WorldWideScience

Sample records for hot rotating nuclei

  1. Giant resonances in hot rotating nuclei

    International Nuclear Information System (INIS)

    Ring, P.

    1992-01-01

    Present theoretical descriptions of the giant resonances in hot rotating nuclei are reviewed. Mean field theory is used as a basis for the description of the hot compound states. Starting from the static solution at finite temperature and with fixed angular momentum small amplitude collective vibrations are calculated in the frame work of finite temperature random phase approximation for quasi-particles. The effect of pairing at low temperatures as well as the effect of rotations on the position of the resonance maxima are investigated. Microscopic and phenomenological descriptions of the damping mechanisms are reviewed. In particular it turns out that fluctuations play an important role in understanding of the behaviour of the width as a function of the temperature. Motional narrowing is critically discussed. (author). 99 refs., 5 figs

  2. Giant dipole resonance in hot rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.R. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Dinh Dang, N. [RIKEN, Nishina Centre for Accelerator-based Science, Saitama (Japan); VINATOM, Institute of Nuclear Science and Technique, Hanoi (Viet Nam); Datar, V.M. [Tata Institute of Fundamental Research, INO Cell, Mumbai (India)

    2016-05-15

    Over the last several decades, extensive experimental and theoretical work has been done on the giant dipole resonance (GDR) in excited nuclei covering a wide range of temperature (T), angular momentum (J) and nuclear mass. A reasonable stability of the GDR centroid energy and an increase of the GDR width with T (in the range∝1-3 MeV) and J are the two well-established results. Some experiments have indicated the saturation of the GDR width at high T. The gradual disappearance of the GDR vibration at much higher T has been observed. Experiments on the Jacobi transition and the GDR built on superdeformed shapes at high rotational frequencies have been reported in a few cases. Theoretical calculations on the damping of the collective dipole vibration, characterised by the GDR width, have been carried out within various models such as the thermal shape fluctuation model and the phonon damping model. These models offer different interpretations of the variation of the GDR width with T and J and have met with varying degrees of success in explaining the experimental data. In this review, the present experimental and theoretical status in this field is discussed along with the future outlook. The interesting phenomenon of the pre-equilibrium GDR excitation in nuclear reactions is briefly addressed. (orig.)

  3. Theory of hot and rotating nuclei within the static path approximation

    International Nuclear Information System (INIS)

    Ansari, A.

    1995-01-01

    For the description of hot and rotating nuclei the static path approximation to the path integral representation of the partition function is at present the best practicable approach incorporating rigorously the statistical fluctuations in nuclear shape degrees of freedom. The paper briefly discusses the method and present a few of the recent results on level densities and GDR (giant dipole resonance) γ-absorption cross sections. (author). 22 refs., 2 figs

  4. Isovector giant dipole resonance in hot rotating light nuclei in the calcium region

    International Nuclear Information System (INIS)

    Shanmugam, G.; Thiagasundaram, M.

    1989-01-01

    The isovector giant dipole resonances in hot rotating light nuclei in the calcium region are studied using a rotating anisotropic harmonic oscillator potential and a separable dipole-dipole residual interaction. The influence of temperature on the isovector giant dipole resonance is assumed to occur through the change of deformation of the average field only. Calculations are performed for the three nuclei /sup 40,42/Ca and /sup 46/Ti which have spherical, oblate, and prolate ground states, respectively, to see how their shape transitions at higher excited states affect the isovector giant resonance frequencies built on them. It is seen that, while the width fluctuations present at T = 0 vanish at T = 0.5 MeV in /sup 40,42/Ca, they persist up to T = 1.5 MeV in the case of /sup 46/Ti. This behavior brings out the role of temperature on shell effects which in turn affects the isovector giant dipole resonance widths

  5. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  6. Properties of Hot and Fast Rotating Atomic Nuclei Studied by Means of Giant Dipole Resonance in Exclusive Experiments

    International Nuclear Information System (INIS)

    Maj, A.

    2000-01-01

    This work entitled ''Properties of hot and fast rotating atomic nuclei studied by means of Giant Dipole Resonance in exclusive experiments'', is the habilitation thesis of dr. Adam Maj. It consists of the review (in Polish) of performed research and of attached reprints from 16 original publications (in English) which A. Maj is the main or one of the main authors. All the studies were performed in collaboration with the groups from Milano and Copenhagen, using the HECTOR array equipment (described in chapter V). The Giant Dipole Resonance couples to the quadrupole degrees of freedom of the nucleus, and therefore constitutes a unique probe to test the shapes of atomic nuclei. In addition, the γ decay of the GDR from highly excited nuclei is a very fast process, it can compete with other modes of nuclear decay, and therefore can provide the information on the initial stages of excited nuclei. The presented investigations were concentrated on the following aspects: the shapes and thermal shape fluctuations, the origin of the behaviour of the GDR width, the properties of some exotic nuclei (Jacobi shapes, superdeformation, superheavy nuclei) and on ''entrance channel'' effects. The GDR γ decay was measured for nuclei with very different masses: from light nuclei with A≅45, through A≅110, 145,170,190, up to superheavy nuclei with A≅270. The shapes of hot nuclei are not fixed but fluctuate. The extent of these fluctuations and their influence on the measured quantities (GDR strength function, angular distribution and effective shape) is discussed in chapter VI.1. The observed width of the GDR is found to arise from the interplay of two effects: the thermal shape fluctuations, which are controlled by the nuclear temperature, and the deformation effects, controlled by the angular momentum. The ''collisional damping'' effect, which should influence the intrinsic GDR width, was found to be negligible (chapter VI.2). The GDR γ decay from hot superheavy nucleus 272 Hs

  7. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  8. Hot nuclei and fragmentation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1993-01-01

    A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs

  9. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  10. Hot nuclei: high temperatures, high angular momenta

    International Nuclear Information System (INIS)

    Guerreau, D.

    1991-01-01

    A review is made of the present status concerning the production of hot nuclei above 5 MeV temperature, concentrating mainly on the possible experimental evidences for the attainment of a critical temperature, on the existence of dynamical limitations to the energy deposition and on the experimental signatures for the formation of hot spinning nuclei. The data strongly suggest a nuclear disassembly in collisions involving very heavy ions at moderate incident velocities. Furthermore, hot nuclei seem to be quite stable against rotation on a short time scale. (author) 26 refs.; 12 figs

  11. The decay of hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs

  12. Hot rotating fp shell Fe isotopes near proton drip line

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2003-01-01

    F p shell 44-58 Fe nuclei have been investigated in highly excited state using the statistical theory of hot rotating nucleus. Effects of thermal and rotational excitation at drip line nuclei are studied

  13. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1994-01-01

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  14. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  15. Rotational damping motion in nuclei

    International Nuclear Information System (INIS)

    Egido, J.L.; Faessler, A.

    1991-01-01

    The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)

  16. Static and dynamical properties of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.

    1990-01-01

    We briefly review our understanding of the formation of excited/hot nuclei in heavy-ion collisions at some tens of MeV/A. We recall the major theoretical frameworks used for describing as well the entrance channel of the reaction as the structure properties of hot nuclei. We finally focus on multifragmentation within insisting upon the theoretical challenge it does represent

  17. Formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1992-09-01

    The mechanisms involved in hot nuclei formation and decay and their eventual connexion with fundamental properties of nuclear matter are discussed, i.e. its equation of state is considered. After a brief review of the reactions in which hot nuclei can be formed, the variables which are used to describe them, the corresponding theoretical descriptions and their limits when extreme states are reached are discussed. Experimental evidences for hot nuclei formation are presented, with the corresponding decay properties used as signatures. (R.P.) 64 refs.; 25 figs.; 2 tabs

  18. Hot nuclei, limiting temperatures and excitation energies

    International Nuclear Information System (INIS)

    Peter, J.

    1986-09-01

    Hot fusion nuclei are produced in heavy ion collisions at intermediate energies (20-100 MeV/U). Information on the maximum excitation energy per nucleon -and temperatures- indicated by the experimental data is compared to the predictions of static and dynamical calculations. Temperatures around 5-6 MeV are reached and seem to be the limit of formation of thermally equilibrated fusion nuclei

  19. Lipkin-Nogami method for rotating nuclei

    International Nuclear Information System (INIS)

    Magierski, P.

    1993-01-01

    The extension of Lipkin-Nogami method to the case of rotating nuclei, where the short-range attraction acting between the nucleus (pairing free) plays a significant role for the coupling scheme is discussed. 7 refs, 6 figs

  20. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  1. Particle-rotation coupling in atomic nuclei

    International Nuclear Information System (INIS)

    Almberger, J.

    1980-01-01

    Recently an increased interest in the rotational nuclei has been spurred by the new experimental high-spin activities and by the possibilities for lower spins to interpret an impressive amount of experimental data by some comparatively simple model calculations. The author discusses the particle modes of excitation for rotational nuclei in the pairing regime where some puzzles in the theoretical description remain to be resolved. A model comparison is made between the particle-rotor and cranking models which have different definitions of the collective rotation. The cranking model is found to imply a smaller value of the quasiparticle spin alignment than the particle-rotor model. Rotational spectra for both even and odd nuclei are investigated with the use of the many-BCS-quasiparticles plus rotor model. This model gives an accurate description of the ground and S-bands in many even-even rare-earth nuclei. However, the discrepancies for odd-A nuclei between theory and experiments point to the importance of additional physical components. Therefore the rotationally induced quadrupole pair field is considered. This field has an effect on the low spin states in odd-A nuclei, but is not sufficient to account for the experimental data. Another topic considered is the interaction matrix element in crossings for given spin between quasiparticle rotational bands. The matrix elements are found to oscillate as a function of the number of particles, thereby influencing the sharpness of the backbending. Finally the low-spin continuation of the S-band is studied and it is shown that such states can be populated selectively by means of one-particle pickup reactions involving high angular momentum transfer. (Auth.)

  2. Liquid drop parameters for hot nuclei

    International Nuclear Information System (INIS)

    Guet, C.; Strumberger, E.; Brack, M.

    1988-01-01

    Using the semiclassical extended Thomas-FERMI (ETF) density variational method, we derived selfconsistently the liquid drop model (LDM) coefficients for the free energy of hot nuclear systems from a realistic effective interaction (Skyrme SkM*). We expand the temperature (T) dependence of these coefficients up to the second order in T and test their application to the calculation of the fission barriers of the nuclei 208 Pb and 240 Pu

  3. Birth, life and death of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.; Tamain, B.; Gregoire, C.

    1989-01-01

    Intermediate energy heavy-ions (10-100 MeV/u) are the most powerful tool to study hot nuclear matter properties. In this paper we give a review of experimental and theoretical works which support this statement. The first challenge is to achieve hot nuclei formation. The second one is to study their properties. The formation step is governed by the relative influence of nucleon-nucleon collisions and mean field effects. Fundamental quantities such as excited matter decay time, thermalization time, relaxation time for collective modes are of major importance and are compared with typical collision times. It appears that semi-classical theories are able to give a reasonable description of the collision and that they are a good guide for defining further experiments. We show how it has been possible to experimentally establish that very hot equilibrated nuclei are really formed. Their decay properties are not basically different from decay properties at lower bombarding energy. However specific channels are open: in that sense, we take stock of the multifragmentation process. Moreover, compression effects may be an important feature of this energy range. Future studies will involve heavier projectiles around 30-50 MeV/u. They will be the best probe for hot and compressed nuclear matter studies

  4. Giant dipole resonance in hot nuclei

    International Nuclear Information System (INIS)

    Mau, N.V.

    1993-01-01

    Giant resonances built on an excited state of the nucleus at a finite temperature T are studied. The following questions are investigated: how long such collective effects occur in a nucleus when T increases. How the properties of the giant resonances vary when the temperature increases. How the study of giant resonances in hot nuclei can give information on the structure of the nucleus in a highly excited state. The special case of the giant dipole resonance is studied. Some of the experimental results are reviewed and in their theoretical interpretation is discussed. (K.A.). 56 refs., 20 figs., 4 tabs

  5. Rotating bubble and toroidal nuclei and fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Haddad, F.; Jouault, B.

    1995-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy-ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. The potential barriers standing in these exotic deformation paths are compared with the three dimensional and plane fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localised below the plane fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension. (author)

  6. Approximate particle number projection in hot nuclei

    International Nuclear Information System (INIS)

    Kosov, D.S.; Vdovin, A.I.

    1995-01-01

    Heated finite systems like, e.g., hot atomic nuclei have to be described by the canonical partition function. But this is a quite difficult technical problem and, as a rule, the grand canonical partition function is used in the studies. As a result, some shortcomings of the theoretical description appear because of the thermal fluctuations of the number of particles. Moreover, in nuclei with pairing correlations the quantum number fluctuations are introduced by some approximate methods (e.g., by the standard BCS method). The exact particle number projection is very cumbersome and an approximate number projection method for T ≠ 0 basing on the formalism of thermo field dynamics is proposed. The idea of the Lipkin-Nogami method to perform any operator as a series in the number operator powers is used. The system of equations for the coefficients of this expansion is written and the solution of the system in the next approximation after the BCS one is obtained. The method which is of the 'projection after variation' type is applied to a degenerate single j-shell model. 14 refs., 1 tab

  7. Formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Planeta, R.

    1999-01-01

    Multifragmentation of excited nuclei of the 40 Ca + 40 Ca reaction at 35 MeV/nucleon has been studied using the multidetector system AMPHORA.Using special gating and reconstruction procedures we have observed projectile - like fragments, PLF, with different degrees of excitation, and also highly excited composite systems, CS, from incomplete fusion. This reconstruction procedure was verified by the Monte Carlo computer code of Sosin which describes the collision of heavy ions as a random walk transfer of nucleons. Agreement between the experimental data and the predictions of the code have strongly supported the thermalized character of the created hot sources. To investigate their decay characteristics we have used the conventional reduced velocity correlation method and also two signatures based on special features of particle emission from the 'freeze out volume'. They are: (i) - the distribution of the squared momentum of the heaviest emitted fragment; (ii) - the focusing of fragments by the Coulomb field of the decaying system. For the PLF, both methods, the reduced velocity correlation, and the distribution of the squared momentum of the heaviest emitted fragment, support the binary sequential decay, BSD, scenario below 3 MeV/nucleon excitation energy and prompt multifragmentation, PM, for higher excitations. For CS which has about twice the PLF electric charge the Coulomb focusing effect could be also observed. In that case all three signatures indicate prompt multifragmentation of the system contained inside the 'freeze-out' volume. Consistency of all these observations show that both the distribution of the squared momentum of the heaviest emitted fragment and the Coulomb focusing effect can be used as signatures of spinodal decomposition of 'hot' nuclear systems. (author)

  8. Vibrational-rotational model of odd-odd nuclei

    International Nuclear Information System (INIS)

    Afanas'ev, A.V.; Guseva, T.V.; Tamberg, Yu.Ya.

    1988-01-01

    The rotational vibrational (RV) model of odd nuclei is generalized to odd-odd nuclei. The hamiltonian, wave functions and matrix elements of the RV-model of odd-odd nuclei are obtained. The expressions obtained for matrix elements of the RV-model of odd-odd nuclei can be used to study the role of vibrational additions in low-lying two-particle states of odd-odd deformed nuclei. Such calculations permit to study more correctly the residual neutron-proton interaction of valent nucleons with respect to collectivization effects

  9. Production and de excitation of hot nuclei

    International Nuclear Information System (INIS)

    Auger, F.; Faure, B.; Wirleczki, J.P.; Cunsolo, A.; Foti, A.; Plagnol, E.

    1988-01-01

    We studied Kr induced reactions on C, Al and Ti at 26.4, 34.4 and 45.4 MeV/nucleon. The aims of these experiments were to learn about the influence of the incident energy and asymmetry of the system on the incomplete fusion mechanism, that is on the characteristics (E,l) of the nuclei formed in the reactions and on the competition between massive transfer and preequilibrium emission. We also wanted to study the influence of excitation energy and angular momentum of the nuclei on their deexcitation modes, specially on the competition between light particles (n, p, α) and complex fragments (M>4). Considering the available energies (2.8 < ε < 10.5 MeV/nucleon), the grazing and the total masses (96 ≤ M ≤ 132), nuclei with masses around 100 are likely to be formed with very different excitation energies and angular momenta

  10. Shell structure in superdeformed nuclei at high rotational frequencies

    International Nuclear Information System (INIS)

    Ploszajczak, M.

    1980-01-01

    Properties of the shell structure in superdeformed nuclei at high rotational frequencies are discussed. Moreover, stability of the high spin compound nucleus with respect to the fission and the emission of light particles is investigated. (author)

  11. Complex fragment emission from hot compound nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs

  12. Collective motion in hot superheavy nuclei

    NARCIS (Netherlands)

    Tveter, TS; Gaardhoje, JJ; Maj, A; Ramsoy, T; Atac, A; Bacelar, J; Bracco, A; Buda, A; Camera, F; Herskind, B; Korten, W; Krolas, W; Menthe, A; Million, B; Nifenecker, H; Pignanelli, M; Pinston, JA; vanderPloeg, H; Schussler, F; Sletten, G

    1996-01-01

    The superheavy nucleus (272)(108)Hs and its evaporation daughters have been produced using the reaction Th-232(Ar-40,gamma xn) with beam energies 10.5 and 15.0 MeV/A. The Giant Dipole Resonance gamma-radiation from the hot conglomerate system prior to fission has been isolated using a differential

  13. The role of quasiparticles in rotating transitional nuclei

    International Nuclear Information System (INIS)

    Frauendorf, Stefan

    1984-01-01

    The yrast sequency of nuclei rotating about the symmetry axis is classified in analogy to class I and II superconductors, where the quasiparticles play the role of the quantized flux in metals. The experimental spectra show a class I behaviour. The ω-dependence of the quasiparticle excitation energy in collectively rotating nuclei is used as evidence for magnitude of the pair correlations and the occurrence of triaxial shapes. A transition from triaxial to oblate shape explains the experimental spectra and E2-transition probabilities in the N=88-90 nuclei. (author)

  14. The decay of hot dysprosium nuclei

    International Nuclear Information System (INIS)

    Atac, A.; Rekstad, J.; Guttormsen, M.; Messelt, S.; Ramsoey, T.; Thorsteinsen, T.F.; Loevhoeiden, G.; Roedland, T.

    1987-03-01

    The γ-decay following the 162,163 Dy( 3 He,αxn) reactions with E 3 He =45 MeV has been studied. Non-statistical γ-radiation with energies of E γ ≅1 MeV and ≅2 MeV is found for various residual nuclei. The properties of these γ-ray bumps depend on the number of emitted neutrons and reveal an odd-even mass dependence. New techniques to extract average neutron energies as a function of excitation energy and of the number of emitted neutrons are employed. The deduced neutron energies are consistent with Fermi-gas model predictions

  15. Pairing effects in rotating nuclei: a semi classical approach

    International Nuclear Information System (INIS)

    Durand, M.

    1985-10-01

    The semi-classical phase-space distribution ρ(r,p) is calculated for rotating superfluid nuclei, taking into account the reaction of the pairing field to the rotational motion. Moments of inertia and current distributions calculated by means of this distribution pass continuously from a rigid to an irrotational behaviour

  16. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki

    1998-03-01

    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  17. Semiclassical approach to giant resonances of rotating nuclei

    International Nuclear Information System (INIS)

    Winter, J.

    1983-01-01

    Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large-amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. (author)

  18. On the semiclassical description of rotating nuclei

    International Nuclear Information System (INIS)

    Durand, M.; Kunz, J.; Schuck, P.

    1983-01-01

    The technique of partial h-resummation is used to obtain semiclassical, i.e. average current distributions in the body fixed system of heavy nuclei. It thereby turns out that this average intrinsic current only flows in the nuclear surface. A Strutinsky smoothing of the current is also performed and gives nice agreement with the semiclassical results. We also show how one can incorporate superfluidity into the semiclassical treatment. To lowest order in h we find that the moment of inertia of superfluid nuclei is zero. The same result is obtained by a quantum mechanical calculation if the gap goes to infinity. The importance of including n-corrections is pointed out

  19. How do nuclei really vibrate or rotate

    International Nuclear Information System (INIS)

    Andresen, H.G.; Kunz, J.; Mosel, U.; Mueller, M.; Schuh, A.; Wust, U.

    1983-01-01

    By means of the adiabatic cranking model the properties of the current and velocity fields of nuclear quadrupole vibrations for even-even nuclei in the rare-earth region are investigated. BCS correlated wave functions based on the Nilsson single particle Hamiltonian have been used. The current fields are analyzed in terms of vector spherical harmonics. The realistic microscopic currents show a vortex structure not present in the classical irrotational flow. The microscopic origin of the vortex structure is investigated

  20. The structure of rotational bands in alpha-cluster nuclei

    Directory of Open Access Journals (Sweden)

    Bijker Roelof

    2015-01-01

    Full Text Available In this contribution, I discuss an algebraic treatment of alpha-cluster nuclei based on the introduction of a spectrum generating algebra for the relative motion of the alpha-clusters. Particular attention is paid to the discrete symmetry of the geometric arrangement of the α-particles, and the consequences for the structure of the rotational bands in the 12C and 16O nuclei.

  1. Dynamical instability of hot and compressed nuclei

    International Nuclear Information System (INIS)

    Ngo, C.; Leray, S.; Spina, M.E.; Ngo, H.

    1989-01-01

    The dynamical evolution of a hot and compressed nucleus is described by means of an extended liquid-drop model. Using only the continuity equation and the energy conservation we show that the system expands after a while. The possible global instabilities of the drop are studied by applying the general conditions of stability of dynamical systems. We find that the nucleus is unstable if it can reach a low density configuration (≅0.07 nucleon/fm 3 ). Such a configuration is obtained if the initial compression of the nucleus is large enough. It is shown that the thermal excitation energy has much less influence than the compressional energy. These instability conditions are in good agreement with those obtained previously within the framework of lattice percolation and the same model for the dynamical expansion. Since local instabilities may also very likely be present, we propose to study them using a restructured aggregation model. They lead to a multifragmentation of the system, a mechanism which is known experimentally to exist. We find that local instabilities occur at smaller (but very close) density values than global ones. A moment analysis of the calculated multifragmentation events allows to extract a critical exponent in excellent agreement with the one deduced experimentally from Au-induced reactions. (orig.)

  2. High spin rotations of nuclei with the harmonic oscillator potential

    International Nuclear Information System (INIS)

    Cerkaski, M.; Szymanski, Z.

    1978-01-01

    Calculations of the nuclear properties at high angular momentum have been performed recently. They are based on the liquid drop model of a nucleus and/or on the assumption of the single particle shell structure of the nucleonic motion. The calculations are usually complicated and involve long computer codes. In this article we shall discuss general trends in fast rotating nuclei in the approximation of the harmonic oscillator potential. We shall see that using the Bohr Mottelson simplified version of the rigorous solution of Valatin one can perform a rather simple analysis of the rotational bands, structure of the yrast line, moments of inertia etc. in the rotating nucleus. While the precision fit to experimental data in actual nuclei is not the purpose of this paper, one can still hope to reach some general understanding within the model of the simple relations resulting in nuclei at high spin. (author)

  3. Probing the hot zone of colliding nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, R Aa

    1995-11-01

    The hot zone created in intermediate energy heavy ion collisions has been studied. At energies between 20 A MeV and 300 A MeV the nuclear emulsion technique has been used to achieve a full 4 pi identification and momentum determination of all charged fragments, enabling a strict selection of central events based on multiplicity and the energy flow tensor. In connection with this a CCD-based track identification system has been developed, specially designed for charge identification of intermediate-mass fragments. The CCD-camera is connected to an image processing card in a microcomputer where the width of the track is determined by profile measurements on the pixel level. The results point to a presence of radial flow in central {sup 36}Ar + AgBr collisions at 65 A MeV, but not in {sup 16}O + AgBr collisions at 210 A MeV. At energies between 0.8 to 1.8 A GeV mesons produced in symmetric Ne + NaF, Ni + Ni and Au + Au, have been measured by plastic scintillator counter telescopes. The mass and angular dependence of the subthreshold production of kaons at a laboratory energy of 1.0 A GeV have been systematically extracted from three different experiment periods at GSI, Darmstadt. The results point to the presence of rescattering of kaons in the dense nuclear environment, thus increasing the cross section at large angles. More speculatively, an anisotropy in the production process could be conjectured. 61 refs, 15 figs.

  4. Probing the hot zone of colliding nuclei

    International Nuclear Information System (INIS)

    Elmer, R.Aa.

    1995-11-01

    The hot zone created in intermediate energy heavy ion collisions has been studied. At energies between 20 A MeV and 300 A MeV the nuclear emulsion technique has been used to achieve a full 4 pi identification and momentum determination of all charged fragments, enabling a strict selection of central events based on multiplicity and the energy flow tensor. In connection with this a CCD-based track identification system has been developed, specially designed for charge identification of intermediate-mass fragments. The CCD-camera is connected to an image processing card in a microcomputer where the width of the track is determined by profile measurements on the pixel level. The results point to a presence of radial flow in central 36 Ar + AgBr collisions at 65 A MeV, but not in 16 O + AgBr collisions at 210 A MeV. At energies between 0.8 to 1.8 A GeV mesons produced in symmetric Ne + NaF, Ni + Ni and Au + Au, have been measured by plastic scintillator counter telescopes. The mass and angular dependence of the subthreshold production of kaons at a laboratory energy of 1.0 A GeV have been systematically extracted from three different experiment periods at GSI, Darmstadt. The results point to the presence of rescattering of kaons in the dense nuclear environment, thus increasing the cross section at large angles. More speculatively, an anisotropy in the production process could be conjectured. 61 refs, 15 figs

  5. Rotational states in deformed nuclei: An analytic approach

    International Nuclear Information System (INIS)

    Bentz, W.; Arima, A.; Enders, J.; Wambach, J.; Richter, A.

    2011-01-01

    The consequences of the spontaneous breaking of rotational symmetry are investigated in a field theory model for deformed nuclei, based on simple separable interactions. The crucial role of the Ward-Takahashi identities in describing the rotational states is emphasized. We show explicitly how the rotor picture emerges from the isoscalar Goldstone modes and how the two-rotor model emerges from the isovector scissors modes. As an application of the formalism, we discuss the M1 sum rules in deformed nuclei and make the connection to empirical information.

  6. The giant resonances in hot nuclei. Linear response calculations

    International Nuclear Information System (INIS)

    Braghin, F.L.; Vautherin, D.; Abada, A.

    1995-01-01

    The isovector response function of hot nuclear matter is calculated using various effective Skyrme interactions. For Skyrme forces with a small effective mass the strength distribution is found to be nearly independent of temperature, and shows little collective effects. In contrast effective forces with an effective mass close to unity produce at zero temperature sizeable collective effects which disappear at temperatures of a few MeV. The relevance of these results for the saturation of the multiplicity of photons emitted by the giant dipole resonance in hot nuclei observed in recent experiments beyond T = 3 MeV is discussed. (authors). 12 refs., 3 figs

  7. Dynamical pairing correlations in rotating nuclei

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1985-01-01

    When the atomic nucleus rotates fast enough the static pair correlations may be destroyed. In this situation the pair-vibrations become an important manifestation of the short-range attractive pairing force. The influence of this effect on nuclear properties at high spin is discussed. (orig.)

  8. The Giant Dipole Resonance in hot nuclei. Experimental aspects

    International Nuclear Information System (INIS)

    Alamanos, N.; Auger, F.

    1994-12-01

    Some of the most recent experimental results on the GDR in hot nuclei are presented. All data on the γ-decay of the GDR show a saturation of the apparent width and a saturation of the yield. However, it is not clear until now, if these effects are related to a GDR width which either saturates or increases continuously with the excitation energy. Very new data associated to selected exit channels could help to clarify the situation. (author). 14 refs., 7 figs

  9. Nuclear squid: Diabolic pair transfer in rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nikam, R S; Ring, P; Canto, L F

    1987-02-19

    A new unexpected behavior of pair transfer matrix elements in superfluid rotating nuclei is predicted. With increasing angular velocity they drop to zero, change their sign and in some cases even oscillate between positive and negative values. This effect is related to diabolical points in rotating quasiparticle spectra and is closely analogous to the DC-Josephson effect in superconductors in the presence of a magnetic field.

  10. Shapes of non-rotating nuclei

    International Nuclear Information System (INIS)

    Bengtsson, R.; Krumlinde, J.; Moeller, P.; Nix, J.R.; Zhang, J.

    1983-01-01

    We study nuclear potential-energy surfaces, ground-state masses and shapes calculated by use of a Yukawa-plus-exponential macroscopic model and a folded-Yukawa single-particle potential for 4023 nuclei ranging from 16 O to 279 112. We discuss extensively the transition from spherical to deformed shapes and study the relation between shape changes and the mass corresponding to the ground-state minimum. The calculated values for the ground-state mass and shape show good agreement with experimental data throughout the periodic system, but some discrepancies remain that deserve further study. We also discuss the effect of deformation on Gamow-Teller #betta#-strength functions

  11. The giant resonance and the shape of hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, A; Camera, F; Million, B; Pignanelli, M [Milan Univ. (Italy). Ist. di Fisica; Gaardhoje, J J; Maj, A; Atac, A [Niels Bohr Inst., Copenhagen (Denmark)

    1992-08-01

    The gamma decay of the giant dipole resonance is a sensitive tool for investigating how nuclear shape changes with spin and excitation energy, but the information is coded in a subtle way, inasmuch as the shape and orientation of nuclei at finite temperature display large fluctuations. At the time of the conference, the three systems {sup 109-110}Sn, {sup 161-162}Yb and {sup 165-167}Er had recently been studied on the HECTOR spectrometer. The Sn nuclei are spherical in their ground states, and are expected to become oblate under the stress of rotation. The Yb and Er nuclei are prolate, and are expected to become first spherical, then oblate. While the patterns of the measured angular anisotropies are consistent with this general picture, many questions still remain open. 3 refs., 1 tab., 3 figs.

  12. Nuclear viscosity of hot rotating 240Cf

    International Nuclear Information System (INIS)

    Shaw, N. P.; Dioszegi, I.; Mazumdar, I.; Buda, A.; Morton, C. R.; Velkovska, J.; Beene, J. R.; Stracener, D. W.; Varner, R. L.; Thoennessen, M.

    2000-01-01

    The absolute γ-ray/fission multiplicities from hot rotating 240 Cf, populated at seven bombarding energies using the reaction 32 S+ 208 Pb, are reported. Statistical model calculations including nuclear dissipation have been performed to extract the dependence of the nuclear viscosity on temperature and/or nuclear deformation. The extracted nuclear dissipation coefficient is found to be independent of temperature. Large dissipation during the saddle to scission path provides a good fit to the γ-ray spectra. (c) 2000 The American Physical Society

  13. Shell model truncation schemes for rotational nuclei

    International Nuclear Information System (INIS)

    Halse, P.; Jaqua, L.; Barrett, B.R.

    1990-01-01

    The suitability of the pair condensate approach for rotational states is studied in a single j = 17/2 shell of identical nucleons interacting through a quadrupole-quadrupole hamiltonian. The ground band and a K = 2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the SD and SDG subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; S and D pairs are the major constituents of the low-spin ground band levels, while G pairs are needed for those in the γ-band. Energy spectra are obtained for each truncated subspace. SDG pairs allow accurate reproduction of the binding energy and K = 2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels

  14. Collective 0+, 1+ and 2+ excitations in rotating nuclei

    International Nuclear Information System (INIS)

    Balbutsev, E.B.; Piperova, J.

    1988-01-01

    The energies and B(Eγ) factors of the isoscalar and isovector 0 + and 2 + resonances are calculated with Skyrme interaction. A satisfactory agreement with experimental data is obtained. It is shown that in rotating nuclei the 2 + excitations split into five branches and also 5 low-lying excitations appear. Two of these low-lying modes are angular resonances and the theory reproduces their energies and B(M1) factors. The experimentally observed splitting of giant monopole resonance in deformed nuclei is confirmed. 34 refs.; 10 figs.; 1 tab

  15. Decay of a hot zone in finite nuclei

    International Nuclear Information System (INIS)

    De, J.N.; Gregoire, C.

    1987-01-01

    Assuming that a hot zone is formed in nuclear collisions, we study its decay in the surrounding colder nuclear matter. Thermal equilibration resulting from energy transport is analyzed in terms of a classical model and within the Vlasov-Uehling-Uhlenbeck self-consistent approach. Convection is found to be the dominant energy propagation mode. Thermal equilibration time is found to be of the order of the damping of isoscalar quadrupole vibration, i.e. a few 10 -21 sec. This feature may not be fully consistent with recent available experimental data and casts doubt on the possibility of formation of a sharply localised thermally equilibrated hot zone as a likely intermediate state for excitation in finite nuclei in intermediate energy collisions. 16 refs

  16. Stochastic behavior of cooling processes in hot nuclei

    International Nuclear Information System (INIS)

    de Oliveira, P.M.; Sa Martins, J.S.; Szanto de Toledo, A.

    1997-01-01

    The collapse of structure effects observed in hot nuclei is interpreted in terms of a dynamic lattice model which describes the process of nucleon (clusters) evaporation from a hot nucleus, predicting the final mass distribution. Results are compared with experimental data for the 10 B+ 9 Be and 10 B+ 10 B reactions, and indicate that the structures observed in the low-energy mass distributions in both simulation and experiment are a consequence of the competition between the residual interactions and the thermalization dissipative process. As a characteristic feature of complex evolving systems, this competition leads to long term memory during the dissipative path, the observables becoming thus insensitive to the actual microscopic interactions. copyright 1997 The American Physical Society

  17. Nuclear elasticity applied to giant resonances of fast rotating nuclei

    International Nuclear Information System (INIS)

    Jang, S.; Bouyssy, A.

    1987-06-01

    Isoscalar giant resonances in fast rotating nuclei are investigated within the framework of nuclear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation removes completely the azimuthal degeneracy of the giant resonance energies. Realistic large values of the angular velocity, which are still small as compared to the giant resonance frequencies, are briefly reviewed in relation to allowed high angular momenta. It is shown that for the A=150 region, the Coriolis force is dominating for small values (< ∼ 0.05) of the ratio of angular velocity to resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split resonance energies for larger values of the ratio. Typical examples of the resonance energies and their fragmentation due to both rotation and deformation are given

  18. Formation and decay of hot nuclei: the experimental situation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1989-01-01

    With the achievement of new facilities in the 80's providing us heavy ion beams well above the Coulomb barrier, a unique opportunity was offered to the experimentalists to produce and study nuclear matter under extreme conditions. Effectively, in the energy range 20-100 MeV/u, on which we will concentrate in these lectures, it appeared very rapidly that excited nuclei could be formed at rather high temperatures. These lectures are intended to give an overview of the experimental status in this ''hot'' domain. Other lectures are more focused on the theoretical point of view. This paper will be arranged as follows: In a first part, the conceptual problems one might have to face will be introduced. A long chapter will be then devoted to the different experimental methods used so far in order to characterize the hot nucleus. We shall then discuss what can be learned from the study of deexcitation of nuclei at high T. The fourth part will be focused on the experimental evidences for the existence of limiting temperatures. Finally, a brief discussion will follow related to possible clues for the onset of nuclear instabilities at this critical temperature

  19. Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei

    CERN Multimedia

    2002-01-01

    % PS208 \\\\ \\\\ The objective of the experiment is to study (i) the thermal excitation energy distribution of antiproton-induced reactions in heavy nuclei and (ii) the decay properties of hot nuclei at low spins via evaporation, multifragmentation and fission as a function of excitation energy. The experimental set-up consists of 4-$\\pi$ detectors: the Berlin Neutron Ball~(BNB) which is a spherical shell of gadolinium-loaded scintillator liquid with an inner and outer diameter of 40 and 160~cm, respectively. This detector counts the number of evaporated neutrons in each reaction. Inside BNB there is a 4-$\\pi$ silicon ball~(BSIB) with a diameter of 20~cm consisting of 162 detectors which measure energy and multiplicity of all emitted charged nuclear particles. The particles are identified via time of flight, energy and pulse shape correlations.

  20. Hot nuclei with high spin states in collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Galin, J.

    1991-01-01

    In the first part of this contribution we have shown that pretty hot nuclei could be obtained in peripheral collisions of Kr+Au. The collisions considered in the chosen example give rise to a nucleus of Z=28 with a kinetic energy of 1600 MeV (i.e. a velocity close to 27 MeV/u to be compared with the 32 MeV/u of the beam). The excitation energy deposited in the non-detected target like-nucleus, deduced from the neutron multiplicity measurements, amounts to 700 MeV (T= 6 MeV). In the second part of the contribution one used the well known properties of fission, and particularly its sensitivity to spin, to show in a qualitative way that pretty high spin values are into play. A more quantitative analysis together with additional measurements are still needed in order to infer precise figures of spin. It can be noted that for the 29 MeV/u Pb+Au reaction 1 max amounts to 1700 ℎ. If we assume that the sticking or rolling conditions can be fulfilled for initial angular momenta of about 2/3 1 max , then a projectile-like (and its target partner) could acquire an intrinsic spin of about 160 ℎ. The behavior of a Pb-like nucleus brought in such an exotic state (T=6 MeV and J=160ℎ)) is certainly worth to be studied in detail. It is also worth recalling that, when obtained in peripheral collisions, the hot nuclei thus formed do not suffer much initial compression at variance with what happens in more central collisions. There is thus an interesting field to be explored of hot, high spin but uncompressed nuclei

  1. Using nuclear structure to study the vaporization of hot nuclei

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1985-01-01

    Many experiments on the gamma decay of highly excited nuclei show the persistence of the giant dipole resonance as a collective mode even under rather extreme conditions. The theory of these resonances predicts that they should essentially retain the properties they have in the ground state to quite high excitation. The average resonance energy may be studied in mean-field theory and is found to change less than 5% for temperatures as high as approx.1.5 MeV. The spreading of the resonance has recently been calculated for nuclei at finite temperatures and rotational frequencies. The damping is found to increase by an insignificant amount in the measured temperature range, except when the nucleus changes deformation. The authors argue here that the stability of the dipole may be used to advantage in the study of other properties of nuclei at high excitation. For example, given that a compound nucleus is formed in a heavy-ion reaction, the dipole branching ratio is very sensitive to the statistical properties of the nucleus. The branching ratio allows a more sensitive measurement of the level density parameter at high excitation than would be otherwise available

  2. Widespread rotationally hot hydronium ion in the galactic interstellar medium

    International Nuclear Information System (INIS)

    Lis, D. C.; Phillips, T. G.; Schilke, P.; Comito, C.; Higgins, R.

    2014-01-01

    We present new Herschel observations of the (6,6) and (9,9) inversion transitions of the hydronium ion toward Sagittarius B2(N) and W31C. Sensitive observations toward Sagittarius B2(N) show that the high, ∼500 K, rotational temperatures characterizing the population of the highly excited metastable H 3 O + rotational levels are present over a wide range of velocities corresponding to the Sagittarius B2 envelope, as well as the foreground gas clouds between the Sun and the source. Observations of the same lines toward W31C, a line of sight that does not intersect the Central Molecular Zone but instead traces quiescent gas in the Galactic disk, also imply a high rotational temperature of ∼380 K, well in excess of the kinetic temperature of the diffuse Galactic interstellar medium. While it is plausible that some fraction of the molecular gas may be heated to such high temperatures in the active environment of the Galactic center, characterized by high X-ray and cosmic-ray fluxes, shocks, and high degree of turbulence, this is unlikely in the largely quiescent environment of the Galactic disk clouds. We suggest instead that the highly excited states of the hydronium ion are populated mainly by exoergic chemical formation processes and the temperature describing the rotational level population does not represent the physical temperature of the medium. The same arguments may be applicable to other symmetric top rotors, such as ammonia. This offers a simple explanation of the long-standing puzzle of the presence of a pervasive, hot molecular gas component in the central region of the Milky Way. Moreover, our observations suggest that this is a universal process not limited to the active environments associated with galactic nuclei.

  3. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  4. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  5. Vibrational motions in rotating nuclei studied by Coulomb excitations

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)

  6. Toroidal and rotating bubble nuclei and the nuclear fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Fauchard, C.; Haddad, F.; Jouault, B.

    1997-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. Previously, a one-parameter shape sequence has been defined to describe the path leading to pumpkin-like configurations and toroidal shapes. New analytical expressions for the shape dependent functions have been obtained. The potential barriers standing in these exotic deformation paths are compared with the three-dimensional and plane-fragmentation barriers. Metastable bubble-like minima only appear at very high angular momentum and above the three dimensional fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localized below the plane-fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension

  7. Study of high angular momentum phenomena in rotating nuclei

    International Nuclear Information System (INIS)

    Walus, W.

    1982-01-01

    Information about rotational bands of deformed Yb nuclei as obtained through in-beam spectroscopic studies is discussed. Routhians and alignments have been extracted from the experimental data. Experimental single-quasineutron routhians have been used to construct two- and three-quasineutron routhians. Residual interaction between excited quasiparticles is obtained from a comparison of the excitation energies of multiple-quasiparticle states constructed from single-quasiparticle states. An odd-even neutron-number dependence of the alignment frequency of the first pair of isub(13/2) quasineutron in rare-earth nuclei is presented. This effect is explained by a reduction of the neutron pairing-correlation parameter for odd-N systems as compared to seniority-zero configurations in even-N nuclei. The signature dependence of the interband-intraband branching ratios as well as of the interband M1/E2 mixing ratios is discussed and compared to the signature dependence of B(M1) transition rates recently suggested by Hamamoto. (author)

  8. Experimental estimates of quasiparticle interactions for rotational nuclei

    International Nuclear Information System (INIS)

    Frauendorf, S.; Riedinger, L.L.

    1984-01-01

    Previously presented data on rotationally aligned quasiparticle bands in sup(160,161,162,163)Yb are analyzed to give experimental values of the quasiparticle interactions Vsub(μν) as a function of rotational frequency. The measured level energies are converted to the rotating frame of reference and expressed as routhians. The routhian of a multi-quasiparticle band is compared to the sum of the routhians of the component quasiparticles at a given frequency, the difference being the quasiparticle interaction. The experimental spectra of bands in these nuclei are consistent with the assumption of a binary interaction between the rotating quasiparticles, where most of the Vsub(μν) are in the range -0.3 to -0.1 MeV. Analysis of the shift in the observed crossing frequencies for bands of different quasiparticle number yields similar values. The extracted Vsub(μν) are found to have a frequency dependence, which is associated with the loss of alignment of a multi-quasiparticle state. An equidistant-level model is used to estimate the contributions to the quasiparticle interactions by polarization of the collective degrees of freedom. This model yields typical Vsub(μν) values of -0.15 MeV, which is only half of some values extracted from experiment. This suggests that the extracted Vsub(μν) contain a significant amount of nuclear-structure information. (orig.)

  9. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rasskazov, Alexander; Merritt, David [School of Physics and Astronomy and Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States)

    2017-03-10

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.

  10. Faraday rotation applied to the hot plasmas diagnosis

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1980-01-01

    In many circumstances it is of theoretical or practical interest to know the electric and magnetic fields in the hot plasmas. A method for the determination of the magnetic field in the hot plasmas is the Faraday rotation measurement. The aim of this paper is to point out the principle and application of this rarely used optical method. (author)

  11. Hot nuclei studies with a 4 π-Neutron detector

    International Nuclear Information System (INIS)

    Galin, J.; Crema, E.; Doubre, H.; Guerreau, D.; Jiang, D.X.; Morjean, M.; Piasecki, E.; Pouthas, J.; Saint-Laurent, F.; Sokolov, A.; Wang, X.D.; Charvet, J.L.; Frehaut, J.; Lott, B.; Magnago, C.; Patin, Y.; Gatty, B.; Jacquet, D.; Lott, B.

    1989-01-01

    When studying the behavior of hot nuclei, the challenge is twofold: how are they formed in nucleus-nucleus collisions and how do they decay Systematic studies have been undertaken at GANIL by bombarding heavy targets (Au, Th) with intermediate energy projectiles (27, 35, 44 and 77 MeV/u Ar and 32 MeV/u Kr). For such neutron rich systems the thermalized energy can be roughly evaluated simply by measuring the multiplicity of evaporated neutrons using a 4 π Gd loaded, liquid scintillator detector. The influence of the bombarding energy and projectile mass on the energy dissipation has been investigated for different exit channels and special emphasis has been put in the study of the most dissipative collisions. The thermal energy, derived by summing the energy removed by both evaporated neutrons and light charged particles is shown to saturate at E * ≅ 650 MeV in the Ar induced reactions between 27 and 77 MeV/u, in good consistency with the predictions of semi-classical Landau-Vlasov calculations

  12. Time-dependent shape fluctuations and the giant dipole resonance in hot nuclei: Realistic calculations

    International Nuclear Information System (INIS)

    Alhassid, Y.; Bush, B.; Yale Univ., New Haven, CT

    1990-01-01

    The effects of time-dependent shape fluctuations on the giant dipole resonance (GDR) in hot rotating nuclei are investigated. Using the framework of the Landau theory of shape transitions we develop a realistic macroscopic stochastic model to describe the quadrupole time-dependent shape fluctuations and their coupling to the dipole degrees of freedom. In the adiabatic limit the theory reduces to a previous adiabatic theory of static fluctuations in which the GDR cross section is calculated by averaging over the equilibrium distribution with the unitary invariant metric. Nonadiabatic effects are investigated in this model and found to cause structural changes in the resonance cross section and motional narrowing. Comparisons with experimental data are made and deviations from the adiabatic calculations can be explained. In these cases it is possible to determine from the data the damping of the quadrupole motion at finite temperature. (orig.)

  13. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  14. Influence of complex particle emission on properties of giant dipole resonance of hot nuclei

    International Nuclear Information System (INIS)

    Wen Wanxin; Jin Genming

    2003-01-01

    The possible reasons for the discrepancy between calculation results based on the statistical evaporation model and experimental data of giant dipole resonance of very hot nuclei are discussed. Both of simulations with the standard CASCADE code and the code coupling complex particle emission are carried out. It is shown that the complex particle emission affects the properties of giant dipole resonance of very hot nuclei

  15. Spherical time dependent Thomas-Fermi calculation of the dynamical evolution of hot and compressed nuclei

    International Nuclear Information System (INIS)

    Nemeth, J.; Barranco, M.; Ngo, C.; Tomasi, E.

    1985-01-01

    We have used a self-consistent time dependent Thomas-Fermi model at finite temperature to calculate the dynamical evolution of hot and compressed nuclei. It has been found that nuclei can accomodate more thermal energy than compressional energy before they break. (orig.)

  16. Rotational-vibrational states of nonaxial deformable even-even nuclei

    International Nuclear Information System (INIS)

    Porodzinskii, Yu.V.; Sukhovitskii, E.Sh.

    1991-01-01

    The rotational-vibrational excitations of nonaxial even-even nuclei are studied on the basis of a Hamiltonian operator with five dynamical variables. Explicit forms of the wave functions and energies of the rotational-vibrational excitations of such nuclei are obtained. The experimental energies of excited positive-parity states of the 238 U nucleus and those calculated in terms of the model discussed in the article are compared

  17. Liquid-fog and liquid-gas phase transitions in hot nuclei

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; ); Oeschier, H.; Budzanowski, A.

    2006-01-01

    Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid-fog phase transition inside the spinodal region. The exclusive data for p(8.1 GeV) + Au collisions are analyzed within the framework of statistical model (SSM). It is found that the partition hot nuclei is specified after expansion to a volume equal to V t = (2.6 ± 0.3)V 0 . The freeze-out volume is found to be twice as large V f = (5 ± 1)V 0 . The similarity between multifragmentation and ordinary fission is discussed [ru

  18. Entrance channel influence on the formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Harar, S.

    1987-04-01

    Different entrance channels have been investigated to form very hot nuclei and to study their decay properties. i) Argon and Nickel projectiles accelerated around the Fermi energy show that central collisions induce momentum transfers to target nuclei which are proportional to the mass of the projectile and not to its velocities in the studied energy range. The preequilibrium model fits nicely the experimental results. The decay properties of the fission products for hot nuclei will be presented. Both head-on collisions and peripheral massive transfers contribute to the formation of very excited nuclei. The question of the influence of the energy deposit in the composite like system in limiting their yields is discussed. ii) Investigations have been also achieved with alpha projectiles at much higher incident energy (around 1 GeV/u). It is shown that hot and thermalized nuclei are also formed even when the nucleon-nucleon collisions are predominant. A sensitive parameter of the transition from binary fission to multifragmentation seems to be the energy deposit in the target residues rather than the projectile velocity

  19. Excitation of giant modes and decay of hot nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1992-01-01

    Several phenomena are discussed which can affect the properties of the Giant Dipole Resonance (GDR) built on excited states. The effect of the N over Z ratio is proposed in the entrance channel to test the hypothesis that the saturation of the GDR strength is due to preequilibrium effects. The important role of the compression is discussed both for the calculation of the temperature and for the other parameters of the Hot GDR. (K.A.) 15 refs.; 9 figs

  20. Liquid-gas phase transition in hot nuclei: correlation between dynamical and thermodynamical signals

    Energy Technology Data Exchange (ETDEWEB)

    Rivet, M.F.; Borderie, B.; Desesquelles, P.; Galichet, E. [Institut de Physique Nucleaire, IN2P3-CNRS, 91 - Orsay (France); Bougault, R.; Le Neindre, N. [Caen Univ, LPC, IN2P3-CNRS, ISMRA, 14 - Caen (France); Galichet, E. [Conservatoire National des Arts et Metiers, 75 - Paris (France); Guiot, B.; Wieleczko, J.P. [GANIL, CEA et IN2P3-CNRS, 14 - Caen (France); Parlog, M.; Tabacaru, G. [Nat. Inst. for Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2003-07-01

    The dynamics and thermodynamics of phase transition in hot nuclei are studied through experimental results on multifragmentation of heavy systems (A(projectile) + A(target) > 200) formed in central heavy ion collisions. Different signals such as negative heat capacity and spinodal decomposition, indicative of a phase transition studied in the INDRA collaboration are presented and their consistency is stressed. (authors)

  1. Experimental studies of the formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Nifenecker, H.; Blachot, J.; Crancon, J.; Gizon, A.; Lleres, A.

    1985-06-01

    In the following we shall report on a number of measurements made with different projectiles ranging from 12 C to 40 Ar. In most cases the target was 124 Sn. In this case the reported results were obtained by off line γ counting of series of catchers allowing mass and velocity measurements of the quasi compound or quasi target recoils 11 . We shall also refer to some other results using conventional counter techniques and either lightersup(12,13) or heavier targetssup(14,15,16). We shall first examine the cross section for quasi fusion. We shall then adress the question of the limit of momentum transfer and that of the inference of excitation energies from recoil energies. Finally we discuss the possible observation of a threshold in the excitation energy that nuclei can support without breaking apart

  2. Hot nuclei studied with high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Galin, J.

    1990-01-01

    We have shown the invaluable benefit that a high efficiency 4π neutron detector can bring to the study of reaction mechanisms following collisions of heavy nuclei at intermediate energy. Analysis requires Monte-Carlo simulations for comparison between experimental data and any emission model. In systematic measurements with projectiles of velocity corresponding to energies between 27 and 77 MeV/u, where both the influence of beam velocity and mass have been investigated separately, it has been shown that the projectile-target mass asymmetry, much more than velocity, has a decisive influence on energy dissipation. The closer the projectile mass to the target mass, the more energy is dissipated per unit mass of the considered projectile plus target system. The latter presents all the characteristics of a thermalized system, evaporating a copious number of light particles: up to about 40 neutrons (after efficiency correction) and 11 light charged particles in the most dissipative collisions between Kr+Au, and 90 neutrons for Pb+U with a yet unknown number of l.c.p. In the Kr experiment, these particles are isotropically emitted in the frame of a fused system, excited with 1.2 GeV. Moreover, l.c.p. exhibit Maxwellian energy distributions as in any standard evaporation process. We are now eager to better characterize the properties of the Pb+Au (U) systems for which about 1/3 of the neutrons are freed in a rather large fraction of all collisions. The thermalized energy should then approach very closely the total binding energy of the two interacting nuclei

  3. VARIABILITY IN HOT CARBON-DOMINATED ATMOSPHERE (HOT DQ) WHITE DWARFS: RAPID ROTATION?

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kurtis A.; Bierwagen, Michael [Department of Physics and Astrophysics, Texas A and M University-Commerce, P.O. Box 3011, Commerce, TX, 75429 (United States); Montgomery, M. H.; Winget, D. E.; Falcon, Ross E., E-mail: Kurtis.Williams@tamuc.edu [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX, 78712 (United States)

    2016-01-20

    Hot white dwarfs (WDs) with carbon-dominated atmospheres (hot DQs) are a cryptic class of WDs. In addition to their deficiency of hydrogen and helium, most of these stars are highly magnetic, and a large fraction vary in luminosity. This variability has been ascribed to nonradial pulsations, but increasing data call this explanation into question. We present studies of short-term variability in seven hot DQ WDs. Three (SDSS J1426+5752, SDSS J2200−0741, and SDSS J2348−0942) were known to be variable. Their photometric modulations are coherent over at least two years, and we find no evidence for variability at frequencies that are not harmonics. We present the first time-series photometry for three additional hot DQs (SDSS J0236−0734, SDSS J1402+3818, and SDSS J1615+4543); none are observed to vary, but the signal-to-noise is low. Finally, we present high speed photometry for SDSS J0005−1002, known to exhibit a 2.1-day photometric variation; we do not observe any short-term variability. Monoperiodicity is rare among pulsating WDs, so we contemplate whether the photometric variability is due to rotation rather than pulsations; similar hypotheses have been raised by other researchers. If the variability is due to rotation, then hot DQ WDs as a class contain many rapid rotators. Given the lack of companions to these stars, the origin of any fast rotation is unclear—both massive progenitor stars and double degenerate merger remnants are possibilities. We end with suggestions of future work that would best clarify the nature of these rare, intriguing objects.

  4. Interplay between symmetries and residual interactions in rotating nuclei

    International Nuclear Information System (INIS)

    Cwiok, S.; Kvasil, J.; Nazmitdinov, R.G.

    1990-01-01

    Using the space rotation and translation invariance of the nuclear Hamiltonian, the residual interactions for a rotating nucleus are constructed. The connection is found between the Goldstone modes of motion (spurious states) and the symmetries of equations of motion in Random Phase Approximation for states near the yrast line. (author). 18 figs

  5. Formation and Decay of Hot Nuclei in Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Planeta, R.; Gawlikowicz, W.; Grotowski, K.

    2000-01-01

    The properties of the multifragmentation of ''hot sources'' produced in the 40 Ca+ 40 Ca reaction have been studied at a beam energy 35 MeV/nucleon. Two signatures of prompt multifragmentation, which make use of special features of particle emission from the ''freeze out volume'', together with an analysis of the reduced relative velocity between pairs of intermediate mass fragments, indicate the presence of a transition from sequential decay to prompt multifragmentation at an excitation energy of about 3 MeV/nucleon. (author)

  6. Decay of hot nuclei produced by relativistic light ions

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1995-01-01

    In collisions of light relativistic projectiles (p, 4 He) with heavy nuclei (Au) very excited target spectators are created, which decay via multiple emission of intermediate mass fragments. It was found that the mean IMF multiplicities are equal (within 15%) to 2.0, 2.6 and 3.0 at proton energies 2.16, 3.6 and 8.1 GeV respectively. These values are comparable with those obtained with heavy ions in the same beam energy range. This is considered to indicate that this observable is not sensitive to the collision dynamics and is determined by the phase space factor. IMF energy spectra are described by the statistical model of multifragmentation neglecting dynamics of the expansion stage before the break up. The expansion velocity is estimated to be ≤ 0.02 c. The mean lifetime of a fragmentating system is found to be ≤ 75 fm/c from IMF-IMF-angular correlations for 4 He (14.6 GeV) +Au collisions. The results support a scenario of true 'thermal' multifragmentation. 26 refs., 10 figs., 1 tab

  7. Single-particle motion in rapidly rotating nuclei

    International Nuclear Information System (INIS)

    Bengtsson, R.; Frisk, H.

    1985-01-01

    The motion of particles belonging to a single-j shell is described in terms of classical orbitals. The effects of rapid rotation and pairing correlations are discussed and the results are compared with the quantum mechanical orbitals. (orig.)

  8. Symmetric and asymmetric ternary fission of hot nuclei

    International Nuclear Information System (INIS)

    Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H.K.W.; Siemssen, R.H.; Wilschut, H.W.; Grotowski, K.; Panasiewicz, A.; Sosin, Z.; Wieloch, A.

    1993-01-01

    Emission of α particles accompanying fusion-fission processes in the 40 Ar + 232 Th reaction at E( 40 Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of α particles were analyzed by using predictions of the energy spectra of the statistical code CASCADE . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission, and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7x10 -20 s) and the motion during the descent to scission almost completely damped

  9. Helical modes generate antimagnetic rotational spectra in nuclei

    Science.gov (United States)

    Malik, Sham S.

    2018-03-01

    A systematic analysis of the antimagnetic rotation band using r -helicity formalism is carried out for the first time. The observed octupole correlation in a nucleus is likely to play a role in establishing the antimagnetic spectrum. Such octupole correlations are explained within the helical orbits. In a rotating field, two identical fermions (generally protons) with paired spins generate these helical orbits in such a way that its positive (i.e., up) spin along the axis of quantization refers to one helicity (right-handedness) while negative (down) spin along the same quantization-axis decides another helicity (left-handedness). Since the helicity remains invariant under rotation, therefore, the quantum state of a fermion is represented by definite angular momentum and helicity. These helicity represented states support a pear-shaped structure of a rotating system having z axis as the symmetry axis. A combined operation of parity, time-reversal, and signature symmetries ensures an absence of one of the signature partner band from the observed antimagnetic spectrum. This formalism has also been tested for the recently observed negative parity Δ I =2 antimagnetic spectrum in odd-A 101Pd nucleus and explains nicely its energy spectrum as well as the B (E 2 ) values. Further, this formalism is found to be fully consistent with twin-shears mechanism popularly known for such type of rotational bands. It also provides significant clue for extending these experiments in various mass regions spread over the nuclear chart.

  10. Macroscopic description of normal quadrupole oscillations and shape of rotating nuclei (spheroids)

    International Nuclear Information System (INIS)

    Balbutsev, E.B.; Mikhailov, I.N.; Vaishvila, Z.

    1981-01-01

    The ''distorted-Fermi-surface'' model is generalized to study the rotating nuclei. The mathematical problems of the model are solved with the help of the tensor virial method by Chandrasekhar-Lebovitz. The parameters of a form and characteristic frequencies of the quadrupole oscillations are calculated as a function of angular velocity Ω for the rotating nuclei. The energy of Giant Quadrupole Resonance is in agreement with experiment for Ω=0. There are two low-lying modes of oscillations in the model. The critical angular momenta are calculated. The comparison with the liquid drop model is done [ru

  11. Fluctuations and the nuclear Meissner effect in rapidly rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Ring, P; Rasmussen, J O

    1985-10-24

    The phase transition from a superfluid system to a normal fluid system in nuclei under the influence of a strong Coriolis field is investigated by the generator coordinate method (GCM). The strange behavior of the experimental moments of inertia in the nucleus WYHf is well reproduced in this theory. The pairing collapse of the neutrons, however, is completely washed out by the fluctuations. It is found that the fluctuations of the orientation in gauge space, taken into account by number projection before the variation play the most important role. Fluctuations connected with the virtual admixture of pairing vibrations add only small corrections. (orig.).

  12. Rotation-vibrational spectra of diatomic molecules and nuclei with Davidson interactions

    CERN Document Server

    Rowe, D J

    1998-01-01

    Complete rotation-vibrational spectra and electromagnetic transition rates are obtained for Hamiltonians of diatomic molecules and nuclei with Davidson interactions. Analytical results are derived by dynamical symmetry methods for diatomic molecules and a liquid-drop model of the nucleus. Numerical solutions are obtained for a many-particle nucleus with quadrupole Davidson interactions within the framework of the microscopic symplectic model. (author)

  13. On connection of rotation and internal motion in deformed nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1979-01-01

    In the semiphenomenological nuclear madel (SPNM) the problem of ''overestimate of Coriolis interaction'' is shown to be easily solved. The rotation and internal motion coupling operator H(rot/in) is used. Overdetermination of the operator H(rot/in) has been generalized and extended into schemes of strong and weak coupling. In this case both schemes of coupling are transformed from approximate into precise ones and become applicable for any nuclear deformation. As examples of application of the theory considered are the matrix elements of the E2-transitions and inertia parameters of a 235 U nucleus

  14. Study of the joining particle rotation in nuclei of 161-167 Er and 235 U

    International Nuclear Information System (INIS)

    Fernandez L, M.

    1996-01-01

    The residual quadrupole pairing and spin-spin interactions among the nucleons, in presence of the rotational motion, lead to additional terms in the particle-rotation coupling which attenuate the effects of the Coriolis interaction. These couplings are determined by using the density matrix formalism, under the consideration of the exact conservation of the nuclear angular moment. Finally the energy levels of the rotational bands and the mixing amplitudes of the BE2 transition probabilities are calculated for some odd deformed nuclei. A very good agreement between the theoretical and experimental energies is obtained. The Coriolis attenuation produced by these interactions shows itself as relevant for explaining the experimental results. (Author)

  15. On some aspects of the semiclassical approach to giant resonances of rotating nuclei

    International Nuclear Information System (INIS)

    Winter, J.

    1985-01-01

    Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. - The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. - In its generalization from constant angular velocity to constant angular momentum, our model is used to demonstrate that cranking calculations of rotating giant resonances should be corrected for an oscillation of the cranking parameter to assure angular-momentum conservation. (orig.)

  16. Pair truncation for rotational nuclei: j=17/2 model

    International Nuclear Information System (INIS)

    Halse, P.; Jaqua, L.; Barrett, B.R.

    1989-01-01

    The suitability of the pair condensate approach for rotational states is studied in a single j=17/2 shell of identical nucleons interacting through a quadrupole-quadrupole Hamiltonian. The ground band and a K=2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the SD and SDG subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; S and D pairs are the major constituents of the low-spin ground-band levels, while G pairs are needed for those in the γ band. Energy spectra are obtained for each truncated subspace. SDG pairs allow accurate reproduction of the binding energy and K=2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels

  17. The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kotera, Kumiko [Institut d' Astrophysique de Paris UMR7095—CNRS, Université Pierre and Marie Curie, 98 bis boulevard Arago, Paris, F-75014 France (France); Amato, Elena; Blasi, Pasquale, E-mail: kotera@iap.fr, E-mail: amato@arcetri.astro.it, E-mail: blasi@arcetri.astro.it [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, Firenze, I-50125 Italy (Italy)

    2015-08-01

    Young, fast-rotating neutron stars are promising candidate sources for the production of ultrahigh energy cosmic rays (UHECRs). The interest in this model has recently been boosted by the latest chemical composition measurements of cosmic rays, that seem to show the presence of a heavy nuclear component at the highest energies. Neutrons stars, with their metal-rich surfaces, are potentially interesting sources of such nuclei, but some open issues remain: 1) is it possible to extract these nuclei from the star's surface? 2) Do the nuclei survive the severe conditions present in the magnetosphere of the neutron star? 3) What happens to the surviving nuclei once they enter the wind that is launched outside the light cylinder? In this paper we address these issues in a quantitative way, proving that for the most reasonable range of neutron star surface temperatures (T<10{sup 7} K), a large fraction of heavy nuclei survive photo-disintegration losses. These processes, together with curvature losses and acceleration in the star's electric potential, lead to injection of nuclei with a chemical composition that is mixed, even if only iron is extracted from the surface. We show that under certain conditions the chemical composition injected into the wind region is compatible with that required in previous work based on purely phenomenological arguments (typically ∼50% protons, ∼30% CNO and ∼20% Fe), and provides a reasonable explanation of the mass abundance inferred from ultra high energy data.

  18. The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars

    International Nuclear Information System (INIS)

    Kotera, Kumiko; Amato, Elena; Blasi, Pasquale

    2015-01-01

    Young, fast-rotating neutron stars are promising candidate sources for the production of ultrahigh energy cosmic rays (UHECRs). The interest in this model has recently been boosted by the latest chemical composition measurements of cosmic rays, that seem to show the presence of a heavy nuclear component at the highest energies. Neutrons stars, with their metal-rich surfaces, are potentially interesting sources of such nuclei, but some open issues remain: 1) is it possible to extract these nuclei from the star's surface? 2) Do the nuclei survive the severe conditions present in the magnetosphere of the neutron star? 3) What happens to the surviving nuclei once they enter the wind that is launched outside the light cylinder? In this paper we address these issues in a quantitative way, proving that for the most reasonable range of neutron star surface temperatures (T<10 7 K), a large fraction of heavy nuclei survive photo-disintegration losses. These processes, together with curvature losses and acceleration in the star's electric potential, lead to injection of nuclei with a chemical composition that is mixed, even if only iron is extracted from the surface. We show that under certain conditions the chemical composition injected into the wind region is compatible with that required in previous work based on purely phenomenological arguments (typically ∼50% protons, ∼30% CNO and ∼20% Fe), and provides a reasonable explanation of the mass abundance inferred from ultra high energy data

  19. Is the caloric curve a robust signal of the phase transition in hot nuclei?

    International Nuclear Information System (INIS)

    Vient, E.

    2016-01-01

    The richness of the data set, collected by the INDRA Collaboration during the last twenty years, enabled to build a set of caloric curves for nuclei of various sizes, by using, for the first time, a single experimental set-up and a single experimental protocol. We will therefore present the different caloric curves (E ∗ −T) obtained by a new calorimetry, for Quasi-Projectiles produced by symmetric or quasi symmetric reactions at different incident energies (Au+Au, Xe+Sn, Ni+Ni). For all these systems, a clear change of the de-excitation process of hot nuclei is observed but this one is neither a plateau nor a back-bending, but a sudden change of slope.

  20. The decay of hot nuclei formed in La-induced reactions at intermediate energies

    International Nuclear Information System (INIS)

    Libby, B.; Mignerey, A.C.; Madani, H.; Marchetti, A.A.; Colonna, M.; DiToro, M.

    1992-01-01

    The decay of hot nuclei formed in lanthanum-induced reactions utilizing inverse kinematics has been studied from E/A = 35 to 55 MeV. At each bombarding energy studied, the probability for the multiple emission of complex fragments has been found to be independent of target. Global features (total charge, source velocity) of the reaction La + Al at E/A = 45 MeV have been reproduced by coupling a dynamical model to study the collision stage of the reaction to a statistical model of nuclear decay

  1. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gulshani, P., E-mail: matlap@bell.net [NUTECH Services, 3313 Fenwick Crescent, Mississauga, Ontario, L5L 5N1 (Canada)

    2016-07-07

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  2. Bondi flow from a slowly rotating hot atmosphere

    Science.gov (United States)

    Narayan, Ramesh; Fabian, Andrew C.

    2011-08-01

    A supermassive black hole in the nucleus of an elliptical galaxy at the centre of a cool-core group or cluster of galaxies is immersed in hot gas. Bondi accretion should occur at a rate determined by the properties of the gas at the Bondi radius and the mass of the black hole. X-ray observations of massive nearby elliptical galaxies, including M87 in the Virgo cluster, indicate a Bondi accretion rate ? which roughly matches the total kinetic power of the jets, suggesting that there is a tight coupling between the jet power and the mass accretion rate. While the Bondi model considers non-rotating gas, it is likely that the external gas has some angular momentum, which previous studies have shown could decrease the accretion rate drastically. We investigate here the possibility that viscosity acts at all radii to transport angular momentum outwards so that the accretion inflow proceeds rapidly and steadily. The situation corresponds to a giant advection-dominated accretion flow (ADAF) which extends from beyond the Bondi radius down to the black hole. We find solutions of the ADAF equations in which the gas accretes at just a factor of a few less than ?. These solutions assume that the atmosphere beyond the Bondi radius rotates with a sub-Keplerian velocity and that the viscosity parameter is large, α≥ 0.1, both of which are reasonable for the problem at hand. The infall time of the ADAF solutions is no more than a few times the free-fall time. Thus, the accretion rate at the black hole is closely coupled to the surrounding gas, enabling tight feedback to occur. We show that jet powers of a few per cent of ? are expected if either a fraction of the accretion power is channelled into the jet or the black hole spin energy is tapped by a strong magnetic field pressed against the black hole by the pressure of the accretion flow. We discuss the Bernoulli parameter of the flow, the role of convection and the possibility that these as well as magnetohydrodynamic effects

  3. The moments of inertia of a rotational band 3/2- [521] isotones odd nuclei

    International Nuclear Information System (INIS)

    Karahodjaev, A.K.; Kuyjonov, H.

    2003-01-01

    The moments of inertia are received from experimental data from the following expression for energy of a level with spin I: E I = E 0 +ℎ 2 /2j·I(I+1), K≠l/2. The characteristics of low statuses of a rotational band 3/2 - [521] and inertial parameters 1.75A 1 keV ( A-1=ℎ 2 /2j) for nuclei 155 Dy and 155 Gd are given. The values of inertial parameters 1.75A1 keV for odd nuclei with N = 89, 91, 93, 95, 97, 99, 101 and 103 are presented. At quantity of neutrons N = 89 with increase of mass number of a nucleus the moment of inertia rather quickly grows. In nuclei with quantity of neutrons equal 91 and 93, with increase of mass number the moment of inertia of nuclei slowly changes and since A=159 and A=163, accordingly, begins sharply to grow. In isotones with N = 95, 97 and 99 moments of inertia decrease with increase of quantity neutrons in a nucleus. The reason of various dependence of the moment of inertia from mass number is, the coriolis interaction of an odd particle with even-even kernel and change of parameter of pair correlation because of presence of an odd particle above a kernel

  4. Macroscopic-microscopic energy of rotating nuclei in the fusion-like deformation valley

    International Nuclear Information System (INIS)

    Gherghescu, R.A.; Royer, Guy

    2000-01-01

    The energy of rotating nuclei in the fusion-like deformation valley has been determined within a liquid drop model including the proximity energy, the two-center shell model and the Strutinsky method. The potential barriers of the 84 Zr, 132 Ce, 152 Dy and 192 Hg nuclei have been determined. A first minimum having a microscopic origin and lodging the normally deformed states disappears with increasing angular momenta. The microscopic and macroscopic energies contribute to generate a second minimum where superdeformed states may survive. It becomes progressively the lowest one at intermediate spins. At higher angular momenta, the minimum moves towards the foot of the external fission barrier leading to hyperdeformed quasi-molecular states. (author)

  5. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Fortney, Jonathan J., E-mail: showman@lpl.arizona.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-03-10

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.

  6. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    International Nuclear Information System (INIS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.

    2015-01-01

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets

  7. Triaxial energy relation to describe rotational band in 98-112Ru nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Varshney, Mani; Singh, M.; Gupta, D.K.

    2010-01-01

    In a broader perspective rotation vibration coupling parameter (b) is considered changing with the change in excitation energy (ε 1 ) and is evaluated on fitting experimental energy for 98-112 Ru isotopes in the frame work of general asymmetric rotor model. The moment of inertia parameter (a), common to yrast and quasi-γ band, is calculated from deformation parameter (β) using general empirical relation. The present work is undertaken to suggest some suitable equation for the trajectories which are similar in shape in 98-112 Ru nuclei

  8. Damping of isovector giant dipole resonances in hot even-even spherical nuclei

    International Nuclear Information System (INIS)

    Dang, N.D.

    1989-01-01

    An approach based on the finite temperature quasiparticle phonon nuclear model (FT-QPNM) with the couplings to (2p2h) states at finite temperature taken into account is suggested for calculations of the damping of giant multipole resonances in hot even-even spherical nuclei. The strength functions for the isovector giant dipole resonance (IV-GDR) are calculated in 58 Ni and 90 Zr for a range of temperatures up to 3 MeV. The results show that the contribution of the interactions with (2p2h) configurations to the IV-GDR spreading width changes weakly with varying temperature. The IV-GDR centroid energy decreases slightly with increasing temperature. The nonvanishing superfluid pairing gap due to thermal fluctuations is included. (orig.)

  9. Damping width of giant dipole resonances of cold and hot nuclei: A macroscopic model

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Sonzogni, A.A.

    2002-01-01

    A phenomenological macroscopic model of the giant dipole resonance (GDR) damping width of cold and hot nuclei with ground-state spherical and near-spherical shapes is developed. The model is based on a generalized Fermi liquid model which takes into account the nuclear surface dynamics. The temperature dependence of the GDR damping width is accounted for in terms of surface and volume components. Parameter-free expressions for the damping width and the effective deformation are obtained. The model is validated with GDR measurements of the following nuclides: 39,40 K, 42 Ca, 45 Sc, 59,63 Cu, 109-120 Sn, 147 Eu, 194 Hg, and 208 Pb, and is compared with the predictions of other models

  10. Probing the degrees of freedom in hot composite nuclei. Systematics of charged particle evaporation

    International Nuclear Information System (INIS)

    Kaplan, M.; Downer, J.B.; Whitfield, J.P.; Brown, C.M.; Milosevich, Z.; Karol, P.J.; Vardaci, E.; Copi, C.; De Young, P.

    1995-01-01

    The study of evaporative particle emission offers a number of experimental observables whose measurement can provide insight into the behavior of highly excited composite nuclei. Simultaneous observations of multiple degrees of freedom in such hot systems allows stringent testing of theoretical models by insisting that the calculations reproduce the several measured characteristics with a single set of model input parameters. Such comparisons are presented for two data sets, one involving a relatively light (low Z) system and the other referring to a relatively heavy (high Z) system. In the latter case, reasonably good agreement has been found between statistical model calculations (with empirical barriers) and the experimental data, while for the former situation, the parameters required to reproduce the energy spectra lead to significant inconsistencies in predicted particle multiplicities and angular anisotropies. (authors). 12 refs., 7 figs., 2 tabs

  11. Dynamical aspects of particle emission in binary dissipative collisions -effects on hot-nuclei formation

    International Nuclear Information System (INIS)

    Eudes, Ph.; Basrak, Z.; Sebille, F.

    1997-01-01

    Characteristics of charged-particle emission in heavy-ion reactions have been studied in the framework of the semiclassical Landau-Vlasov approach for the 40 Ar + 27 Al collisions at 65 MeV/u. The reaction mechanism is dominated by binary dissipative collisions. After an abundant prompt emission coming from the overlapping region between the target and the projectile, two excited nuclei, the quasi-target and the quasi-projectile, emerge from the collision. To shed some light on the role played by dynamical effects, light-charged particle observables, which are currently used as an experimental signature a of hot equilibrated nucleus, have been carefully investigated. (K.A.)

  12. Rotating shell eggs immersed in hot water for the purpose of pasteurization

    Science.gov (United States)

    Pasteurization of shell eggs for inactivation of Salmonella using hot water immersion can be used to improve their safety. The rotation of a shell egg immersed in hot water has previously been simulated by computational fluid dynamics (CFD); however, experimental data to verify the results do not ex...

  13. Quantum algebra Uqp(u2) and application to the rotational collective dynamics of the nuclei

    International Nuclear Information System (INIS)

    Barbier, R.

    1995-01-01

    This thesis concerns some aspects of new symmetries in Nuclear Physics. It comprises three parts. The first one is devoted to the study of the quantum algebra U qp (u 2 ). More precisely, we develop its Hopf algebraic structure and we study its co-product structure. The bases of the representation theory of U qp (u 2 ) are introduced. On one hand, we construct the finite-dimensional irreducible representations of U qp (u 2 ). On the other hand, we calculate the Clebsch-Gordan coefficients with the projection operator method. To complete our study, we construct some deformed boson mappings of the quantum algebras U qp (u 2 ), U q 2 (su 2 ) and U qp (u 1,1 ). The second part deals with the construction of a new phenomenological model of the non rigid rotator. This model is based on the quantum algebra U qp (u 2 ). The rotational energy and the E2 reduced transition probabilities are obtained. They depend on the two deformation parameters q and p of the quantum algebra. We show how the use of the two-parameter deformation of the algebra U qp (u 2 ) leads to a generalization of the U q (su 2 )-rotator model. We also introduce a new model of the anharmonic oscillator on the basis of the quantum algebra U qp (u 2 ). We show that the system of the U q (su 2 )-rotator and of the anharmonic oscillator can be coupled with the use of the deformation parameters of U qp (u 2 ). A ro-vibration energy formula and expansion 'a la' Dunham are obtained. The aim of the lest part is to apply our non rigid rotator model to the rotational collective dynamics of the superdeformed nuclei of the A∼130 - 150 and A∼190 mass regions and deformed nuclei of the actinide and rare earth series. We adjust the free parameters of our model and compare our results with those arising from four other models of the non rigid rotator. A comparative analysis is given in terms of transition energies. We calculate the dynamical moments of inertia with the fitted parameters. A comparison between the

  14. Exclusive study of the formation and the decay of hot nuclei in the intermediate energy domain

    International Nuclear Information System (INIS)

    Saint-Laurent, F.

    1990-01-01

    A brief review of exclusive measurements performed at GANIL in order to study hot nuclei will be given. Heavy-ion induced reactions on heavy targets have been investigated over a wide range of incident energy, using various techniques: - fission fragment angular correlations. - 4 π neutron multiplicity measurements. - light charged particle correlations. In each case, a selection of the most violent collisions can be achieved. For central collisions induced by 40 Ar, a same excitation energy of about 650 MeV is deduced from the totally different and independent sets of data, corresponding to an average temperature of 5 MeV. At 60 MeV/u, this value is quite low as compare to the total available energy for central collisions A tentative explanation based on Landau-Vlasov simulations will be proposed: the excitation energy dissipated in the system could be stored in a highly excited compression mode as well as under a thermal form. Some recent results on the Kr+Au system at 32 MeV/u will be presented indicating that heavier projectiles than 40 Ar can lead to a temperature of the hot system approaching 7 MeV

  15. Synthesis and decay process of superheavy nuclei with Z=119-122 via hot-fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghahramany, N.; Ansari, A. [Shiraz University, Department of Physics and Biruni Observatory, College of Science, Shiraz (Iran, Islamic Republic of)

    2016-09-15

    In this research article attempts have been made to calculate the superheavy-nuclei synthesis characteristics including, the potential energy parameters, fusion probability, fusion and evaporation residue (ER) cross sections as well as, decay properties of compound nucleus and the residue nuclei formation probability for elements with Z=119-122 by using the hot-fusion reactions. It is concluded that, although a selection of double magic projectiles such as {sup 48}Ca with high binding energy, simplifies the calculations significantly due to spherical symmetric shape of the projectile, resulting in high evaporation residue cross section, unfortunately, nuclei with Z > 98 do not exist in quantities sufficient for constructing targets for the hot-fusion reactions. Therefore, practically our selection is fusion reactions with titanium projectile because the mass production of target nuclei for experimental purposes is more feasible. Based upon our findings, it is necessary, for new superheavy-nuclei production with Z > 119, to use neutron-rich projectiles and target nuclei. Finally, the maximal evaporation residue cross sections for the synthesis of superheavy elements with Z=119-122 have been calculated and compared with the previously founded ones in the literature. (orig.)

  16. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  17. Description of rotating N=Z nuclei in terms of isovector pairing

    International Nuclear Information System (INIS)

    Afanasjev, A.V.; Frauendorf, S.

    2005-01-01

    A systematic investigation of the rotating N=Z even-even nuclei in the mass A=68-80 region has been performed within the frameworks of the cranked relativistic mean field, cranked relativistic Hartree-Bogoliubov theories, and cranked Nilsson-Strutinsky approach. Most of the experimental data are well accounted for in the calculations. The present study suggests the presence of strong isovector np pair field at low spin, whose strength is defined by the isospin symmetry. At high spin, the isovector pair field is destroyed and the data are well described by the calculations assuming zero pairing. No clear evidence for the existence of the isoscalar t=0 np pairing has been obtained in the present investigation performed at the mean field level

  18. Highly-distorted and doubly-decoupled rotational bands in odd-odd nuclei

    International Nuclear Information System (INIS)

    McHarris, W.C.; Olivier, W.A.; Rios, A.; Hampton, C.; Chou, Wentsae; Aryaeinejad, R.

    1991-01-01

    Heavy-ion reactions induce large amounts of angular momentum; hence, they selectively populate rotationally-aligned particle states in compound nuclei. Such states tend to deexcite through similar states connected by large coriolis matrix elements, resulting in relatively few - but highly distorted - bands in the lower-energy portions of odd-odd spectra. The extreme cases of this are doubly-decoupled, K ∼ 1 (π 1/2 x ν 1/2) bands, whose γ transitions are the most intense in spectra from many light Re and Ir nuclei. The authors made a two-pronged assault on such bands, studying them via different HI reactions at different laboratories and using interacting-boson (IBFFA) calculations to aid in sorting them out. The authors are beginning to understand the types of (primarily coriolis) distortions involved and hope to grasp a handle on aspects of the p-n residual interaction, although the coriolis distortions are large enough to mask much of the latter. They also discuss similar but complementary effects in the light Pr region

  19. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets

    Science.gov (United States)

    Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.

    2017-05-01

    We perform polarimetry analysis of 20 active galactic nuclei jets using the very long baseline array at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4 and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16 900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2. Significant transverse RM gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magneto-ionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.

  20. The SU(3) structure of rotational states in heavy deformed nuclei

    International Nuclear Information System (INIS)

    Jarrio, M.; Wood, J.L.; Rowe, D.J.

    1991-01-01

    The SU(3) coupling scheme provides an informative basis for the expansion of shell-model wave functions and their interpretation in collective-model terms. We show in this paper that it is possible, using the coupled-rotor-vibrator model, to infer averages of the distributions of SU(3) representation labels in heavy rotational nuclei by direct interpretation of physically observed E2 transition rates and quadrupole moments. We find that the distributions of SU(3) representation labels have nearly constant average values for states belonging to some well-defined rotational bands. These are bands of states having B(E2) values and quadrupole moments that follow the predictions of the rotor model. Such bands are interpreted as soft SU(3) bands in parallel with the concept of a soft rotor band with vibrational-shape fluctuations. The concept of a soft SU(3) band and its implications for beta-vibrational excited bands is developed. The average SU(3) representation labels inferred from experiment are interpreted by calculating those implied by the Nilsson model. An analysis of the SU(3) content of Nilsson wave functions also leads to two remarkable predictions. The first is that, in the asymptotic limit, the Nilsson model implies intrinsic states for a rotor band that are beta rigid. The second is that, although the intrinsic Nilsson state is axially symmetric, it generates a sequence of K=0, 2, 4,...bands. (orig.)

  1. GOE-TYPE ENERGY-LEVEL STATISTICS AND REGULAR CLASSICAL DYNAMICS FOR ROTATIONAL NUCLEI IN THE INTERACTING BOSON MODEL

    NARCIS (Netherlands)

    PAAR, [No Value; VORKAPIC, D; DIERPERINK, AEL

    1992-01-01

    We study the fluctuation properties of 0+ levels in rotational nuclei using the framework of SU(3) dynamical symmetry of the interacting boson model. Computations of Poincare sections for SU(3) dynamical symmetry and its breaking confirm the expected relation between dynamical symmetry and classical

  2. Deformation and shape transitions in hot rotating neutron deficient Te isotopes

    International Nuclear Information System (INIS)

    Aggarwal, Mamta; Mazumdar, I.

    2009-01-01

    Evolution of the nuclear shapes and deformations under the influence of temperature and rotation is investigated in Te isotopes with neutron number ranging from the proton drip line to the stability valley. Spin dependent critical temperatures for the shape transitions in Te nuclei are computed. Shape transitions from prolate at low temperature and spin to oblate via triaxiality are seen with increasing neutron number and spin.

  3. Validity of single term energy expression for ground state rotational band of even-even nuclei

    International Nuclear Information System (INIS)

    Sharma, S.; Kumar, R.; Gupta, J.B.

    2005-01-01

    Full text: There are large numbers of empirical studies of gs band of even-even nuclei in various mass regions. The Bohr-Mottelson's energy expression is E(I) = AX + BX 2 +CX 3 +... where X = I(I+1). The anharmonic vibrator energy expression is: E(I) = al + bl 2 + cl 3 SF model with energy expression: E(I)= pX + qI + rXI... where the terms represents the rotational, vibrational and R-V interaction energy, respectively. The validity f the various energy expressions with two terms had been tested by Sharma for light, medium and heavy mass regions using R I s. R 4 plots (where, spin I=6, 8, 10, 12), which are parameter independent. It was also noted, that of the goodness of energy expression can be judged with the minimum input of energies (i.e. only 2 parameters) and predictability's of the model p to high spins. Recently, Gupta et. al proposed a single term energy expression (SSTE) which was applied for rare earth region. This proposed power law reflected the unity of rotation - vibration in a different way and was successful in explaining the structure of gs-band. It will be useful for test the single term energy expression for light and heavy mass region. The single term expression for energy of ground state band can be written as: E I =axI b , where the index b and the coefficient a are the constant for the band. The values of b+1 and a 1 are as follows: b 1 =log(R 1 )/log(I/2) and a 1 =E I /I b ... The following results were gained: 1) The sharp variation in the value of index b at given spin will be an indication of the change in the shape of the nucleus; 2) The value of E I /I b is fairly constant with spin below back-bending, which reflects the stability of shape with spin; 3) This proposed power law is successful in explaining the structure of gs-band of nuclei

  4. Coupled SU(3) models of rotational states in nuclei and quasi-dynamical symmetry

    International Nuclear Information System (INIS)

    Thiamova, G.; Rowe, D. J.

    2007-01-01

    This contribution reports a first step towards the development of a model of low-lying nuclear collective states based on the progression from weak to strong coupling of a combination of systems in multiple SU(3) irreps. The motivation for such a model comes partly from the remarkable persistence of rotational structure observed experimentally and in many model calculations. This work considers the spectra obtainable by coupling just two SU(3) irreps by means of a quadrupole-quadrupole interaction. For a particular value of this interaction, the two irreps combine to form strongly-coupled irreps while for zero interaction the weakly-coupled results are mixtures of many such strongly-coupled irreps. A notable result is the persistence of the rotor character of the low-energy states for a wide range of the interaction strength. Also notable is the fact that, for very weak interaction strengths, the energy levels of the yrast band resemble those of a vibrational sequence while the B(E2) transition strengths remain close to those of an axially symmetric rotor, as observed in many nuclei. (Author)

  5. Probing the Large Faraday Rotation Measure Environment of Compact Active Galactic Nuclei

    Directory of Open Access Journals (Sweden)

    Alice Pasetto

    2018-03-01

    Full Text Available Knowing how the ambient medium in the vicinity of active galactic nuclei (AGNs is shaped is crucial to understanding generally the evolution of such cosmic giants as well as AGN jet formation and launching. Thanks to the new broadband capability now available at the Jansky Very Large Array (JVLA, we can study changes in polarization properties, fractional polarization, and polarization angles, together with the total intensity spectra of a sample of 14 AGNs, within a frequency range from 1 to 12 GHz. Depolarization modeling has been performed by means of so-called “qu-fitting” to the polarized data, and a synchrotron self absorption model has been used for fitting to the total intensity data. We found complex behavior both in the polarization spectra and in the total intensity spectra, and several Faraday components with a large rotation measure (RM and several synchrotron components were needed to represent these spectra. Here, results for three targets are shown. This new method of analyzing broadband polarization data through qu-fitting successfully maps the complex surroundings of unresolved objects.

  6. Evolutionary period changes in rotating hot pre--white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Kawaler, S.D.; Winget, D.E.; Hansen, C.J.

    1985-11-15

    We have calculated and splitting of high order nonradial g-modes due to slow rotation in models of hot pre-white dwarf (''PWD'') stars of 0.60 M/sub sun/. We have investigated the effects of rotational spin-up, produced by gravitational contraction, on the rate of evolutionary period change for the cases of uniform and differential rotation. For models in the luminosity range of PG 1159-035 (Lapprox.100 L/sub sun/), we find that rotation rates of a few thousand seconds for modes with m< or approx. =-2 produce values of d(ln P)/dt that are consistent with the measurement of the rate of period change of the 516 second period of PG 1159-035.

  7. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  8. Spectrum fluctuations from regular and damped rotational structures in {sup 16}`8Yb and {sup 163}Tm nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Herskind, B; Dossing, T; Ninel, N; Atac, A; Jensen, H J; Hagemann, G B; Lieder, R M; Maj, A; Nyberg, J; Piiparinen, M; Sugawara, M; Virtanen, A [Niels Bohr Inst., Copenhagen (Denmark); Leoni, S; Vigezzi, E; Bosetti, P; Bracco, A; Broglia, R A; Million, B [Milan Univ. (Italy); Matsuo, M [Kyoto Univ., Uji (Japan). Uji Research Center of Yukawa Inst. for Theoretical Physics; Bergstrom, M; Brockstedt, A; Carlsson, H; Ekstrom, P; Nordlund, A; Ryde, H [Lund Univ. (Sweden). Dept. of Physics; Jongman, J [Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.; Ingebretsen, F; Tjom, P O [Oslo Univ. (Norway); Lonnroth, T [Aabo Akademi, Turku (Finland). Dept. of Physics

    1992-08-01

    A new method has been developed for analyzing fluctuations of count in two-dimensional gamma ray energy coincidence spectra of deformed nuclei formed in heavy ion fusion reactions. Most of the gamma decay cascades flow through regions of high level density, and the method is based upon assumptions about average properties of the excited states. Transition energies along discrete rotational bands are viewed as randomly selected from a continuous distribution of rotational frequencies and moments of inertia. For damped rotational motion, implying a mixing of the rotational bands, a random matrix model is assumed, leading to smooth energy spectra, and strong fluctuations of the transition strengths. The method is illustrated for {sup 168}Yb and {sup 163}Tm. 4 refs., 4 figs.

  9. Properties of rotational bands at the spin limit in A {approximately} 50, A {approximately} 65 and A {approximately} 110 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Janzen, V.P.; Andrews, H.R.; Ball, G.C. [Chalk River Labs., Ontario (Canada)] [and others

    1996-12-31

    There is now widespread evidence for the smooth termination of rotational bands in A {approx_equal} 110 nuclei at spins of 40-to-50{Dirac_h}s. The characteristics of these bands are compared to those of bands recently observed to high spin in {sup 64}Zn and {sup 48}Cr, studied with the 8{pi} {gamma}-ray spectrometer coupled to the Chalk River miniball charged-particle-detector array.

  10. Effect of deformations on the compactness of odd-Z superheavy nuclei formed in cold and hot fusion reactions

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2018-03-01

    Using the extended fragmentation theory, the compactness of hot and cold fusion reactions is analyzed for odd-Z nuclei ranging Z = 105- 117. The calculations for the present work are carried out at T = 0MeV and ℓ = 0 ħ, as the temperature and angular momentum effects remain silent while addressing the orientation degree of freedom (i.e. compact angle configuration). In the hot fusion, 48Ca (spherical) + actinide (prolate) reaction, the non-equatorial compact (nec) shape is obtained for Z = 113 nucleus. On the other hand, Z > 113 nuclei favor equatorial compact (ec) configuration. The distribution of barrier height (VB) illustrate that the ec-shape is obtained when the magnitude of quadrupole deformation of the nucleus is higher than the hexadecupole deformation. In other words, negligible or small -ve β4-deformations support ec configurations. On the other hand, large (+ve) magnitude of the β4-deformation suggests that the configuration appears for compact angle θc < 90 °, leading to nec structure. Similar deformation effects are observed for Bi-induced reactions, in which not belly-to-belly compact (nbbc) configurations are seen at θc = 42 °. In addition to the effect of β2 and β4-deformations, the exclusive role of octupole deformations (β3) is also analyzed. The β3-deformations do not follow the reflection symmetry as that of β2 and β4, leading to the possible occurrence of compact configuration within 0° to 180° angular range.

  11. Production and desexcitation of hot nuclei in 40Ar + 238U collisions at 27 MeV/u

    International Nuclear Information System (INIS)

    Jacquet, D.

    1987-01-01

    The selection of hot nuclei can be achieved through the folding angle of the coincident fission fragments. At this bombarding energy a distinct fusion component shows up in the folding angle correlation function corresponding to the most central collisions. The mass of the fission fragments decreases with increasing linear momentum transfer; the energy dissipated into the target nucleus is proportional to the momentum transfer. The mass distribution full width at half maximum increases with dissipated energy and this can be understood as the result of thermal fluctuations. The light charged particles detected in coincidence with the fission fragments exhibit, at least backwards, the characteristic behaviour of evaporative particles from a thermally equilibrated source. The fused nucleus is revealed as the dominant emitter. The observed energy spectra can be reproduced in a Monte Carlo type simulation assuming that about 80% of the particles arise from the fused nuclei and only 20 % from the fully accelerated fission fragments. A detailed analysis of the shape of the spectra allows to precise the average characteristics of the emitter: it is quite deformed has a very broad spin distribution and a temperature from 4 to 5 MeV. All these characteristics are consistently deduced in semi-classical dynamical calculations based on the Landau-Vlasov equation. The pre-fission particle emission probabilities are shown to be much larger than would predict a purely statistical model for such heavy and hot nuclei. Such a behaviour can only be understood if the dynamics of the collision is taken into account [fr

  12. Study on rotational bands in odd-odd nuclei 102,l04Nb by using PSM

    International Nuclear Information System (INIS)

    Dong Yongsheng; Hu Wentao; Feng Youliang; Wang Jinbao; Yu Shaoying; Shen Caiwan

    2012-01-01

    The Projected Shell Model (PSM) is used to study the low energy scheme of the neutron-rich normal-deformed isotopes of odd-odd nuclei 102,104 Nb. The quasiparticle configuration is assigned. The theoretical calculations of the energy band of 102,104 Nb could well reproduce the experimental data. It is shown that PSM is a valid method for studying the low energy scheme of heavy nuclei. (authors)

  13. The role of cranking frequency in the generation of angular momentum in isospin formalism for nuclei around A=90

    International Nuclear Information System (INIS)

    Mohamed Akbar, A.; Veeraraghavan, S.; Arunachalam, N.

    1998-01-01

    The role of cranking frequency in hot rotating deformed nuclei has been studied with reference to the extraction of several nuclear parameters. In this work, the angular momentum degree of freedom is included in the isospin formalism using statistical theory of hot deformed nuclei

  14. Rotational-mode component of the density of levels of nuclei with A approx-lt 150

    International Nuclear Information System (INIS)

    Rastopchin, E.M.; Svirin, M.I.; Smirenkin, G.N.

    1992-01-01

    Some difficulties which arise in the use of the generalized superfluid model to describe the density of levels in the region A approx-lt 150, as the result of an imperfect understanding of collective nuclear excitations, are discussed. One possible way to overcome these difficulties is examined. The idea is to depart from the conventional classification of collective nuclear properties and make use of small static deformations predicted theoretically and a corresponding rotational-mode component of the density of levels of these nuclei

  15. Pauli principle role in the description of collective non-rotational states of deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Shirikova, N.Yu.; Serdyukova, S.I.; Meliev, F.; Nesterenko, V.O.

    1981-01-01

    The Pauli principle role account for one-phonon and two- phonon states of even-even deformed nuclei sup(160, 164)Dy, sup(230, 232)Th, 154 Gd, 240 Pu, 238 U is performed. With account of isoscalar part of multipole-multipole interaction hamiltonian of a model and basic equations for energy and wave functions of one-phonon and two-phonon states are obtained. The results of calculations of centroids of energies of two-phonon states of the (lambda 1 μ 1 i 1 lambda 2 μ 2 i 2 ) type with and without the Pauli principle are tabulated. The calculations performed have shown that the energy centroids shift of collective two-phonon states with the Pauli-principle account is characteristic for all even-even deformed nuclei. In the authors opinion additional experimental investigations of 154 Cd, 164 Dy, 240 Pu two-phonon nuclei states to confirm theoretical results are necessary [ru

  16. The limiting temperature of hot nuclei from microscopic equation of state

    International Nuclear Information System (INIS)

    Baldo, M.; Ferreira, L.S.; Nicotra, O.E.

    2004-01-01

    The limiting temperature T lim of a series of nuclei is calculated employing a set of microscopic nuclear equations of state (EOS's). It is shown that the value of T lim is sensitive to the nuclear matter equation of state used. Comparison with the values extracted in recent phenomenological analysis appears to favor a definite selection of EOS's. On the basis of this phenomenological analysis, it therefore seems possible to check the microscopic calculations of the nuclear EOS at finite temperature, which is hardly accessible through other experimental information

  17. The Skyrme-TQRPA calculations of electron capture on hot nuclei in pre-supernova environment

    Energy Technology Data Exchange (ETDEWEB)

    Dzhioev, Alan A., E-mail: dzhioev@theor.jinr.ru; Vdovin, A. I., E-mail: vdovin@theor.jinr.ru [JINR, Bogoliubov Laboratory of Theoretical Physics (Russian Federation); Stoyanov, Ch., E-mail: stoyanov@inrne.bas.bg [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria)

    2016-11-15

    We combine the thermal QRPA approach with the Skyrme energy density functional theory (Skyrme–TQRPA) for modelling the process of electron capture on nuclei in supernova environment. For a sample nucleus, {sup 56}Fe, the Skyrme–TQRPA approach is applied to analyze thermal effects on the strength function of GT{sub +} transitions which dominate electron capture at E{sub e} ≤ 30 MeV. Several Skyrme interactions are used in order to verify the sensitivity of the obtained results to the Skyrme force parameters. Finite-temperature cross sections are calculated and the results are comparedwith those of the other model calculations.

  18. Nonperturbative study of the damping of giant resonances in hot nuclei

    International Nuclear Information System (INIS)

    De Blasio, F.V.; Cassing, W.; Tohyama, M.; Bortignon, P.F.; Broglia, R.A.

    1992-01-01

    The damping of dipole and quadrupole motion in 16 O and 40 Ca at zero and finite temperature is studied including particle-particle and particle-hole interactions to all orders of perturbation. We find that the dipole dynamics in these light nuclei is well described in terms of mean-field theory (time-dependent Hartree-Fock), while the quadrupole motion is strongly damped through the coupling to more complicated configurations. Both the centroid and the damping width of the quadrupole and dipole giant resonances show a clear stability with temperature as a consequence of the weakening of the interaction, which contrasts with the increase of the phase space

  19. Hot nuclei production in Ar+Ag reactions at 50 and 70 MeV/u: limits of decay standard mode

    International Nuclear Information System (INIS)

    Vient, E.

    1992-04-01

    The experiment discussed in this thesis is devoted to the study of hot nuclei produced in the Ar + Ag collisions at 50 and 70 MeV per nucleon. Special emphasis has been given to the standard decay of these nuclei, i.e. to the sequential evaporation process leading to a heavy residue. The experimental set up has been triggered by a residue detector and all the evaporated light charged particles have been detected in a large area set up covering nearly the whole space. It has been possible to sort all the detected particles and to isolate those evaporated from the initial hot nuclei, the initial characteristics of which have been reconstructed. Two important features have been stressed: - A shot nuclei can sustain an excitation energy of 6 MeV/a and a temperature of 8 MeV without disintegrating completely. - The distributions of excitation energy stored at 50 and 70 MeV/nucleon are similar. This result can refled either an entrance channel property or a hot nuclei behaviour. Further results obtained in this work give arguments supporting the first interpretation

  20. Description of rotational excitations of odd nuclei by the method of projection

    International Nuclear Information System (INIS)

    Mazepus, V.V.

    1981-01-01

    We have carried out a projection on the angular-momentum operator eigenspace for deformed nuclei. The space of the trial wave functions is chosen to be broader than in the ordinary projection approach. It is shown that this method of projection leads to the particle + rotor model but not to the cranking model. A comparison is made with the method of approximate projection

  1. Search for the characters of chiral rotation in excited bands for the idea chiral nuclei with A ∼ 130

    International Nuclear Information System (INIS)

    Chen Qibo; Yao Jiangming; Meng Jie; Zhang Shuangquan; Qi Bin

    2010-01-01

    Since the occurrence of chirality was originally suggested in 1997 by Frauendorf and Meng [1] and experimentally observed in 2001 [2] , the investigation of chiral symmetry in atomic nuclei becomes one of the most important topics in nuclear physics. More and more chiral doublet bands [3-7] in atomic nuclei [8] have been reported. There are also many discussions about the fingerprints of chirality. In the pioneer paper [1] , the two lowest near degenerate bands given by the particle-rotor model (PRM) are interpreted as chiral doublet bands. If the nucleus has chiral geometry with proper configuration, the character of chiral rotation may appear not only in the two lowest bands, but also in the other bands. Therefore, it is interesting to search for the character of chiral rotation, Based on the PRM model with configuration corresponding to A ∼ 130 mass region, we examine the theoretical spectroscopy of higher excited bands (band3, band4, band5 and band6) beyond the two lowest bands (bandl and band2), including energies, spin-alignments, projection of total angular momentum and electromagnetic transition probabilities. The results show that band3 and band4 have characters of chirality in some spin region. (authors)

  2. Hot zone evolution and pre-equilibrium emission in interactions between nuclei

    International Nuclear Information System (INIS)

    Jakobsson, B.; Karlsson, L.

    1990-01-01

    The evolution of the hot- and cold zones in intermediate energy nucleus-nucleus collisions by means of spherically expanding volumes and transport equations based on the Fermi-Dirac equation of state is described. Though the dynamical evolution of the collision is similar to that in Vlasov-Uehling-Uhlenbeck (VUU) calculations, some differences in the spectral shapes of emitted nucleons are found. The pre-equilibrium particle emission, prior to the breakup- or to the evaporation stage is always found to be an important contribution to the nucleon spectra which show reasonable agreement with data. (orig.)

  3. Thermal multifragmentation of hot nuclei and liquid-fog phase transition

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Duginova, E.V.

    2002-01-01

    Multiple emission of intermediate-mass fragments in the collisions of protons (up to 8.1 GeV), 4 He(4 and 14.6GeV) and 12 C(22.4 GeV) on Au has been studied with the 4π-setup FASA. In all cases thermal multifragmentation of the hot and diluted target spectator takes place. The fragment multiplicity and charge distributions are well described by the combined model including the modified intranuclear cascade followed by the statistical multibody decay of the hot system. IMF-IMF correlation study supports this picture giving very short time scale of the process (τ≤70fm/c). This decay process can be interpreted as the first order nuclear liquid-fog phase transition inside the spinodal region. The evolution of the mechanism of thermal multifragmentation with increasing projectile mass was investigated. The onset of the radial collective flow was observed for heavier projectiles. The analysis reveals the information on the fragment space distribution inside the break-up volume: heavier IMF are formed predominantly in the interior of the fragmenting nucleus possibly due to the density gradient

  4. Thermal Multifragmentation of Hot Nuclei and Liquid-Fog Phase Transition

    CERN Document Server

    Karnaukhov, V A; Duginova, E V; Petrov, L A; Rodionov, V K; Oeschler, H; Budzanowski, A; Karcz, W; Janicki, M; Bochkarev, O V; Kuzmin, E A; Chulkov, L V; Norbeck, E; Botvina, A S

    2002-01-01

    Multiple emission of intermediate-mass fragments in the collisions of protons (up to 8.1 GeV), ^{4}He (4 and 14.6 GeV) and ^{12}C (22.4 GeV) on Au has been studied with the 4\\pi-setup FASA. In all cases thermal multifragmentation of the hot and diluted target spectator takes place. The fragment multiplicity and charge distributions are well described by the combined model including the modified intranuclear cascade followed by the statistical multibody decay of the hot system. IMF-IMF correlation study supports this picture giving very short time scale of the process (\\tau\\le 70 fm/c). This decay process can be interpreted as the first order nuclear liquid-fog phase transition inside the spinodal region. The evolution of the mechanism of thermal multifragmentation with increasing projectile mass was investigated. The onset of the radial collective flow was observed for heavier projectiles. The analysis reveals the information on the fragment space distribution ins! ide the break-up volume: heavier IMF are for...

  5. Critical temperature for shape transition in hot nuclei within covariant density functional theory

    Science.gov (United States)

    Zhang, W.; Niu, Y. F.

    2018-05-01

    Prompted by the simple proportional relation between critical temperature for pairing transition and pairing gap at zero temperature, we investigate the relation between critical temperature for shape transition and ground-state deformation by taking even-even Cm-304286 isotopes as examples. The finite-temperature axially deformed covariant density functional theory with BCS pairing correlation is used. Since the Cm isotopes are the newly proposed nuclei with octupole correlations, we studied in detail the free energy surface, the Nilsson single-particle (s.p.) levels, and the components of s.p. levels near the Fermi level in 292Cm. Through this study, the formation of octupole equilibrium is understood by the contribution coming from the octupole driving pairs with Ω [N ,nz,ml] and Ω [N +1 ,nz±3 ,ml] for single-particle levels near the Fermi surfaces as it provides a good manifestation of the octupole correlation. Furthermore, the systematics of deformations, pairing gaps, and the specific heat as functions of temperature for even-even Cm-304286 isotopes are discussed. Similar to the relation between the critical pairing transition temperature and the pairing gap at zero temperature Tc=0.6 Δ (0 ) , a proportional relation between the critical shape transition temperature and the deformation at zero temperature Tc=6.6 β (0 ) is found for both octupole shape transition and quadrupole shape transition for the isotopes considered.

  6. Can we really measure the internal energy of hot nuclei with a 4 π detection array?

    International Nuclear Information System (INIS)

    Vient, E.; Genouin-Duhamel, E.; Steckmeyer, J.C.

    2001-10-01

    The second generation of high quality detection arrays gave hope to nuclear physicists to finally obtain an experimental equation of state of nuclear matter. In spite of this progress, the measurement of the internal energy of a hot nucleus remains a very difficult task. This paper illustrates this difficulty by a methodological study of a classical technique of excitation energy measurement used in the Fermi energy range. The aim of this study is to verify the validity, the accuracy and the experimental limits of these measurements. It is shown that it is difficult to have a real experimental mastery of the source reconstruction and calorimetry at least for limited bombarding energies and violent collisions. (authors)

  7. Can we really measure the internal energy of hot nuclei with a 4 {pi} detection array?

    Energy Technology Data Exchange (ETDEWEB)

    Vient, E.; Genouin-Duhamel, E.; Steckmeyer, J.C. [and others

    2001-10-01

    The second generation of high quality detection arrays gave hope to nuclear physicists to finally obtain an experimental equation of state of nuclear matter. In spite of this progress, the measurement of the internal energy of a hot nucleus remains a very difficult task. This paper illustrates this difficulty by a methodological study of a classical technique of excitation energy measurement used in the Fermi energy range. The aim of this study is to verify the validity, the accuracy and the experimental limits of these measurements. It is shown that it is difficult to have a real experimental mastery of the source reconstruction and calorimetry at least for limited bombarding energies and violent collisions. (authors)

  8. Linking partial and quasi dynamical symmetries in rotational nuclei and shell evolution in {sup 96}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Christoph

    2016-01-27

    The first part of this thesis revolves around symmetries in the sd-IBA-1. A region of approximate O(6) symmetry for the ground-state band, a partial dynamical symmetry (PDS) of type III, in the parameter space of the extended consistent-Q formalism is identified through quantum number fluctuations. The simultaneous occurrence of a SU(3) quasi dynamical symmetry for nuclei in the region of O(6) PDS is explained via the β=1, γ=0 intrinsic state underlying the ground-state band. The previously unrelated concepts of PDS and QDS are connected for the first time and many nuclei in the rare earth region that approximately satisfy both symmetry requirements are identified. Ground-state to ground-state (p, t) transfer reactions are presented as an experimental signature to identify pairs of nuclei that both exhibit O(6) PDS. In the second part of this thesis inelastic electron scattering off {sup 96}Zr is studied. The experiment was performed at the high resolution Lintott spectrometer at the S-DALINAC and covered a momentum-transfer range of 0.28 - 0.59 fm{sup -1}. Through a relative analysis using Plane Wave Born Approximation (PWBA) the B(E2;2{sup +}{sub 2}→0{sup +}{sub 1}) value is extracted without incurring the additional model dependence of a Distorted Wave Born Approximation (DWBA). By combining this result with known multipole mixing ratios and branching ratios all decay strengths of the 2{sup +}{sub 2} state are determined. A mixing calculation establishes very weak mixing (V{sub mix}=76 keV) between states of the ground-state band and those of the band build on top of the 0{sup +}{sub 2} state which includes the 2{sup +}{sub 2} state. The occurrence of these two isolated bands is interpreted within the shell model in terms of type II shell evolution.

  9. A number-projected model with generalized pairing interaction in application to rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Satula, W. [Warsaw Univ. (Poland)]|[Joint Institute for Heavy Ion Research, Oak Ridge, TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States)]|[Royal Institute of Technology, Stockholm (Sweden); Wyss, R. [Royal Institute of Technology, Stockholm (Sweden)

    1996-12-31

    A cranked mean-field model that takes into account both T=1 and T=0 pairing interactions is presented. The like-particle pairing interaction is described by means of a standard seniority force. The neutron-proton channel includes simultaneously correlations among particles moving in time reversed orbits (T=1) and identical orbits (T=0). The coupling between different pairing channels and nuclear rotation is taken into account selfconsistently. Approximate number-projection is included by means of the Lipkin-Nogami method. The transitions between different pairing phases are discussed as a function of neutron/proton excess, T{sub z}, and rotational frequency, {Dirac_h}{omega}.

  10. Theory of symmetry and of exact solution properties for fast rotating nuclei

    International Nuclear Information System (INIS)

    Heydon, B.

    1995-01-01

    We propose a study of rotating multi-fermionic systems. The method we developed is based on unitary group theory. The formalism of Gel'fand-Tsetlin is is simplified to binary calculations. With the help of operator of Casimir and physical interpretations using dichotomic symmetries (signature, parity), we show rotating Hamiltonians obey to a new quantum symmetry called P. The study of short range two-body interaction breaking weakly this symmetry, is made by using single j-shell. Nuclear interactions coupling two j-shell are introduced. This study allows us to compare ours results to experimental data for three isotopes of Zirconium. (author)

  11. On the study of rotational effects in mass asymmetric colliding nuclei at intermediate energies

    Science.gov (United States)

    Kaur, Kamaldeep; Kumar, Suneel

    2018-05-01

    The rotational dynamics has been studied for different mass asymmetric systems 49122In + 50126Sn, 48114Cs + 54134In, 40100Mo + 64148Gd, 3686Kr + 67162Ho, 3171Ga + 71177Lu, 2860Ni + 76188Os and 2450Cr + 78198 Pt for incident energies between 40 MeV/nucleon and 400 MeV/nucleon for impact parameter range 0.25 free protons have been compared successfully with IQMD model calculations. The rotational flow of free protons with increasing incident energies and elliptic flow (calculated from the fits of azimuthal distributions of free protons) dependence with energy has also been investigated.

  12. Hot and dense matter in compact stars - from nuclei to quarks

    International Nuclear Information System (INIS)

    Hempel, Matthias

    2010-01-01

    This dissertation deals with the equation of state of hot and dense matter in compact stars, with special focus on first order phase transitions. A general classification of first order phase transitions is given and the properties of mixed phases are discussed. Aspects of nucleation and the role of local constraints are investigated. The derived theoretical concepts are applied to matter in neutron stars and supernovae, in the hadron-quark and the liquid-gas phase transition. For the detailed description of the liquid-gas phase transition a new nuclear statistical equilibrium model is developed. It is based on a thermodynamic consistent implementation of relativistic mean-field interactions and excluded volume effects. With this model different equation of state tables are calculated and the composition and thermodynamic properties of supernova matter are analyzed. As a first application numerical simulations of core-collapse supernovae are presented. For the hadron-quark phase transition two possible scenarios are studied in more detail. First the appearance of a new mixed phase in a proto neutron star and the implications on its evolution. In the second scenario the consequences of the hadron-quark transition in corecollapse supernovae are investigated. Simulations show that the appearance of quark matter has clear observable signatures and can even lead to the generation of an explosion. (orig.)

  13. Hot and dense matter in compact stars - from nuclei to quarks

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Matthias

    2010-10-19

    This dissertation deals with the equation of state of hot and dense matter in compact stars, with special focus on first order phase transitions. A general classification of first order phase transitions is given and the properties of mixed phases are discussed. Aspects of nucleation and the role of local constraints are investigated. The derived theoretical concepts are applied to matter in neutron stars and supernovae, in the hadron-quark and the liquid-gas phase transition. For the detailed description of the liquid-gas phase transition a new nuclear statistical equilibrium model is developed. It is based on a thermodynamic consistent implementation of relativistic mean-field interactions and excluded volume effects. With this model different equation of state tables are calculated and the composition and thermodynamic properties of supernova matter are analyzed. As a first application numerical simulations of core-collapse supernovae are presented. For the hadron-quark phase transition two possible scenarios are studied in more detail. First the appearance of a new mixed phase in a proto neutron star and the implications on its evolution. In the second scenario the consequences of the hadron-quark transition in corecollapse supernovae are investigated. Simulations show that the appearance of quark matter has clear observable signatures and can even lead to the generation of an explosion. (orig.)

  14. Kπ=1+ pairing interaction and moments of inertia of superdeformed rotational bands in atomic nuclei

    International Nuclear Information System (INIS)

    Hamamoto, I.; Nazarewicz, W.

    1994-01-01

    The effect of the pairing interaction coming from the rotationally induced K π =1 + pair-density on the nuclear moments of inertia is studied. It is pointed out that, contrary to the situation at normal deformations, the inclusion of the K π =1 + pairing may appreciably modify the frequency dependence of the moments of inertia at superdeformed shapes

  15. Rotation of cometary nuclei: new light curves and an update of the ensemble properties of Jupiter-family comets

    Science.gov (United States)

    Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Lowry, S. C.; Fernández, Y. R.; Tubiana, C.; Fitzsimmons, A.; Hsieh, H. H.

    2017-11-01

    We report new light curves and phase functions for nine Jupiter-family comets (JFCs). They were observed in the period 2004-2015 with various ground telescopes as part of the Survey of Ensemble Physical Properties of Cometary Nuclei as well as during devoted observing campaigns. We add to this a review of the properties of 35 JFCs with previously published rotation properties. The photometric time series were obtained in Bessel R, Harris R and SDSS r΄ filters and were absolutely calibrated using stars from the Pan-STARRS survey. This specially developed method allowed us to combine data sets taken at different epochs and instruments with absolute-calibration uncertainty down to 0.02 mag. We used the resulting time series to improve the rotation periods for comets 14P/Wolf, 47P/Ashbrook-Jackson, 94P/Russell and 110P/Hartley 3 and to determine the rotation rates of comets 93P/Lovas and 162P/Siding Spring for the first time. In addition to this, we determined the phase functions for seven of the examined comets and derived geometric albedos for eight of them. We confirm the known cut-off in bulk densities at ˜0.6 g cm-3 if JFCs are strengthless. Using a model for prolate ellipsoids with typical density and elongations, we conclude that none of the known JFCs requires tensile strength larger than 10-25 Pa to remain stable against rotational instabilities. We find evidence for an increasing linear phase function coefficient with increasing geometric albedo. The median linear phase function coefficient for JFCs is 0.046 mag deg-1 and the median geometric albedo is 4.2 per cent.

  16. Preliminary evaluation of rotational Vol-oxidizer for hot cell operation - 5320

    International Nuclear Information System (INIS)

    Kim, Y.H.; Lee, J.W.; Cho, Y.Z.; Ahn, D.H.; Song, K.C.

    2015-01-01

    KAERI is developing a mechanical head-end process for pyro-processing. As a piece of the processing equipment, a vol-oxidizer that can handle several tens of kg of HM/batch is under development to supply U 3 O 8 powders to an electrolytic reduction (ER) reactor. To operate a vol-oxidizer in a hot cell, the reactor should be optimized by the mechanical design, and the vol-oxidizer should have a high hull recovery rate. In addition, a vol-oxidizer for hot cell demonstrations that handles the spent fuel of high radiation virulence in a limited space should have a small size and not scatter in its outlet. In this paper, we aim at a preliminary evaluation of a rotational vol-oxidizer for hot cell operation. To evaluate the preliminary situation, we produced a theoretical equation of an optimum reactor size, and verification tests were conducted using an acryl vessel and zircaloy-4 tube according to various weights and lengths. In addition, we predicted the terminal velocity of U 3 O 8 using the terminal velocity of SiO 2 , which will determine the optimum air flux, and through an oxidation experiment, we verified the theory form to detect the existence of U 3 O 8 powder in a discharge filter. In addition, hull separation tests were conducted using a reactor and hulls with a 50 kg HM/batch for the recovery rate of the hulls. The results indicate that we obtained an appropriate air flux so as to not cause U 3 O 8 powder dispersion from using a Stokes equation and density ratio equation prior to the demonstration. The optimum flow and experimental results of the hull separation test have been applied for the design of the demonstration oxidizer, and the operation conditions of the oxidizer were produced. (authors)

  17. The decay of hot nuclei formed in La-induced reactions at E/A=45 MeV

    International Nuclear Information System (INIS)

    Libby, B.

    1993-01-01

    The decay of hot nuclei formed in the reactions 139 La + 27 Al, 51 V, nat Cu, and 139 La were studied by the coincident detection of up to four complex fragments (Z > 3) emitted in these reactions. Fragments were characterized as to their atomic number, energy and in- and out-of-plane angles. The probability of the decay by an event of a given complex fragment multiplicity as a function of excitation energy per nucleon of the source is nearly independent of the system studied. Additionally, there is no large increase in the proportion of multiple fragment events as the excitation energy of the source increases past 5 MeV/nucleon. This is at odds with many prompt multifragmentation models of nuclear decay. The reactions 139 La + 27 Al, 51 V, nat Cu were also studied by combining a dynamical model calculation that simulates the early stages of nuclear reactions with a statistical model calculation for the latter stages of the reactions. For the reaction 139 La + 27 Al, these calculations reproduced many of the experimental features, but other features were not reproduced. For the reaction 139 La + 51 V, the calculation failed to reproduce somewhat more of the experimental features. The calculation failed to reproduce any of the experimental features of the reaction 139 La + nat Cu, with the exception of the source velocity distributions

  18. Analysis of collective excitations of rapidly rotating nuclei in an oscillator potential

    International Nuclear Information System (INIS)

    Akbarov, A.; Ignatyuk, A.V.; Mikhailov, I.N.; Molina, K.L.; Nazmitdinov, R.G.; Janssen, D.

    1981-01-01

    The spectrum of positive-parity collective excitations is analyzed in the random phase approximation for a wide range of angular momenta. The Hamiltonian of the model is taken in the form of a spherical harmonic-oscillator potential and isoscalar quadrupole forces. This model permits a description of the known data on the position of a giant quadrupole resonance for small spins and allows the variation of the resonance characteristics to be followed as the spin increases. It is shown that as the rotation velocity increases the energy of one of the branches of the resonance decreases to zero while the state remains strongly collectivized. The model also reproduces the low energy vibration mode which is related to the precession mode. The excitation energy and the B(E2) factor corresponding to this mode differ considerably from the estimates obtained in the rigid rotator model

  19. On the possibility of observing experimentally diabolic pair transfer in rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Donangelo, R; Nikam, R S; Ring, P

    1987-06-25

    We investigate the cross section for two-nucleon transfer reactions to rotational states by heavy projectiles. In particular we study the influence of the recently predicted unexpected behavior of the diabolic pair transfer amplitude. Dramatic reduction of the probabilities for two-nucleon transfer in connection with inelastic Coulomb excitation are found in the angular momentum region, where the pair transfer matrix element changes its sign.

  20. Evidence for different fission behavior of hot nuclei formed in central and peripheral collisions of 40Ar + 209Bi reaction at 25 MeV/u

    International Nuclear Information System (INIS)

    Wu Enjiu; Zheng Jiwen; Xiao Zhigang; Zhang Chun; Tan Jilian; Yin Shuzhi; Wang Sufang; Jin Genming; Yin Xu; Song Mingtao; Jin Weiyang; Peng Xingping; Li Zuyu; Wu Heyu; He Zhiyong; Jiang Dongxing; Qian Xing

    1999-01-01

    Correlated fission fragments from the reaction of 25 MeV/u 40 Ar + 209 Bi and their further correlation with α particles have been studied for peripheral and central collisions simultaneously. The excitation energy at scission deduced from post scission multiplicity is about 172.5 MeV. The fission timescale deduced from prescission multiplicity is about 4 x 10 -21 s. Systematic analysis of the mass and energy distributions of fission fragments as a function of the initial temperature of hot fissioning nuclei reveals the existence of different fission behavior of hot nuclei formed in central and peripheral collisions. Experimental data demonstrate the change of fission behavior at T∼4 MeV

  1. Possible conservation of the K-quantum number in excited rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, A.; Bosetti, P.; Leoni, S. [Universita di Milano (Italy)]|[INFN, Milano (Italy)] [and others

    1996-12-31

    The {gamma}-cascades feeding into low-K and high-K bands in the nucleus {sup 163}Er are investigated by analyzing variances and covariances of the spectrum fluctuations. The study of the covariance between pairs of gated spectra reveals that the cascades feeding into the low-K bands are completely different from those feeding the high-K bands. In addition, the number of decay paths obtained analyzing the ridge and the valley in spectra gated by high-K transitions is different than that deduced from the total spectrum. This result is well reproduced with microscopic calculations of strongly interacting bands. It is concluded that the K-selection rules are effective for the excited rotational bands within the angular momentum region probed by the experiment, 30{Dirac_h} {le} I {le} 40{Dirac_h}.

  2. LOOKING FOR A PULSE: A SEARCH FOR ROTATIONALLY MODULATED RADIO EMISSION FROM THE HOT JUPITER, {tau} BOOeTIS b

    Energy Technology Data Exchange (ETDEWEB)

    Hallinan, G.; Bourke, S. [Cahill Center for Astrophysics, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States); Sirothia, S. K.; Ishwara-Chandra, C. H. [National Centre for Radio Astrophysics, TIFR, Post Bag 3, Pune University Campus, Pune 411007 (India); Antonova, A. [Department of Astronomy, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria); Doyle, J. G. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Hartman, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Golden, A. [Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2013-01-01

    Hot Jupiters have been proposed as a likely population of low-frequency radio sources due to electron cyclotron maser emission of similar nature to that detected from the auroral regions of magnetized solar system planets. Such emission will likely be confined to specific ranges of orbital/rotational phase due to a narrowly beamed radiation pattern. We report on GMRT 150 MHz radio observations of the hot Jupiter {tau} Booetis b, consisting of 40 hr carefully scheduled to maximize coverage of the planet's 79.5 hr orbital/rotational period in an effort to detect such rotationally modulated emission. The resulting image is the deepest yet published at these frequencies and leads to a 3{sigma} upper limit on the flux density from the planet of 1.2 mJy, two orders of magnitude lower than predictions derived from scaling laws based on solar system planetary radio emission. This represents the most stringent upper limits for both quiescent and rotationally modulated radio emission from a hot Jupiter yet achieved and suggests that either (1) the magnetic dipole moment of {tau} Booetis b is insufficient to generate the surface field strengths of >50 G required for detection at 150 MHz or (2) Earth lies outside the beaming pattern of the radio emission from the planet.

  3. New properties of giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1991-01-01

    Studies on the giant dipole resonance in very hot nuclei investigated in heavy ion-induced particle-γ coincidence experiments are reviewed. A signature is found in the γ-decay of excited nuceli which shows direct decay of the giant dipole resonance. This provides a new dimension in giant resonance studies and the possibility to study the dependence of giant resonance energy, width and sum rule strength on excitation energy and rotation of the system. Further, the fact that the giant resonance splits in deformed nuclei provides a unique way to get information on the shape of hot nuclei. First results are obtained on the following questions: (i)What is the nuclear shape at high temperature (T≥2 MeV)? (ii)Is there a phase transition in the nuclear shape at T∼1.7 MeV? (iii)Does motional narrowing exist in hot nuclei? (author). 19 refs., 11 figs

  4. Description of low-lying states in odd-odd deformed nuclei taking account of the coupling with core rotations and vibrations. 1

    International Nuclear Information System (INIS)

    Kvasil, J.; Hrivnacova, I.; Nesterenko, V.O.

    1990-01-01

    The microscopic approach for description of low-lyinig states in deformed odd-odd nuclei is formulated as a generalization of the quasiparticle-phonon model (QPM) with including the rotational degrees of freedom and n-p interaction between external nucleons into the QPM. In comparison with other models, the approach proposed includes all three the most important effects coupling with rotational and vibrational degrees of freedom of doubly-even core and p-n interaction mentioned above even treates them on the microscopic base. 36 refs

  5. Formation and de-excitation of very hot nuclei in Ar + Au collisions at 30 and 60 MeV/nucleon

    International Nuclear Information System (INIS)

    Hamdani, T.

    1993-10-01

    The study of the formation and the de-excitation of very hot nuclei by using collisions between Ar and Au at 30 and 60 MeV/u is presented in this work. The detection system consisted of three multidetectors for fragments (DELF) or light particles (TONNEAU+MUR) plus two groups of four detectors (Silicium, CsI). This system and the triggering conditions adopted allowed the selection of two classes of events: semiperipheral collisions and central collisions. The studies presented using global variables, show clearly that the fragments produced in the reactions are emitted from an equilibrated source. Hence, an event generator based on the statistical model was employed to verify the method of calculation of the excitation energy of the source. It also provides information concerning experimental biases and the sensitivity of some of the global variables used in the experimental analysis. A detailed study of the temperatures of hot nuclei is presented using the data recorded with the CsI detectors. The temperatures measured reached up to 7 MeV for the reaction at 60 MeV/u. (orig.)

  6. Properties and decay modes of hot nuclei produced in the reaction: 36Ar on 58Ni and detected with INDRA device

    International Nuclear Information System (INIS)

    Nalpas, L.

    1997-01-01

    Hot nuclei are formed in heavy ion collisions covering the Fermi energy domain. According to the excitation energy deposited into these nuclei, several de-excitation processes can be observed, in particular the emission of complex fragments (Z ≥ 3) which remains poorly understood. The GANIL facility offers the possibility to cover the excitation function for the Ar on Ni reaction over a broad energy range from 32 to 95 MeV/u where the hot nuclei evolve from classical 'evaporation' to complete 'vaporization' into light particles (neutrons, isotopes of H, He). The study of reaction mechanisms shows that from peripheral to central collisions the total cross section is dominated by binary dissipative collisions. Both partners coming from well-characterized events with the INDRA detector are reconstructed using the 'Minimum Spanning Tree' method. Thus excitation energy up to 20 MeV/A are reached in the most violent collisions at the highest bombarding energy. The deposited energy is not shared in the mass ratio between the quasi-projectile and the quasi-target, the quasi-projectile being hotter. For total excitation energies ranging roughly from 2 to 8 MeV/A, the proportion of 'multifragmentation' events increases to reach a plateau at about 10 MeV/A due to the rising probability to have complete 'vaporization' of the system above 8 MeV/A. The steady increase of the temperature extracted from the double isotopic He-Li ratios with excitation energy for the quasi-projectile suggests a progressive evolution of the de-excitation processes as predicted by statistical models. No signal of first order liquid-gas phase transition is seen in our data. (author)

  7. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VIII. Faraday Rotation in Parsec-scale AGN Jets

    Science.gov (United States)

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.; Pushkarev, Alexander B.; Savolainen, Tuomas

    2012-10-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  8. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS

    International Nuclear Information System (INIS)

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.; Pushkarev, Alexander B.; Savolainen, Tuomas

    2012-01-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  9. THE AKARI 2.5-5.0 μm SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOR, LINE RATIO, AND HOT DUST TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohyeong; Im, Myungshin; Kim, Ji Hoon; Jun, Hyunsung David; Lee, Seong-Kook [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Woo, Jong-Hak; Lee, Hyung Mok; Lee, Myung Gyoon [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Nakagawa, Takao; Matsuhara, Hideo; Wada, Takehiko; Takagi, Toshinobu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Oyabu, Shinki [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Ohyama, Youichi, E-mail: dohyeong@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2015-01-01

    We present 2.5-5.0 μm spectra of 83 nearby (0.002 < z < 0.48) and bright (K < 14 mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0 μm spectral region contains emission lines such as Brβ (2.63 μm), Brα (4.05 μm), and polycyclic aromatic hydrocarbons (3.3 μm), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ∼1100 K and ∼220 K, respectively, rather than the commonly cited hot dust temperature of 1500 K.

  10. Formation and decay of hot nuclei in 40 Ca + ''40 Ca at 35 MeV/nucleon

    International Nuclear Information System (INIS)

    Planeta, R.; Gawlikowicz, W.; Grotowski, K.

    2000-01-01

    Properties of multifragmentation of 'hot sources' produced in the 40 Ca + 40 Ca reaction have been studied at a beam energy of 35 MeV/nucleon. Two signatures of prompt multifragmentation which make use of special features of particle emission from the 'freeze out volume' together with an analysis of the reduced relative velocity between pairs of intermediate mass fragments indicate the presence of a transition from the sequential decay to prompt multifragmentation at an excitation energy of about 3 MeV/nucleon. (authors)

  11. Theory of symmetry and of exact solution properties for fast rotating nuclei; Theorie de la symetrie et des proprietes de solutions exactes pour les noyaux en rotation rapide

    Energy Technology Data Exchange (ETDEWEB)

    Heydon, B

    1995-07-19

    We propose a study of rotating multi-fermionic systems. The method we developed is based on unitary group theory. The formalism of Gel`fand-Tsetlin is is simplified to binary calculations. With the help of operator of Casimir and physical interpretations using dichotomic symmetries (signature, parity), we show rotating Hamiltonians obey to a new quantum symmetry called P. The study of short range two-body interaction breaking weakly this symmetry, is made by using single j-shell. Nuclear interactions coupling two j-shell are introduced. This study allows us to compare ours results to experimental data for three isotopes of Zirconium. (author). 155 refs.

  12. Neutron emission spectra and level density of hot rotating 132Sn

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2008-01-01

    The neutron emission spectrum of the highly excited compound nuclear system 132 Sn is investigated at high spin. The doubly magic nucleus 132 Sn undergoes a shape transition at high angular momentum which affects the nuclear level density and neutron emission probability considerably. The interplay of temperature, shape, deformation and rotational degrees of freedom and their influence on neutron emission is emphasized. We predict an enhancement of nucleonic emission at those spins where the nucleus suffers a transition from a spherical to deformed shape. (author)

  13. RADIO ACTIVE GALAXY NUCLEI IN GALAXY CLUSTERS: HEATING HOT ATMOSPHERES AND DRIVING SUPERMASSIVE BLACK HOLE GROWTH OVER COSMIC TIME

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.-J.; McNamara, B. R. [Department of Physics and Astronomy, University of Waterloo, 200 University Ave. W., Waterloo, Ontario N2L 3G1 (Canada); Nulsen, P. E. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138-1516 (United States)

    2013-01-20

    We estimate the average radio active galactic nucleus (AGN, mechanical) power deposited into the hot atmospheres of galaxy clusters over more than three quarters of the age of the Universe. Our sample was drawn from eight major X-ray cluster surveys and includes 685 clusters in the redshift range 0.1 < z < 0.6 that overlap the area covered by the NRAO VLA Sky Survey (NVSS). The radio-AGN mechanical power was estimated from the radio luminosity of central NVSS sources, using the relation of Cavagnolo et al. that is based on mechanical powers determined from the enthalpies of X-ray cavities. We find only a weak correlation between radio luminosity and cluster X-ray luminosity, although the most powerful radio sources reside in luminous clusters. The average AGN mechanical power of 3 Multiplication-Sign 10{sup 44} erg s{sup -1} exceeds the X-ray luminosity of 44% of the clusters, indicating that the accumulation of radio-AGN energy is significant in these clusters. Integrating the AGN mechanical power to redshift z = 2.0, using simple models for its evolution and disregarding the hierarchical growth of clusters, we find that the AGN energy accumulated per particle in low luminosity X-ray clusters exceeds 1 keV per particle. This result represents a conservative lower limit to the accumulated thermal energy. The estimate is comparable to the level of energy needed to 'preheat' clusters, indicating that continual outbursts from radio-AGN are a significant source of gas energy in hot atmospheres. Assuming an average mass conversion efficiency of {eta} = 0.1, our result implies that the supermassive black holes that released this energy did so by accreting an average of {approx}10{sup 9} M {sub Sun} over time, which is comparable to the level of growth expected during the quasar era.

  14. Active Galactic Nuclei Feedback and the Origin and Fate of the Hot Gas in Early-type Galaxies

    Science.gov (United States)

    Pellegrini, Silvia; Ciotti, Luca; Negri, Andrea; Ostriker, Jeremiah P.

    2018-04-01

    A recent determination of the relationships between the X-ray luminosity of the ISM (L X) and the stellar and total mass for a sample of nearby early-type galaxies (ETGs) is used to investigate the origin of the hot gas, via a comparison with the results of hydrodynamical simulations of the ISM evolution for a large set of isolated ETGs. After the epoch of major galaxy formation (after z ≃ 2), the ISM is replenished by stellar mass losses and SN ejecta, at the rate predicted by stellar evolution, and is depleted by star formation; it is heated by the thermalization of stellar motions, SNe explosions, and the mechanical (from winds) and radiative AGN feedback. The models agree well with the observed relations, even for the largely different L X values at the same mass, thanks to the sensitivity of the gas flow to many galaxy properties; this holds for models including AGN feedback, and those without. Therefore, the mass input from the stellar population is able to account for a major part of the observed L X; and AGN feedback, while very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping low star formation and the black hole mass, does not dramatically alter the gas content originating in stellar recycled material. These conclusions are based on theoretical predictions for the stellar population contributions in mass and energy, and on a self-consistent modeling of AGN feedback.

  15. Investigation of the rotational nuclei 167168Hf and 170171W and the shell-model nucleus 26Mg

    International Nuclear Information System (INIS)

    Arciszewski, H.F.R.

    1984-01-01

    Two gamma-gamma coincidence experiments on neighbouring nuclei that exhibit the backbending phenomenon are described. The first experiment performed with the cyclotron of the KVI at Groningen is an investigation of 167 Hf and 168 Hf, whereas in the second experiment, performed at the cyclotron facility of Louvain University, high spin states are studied and compared with predictions of the cranked shell model. A new method for the correction of the large background of Compton-scattered events is described. Apart from this, an investigation of the single particle (d,p) transfer reaction at 26 Mg has been performed with the van de Graaff tandem accelerator at 14 MeV. Specroscopic factors are presented for many levels up to an excitation energy of 8 MeV. Several new spin assignments could be made. (Auth.)

  16. Effects of rotation on the stability of nuclei under fission and the possibility of fusion in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Kumar, K.

    1975-06-01

    The two-center shell model for fission is extended to include the effects of nuclear rotation or angular momentum J. The principle of minimization of total nuclear energy with respect to a constraint on J leads to an effective potential energy which depends on J as well as moment of inertia. This effective potential energy is minimized with respect to nuclear shape variables, neutron pairing energy gap, and proton pairing energy gap for each J value. The resulting potential minima, fission barriers, and moments of inertia are quite sensitive to J. Results are given for 208 82 Pb, 240 94 Pu, and for a super-heavy nucleus, 298 114 X. Microscopic calculations of the critical angular momentum (at which the fission barrier vanishes) are compared with the rotating liquid drop calculations of Cohen, Plasil, and Swiatecki. The influence of these results on the possibility of fusion in heavy-ion reactions is discussed. (5 figures, 6 tables) (U.S.)

  17. Temperature and excitation energy of hot nuclei in the reaction of 40Ar+197Au at 25 MeV/nucleon

    International Nuclear Information System (INIS)

    Wu, H.; Jin, G.; Li, Z.; Dai, G.; Qi, Y.; He, Z.; Luo, Q.; Duan, L.; Wen, W.; Zhang, B.

    1997-01-01

    The coincidence measurements between heavy fission fragments and light charged particles with Z ≤2 were carried out for the 40 Ar+ 197 Au reaction at 25 MeV/nucleon, to study the properties of hot nuclei in heavy ion induced reactions. The linear momentum transfers (LMTs) were deduced from the folding angle and the time-of-flight difference between two fission fragments of heavy residues. The relationship of the nuclear temperature (slope parameter of the energy spectrum) and the excitation energy was determined independently from the measurement of the kinetic energy spectra in the frames of the emitting sources and from the LMT analysis. Both the temperature and the excitation energy increase with decreasing impact parameter, which suggests that a plateau temperature of 5.5 MeV is reached at an excitation energy of 3.1 MeV/nucleon. The result was also compared with various statistical models that explain the plateau by the multifragmentation process, where the excitation energy is assumed to be stored in compression and expansion effects. (orig.)

  18. Formation and decay of hot nuclei in the 64Zn + 48Ti reactions from 35 to 79 MeV/u

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.

    1995-01-01

    The 4π plastic multidetector of NAUTILUS has been used to detect charged products of the collisions in the reactions of 64 Zn with 48 Ti from 35 to 79 MeV/u. Well measured events were selected and sorted as a function of the impact parameter. The primary mass of the fast source as well as its excitation energy have been carefully reconstructed from the characteristics of the disintegration products after separation of both the pre-equilibrium and the target emission. The isotropic emission of particles in the frame of the primary hot nucleus suggests that thermal equilibrium has been achieved. The excitation energy increases from peripheral to central collisions, with values reaching more than 10 MeV/u at the highest bombarding energy. Experimental multiplicities and relative velocity distributions of intermediate mass fragments will be compared to theoretical predictions of both statistical and dynamical models. Differences between data and calculations suggest the existence of a radial expansion of the hottest nuclei

  19. Numerical Investigation on the Influence of Hot Streak Temperature Ratio in a High-Pressure Stage of Vaneless Counter-Rotating Turbine

    Directory of Open Access Journals (Sweden)

    Zhao Qingjun

    2007-01-01

    Full Text Available The results of recent studies have shown that combustor exit temperature distortion can cause excessive heat load of high-pressure turbine (HPT rotor blades. The heating of HPT rotor blades can lead to thermal fatigue and degrade turbine performance. In order to explore the influence of hot streak temperature ratio on the temperature distributions of HPT airfoil surface, three-dimensional multiblade row unsteady Navier-Stokes simulations have been performed in a vaneless counter-rotating turbine (VCRT. The hot streak temperature ratios from 1.0 (without hot streak to 2.4 were used in these numerical simulations, including 1.0, 1.2, 1.6, 2.0, and 2.4 temperature ratios. The hot streak is circular in shape with a diameter equal to 25% of the span. The center of the hot streak is located at 50% of span and 0% of pitch (the leading edge of the HPT stator vane. The predicted results show that the hot streak is relatively unaffected as it migrates through the HPT stator. The hot streak mixes with the vane wake and convects towards the pressure surface (PS of the HPT rotor when it moves over the vane surface of the HPT stator. The heat load of the HPT rotor increases with the increase of the hot streak temperature ratio. The existence of the inlet temperature distortion induces a thin layer of cooler air in the HPT rotor, which separates the PS of the HPT rotor from the hotter fluid. The numerical results also indicating the migration characteristics of the hot streak in the HPT rotor are predominated by the combined effects of secondary flow and buoyancy. The combined effects that induce the high-temperature fluid migrate towards the hub on the HPT rotor. The effect of the secondary flow on the hotter fluid increases as the hot streak temperature ratio is increased. The influence of buoyancy is directly proportional to the hot streak temperature ratio. The predicted results show that the increase of the hot streak temperature ratio trends to increase

  20. Transfer involving deformed nuclei

    International Nuclear Information System (INIS)

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs

  1. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  2. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... across the fission barrier is very small or in other words, the fission barrier is much ... of this shape evolution, the gross features of the fissioning nucleus can be described ..... [7] Y Abe, C Gregoire and H Delagrange, J. Phys.

  3. Isospin effects and hot nuclei

    International Nuclear Information System (INIS)

    Gagnon-Moisan, Francis

    2010-01-01

    The rapid decomposition (t≤10 -21 seconds) of a nucleus into multiple fragments, named multifragmentation, is associated to a liquid-gas phase transition. For many years, physicists have tried to obtain an experimental proof of this behaviour. It has been suggested that, to achieve this, one could observe the particular signature of the mechanism of such a transition: the spinodal decomposition, through the production of equal size fragments. A method is that of charge correlation using intrinsic probabilities. The 5. campaign for the INDRA multidetector which took place at GANIL was aimed at obtaining a high number of events, in order to sign the spinodal decomposition with a high confidence level. The chosen systems were 124 Xe+ 112 Sn and 136 Xe+ 124 Sn at beam energies of 32 and 45 AMeV. The acquired statistics allowed to confirm the existence of events with very narrow charge distributions, which agrees with the spinodal decomposition hypothesis. The study of 124 , 136 Xe+ 112 , 124 Sn at 32 and 45 AMeV shows the impact of neutron density on the exit channel: a neutron-rich system produces more fragments and fewer particles than a system initially neutron-poor. Finally, the modification on 27 modules from the INDRA multidetector allows the isotopic resolution of fragments up to oxygen (Z=8). This provides the information required for the study of the N/Z ratio of fragments versus their kinetic energy with the goal of obtaining an experimental constraint on the symmetry term of the equation of state. (author)

  4. The ATLAS(3D) project : XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    2013-01-01

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet,

  5. The ATLAS3D project - XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet,

  6. Pseudomagic nuclei

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1979-01-01

    It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references

  7. Formation and de-excitation of hot nuclei in reactions induced by proton beams (475 MeV and 2 GeV) and {sup 3}He beam (2 GeV); Formation et desexcitation des noyaux chauds dans les reactions induites par des faisceaux de protons (475 MeV et 2 GeV) et d`{sup 3}He(2 GeV)

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, X.

    1995-04-01

    We are studying the formation and the de-excitation of hot nuclei created in reactions induced by light high energy projectiles. These reactions, described in a two step model: an intranuclear cascade followed by an evaporation phase, produce nuclei in which the collective modes (compression, rotation, deformation) are weakly excited. By measuring the neutron multiplicities, event by event with ORION, and the light charged particle energies and multiplicities one can evaluate the excitation energy distribution of the nuclei. At the same time, theoretical simulations are carried out using the intranuclear cascade code developed by J. Cugnon and the statistical de-excitation code GEMINI. The good agreement with experimental results indicate that 10% of the p-nucleus interactions lead to temperatures greater than 5 MeV. The observation of the fission of a nucleus with a temperature close to 5 MeV shows that the nucleus behaves as a set of bound nucleons and, that the temperature stability limit is not yet reached. The observed decline of fission probability at high excitation energies is most likely to be correlated to the appearance of an other de-excitation process (evaporation residues emission or multifragmentation) which could not be experimentally detected. Finally, in the last chapter, we briefly present the principle of transmutation for long-lived nuclear waste with a proton accelerator and underline the interest of the present work in such studies. (author). 54 refs., 80 figs., 13 tabs.

  8. Critical-point nuclei

    International Nuclear Information System (INIS)

    Clark, R.M.

    2004-01-01

    It has been suggested that a change of nuclear shape may be described in terms of a phase transition and that specific nuclei may lie close to the critical point of the transition. Analytical descriptions of such critical-point nuclei have been introduced recently and they are described briefly. The results of extensive searches for possible examples of critical-point behavior are presented. Alternative pictures, such as describing bands in the candidate nuclei using simple ΔK = 0 and ΔK = 2 rotational-coupling models, are discussed, and the limitations of the different approaches highlighted. A possible critical-point description of the transition from a vibrational to rotational pairing phase is suggested

  9. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  10. ExoMol molecular line lists - XVII. The rotation-vibration spectrum of hot SO3

    DEFF Research Database (Denmark)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2016-01-01

    Sulphur trioxide (SO3) is a trace species in the atmospheres of the Earth and Venus, as well as being an industrial product and an environmental pollutant. A variational line list for 32S16O3, named UYT2, is presented containing 21 billion vibration-rotation transitions. UYT2 can be used to model...

  11. Relaxation processes in rotational motion

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1986-01-01

    At few MeV above the yrast line the normally strong correlations among γ-ray energies in a rotational sequence become weaker. This observation can be interpreted as evidence for the damping of rotational motion in hot nuclei. It seems possible to relate the spreading width of the E2-rotational decay strength to the spread in frequency Δω 0 of rotational bands. The origin of these fluctuations is found in: (1) fluctuations in the occupation of special single-particle orbits which contribute a significant part of the total angular momentum; and (2) fluctuations in the moment of inertia induced by vibrations of the nuclear shape. Estimates of Δω 0 done making use of the hundred-odd known discrete rotational bands in the rare-earth region lead, for moderate spin and excitation energies (I ≅ 30 and U ≅ 3 to 4 MeV), to rotational spreading widths of the order of 60 to 160 keV in overall agreement with the data. 24 refs

  12. Rotation-aligned coupling and axial asymmetry in the neutron deficient lanthanum nuclei. Progress report, May 15, 1975--May 14, 1976

    International Nuclear Information System (INIS)

    Zganjar, E.F.

    1976-01-01

    The work on the neutron deficient nuclei in the Au region was brought nearer to completion, and systems necessary to extend the investigation to the La nuclei were developed. Twelve reports, including five journals articles, were generated during the reporting period, and the principal investigator received invitations to two international conferences. The LSU nuclear spectroscopy group was given a good deal of support and added strength (by the Department of Physics and Astronomy) through the addition of a nuclear structure theorist and a departmentally sponsored postdoctoral position

  13. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  14. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  15. Exotic nuclei

    International Nuclear Information System (INIS)

    Villari, A.C.C.

    1990-01-01

    The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)

  16. Fission barriers of light nuclei

    International Nuclear Information System (INIS)

    Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.

    1989-01-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems

  17. Hot nuclei production and deexcitation in heavy ions induced reactions on medium mass targets in the 10-84 MeV/nucleon energy domain

    International Nuclear Information System (INIS)

    Lleres, A.

    1988-01-01

    Velocity, angular distributions and total cross sections for heavy residues produced in the reactions 12 C, 14 N, 20 Ne, 40 Ar + 124 Sn have been measured in the 10-84 MeV/nucleon incident energy range using catchers technique in association with off-line gamma-activity spectroscopy. The observed reaction products are interpreted as evaporation residues from equilibrated systems formed by complete or incomplete fusion of the projectile and target nuclei. From the velocities and residual masses measured at forward angles, the linear momentum transfers and excitation energies associated with the intermediate systems are estimated using simple fusion-evaporation models and are next compared to the predictions of the preequilibrium and Fermi jets models. Energy, angular, charge and charge correlation distributions for intermediate mass fragments emitted in the reaction 32 S + nat Ag at 30 MeV/nucleon were also measured using gaseous and silicon detectors. The energy and angular distributions indicate that both equilibrated and non-equilibrated emitting sources are present. The equilibrium emission is attributed to the deexcitation of systems produced by incomplete fusion of the projectile and target nuclei. The charge correlation distributions are consistent with an asymmetric fission decay process. The linear momentum transfer and excitation energy associated with the equilibrated source are estimated using a simple fusion-fission model [fr

  18. Microscopic description of average level spacing in even-even nuclei

    International Nuclear Information System (INIS)

    Huong, Le Thi Quynh; Hung, Nguyen Quang; Phuc, Le Tan

    2017-01-01

    A microscopic theoretical approach to the average level spacing at the neutron binding energy in even-even nuclei is proposed. The approach is derived based on the Bardeen-Cooper-Schrieffer (BCS) theory at finite temperature and projection M of the total angular momentum J , which is often used to describe the superfluid properties of hot rotating nuclei. The exact relation of the J -dependent total level density to the M -dependent state densities, based on which the average level spacing is calculated, was employed. The numerical calculations carried out for several even-even nuclei have shown that in order to reproduce the experimental average level spacing, the M -dependent pairing gaps as well as the exact relation of the J -dependent total level density formula should be simultaneously used. (paper)

  19. Neutron-capture reactions by stable and unstable neutron-rich nuclei and their relevance for nucleosynthesis in hot and explosive astrophysical scenarios

    International Nuclear Information System (INIS)

    Hofinger, R.

    1997-10-01

    This thesis deals on the one hand with neutron-capture reactions by carbon-, nitrogen-, oxygen- and sulfur-isotopes, and on the other hand with the two-step processes 4 He(2n, γ) 6 He and 9 Li(2n, γ) 11 Li. Some of the involved carbon-, nitrogen- and oxygen-isotopes possess neutron-halos characterized by the unexpected large radial extension of the nuclear matter density distribution. Special attention is paid to the halo properties in the calculation of the direct neutron capture cross section. For the determination of the nuclear structure, models are used, when no experimental information is available. The results for the reaction rates are compared to previously used rates. The rates obtained in this work are partly orders of magnitude higher than the previously used reaction rates. The reaction rates for the two-step processes are on the one hand calculated assuming a two-step process, on the other hand from genuine three-body models for the process of photodisintegration of the nuclei 6 He and 11 Li. It turns out that the calculations assuming a trio-step process underestimate the reaction rates by orders of magnitude. The influence of the reaction rate for the reaction 4 He(2n, γ) 6 He and the formation of 12 C is examined in a nuclear reaction network under conditions which are typical for the α- process in supernovae of type II. It turns out that under these conditions the influence of the reaction 4 He(2n, γ) 6 He is negligible on the formation of 12 C. (author)

  20. Quantum algebra U{sub qp}(u{sub 2}) and application to the rotational collective dynamics of the nuclei; Algebre quantique U{sub qp}(u{sub 2}) et application a la dynamique collective de rotation dans les noyaux

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, R

    1995-09-22

    This thesis concerns some aspects of new symmetries in Nuclear Physics. It comprises three parts. The first one is devoted to the study of the quantum algebra U{sub qp}(u{sub 2}). More precisely, we develop its Hopf algebraic structure and we study its co-product structure. The bases of the representation theory of U{sub qp}(u{sub 2}) are introduced. On one hand, we construct the finite-dimensional irreducible representations of U{sub qp}(u{sub 2}). On the other hand, we calculate the Clebsch-Gordan coefficients with the projection operator method. To complete our study, we construct some deformed boson mappings of the quantum algebras U{sub qp}(u{sub 2}), U{sub q{sup 2}}(su{sub 2}) and U{sub qp}(u{sub 1,1}). The second part deals with the construction of a new phenomenological model of the non rigid rotator. This model is based on the quantum algebra U{sub qp}(u{sub 2}). The rotational energy and the E2 reduced transition probabilities are obtained. They depend on the two deformation parameters q and p of the quantum algebra. We show how the use of the two-parameter deformation of the algebra U{sub qp}(u{sub 2}) leads to a generalization of the U{sub q}(su{sub 2})-rotator model. We also introduce a new model of the anharmonic oscillator on the basis of the quantum algebra U{sub qp}(u{sub 2}). We show that the system of the U{sub q}(su{sub 2})-rotator and of the anharmonic oscillator can be coupled with the use of the deformation parameters of U{sub qp}(u{sub 2}). A ro-vibration energy formula and expansion `a la` Dunham are obtained. The aim of the last part is to apply our non rigid rotator model to the rotational collective dynamics of the superdeformed nuclei of the A{approx}130 - 150 and A{approx}190 mass regions and deformed nuclei of the actinide and rare earth series. We adjust the free parameters of our model and compare our results with those from four other models of the non rigid rotator. A comparative analysis is given in terms of transition energies.

  1. Understanding Nuclei in the upper sd - shell

    OpenAIRE

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.

    2013-01-01

    Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A$\\simeq$ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array...

  2. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  3. Evidence for {open_quotes}magnetic rotation{close_quotes} in nuclei: New results on the M1-bands of {sup 198,199}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.M. [Lawrence Berkeley National Lab., CA (United States)

    1996-12-31

    Lifetimes of states in four of the M1-bands in {sup 198,199}Pb have been determined through a Doppler Shift Attenuation Method measurement performed using the Gammasphere array. The deduced B(M1) values, which are a sensitive probe of the underlying mechanism for generating these sequences, show remarkable agreement with Tilted Axis Cranking (TAC) calculations. Evidence is also presented for the possible termination of the bands. The results represent clear evidence for a new concept in nuclear excitations: {open_quote}magnetic rotation{close_quote}.

  4. Superdeformed nuclei

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Khoo, T.L.

    1991-01-01

    Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states

  5. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains six separate records on the DELPHI experiment at LEP, the Fermi-surface dynamics of rotating nuclei, production of large samples of the silica dioxide aerogel in the 37-litre autoclave and test of its optical properties, preliminary radiation resource results on scintillating fibers, a new algorithm for the direct transformation method of time to digital with the high time resolution and development and design of analogue read-out electronics for HADES drift chamber system

  6. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  7. The formation and deexcitation of hot nuclei in 40Ar + 197Au collisions at 44 and 77 MeV/A. Neutrons emission light charged particles and complex fragments

    International Nuclear Information System (INIS)

    Sokolov, A.

    1990-05-01

    This work is a contribution to the study of the formation and decay of hot nuclei produced in heavy ion collisions at intermediate energies. By studying the system Ar + Au and Ar + Th at 44 MeV/u and 77 MeV/u we first show how to classify events in two groups: peripheral and very dissipative collisions, measuring the number of evaporated neutrons, which depend directly on the violence of the collision. Associated with these neutrons, different deexcitation channels were observed (heavy residues, fission fragments, light charged particles, intermediate mass fragments). The ratio between peripheral and very dissipative collisions was found independent of the system and the same as the one observed at lower incident energy. The most probable neutron multiplicity for very dissipative collisions is not very different at 44 MeV/u and 77 MeV/u. A measurement of the angular distribution of fission fragments and heavy residues was performed. Detected products are essentially associated with large neutron multiplicity and have a cross section close to the one for the very dissipative collisions. The total mass of the fission fragments is close to the mass of the target, while the mass of the heavy residue is much smaller. The backward evaporated light charged particles are also produced in very dissipative collisions. The characteristics of their energy spectra as well as their multiplicities are very similar at 44 MeV/u 77 MeV/u. From the number of evaporated light charged particles, the estimation of the quasi-target excitation energy was done and found to be close to 600 MeV at 44 MeV/u and 77 MeV/u [fr

  8. High-spin excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing

    2004-01-01

    The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)

  9. Hot subdwarf stars in close-up view. I. Rotational properties of subdwarf B stars in close binary systems and nature of their unseen companions

    Science.gov (United States)

    Geier, S.; Heber, U.; Podsiadlowski, Ph.; Edelmann, H.; Napiwotzki, R.; Kupfer, T.; Müller, S.

    2010-09-01

    The origin of hot subdwarf B stars (sdBs) is still unclear. About half of the known sdBs are in close binary systems for which common envelope ejection is the most likely formation channel. Little is known about this dynamic phase of binary evolution. Since most of the known sdB systems are single-lined spectroscopic binaries, it is difficult to derive masses and unravel the companions' nature, which is the aim of this paper. Due to the tidal influence of the companion in close binary systems, the rotation of the primary becomes synchronised to its orbital motion. In this case it is possible to constrain the mass of the companion, if the primary mass, its projected rotational velocity as well as its surface gravity are known. For the first time we measured the projected rotational velocities of a large sdB binary sample from high resolution spectra. We analysed a sample of 51 sdB stars in close binaries, 40 of which have known orbital parameters comprising half of all such systems known today. Synchronisation in sdB binaries is discussed both from the theoretical and the observational point of view. The masses and the nature of the unseen companions could be constrained in 31 cases. We found orbital synchronisation most likely to be established in binaries with orbital periods shorter than 1.2 d. Only in five cases it was impossible to decide whether the sdB's companion is a white dwarf or an M dwarf. The companions to seven sdBs could be clearly identified as late M stars. One binary may have a brown dwarf companion. The unseen companions of nine sdBs are white dwarfs with typical masses. The mass of one white dwarf companion is very low. In eight cases (including the well known system KPD1930+2752) the companion mass exceeds 0.9~M_⊙, four of which even exceed the Chandrasekhar limit indicating that they may be neutron stars. Even stellar mass black holes are possible for the most massive companions. The distribution of the inclinations of the systems with low

  10. Viscosity: From air to hot nuclei

    Indian Academy of Sciences (India)

    In the verification of the condition for applying .... From the concept of collective theories, one of the fundamental explanations for the giant resonance ... temperature-dependent self-consistent Hartree–Fock calculations, which showed that the.

  11. Life-time of hot nuclei

    International Nuclear Information System (INIS)

    Aboufirassi, M.; Bougault, R.; Brou, R.; Colin, J.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Mahi, M.; Meslin, C.; Steckmeyer, J.C.; Tamain, B.

    1998-01-01

    The study of the systems Ne + Au, Ar + Au and Kr + Au has allowed description of the de-excitation and particularly the evolution of the fragment emission time intervals as o function of the compound system excitation energy. The analysis of data obtained by the multidetector NAUTILUS for Pb + Au at 29 MeV/u has permitted the access to another time scale: the lifetime of the two partners before fragmentation. For this system and this energy the predominant process is primarily a two-body process analogue to that observed at lower energies (deep inelastic transfer). This mechanism can lead to a complete relaxation energy and consequently to low relative velocities between the two partners in the exit channel. In contrast to the low energy process where the two partners decay by evaporation, here the energy implied may lead to the rupture of one and/or the other partner in several fragments (2 to 5). For the the most relaxed events the excitation energies may reach the values of 6 MeV/u. Simulations were realized in which the entrance channel i.e. the relaxation of the two partners is described by a classical trajectory calculation. In the exit channel after a time τ one of the two partners splits in several fragments. The study of the trajectories of these fragments allows the determination of the angular distributions relative to the direction of the un-split partner. The comparison between this calculation and the data is given. The τ values vary from a negative value corresponding to a rupture during the interaction of two partners up to a τ of 200 fm/c. The best fit indicates a τ 100 fm/c, this showing that the lifetime of the splitting nucleus is of the order of 100 fm/c after separation of the two partners. By comparing this result with microscopic models one can obtain a better understanding of the system rupture scenario. This study is under way

  12. Primordial nuclei

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to

  13. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1998-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)

  14. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  15. Symmetries in nuclei

    International Nuclear Information System (INIS)

    Arima, A.

    2003-01-01

    (1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)

  16. A new spin on nuclei

    International Nuclear Information System (INIS)

    Clark, R.; Wadsworth, B.

    1998-01-01

    Magnetic rotation is a new phenomenon that is forcing physicists to rethink their understanding of what goes on inside the nucleus The rotation of quantum objects has a long and distinguished history in physics. In 1912 the Danish scientist Niels Bjerrum was the first to recognize that the rotation of molecules is quantized. In 1938 Edward Teller and John Wheeler observed similar features in the spectra of excited nuclei, and suggested that this was caused by the nucleus rotating. But a more complete explanation had to wait until 1951, when Aage Bohr (the son of Niels) pointed out that rotation was a consequence of the nucleus deforming from its spherical shape. We owe much of our current understanding of nuclear rotation to the work of Bohr and Ben Mottelson, who shared the 1975 Nobel Prize for Physics with James Rainwater for developing a model of the nucleus that combined the individual and collective motions of the neutrons and protons inside the nucleus. What makes it possible for a nucleus to rotate? Quantum mechanically, a perfect sphere cannot rotate because it appears the same when viewed from any direction and there is no point of reference against which its change in position can be detected. To see the rotation the spherical symmetry must be broken to allow an orientation in space to be defined. For example, a diatomic molecule, which has a dumbbell shape, can rotate about the two axes perpendicular to its axis of symmetry. A quantum mechanical treatment of a diatomic molecule leads to a very simple relationship between rotational energy, E, and angular momentum. This energy is found to be proportional to J(J + 1), where J is the angular momentum quantum number. The molecule also has a magnetic moment that is proportional to J. These concepts can be applied to the atomic nucleus. If the distribution of mass and/or charge inside the nucleus becomes non-spherical then the nucleus will be able to rotate. The rotation is termed ''collective'' because many

  17. The rotational spectrum of IBr

    International Nuclear Information System (INIS)

    Tiemann, E.; Moeller, T.

    1975-01-01

    The microwave spectrum of IBr was measured in the low rotational transition J = 3 → 2 in order to resolve the hyperfine structure as completely as possible. Rotational constants and quadrupole coupling constants were derived for both nuclei. The observation of the rotational spectrum in different vibrational states yields the vibrational dependence of the rotational constants as well as of the hyperfine parameters. The Dunham potential coefficients α 0 , α 1 , α 2 , α 3 are given. (orig.) [de

  18. Revolutionary diagnostic method using rotating atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Frese, W.

    1986-01-23

    Nuclear tomography, a newcomer in medical diagnostics, has rapidly gained ground and recently achieved a decisive success: Electronic sectional images of the body which hitherto took measuring times of several minutes now can be obtained within only a few seconds. This jump in time has been earned by experts of the Goettingen Max Planck Institute for biophysical chemistry who puzzled out the significant modification of the method, which offers completely new insight to clinical diagnostics. One advantage is that nuclear magnetic resonance imaging - as the method also is called - allows dynamic processes to be made visible, and not only the movements of anatomic structures such as the heart, but indeed also physiological processes such as renal excretion. The other decisive improvement is that three-dimensional images of tissue and organs can be obtained. And on top of it all, nuclear magnetic resonance imaging does not invade the patient's body with harmful radiation.

  19. Structure of vibrational and rotational nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    1980-01-01

    The nuclear collective motion is discussed in terms of the Interacting Boson Model (IBM). Results of phenomenological studies by the IBM are presented, and the relation between the IBM and the geometrical models such as the vibration model, the rotor model, etc., is pointed out. A microscopic picture for the IBM is shown, in which bosons are introduced as a tool to describe the motion of nucleon pairs. It is emphasized that the IBM can give a unified understanding of the nuclear collective motion. (author)

  20. Revolutionary diagnostic method using rotating atomic nuclei

    International Nuclear Information System (INIS)

    Frese, W.

    1986-01-01

    Nuclear tomography, a newcomer in medical diagnostics, has rapidly gained ground and recently achieved a decisive success: Electronic sectional images of the body which hitherto took measuring times of several minutes now can be obtained within only a few seconds. This jump in time has been earned by experts of the Goettingen Max Planck Institute for biophysical chemistry who puzzled out the significant modification of the method, which offers completely new insight to clinical diagnostics. One advantage is that nuclear magnetic resonance imaging - as the method also is called - allows dynamic processes to be made visible, and not only the movements of anatomic structures such as the heart, but indeed also physiological processes such as renal excretion. The other decisive improvement is that three-dimensional images of tissue and organs can be obtained. And on top of it all, nuclear magnetic resonance imaging does not invade the patient's body with harmful radiation. (orig./MG) [de

  1. Thermodynamical description of excited nuclei

    International Nuclear Information System (INIS)

    Bonche, P.

    1989-01-01

    In heavy ion collisions it has been possible to obtain composite systems at rather high excitation energies corresponding to temperatures of several MeV. The theoretical studies of these systems are based on concepts borrowed from thermodynamics or statistical physics, such as the temperature. In these lectures, we present the concepts of statistical physics which are involved in the physics of heavy ion as they are produced nowadays in the laboratory and also during the final stage of a supernova collapse. We do not attempt to describe the reaction mechanisms which yield such nuclear systems nor their decay by evaporation or fragmentation. We shall only study their static properties. The content of these lectures is organized in four main sections. The first one gives the basic features of statistical physics and thermodynamics necessary to understand quantum mechanics at finite temperature. In the second one, we present a study of the liquid-gas phase transition in nuclear physics. A phenomenological approach of the stability of hot nuclei follows. The microscopic point of view is proposed in the third part. Starting from the basic concepts derived in the first part, it provides a description of excited or hot nuclei which confirms the qualitative results of the second part. Furthermore it gives a full description of most properties of these nuclei as a function of temperature. Finally in the last part, a microscopic derivation of the equation of state of nuclear matter is proposed to study the collapse of a supernova core

  2. Properties and decay modes of hot nuclei produced in the reaction: {sup 36}Ar on {sup 58}Ni and detected with INDRA device; Proprietes et modes de desexcitation des noyaux chauds observes dans la reaction {sup 36}Ar sur {sup 58}Ni avec le detecteur INDRA

    Energy Technology Data Exchange (ETDEWEB)

    Nalpas, L [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee; [Paris-11 Univ., 91 - Orsay (France)

    1997-01-01

    Hot nuclei are formed in heavy ion collisions covering the Fermi energy domain. According to the excitation energy deposited into these nuclei, several de-excitation processes can be observed, in particular the emission of complex fragments (Z {>=} 3) which remains poorly understood. The GANIL facility offers the possibility to cover the excitation function for the Ar on Ni reaction over a broad energy range from 32 to 95 MeV/u where the hot nuclei evolve from classical `evaporation` to complete `vaporization` into light particles (neutrons, isotopes of H, He). The study of reaction mechanisms shows that from peripheral to central collisions the total cross section is dominated by binary dissipative collisions. Both partners coming from well-characterized events with the INDRA detector are reconstructed using the `Minimum Spanning Tree` method. Thus excitation energy up to 20 MeV/A are reached in the most violent collisions at the highest bombarding energy. The deposited energy is not shared in the mass ratio between the quasi-projectile and the quasi-target, the quasi-projectile being hotter. For total excitation energies ranging roughly from 2 to 8 MeV/A, the proportion of `multifragmentation` events increases to reach a plateau at about 10 MeV/A due to the rising probability to have complete `vaporization` of the system above 8 MeV/A. The steady increase of the temperature extracted from the double isotopic He-Li ratios with excitation energy for the quasi-projectile suggests a progressive evolution of the de-excitation processes as predicted by statistical models. No signal of first order liquid-gas phase transition is seen in our data. (author) 124 refs.

  3. Transitional nuclei near shell closures

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  4. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  5. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  6. Relationship between the intensity of nonthermal radiation and widths of Balmer lines in the spectra of quasar-like nuclei

    International Nuclear Information System (INIS)

    Komberg, B.V.; Shefer, E.Yu.

    1983-01-01

    The data summarized by Steiner (1981) were used to derive the relationship between the intensity of nonthermal X-ray and radio emission and fullwidths of Balmer emission lines. It is shown that the existence of such dependences does not contradict the assumption on partition equidistribution of nonthermal radiation and motion of gas clouds energy in the region of formation of wide lines. Emphasis is given to similar dependence drived by Vayana (1981) for X-ray radiation from hot coronas of fast-rotating single stars, and a suggestion is made about radiation anisotropy from active nuclei (similar to that observed in the SS 433 system). The latter may imply the double nature of active nuclei

  7. Electron form factors of deformable nuclei

    International Nuclear Information System (INIS)

    Tartakovskii, V.K.; Isupov, V.Yu.

    1988-01-01

    Using the smallness of the deformation parameter of the nucleus, we obtain simple explicit expressions for the form factors of electroexcitation of the low-lying rotation-vibration states of light, deformable, even-even nuclei. The expressions satisfactorily describe the experimental data on the excitation of collective nuclear states by the inelastic scattering of fast electrons

  8. Electric monopole transitions from low energy excitations in nuclei

    CERN Document Server

    Wood, J L; De Coster, C; Heyde, Kris L G

    1999-01-01

    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.

  9. Strength of Coriolis Coupling in actinide nuclei

    International Nuclear Information System (INIS)

    Peker, L.K.; Rasmussen, J.O.; Hamilton, J.H.

    1982-01-01

    Coriolis Coupling V/sub cor/ plays an important role in deformed nuclei. V/sub cor/ is proportional to h 2 /J[j (j + 1) -Ω (Ω + 1)]/sup 1/2/ and therefore is particularly significant in the nuclei with large j and low Ω Nilsson levels close to Fermi surface: n(i/sub 13/2/) in A = 150 to 170 rare-earth nuclei and p(i/sub 13/2/) and n(j/sub 15/2/) in A greater than or equal to 224 actinide nuclei. Because of larger j (n(j/sub 15/2/) versus n(i/sub 13/2/)) and smaller deformations (β approx. = 0.22 versus β 0.28) it was reasonable to expect that in actinide nuclei Coriolis effects are stronger than in the rare earth nuclei. Recently it was realized that the strength of observed Coriolis effects depends not only on the genuine Coriolis Coupling but also on the interplay between Coriolis ad pairing forces which leads to an interference between the wave functions of two mixing rotational bands. As a consequence the effective interaction V/sub eff/ of both bands is an oscillating function of the degree of shell filling (or chemical potential lambda F). It was shown that in the rare earth nuclei this interference strongly influenced conclusions about the trends in the Coriolis coupling strength and explained many of the observed band-mixing features (the sharpness of back banding curves, details of the blocking effect etc.). From theoretical analysis it was concluded that in the majority of actinide nuclei the effective interaction V/sub eff/ is strong, and therefore the Coriolis band-mixing have to be very strong. In this paper we would like to demonstrate that contrary to these predictions experimental data suggest that Coriolis band mixing in studied actinide nuclei is relatively weak and possibly significantly weaker than in rare earth nuclei

  10. Understanding nuclei in the upper sd - shell

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)

    2014-08-14

    Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  11. Analysis of Orientation Relations Between Deformed Grains and Recrystallization Nuclei

    DEFF Research Database (Denmark)

    West, Stine S.; Winther, Grethe; Juul Jensen, Dorte

    2011-01-01

    Nucleation in 30 pct rolled high-purity aluminum samples was investigated by the electron backscattering pattern method before and after annealing. A total of 29 nuclei including two twins were observed, and approximately one third of these nuclei had orientations not detected in the deformed state....... Possible orientation relations between these nuclei and the deformed state were by 20 to 55 deg rotation around axes. These axes were compared with the active slip systems, and the crystallographic features of the deformation-induced dislocation boundaries. Good agreement was found between the rotation...

  12. Interplay between tilted and principal axis rotation

    International Nuclear Information System (INIS)

    Datta, Pradip; Roy, Santosh; Chattopadhyay, S.

    2014-01-01

    At IUAC-INGA, our group has studied four neutron rich nuclei of mass-110 region, namely 109,110 Ag and 108,110 Cd. These nuclei provide the unique platform to study the interplay between Tilted and Principal axis rotation since these are moderately deformed and at the same time, shears structures are present at higher spins. The salient features of the high spin behaviors of these nuclei will be discussed which are the signatures of this interplay

  13. Interplay between tilted and principal axis rotation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Pradip [Ananda Mohan College, 102/1 Raja Rammohan Sarani, Kolkata 700 009 (India); Roy, Santosh; Chattopadhyay, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India)

    2014-08-14

    At IUAC-INGA, our group has studied four neutron rich nuclei of mass-110 region, namely {sup 109,110}Ag and {sup 108,110}Cd. These nuclei provide the unique platform to study the interplay between Tilted and Principal axis rotation since these are moderately deformed and at the same time, shears structures are present at higher spins. The salient features of the high spin behaviors of these nuclei will be discussed which are the signatures of this interplay.

  14. Studies of exotic nuclei

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1997-01-01

    The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed

  15. Quest for superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Heenen, P.H. [Universite Libre de Bruxelles, Service de Physique Nucleaire Theorique (Belgium); Nazarewicz, W. [Tennessee Univ., Knoxville, TN (United States). Dept. of Physics; Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej

    2002-02-01

    This article draws the long history of the discovery of new heavy nuclei since its beginning in 1940 when neptunium was found, and presents the current status of research in this field. The last 3 years have brought a number of experimental surprises which have truly rejuvenated the field. In January 1999, scientists from Dubna (Russia) reported the synthesis of 1 atom of element 114 ({sup 298}Uuq) in a hot fusion reaction between a {sup 48}Ca beam and a {sup 244}Pu target. This discovery was followed by 3 other reports from Dubna. First using the {sup 242}Pu({sup 48}Ca,3n) reaction, they produced {sup 287}Uuq. In 1999 the synthesis of another isotope of Z=114, the even-even {sup 288}Uuq was reported. The element Z=116 ({sup 292}Uuh) was discovered as a product of the {sup 248}Cm({sup 48}Ca,4n) reaction. The GSI (Germany) group found a new even isotope of the element 110: {sup 270}Uun and also {sup 272}Uuu (element 111) and {sup 277}Uub (element 112). 2 new isotopes of the element 107: {sup 266}Bh and {sup 267}Bh have been found at Berkeley (Usa). The synthesis of the new element Z=118 ({sup 293}Uuo) announced in 1999 by the Berkeley group was retracted 2 years later. The lifetimes reported for the elements {sup 284}Uub and {sup 280}Uun are by many orders of magnitude longer than those of the isotopes with Z{<=}112 previously discovered at GSI. (A.C.)

  16. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Shields, G.A.

    1989-01-01

    Active galactic nuclei (AGN) have taunted astrophysicists for a quarter century. How do these objects produce huge luminosities---in some cases, far outshining our galaxy---from a region perhaps no larger than the solar system? Accretion onto supermassive black holes has been widely considered the best buy in theories of AGN. Much work has gone into accretion disk theory, searches for black holes in galactic nuclei, and observational tests. These efforts have not proved the disk model, but there is progress. Evidence for black holes in the nuclei of nearby galaxies is provided by observations of stellar velocities, and radiation from the disk's hot surface may be observed in the ultraviolet (UV) and neighboring spectral bands. In the review, the author describe some of the recent work on accretion disks in AGN, with an emphasis on points of contact between theory and observation

  17. Signature effects in 2-qp rotational bands

    International Nuclear Information System (INIS)

    Jain, A.K.; Goel, A.

    1992-01-01

    The authors briefly review the progress in understanding the 2-qp rotational bands in odd-odd nuclei. Signature effects and the phenomenon of signature inversion are discussed. The Coriolis coupling appears to have all the ingredients to explain the inversion. Some recent work on signature dependence in 2-qp bands of even-even nuclei is also discussed; interesting features are pointed out

  18. Rotating fluid models in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Arvieu, R.; Troudet, T.

    1979-01-01

    To describe the behavior of high-spin nuclei it is necessary to refer back to the classical mechanics of fluids in rotation where some results are general enough to apply to the rotational nuclear fluid. It is then shown that the quantum model of rotational oscillator gives a simple classification of rotating configurations [fr

  19. Nuclei and quantum worlds

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2000-01-01

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information

  20. Nuclear fragmentation for Xe+Au and Xe+Ag systems at an energy of 44 A.MeV, formation and decay of hot nuclei; Etude de la fragmentation nucleaire pour les systemes XE+AU et XE+AG a 44 A.MeV, production et decroissance de noyaux chauds

    Energy Technology Data Exchange (ETDEWEB)

    Meslin, C.

    1995-01-01

    A study of the formation and the decay of hot nuclear fragments produced in the reactions Xe+Au and Xe+Ag at an energy of 44 A.MeV is presented in this thesis. The 4{pi} experimental setup consisted of four multidetectors -two for the detection of the fragments (Z>7; DELF and XYZT) and two for the detection of the charged particles (Z<6; MUR and TONNEAU) and allowed an analysis using ``complete events`` (80 % of the total charge and the total parallel linear momentum of the entrance channel) to be carried out. The reaction mechanism is binary with as observed at low energy an almost complete relaxation of the incident energy. The collision results in two hot fragments at the beginning of the exit channel which decay by evaporation and/or fragmentation. In addition of these two body events, we have identified a new dynamic mechanism where we detect a small fragment, called the neck, coming form the overlap of the nuclei during the interaction, in coincidence with a projectile-like fragment and a target-like fragment. For the most dissipative collisions, the deep inelastic collision have allowed an estimation of the lifetime of the hot nuclear fragments to be made. This is possible using proximity effects and fragment-fragment space-time correlations of the decay of one or two primary partners from the deep inelastic collisions. This method is seen to reach its limits in the case of the reactions studied here. (authors). 61 refs.

  1. Pairing correlations in nuclei

    International Nuclear Information System (INIS)

    Baba, C.V.K.

    1988-01-01

    There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs

  2. Nature of the identical bands in atomic nuclei

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1995-01-01

    Single-nucleon spectra in the fast rotating nuclei are shown to exhibit some special orbits that appear to be insensitive to nuclear rotation. It is suggested that the special orbits play an essential role in explaining the appearance and structure of the identical bands discovered in the superdeformed region. It is suggested that identical bands appear whenever the nucleonic orbit approaches the separatrix, i.e., a line dividing regions of different coupling schemes in a rotating mean field

  3. Improving the API dissolution rate during pharmaceutical hot-melt extrusion I: Effect of the API particle size, and the co-rotating, twin-screw extruder screw configuration on the API dissolution rate.

    Science.gov (United States)

    Li, Meng; Gogos, Costas G; Ioannidis, Nicolas

    2015-01-15

    The dissolution rate of the active pharmaceutical ingredients in pharmaceutical hot-melt extrusion is the most critical elementary step during the extrusion of amorphous solid solutions - total dissolution has to be achieved within the short residence time in the extruder. Dissolution and dissolution rates are affected by process, material and equipment variables. In this work, we examine the effect of one of the material variables and one of the equipment variables, namely, the API particle size and extruder screw configuration on the API dissolution rate, in a co-rotating, twin-screw extruder. By rapidly removing the extruder screws from the barrel after achieving a steady state, we collected samples along the length of the extruder screws that were characterized by polarized optical microscopy (POM) and differential scanning calorimetry (DSC) to determine the amount of undissolved API. Analyses of samples indicate that reduction of particle size of the API and appropriate selection of screw design can markedly improve the dissolution rate of the API during extrusion. In addition, angle of repose measurements and light microscopy images show that the reduction of particle size of the API can improve the flowability of the physical mixture feed and the adhesiveness between its components, respectively, through dry coating of the polymer particles by the API particles. Copyright © 2014. Published by Elsevier B.V.

  4. Critical and shape-unstable nuclei

    CERN Document Server

    Cailliau, M; Husson, J P; Letessier, J; Mang, H J

    1973-01-01

    The authors' experimental work on the decay of neutron deficient mercury osmium nuclei, some other studies at ISOLDE (CERN) and their first theoretical analysis show that the nuclei around /sup 186/Pt (Z=78, N=108) are at the limit of spherical, oblate, prolate nuclei, have (the even one) their first 0/sup +/ excited states at very low energy; quasi- rotational bands are associated to these states. The energy of this O/sup +/ state in /sup 186-/Pt deviate from the Kumar value: angular shape instability is not enough to explain this result. The authors look at radial shape and pairing fluctuations. The position of the 4p-4n state must also be known. (0 refs).

  5. Intruder bands in Z = 51 nuclei

    International Nuclear Information System (INIS)

    LaFosse, D.R.

    1993-01-01

    Recent investigations of h 11/2 proton intruder bands in odd 51 Sb nuclei are reported. In addition to experiments performed at SUNY Stony Brook and Chalk River, data from Early Implementation of GAMMASPHERE (analysis in progress) are presented. In particular, the nuclei 109 Sb and 111 Sb are discussed. Rotational bands based on the πh 11/2 orbital coupled to a 2p2h deformed state of the 50 Sn core have been observed. These bands have been observed to high spin, and in the case of 109 Sb to a rotational frequency of 1.4 MeV, the highest frequency observed in a heavy nucleus. The dynamic moments of inertia in these bands decrease slowly with frequency, suggesting a gradual band termination. The systematics of such bands in 109-119 Sb will be discussed

  6. SP (4,R) symmetry in light nuclei

    International Nuclear Information System (INIS)

    Peterson, D.R.

    1979-01-01

    A classification of nuclear states according to the noncompact sympletic Lie algebras sp(2n,R), n = 1, 2, 3, is investigated. Such a classification has recently been shown to be physically meaningful. This classification scheme is the appropriate generalization fo Elliott's SU 3 model of rotational states in deformed light nuclei to include core excitations. A restricted classification according to the Lie algebra, sp(4,R), is motivated. Truncation of the model space to a single sp(4,R) irreducible representation allows the inclusion of states possessing very high excitation energy. An sp(4,R) model study is performed on S = T = 0 positive-parity rotational bands in the deformed light nuclei 16 O and 24 Mg. States are included in the model space that possess up to 10h ω in excitation energy. Results for the B(E2) transition rates compare favorable with experiment, without resort to effective charges

  7. Nuclei with exotic constituents

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-08-01

    We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)

  8. Neutron rich nuclei

    International Nuclear Information System (INIS)

    Foucher, R.

    1979-01-01

    If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  9. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  10. Nuclei in high forms

    International Nuclear Information System (INIS)

    Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.

    1991-01-01

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  11. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  12. Eta mesons in nuclei

    International Nuclear Information System (INIS)

    Liu, L.C.

    1987-01-01

    The possibility of producing eta-mesic nuclei by the use of pions is discussed. If these nuclei are observed experimentally, then the binding energies of the eta in this new nuclear matter can be used to extract accurately the eta-N-N* coupling constant in a nucleus. The framework for these calculations is the coupled channel isobar model

  13. High and highest spin states in nuclei

    International Nuclear Information System (INIS)

    Ploszajczak, M.

    1977-06-01

    A study of the following phenomena in rotating nuclei is presented, namely: 1) the destruction of the pair-correlation between the protons and the neutrons as well as decoupling and orientation of the particles along the rotation axis; 2) the formation of a nucleus with axial symmetry rotating around the symmetry axis, caused by the strong centrifugal and Coriolis forces; 3) the shell effects at low angular momentum, which led in some Pb, Hg and Pt isotopes to the formation of a prolate nucleus, rotating around the symmetry axis; 4) the formation of longliving states at very high angular momenta ('Yrast-traps'). At low angular momenta the nucleus is described by the Cranking-Hartree-Fock-Bogolyubov theory (CHFB) with the pair-(P), quadrupole-(QQ) and hexade coupole force (HH) as residual interaction. (orig.) [de

  14. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  15. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  16. Collective oblate bands in Pb nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Huebel, H; Baldsefen, G; Mehta, D [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik; and others

    1992-08-01

    The coexistence of different nuclear shapes is a well established phenomenon in the Hg-Pb region, where spherical, oblate, prolate and superdeformed prolate shapes have been observed. In this work, the authors report on several new rotational bands in the normally spherical nuclei {sup 199-201}Pb. Similar structures were found previously in the lighter isotopes {sup 197,198}Pb. 11 refs., 1 tab., 3 figs.

  17. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  18. Toward yrast spectroscopy in soft vibrational nuclei

    International Nuclear Information System (INIS)

    Marumori, Toshio; Kuriyama, Atsushi; Sakata, Fumihiko.

    1979-10-01

    In a formally parallel way with that exciting progress has been recently achieved in understanding the yrast spectra of the rotational nuclei in terms of the quasi-particle motion in the rotating frame, an attempt to understand the yrast spectra of the vibrational nuclei in terms of the quasi-particle motion is proposed. The essential idea is to introduce the quasi-particle motion in a generalized vibrating frame, which can be regarded as a rotating frame in the gauge space of ''physical'' phonons where the number of the physical phonons plays the role of the angular momentum. On the basis of a simple fundamental principle called as the ''invariance principle of the Schroedinger equation'', which leads us to the ''maximal decoupling'' between the physical phonon and the intrinsic modes, it is shown that the vibrational frame as well as the physical-phonon-number operator represented by the quasi-particles can be self-consistently determined. A new scope toward the yrast spectroscopy of the vibrational nuclei in terms of the quasi-particle motion is discussed. (author)

  19. Modeling level structures of odd-odd deformed nuclei

    International Nuclear Information System (INIS)

    Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.

    1984-01-01

    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for 238 Np, 244 Am, and 250 Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs

  20. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  1. Nucleons in nuclei, however

    International Nuclear Information System (INIS)

    Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.

    1990-01-01

    The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr

  2. Dynamic polarisation of nuclei

    International Nuclear Information System (INIS)

    Borghini, M.; Abragam, A.

    1961-01-01

    In magnetic fields of about 13000 gauss, at a temperature of 1.5 deg. K, in samples of about 2 mm 3 , we have obtained by the 'solid effect' (application of a magnetic field at an appropriate frequency around 35000 MHz), nuclear polarizations /I of a few percent: 19 per cent for hydrogen nuclei in single crystals of La 2 Mg 3 (NO 3 ) 12 , 24H 2 O; 5 per cent for hydrogen nuclei in polystyrene; 6 per cent for fluorine nuclei in single crystals of LiF. (author) [fr

  3. Role of compound nuclei in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-05-01

    Hot compound nuclei are frequently produced in intermediate-energy reactions through a variety of processes. Their decay is shown to be an important and at times dominant source of complex fragments, high energy-gamma rays, and even pions

  4. Compound nuclei, binary decay, and multifragmentation in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-07-01

    Hot compound nuclei, frequently produced in intermediate-energy reactions through a variety of processes, are shown to be an important and at times dominant source of complex fragments. 13 refs., 12 figs

  5. Shell-model Monte Carlo studies of nuclei

    International Nuclear Information System (INIS)

    Dean, D.J.

    1997-01-01

    The pair content and structure of nuclei near N = Z are described in the frwnework of shell-model Monte Carlo (SMMC) calculations. Results include the enhancement of J=0 T=1 proton-neutron pairing at N=Z nuclei, and the maxked difference of thermal properties between even-even and odd-odd N=Z nuclei. Additionally, a study of the rotational properties of the T=1 (ground state), and T=0 band mixing seen in 74 Rb is presented

  6. Deformation and shape coexistence in medium mass nuclei

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1985-01-01

    Emerging evidence for deformed structures in medium mass nuclei is reviewed. Included in this review are both nuclei that are ground state symmetric rotors and vibrational nuclei where there are deformed structures at excited energies (shape coexistence). For the first time, Nilsson configurations in odd-odd nuclei within the region of deformation are identified. Shape coexistence in nuclei that abut the medium mass region of deformation is also examined. Recent establishment of a four-particle, four-hole intruder band in the double subshell closure nucleus 96 Zr 56 is presented and its relation to the nuclear vibron model is discussed. Special attention is given to the N=59 nuclei where new data have led to the reanalysis of 97 Sr and 99 Zr and the presence of the [404 9/2] hole intruder state as isomers in these nuclei. The low energy levels of the N=59 nuclei from Z=38 to 50 are compared with recent quadrupole-phonon model calculations that can describe their transition from near-rotational to single closed shell nuclei. The odd-odd N=59 nuclei are discussed in the context of coexisting shape isomers based on the (p[303 5/2]n[404 9/2])2 - configuration. Ongoing in-beam (t,p conversion-electron) multiparameter measurements that have led to the determination of monopole matrix elements for even-even 42 Mo nuclei are presented, and these are compared with initial estimates using IBA-2 calculations that allow mixing of normal and cross subshell excitations. Lastly, evidence for the neutron-proton 3 S 1 force's influence on the level structure of these nuclei is discussed within the context of recent quadrupole-phonon model calculations. (Auth.)

  7. Quarks in nuclei

    International Nuclear Information System (INIS)

    Roberts, R.G.

    1984-11-01

    The paper concerns the behaviour of quarks in nuclei. Confinement size changes and dynamical rescaling; A dependence; low-x region; gluons and confinement size; and nucleons in a nucleus; are all discussed. (U.K.)

  8. Structure of Warm Nuclei

    International Nuclear Information System (INIS)

    Aaberg, S.; Uhrenholt, H.

    2009-01-01

    We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified.

  9. Microscopic properties of superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Lennart B

    1999-04-01

    Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments

  10. Mini-Proceedings of ECT Workshop Strangeness in Nuclei

    CERN Document Server

    Zmeskal, J

    2011-01-01

    This workshop brought together international experts in the research area of strangeness in nuclei physics, working on theory as well as on experiments, to discuss the present status, to develop new methods of analysis and to have the opportunity for brainstorming towards future studies, going towards a deeper understanding of the hot topics in the low-energy QCD in the strangeness sector.

  11. Collective rotation from ab initio theory

    International Nuclear Information System (INIS)

    Caprio, M.A.; Maris, P.; Vary, J.P.; Smith, R.

    2015-01-01

    Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7–9 Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction. (author)

  12. Fission dynamics of superheavy nuclei formed in uranium induced reactions

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2017-01-01

    The compound nuclear system follows symmetric fission if the competing processes such as quasi-elastic, deep inelastic, quasi-fission etc are absent. The contribution of quasi fission events towards the fusion-fission mechanism depends on the entrance channel asymmetry of reaction partners, deformations and orientations of colliding nuclei beside the dependence on energy and angular momentum. Usually the 209 Bi and 208 Pb targets are opted for the production of superheavy nuclei with Z CN =104-113. The nuclei in same mass/charge range can also be synthesized using actinide targets + light projectiles (i.e. asymmetric reaction partners) via hot fusion interactions. These actinide targets are prolate deformed which prefer the compact configurations at above barrier energies, indicating the occurrence of symmetric fission events. Here an attempt is made to address the dynamics of light superheavy system (Z CN =104-106), formed via hot fusion interactions involving actinide targets

  13. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  14. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  15. Cosmology and unstable nuclei

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1995-01-01

    Primordial nucleosynthesis has established itself as one of the three pillars of Big Bang cosmology. Many of the Big Bang Nucleosynthesis reactions involve unstable nuclei. Hence there is a tight relationship hetween the subject of this conference and cosmology. The prime role of unstable nuclei in cosmology is related to lithium synthesis and the lack of cosmological synthesis of Be and B. These nuclei will thus be focused upon. Nucleosynthesis involves comparing calculated abundances with observed abundances. In general, abundance determinations are dominated by systematic rather than statistical errors, and work on bounding systematics is crucial. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ω b are possible vis-a-vis the homogeneous model; hence the robustness of Ω b ∼0.05 is now apparent. (These calculations depend critically on unstable nuclei.) The above argues that the bulk of the baryons in the universe are not producing visible light. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ω b ∼1 seems to be definitely excluded, so if Ω TOTAL =1, as some recent observations may hint, then non-baryonic dark matter is required. The implications of the recently reported halo microlensing events are discussed. In summary, it is argued that the physics of unstable nuclei affects the fundamental dark matter argument. ((orig.))

  16. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  17. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  18. Cosmology and the origin of nuclei

    International Nuclear Information System (INIS)

    Narlikar, Jayant V.

    2010-01-01

    The problem of explaining the origin of all the chemical elements found in the universe is a central problem in astrophysics. In the 1940s Fred Hoyle suggested that they were cooked inside stars, starting with nucleosynthesis of neutrons and protons. In the same decade George Gamow argued that in a hot big bang universe in the first few minutes, the ambient conditions were suitable for formation of nuclei. This paper will review the progress of both these ideas and show that a reasonable compromise between these ideas can be found today. (authors)

  19. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  20. Quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1983-01-01

    Some features of quark degrees of freedom in nuclei are discussed in the light of recent developments in QCD. The principal aim of this talk is to propose, and give a tentative support to, the motion that one can study through nuclear matter different facets of the vacuum structure implied by quantum chromodynamics (QCD). This will be done using the recent (exciting) results obtained in particle physics, in particular lattice gauge calculations. Relevance of this aspect of problem to quark degrees of freedom as well as meson degrees of freedom in nuclei will be discussed. (orig.)

  1. Disintegration of comet nuclei

    Science.gov (United States)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  2. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6 He and 3 H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay

  3. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ - , e + ) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN

  4. Femtometer toroidal structures in nuclei

    International Nuclear Information System (INIS)

    Forest, J.L.; Pandharipande, V.R.; Pieper, S.C.; Wiringa, R.B.; Schiavilla, R.; Arriaga, A.

    1996-01-01

    The two-nucleon density distributions in states with isospin T=0, spin S=1, and projection M S =0 and ±1 are studied in 2 H, 3,4 He, 6,7 Li, and 16 O. The equidensity surfaces for M S =0 distributions are found to be toroidal in shape, while those of M S =±1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r 3 He, 4 He, and 6 Li. The toroidal distribution has a maximum-density diameter of ∼1 fm and a half-maximum density thickness of ∼0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD. Experiments to probe this structure and its effects in nuclei are suggested. Pair distribution functions in other T,S channels are also discussed; those in T,S=1,1 have anisotropies expected from one-pion-exchange interactions. The tensor correlations in T,S=0,1 states are found to deplete the number of T,S=1,0 pairs in nuclei and cause a reduction in nuclear binding energies via many-body effects. copyright 1996 The American Physical Society

  5. Decay and fission of the oriented nuclei

    CERN Document Server

    Kadmenskij, S G

    2002-01-01

    The fragment angular distributions for binary decay of oriented spherical and deformed nuclei with taking into account the correct transformational properties of wave functions under time inversion have been investigated. It has been shown that for description of fragment angular distributions the adiabatic approximation for collective rotational nuclear degrees of freedom is not correct. It has been demonstrated that this approximation is valid for description of spontaneous and induced low-energy nuclear fission. The dependence of partial fission widths on the orientation of the internal axes spins, projections of spins, and relative angular moments of fission fragments has been analyzed. It has been shown that the adiabatic approximation results in coherent interference of wave functions of fragments relative movement. This interference forms fragments the universal angular distributions of fission fragments for oriented nuclei. For these distributions the deviations from A. Bohr's formula have been invest...

  6. Nuclei and models, 2001-2003. DEA fields, particles and matter

    International Nuclear Information System (INIS)

    Sida, J.L.

    2003-01-01

    This document gathers a series of 6 lessons dedicated to students in the first year of their thesis (DEA) in fields and particles physics: 1) the extent of nuclear physics, 2) the nucleus as a cluster of interacting fermions, 3) models and deformation, 4) nuclei and rotation, 5) isospin and exotic nuclei, and 6) fission reactions from the saddle point to the scission point

  7. Collective excitations at low energy: microscopic study of rotation, vibration and their coupling in even-even nuclei; Excitations collectives a basse energie: Etude microscopique de la rotation, de la vibration et de leur couplage dans les noyaux pair-pairs

    Energy Technology Data Exchange (ETDEWEB)

    Deloncle, I.

    1989-10-23

    In this study we have built the quadrupolar collective Bohr Hamiltonian in a purely microscopic way by using an approximation of the time-dependant Hartree-Fock adiabatic approach. The purpose of this work was to obtain a quantitative description of the collective properties in the low energy range of intermediate and heavy nuclei by using a 2-body effective interaction of Skyrme-type. We consider low energy processes as dynamic regimes in which the collective movement is adiabatic when compared with modes associated to individual freedom. In the N-body solution we propose, we have assumed that: -) a mean field exists at any moment, -) some collective variables exist whose temporal variations include all the dynamics, and -) the collective movement is adiabatic. This work is a microscopic formulation and an efficient approach to resolve the Bohr and Mottelson unified model. Low energy spectra have been computed for 4 nuclei: Ge{sup 74}, Se{sup 76}, Cd{sup 110} and Pt{sup 186} and they agree well with experimental data.

  8. Symmetries and nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs

  9. Electroweak interactions in nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1984-06-01

    Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references

  10. Collisions with nuclei

    International Nuclear Information System (INIS)

    Gulamov, K.G.

    1987-01-01

    It is well known that interactions of high energy particles with nuclei, owing to possible intranuclear rescatterings, may provide information about the space-time behaviour of the production process. Therefore the main goals of these investigations are related with the attempts to study the space-time process of hadronization of coloured quarks and gluons produced at the initial stage of an interaction to white final state particles and to clarify the influence of composite quark-gluon structure of both the projectile and target on features of the production mechanisms. Since in both the initial and final states of these reactions the authors have strongly interacting multiparticle systems, it is of importance to study the collective properties of these systems. The questions to the point are: what is the degree of collectivization of particles newly produced in collisions with nuclei and what is the influence of the collective nature of a nucleus itself on the production mechanisms, in particular, what are the manifestations of possible multinucleon (multiquark) configurations in nuclei? It is obvious that the reductability of, say, hadron-nucleus (hA) interaction to hadron-nucleon (hN) collisions is directly related to the above problems. Due to time limitations the author discusses here only a few aspects of low p/sub t/ hA interactions which in his opinion are of importance for better understanding of general regularities of collisions with nuclei and for further investigations of the above problems

  11. Nucleons in nuclei (II)

    International Nuclear Information System (INIS)

    Laget, J.M.

    1988-01-01

    This summary is a review of our understanding of nuclei in terms of hadrons exchanging mesons. The open problems are: the determination of the high momentum components of nuclear systems, the role of the three-body forces and the nature of the short range correlations. The ways of studying these problems are discussed

  12. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  13. Mesons and light nuclei

    International Nuclear Information System (INIS)

    Truhlik, E.; Mach, R.

    1992-01-01

    62 papers and one summary talk were presented at the conference, on subject matters in between nuclear physics (mainly light nuclei) and elementary particle physics, as indicated by the session headings (1) Electroweak nuclear interaction (2) Nuclear physics with pions and antiprotons (3) Nuclear physics with strange particles (4) Relativistic nuclear physics (5) Quark degrees of freedom. (Quittner)

  14. Radii of radioactive nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Plagnol, E.; Schutz, Y.

    1989-11-01

    A new simple direct method for the measurement of the total reaction cross section (σ R ) for several light radioactive nuclei (A≤40) is developed. From that, the reduced strong absorption radii (r o 2 ) are obtained. A comparison is made with data obtained by other techniques. A strong isospin dependence of the nuclear radii is observed. (L.C.) [pt

  15. Alpha clustering in nuclei

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1990-01-01

    The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)

  16. Particles, imaging and nuclei

    International Nuclear Information System (INIS)

    Harris, J.

    1986-01-01

    The book on particles, imaging and nuclei is one of the Background Readers for the Revised Nuffield Advanced Physics course. The contents contain five educational articles, which extend concepts covered in the course and examine recent developments in physics. Four of the articles on:- particles and the forces of nature, radioisotopes, lasers probe the atomic nucleus, and nuclear history, are indexed separately. (UK)

  17. Nuclei at extreme conditions. A relativistic study

    Energy Technology Data Exchange (ETDEWEB)

    Afanasjev, Anatoli [Mississippi State Univ., Mississippi State, MS (United States)

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  18. Isotope shifts in unstable nuclei

    International Nuclear Information System (INIS)

    Rebel, H.

    1980-05-01

    Current experimental investigations of isotope shifts in atomic spectra of unstable nuclei and the resulting information about size and shape of nuclei far off stability are discussed with reference to some representative examples. (orig.)

  19. Electromagnetic properties of nuclei at high spins

    International Nuclear Information System (INIS)

    Leander, G.A.

    1986-01-01

    A photon emitted by an excited state is likely to carry away, at most, 1 or 2 h-bar of angular momentum. Therefore, a profusion of photons is needed to deexcite the rapidly rotating states of nuclei formed by heavy-ion reactions. The study of electromagnetic properties has become the primary source of information on nuclear structure at high spins and, also, at the warm temperatures present in the initial stage of the electromagnetic cascade process. The purpose of this paper is a review of the E1, M1, and E2 properties of such highly excited states. 42 refs., 5 figs

  20. Conversion electron spectroscopy in transfermium nuclei

    International Nuclear Information System (INIS)

    Herzberg, R.D.

    2003-01-01

    Conversion electron spectroscopy is an essential tool for the spectroscopy of heavy deformed nuclei. The conversion electron spectrometer SACRED has been used in conjunction with the gas-filled recoil separator RITU to study conversion electron cascades in 254 No. The spectra reveal the ground state rotational bands down to low spin. A detailed analysis of the background seen for 254 No shows that approximately 40% of the decay path goes via excited high K bands which may be built on an isomer. (orig.)

  1. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  2. Energetic Nuclei, Superdensity and Biomedicine

    Science.gov (United States)

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  3. KEWPIE: a dynamical cascade code for decaying exited compound nuclei

    OpenAIRE

    Bouriquet, Bertrand; Abe, Yasuhisa; Boilley, David

    2003-01-01

    A new dynamical cascade code for decaying hot nuclei is proposed and specially adapted to the synthesis of super-heavy nuclei. For such a case, the interesting channel is the tiny fraction that will decay through particles emission, thus the code avoids classical Monte-Carlo methods and proposes a new numerical scheme. The time dependence is explicitely taken into account in order to cope with the fact that fission decay rate might not be constant. The code allows to evaluate both statistical...

  4. KEWPIE: A dynamical cascade code for decaying exited compound nuclei

    Science.gov (United States)

    Bouriquet, Bertrand; Abe, Yasuhisa; Boilley, David

    2004-05-01

    A new dynamical cascade code for decaying hot nuclei is proposed and specially adapted to the synthesis of super-heavy nuclei. For such a case, the interesting channel is of the tiny fraction that will decay through particles emission, thus the code avoids classical Monte-Carlo methods and proposes a new numerical scheme. The time dependence is explicitely taken into account in order to cope with the fact that fission decay rate might not be constant. The code allows to evaluate both statistical and dynamical observables. Results are successfully compared to experimental data.

  5. Comet nuclei and Trojan asteroids - A new link and a possible mechanism for comet splittings

    International Nuclear Information System (INIS)

    Hartmann, W.K.; Tholen, D.J.

    1990-01-01

    Relatively elongated shapes, implied by recent evidence of a greater incidence of high amplitude lightcurves for comet nuclei and Trojan asteroids than for similarly scaled main belt asteroids, are suggested to have evolved among comet nuclei and Trojans due to volatile loss. It is further suggested that such an evolutionary course may account for observed comet splitting; rotational splitting may specifically occur as a result of evolution in the direction of an elongated shape through sublimation. Supporting these hypotheses, the few m/sec separation velocities projected for rotationally splitting elongated nuclei are precisely in the observed range. 40 refs

  6. SYMMETRICAL AND ASYMMETRIC TERNARY FISSION OF HOT NUCLEI

    NARCIS (Netherlands)

    SIWEKWILCZYNSKA, K; WILCZYNSKI, J; LEEGTE, HKW; SIEMSSEN, RH; WILSCHUT, HW; GROTOWSKI, K; PANASIEWICZ, A; SOSIN, Z; WIELOCH, A

    Emission of a particles accompanying fusion-fission processes in the Ar-40 + Th-232 reaction at E(Ar-40) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight

  7. Particle structure function and subbarrier fusion in hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Jing, K.X.; Phair, L.; Wozniak, G.J.

    1997-02-01

    The study of particle evaporation spectra can provide information about shape polarization phenomena induced by the nascent particle on the residual nucleus, and about optical modulations felt by the particle as it is preformed inside the nucleus. These aspects can be studied as a function temperature. Preliminary experimental evidence about these features has been obtained

  8. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis.......HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  9. Disintegration of comet nuclei

    International Nuclear Information System (INIS)

    Ksanfomality, Leonid V

    2012-01-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies. (physics of our days)

  10. Pions scatter by nuclei

    International Nuclear Information System (INIS)

    Huefner, J.

    1975-01-01

    Are pions a good tool to study nuclei. If the emphasis of this question rests on ''tool'', the answer must be ''not yet.'' The reason: one does not even understand how a pion interacts with a nucleus. This is part of the many-body problem for strongly interacting particles and its study is a basic problem in physics. One must investigate questions like: Can one understand pion-nucleus interactions from pion-nucleon physics. How does a Δ-resonance look in nuclei. Once one has solved those basic problems, there will be spinoffs in medical, technical and nuclear areas. Then pions can be used as a tool to study nuclear properties

  11. Chaos in collective nuclei

    International Nuclear Information System (INIS)

    Whelan, N.D.

    1993-01-01

    Random Matrix Theory successfully describes the statistics of the low-lying spectra of some nuclei but not of others. It is currently believed that this theory applies to systems in which the corresponding classical motion is chaotic. This conjecture is tested for collective nuclei by studying the Interacting Boson Model. Quantum and classical measures of chaos are proposed and found to be in agreement throughout the parameter space of the model. For some parameter values the measures indicate the presence of a previously unknown approximate symmetry. A phenomenon called partial dynamical symmetry is explored and shown to lead to a suppression of chaos. A time dependent function calculated from the quantum spectrum is discussed. This function is sensitive to the extent of chaos and provides a robust method of analyzing experimental spectra

  12. Chaotic behavior in nuclei

    International Nuclear Information System (INIS)

    Mitchel, G.; Shriner, J.

    2005-01-01

    Although the predictions of Random Matrix Theory (RMT) were available by the early 1960s, data of sufficiently high quality to adequately test the theory were only obtained a decade later by Rainwater. It was another decade later that Bohigas, Haq and Pandey combined the best available nuclear resonance data - the Columbia neutron resonances in heavy nuclei and the TUNL proton resonances in lighter nuclei - to form the Nuclear Data Ensemble. They obtained excellent agreement for the level statistics with the RMT predictions. The expected Porter-Thomas (PT) distribution was considered very early. However, since the widths (amplitudes squared) are measured, the predicted Gaussian distribution for the amplitudes was only qualitatively confirmed. A much more sensitive test was performed by measuring two widths and the relative phase between the two amplitudes. By comparison of the width and amplitude correlations, the Gaussian distribution was confirmed at the 1% level. Following the Bohigas conjecture - that quantum analogs of classically chaotic systems obey RMT - there was an explosion of activity utilizing level statistics in many different quantum systems. In nuclei the focus was verifying the range of applicability of RMT. Of particular interest was the effect of collectivity and of excitation energy on statistical properties. The effect of symmetry breaking on level statistics was examined and early predictions by Dyson were confirmed. The effect of symmetry breaking on the width distribution was also measured for the first time. Although heuristic arguments predicted no change from the PT distribution, experimentally there was a large deviation from the PT prediction. Later theoretical efforts were consistent with this result. The stringent conditions placed on the experiments - for eigenvalue tests the data need to be essentially perfect (few or no missing levels or mis assigned quantum numbers) - has limited the amount of suitable experimental data. The

  13. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  14. Structures of exotic nuclei

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1987-01-01

    Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185 Au, and competing triaxial and prolate shapes in 71 Se and 176 Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152 Dy, 132 Ce and 135 Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68 Ge and 70 Se. The differences are thought to be related to the competing shell gaps in these nuclei

  15. Elusive active galactic nuclei

    Science.gov (United States)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  16. The doubling of stellar black hole nuclei

    Science.gov (United States)

    Kazandjian, Mher V.; Touma, J. R.

    2013-04-01

    It is strongly believed that Andromeda's double nucleus signals a disc of stars revolving around its central supermassive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around supermassive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disc of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disc reproduces key features of Keplerian disc models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in Hubble Space Telescope observations of Andromeda's double nucleus, and has been difficult to reproduce with Keplerian discs alone. Our simulations demonstrate how the combination of an eccentric disc and a triaxial cluster arises naturally when a star cluster accreted over a preexisting and counter-rotating disc of stars drives disc and cluster into a mutually destabilizing dance. Such accretion events are inherent to standard galaxy formation scenarios. They are here shown to double stellar black hole nuclei as they feed them.

  17. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  18. Rotating dryer

    International Nuclear Information System (INIS)

    Noe, C.

    1984-01-01

    Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr

  19. Low-spin identical bands in odd-A nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Baktash, C; Garrett, J D; Winchell, D F; Smith, A [Oak Ridge National Lab., TN (United States)

    1992-08-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (author). 18 refs., 1 tab., 1 fig.

  20. Low-spin identical bands in rare earth nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare earth nuclei indicates that a large number of seniority-one configurations (21% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  1. Low-spin identical bands in odd-A nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Garrett, J.D.; Winchell, D.F.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  2. Low-spin identical bands in odd-A nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Garrett, J.D.; Winchell, D.F.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (author). 18 refs., 1 tab., 1 fig

  3. Nuclei transmutation by collisions with fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.

    1998-01-01

    Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process

  4. Effective interactions and coupling schemes in nuclei

    International Nuclear Information System (INIS)

    Talmi, I.

    1994-01-01

    Eigenstates of the shell model are obtained by diagonalization of the Hamiltonian submatrix defined by a given shell model subspace. Matrix elements of the effective nuclear interaction can be determined from experiment in a consistent way. This approach was introduced in 1956 with the 38 Cl- 40 K spectra, has been applied in many cases and its latest success is in the s, d shell. This way, general features of the effective interaction have been determined. The T=1 interaction is diagonal in the seniority scheme as clearly demonstrated in proton 1g 9/2 n and 1h 11/2 n configurations and in the description of semimagic nuclei by generalized seniority. Apart from a strong and attractive pairing term, T=1 interactions are repulsive on the average. The T=0 interaction is attractive and is the origin of the central potential well in which nucleons are bound. It breaks seniority in a major way leading to deformed nuclei and rotational spectra. Such an interaction may be approximated by a quadrupole-quadrupole interaction which is the basis of the interacting boson model. Identical nucleons with pairing and quadrupole interactions cannot be models of actual nuclei. Symmetry properties of states with maximum T are very different from those of ground states of actual nuclei. The T=1 interaction between identical nucleons cannot be approximated by pairing and quadrupole interactions. The rich variety of nuclear spectra is due to the competition between seniority conserving T=1 interactions and the T=0 quadrupole interaction between protons and neutrons. (orig.)

  5. Anomalous carbon nuclei

    International Nuclear Information System (INIS)

    Gasparian, A.P.

    1984-01-01

    Results are presented from a bubble chamber experiment to search for anomalous mean free path (MFP) phenomena for secondary multicharged fragments (Zsub(f)=5 and 6) of the beam carbon nucleus at 4.2 GeV/c per nucleon. A total of 50000 primary interactions of carbon with propane (C 3 H 8 ) were created. Approximately 6000 beam tragments with charges Zsub(f)=5 and 6 were analyzed in detail to find out an anomalous decrease of MFP. The anomaly is observed only for secondary 12 C nuclei

  6. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains eight separate records on the interaction of high energy Λ 6 He hypernuclear beams with atomic nuclei, the position-sensitive detector of a high spatial resolution on the basis of a multiwire gas electron multiplier, pseudorapidity hadron density at the LHC energy, high precision laser control of the ATLAS tile-calorimeter module mass production at JINR, a new approach to ECG's features recognition involving neural network, subcriticity of a uranium target enriched in 235 U, beam space charge effects in high-current cyclotron injector CI-5, a homogeneous static gravitational field and the principle of equivalence

  7. Active galactic nuclei

    CERN Document Server

    Beckmann, Volker

    2012-01-01

    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  8. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  9. Cumulation of light nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Bondarev, V.K.; Golovanov, L.B.

    1977-01-01

    Limit fragmentation of light nuclei (deuterium, helium) bombarded with 8,6 GeV/c protons was investigated. Fragments (pions, protons and deuterons) were detected within the emission angle 50-150 deg with regard to primary protons and within the pulse range 150-180 MeV/c. By the kinematics of collision of a primary proton with a target at rest the fragments observed correspond to a target mass upto 3 GeV. Thus, the data obtained correspond to teh cumulation upto the third order

  10. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  11. The Initial Stages of Colliding Nuclei and Hadrons

    International Nuclear Information System (INIS)

    Tribedy, Prithwish

    2017-01-01

    The final day of the Hot Quarks 2016 conference was focused on the discussions of the initial stages of colliding nuclei and hadrons. In this conference proceedings we give a brief overview of a few selective topics discussed at the conference that include latest developments in the theoretical description of the initial state towards understanding a number of recent experimental results from RHIC and LHC. (paper)

  12. Study on electromagnetic constants of rotational bands

    International Nuclear Information System (INIS)

    Abdurazakov, A.A.; Adib, Yu.Sh.; Karakhodzhaev, A.K.

    1991-01-01

    Values of electromagnetic constant S and rotation bands of odd nuclei with Z=64-70 within the mass number change interval A=153-173 are determined. Values of γ-transition mixing parameter with M1+E2 multipolarity are presented. ρ parameter dependence on mass number A is discussed

  13. Measurement of proton capture reactions in the hot cycles: an evaluation of experimental methods

    Energy Technology Data Exchange (ETDEWEB)

    Leleux, P [Inst. de Physique Nucleaire, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium)

    1998-06-01

    In the hot cycles, most of the proton capture reactions involve radioactive nuclei in the entrance and exit channels. This paper evaluates the specific methods that were designed to measure such reactions. (orig.)

  14. The morphology of cometary nuclei

    Science.gov (United States)

    Keller, H. U.; Jorda, L.

    comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of

  15. Exotic nuclei and radioactive beams

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs

  16. Isolation of Nuclei and Nucleoli.

    Science.gov (United States)

    Pendle, Alison F; Shaw, Peter J

    2017-01-01

    Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.

  17. Theory of magic nuclei

    International Nuclear Information System (INIS)

    Nosov, V.G.; Kamchatnov, A.M.

    A consistent theory of the shell and magic oscillations of the masses of spherical nuclei is developed on the basis of the Fermi liquid concept of the energy spectrum of nuclear matter. A ''magic'' relationship between the system's dimensions and the limiting momentum of the quasi-particle distribution is derived; an integer number of the de Broglie half-waves falls on the nuclear diameter. An expression for the discontinuity in the nucleon binding energy in the vicinity of a magic nucleus is obtained. The role of the residual interaction is analyzed. It is shown that the width of the Fermi-surface diffuseness due to the residual interaction is proportional to the squared vector of the quasi-particle orbital angular momentum. The values of the corresponding proportionality factors (the coupling constant for quasi particles) are determined from the experimental data for 52 magic nuclei. The rapid drop of the residual interaction with increasing nuclear size is demonstrated. (7 figures, 3 tables) (U.S.)

  18. Stability of superheavy nuclei

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.

  19. Cluster structures in light nuclei

    International Nuclear Information System (INIS)

    Horiuchi, H.

    2000-01-01

    Complete text of publication follows. Clustering in neutron-rich nuclei is discussed. To understand the novel features (1,2,3) of the clustering in neutron-rich nuclei, the basic features of the clustering in stable nuclei (4) are briefly reviewed. In neutron-rich nuclei, the requirement of the stability of clusters is questioned and the threshold rule is no more obeyed. Examples of clustering in Be and B isotopes (4,5) are discussed in some detail. Possible existence of novel type of clustering near neutron dripline is suggested (1). (author)

  20. Are There Rotation Measure Gradients Across Active Galactic Nuclei Jets?

    Science.gov (United States)

    2010-10-20

    transverse RM gradient exists. We assume H0 = 71 km s−1 Mpc−1 and a ΛCDM cosmology with Ωλ = 0.7 and Ωm = 0.3 (e.g., Eisenstein et al. 2005; Hinshaw...O’Sullivan, S. P., & Gabuzda, D. C. 2010, MNRAS, 402, 259 Denn, G. R., Mutel, R. L., & Marscher, A. P. 2000, ApJS, 129, 61 Eisenstein , D. J., et al. 2005

  1. An approximate method for calculating the deformation of rotating nuclei

    International Nuclear Information System (INIS)

    Lind, P.

    1988-01-01

    The author presents as a collective model where the potential surface at spin I=0 is calculated in the Nilsson-Strutinsky model, an analytical expression for the moment of inertia is used which depends on the deformation and the pairing gaps for protons and neutrons, and the energy is minimized with respect to these gaps. Calculations in this model are performed for 16 Oyb. (HSI)

  2. Level structures in Yb nuclei far from stable nuclei

    International Nuclear Information System (INIS)

    Hashizume, Akira

    1982-01-01

    Applying n-γ, γ-γ coincidence techniques, the excited levels in 158 Yb and in 157 Yb nuclei were studied. Stress is placed ona neutron detection technique to assign (HI,xn) reactions which produce the nuclei far from β stability line. (author)

  3. Dynamics of Tidally Locked, Ultrafast Rotating Atmospheres

    Science.gov (United States)

    Tan, Xianyu; Showman, Adam P.

    2017-10-01

    Tidally locked gas giants, which exhibit a novel regime of day-night thermal forcing and extreme stellar irradiation, are typically in several-day orbits, implying slow rotation and a modest role for rotation in the atmospheric circulation. Nevertheless, there exist a class of gas-giant, highly irradiated objects - brown dwarfs orbiting white dwarfs in extremely tight orbits - whose orbital and hence rotation periods are as short as 1-2 hours. Spitzer phase curves and other observations have already been obtained for this fascinating class of objects, which raise fundamental questions about the role of rotation in controlling the circulation. So far, most modeling studies have investigated rotation periods exceeding a day, as appropriate for typical hot Jupiters. In this work we investigate the dynamics of tidally locked atmospheres in shorter rotation periods down to about two hours. With increasing rotation rate (decreasing rotation period), we show that the width of the equatorial eastward jet decreases, consistent with the narrowing of wave-mean-flow interacting region due to decrease of the equatorial deformation radius. The eastward-shifted equatorial hot spot offset decreases accordingly, and the westward-shifted hot regions poleward of the equatorial jet associated with Rossby gyres become increasingly distinctive. At high latitudes, winds becomes weaker and more geostrophic. The day-night temperature contrast becomes larger due to the stronger influence of rotation. Our simulated atmospheres exhibit small-scale variability, presumably caused by shear instability. Unlike typical hot Jupiters, phase curves of fast-rotating models show an alignment of peak flux to secondary eclipse. Our results have important implications for phase curve observations of brown dwarfs orbiting white dwarfs in ultra tight orbits.

  4. Synthesis and radioactive properties of the heaviest nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    1996-01-01

    Experimental investigations on the synthesis and study of properties of faraway transactinide elements confirm the predictions of macro-microscopic theory on the existence of closed shells in the region of heavy deformed nuclei. It has been demonstrated experimentally that nuclear structure plays a decisive role in the stability of superheavy nuclides. Based on the experimental confirmation of the main provisions of the theory and after the introduction of a necessary correction into the calculation the properties of heavier nuclides in the region of spherical shells Z=114 and N=180-184 have been predicted. Here a substantial increase in the stability of nuclei is also expected. All the nuclei synthesized by now, were obtained in fusion reactions with a formation of a compound nucleus, the transition of which to the ground state takes place with the emission of neutrons and gamma-rays. Both the reactions of cold and hot fusion of nuclei can be used for the synthesis of new nuclei. Nevertheless, new experimental data on the fusion mechanism are required, since a number of theoretical descriptions of the fusion dynamics of complex nuclear systems need a substantial revising. One can assume that the reactions of the type 244 Pu, 248 Cm + 48 Ca are still within the current potential of the accelerators and experimental technique. This potential, nevertheless, is still to be implemented. 37 refs., 6 figs

  5. Electron scattering off nuclei

    International Nuclear Information System (INIS)

    Gattone, A.O.

    1989-01-01

    Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es

  6. Antideuteron annihilation on nuclei

    International Nuclear Information System (INIS)

    Cugnon, J.

    1992-01-01

    An investigation of antideuteron annihilation on nuclei within an intranuclear cascade (INC) model is presented. Two models are set up to describe the annihilation itself, which either implies the antideuteron as a whole and occurs at a single point, or which may be considered as two independent nucleon-antinucleon annihilation occurring at different points and different times. Particular attention is paid to the energy transferred from the pions issued from the annihilation to the nuclear system and to the possibility of having a multifragmentation of the target. The latter feature is investigated within a percolation model. The pion distribution and the energy distribution are also discussed. Predictions of proton multiplicity distributions are compared with experiment. (orig.)

  7. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains ten separate records on Wien filter using in exploring on low-energy radioactive nuclei, memory effects in dissipative nucleus-nucleus collision, topological charge and topological susceptibility in connection with translation and gauge invariance, solutions of the multitime Dirac equation, the maximum entropy technique. System's statistical description, the charged conductor inside dielectric. Solution of boundary condition by means of auxiliary charges and the method of linear algebraic equations, optical constants of the TGS single crystal irradiated by power pulsed electron beam, interatomic pair potential and n-e amplitude from slow neutron scattering by noble gases, the two-coordinate multiwire proportional chamber of the high spatial resolution and neutron drip line in the region of O-Mg isotopes

  8. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on the integral representation for structure functions and target mass effects, multiscale properties of DNA primary structure including cross-scale correlations, dissipative evolution of the elementary act, the fine structure of the M T =1 Gamow-Teller resonance in 147g Tb→ 147 Gd β + /EC decay, the behaviour of the TVO temperature sensors in the magnetic fields, a fast method for searching for tracks in multilayer drift chambers of HADES spectrometer, a novel approach to particle track etching including surfactant enhanced control of pore morphology, azimuthal correlations of secondary particles in 32 S induced interactions with Ag(Br) nuclei at 4.5 GeV/ c/ nucleon

  9. Pulsars: gigantic nuclei

    International Nuclear Information System (INIS)

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction. (author)

  10. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  11. Pion production in nuclei

    International Nuclear Information System (INIS)

    Afnan, I.R.; Thomas, A.W.

    1976-01-01

    A method has been suggested for relating μ-capture in nuclei to pion absorption through partially conserved axial vector current hypothesis. The success of the method relies heavily on the knowledge of the pion absorption amplitude at a momentum transfer equal to the μ-meson mass. That is we need to know the pion absorption amplitude off the mass-shell. The simplest nucleus for which this suggestion can be examined is μ-capture in deuterium. The Koltum-Reitan model is used to determine the pion absorption amplitude off the mass shell. In particular the senstivity of this off-mass-shell extrapolution to details of the N-N interaction is studied. (author)

  12. IBA in deformed nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics

  13. Superdeformed bands in Hg and Tl nuclei for N≤112

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Jannsens, R.V.F.; Liang, Y.; Ahmad, I.; Henry, R.; Khoo, T.L.; Lauritsen, T.; Soramel, F.; Lewis, J.M.; Riedinger, L.L.; Yu, C.H.; Garg, U.; Reviol, W.; Pilotte, S.; Bearden, I.G.; Daly, P.J.

    1992-01-01

    The study of superdeformed (SD) nuclei in the A ∼ 190 region has provided a wealth of new information on SD states at moderate to high spins (I ∼ 10 to 50 h). The dynamical moment of inertia for almost all of the SD bands reported on to date in this mass region display a similar behavior, i.e. a smooth increase with increasing rotational frequency. This increase has been attributed to both quasiparticle alignments and a decrease in pairing with increasing rotational frequency. However, standard mean-field calculations have problems reproducing the magnitude and extent of the rise. The authors' recent results on SD states in the Hg-Tl nuclei at and below the N = 112 SD-gap add support to this interpretation of the rise in the dynamical moment of inertia while at the same time showing more clearly the inadequacies of the previous theoretical calculations

  14. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  15. Otolith-Canal Convergence In Vestibular Nuclei Neurons

    Science.gov (United States)

    Dickman, J. David; Si, Xiao-Hong

    2002-01-01

    The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.

  16. Collective properties and shapes of nuclei at very high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1991-01-01

    A topic which has been of major interest to us for some years now involves the evolution of nuclear collectivity at high rotational frequencies and the accompanying changes in the shapes of nuclei in these extreme conditions. We carry out these studies by determining the dynamic electromagnetic multipole moments which are a reflection of the collective aspects of the nuclear wave functions. The most direct way to get these multipole moments is by measurements of excited-state lifetimes which provide the transition matrix elements in a fairly straightforward fashion. Although the primary emphasis of this paper is on the collectivity of the high-spin states in 160 Yb and 164 Yb, it is important to review briefly some work we began about ten years ago lifetime studies of moderately high spins in nuclei near N=90 using the recoil-distance (RD) method. These nuclei are just at the onset of permanent deformation and are known to be very soft with respect to deformation changes. This softness is clearly illustrated in contour diagrams of their potential-energy surfaces. For example, the potential energy surface of 160 Yb reveals that the minimum in the potential occurs around var-epsilon ∼ 0.2 and that it is very shallow in the γ degree of freedom. Because of their γ softness, we have studied several nuclei near N=90 to assess to what extent the polarization effects induced by rotation alignment of high-j quasiparticles affect their collectivity

  17. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  18. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  19. Superformed bands in atomic nuclei. A fascinating recent discovery

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Szymanski, Z.

    1990-01-01

    The recent discovery of a new type of exotic state, the so-called superformed (SD) state in rapidly rotating, extremely distorted atomic nuclei has ushered in a new area of physics called high-spin spectroscopy. The measurement of discrete SD states at angular momenta lying in the 40 to 60 ℎ range is fast becoming a standard technique in nuclear γ-ray spectroscopy thanks to improved experimental skills and the introduction of multi-detector arrays. (orig.)

  20. Pairing field and moments of inertia of superdeformed nuclei

    International Nuclear Information System (INIS)

    Chen Yongjing; Chen Yongshou; Xu Fuxin

    2002-01-01

    The authors have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD) bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model

  1. Experimental First Order Pairing Phase Transition in Atomic Nuclei

    International Nuclear Information System (INIS)

    Moretto, L G; Larsen, A C; Giacoppo, F; Guttormsen, M; Siem, S

    2015-01-01

    The natural log of experimental nuclear level densities at low energy is linear with energy. This can be interpreted in terms of a nearly 1st order phase transition from a superfluid to an ideal gas of quasi particles. The transition temperature coincides with the BCS critical temperature and yields gap parameters in good agreement with the values extracted from even- odd mass differences from rotational states. This converging evidence supports the relevance of the BCS theory to atomic nuclei

  2. Models of hot stellar systems

    International Nuclear Information System (INIS)

    Van Albada, T.S.

    1986-01-01

    Elliptical galaxies consist almost entirely of stars. Sites of recent star formation are rare, and most stars are believed to be several billion years old, perhaps as old as the Universe itself (--10/sup 10/ yrs). Stellar motions in ellipticals show a modest amount of circulation about the center of the system, but most support against the force of gravity is provided by random motions; for this reason ellipticals are called 'hot' stellar systems. Spiral galaxies usually also contain an appreciable amount of gas (--10%, mainly atomic hydrogen) and new stars are continually being formed out of this gas, especially in the spiral arms. In contrast to ellipticals, support against gravity in spiral galaxies comes almost entirely from rotation; random motions of the stars with respect to rotation are small. Consequently, spiral galaxies are called 'cold' stellar systems. Other than in hot systems, in cold systems the collective response of stars to variations in the force field is an essential part of the dynamics. The present overview is limited to mathematical models of hot systems. Computational methods are also discussed

  3. Rotating preventers

    International Nuclear Information System (INIS)

    Tangedahl, M.J.; Stone, C.R.

    1992-01-01

    This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

  4. Fragments emission from light mass composite nuclei within collective clusterization mechanism

    International Nuclear Information System (INIS)

    Singh, BirBikram

    2016-01-01

    Based on the quantum mechanical fragmentation theory (QMFT) the dynamical cluster decay model (DCM) has been developed by Gupta and Collaborators to study the decay of hot and rotating compound systems. Number of compound nuclei (CN) in different mass regions have been studied quite extensively while taking into consideration nuclear structure effects in the same. It is quite relevant to mention here that in the binary decay of CN nuclear structure effects comes into picture, within DCM, via preformation probability P_0 of the complimentary fragments before penetrating the potential barrier between them with certain probability P . It is interesting to note here that the statistical models treat various decay modes of the CN on different footing contrary to the DCM. In very light mass region the decay of number of composite systems "2"0","2"1","2"2Ne*, "2"6"-"2"9Al, "2"8Si, "3"1P, "3"2S, "3"9K and "4"0Ca*, formed in low energy heavy ion reactions, have been investigated for different reaction mechanisms particularly fusion-fission (FF) and deep inelastic orbiting (DIO) from equilibrated and non-equilibrated compound nucleus processes, respectively

  5. An Expectation of a backbending for N> 98 of a rare earth nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Salah, M M [Physics Dept., Faculty of Science, Minia University, (Egypt); El-Elgebaly, H [Physics Dept., Faculty of Science, Cairo University, Cairo (Egypt)

    1997-12-31

    The backbending of three neighboring earth nuclei [Er-Yb-Hf] with their isotopes has been studied through the cubic polynomial (CP) theoretical model in addition to [Ex vs. I (I+I)] and [0 vs.{sub 2}] plots, at high energy angular momentum in nuclear rotational bands according to the values of R 4. Also the rotational nuclei are divided into soft and hard rotors by studying the softness S. We expected that there may be a backbending for nuclei of N> 98, but with a High angular momentum, which were not expected before by studying the effect of (I+I) at the critical spin of a backbending. The work includes study of the effective moment of inertia 0eff for these nuclei, and the theoretical treatment to reduce the error in energy calculation of (CP) model. 5 figs., 1 tab.

  6. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  7. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2017-10-15

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  8. K-bar-mesic nuclei

    International Nuclear Information System (INIS)

    Dote, Akinobu; Akaishi, Yoshinori; Yamazaki, Toshimitsu

    2005-01-01

    New nuclei 'K-bar-Mesic Nuclei' having the strangeness are described. At first it is shown that the strongly attractive nature of K-bar N interaction is reasoned inductively from consideration of the relation between Kaonic hydrogen atom and Λ (1405) which is an excited state of hyperon Λ. The K-bar N interactions are reviewed and summarized into three categories: 1. Phenomenological approach with density dependent K-bar N interaction (DD), relativistic mean field (RMF) approach, and hybrid of them (RMF+DD). 2. Boson exchange model. 3. Chiral SU(3) theory. The investigation of some light K-bar-nuclei by Akaishi and Yamazaki using phenomenological K-bar N interaction is explained in detail. Studies by antisymmetrized molecular dynamics (AMD) approach are also presented. From these theoretical researches, the following feature of K-bar-mesic nuclei are revealed: 1) Ground state is discrete and bound by 100 MeV or more. 2) Density is very high in side the K-bar-mesic nuclei. 3) Strange structures develop which are not seen in ordinary nuclei. Finally some recent experiments to explore K-bar-mesic nuclei are reviewed. (S. Funahashi)

  9. Dual origin of pairing in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Idini, A. [University of Jyvaskyla, Department of Physics (Finland); Potel, G. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Barranco, F. [Escuela Superior de Ingenieros, Universidad de Sevilla, Departamento de Fìsica Aplicada III (Spain); Vigezzi, E., E-mail: enrico.vigezzi@mi.infn.it [INFN Sezione di Milano (Italy); Broglia, R. A. [Università di Milano, Dipartimento di Fisica (Italy)

    2016-11-15

    The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  10. Dual origin of pairing in nuclei

    Science.gov (United States)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  11. Toward yrast spectroscopy in soft vibrational nuclei. A microscopic theory of the large amplitude collective motion of soft nuclei

    International Nuclear Information System (INIS)

    Marumori, Toshio; Kuriyama, Atsushi; Sakata, Fumihiko

    1980-01-01

    In a formally parallel way with that exciting progress has been recently achieved in understanding the yrast spectra of the rotational nuclei in terms of the quasi-particle motion in the rotating frame, an attempt to understand the yrast spectra of the vibrational nuclei in terms of the quasi-particle motion is proposed. The essential idea is to introduce the quasi-particle motion in a generalized vibrating frame, which can be regarded as a rotating frame in the gauge space of 'physical' phonons where the number of the physical phonons plays the role of the angular momentum. On the basis of a simple fundamental principle called as the 'invariance principle of the Schroedinger equation', which leads us to the 'maximal decoupling' between the physical phonon and the intrinsic modes, it is shown that the vibrational frame as well as the physical-phonon-number operator represented by the quasi-particles can be self-consistently determined. A new scope toward the yrast spectroscopy of the vibrational nuclei in terms of the quasi-particle motion is discussed

  12. Conflicting Coupling of Unpaired Nucleons and the Structure of Collective Bands in Odd-Odd Nuclei

    International Nuclear Information System (INIS)

    Levon, A.I.; Pasternak, A.A.

    2011-01-01

    The conflicting coupling of unpaired nucleons in odd-odd nuclei is discussed. A very simple explanation is suggested for the damping of the energy spacing of the lowest levels in the rotational bands in odd-odd nuclei with the 'conflicting' coupling of an odd proton and an odd neutron comparative to those of the bands based on the state of a strongly coupled particle in the neighboring odd nucleus entering the 'conflicting' configuration.

  13. Low-lying states of 184W and 184Os nuclei

    International Nuclear Information System (INIS)

    Sharrad, F.I.; Abdullah, Hewa Y.; Al-Dahan, N.; Umran, N.M.; Okhunov, A.A.; Abu Kassim, H.

    2013-01-01

    The energy levels, transition energy, B(E2) values, intrinsic quadrupole moment Q 0 and potential energy surface for even-even 184 W and 184 Os nuclei were calculated using IBM-1. The predicted energy levels, transition energy, B(E2) values and intrinsic quadrupole moment Q 0 results are reasonably consistent with the experimental data. A contour plot of the potential energy surfaces shows that two interesting nuclei are deformed and have rotational characters. (authors)

  14. Equilibrium deformations of single-particle states of odd nuclei of rare earth region

    International Nuclear Information System (INIS)

    Alikov, B.A.; Tsoj, E.G.; Zuber, K.; Pashkevich, V.V.

    1983-01-01

    In terms of the Strutinsky shell-correction method using the Woods-Saxon non-spherical potential the energies, quadrupole, and hexadecapole momenta of the ground and excited states of odd-proton nuclei with 61 6 deformation on atomic nuclei non-rotation states energies is discussed. It is shown that account of deformation of α 6 type slightly influences on the quadrupole and hexadecapole deformation value

  15. Electron scattering for exotic nuclei

    International Nuclear Information System (INIS)

    Suda, T.

    2013-01-01

    An electron scattering facility is under construction in RIKEN RI Beam Factory, Japan, which is dedicated to the structure studies of short-lived nuclei. This is the world's first and currently only facility of its type. The construction is nearly completed, and the first electron scattering experiment off short-lived nuclei will be carried out in the beginning of next year. The charge density distributions of short-lived nuclei will be precisely determined by elastic electron scattering for the first time. Physics pursued at this facility including future perspectives are explained

  16. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    , and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  17. Gluon density in nuclei

    International Nuclear Information System (INIS)

    Ayala, A.L.

    1996-01-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab

  18. Supersymmetry in nuclei

    CERN Document Server

    Jolie, J

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He sup 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold sup 1 sup 9 sup 5 sup - sup 1 sup 9 sup 6 and Platinum sup 1 sup 9 sup 4 - sup 1 sup 9 sup 5 , it means that the description of these energy levels is simplified and can be made by a co...

  19. Supersymmetry in nuclei

    International Nuclear Information System (INIS)

    Jolie, J.

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold 195-196 and Platinum 194 - 195 , it means that the description of these energy levels is simplified and can be made by a common set of quantum numbers. (A.C.)

  20. Photon interactions with nuclei

    International Nuclear Information System (INIS)

    Thornton, S.T.; Sealock, R.M.

    1989-01-01

    This document is a progress report for DOE Grant No. FG05-89ER40501, A000. The grant began March, 1989. Our primary research effort has been expended at the LEGS project at Brookhaven National Laboratory. This report will summarize our present research effort at LEGS as well as data analysis and publications from previous experiments performed at SLAC. In addition the principal investigators are heavily involved in the CLAS collaboration in Hall B at CEBAF. We have submitted several letters of intent and proposals and have made commitments to construct experimental equipment for CEBAF. We expect our primary experimental effort to continue at LEGS until CEBAF becomes operational. This report will be divided into separate sections describing our progress at LEGS, SLAC, and CEBAF. We will also discuss our significant efforts in the education and training of both undergraduate and graduate students. Photon detectors are described as well as experiments on delta deformation in nuclei of quasielastic scattering and excitation of the delta by 4 He(e,e')

  1. Parity violation in nuclei

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1980-01-01

    A summary of parity violating effects in nuclei is given. Thanks to vigorous experimental and theoretical effort, it now appears that a reasonably well-defined value for the weak isovector π-nucleon coupling constant can be obtained. There is one major uncertainty in the analysis, namely the M2/E1 mixing ratio for the 2.79 MeV transition in 21 Ne. This quantity is virtually impossible to calculate reliably and must be measured. If it turns out to be much larger than 1, then a null result in 21 Ne is expected no matter what the weak interaction, so an experimental determination is urgently needed. The most promising approach is perhaps a measurement of the pair internal conversion coefficient. Of course, a direct measurement of a pure isovector case is highly desirable, and it is to be hoped that the four ΔT = 1 experiments will be pushed still further, and that improved calculations will be made for the 6 Li case. Nuclear parity violation seems to be rapidly approaching an interesting and useful synthesis

  2. Fragmentation of relativistic nuclei

    International Nuclear Information System (INIS)

    Cork, B.

    1975-06-01

    Nuclei with energies of several GeV/n interact with hadrons and produce fragments that encompass the fields of nuclear physics, meson physics, and particle physics. Experimental results are now available to explore problems in nuclear physics such as the validity of the shell model to explain the momentum distribution of fragments, the contribution of giant dipole resonances to fragment production cross sections, the effective Coulomb barrier, and nuclear temperatures. A new approach to meson physics is possible by exploring the nucleon charge-exchange process. Particle physics problems are explored by measuring the energy and target dependence of isotope production cross sections, thus determining if limiting fragmentation and target factorization are valid, and measuring total cross sections to determine if the factorization relation, sigma/sub AB/ 2 = sigma/sub AA/ . sigma/sub BB/, is violated. Also, new experiments have been done to measure the angular distribution of fragments that could be explained as nuclear shock waves, and to explore for ultradense matter produced by very heavy ions incident on heavy atoms. (12 figures, 2 tables)

  3. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1997-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author)

  4. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  5. Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)

    Science.gov (United States)

    Chandra, N.; Temkin, A.

    1975-01-01

    A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.

  6. Preface to the Special Issue: Chiral Symmetry in Hadrons and Nuclei

    International Nuclear Information System (INIS)

    Geng, Lisheng; Meng, Jie; Zhao, Qiang; Zou, Bingsong

    2014-01-01

    The recent past years have seen a remarkable progress towards a unified description of nonperturbative strong interaction phenomena based on the fundamental theory of the strong interaction, quantum chromodynamics, and effective field theories. The papers collected in this special issue focus on the recent progress in hadron and nuclear physics related to the chiral symmetry. They are written based on presentations at the Seventh International Symposium on Chiral Symmetry in Hadron and Nuclei which took place at Beihang University, Beijing, 27-30 October 2013. The sub-topics discussed in these papers include chiral and heavy-quark spin symmetry; chiral dynamics of few-body hadron systems; chiral symmetry and hadrons in a nuclear medium; chiral dynamics in nucleon-nucleon interaction and atomic nuclei; chiral symmetry in rotating nuclei; hadron structure and interactions; exotic hadrons, heavy flavor hadrons and nuclei; mesonic atoms and nuclei

  7. Dynamic polarization of radioactive nuclei

    International Nuclear Information System (INIS)

    Kiselev, Yu.F.; Lyuboshits, V.L.; )

    2001-01-01

    Radioactive nuclei, embedded into a frozen polarized proton target, atr proposed to polarize by means of some dynamic polarization methods. Angular distributions of γ-quanta emitted ny 22 Na(3 + ) in the cascade β-γ-radiation are calculated. It is shown that this distribution does not depend on the spin temperature sing at the Boltzmann distribution of populations among the Zeeman magnetic substates, whereas the tensor polarization of quadrupole nuclei, placed in the electric field of the crystal, causes the considerable sing dependence. The new method promises wide opportunities for the magnetic structure investigations as well as for the study of spin-spin interaction dynamics of rare nuclei in dielectrics. Physical-technical advantages and disadvantages of the given method are discussed for the polarization of heavy nuclei in the on-line implantation mode [ru

  8. The delta in nuclei. Experiments

    International Nuclear Information System (INIS)

    Roy-Stephan, M.

    1989-01-01

    Experimental aspects of the Δ excitation will be presented. The Δ excitation in nuclei will be compared to the free Δ excitation. Various probes will be reviewed and their specific features will be underlined [fr

  9. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Research Center for Electron-Photon Science, Tohoku University, 1-2-1 ... nuclei precisely determined by elastic scattering [1]. .... In order to fulfill these requirements, a window-frame shaped dipole magnet with a gap.

  10. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    Science.gov (United States)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA

  11. Collisions between complex atomic nuclei

    International Nuclear Information System (INIS)

    Vaagen, J. S.

    1977-08-01

    The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)

  12. Particles and nuclei in PANIC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-07-15

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa.

  13. Particles and nuclei in PANIC

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa

  14. Investigation of copper nuclei

    International Nuclear Information System (INIS)

    Delfini, M.G.

    1983-01-01

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  15. Signature effects in 2qp bands of doubly even rare-earth nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Kawalpreet [Amity University, AUUP, Department of Physics, Amity Institute of Applied Sciences (AIAS), Noida (India); Goel, Alpana [Amity University, AUUP, Amity Institute of Nuclear Science and Technology (AINST), Noida (India); Jain, A.K. [Indian Institute of Technology (IIT), Department of Physics, Roorkee (India)

    2016-12-15

    The two-quasiparticle rotational bands in deformed doubly even nuclei in the rare-earth region have been studied in detail. A number of interesting features like odd-even staggering and signature inversion have been observed. The phenomenon of signature inversion/reversal is observed experimentally in {sup 162}{sub 66}Dy, {sup 170}{sub 70}Yb and {sup 170}{sub 74}W in even-even nuclei. Two quasiparticle plus rotor model (TQPRM) calculations are carried out to explain the reverse pattern of signature in {sup 170}{sub 74}W for the rotational band having configuration {(h_1_1_/_2)_p x (d_5_/_2)_p}. (orig.)

  16. Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei

    International Nuclear Information System (INIS)

    Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.

    2011-01-01

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133 Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2) , kinetic moment of inertia J (1) , the crossing of rotational bands, and backbending effects.

  17. Fluctuation analysis of rotational spectra

    International Nuclear Information System (INIS)

    Doessing, T.; Bracco, A.; Broglia, R.A.; Matsuo, M.

    1996-01-01

    The compound state rotational degree of freedom is ''damped'' in the sense that the electric quadrupole decay of a single quantum state with angular momentum I exhibits a spectrum of final states all having spin I-2. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei uses each of the ''discrete'' transitions many more times than the ''continuum'' transitions. Relatively large and small fluctuations in the recorded coincidence spectrum ensue, respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the E γ1 .E γ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168 Yb, as well as by analyzing resolved bands in 168 Yb and its neighbors. The fluctuation analysis of the central valley (E γ1 =E γ2 ) is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general (orig.)

  18. Spectrin-like proteins in plant nuclei

    NARCIS (Netherlands)

    Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.

    2000-01-01

    We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa,

  19. ESA uncovers Geminga's `hot spot'

    Science.gov (United States)

    2004-07-01

    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  20. Rotational bands terminating at maximal spin in the valence space

    Energy Technology Data Exchange (ETDEWEB)

    Ragnarsson, I.; Afanasjev, A.V. [Lund Institute of Technology (Sweden)

    1996-12-31

    For nuclei with mass A {le} 120, the spin available in {open_quotes}normal deformation configurations{close_quotes} is experimentally accessible with present detector systems. Of special interest are the nuclei which show collective features at low or medium-high spin and where the corresponding rotational bands with increasing spin can be followed in a continuous way to or close to a non-collective terminating state. Some specific features in this context are discussed for nuclei in the A = 80 region and for {sup 117,118}Xe.

  1. Soft rotator model and {sup 246}Cm low-lying level scheme

    Energy Technology Data Exchange (ETDEWEB)

    Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    Non-axial soft rotator nuclear model is suggested as self-consistent approach for interpretation of level schemes, {gamma}-transition probabilities and neutron interaction with even-even nuclei. (author)

  2. Application of Coulomb and Lorentz gauge conditions for the pertubative treatment of a rotation fermions system

    International Nuclear Information System (INIS)

    Bes, D.R.

    1984-01-01

    The history of the development of quantum field theory for treating coupling between phonons and fermions are summarized. These perturbative theories are applied introducing concept of gauge invariance for the problem of rotation nuclei. (L.C.) [pt

  3. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  4. Complete destruction of heavy nuclei by hadrons and nuclei

    International Nuclear Information System (INIS)

    Tolstov, K.D.

    1980-01-01

    The total disintegration is considered of Ag and Pb nuclei and 4 He, 12 C nuclei With a momentum of 4.5 GeV/c per nucleon. It is shown that nucleons are mainly emitted, and there is no residual nUcleus the mass of which is comparable to that of the primary nucleus. The probability of total nucleus disintegration is considered as a function of projectile energy and the mass. The multiplicity, energy and emission angle of particles are considerred as well. It is shown that the density of nuclear matter in the overlap zone of colliding nuclei exceeds the usual one by a factor of approximately 4. A comparison is made with interaction models. A conclusion is drawn of the collective interaction mechanism (perhaps, of the shock wave type) of particle ejection from the target nucleus at the first stage of interaction and of explosive decay of the residual nucleus at the next one

  5. Nuclear moments of inertia and wobbling motions in triaxial superdeformed nuclei

    International Nuclear Information System (INIS)

    Matsuzaki, Masayuki; Shimizu, Yoshifumi R.; Matsuyanagi, Kenichi

    2004-01-01

    The wobbling motion excited on triaxial superdeformed nuclei is studied in terms of the cranked shell model plus random phase approximation. First, by calculating at a low rotational frequency the γ dependence of the three moments of inertia associated with the wobbling motion, the mechanism of the appearance of the wobbling motion in positive-γ nuclei is clarified theoretically--the rotational alignment of the πi 13/2 quasiparticle(s) is the essential condition. This indicates that the wobbling motion is a collective motion that is sensitive to the single-particle alignment. Second, we prove that the observed unexpected rotational-frequency dependence of the wobbling frequency is an outcome of the rotational-frequency dependent dynamical moments of inertia

  6. The collective model of nuclei and its applications

    International Nuclear Information System (INIS)

    Frank H, A.; Castanos G, O.H.

    1975-01-01

    The concepts of collective coordinates, the establishment of Hamiltonian collectives through the model of the drop of liquid or through the symmetry arguments and of the operators in these variables are discussed in this study. The passage of the laboratory system to the principal axis system is discussed thoroughly with the symmetries produced by this transformation, considering a drop in two dimensions. It is also observed that the deformed nuclei have some properties that can be described through the rotation-vibration and symmetric rotor models. The rotation-vibration model concerns the nuclei with axially symmetric deformations in the basic state and its importance is due to the fact that it can predict the nuclear spectrum at low energies. The asymmetric rotor model assumes the existence of triaxial nuclei and considers their collective movements. This model can be modified taking into consideration that vibrations β can also appear. Finally there is a comparison between the two models and the models are also compared with the experiment. (author)

  7. Reflection asymmetric shapes in nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.; Carpenter, M.P.; Emling, H.

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N∼134, Z∼88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin ∼8ℎ. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin ∼7ℎ. The nuclei which exhibit octupole deformation in this mass region are 144 Ba, 146 Ba and 146 Ce; 142 Ba, 148 Ce, 150 Ce and 142 Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab

  8. Structure and symmetries of odd-odd triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Colaba, Mumbai (India); Bhat, G.H. [University of Kashmir, Department of Physics, Srinagar (India); Govt. Degree College Kulgam, Department of Physics, Kulgam (India); Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India); Cluster University of Srinagar, Srinagar, Jammu and Kashmir (India)

    2017-05-15

    Rotational spectra of odd-odd Rh and Ag isotopes are investigated with the primary motivation to search for the spontaneous chiral symmetry breaking phenomenon in these nuclei. The experimental results obtained on the degenerate dipole bands of some of these isotopes using a large array of gamma detectors are discussed and studied using the triaxial projected shell (TPSM) approach. It is shown that, first of all, to reproduce the odd-even staggering of the known yrast bands of these nuclei, large triaxial deformation is needed. This large triaxial deformation also gives rise to doublet band structures in many of these studied nuclei. The observed doublet bands in these isotopes are shown to be reproduced reasonably well by the TPSM calculations. Further, the TPSM calculations for neutron-rich nuclei indicate that the ideal manifestation of the chirality can be realised in {sup 106}Rh and {sup 112}Ag, where the doublet bands have similar electromagnetic properties along with small differences in excitation energies. (orig.)

  9. Thermal and rotational effect on giant dipole resonances in rotating nuclei at high temperature

    International Nuclear Information System (INIS)

    Sugawara-Tanabe, Kazuko; Tanabe, Kosai.

    1986-01-01

    Microscopic calculations are carried out for the giant dipole resonances excited on the thermal high spin states in 162 Er and 166 Er based on the thermal linear response theory with realistic forces and large single-particle space. The dynamical strength function is compared with the experimental γ-ray absorption cross section. The general trend that the resonance energy decreases and the resonance width increases with increasing angular momentum and temperature is well reproduced by the calculations. (author)

  10. Estimates of production and structure of nuclei with Z = 119

    Science.gov (United States)

    Adamian, G. G.; Antonenko, N. V.; Lenske, H.

    2018-02-01

    The comparative analysis of the hot fusion reactions 50Ti +247-249Bk and 51V +246-248Cm for synthesis of element 119 is made with the dinuclear system model and the prediction of nuclear properties of the microscopic-macroscopic approach, where the closed proton shell at Z ≥ 120 is expected. The quasiparticle structures of nuclei in the α-decay chain of 295119 and a possible spread of alpha energies are studied. The calculated values of Qα are compared with available experimental data. The termination of the α-decay chain of 295119 is revealed.

  11. Protonic decay of oriented nuclei

    International Nuclear Information System (INIS)

    Kadmensky, S.G.

    2002-01-01

    On the basis of the multiparticle theory of protonic decay, the angular distributions of protons emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion. It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and that the angular distribution of protons in the laboratory frame does not coincide with that in the internal coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the semiclassical approximation are simultaneously valid

  12. Nuclei in a neutron star

    International Nuclear Information System (INIS)

    Oyamatsu, K.; Yamada, M.

    1994-01-01

    We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)

  13. Hot tub folliculitis

    Science.gov (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  14. Coupling of collective and single-particle degrees of freedom in atomic nuclei (commentary to thesis qualifying for assistant-professorship)

    International Nuclear Information System (INIS)

    Chlebowska, D.

    1992-11-01

    The analysis of the spectroscopic properties of the spherical and transitional nuclei is performed from the point of view of the relation between the single-particle and collective degrees of freedom on the ground of the core-particle coupling model with the total angular momentum conserved and without any unphysical parameters (such as the attenuation parameter). A new definition of the rotational alignment is given. The staggering effect is interpreted as a manifestation of the vibrational structure. The rotational dependence of the energy gap parameter is shown to have an influence on the energy spectra of the transitional nuclei. The nuclei with A 130 are shown to have a tendency to be rather rigid. The vibrational and rotational structures, and the magnitude of the rotation-particle coupling in the considered nuclei are determined. 18 figs., 9 tabs., 66 refs. (author)

  15. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  16. Nuclei, hadrons, and elementary particles

    International Nuclear Information System (INIS)

    Bopp, F.W.

    1989-01-01

    This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs [de

  17. Octupole shapes in heavy nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1994-01-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets

  18. Exotic Nuclei Arena in JHP

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-12-01

    The Exotic Nuclei Arena planned in Japanese Hadron Project aims to accelerate various unstable nuclei produced in 1-GeV proton-induced reactions up to 6.5 MeV/u by means of heavy-ion linacs. The present status of research and development for the Earena is briefly reported. The construction of the prototype facility to accelerate unstable beams up to 0.8 MeV/u is planned in 1992-94, in which the existing cyclotron in INS is used as the primary accelerator. (author)

  19. Spinodal decomposition of atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, P. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Colonna, M.; Guarnera, A. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[LNS, Catania (Italy)

    1996-12-31

    Multifragmentation of atomic nuclei is discussed. It is shown that this description of the dynamics of first order phase transitions in infinite and finite system is now partially achieved. An important conclusion is that in some specific cases well-defined collective motions were initiating the self-organisation of the unstable matter in fragments. In the case of finite systems the possible signals kept from this early fragmentation stage can inform on the possible occurrence of a liquid-gas phase transition in nuclei. (K.A.). 21 refs.

  20. Spinodal decomposition of atomic nuclei

    International Nuclear Information System (INIS)

    Chomaz, P.; Colonna, M.; Guarnera, A.

    1996-01-01

    Multifragmentation of atomic nuclei is discussed. It is shown that this description of the dynamics of first order phase transitions in infinite and finite system is now partially achieved. An important conclusion is that in some specific cases well-defined collective motions were initiating the self-organisation of the unstable matter in fragments. In the case of finite systems the possible signals kept from this early fragmentation stage can inform on the possible occurrence of a liquid-gas phase transition in nuclei. (K.A.)

  1. Are there superheavy atomic nuclei

    International Nuclear Information System (INIS)

    Herrmann, G.

    1982-04-01

    The author presents a populary introduction to the formation of nuclei with special regards to superheavy nuclei. After a general description of the methods of physics the atomic hypothesis is considered. Thereafter the structure of the nucleus is discussed, and the different isotopes are considered. Then radioactivity is described as an element transmutation. Thereafter the thermonuclear reactions in the sun are considered. Then the synthesis of elements using heavy ion reactions is described. In this connection the transuranium elements and the superheavy elements are considered. (orig./HSI) [de

  2. Tunneling from super- to normal-deformed minima in nuclei

    International Nuclear Information System (INIS)

    Khoo, T. L.

    1998-01-01

    An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The γ spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in ΔI = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters

  3. Tunneling from super- to normal-deformed minima in nuclei.

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, T. L.

    1998-01-08

    An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The {gamma} spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in {Delta}I = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters.

  4. Enhancement of octupole strength in near spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Robledo, L.M. [Universidad Autonoma de Madrid, Dep. Fisica Teorica, Facultad de Ciencias, Madrid (Spain)

    2016-09-15

    The validity of the rotational formula used to compute E1 and E3 transition strengths in even-even nuclei is analyzed within the Generator Coordinate Method framework based on mean field wave functions. It turns out that those nuclei with spherical or near spherical shapes the E1 and E3 strengths computed with this formula are strongly underestimated and a sound evaluation of them requires angular-momentum projected wave functions. Results for several isotopic chains with proton number equal to or near magic numbers are analyzed and compared with experimental data. The use of angular-momentum projected wave functions greatly improves the agreement with the scarce experimental data. (orig.)

  5. Equilibrium of rotating and nonrotating plasmas in tokamaks

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2003-01-01

    One studied plasma equilibrium in tokamak in case of toroidal rotation. Rotation associated centrifugal force is shown to result in decrease of equilibrium limit as to β. One analyzes unlike opinion and considers its supports. It is shown that in possible case of local improvement of equilibrium conditions associated with special selection of profile of plasma rotation rate, the combined integral effect turns to be negative one. But in case of typical conditions, decrease of equilibrium β caused by plasma rotation is negligible one and one may ignore effect of plasma rotation on its equilibrium for hot plasma [ru

  6. The mechanism of total disintegration of heavy nuclei by fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    The mechanism of the total disintegration of atomic nuclei by fast hadrons and nuclei is considered. The passage of energetic hadrons through layers of intranuclear matter, accompanied by emission of fast nucleons with kinetic energies from about 20 up to about 500 MeV from definite local small regions in the nuclei around projectile courses in them, allows one to explain simply the occurrence of the total destruction of nuclei involved in the collisions. Light nuclei may be totally disintegrated by fast hadrons and nuclei; heavier nuclei may be totally disintegrated only in central collisions of nuclei with similar mass numbers

  7. Nuclei and models, 2001-2003. DEA fields, particles and matter; Noyaux et modeles, 2001-2003. DEA champs, particules, matieres

    Energy Technology Data Exchange (ETDEWEB)

    Sida, J.L

    2003-07-01

    This document gathers a series of 6 lessons dedicated to students in the first year of their thesis (DEA) in fields and particles physics: 1) the extent of nuclear physics, 2) the nucleus as a cluster of interacting fermions, 3) models and deformation, 4) nuclei and rotation, 5) isospin and exotic nuclei, and 6) fission reactions from the saddle point to the scission point.

  8. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  9. Description of highly perturbed bands in rare earth nuclei

    International Nuclear Information System (INIS)

    Joshi, P.C.; Sood, P.C.

    1976-01-01

    Recently some highly perturbed positive parity bands have been populated in odd-mass rare earth nuclei. The energy spacings and sometimes even the spin sequences are drastically different from the usual strong coupling rotational model picture. The levels belonging to 'odd and even' I+1/2 are found to make separate groupings. The levels belonging to odd values of I+1/2 are seen to be very much favoured in comparison to the levels for which I+1/2 is even. In some cases only the favoured levels have been identified. These bands have been studied in the frame-work of rotation aligned coupling scheme in which the odd neutron in the unique parity orbital (in this case the isub(13/2) orbital) is strongly decoupled from the body fixed symmetry axis by the Coriolis force so as to make the projection of its angular momentum α on the rotation axis approximately a good quantum number. A description of the energy levels is suggested by assigning the quantum number α-j to the favoured levels and α-j-1 to the unfavoured levels. The intraband transitions of the favoured and unfavoured bands are examined in comparison with those in the adjacent ground state bands in even-even nuclei. (author)

  10. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    Science.gov (United States)

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  11. Systematic behavior of B(E2) values in the yrast bands of doubly even nuclei

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Rutgers - the State Univ., New Brunswick, NJ; Nadjakov, E.; Venkova, T.

    1980-01-01

    The experimental information on B(E2) transition rates in the yrast bands of doubly even nuclei (126 2 (J: moment of inertia) are plotted versus the rotational frequency squared h/2π 2 ω 2 for each nucleus. In strongly deformed nuclei (N >= 90), the Ssub(exp) curves smoothly increase for low rotational frequencies suggesting that up to spin values I approx. 8 the ratio Q 2 0 /J is nearly constant (Q 0 : quadrupole moment). This is not the case in nuclei with a soft core (N <= 88). In the relevant discussion, the hydrodynamical model as well as the CAP effect are considered. The results in the backbending region are qualitatively discussed in terms of the two-band crossing model. Evidence is found supporting the prediction of an oscillating behavior of the yrast-yrare interaction. (orig.)

  12. Collectivity in heavy nuclei in the shell model Monte Carlo approach

    International Nuclear Information System (INIS)

    Özen, C.; Alhassid, Y.; Nakada, H.

    2014-01-01

    The microscopic description of collectivity in heavy nuclei in the framework of the configuration-interaction shell model has been a major challenge. The size of the model space required for the description of heavy nuclei prohibits the use of conventional diagonalization methods. We have overcome this difficulty by using the shell model Monte Carlo (SMMC) method, which can treat model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We identify a thermal observable that can distinguish between vibrational and rotational collectivity and use it to describe the crossover from vibrational to rotational collectivity in families of even-even rare-earth isotopes. We calculate the state densities in these nuclei and find them to be in close agreement with experimental data. We also calculate the collective enhancement factors of the corresponding level densities and find that their decay with excitation energy is correlated with the pairing and shape phase transitions. (author)

  13. Structure of high spin states of 76Kr and 78Kr nuclei

    Indian Academy of Sciences (India)

    Evolution of the shape with spin, and rotation alignment of proton as well as neutron ... by studying ground state properties of 76,78Kr by employing two sets of basis .... Figure 3. Energies of the yrast states of 76,78Kr nuclei compared with the.

  14. Cluster structure in Cf nuclei

    International Nuclear Information System (INIS)

    Singh, Shailesh K.; Biswal, S.K.; Bhuyan, M.; Patra, S.K.; Gupta, R.K.

    2014-01-01

    Due to the availability of advance experimental facilities, it is possible to probe the nuclei upto their nucleon level very precisely and analyzed the internal structure which will help us to resolve some mysterious problem of the decay of nuclei. Recently, the relativistic nuclear collision, confirmed the α cluster type structure in the 12 C which is the mile stone for the cluster structure in nuclei. The clustering phenomena in light and intermediate elements in nuclear chart is very interesting. There is a lot of work done by our group in the clustering behaviour of the nuclei. In this paper, the various prospectus of clustering in the isotopes of Cf nucleus including fission state is discussed. Here, 242 Cf isotope for the analysis, which is experimentally known is taken. The relativistic mean field model with well established NL3 parameter set is taken. For getting the exact ground state configuration of the isotopes, the calculation for minimizing the potential energy surface is performed by constraint method. The clustering structure of other Cf isotopes is discussed

  15. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  16. Particle detection from oriented nuclei

    International Nuclear Information System (INIS)

    Wouters, J.; Moor, P. de; Schuurmans, P.; Severijns, N.; Vanderpoorten, W.; Vanneste, L.

    1992-01-01

    A survey is given of particle emission from nuclei that have been spin oriented by cryogenical means. Experiments and recent developments with detectors in the low temperature environment and their on-line application are reviewed. The most recent results are mentioned. Some phenomena to be unraveled in future studies are pointed out. (orig.)

  17. Percolation and multifragmentation of nuclei

    International Nuclear Information System (INIS)

    Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    A method to build the 'cold' nuclei as percolation clusters is suggested. Within the framework of definite assumptions of the character of nucleon-nucleon couplings breaking resulting from the nuclear reactions as description of the multifragmentation process in the hadron-nucleus and nucleus-nucleus reactions at high energies is obtained. 19 refs.; 6 figs

  18. Octupole correlation effects in nuclei

    International Nuclear Information System (INIS)

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions

  19. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world's first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density ...

  20. Nuclei far from stability using exotic targets

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Bentley, C.E.; Thomas, K.E.; Brown, R.E.; Flynn, E.R.; Van der Plicht, J.; Mann, L.G.; Struble, G.L.

    1981-01-01

    The meson factories such as the Los Alamos Meson Physics Facility have made possible high fluence medium energy proton beams that can be used for spallation reactions to produce macro quantities of unstable isotopes. Targets of over 10 g/cm 2 can be exposed to total fluence approaching 1 A-hour resulting in spallation yields in the 0.01-10 mg range for many isotopes of potential interest for nuclear structure studies. With the use of hot cell facilities, chemical processing can isolate the desired material and this coupled with subsequent isotope separation can result in usable quantities of material for nuclear target applicaton. With offstable isotopes are target materials, conventional nuclear spectroscopy techniques can be employed to study nuclei far from stability. The irradiation and processing requirements for such an operation, along with the isotope production possibilities, are discussed. Also presented are initial experiments using a 148 Gd (tsub(1/2) = 75a) target to perform the (p,t) reaction to extablish levels in the proposed double magic nucleus 146 Gd. (orig.)

  1. Cold transfer between deformed, Coulomb excited nuclei

    International Nuclear Information System (INIS)

    Bauer, H.

    1998-01-01

    The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  2. Some aspects of reflection asymmetric deformations in nuclei

    International Nuclear Information System (INIS)

    Olanders, P.

    1984-10-01

    The nuclear shape in the intrinsic frame is studied using the Strutinsky method. Various potentials (Nilsson, folded Yukawa and Woods-Saxon) are used for the microscopic part, and the macroscopic part is described as a liquid drop with either a sharp or a smooth surface. Special attention is paid to the possibility of octupole deformed ground states. The consequences of octupole deformations for the rotational behaviour are investigated using the cranking model. It is particularly shown that octupole deformation may supress the backbending in some nuclei. (author)

  3. Close collisions between light nuclei: Orbiting and fusion

    International Nuclear Information System (INIS)

    Shapira, D.; Shivakumar, B.; Harmon, B.A.; Ayik, S.

    1987-01-01

    Our data have demonstrated that in close collisions the two nuclei first form a rotating dinuclear complex (DNC) which can break up into two complex fragments (Orbiting) or evolve into a compound nucleus. The binary fragment yield was found to be significant in contradiction with earlier views which held that whenever nucleus-nucleus capture occurs fusion is a certainty. The time duration of the dinuclear stage and the nature of its evolution into a compound nucleus were studied and a model which describes these processes will be presented. 25 refs., 14 figs

  4. Recent developments in high-spin calculations in atomic nuclei

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1980-01-01

    A brief introduction to the recent achievements in the high-spin domain in nuclear physics is given. Results of the calculations in highly developed rotational bands in deformed nuclei, as well as the calculations in the structure of the yrast isomers are presented. The calculations fail in two aspects: local minima in the yrast line are not confirmed experimentally, the overall slope of the yrast line in 152 Dy is considerably overestimated. The calculations of the yrast line with new Woods-Saxon parameters are now in progress. The parameters are chosen to reproduce the large gap in the levels at proton number Z=64. (M.H.)

  5. Physics of dust grains in hot gas

    International Nuclear Information System (INIS)

    Draine, B.T.; Salpeter, E.E.

    1979-01-01

    Charging of dust grains in hot (10 4 --10 9 K) plasma is studied, including photoelectron and secondary electron emission, field emission, and transmission of electrons and ions through the grain; resulting grain potentials are (for T > or approx. = 10 5 K) considerably smaller in magnitude than found by Burke and Silk. Even so, large electrostatic stresses can cause ion field emission and rapid destruction of small grains in very hot gas. Rapid rotation can also disrupt small grains, but damping (by microwave emission) usually limits the centrifugal stress to acceptable values for plasma densities n/sub H/ -3 . Sputtering rates are estimated for grains in hot gas, based upon a semiempirical fit to experimental data. Predicted sputtering rates for possible grain constituents are similar to estimates by Barlow, but in some cases differ significantly. Useful approximation formulae are given for the drag forces acting on a grain with arbitrary Mach number

  6. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J

    2017-01-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  7. Identical high- K three-quasiparticle rotational bands

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Harjeet; Singh, Pardeep [Guru Nanak Dev University, Department of Physics, Amritsar (India)

    2016-12-15

    A comprehensive study of high-K three-quasiparticle rotational bands in odd-A nuclei indicates the similarity in γ-ray energies and dynamic moment of inertia I{sup (2)}. The extent of the identicality between the rotational bands is evaluated by using the energy factor method. For nuclei pairs exhibiting identical bands, the average relative change in the dynamic moment of inertia I{sup (2)} is also determined. The identical behaviour shown by these bands is attributed to the interplay of nuclear structure parameters: deformation and the pairing correlations. Also, experimental trend of the I(ℎ) vs. ℎω (MeV) plot for these nuclei pairs is shown to be in agreement with Tilted-Axis Cranking (TAC) model calculations. (orig.)

  8. Mass coefficient systematics in triaxially deformed Xe and Ba nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Bihari, Chhail; Singh, M.; Varshney, A.K.; Gupta, K.K.; Gupta, D.K.

    2009-01-01

    In A ∼ 120-140 region where transition occurs from vibrator like stretching around the neutron closed shell (N = 82) to a region with more rotational character (N = 66) energies and B(E2) values of the low lying states change slowly and smoothly with N and Z indicating the collective nature of the levels. The systematic investigation of such nuclei within an isotopic chain undergoing shape or phase transitions is of particular current interest in nuclear structure physics. Rotation is one of the specific collective motions in finite body systems. When the angular momentum increase, one can observe how the energies of the quantum state change due to the effect of the coriolis and centrifugal forces. Thus in the transition to excited states the axial symmetry of the nucleus is violated even if it existed in the ground state

  9. Energy correlations for mixed rotational bands

    International Nuclear Information System (INIS)

    Doessing, T.

    1985-01-01

    A schematic model for the mixing of rotational bands above the yrast line in well deformed nuclei is considered. Many-particle configurations of a rotating mean field form basis bands, and these are subsequently mixed due to a two body residual interaction. The energy interval over which a basis band is spread out increases with increasing excitation energy above the yrast line. Conversely, the B(E2) matrix element for rotational decay out of one of the mixed band states is spread over an interval which is predicted to become more narrow with increasing excitation energy. Finally, the implication of band mixing for γ-ray energy correlations is briefly discussed. (orig.)

  10. Quadrupole collective excitations in rapidly rotating nuclej

    International Nuclear Information System (INIS)

    Mikhajlov, I.N.

    1983-01-01

    The spectrum of collective quadrupole excitations in nuclei is investigated. The average nucleus field has the axial symmetry and rotation occurs relatively to this axis. Dependences of the spectrum of quadrupole oscillations on rotation rate for classic liquid drop (CLD) and for a drop of fermi-liquid (DFL) with fissionability parameter X=0.62 ( 154 Er) are presented. The dependence of probabilities of E2-transitions between single-phonon and phonon-free states on rotation rate for CLD and DFL with fussionability parameter X=0.62 ( 154 Er) is also presented. It is shown that for CLD collective E2-transition of states of yrast-consequence is absolutely forbidden. For DFL transitions are possible that lead to decay of phonon-free state with the excitation of phonons of γ-modes and decrease of angular momentum

  11. Cavitation nuclei measurements - A review

    International Nuclear Information System (INIS)

    Billet, M.L.

    1985-01-01

    The measurement of cavitation nuclei has been the goal of many cavitation research laboratories and has resulted in the development of many methods. Two significantly different approaches have been developed. One is to measure the particulate-microbubble distribution by utilizing acoustical, electrical or optical methods. The other approach measures a liquid tension and a rate of cavitation events for a liquid in order to establish a cavitation susceptibility. Comparisons between various methods indicate that most methods are capable of giving an indication of the nuclei distribution. Measurements obtained in the ocean environment indicate an average of three bubbles per cubic centimeter are present; whereas, water tunnel bubble distributions vary from much less than one to over a hundred per cubic centimeter

  12. Phonon operators in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1981-01-01

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru

  13. Phonon operators for deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1982-01-01

    The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator

  14. Nuclear treasure island [superheavy nuclei

    CERN Document Server

    CERN. Geneva

    1999-01-01

    Summary form only given. Soon after the experiments at Dubna, which synthesized element 114 and made the first footprints on the beach of the "island of nuclear stability", two new superheavy elements have been discovered at the Lawrence Berkeley National Laboratory. Element 118 and its immediate decay product, element 116, were manufactured at Berkeley's 88 inch cyclotron by fusing targets of lead-208 with an intense beam of 449 MeV krypton-86 ions. Although both new nuclei almost instantly decay into lighter ones, the decay sequence is consistent with theories that have long predicted the island of stability for nuclei with approximately 114 protons and 184 neutrons. Theorist Robert Smolanczuk, visiting from the Soltan Institute for Nuclear Studies in Poland, had calculated that this reaction should have particularly favourable production rates. Now that this route has been signposted, similar reactions could be possible: new elements and isotopes, tests of nuclear stability and mass models, and a new under...

  15. Moessbauer effects on oriented nuclei

    International Nuclear Information System (INIS)

    Sayouti, E.H.

    1984-01-01

    Standard nuclear orientation methods (not sensitive to the polarization) do not give information on the sign of the magnetic moment. Mossbauer effect separates right-hand and left-hand circularly polarized components, thus its detection on oriented nuclei (T approximately 10 mK) gives the sign of the magnetic moment of oriented state. In this thesis we applied this method to study the 3/2 - ground states of 191 Pt and 193 Os, which are in the prolate-oblate transition region, where assignement of experimental levels to theoretical states is often umbiguous. We show that for those nuclei the sign of the magnetic moment is the signature of the configuration, and its determination establishes the correspondance between experimental and theoretical levels [fr

  16. Clusters in nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Beck, Christian

    2010-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is presently one of the domains of heavy-ion nuclear physics facing both the greatest challenges and opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physics decided to team up in producing a comprehensive collection of lectures and tutorial reviews covering the field. This first volume, gathering seven extensive lectures, covers the follow topics: - Cluster Radioactivity - Cluster States and Mean Field Theories - Alpha Clustering and Alpha Condensates - Clustering in Neutron-rich Nuclei - Di-neutron Clustering - Collective Clusterization in Nuclei - Giant Nuclear Molecules By promoting new ideas and developments while retaining a pedagogical nature of presentation throughout, these lectures will both serve as a reference and as advanced teaching material for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  17. Rotator cuff exercises

    Science.gov (United States)

    ... 25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder MRI scan Shoulder pain Patient Instructions Rotator cuff - self-care Shoulder surgery - discharge Using your ...

  18. Mesons and quarks in nuclei

    International Nuclear Information System (INIS)

    Oset, E.

    1980-01-01

    A short review of the topic of mesons in nuclei is exposed paying particular attention to the relationship between several mesonic processes. Special emphasis is put into the microscopic pictures that can ultimately relate all these processes with the elementary coupling of mesons to the nuclear hadronic components. The importance of the short range part of the nuclear interaction opens the doors to a more basic understanding in terms of the quark components of nucleons and isobars. (orig.)

  19. Exclusive photoreactions on light nuclei

    International Nuclear Information System (INIS)

    Maruyama, K.

    1989-08-01

    The mechanism of photon absorption on light nuclei in the Δ-resonance region is discussed. The present status of experimental results is briefly summarized. A recent data from 1.3-GeV Tokyo ES using a π sr spectrometer is introduced. Exclusive measurements of the photodisintegration of 3 He and 4 He may be a clear way to identify 2N, 3N and 4N absorptions. (author)

  20. Hot spot detection for breast cancer in Ki-67 stained slides: image dependent filtering approach

    Science.gov (United States)

    Niazi, M. Khalid Khan; Downs-Kelly, Erinn; Gurcan, Metin N.

    2014-03-01

    We present a new method to detect hot spots from breast cancer slides stained for Ki67 expression. It is common practice to use centroid of a nucleus as a surrogate representation of a cell. This often requires the detection of individual nuclei. Once all the nuclei are detected, the hot spots are detected by clustering the centroids. For large size images, nuclei detection is computationally demanding. Instead of detecting the individual nuclei and treating hot spot detection as a clustering problem, we considered hot spot detection as an image filtering problem where positively stained pixels are used to detect hot spots in breast cancer images. The method first segments the Ki-67 positive pixels using the visually meaningful segmentation (VMS) method that we developed earlier. Then, it automatically generates an image dependent filter to generate a density map from the segmented image. The smoothness of the density image simplifies the detection of local maxima. The number of local maxima directly corresponds to the number of hot spots in the breast cancer image. The method was tested on 23 different regions of interest images extracted from 10 different breast cancer slides stained with Ki67. To determine the intra-reader variability, each image was annotated twice for hot spots by a boardcertified pathologist with a two-week interval in between her two readings. A computer-generated hot spot region was considered a true-positive if it agrees with either one of the two annotation sets provided by the pathologist. While the intra-reader variability was 57%, our proposed method can correctly detect hot spots with 81% precision.

  1. Rotations as coherent states of SU(6) quadrupole phonons in the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Paar, V [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Rio de Janeiro Univ. (Brazil). Inst. de Fisica)

    1981-06-18

    Analytic expressions for the wavefunctions of the ground-state rotational band for even and odd nuclei are derived in terms of spherical quadrupole phonons truncated at N(max) phonons. For N(max) ..-->.. infinite the Bohr-Mottelson rotational states are generated as an asymptotic gaussian distribution of quadrupole phonons.

  2. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  3. The creation of new nuclei

    International Nuclear Information System (INIS)

    Armbruster, P.; Hessberger, F.P.

    1998-01-01

    In the last 60 years physicists have created 20 artificial elements beyond uranium. In 1934 Enrico Fermi predicted the creation of new elements by bombarding atoms with neutrons. This method led to the discovery of neptunium (Z=93), plutonium, americium, curium, berkelium, californium, einsteinium and fermium (Z=100). In fact the capture of a neutron is followed by a beta-decay which increases the atomic number (Z) by one unit. Beyond Z=100 beta-decay no more occurs so a new approach was necessary. Between the American Lawrence Berkeley Laboratory and the Russian Dubna Institute a fierce competition broke out to produce new elements by bombarding transuranium nuclei with light elements such as helium, carbon, nitrogen. This new method required heavy equipment: ion accelerator and detectors but led to the creation of all the elements from Z=101 to Z=106. A new idea was to provoke the fusion of heavy nuclei such as lead and bismuth with colliding argon, nickel or zinc ion beams. This method called 'cold fusion' opened the way to reach the nuclei beyond Z=107. In 1996 the element Z=112 was the last discovered. The next step could be the element Z=114 for which a particular stability is expected. (A.C.)

  4. Radii of nuclei off stability

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo

    1982-01-01

    An experiment is proposed to determine systematically the radii of the nuclei produced through the projectile fragmentation process in high energy heavy-ion collision. The measurement of total reaction cross section using the projectile fragments of a single nuclide on a target give information about nuclear radii. The production cross section of the fragments is appreciable for many nuclides. Therefore, it is possible to map systematically the reaction radii of the nuclei which can be produced as the projectile fragments. In an experiment using the projectile fragments as the incident beam, the cross section can be expressed as a function of the radii of a projectile and a target. An experiment with He-8 produced by the fragmentation of C-12 is proposed. The He-8 has four neutrons in the p-3/2 orbit outside the He-4 core. Proton and neutron distributions for He isotopes were calculated on the basis of the Hartree-Fock method. The information related to this kind of distribution can be obtained by the proposed experiment. The nuclear structure effect is seen in the nuclear radii of other unstable nuclei. The experimental examples of the isotope shift measurement and the excitation energy are presented. (Kato, T.)

  5. Density functional theory of nuclei

    International Nuclear Information System (INIS)

    Terasaki, Jun

    2008-01-01

    The density functional theory of nuclei has come to draw attention of scientists in the field of nuclear structure because the theory is expected to provide reliable numerical data in wide range on the nuclear chart. This article is organized to present an overview of the theory to the people engaged in the theory of other fields as well as those people in the nuclear physics experiments. At first, the outline of the density functional theory widely used in the electronic systems (condensed matter, atoms, and molecules) was described starting from the Kohn-Sham equation derived on the variational principle. Then the theory used in the field of nuclear physics was presented. Hartree-Fock and Hartree-Fock-Bogolyubov approximation by using Skyrme interaction was explained. Comparison of the results of calculations and experiments of binding energies and ground state mean square charge radii of some magic number nuclei were shown. The similarity and dissimilarity between the two streams were summarized. Finally the activities of the international project of Universal Nuclear Energy Density Functional (UNEDF) which was started recently lead by US scientist was reported. This project is programmed for five years. One of the applications of the project is the calculation of the neutron capture cross section of nuclei on the r-process, which is absolutely necessary for the nucleosynthesis research. (S. Funahashi)

  6. Exotic Nuclei and Yukawa's Forces

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Suzuki, Toshio; Utsuno, Yutaka

    2008-01-01

    In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, ... This turned out to be changed, once we entered the regime of exotic nuclei. This shell evolution develops at many places on the nuclear chart in various forms. For example, superheavy magic numbers may be altered. Thus, we are led to a new paradigm as to how and where the nuclear shell evolves, and what consequences arise. The evolution of the shell affects weak process transitions, and plays a crucial role in deformation. The π and ρ mesons generate tensor forces, and are the fundamental elements of such intriguing phenomena. Thus, physics of exotic nuclei arises as a manifestation of Yukawa's forces

  7. Program package for calculation of cross sections of neutron scattering on deformed nuclei by the coupled-channel method

    International Nuclear Information System (INIS)

    Kloss, Yu.Yu.

    1985-01-01

    Program package and numerical solution of the problem for a system of coupled equations used in optical model to solve a problem on low and mean energy neutron scattering on deformed nuclei, is considered. With these programs differnet scattering cross sections depending on the incident neutron energy on even-even and even-odd nuclei were obtained. The programm permits to obtain different scattering cross sections (elastic, inelastic), excitation cross sections of the first three energy levels of rotational band depending on the energy, angular distributions and neutron polarizations including excited channels. In the program there is possibility for accounting even-even nuclei octupole deformation

  8. Rotating anode x-ray tube

    International Nuclear Information System (INIS)

    Hueschen, R.E.; Jens, R.A.

    1980-01-01

    A solid low thermal conductivity columbium metal stem supports heavy refractory metal x-ray target and adjoins high thermal conductivity rotor hub fastened to rotor with low thermally conductive bearing hub fastened to a shaft journaled for rotation in bearings. The rotor is coated to enhance heat dissipation and the arrangement promotes thermal isolation of the bearings from the hot rotor hub and hot target. The hub is of Mo or Mo based alloy, and hub of Ni based alloy. Specific compositions with additives are detailed. Hub additionally restricts heat flow due to its maximised length and minimised cross-section, the reduced area bosses further restricting surface contact. (author)

  9. The colours of Hubble Sc galaxy nuclei

    International Nuclear Information System (INIS)

    Iskudaryan, S.G.

    1975-01-01

    The colorimetric data on the nuclei of the Sc galaxies are given. Comparison of the following parameters: color of a nucleus, integral color of a galaxy, Byurakan class, and spectral type of normal spirals gives the possibility to conclude: (1) The colors of the nuclei of the Sc galaxies have a high dispersion in its values. In all Byurakan classes the galaxies with intensely red and blue nuclei occur; (2) Some Sc galaxies exhibit a discrepancy between the spectral and morphological types. The results of colorimetry of nuclei indicate that almost all such Sc galaxies have intensely red nuclei which, naturally, provide for these late spectral types. It can be assumed that the intensely red color of the nuclei of such Sc galaxies is a result of a new type of activity of these nuclei; and (3) some Sc galaxies show the characteristics of the Markarian objects

  10. The Peculiarities of the Production and Decay of Superheavy Nuclei

    International Nuclear Information System (INIS)

    Itkis, M. G.; Bogachev, A. A.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rusanov, A. Ya.; Sagaidak, R. N.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Behera, B. R.; Corradi, L.; Fioretto, E.

    2006-01-01

    superheavy nuclei and the perspectives of the ''hot'' fusion reaction for the production of superheavy nuclei are considered

  11. A brief review of intruder rotational bands and magnetic rotation in the A = 110 mass region

    Science.gov (United States)

    Banerjee, P.

    2018-05-01

    Nuclei in the A ∼ 110 mass region exhibit interesting structural features. One of these relates to the process by which specific configurations, built on the excitation of one or more protons across the Z = 50 shell-gap, manifest as collective rotational bands at intermediate spins and gradually lose their collectivity with increase in spin and terminate in a non-collective state at the maximum spin which the configuration can support. These bands are called terminating bands that co-exist with spherical states. Some of these bands are said to terminate smoothly underlining the continuous character of the process by which the band evolves from significant collectivity at low spin to a pure particle-hole non-collective state at the highest spin. The neutron-deficient A ∼ 110 mass region provides the best examples of smoothly terminating bands. The present experimental and theoretical status of such bands in several nuclei with 48 ≤ Z ≤ 52 spanning the 106 ≤ A ≤ 119 mass region have been reviewed in this article. The other noteworthy feature of nuclei in the A ∼ 110 mass region is the observation of regular rotation-like sequences of strongly enhanced magnetic dipole transitions in near-spherical nuclei. These bands, unlike the well-studied rotational sequences in deformed nuclei, arise from a spontaneous symmetry breaking by the anisotropic currents of a few high-j excited particles and holes. This mode of excitation is called magnetic rotation and was first reported in the Pb region. Evidence in favor of the existence of such structures, also called shears bands, are reported in the literature for a large number of Cd, In, Sn and Sb isotope with A ∼ 110. The present article provides a general overview of these reported structures across this mass region. The review also discusses antimagnetic rotation bands and a few cases of octupole correlations in the A = 110 mass region.

  12. Understanding the different rotational behaviors of $^{252}$No and $^{254}$No in terms of high-order deformation

    CERN Document Server

    Liu, H L; Walker, P M

    2012-01-01

    Total Routhian surface calculations have been performed to investigate rapidly rotating transfermium nuclei, the heaviest nuclei accessible by detailed spectroscopy experiments. The observed fast alignment in $^{252}$No and slow alignment in $^{254}$No are well reproduced by the calculations incorporating high-order deformations. The different rotational behaviors of $^{252}$No and $^{254}$No can be understood for the first time in terms of $\\beta_6$ deformation that decreases the energies of the $\

  13. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  14. Matrix elements of Yale potential and level properties of light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N; Prakash, O [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-07-01

    Shell model calculations using bare and renormalized matrix elements of the Yale potential are reported for the normal-parity states of A = 6-9 nuclei. Renormalization of the two-body matrix elements using second-order perturbation theory is not found to improve the agreements with the experimental data. Inclusion of the energy shifts of ground state rotational bands in /sup 8/Be and /sup 9/Be are, however, found to improve the agreements with the excitation energies of nuclear levels. The need for carrying out more calculations of these nuclei with realistic forces is pointed out.

  15. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1993-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21 % for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (orig.)

  16. Exotic light nuclei and nuclei in the lead region

    International Nuclear Information System (INIS)

    Poppelier, N.A.F.M.

    1989-01-01

    Three methods are discussed for modifying, or renormalizing, a truncated nuclear hamiltonian such that the wave functions obtained by diagonalizing this modified or effective hamiltoniandescribe the nucleus as well as possible: deriving the hamiltonian directly from a realistic nucleon-nucleon interaction between free nucleons; parametrizing the hamiltonian in terms of a number of parameters and determining these parameters from a least-squares fit of calculated properties to experimental data; approximating the nucleon-nucleon (NN) interaction between two nucleons in a nucleus by a simple analytic expression. An effective hamiltonian derived following the second method is applied in a theoretical study of exotic nuclei in the region of Z=2-9 and A=4-30 and the problem of the neutron halo in 11 Li is discussed. Results of shell-model calculations of 20i Pb and nuclei in its neighbourhood are presented in which an effective hamiltonian was employed derived with the last method. The quenching of M1 strength in 208 Pb, and the spectroscopic factors measured in proton knock-out reactions could be described quite satisfactory. Finally, a method is presented for deriving the effective hamiltonian directly from the realistic NN interaction with algebraic techniques. (H.W.). 114 refs.; 34 figs.; 12 tabs.; schemes

  17. ExoMol line lists - IV. The rotation-vibration spectrum of methane up to 1500 K

    Science.gov (United States)

    Yurchenko, Sergei N.; Tennyson, Jonathan

    2014-05-01

    A new hot line list is calculated for 12CH4 in its ground electronic state. This line list, called 10to10, contains 9.8 billion transitions and should be complete for temperatures up to 1500 K. It covers the wavelengths longer than 1 μm and includes all transitions to upper states with energies below hc · 18 000 cm-1 and rotational excitation up to J = 39. The line list is computed using the eigenvalues and eigenfunctions of CH4 obtained by variational solution of the Schrödinger equation for the rotation-vibration motion of nuclei employing program TROVE and a new `spectroscopic' potential energy surface (PES) obtained by refining an ab initio PES (CCSD(T)-F12c/aug-cc-pVQZ) through least-squares fitting to the experimentally derived energies with J = 0-4 and a previously reported ab initio dipole moment surface (CCSD(T)-F12c/aug-cc-pVTZ). Detailed comparisons with other available sources of methane transitions including HITRAN, experimental compilations and other theoretical line lists show that these sources lack transitions both higher temperatures and near-infrared wavelengths. The 10to10 line list is suitable for modelling atmospheres of cool stars and exoplanets. It is available from the CDS data base as well as at www.exomol.com.

  18. Isospin mixing in light nuclei

    International Nuclear Information System (INIS)

    Ludwig, E.J.; Clegg, T.B.; Fauber, R.E.; Karwowski, H.J.; Mooney, T.M.; Thompson, W.J.

    1985-01-01

    This program has provided accurate measurements of isospin mixing (ΔT = 1,2) in proton elastic scattering on even-even target nuclei up to A = 40. In order to improve experimental results and to test the hypothesis that isospin mixing is dominated by mixing in the target ground state (as opposed to mixing in the compound system) the authors have undertaken to (1) extend the proton scattering results to additional T = 3/2 states in certain compound systems and (2) examine processes which can proceed by only isotensor mixing (ΔT = 2) in order to isolate the effects of that contribution

  19. Nucleon transfer between heavy nuclei

    International Nuclear Information System (INIS)

    Von Oertzen, W.

    1984-02-01

    Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation

  20. Microscopic structure for light nuclei

    International Nuclear Information System (INIS)

    Sharma, V.K.

    1995-01-01

    The microscopic structure for light nuclei e.g. 4 He, 7 Li and 8 Be is considered in the frame work of the generator coordinate method (GCM). The physical interpretation of our GCM is also discussed. The GC amplitudes are used to calculate the various properties like charge and magnetic RMS radii, form factors, electromagnetic moments, astrophysical S-factor, Bremsstrahlung weighted cross sections, relative wavefunctions and vertex functions etc. All the calculated quantities agree well with the values determined experimentally. (author). 30 refs., 10 figs., 2 tabs

  1. On the relationship between optical and radio emission from active galaxy nuclei

    International Nuclear Information System (INIS)

    Zentsova, A.S.; Fedorenko, V.N.

    1991-01-01

    Model in which the radio emission of nuclei of Seyfert galaxies emerges in the regions of formation of their narrow emission lines, R∼100 pc is developed. Gaseous clouds, producing this emission, are moving in the surrounding hot gas and induce shock waves. The shock waves accelerate electrons, which produce radio emission via synchrotron mechanism. The model explains an observational correlation between the radio and optical properties of Seyfert galaxies and makes some predictions on the parameters of the region R∼100 pc

  2. AMD study of unstable nuclei

    International Nuclear Information System (INIS)

    Horiuchi, Hisashi; Dote, Akinobu; Kimura, Masaaki

    2000-01-01

    The formulation of AMD which can describe both mean-field states and clustering states is briefly explained. The results of the application of the AMD model to various isotopes are given. Many problems are discussed which include formation of molecular orbits, new-type of clustering near neutron drip-line, opposite deformation of neutron and proton density distributions, breaking of the neutron magic numbers N=8 and N=20, and so on. The discussions are not necessarily only for the ground states or ground rotational bands but also for the excited states or excited rotational bands in the case of Be isotopes. (author)

  3. AMD study of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hisashi; Dote, Akinobu; Kimura, Masaaki [Kyoto Univ. (Japan). Dept. of Physics; Kanada-En' yo, Yoshiko [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2000-01-01

    The formulation of AMD which can describe both mean-field states and clustering states is briefly explained. The results of the application of the AMD model to various isotopes are given. Many problems are discussed which include formation of molecular orbits, new-type of clustering near neutron dripline, opposite deformation of neutron and proton density distributions, breaking of the neutron magic numbers N=8 and N=20, and so on. The discussions are not necessarily only for the ground states or ground rotational bands but also for the excited states or excited rotational bands in the case of Be isotopes. (author)

  4. Exotic nuclei: another aspect of nuclear structure

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.

    2002-01-01

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  5. On the distribution of quarks in nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Panebrattsev, V.S.; Stavinskij, V.S.

    1984-01-01

    On the basis of the data on cumulative proton, deuteron and nuclear fragment production in hadr on-nucleon reactions and deep inelastic muon-nucleon scattering quark distributions in light, intemediate and heavy nuclei have been investigated. Conditions of limiting fragmentation of hadrons and nuclei in the studied processes have been investigated to obtain quark-parton structure functions (Gs 2 ) of the studied hadrons or nuclei. Invariant differential cross sections of π + , π - , K + meson production on aluminium, deuterium and lead nuclei and their dependence on scale variable at the transverse momentum value Psub(T) approximately 0 have been obtained. Properties of structure functions G 2 and behaviour of different nuclei differential cross sections of limiting fragmentation have been investigated. It is concluded that considered regularities testify to the presence of multiquark states in nuclei, different by its structure from nUcleons

  6. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  7. Laser method of free atom nuclei orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1987-01-01

    Orientation process of free atom (atoms in beams) nuclei, scattering quanta of circularly polarized laser radiation is considered. A method for the evaluation of nuclei orientation parameters is developed. It is shown that in the process of pumping between the ground and first excited atomic states with electron shell spins J 1 and J 2 , so that J 2 = J 1 + 1, a complete orientation of nuclei can be attained

  8. Are there multiquark bags in nuclei

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Scmatkov, M.Zh.

    1983-01-01

    Arguments are presented favouring the idea that multiquark bags do eXist in nuclei. Such hypothesis makes possible to reveal the relationship among three different scopes of phenomena: deep inelastic scattering of leptons by nUclei, large q 2 (where q 2 is a square of momentum transfer) behaviour of the form factors of light nuclei and yield of cumulative proton.s

  9. Possible existence of backbending in actinide nuclei

    International Nuclear Information System (INIS)

    Dudek, J.; Nazarewicz, W.; Szymanski, Z.

    1982-01-01

    The possibilities for the backbending effect to occur in actinide nuclei are studied using the pairing-self-consistent independent quasiparticle method. The Hamiltonian used is that of the deformed Woods-Saxon potential plus monopole pairing term. The results of the calculations explain why there is no backbending in most actinide nuclei and simultaneously suggest that in some light neutron deficient nuclei around Th and 22 Ra a backbending effect may occur

  10. Nuclei at the limits of particle stability

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab

  11. Influence of fragment deformation and orientation on compact configuration of odd-Z superheavy nuclei

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-01-01

    The synthesis of heavy and superheavy nuclei is generally carried out by using hot and cold fusion reaction mechanisms. It has been noticed that, the cold fusion reactions occur at relatively low excitation energies (E*_C_N ∼ 10-20 MeV) whereas, the hot fusion reactions occur at excitation energies of E*_C_N ∼ 30- 50 MeV. The fusion mechanism is quite different in both the processes. In the cold fusion process, the interaction of spherical targets (Pb and Bi) with deformed light mass projectiles occurs. On the other hand, the fusion of deformed actinide targets with spherical "4"8Ca projectile characterize the hot interaction processes. Hence the deformations and orientations of targets and projectiles play extremely important role in the superheavy fusion process. The present analysis is carried out to aggrandize the work of which illustrate the role of deformations and orientations on even superheavy nuclei. Here, we extend this analysis for odd superheavy nuclei. It is relevant to note that the temperature and angular momentum effects are not included in the present analysis

  12. Mass-23 nuclei in astrophysics

    International Nuclear Information System (INIS)

    Fraser, P R; Amos, K; Van der Kniff, D; Canton, L; Karataglidis, S; Svenne, J P

    2015-01-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22 Na puzzle of ONe white dwarf novae, where the abundance of 22 Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22 Ne, a necessary step in studying the mass-23 nuclei mentioned above. (paper)

  13. Spin dependence of rotational damping by the rotational plane mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Leoni, S; Bracco, A; Million, B [Milan Univ. (Italy). Ist. di Fisica; Herskind, B; Dossing, T; Rasmussen, P [Niels Bohr Inst., Copenhagen (Denmark); Bergstrom, M; Brockstedt, A; Carlsson, H; Ekstrom, P; Nordlund, A; Ryde, H [Lund Univ. (Sweden). Dept. of Physics; Ingebretsen, F; Tjom, P O [Oslo Univ. (Norway); Lonnroth, T [Aabo Akademi, Turku (Finland). Dept. of Physics

    1992-08-01

    In the study of deformed nuclei by gamma spectroscopy, the large quadrupole transition strength known from rotational bands at high excitation energy may be distributed over all final states of a given parity within an interval defined as the rotational damping width {Gamma}{sub rot} The method of rotational plane mapping extracts a value of {Gamma}{sub rot} from the width of valleys in certain planes in the grid plots of triple gamma coincidence data sets. The method was applied to a high spin triple data set on {sup 162,163}Tm taken with NORDBALL at the tandem accelerator of the Niels Bohr Institute, and formed in the reaction {sup 37}Cl + {sup 130}Te. The value {Gamma}{sub rot} = 85 keV was obtained. Generally, experimental values seem to be lower than theoretical predictions, although the only calculation made was for {sup 168}Yb. 6 refs., 3 figs.

  14. The asymptotic hadron spectrum, anti-nuclei, hyper-nuclei and quark phase

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-01-01

    The only hope of determining the hadronic spectrum in the high mass region is through a study of matter produced in very high energy nuclear collisions. Along the way, exotic nuclei, i.e., anti-nuclei and hyper-nuclei may be produced in appreciable numbers, and the detection of a quark phase may be possible. (orig.) [de

  15. Gamow-Teller decay of T = 1 nuclei to odd-odd N = Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lisetskiy, A F [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Gelberg, A [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany); Institute of Physical and Chemical Reasearch (RIKEN), Wako, 351-0198 (Japan); Brentano, P von [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany)

    2005-01-01

    Transition strengths of Gamow-Teller decay of T{sub z} = {+-}1 nuclei to N = Z odd-odd nuclei have been calculated in a two-nucleon approximation for spherical and deformed nuclei. The results obtained for the latter are quite close to the values obtained by full-space shell-model calculations and to the experiment.

  16. Hot Weather Tips

    Science.gov (United States)

    ... the person plenty of water and fruit or vegetable juice even if they say they’re not thirsty. No alcohol, coffee or tea. Seek medical help if you suspect dehydration. Light meals: Avoid hot, heavy meals and don’ ...

  17. China's 'Hot Money' Problems

    National Research Council Canada - National Science Library

    Martin, Michael F; Morrison, Wayne M

    2008-01-01

    .... The recent large inflow of financial capital into China, commonly referred to as "hot money," has led some economists to warn that such flows may have a destabilizing effect on China's economy...

  18. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  19. The rotation of accretion-disks and the power spectra of X-rays 'flickering'

    International Nuclear Information System (INIS)

    Zhang Xiaohe; Bao Gang

    1990-07-01

    The X-ray producing, inner region of the accretion disk in Active Galactic Nuclei (AGN) is likely to be non-stationary and non-axisymmetric. This non-stationarity and non-axisymmetry in disk surface brightness may be modeled by considering the pre-sense of many 'hot spots' on a steady, axisymmetric disk. As long as a 'spot' can survive for a few orbital periods, its orbital frequency can be introduced into the light curve either by relativistic orbital motion or by eclipsing of the spot by the disk. These rotational effects vary with the local properties of the spot population. Depending on the radial variation of spot brightness, lifetime and number density, the observed variability power spectrum may differ from that due to the intrinsic variability of spots alone, within the orbital frequency range in which these spots occur. In this paper, we explore the relation between properties assumed for the spot population and the resulting predictions for the observed variability. The implications of our results for the 'flickering' of X-ray sources powered by accretion disks (both AGN and galactic sources) are also discussed. (author). 24 refs, 6 figs

  20. Composite hadrons and relativistic nuclei

    International Nuclear Information System (INIS)

    Blankenbecler, R.

    1978-01-01

    Lectures are presented describing a model of hadronic scattering at large momentum transfer, either transverse or longitudinal. This model emphasizes in this regime the importance of forces involving the interchange of constituents of the hadrons, hence its name, the constituent interchange model CIM. The CIM is a rearrangement of standard perturbation theory to take into account the fact that the binding force is very strong in color singlet states (singlet dominance). The hard scattering expansion, incoherence problems, nuclear wave functions and counting rules, interaction between nuclei, pion and proton yields and form factors, structure functions and nonscaling, massive lepton pairs, hadrons at large transverse momentum, and quark-quark scattering are treated. 49 references