. Plasma contactor research, 1989

    Science.gov (United States)

    Williams, John D.

    1990-01-01

    The characteristics of double layers observed by researchers investigating magnetospheric phenomena are contrasted to those observed in plasma contacting experiments. Experiments in the electron collection mode of the plasma contacting process were performed and the results confirm a simple model of this process for current levels ranging to 3 A. Experimental results were also obtained in a study of the process of electron emission from a hollow cathode plasma contactor. High energy ions are observed coming from the cathode in addition to the electrons and a phenomenological model that suggests a mechanism by which this could occur is presented. Experimental results showing the effects of the design parameters of the ambient plasma simulator on the plasma potential, electron temperature, electron density and plasma noise levels induced in plasma contacting experiments are presented. A preferred simulator design is selected on the basis of these results.

  20. Degradation of sulfur dioxide using plasma technology; Degradacion de dioxido de azufre empleando tecnologia de plasma

    Energy Technology Data Exchange (ETDEWEB)

    Estrada M, N.; Garcia E, R. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Pacheco P, M.; Valdivia B, R.; Pacheco S, J., E-mail: nadiaemz@yahoo.com.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-07-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO{sub 2}) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  1. Membrane technology: in the chemical industry

    National Research Council Canada - National Science Library

    Nunes, S. P; Peinemann, K. V

    2001-01-01

    ... terephthalate) 15 22 23 32 37 5 5.1 5.2 5.3 5.4 Surface Modification of Membranes Chemical Oxidation 39 Plasma Treatment 40 Classical Organic Reactions 41 Polymer Grafting 41 39VI Contents 6 6.1 ...

  2. Plasma Biomedicine in Orthopedics

    Science.gov (United States)

    Hamaguchi, Satsohi

    2012-10-01

    Various effects of plasmas irradiation on cells, tissues, and biomaterials relevant for orthopedic applications have been examined. For direct application of plasmas to living cells or tissues, dielectric barrier discharges (DBDs) with helium flows into ambient air were used. For biomaterial processing, on the other hand, either helium DBDs mentioned above or low-pressure discharges generated in a chamber were used. In this presentation, plasma effects on cell proliferation and plasma treatment for artificial bones will be discussed. First, the conditions for enhanced cell proliferation in vitro by plasma applications have been examined. The discharge conditions for cell proliferation depend sensitively on cell types. Since cell proliferation can be enhanced even when the cells are cultured in a plasma pre-treated medium, long-life reactive species generated in the medium by plasma application or large molecules (such as proteins) in the medium modified by the plasma are likely to be the cause of cell proliferation. It has been found that there is strong correlation between (organic) hydroperoxide generation and cell proliferation. Second, effects of plasma-treated artificial bones made of porous hydroxyapatite (HA) have been examined in vitro and vivo. It has been found that plasma treatment increases hydrophilicity of the surfaces of microscopic inner pores, which directly or indirectly promotes differentiation of mesenchymal stem cells introduced into the pores and therefore causes faster bone growth. The work has been performed in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  3. What is a plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    This introduction will define the plasma fourth state of matter, where we find plasmas on earth and beyond, and why they are useful. There are applications to many consumer items, fusion energy, scientific devices, satellite communications, semiconductor processing, spacecraft propulsion, and more. Since 99% of our observable universe is ionized gas, plasma physics determines many important features of astrophysics, space physics, and magnetosphere physics in our solar system. We describe some plasma characteristics, examples in nature, some useful applications, how to create plasmas. A brief introduction to the theoretical framework includes the connection between kinetic and fluid descriptions, quasi neutrality, Debye shielding, ambipolar electric fields, some plasma waves. Hands-on demonstrations follow. More complete explanations will follow next week.

  4. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Science.gov (United States)

    Koban, Ina; Matthes, Rutger; Hübner, Nils-Olaf; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas

    2010-07-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  5. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  6. Experimental study on a plasma focus in erosion plasma accelerators. Pt. 5. On the mechanism of a plasma focus formation in a magnetoplasma compressor

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, N.P.; Protasov, Yu.S. (Moskovskoe Vysshee Tekhnicheskoe Uchilishche (USSR))

    1982-08-01

    The results of experimental investigation into dynamics, microstructure and stability of consequent stages of development of heavy-current plasma-dynamical discharges in erosion type magnetoplasma compressors under the conditions of intense radiation transfer are presented. Special attention is paid to sharply non-stationary stage of plasma focus formation outside the cut of the accelerating channel and processes of secondary pinching in the second half-period of discharge current, methods of their analysis at limited possibilities of diagnostics. It is shown that at the stages of formation and quasistationary flow in the compressed zone the dominating instabilities of superheating type do not result in appearance of anomalous thermodynamical and transfer properties of non-ideal discharge plasma; thermalized in compression zone and accelerated plasma is macroscopically stable during the interaction of current envelope with relatively cold vapor followed by formation of intense shock-wave structure and force instabilities of different modes. Irrespective of chemical and ionization composition of electric-discharge plasma shown is a possibility of exercising and inertial (in combination with Hall effect) mechanism of plasma focus formation or two-stage inertial subcompression of plasma-plasma compression at the expense of Hall effect to the central cathode in the accelerating channel and additional pinching in output zet-currents that permits to provide control of dimensions, dynamical and energy characteristics of plasma flow at self-coordinated introduction of energy in the zone of MHD compression.

  7. The plant plasma membrane H+-ATPase

    DEFF Research Database (Denmark)

    Ekberg, Kira

      The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded H+-ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. A recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Together with biochemical and structural data presented in this thesis we are now able...... to describe the basic molecular components that allow the plasma membrane proton H+-ATPase to carry out proton transport against large membrane potentials. Moreover, a completely new paradigm for post-translational activation of these proteins is presented. The talk will focus on the following themes...

  8. Modeling the chemistries of technical molecular plasmas

    Science.gov (United States)

    Munro, James J.; Tennyson, Jonathan; Brown, Daniel B.; Varambhia, Hemal N.; Doss, Natasha

    2008-10-01

    Plasma chemistries, especially for molecular gases, are complicated. With a limited amount of molecular data available, it is hard to model these plasmas accurately; just a couple of feedstock gases can lead to a minimal model containing perhaps dozens of gas-phase species. The possible gas-phase and surface reactions that can occur could be in the tens of thousands; less than a hundred are typically used in chemistry models. Understanding the importance of various species and reactions to a chemical model is vital. Here we present the progress on constructing a package (Quantemol-P)[1] to simplify and automate the process of building and analyzing plasma chemistries e.g. SF6/O2, CF4/O2 and O2/He. [1] J.J. Munro, J. Tennyson, J. Vac. Sci. Tech. A, accepted

  9. Plasma jet printing for flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gandhiraman, Ram P.; Singh, Eric; Diaz-Cartagena, Diana C.; Koehne, Jessica; Meyyappan, M. [Center for Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035 (United States); Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-03-21

    Recent interest in flexible electronics and wearable devices has created a demand for fast and highly repeatable printing processes suitable for device manufacturing. Robust printing technology is critical for the integration of sensors and other devices on flexible substrates such as paper and textile. An atmospheric pressure plasma-based printing process has been developed to deposit different types of nanomaterials on flexible substrates. Multiwalled carbon nanotubes were deposited on paper to demonstrate site-selective deposition as well as direct printing without any type of patterning. Plasma-printed nanotubes were compared with non-plasma-printed samples under similar gas flow and other experimental conditions and found to be denser with higher conductivity. The utility of the nanotubes on the paper substrate as a biosensor and chemical sensor was demonstrated by the detection of dopamine, a neurotransmitter, and ammonia, respectively.

  10. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  11. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma...... membrane include ABC transporters, vacuolar (V-type) H+ pumps, and P-type pumps. These pumps all utilize ATP as a fuel for energizing pumping. This review focuses on the physiological roles of plasma membrane P-type pumps, as they represent the major ATP hydrolytic activity in this membrane....

  12. Plasma processing for VLSI

    CERN Document Server

    Einspruch, Norman G

    1984-01-01

    VLSI Electronics: Microstructure Science, Volume 8: Plasma Processing for VLSI (Very Large Scale Integration) discusses the utilization of plasmas for general semiconductor processing. It also includes expositions on advanced deposition of materials for metallization, lithographic methods that use plasmas as exposure sources and for multiple resist patterning, and device structures made possible by anisotropic etching.This volume is divided into four sections. It begins with the history of plasma processing, a discussion of some of the early developments and trends for VLSI. The second section

  13. Plasma adiabatic lapse rate

    CERN Document Server

    Amendt, Peter; Wilks, Scott

    2012-01-01

    The plasma analog of an adiabatic lapse rate (or temperature variation with height) in atmospheric physics is obtained. A new source of plasma temperature gradient in a binary ion species mixture is found that is proportional to the concentration gradient and difference in average ionization states . Application to inertial-confinement-fusion implosions indicates a potentially strong effect in plastic (CH) ablators that is not modeled with mainline (single-fluid) simulations. An associated plasma thermodiffusion coefficient is derived, and charge-state diffusion in a single-species plasma is also predicted.

  14. COUNTERROTATING PLASMA DEVICE

    Science.gov (United States)

    Halbach, K.; Baker, W.R.; Veron, D.

    1963-07-01

    An ion-electron plasma device having a conductive, cylindrical casing provided with an axially directed magneticmirror-type field is described. An axially aligned tubular electrode is disposed at each end of the casing with oppositely directed radial electric fields provided between each electrode and the casing. Simultaneous pulses of gas, injected from the inner end of each of the electrodes, become ionized and oppositely rotating plasma bodies are formed. The magnetic mirrors repel the plasma bodies and cause them to collide in the region between the mirrors. The opposite directions of rotation of the plasma bodies cause very high currents to flow therebetween and consequent heating occurs. (AEC)

  15. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  16. Plasma Based Devices

    National Research Council Canada - National Science Library

    Gundersen, M

    2001-01-01

    .... Energy-efficient plasma-based technologies, supported through this grant, are now under commercial investigation for pollution abatement, and have potential for reduced emissions, higher efficiencies...

  17. Leo space plasma interactions

    Science.gov (United States)

    Ferguson, Dale C.

    1991-01-01

    Photovoltaic arrays interact with the low earth orbit (LEO) space plasma in two fundamentally different ways. One way is the steady collection of current from the plasma onto exposed conductors and semiconductors. The relative currents collected by different parts of the array will then determine the floating potential of the spacecraft. In addition, these steady state collected currents may lead to sputtering or heating of the array by the ions or electrons collected, respectively. The second kind of interaction is the short time scale arc into the space plasma, which may deplete the array and/or spacecraft of stored charge, damage solar cells, and produce EMI. Such arcs only occur at high negative potentials relative to the space plasma potential, and depend on the steady state ion currents being collected. New high voltage solar arrays being incorporated into advanced spacecraft and space platforms may be endangered by these plasma interactions. Recent advances in laboratory testing and current collection modeling promise the capability of controlling, and perhaps even using, these space plasma interactions to enable design of reliable high voltage space power systems. Some of the new results may have an impact on solar cell spacing and/or coverslide design. Planned space flight experiments are necessary to confirm the models of high voltage solar array plasma interactions. Finally, computerized, integrated plasma interactions design tools are being constructed to place plasma interactions models into the hands of the spacecraft designer.

  18. Physics of Plasmas

    CERN Document Server

    Woods, Leslie Colin

    2003-01-01

    A short, self-sufficient introduction to the physics of plasma for beginners as well as researchers in a number of fields. The author looks at the dynamics and stability of magnetoplasma and discusses wave and transport in this medium. He also looks at such applications as fusion research using magnetic confinement of Deuterium plasma, solar physics with its plasma loops reaching high into the corona, sunspots and solar wind, engineering applications to metallurgy, MHD direct generation of electricity, and railguns, finally touching on the relatively new and difficult subject of dusty plasmas.

  19. CAMEO Chemicals Software

    Science.gov (United States)

    CAMEO Chemicals is an extensive chemical database, available for download, with critical response information for thousands of chemicals, and a tool that tells you what reactions might occur if chemicals were mixed together.

  20. Bremsstrahlung from an Equilibrating Quark-Gluon Plasma

    CERN Document Server

    Mustafa, Munshi G.; Mustafa, Munshi G.; Thoma, Markus H.

    2000-01-01

    The photon production rate from a chemically equilibrating quark-gluon plasma likely to be produced at RHIC (BNL) and LHC (CERN) energies is computed taking into account bremsstrahlung. The plasma is assumed to be in local thermal equilibrium, but with a phase space distribution that deviates from the Fermi or Bose distribution by space-time dependent factors (fugacities). The photon spectrum is obtained by integrating the photon rate over the space-time history of the plasma, adopting a boost invariant cylindrically symmetric transverse expansion of the system with different nuclear profile functions. Initial conditions obtained from a self-screened parton cascade calculation and, for comparison, from the HIJING model are used. Compared to the equilibrium case a suppression of the photon yield by one to three orders of magnitude is observed. Furthermore the photon production due to bremsstrahlung from the chemically nonequilibrated plasma dominates over the emission from Compton scattering and quark-antiquar...

  1. Ultracold neutral plasmas

    Science.gov (United States)

    Lyon, M.; Rolston, S. L.

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  2. Ultracold neutral plasmas.

    Science.gov (United States)

    Lyon, M; Rolston, S L

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  3. Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites

    Science.gov (United States)

    Chen, X.; Yao, L.; Xue, J.; Zhao, D.; Lan, Y.; Qian, X.; Wang, C. X.; Qiu, Y.

    2008-12-01

    Three-dimensional aramid woven fabrics were treated with atmospheric pressure plasmas, on one side or both sides to determine the plasma penetration depth in the 3D fabrics and the influences on final composite mechanical properties. The properties of the fibers from different layers of the single side treated fabrics, including surface morphology, chemical composition, wettability and adhesion properties were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement and microbond tests. Meanwhile, flexural properties of the composites reinforced with the fabrics untreated and treated on both sides were compared using three-point bending tests. The results showed that the fibers from the outer most surface layer of the fabric had a significant improvement in their surface roughness, chemical bonding, wettability and adhesion properties after plasma treatment; the treatment effect gradually diminished for the fibers in the inner layers. In the third layer, the fiber properties remained approximately the same to those of the control. In addition, three-point bending tests indicated that the 3D aramid composite had an increase of 11% in flexural strength and 12% in flexural modulus after the plasma treatment. These results indicate that composite mechanical properties can be improved by the direct fabric treatment instead of fiber treatment with plasmas if the fabric is less than four layers thick.

  4. Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Yao, L.; Xue, J.; Zhao, D.; Lan, Y.; Qian, X. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China); Wang, C.X. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China); College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224003 (China); Qiu, Y. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China)], E-mail: ypqiu@dhu.edu.cn

    2008-12-30

    Three-dimensional aramid woven fabrics were treated with atmospheric pressure plasmas, on one side or both sides to determine the plasma penetration depth in the 3D fabrics and the influences on final composite mechanical properties. The properties of the fibers from different layers of the single side treated fabrics, including surface morphology, chemical composition, wettability and adhesion properties were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement and microbond tests. Meanwhile, flexural properties of the composites reinforced with the fabrics untreated and treated on both sides were compared using three-point bending tests. The results showed that the fibers from the outer most surface layer of the fabric had a significant improvement in their surface roughness, chemical bonding, wettability and adhesion properties after plasma treatment; the treatment effect gradually diminished for the fibers in the inner layers. In the third layer, the fiber properties remained approximately the same to those of the control. In addition, three-point bending tests indicated that the 3D aramid composite had an increase of 11% in flexural strength and 12% in flexural modulus after the plasma treatment. These results indicate that composite mechanical properties can be improved by the direct fabric treatment instead of fiber treatment with plasmas if the fabric is less than four layers thick.

  5. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  6. Polymer surface modification by plasmas and photons

    Science.gov (United States)

    Chan, C.-M.; Ko, T.-M.; Hiraoka, H.

    1996-05-01

    Polymers have been applied successfully in fields such as adhesion, biomaterials, protective coatings, friction and wear, composites, microelectronic devices, and thin-film technology. In general, special surface properties with regard to chemical composition, hydrophilicity, roughness, crystallinity, conductivity, lubricity, and cross-linking density are required for the success of these applications. Polymers very often do not possess the surface properties needed for these applications. However, they have excellent bulk physical and chemical properties, are inexpensive, and are easy to process. For these reasons, surface modification techniques which can transform these inexpensive materials into highly valuable finished products have become an important part of the plastics and many other industries. In recent years, many advances have been made in developing surface treatments to alter the chemical and physical properties of polymer surfaces without affecting bulk properties. Common surface modification techniques include treatments by flame, corona, plasmas, photons, electron beams, ion beams, X-rays, and γ-rays. Plasma treatment is probably the most versatile surface treatment technique. Different types of gases such as argon, oxygen, nitrogen, fluorine, carbon dioxide, and water can produce the unique surface properties required by various applications. For example, oxygen-plasma treatment can increase the surface energy of polymers, whereas fluorine-plasma treatment can decrease the surface energy and improve the chemical inertness. Cross-linking at a polymer surface can be introduced by an inert-gas plasma. Modification by plasma treatment is usually confined to the top several hundred ångströms and does not affect the bulk properties. The main disadvantage of this technique is that it requires a vacuum system, which increases the cost of operation. Thin polymer films with unique chemical and physical properties are produced by plasma polymerization

  7. Plasma Response to Lithium-Coated Plasma-Facing Components in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    M.G. Bell, H.W. Kugel, R. Kaita, L.E. Zakharov, H. Schneider, B.P. LeBlanc, D. Mansfield, R.E. Bell, R. Maingi, S. Ding, S.M. Kaye, S.F. Paul, S.P. Gerhardt, J.M. Canik, J.C. Hosea, G. Taylor and the NSTX Research Team

    2009-08-20

    Experiments in the National Spherical Torus Experiment (NSTX) have shown beneficial effects on the performance of divertor plasmas as a result of applying lithium coatings on the graphite and carbonfiber- composite plasma-facing components. These coatings have mostly been applied by a pair of lithium evaporators mounted at the top of the vacuum vessel which inject collimated streams of lithium vapor towards the lower divertor. In NBI-heated, deuterium H-mode plasmas run immediately after the application of lithium, performance modifications included decreases in the plasma density, particularly in the edge, and inductive flux consumption, and increases in the electron and ion temperatures and the energy confinement time. Reductions in the number and amplitude of ELMs were observed, including complete ELM suppression for periods up to 1.2 s, apparently as a result of altering the stability of the edge. However, in the plasmas where ELMs were suppressed, there was a significant secular increase in the effective ion charge Zeff and the radiated power as a result of increases in the carbon and medium-Z metallic impurities, although not of lithium itself which remained at a very low level in the plasma core, <0.1%. The impurity buildup could be inhibited by repetitively triggering ELMs with the application of brief pulses of an n = 3 radial field perturbation. The reduction in the edge density by lithium also inhibited parasitic losses through the scrape-off layer of ICRF power coupled to the plasma, enabling the waves to heat electrons in the core of H-mode plasmas produced by NBI. Lithium has also been introduced by injecting a stream of chemically stabilized, fine lithium powder directly into the scrape-off layer of NBI-heated plasmas. The lithium was ionized in the SOL and appeared to flow along the magnetic field to the divertor plates. This method of coating produced similar effects to the evaporated lithium but at lower amounts.

  8. Plasma etching an introduction

    CERN Document Server

    Manos, Dennis M

    1989-01-01

    Plasma etching plays an essential role in microelectronic circuit manufacturing. Suitable for researchers, process engineers, and graduate students, this book introduces the basic physics and chemistry of electrical discharges and relates them to plasma etching mechanisms. Throughout the volume the authors offer practical examples of process chemistry, equipment design, and production methods.

  9. Plasma Theory and Simulation

    Science.gov (United States)

    1988-06-30

    34Collisionless Plasma Sheath in Cylindrical Geometry" Phys. Fluids. 6. 1963, pp 1657-1658. T G. Emmert, R. Wieland, A. Mense , and J. Davidson, ’Electric Sheath and...Library, Lebouef, Meier, Mook Guillory, Rowland, Winske Physics International University of New Mexico Woo Anderson, Humphries Princeton Plasma Physics

  10. General relativistic plasma dynamics

    NARCIS (Netherlands)

    Moortgat, Joachim Benedictus

    2006-01-01

    In this thesis I discuss the importance of general relativity on plasma physics in several astrophysical and cosmological contexts. The first chapters show how gravitational waves can excite all three fundamental low frequency magnetohydrodynamic plasma modes, the Alfven, slow and fast

  11. Drag force in a charged N = 4 SYM plasma

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Elena [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima (Mexico); Gueijosa, Alberto [Departamento de Fisica de Altas Energias, Instituto de Ciencias Nucleares, Universidad Autonoma de Mexico, Apdo. Postal 70-543, D.F. 04510 (Mexico)

    2006-11-15

    Following recent developments, we employ the AdS/CFT correspondence to determine the drag force exerted on an external quark that moves through an N = 4 super-Yang-Mills plasma with a non-zero R-charge density (or, equivalently, a non-zero chemical potential). We find that the drag force is larger than in the case where the plasma is neutral, but the dependence on the charge is non-monotonic.

  12. Plasma characterization studies for materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Pfender, E.; Heberlein, J. [Univ. of Minnesota, Minneapolis, MN (United States)

    1995-12-31

    New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torch model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.

  13. Plasma cleaning of ITER first mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  14. Basic plasma physics

    CERN Document Server

    Ghosh, Basudev

    2014-01-01

    Basic Plasma Physics is designed to serve as an introductory compact textbook for advanced undergraduate, postgraduate and research students taking plasma physics as one of their subject of study for the first time. It covers the current syllabus of plasma physics offered by the most universities and technical institutions. The book requires no background in plasma physics but only elementary knowledge of basic physics and mathematics. Emphasis has been given on the analytical approach. Topics are developed from first principle so that the students can learn through self-study. One chapter has been devoted to describe some practical aspects of plasma physics. Each chapter contains a good number of solved and unsolved problems and a variety of review questions, mostly taken from recent examination papers. Some classroom experiments described in the book will surely help students as well as instructors.

  15. Helical plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Beklemishev, A. D., E-mail: bekl@bk.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk (Russian Federation)

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  16. Microphysics of cosmic plasmas

    CERN Document Server

    Bykov, Andrei; Cargill, Peter; Dendy, Richard; Wit, Thierry; Raymond, John

    2014-01-01

    This title presents a review of the detailed aspects of the physical processes that underlie the observed properties, structures and dynamics of cosmic plasmas. An assessment of the status of understanding of microscale processes in all astrophysical collisionless plasmas is provided. The topics discussed include  turbulence in astrophysical and solar system plasmas as a phenomenological description of their dynamic properties on all scales; observational, theoretical and modelling aspects of collisionless magnetic reconnection; the formation and dynamics of shock waves; and a review and assessment of microprocesses, such as the hierarchy of plasma instabilities, non-local and non-diffusive transport processes and ionisation and radiation processes.  In addition, some of the lessons that have been learned from the extensive existing knowledge of laboratory plasmas as applied to astrophysical problems are also covered.   This volume is aimed at graduate students and researchers active in the areas of cosmi...

  17. High-performance simulations for atmospheric pressure plasma reactor

    Science.gov (United States)

    Chugunov, Svyatoslav

    Plasma-assisted processing and deposition of materials is an important component of modern industrial applications, with plasma reactors sharing 30% to 40% of manufacturing steps in microelectronics production. Development of new flexible electronics increases demands for efficient high-throughput deposition methods and roll-to-roll processing of materials. The current work represents an attempt of practical design and numerical modeling of a plasma enhanced chemical vapor deposition system. The system utilizes plasma at standard pressure and temperature to activate a chemical precursor for protective coatings. A specially designed linear plasma head, that consists of two parallel plates with electrodes placed in the parallel arrangement, is used to resolve clogging issues of currently available commercial plasma heads, as well as to increase the flow-rate of the processed chemicals and to enhance the uniformity of the deposition. A test system is build and discussed in this work. In order to improve operating conditions of the setup and quality of the deposited material, we perform numerical modeling of the plasma system. The theoretical and numerical models presented in this work comprehensively describe plasma generation, recombination, and advection in a channel of arbitrary geometry. Number density of plasma species, their energy content, electric field, and rate parameters are accurately calculated and analyzed in this work. Some interesting engineering outcomes are discussed with a connection to the proposed setup. The numerical model is implemented with the help of high-performance parallel technique and evaluated at a cluster for parallel calculations. A typical performance increase, calculation speed-up, parallel fraction of the code and overall efficiency of the parallel implementation are discussed in details.

  18. Coupling of Plasmas and Liquids

    Science.gov (United States)

    Lindsay, Alexander David

    Plasma-liquids have exciting applications to several important socioeconomic areas, including agriculture, water treatment, and medicine. To realize their application potential, the basic physical and chemical phenomena of plasma-liquid systems must be better understood. Additionally, system designs must be optimized in order to maximize fluxes of critical plasma species to the liquid phase. With objectives to increase understanding of these systems and optimize their applications, we have performed both comprehensive modeling and experimental work. To date, models of plasma-liquids have focused on configurations where diffusion is the dominant transport process in both gas and liquid phases. However, convection plays a key role in many popular plasma source designs, including jets, corona discharges, and torches. In this dissertation, we model momentum, heat, and neutral species mass transfer in a convection-dominated system based on a corona discharge. We show that evaporative cooling produced by gas-phase convection can lead to a significant difference between gas and liquid phase bulk temperatures. Additionally, convection induced in the liquid phase by the gas phase flow substantially increases interfacial mass transfer of hydrophobic species like NO and NO2. Finally, liquid kinetic modeling suggests that concentrations of highly reactive species like OH and ONOOH are several orders of magnitude higher at the interface than in the solution bulk. Subsequent modeling has focused on coupling discharge physics with species transport at and through the interface. An assumption commonly seen in the literature is that interfacial loss coefficients of charged species like electrons are equal to unity. However, there is no experimental evidence to either deny or support this assumption. Without knowing the true interfacial behavior of electrons, we have explored the effects on key plasma-liquid variables of varying interfacial parameters like the electron and energy

  19. Colloidal Plasmas: Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various ...

  20. TCV mirrors cleaned by plasma

    Directory of Open Access Journals (Sweden)

    L. Marot

    2017-08-01

    Full Text Available Metallic mirrors exposed in TCV tokamak were cleaned by plasma in laboratory. A gold (Au mirror was deposited with 185–285nm of amorphous carbon (aC:D film coming from the carbon tiles of TCV. Another molybdenum (Mo mirror had a thicker deposit due to a different location within the tokamak. The thickness measurements were carried out using ellipsometry and the reflectivity measurements performed by spectrophotometry revealed a decrease of the specular reflectivity in the entire range (250–2500nm for the Mo mirror and specifically in the visible spectrum for the Au. Comparison of the simulated reflectivity using a refractive index of 1.5 and a Cauchy model for the aC:D gives good confidence on the estimated film thickness. Plasma cleaning using radio frequency directly applied to a metallic plate where the mirrors were fixed demonstrated the ability to remove the carbon deposits. A mixture of 50% hydrogen and 50% helium was used with a −200V self-bias. Due to the low sputtering yield of He and the low chemical erosion of hydrogen leading to volatile molecules, 20h of cleaning were needed for Au mirror and more than 60h for Mo mirror. Recovery of the reflectivity was not complete for the Au mirror most likely due to damage of the surface during tokamak exposure (breakdown phenomena.